WO2021057792A1 - 一种颗粒物传感器和汽车空调总成 - Google Patents

一种颗粒物传感器和汽车空调总成 Download PDF

Info

Publication number
WO2021057792A1
WO2021057792A1 PCT/CN2020/117143 CN2020117143W WO2021057792A1 WO 2021057792 A1 WO2021057792 A1 WO 2021057792A1 CN 2020117143 W CN2020117143 W CN 2020117143W WO 2021057792 A1 WO2021057792 A1 WO 2021057792A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate matter
airflow
sub
air
matter sensor
Prior art date
Application number
PCT/CN2020/117143
Other languages
English (en)
French (fr)
Inventor
葛忠东
鲍韬
Original Assignee
法雷奥汽车空调湖北有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法雷奥汽车空调湖北有限公司 filed Critical 法雷奥汽车空调湖北有限公司
Priority to EP20868465.4A priority Critical patent/EP4080189A4/en
Publication of WO2021057792A1 publication Critical patent/WO2021057792A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/008Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being air quality
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N2015/0238Single particle scatter

Definitions

  • the invention relates to the detection of particulate matter in the air, in particular to a particulate matter sensor for detecting particulate matter in the air and an automobile air-conditioning assembly equipped with the particulate matter sensor.
  • PM2.5 is also known as fine particulate matter, which specifically refers to particulate matter with a particle size of 2.5 microns or less in the ambient air, which can be longer.
  • PM10 is also known as inhalable particulate matter, specifically refers to particulate matter with a particle size of less than 10 microns. Inhalable particulate matter lasts for a long time in the ambient air, and has a great impact on human health and atmospheric visibility.
  • WO2018211044A1 discloses a particulate matter sensor that uses optical technology to detect particulate matter in the air.
  • a particle sensor that uses optical technology to detect particles in the air generally includes an airflow channel, a light source, and a photoreceptor.
  • the airflow channel allows airflow containing particles to flow in it;
  • the light source is used to generate a light beam that illuminates the airflow in the airflow channel And changes under the action of particles in the airflow;
  • the photoreceptor is used to detect the changed light beam, and generate corresponding pulse signals according to the degree of change of the light beam, and then characterize the particle size and concentration of the particles.
  • particulate matter sensor in the prior art can only detect particulate matter in one place in the air, but for particulate matter at different locations in the air, multiple particulate matter sensors are usually required to detect separately, which increases the cost of detection.
  • the purpose of the present invention is to provide a particulate matter sensor that can detect particulate matter at different locations in the air, thereby reducing the cost of detection.
  • the object of the present invention is also to provide an automobile air-conditioning assembly, which includes the above-mentioned particulate matter sensor.
  • a particulate matter sensor for the purpose of detecting particulate matter in the air includes a light source for emitting a light beam; the particulate matter sensor further includes: a light splitting component for dividing the light beam into at least first sub-beams And a second sub-beam; a photoreceptor for detecting the first sub-beam and the second sub-beam that irradiate the air.
  • the particulate matter sensor further includes an airflow channel configured to allow the air to pass through to form an airflow; the photoreceptor is used to detect the first sub-beam and the airflow irradiating the airflow. The second sub-beam.
  • the airflow channel includes at least a first airflow channel and a second airflow channel; the first airflow channel is configured to allow the air to pass through to form a first airflow; the second airflow channel is configured The photoreceptor is configured to allow the air to pass through to form a second air flow; the photoreceptor is used for detecting the first sub-beam and the second sub-beam respectively irradiating the first air flow and the second air flow.
  • the photoreceptor includes at least a first photoreceptor and a second photoreceptor; the first photoreceptor is used for detecting the first sub-beam irradiating the first airflow, and the second photoreceptor is used for To detect the second sub-beam that irradiates the second airflow.
  • the light splitting assembly includes one or more light splitters.
  • the optical splitting assembly includes an optical fiber splitter.
  • the particulate matter sensor further includes a pipe fitting; the pipe fitting has a first branch part, a confluence part, and a second branch part, and the confluence part is connected to the first branch part and the second branch part respectively.
  • the branch part is connected, wherein the first branch part defines the first air flow channel, the second branch part defines the second air flow channel, the confluence part has a confluence cavity; the confluence cavity is respectively connected with The first air flow channel and the second air flow channel are in communication; the confluence chamber is used to collect the first air flow in the first air flow channel and the second air flow in the second air flow channel.
  • the particulate matter sensor further includes a fan, which is used to suck the gas in the confluence cavity to generate a negative pressure in the confluence cavity, so that the first airflow and the The second airflow flows toward the merging cavity and is collected in the merging cavity.
  • a fan which is used to suck the gas in the confluence cavity to generate a negative pressure in the confluence cavity, so that the first airflow and the The second airflow flows toward the merging cavity and is collected in the merging cavity.
  • the first photoreceptor is arranged in the first air flow channel, and the second photoreceptor is arranged in the second air flow channel;
  • the first branch portion has a first opening, so
  • the second branch portion has a second opening; the first opening allows the first sub-beam to pass through; the second opening allows the second sub-beam to pass through.
  • the particulate matter sensor further includes a mounting plate; the mounting plate has a through hole; the pipe fitting is fixed on the mounting plate and located on one side of the mounting plate, wherein the confluence cavity is connected to The through hole communicates; the fan is fixed on the mounting plate and is located on the other side of the mounting plate, wherein the air inlet of the fan communicates with the through hole; the through hole allows the confluence cavity The gas in the air passes through and enters the fan.
  • the light source, the light splitting assembly, the first photoreceptor, and the second photoreceptor are respectively fixed on the mounting plate, and are located on the same side of the mounting plate as the pipe fitting. side.
  • the particulate matter sensor further includes a housing; the housing has a first air inlet, a second air inlet, and an air outlet; the mounting plate is fixed on the housing and is located on the housing. Inside the housing, the first air inlet allows the first airflow to enter the first airflow channel, and the second air inlet allows the second airflow to enter the second airflow channel.
  • the automobile air-conditioning assembly includes the particulate matter sensor as described above.
  • the positive progress effect of the present invention is that the particle sensor provided by the present invention includes a light splitting component.
  • the light beam emitted by the light source can be divided into at least two sub-beams by the light splitting component.
  • the two sub-beams can irradiate different positions in the air, thereby realizing the difference in the air.
  • the location of the particulate matter is detected, thereby reducing the cost of detection.
  • the automobile air-conditioning assembly provided by the present invention includes a particulate matter sensor, so it also has the advantage of low cost.
  • Figure 1 is a schematic diagram of a particulate matter sensor, showing the first air flow channel
  • Figure 2 is a schematic diagram of a particulate matter sensor, showing a second air flow channel
  • Figure 3 is a schematic diagram of the particle sensor, showing the air outlet
  • Figure 4 is a top view of the internal structure of the particulate matter sensor, showing one side of the mounting plate;
  • FIG. 5 is a schematic diagram of the internal structure of the particulate matter sensor, showing the first opening and the second opening;
  • Figure 6 is a schematic diagram of the internal structure of the particulate matter sensor, showing the other side of the mounting plate;
  • Figure 7 is a schematic diagram of the internal structure of the particulate matter sensor with the fan removed, showing one side of the mounting plate;
  • Figure 8 is a schematic diagram of the internal structure of the particulate matter sensor with the fan removed, showing the other side of the mounting plate;
