WO2021057632A1 - 支持高功率快充的电池模组、充电模组和电子设备 - Google Patents

支持高功率快充的电池模组、充电模组和电子设备 Download PDF

Info

Publication number
WO2021057632A1
WO2021057632A1 PCT/CN2020/116363 CN2020116363W WO2021057632A1 WO 2021057632 A1 WO2021057632 A1 WO 2021057632A1 CN 2020116363 W CN2020116363 W CN 2020116363W WO 2021057632 A1 WO2021057632 A1 WO 2021057632A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
battery
voltage
tabs
cell
Prior art date
Application number
PCT/CN2020/116363
Other languages
English (en)
French (fr)
Inventor
周海滨
何忠勇
朱辰
邱钰鹏
胡章荣
徐凡
梁家华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010426700.2A