  • FIG. 9 is a schematic diagram of the housing of the particulate matter sensor, showing the first air inlet
  • FIG. 10 is a schematic diagram of the housing of the particulate matter sensor, showing the second air inlet
  • Figure 11 is a light path diagram of a particle sensor, where the beam splitting component includes two beam splitters;
  • Figure 12 is a diagram of the optical path of the optical fiber splitter.
  • the distribution of the first feature in the second feature described later in the specification may include an embodiment in which the first and second features are directly connected, or may include an additional feature formed between the first and second features. Implementation, so that there may not be a direct connection between the first and second features.
  • reference numerals and/or letters may be repeated in different examples in these contents. The repetition is for brevity and clarity, and does not indicate the relationship between the various embodiments and/or structures to be discussed.
  • first element when the first element is described in the manner of being connected or combined with the second element, the description includes the embodiment in which the first and second elements are directly connected or combined with each other, and also includes the use of one or more other intervening elements to add The first and second elements are indirectly connected or combined with each other.
  • FIGS. 1 to 12 are only examples, and they are not drawn according to the conditions of equal proportions, and should not be used as a limitation to the protection scope of the present invention.
  • the automobile air-conditioning assembly includes structures such as a casing, a fan, an evaporator, and a heater heat exchanger. Both the evaporator and the warm air heat exchanger are arranged in the air duct inside the housing, and the fan is used to make the air flow enter the air duct inside the housing and flow through the evaporator or the warm air heat exchanger, so that the air flow is cooled or heated. Under the action of the fan, the cooled or heated airflow is sent into the compartment, so that the personnel in the compartment can obtain a more comfortable environment.
  • the automobile air-conditioning assembly also includes a particulate matter sensor 900 for detecting particulate matter in the air.
  • the airflow can be caused to flow through the particulate matter sensor 900 to detect the particle size and concentration of the particulate matter in the airflow.
  • the particulate matter sensor 900 is a sensor that measures the particle size and concentration of particulate matter through optical technology.
  • the particle sensor 900 includes a light source 1.
  • the light source 1 may be a laser light source or an infrared light source.
  • the laser light source may be a laser diode, which can emit a laser beam when it is energized. Able to emit infrared beams. Take the laser beam as an example.
  • the laser beam When the laser beam irradiates the particles in the airflow, the laser beam will change, such as scattering, and the degree of change is related to the particle size and concentration of the particles. By detecting the degree of change in the laser beam, the corresponding particle size and concentration can be obtained.
  • the particulate matter sensor 900 provided by the embodiment of the present invention can be used in an automobile air conditioning assembly to detect particulate matter in the air of a car cabin, and can also be used to detect particulate matter in other environments, such as a construction environment.
  • the particulate matter sensor 900 provided by the embodiment of the present invention can be used to detect particulate matter in an airflow, and also can be used to detect particulate matter in still air.
  • conventional particulate matter sensors can only detect particulate matter in one place in the air, but for particulate matter at different locations in the air, multiple particulate matter sensors are usually required to detect separately, which increases the cost of detection.
  • the particle sensor 900 includes a light source 1, a light splitting component 3, and a photoreceptor, wherein the light source 1 is used to emit the light beam L; the light splitting component 3 is used The light beam L is divided into at least the first sub-beam L1 and the second sub-beam L2; the photoreceptor is used to detect the first sub-beam L1 and the second sub-beam L2 that irradiate the air.
  • the two sub-beams can irradiate different positions in the air, thereby realizing the detection of particles in different positions in the air, thereby reducing the detection cost.
  • the different positions in the air may be different positions in still air, or different positions in one air flow, or different positions in multiple flowing air flows.
  • the particulate matter sensor 900 further includes an airflow channel configured to allow air to pass through to form an airflow; the photoreceptor is used to detect the first sub-beam L1 and the second sub-beam L2 that irradiate the airflow.
  • the different positions in the air are different positions in the airflow.
  • the number of airflow channels can be one or more. When the number of airflow channels is one (not shown in the drawings), the number of airflows formed is one.
  • the first sub-beam L1 and the second sub-beam L2 can irradiate the front and back positions on the flow path of the air flow, and detect the particulate matter at the two positions.
  • the airflow channel includes at least a first airflow channel 21a and a second airflow channel 22a; the first airflow channel 21a is configured to allow air to pass through The first airflow A is formed; the second airflow channel 22a is configured to allow air to pass through to form a second airflow B; the photoreceptor is used to detect the first sub-beam L1 and the second sub-beam that irradiate the first airflow A and the second airflow B respectively Light beam L2.
  • the number of photoreceptors can be one or more.
  • the photoreceptor can be arranged in a movable form to detect the first sub-beam L1 and the second sub-beam L2 in sequence.
  • the photoreceptor includes at least a first photoreceptor 4 and a second photoreceptor 5; the first photoreceptor 4 is used to detect the first photoreceptor.
  • the first sub-beam L1 of the airflow A and the second photoreceptor 5 are used to detect the second sub-beam L2 that irradiates the second airflow B.
  • conventional particulate matter sensors can only detect particulate matter in one airflow at the same time.
  • multiple particulate matter sensors are usually required to Perform testing separately, which increases testing costs.
  • the particulate matter sensor 900 includes a housing 8, a mounting plate 7, a duct 2, a fan 6, a light source 1, a light splitting assembly 3, and a first The photoreceptor 4 and the second sensor 5, wherein the mounting plate 7, the pipe fitting 2, the fan 6, the light source 1, the light splitting assembly 3, the first photoreceptor 4, and the second sensor 5 are connected as a whole to form an installation inside the housing 8.
  • the internal structure which is shown in Figures 4, 5, and 6.
  • the housing 8 includes an upper cover 81, a surrounding side wall 82 and a bottom cover 83. Both sides of the surrounding side wall 82 are respectively provided with a first air inlet 82a and a second
  • the air inlet 82b is provided with an air outlet 83a on the bottom cover 83, wherein the upper cover 81 and the bottom cover 83 are respectively provided on both sides of the enclosure side wall 82 in the axial direction, and are defined with the enclosure side wall 82
  • the space passes through the first air inlet 82a, the second air inlet 82b and The air outlet 83a communicates with the outside.
  • the structure of the housing 8 can also have other embodiments, and is not limited to being surrounded by the upper cover 81, the surrounding side wall 82, and the bottom cover 83.
  • the number and positions of the first air inlet 82a, the second air inlet 82b, and the air outlet 83a can also be changed in other ways.
  • the upper cover 81, the surrounding side wall 82 and the bottom cover 83 may be made of plastic.
  • the pipe fitting 2, the light source 1, the light splitting assembly 3, the first photoreceptor 4 and the second photoreceptor 5 are respectively fixed on the mounting plate 7 and located on one side of the mounting plate 7; the fan 6 is fixed On the mounting plate 7 and on the other side of the mounting plate 7.
  • peripheral edges of the mounting plate 7 are connected to the inner wall of the enclosing side wall 82 to realize the fixing of the mounting plate 7 and also make the fan 6, the pipe fitting 2, the light source 1, the light splitting assembly 3, and the first The photoreceptor 4 and the second photoreceptor 5 are fixed inside the housing 8.
  • the pipe member 2 has a first branch part 21, a confluence part 23, and a second branch part 22, and the confluence part 23 is connected to the first branch part 21 and the second branch part 22, respectively.
  • Connection wherein the first branch part 21 defines a first air flow channel 21a, the second branch part 22 defines a second air flow channel 22a, and the confluence part 23 has a confluence cavity 23a; the confluence cavity 23a is respectively connected to the first airflow channel 21a and the first airflow channel 21a and the second airflow channel 22a.
  • the two air flow channels 22a are in communication.
  • the confluence cavity 23a is used to gather the first airflow A in the first airflow channel 21a and the second airflow B in the second airflow channel 22a.
  • the first air inlet 82a allows the first airflow A to pass through and enters the first airflow channel 21a
  • the second air inlet 82b allows the second airflow B to pass through and enters the second airflow channel 22a
  • the air outlet 83a allows the confluence chamber 23a to converge The airflow passes through and flows out of the housing 8.
  • the first airflow A and the second airflow B can be the fresh airflow and the internal circulation airflow in the automobile air conditioning system, respectively, or can be two branches of the same airflow, where the first airflow A contains the first airflow.
  • the particulate matter a, the second air flow B contains the second particulate matter b.
  • the particle size and concentration of the first particulate matter a and the particle size and concentration of the second particulate matter b may be the same or different.
  • the number of branch portions of the pipe member 2 may exceed two, and correspondingly, the number of airflow channels may also exceed two.
  • the shape of the branch portion is a tubular closed in the circumferential direction, for example, it may be a round tube or a square tube, and the inner wall of the tube defines an air flow channel.
  • the branch portion includes two plates arranged in parallel and opposite to each other, and an air flow channel is defined between the two plates.
  • first branch portion 21, the confluence portion 23, and the second branch portion 22 may be integrally formed and made of plastic. More specifically, the first air flow channel 21a and the second air flow channel 22a are straight pipes, the confluence cavity 23a is a cylindrical cavity, and the first air flow channel 21a and the second air flow channel 22a are arranged at an angle and are relative to the confluence cavity 23a. One diameter of the cross section is symmetrically arranged.
  • the fan 6 is used to suck the gas in the confluence chamber 23a to generate a negative pressure in the confluence chamber 23a, so that the first airflow A in the first airflow channel 21a and the first airflow A in the second airflow channel 22a
  • the two air streams B flow toward the confluence cavity 23a and are collected in the confluence cavity 23a.
  • the mounting plate 7 has a through hole 7a, and the confluence portion 23 is provided on the through hole 7a, so that the confluence cavity 23a is communicated with the through hole 7a;
  • the hole 7 a allows the gas in the confluence chamber 23 a to pass through and enter the fan 6, and after being discharged from the fan 6, pass through the air outlet 83 a, and then exit the casing 8.
  • the mounting board 7 may be a PCB board.
  • the fan 6 is operated to generate a negative pressure in the confluence chamber 23a, so that the first airflow A is sucked into the first airflow channel 21a through the first air inlet 82a, and finally flows into The confluence cavity 23a also allows the second airflow B to be sucked into the second airflow channel 22a through the second air inlet 82b, and finally flows into the confluence cavity 23a.
  • the light source 1 emits a light beam L, which irradiates the beam splitting assembly 3, and is divided by the beam splitting assembly 3 into at least a first sub-beam L1 and a second sub-beam L2, wherein the first sub-beam L1 is used to irradiate the light beam in the first airflow A
  • the first particulate matter a and the second sub-beam L2 are used to irradiate the second particulate matter b in the second airflow B.
  • the form and structure of the spectroscopic component 3 can be various.
  • the beam splitter assembly 3 may include one or more beam splitters 3a.
  • the beam splitter is a transparent optical element that divides the laser beam into transmitted light and reflected light.
  • Fig. 11 shows an embodiment in which the number of beam splitters 3a is two.
  • the beam splitter 3a close to the light source 1 splits the light beam L into a first sub-beam L1 and a fourth sub-beam L4. 1.
  • the farther beam splitter 3a is divided into a second sub-beam L2 and a third sub-beam L3, wherein the first sub-beam L1 and the second sub-beam L2 are used to detect particulate matter.
  • the first sub-beam L1 is transmitted light
  • the fourth sub-beam L4 is reflected light
  • the second sub-beam L2 is reflected light
  • the third sub-beam L3 is transmitted light.
  • the beam splitter 3 includes a beam splitter 3a, which splits the light beam L into a first sub-beam L1 and a second sub-beam L2, wherein the first sub-beam L1 and the second sub-beam L2
  • the light beam L2 may be an equal amount of light or a non-equal amount of light.
  • one of the first sub-beam L1 and the second sub-beam L2 is reflected light, and the other is transmitted light.
  • the spectroscope 3a may be a flat-type or cube-type spectroscopic product of Sigma Koki Co., Ltd.
  • the optical splitting assembly 3 includes an optical fiber splitter 3b.
  • the optical fiber splitter 3b includes a main channel formed by optical fibers and a plurality of sub-channels.
  • the light beam L enters the main channel and then exits through the multiple sub-channels, thereby forming at least a first sub-beam L1 and a second sub-beam L2.
  • the first photoreceptor 4 and the second photoreceptor 5 may be detectors that utilize the scattering effect of particles on light for analysis.
  • a certain wavelength of light irradiates the particles in the airflow, most of the light will be scattered in all directions at the same wavelength, except for a part of the light that passes through the particles or is absorbed by the particles.
  • the intensity of the scattered light is the concentration and the density of the particles in the airflow. A function of particle size.
  • the first photoreceptor 4 is used to detect the first sub-beam L1 irradiating the first airflow A to generate a first signal corresponding to the first particulate matter a.
  • the first sub-beam L1 is irradiated on the first particulate matter a in the first air flow A and then scattered to generate scattered light.
  • the intensity of the scattered light is the concentration of the first particulate matter a in the first air flow A and the first particulate matter a in the first air flow A.
  • the first photoreceptor 4 can generate a first signal corresponding to the particle size and concentration of the first particulate matter a by detecting the intensity of the scattered light of the first sub-beam L1.
  • the second photoreceptor 5 is used to detect the second sub-beam L2 irradiating the second air flow B to generate a second signal corresponding to the second particulate matter b.
  • the second sub-beam L2 is irradiated on the second particulate matter b of the second air flow B and then scattered to generate scattered light.
  • the intensity of the scattered light is the concentration of the first particulate matter a in the first air flow A and the first particulate matter a a function of the particle size.
  • the second photoreceptor 5 can generate a second signal corresponding to the particle size and concentration of the second particulate matter b by detecting the intensity of the scattered light of the second sub-beam L2.
  • the first signal and/or the second signal may be electronic pulse signals.
  • the first signal and the second signal can be transmitted to the control module of the particulate matter sensor 900 (not shown in the figure), and the control module can calculate the first particulate matter a and the second particulate matter b according to the intensities of the first signal and the second signal, respectively
  • the particle size and concentration are output to the display screen of the central control of the car for display.
  • the above-mentioned control module (not shown in the drawings) may be installed on the mounting board 7.
  • the first photoreceptor 4 is disposed in the first air flow channel 21a, and the second photoreceptor 5 is disposed in the second air flow channel 22a. This can make the structure of the particulate matter sensor 900 more compact and avoid The first photoreceptor 4 and the second photoreceptor 5 are additionally provided with storage space.
  • the first branch portion 21 has a first opening 210
  • the second branch portion 22 has a second opening 220; the first opening 210 allows the first sub-beam L1 to pass through ;
  • the second opening 220 allows the second sub-beam L2 to pass through.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种检测空气中颗粒物的颗粒物传感器(900)和装有该颗粒物传感器(900)的汽车空调总成。颗粒物传感器(900)包括光源(1),光源(1)用于发出光束;颗粒物传感器(900)还包括:分光组件(3),用于将光束至少分成第一子光束(L1)和第二子光束(L2);感光器(4,5),用于检测照射空气的第一子光束(L1)和第二子光束(L2)。光源(1)发出的光束能够被分光组件(3)分成至少两束子光束(L1 ,L2),两束子光束(L1 ,L2)能够照射空气中的不同位置,从而实现对空气中的不同位置的颗粒物进行检测,进而降低了检测成本。汽车空调总成包括颗粒物传感器(900),因此也具有成本低的优点。

Description

一种颗粒物传感器和汽车空调总成 技术领域
本发明涉及空气中颗粒物的检测,特别涉及检测空气中颗粒物的颗粒物传感器和装有该颗粒物传感器的汽车空调总成。
背景技术
随着社会的发展,人们对生活环境质量的要求越来越高,空气中颗粒物的浓度也愈发引起重视。为了表征空气中的颗粒物,一些衡量指标,如PM2.5、PM10等应运而生,其中,PM2.5又名细颗粒物,具体指环境空气中粒径小于等于2.5微米的颗粒物,它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重。PM10又名可吸入颗粒物,具体指指粒径在10微米以下的颗粒物。可吸入颗粒物在环境空气中持续的时间很长,对人体健康和大气能见度的影响都很大。
现有技术中存在两种对颗粒物进行测量的技术手段,分别是重量分析技术和光学技术。重量分析技术包括将颗粒积聚在过滤器上,然后通过直接或间接称重进行定量。光学技术依赖于使光束照射含有颗粒物的气流,从而使光束发生改变,例如使光束发生散射,然后通过感光器来检测光束改变的程度,从而表征颗粒物的粒径和浓度。WO2018211044A1公开了一种采用光学技术来检测空气中颗粒物的颗粒物传感器。
采用光学技术来检测空气中颗粒物的颗粒物传感器一般包括气流通道、光源和感光器,其中,气流通道容许含有颗粒物的气流在其中流动;光源用于产生光束,该光束照射该气流通道中的该气流并在气流中颗粒物的作用下发生改变;感光器用于检测发生改变的该光束,并根据该光束改变的程度产生相应的脉冲信号,进而表征颗粒物的粒径和浓度。
由于结构的限制,现有技术中的颗粒物传感器只能对空气中一处的颗粒物进行检测,但对于空气中不同位置的颗粒物,通常需要多个颗粒物传感器来分别进行检测,这增加了检测成本。
发明内容
本发明的目的在于提供一种颗粒物传感器,该颗粒物传感器能够对空气中 不同位置的颗粒物进行检测,因而降低了检测成本。
本发明的目的还在于提供一种汽车空调总成,该汽车空调总成包括上述颗粒物传感器。
为实现所述目的的颗粒物传感器,用于检测空气中的颗粒物,包括光源,所述光源用于发出光束;所述颗粒物传感器还包括:分光组件,用于将所述光束至少分成第一子光束和第二子光束;感光器,用于检测照射所述空气的所述第一子光束和所述第二子光束。
在一个实施例中,所述颗粒物传感器还包括气流通道,所述气流通道被设置成容许所述空气通过而形成气流;所述感光器用于检测照射所述气流的所述第一子光束和所述第二子光束。
在一个实施例中,所述气流通道至少包括第一气流通道和第二气流通道;所述第一气流通道被设置成容许所述空气通过而形成第一气流;所述第二气流通道被设置成容许所述空气通过而形成第二气流;所述感光器用于检测分别照射所述第一气流和所述第二气流的所述第一子光束和所述第二子光束。
在一个实施例中,所述感光器至少包括第一感光器和第二感光器;所述第一感光器用于检测照射所述第一气流的所述第一子光束,所述第二感光器用于检测照射所述第二气流的所述第二子光束。
在一个实施例中,所述分光组件包括一个或者多个分光镜。
在一个实施例中,所述分光组件包括光纤分束器。
在一个实施例中,所述颗粒物传感器还包括管道件;所述管道件具有第一支流部、汇流部和第二支流部,所述汇流部分别与所述第一支流部和所述第二支流部连接,其中,所述第一支流部限定出所述第一气流通道,所述第二支流部限定出所述第二气流通道,所述汇流部具有汇流腔;所述汇流腔分别与所述第一气流通道和所述第二气流通道连通;所述汇流腔用于汇集所述第一气流通道内的所述第一气流和所述第二气流通道内的所述第二气流。
在一个实施例中,所述颗粒物传感器还包括风机,所述风机用于抽吸所述汇流腔中的气体,以在所述汇流腔内产生负压,从而使所述第一气流和所述第二气流朝向所述汇流腔内流动并汇集在所述汇流腔中。
在一个实施例中,所述第一感光器设置在所述第一气流通道内,所述第二感光器设置在所述第二气流通道内;所述第一支流部具有第一开口,所述第二支流部具有第二开口;所述第一开口容许所述第一子光束穿过;所述第二开口 容许所述第二子光束穿过。
在一个实施例中,所述颗粒物传感器还包括安装板;所述安装板具有通孔;所述管道件固定在所述安装板上且位于所述安装板的一侧,其中所述汇流腔与所述通孔连通;所述风机固定在所述安装板上且位于所述安装板的另一侧,其中所述风机的进风口与所述通孔连通;所述通孔容许所述汇流腔中的气体穿过而进入所述风机。
在一个实施例中,所述光源、所述分光组件、所述第一感光器和所述第二感光器分别固定在所述安装板上,并且与所述管道件位于所述安装板的同一侧。
在一个实施例中,所述颗粒物传感器还包括壳体;所述壳体具有第一进气口、第二进气口和出气口;所述安装板固定在所述壳体上并位于所述壳体内部,所述第一进气口容许所述第一气流进入所述第一气流通道,所述第二进气口容许所述第二气流进入所述第二气流通道。
为实现所述目的的汽车空调总成,所述汽车空调总成包括如上所述的颗粒物传感器。
本发明的积极进步效果在于:本发明提供的颗粒物传感器包括分光组件,光源发出的光束能够被分光组件分成至少两束子光束,两束子光束能够照射空气中的不同位置,从而实现对空气中的不同位置的颗粒物进行检测,进而降低了检测成本。本发明提供的汽车空调总成包括颗粒物传感器,因此也具有成本低的优点。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1为颗粒物传感器的示意图,显示了第一气流通道;
图2为颗粒物传感器的示意图,显示了第二气流通道;
图3为颗粒物传感器的示意图,显示了出气口;
图4为颗粒物传感器的内部结构的俯视图,显示了安装板的一侧;
图5为颗粒物传感器的内部结构的示意图,显示了第一开口和第二开口;
图6为颗粒物传感器的内部结构的示意图,显示了安装板的另一侧;
图7为颗粒物传感器的内部结构去除风机后的示意图,显示了安装板的一侧;
图8为颗粒物传感器的内部结构去除风机后的示意图,显示了安装板的另一侧;
图9为颗粒物传感器的壳体的示意图,显示了第一进气口;
图10为颗粒物传感器的壳体的示意图,显示了第二进气口;
图11为颗粒物传感器的光路图,其中分光组件包括两个分光镜;
图12为光纤分束器的光路图。
具体实施方式
下述公开了多种不同的实施的主题技术方案的实施方式或者实施例。为简化公开内容,下面描述了各元件和排列的具体实例,当然,这些仅仅为例子而已,并非是对本发明的保护范围进行限制。例如在说明书中随后记载的第一特征在第二特征分布,可以包括第一和第二特征通过直接联系的方式分布的实施方式,也可包括在第一和第二特征之间形成附加特征的实施方式,从而第一和第二特征之间可以不直接联系。另外,这些内容中可能会在不同的例子中重复附图标记和/或字母。该重复是为了简要和清楚,其本身不表示要讨论的各实施方式和/或结构间的关系。进一步地,当第一元件是用与第二元件相连或结合的方式描述的,该说明包括第一和第二元件直接相连或彼此结合的实施方式,也包括采用一个或多个其他介入元件加入使第一和第二元件间接地相连或彼此结合。
需要注意的是,图1至图12均仅作为示例,其并非是按照等比例的条件绘制的,并且不应该以此作为对本发明实际要求的保护范围构成限制。
汽车空调总成包括外壳、风机、蒸发器、暖风热交换器等结构。蒸发器和暖风热交换器均设置在外壳内部的风道中,风机用于使气流进入外壳内部的风道并流经蒸发器或暖风热交换器,从而使气流被冷却或者加热。在风机的作用下,这些被降温或者被加热的气流被送入车厢,从而使得车厢内的人员获得一个较为舒适的环境。
除了环境中温度和湿度的控制之外,舒适的环境离不开对空气中颗粒物的 控制。由此,汽车空调总成还包括用来检测空气中颗粒物的颗粒物传感器900。具体地,可以使气流流过该颗粒物传感器900,来检测该气流中颗粒物的粒径和浓度。在本发明的实施例中,颗粒物传感器900为通过光学技术来测量颗粒物的粒径和浓度的传感器。
如图4所示,在一个实施例中,颗粒物传感器900包括光源1,光源1可以是激光光源或者红外线光源,其中激光光源可以是激光二极管,其在通电的状态下能够发出激光光束,红外线光源能够发出红外线光束。以激光光束为例,当激光光束照射在气流中的颗粒物上时,激光光束会发生改变,例如发生散射,其改变的程度与颗粒物的粒径和浓度相关。通过检测激光光束发生改变的程度,能够获得相应的颗粒物的粒径和浓度。
通过光散射测量颗粒物的粒径和浓度和浓度的更加具体的原理,可参考以下文献:
高波.基于光散射测量方法的粉尘传感器及应用[A].中国家用电器协会.2013年中国家用电器技术大会论文集[C].中国家用电器协会:《电器》杂志社,2013:5.
上述文献还记载了通用电气公司型号为SM-PWM-01A的粉尘传感器的工作原理、系统组成和特性参数,可供本领域技术人员在实施本发明实施例时作为参考。
本发明的实施例提供的颗粒物传感器900除了可以用在汽车空调总成中,实现对汽车座舱空气中的颗粒物检测之外,还可以用于其他环境中颗粒物的检测,例如建筑环境。本发明的实施例提供的颗粒物传感器900除了可以用于对气流中的颗粒物进行检测之外,还可以用于对静止的空气中的颗粒物进行检测。
由于结构的限制,常规的颗粒物传感器只能对空气中一处的颗粒物进行检测,但对于空气中不同位置的颗粒物,通常需要多个颗粒物传感器来分别进行检测,这增加了检测成本。
为了实现对空气中的不同位置的颗粒物进行检测,在本发明的一个实施例中,颗粒物传感器900包括光源1、分光组件3和感光器,其中,光源1用于发出光束L;分光组件3用于将光束L至少分成第一子光束L1和第二子光束L2;感光器用于检测照射空气的第一子光束L1和第二子光束L2。
由于光源发出的光束能够被分光组件分成至少两束子光束,两束子光束能 够照射空气中的不同位置,从而实现对空气中的不同位置的颗粒物进行检测,进而降低了检测成本。在上述实施例中,空气中不同位置可以是静止的空气中的不同位置,或者是一股气流中的不同位置,还可以是流动的多股气流中的不同位置。
在另一个实施例中,颗粒物传感器900还包括气流通道,气流通道被设置成容许空气通过而形成气流;感光器用于检测照射气流的第一子光束L1和第二子光束L2。在这个实施例中,空气中不同位置是气流中的不同位置。
气流通道的数量可以是一个或者多个。当气流通道的数量是一个时(附图未示出),形成的气流的数量为一股。第一子光束L1和第二子光束L2可以照射在该股气流的流动路径上的前后两个位置,对该两个位置的颗粒物进行检测。
在气流通道的数量为多个的实施例中,如图4、5、7所示,气流通道至少包括第一气流通道21a和第二气流通道22a;第一气流通道21a被设置成容许空气通过而形成第一气流A;第二气流通道22a被设置成容许空气通过而形成第二气流B;感光器用于检测分别照射第一气流A和第二气流B的第一子光束L1和第二子光束L2。
感光器的数量可以是一个或者多个。当感光器的数量为一个时(附图未示出),感光器可以被设置成可移动的形式,来依次对第一子光束L1和第二子光束L2进行检测。
在感光器的数量为多个的实施例中,如图4、5、7所示,感光器至少包括第一感光器4和第二感光器5;第一感光器4用于检测照射第一气流A的第一子光束L1,第二感光器5用于检测照射第二气流B的第二子光束L2。
由于结构的限制,常规的颗粒物传感器在同一时刻只能检测一股气流中的颗粒物,而对于多股气流例如汽车空调系统中的新风气流和内循环气流中的颗粒物,通常需要多个颗粒物传感器来分别进行检测,这增加了检测成本。
为了实现对气流中颗粒物的粒径和浓度的检测,本发明的实施例提供了一种颗粒物传感器900。如图1、2、3、4、5、6所示,在一个实施例中,颗粒物传感器900包括壳体8、安装板7、管道件2、风机6、光源1、分光组件3、第一感光器4和第二传感器5,其中,安装板7、管道件2、风机6、光源1、分光组件3、第一感光器4和第二传感器5连接成一体,形成安装于壳体8内部的内部结构,该内部结构显示在图4、5、6中。
参考图1、2、3、9、10,壳体8包括上盖81、圈围侧壁82和底盖83,圈围侧壁82的两侧分别开设有第一进气口82a和第二进气口82b,底盖83上开设有出气口83a,其中,上盖81和底盖83分别设置在圈围侧壁82轴向上的两侧,并与该圈围侧壁82限定出用于放置安装板7、管道件2、风机6、光源1、分光组件3、第一感光器4和第二传感器5的空间,该空间通过第一进气口82a、第二进气口82b和出气口83a与外界连通。
除上述实施例外,壳体8的结构还可以有其他实施方式,并不限于由上盖81、圈围侧壁82和底盖83围成。第一进气口82a、第二进气口82b和出气口83a的数量及位置也可以有其他变化。在一个具体的实施例中,上盖81、圈围侧壁82和底盖83可以由塑料来制造。
参考图4、5、6,管道件2、光源1、分光组件3、第一感光器4和第二感光器5分别固定在安装板7上,且位于安装板7的一侧;风机6固定在安装板7上,且位于安装板7的另一侧。这样的布置方式使得颗粒物传感器900的结构比较紧凑。
在一个实施例中,安装板7的四周边缘连接在圈围侧壁82的内壁上,以实现安装板7的固定,同时也使风机6、管道件2、光源1、分光组件3、第一感光器4和第二感光器5被固定在壳体8的内部。
如图4、5所示,在一个实施例中,管道件2具有第一支流部21、汇流部23和第二支流部22,汇流部23分别与第一支流部21和第二支流部22连接,其中,第一支流部21限定出第一气流通道21a,第二支流部22限定出第二气流通道22a,汇流部23具有汇流腔23a;汇流腔23a分别与第一气流通道21a和第二气流通道22a连通。汇流腔23a用于汇集第一气流通道21a内的第一气流A和第二气流通道22a内的第二气流B。第一进气口82a容许第一气流A穿过而进入第一气流通道21a,第二进气口82b容许第二气流B穿过而进入第二气流通道22a,出气口83a容许汇流腔23a汇集的气流穿过而流出壳体8。
在上述实施例中,第一气流A和第二气流B可以分别为汽车空调系统中的新风气流和内循环气流,也可以是同一股气流的两个支流,其中,第一气流A含有第一颗粒物a,第二气流B含有第二颗粒物b。在不同的实施例中,第一颗粒物a的粒径和浓度与第二颗粒物b的粒径和浓度可以相同,也可以不同。
在未图示的实施例中,管道件2具有的支流部的数量可以超过两个,相应地,气流通道的数量也可以超过两个。在未图示的实施例中,支流部的形状为 在周向上闭合的管状,例如可以是圆管,也可以是方管,管的内壁限定出气流通道。在图5、6、7、8所示的实施例中,支流部包括平行且相对设置的两块板,该两块板之间限定出气流通道。
在一个具体的实施例中,第一支流部21、汇流部23和第二支流部22可以一体成型,且由塑料制造。更具体地,第一气流通道21a和第二气流通道22a为直条状管道,汇流腔23a为圆柱形腔体,第一气流通道21a和第二气流通道22a呈角度设置且关于汇流腔23a的横截面的一条直径对称设置。
继续参考图4,风机6用于抽吸汇流腔23a中的气体,以在汇流腔23a内产生负压,从而使第一气流通道21a中的第一气流A和第二气流通道22a中的第二气流B朝向汇流腔23a流动并汇集在汇流腔23a中。
在一个更具体的实施例中,如图6、7、8所示,安装板7具有通孔7a,汇流部23罩设在通孔7a上,以使汇流腔23a与通孔7a连通;通孔7a容许汇流腔23a中的气体穿过而进入风机6,并在从风机6排出后穿过出气口83a,进而排出壳体8。具体地,安装板7可以是PCB板。
继续参考图4,在颗粒物传感器900的工作过程中,风机6运转,使汇流腔23a内产生负压,从而使第一气流A通过第一进气口82a被吸入第一气流通道21a,最终流入汇流腔23a,还使第二气流B通过第二进气口82b被吸入第二气流通道22a,最终流入汇流腔23a。
光源1发出光束L,光束L照射在分光组件3上,并被分光组件3至少分成第一子光束L1和第二子光束L2,其中,第一子光束L1用于照射第一气流A中的第一颗粒物a,第二子光束L2用于照射第二气流B中的第二颗粒物b。
分光组件3的形式和结构可以有多种。分光组件3可以包括一个或者多个分光镜3a。分光镜是将激光光束分成透过光和反射光的透明光学元件。图11示出了分光镜3a的数量为两个的实施例。在该实施例中,靠近光源1的分光镜3a将光束L分成第一子光束L1和第四子光束L4,第四子光束L4射向距离光源1较远的分光镜3a,被该距离光源1较远的分光镜3a分成第二子光束L2和第三子光束L3,其中,第一子光束L1和第二子光束L2被用于检测颗粒物。在这个实施例中,第一子光束L1是透过光,第四子光束L4是反射光,第二子光束L2是反射光,第三子光束L3是透过光。
在一个未图示的实施例中,分光组件3包括一个分光镜3a,该分光镜3a将光束L分成第一子光束L1和第二子光束L2,其中,第一子光束L1和第二 子光束L2可以是等量的光,也可以是非等量的光。在这个实施例中,第一子光束L1和第二子光束L2的其中一束是反射光,另一束是透过光。
分光镜3a可采用西格玛光机株式会社的平板式或者立方体式的分光产品。
如图12所示,在另外的实施例中,分光组件3包括光纤分束器3b。光纤分束器3b包括由光纤形成的主通路和多个子通路,光束L射入主通路,再通过多个子通路射出,从而至少形成第一子光束L1和第二子光束L2。
第一感光器4和第二感光器5可以是利用颗粒物对光的散射作用进行分析的检测器。当某一波长的光照射在气流中的颗粒物上时,除一部分通过颗粒物或被颗粒物吸收外,大部分的光将以同样的波长向各个方向散射,散射光的强度是气流中颗粒物的浓度和颗粒物的粒径的函数。
在本发明的实施例中,第一感光器4用于检测照射第一气流A的第一子光束L1,以产生与第一颗粒物a对应的第一信号。具体地,第一子光束L1照射在第一气流A中的第一颗粒物a上后发生散射,产生散射光,该散射光的强度是第一颗粒物a在第一气流A中的浓度和第一颗粒物a的粒径的函数。第一感光器4通过检测第一子光束L1的散射光的强度,能够产生与第一颗粒物a的粒径和浓度相对应的第一信号。
在本发明的实施例中,第二感光器5用于检测照射第二气流B的第二子光束L2,以产生与第二颗粒物b对应的第二信号。具体地,第二子光束L2照射在第二气流B的第二颗粒物b上后发生散射,产生散射光,该散射光的强度是第一颗粒物a在第一气流A中的浓度和第一颗粒物a的粒径的函数。第二感光器5通过检测第二子光束L2的散射光的强度,能够产生与第二颗粒物b的粒径和浓度相对应的第二信号。
第一信号和/或第二信号可以为电子脉冲信号。第一信号和第二信号可以传输至颗粒物传感器900的控制模块(附图未示出),该控制模块可以根据第一信号和第二信号的强度分别计算出第一颗粒物a和第二颗粒物b的粒径和浓度,并输出至汽车中控的显示屏上进行显示。上述控制模块(附图未示出)可以安装在安装板7上。
在一个更具体的实施例中,第一感光器4设置在第一气流通道21a内,第二感光器5设置在第二气流通道22a内,如此可以使颗粒物传感器900的结构更加紧凑,避免为第一感光器4和第二感光器5额外设置存放空间。
更具体地,为了使子光束能够射入相应的气流通道,第一支流部21具有 第一开口210,第二支流部22具有第二开口220;第一开口210容许第一子光束L1穿过;第二开口220容许第二子光束L2穿过。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (10)

  1. 一种颗粒物传感器,用于检测空气中的颗粒物,包括光源(1),所述光源(1)用于发出光束(L);其特征在于,所述颗粒物传感器(900)还包括:
    分光组件(3),用于将所述光束(L)至少分成第一子光束(L1)和第二子光束(L2);
    感光器,用于检测照射所述空气的所述第一子光束(L1)和所述第二子光束(L2)。
  2. 如权利要求1所述的颗粒物传感器,其特征在于,所述颗粒物传感器(900)还包括气流通道,所述气流通道至少包括第一气流通道(21a)和第二气流通道(22a);
    所述第一气流通道(21a)被设置成容许所述空气通过而形成第一气流(A);所述第二气流通道(22a)被设置成容许所述空气通过而形成第二气流(B);
    所述感光器用于检测分别照射所述第一气流(A)和所述第二气流(B)的所述第一子光束(L1)和所述第二子光束(L2)。
  3. 如权利要求2所述的颗粒物传感器,其特征在于,所述感光器至少包括第一感光器(4)和第二感光器(5);
    所述第一感光器(4)用于检测照射所述第一气流(A)的所述第一子光束(L1),所述第二感光器(5)用于检测照射所述第二气流(B)的所述第二子光束(L2)。
  4. 如权利要求1所述的颗粒物传感器,其特征在于,所述分光组件(3)包括一个或者多个分光镜(3a)。
  5. 如权利要求2所述的颗粒物传感器,其特征在于,所述颗粒物传感器(900)还包括管道件(2);
    所述管道件(2)具有第一支流部(21)、汇流部(23)和第二支流部(22),所述汇流部(23)分别与所述第一支流部(21)和所述第二支流部(22)连接,其中,所述第一支流部(21)限定出所述第一气流通道(21a),所述第二支流部(22)限定出所述第二气流通道(22a),所述汇流部(23)具有汇流腔(23a);所述汇流腔(23a)分别与所述第一气流通道(21a)和所述第二气流通道(22a)连通;
    所述汇流腔(23a)用于汇集所述第一气流通道(21a)内的所述第一气流(A)和所述第二气流通道(22a)内的所述第二气流(B)。
  6. 如权利要求5所述的颗粒物传感器,其特征在于,所述颗粒物传感器(900)还包括风机(6),所述风机(6)用于抽吸所述汇流腔(23a)中的气体,以在所述汇流腔(23a)内产生负压,从而使所述第一气流(A)和所述第二气流(B)朝向所述汇流腔(23a)内流动并汇集在所述汇流腔(23a)中。
  7. 如权利要求5所述的颗粒物传感器,其特征在于,所述第一感光器(4)设置在所述第一气流通道(21a)内,所述第二感光器(5)设置在所述第二气流通道(22a)内;
    所述第一支流部(21)具有第一开口(210),所述第二支流部(22)具有第二开口(220);所述第一开口(210)容许所述第一子光束(L1)穿过;所述第二开口(220)容许所述第二子光束(L2)穿过。
  8. 如权利要求6所述的颗粒物传感器,其特征在于,所述颗粒物传感器(900)还包括安装板(7);所述安装板(7)具有通孔(7a);
    所述管道件(2)固定在所述安装板(7)上且位于所述安装板(7)的一侧,其中所述汇流腔(23a)与所述通孔(7a)连通;
    所述风机(6)固定在所述安装板(7)上且位于所述安装板(7)的另一侧,其中所述风机(6)的进风口与所述通孔(7a)连通。
  9. 如权利要求8所述的颗粒物传感器,其特征在于,所述光源(1)、所述分光组件(3)、所述第一感光器(4)和所述第二感光器(5)分别固定在所述安装板(7)上,并且与所述管道件(2)位于所述安装板(7)的同一侧。
  10. 一种汽车空调总成,其特征在于,所述汽车空调总成包括如权利要求1至9中任意一项权利要求所述的颗粒物传感器(900)。
PCT/CN2020/117143 2019-09-24 2020-09-23 一种颗粒物传感器和汽车空调总成 WO2021057792A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20868465.4A EP4080189A4 (en) 2019-09-24 2020-09-23 PARTICULATE SENSOR AND VEHICLE AIR CONDITIONER ASSEMBLY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910903346.5A CN112630108A (zh) 2019-09-24 2019-09-24 一种颗粒物传感器和汽车空调总成
CN201910903346.5 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021057792A1 true WO2021057792A1 (zh) 2021-04-01

Family

ID=75165577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117143 WO2021057792A1 (zh) 2019-09-24 2020-09-23 一种颗粒物传感器和汽车空调总成

Country Status (3)

Country Link
EP (1) EP4080189A4 (zh)
CN (1) CN112630108A (zh)
WO (1) WO2021057792A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218829A (zh) * 2021-04-19 2021-08-06 吴为 一种pm2.5浓度检测装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525627A (en) * 1982-05-06 1985-06-25 A V L Gesellschaft fur Verbrennungskraftmaschinen und Messtechnik m.b.H. Method and device for continuous measurement of the mass of aerosol particles in gaseous samples
CN101819128A (zh) * 2010-04-26 2010-09-01 浙江万里学院 一种抗积灰干扰的激光粉尘检测装置
CN106769736A (zh) * 2017-01-18 2017-05-31 西安航空学院 一种粉尘浓度测量系统
CN206470249U (zh) * 2017-01-19 2017-09-05 厦门美时美克空气净化有限公司 一种双通道空气质量检测装置
CN207703812U (zh) * 2017-12-22 2018-08-07 厦门美时美克空气净化有限公司 双通道空气质量检测模组
CN207832626U (zh) * 2018-03-05 2018-09-07 厦门美时美克空气净化有限公司 一种双通道空气质量检测模块
CN208043602U (zh) * 2018-03-05 2018-11-02 肇庆奥迪威传感科技有限公司 一种粉尘检测装置
WO2018211044A1 (fr) 2017-05-17 2018-11-22 Eco Logic Sense Sas Capteur pour la mesure de la concentration de particules dans l'air
CN110895235A (zh) * 2019-12-20 2020-03-20 美时美克(上海)汽车电子有限公司 一种双通道空气质量检测模块
CN211505116U (zh) * 2019-12-20 2020-09-15 美时美克(上海)汽车电子有限公司 一种双通道空气质量检测模块

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422640B (zh) * 2013-09-06 2017-01-25 重庆大学 基于激光散射的空气质量检测系统
NL2017001B1 (en) * 2016-06-20 2018-01-04 Prodrive Tech Bv Sensor system for sensing particle mass concentration in air, splitter unit, dual light beam unit, sensor unit and method for operating the latter
CN206378393U (zh) * 2017-01-18 2017-08-04 西安科技大学 一种光纤式粉尘浓度测量装置
DE102017215450B4 (de) * 2017-09-04 2021-06-10 Mahle International Gmbh Klimatisierungsanlage eines Fahrzeugs
WO2019172853A1 (en) * 2018-03-09 2019-09-12 Innosparks Pte Ltd Integrated fit testing ventilator for facemasks
CN109655387B (zh) * 2018-12-20 2021-07-20 温州佳旭建设监理咨询有限公司 一种用于在建筑监理现场的粉尘监测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525627A (en) * 1982-05-06 1985-06-25 A V L Gesellschaft fur Verbrennungskraftmaschinen und Messtechnik m.b.H. Method and device for continuous measurement of the mass of aerosol particles in gaseous samples
CN101819128A (zh) * 2010-04-26 2010-09-01 浙江万里学院 一种抗积灰干扰的激光粉尘检测装置
CN106769736A (zh) * 2017-01-18 2017-05-31 西安航空学院 一种粉尘浓度测量系统
CN206470249U (zh) * 2017-01-19 2017-09-05 厦门美时美克空气净化有限公司 一种双通道空气质量检测装置
WO2018211044A1 (fr) 2017-05-17 2018-11-22 Eco Logic Sense Sas Capteur pour la mesure de la concentration de particules dans l'air
CN207703812U (zh) * 2017-12-22 2018-08-07 厦门美时美克空气净化有限公司 双通道空气质量检测模组
CN207832626U (zh) * 2018-03-05 2018-09-07 厦门美时美克空气净化有限公司 一种双通道空气质量检测模块
CN208043602U (zh) * 2018-03-05 2018-11-02 肇庆奥迪威传感科技有限公司 一种粉尘检测装置
CN110895235A (zh) * 2019-12-20 2020-03-20 美时美克(上海)汽车电子有限公司 一种双通道空气质量检测模块
CN211505116U (zh) * 2019-12-20 2020-09-15 美时美克(上海)汽车电子有限公司 一种双通道空气质量检测模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080189A4

Also Published As

Publication number Publication date
EP4080189A4 (en) 2023-11-01
EP4080189A1 (en) 2022-10-26
CN112630108A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN100454349C (zh) 烟雾检测器的改进,尤其是管道烟雾检测器的改进
US8009290B2 (en) Compact, low cost particle sensor
US8576395B2 (en) Integrated microbial collector
WO2017133045A1 (zh) 气溶胶实时监测仪
US20070013910A1 (en) Pathogen and particle detector system and method
JP6455470B2 (ja) 粒子センサ、及びそれを備えた電子機器
TW201506375A (zh) 粒子偵測系統及相關方法
WO2017070960A1 (zh) 空气处理装置
EP3483586A1 (en) Pm2.5 measurement device
CA2738820C (en) An arrangement adapted for spectral analysis of high concentrations of gas
WO2021057792A1 (zh) 一种颗粒物传感器和汽车空调总成
CN211927622U (zh) 便携式油烟检测仪
JP2004125602A (ja) 花粉センサ
KR20230069894A (ko) 차량용 먼지 검출장치
US20090316138A1 (en) Method and instrumentation for determining a physical property of a particle
Zheng et al. Discrimination between fire smokes and nuisance aerosols using asymmetry ratio and two wavelengths
US20220317012A1 (en) Particle, including sars-cov-2, detection and methods therefor
CN106290096A (zh) 一种家用电器、粉尘传感器及其标定方法、标定装置
CN108120659A (zh) 一种具有自归零校准的粒子浓度检测系统和方法
CN207816769U (zh) 光度计传感器装置
KR20180115447A (ko) 부유미생물 측정장치, 이를 이용한 측정방법 및 이를 구비한 공기조화장치
JPH0743299A (ja) 微粉粒子モニター
JP3638807B2 (ja) タバコ煙粒子計測装置
TWM426095U (en) Detecting apparatus for reducing contamination of air sampling detector
US20240192121A1 (en) Dealing with fog and contaminations in environmental sensor devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020868465

Country of ref document: EP

Effective date: 20220425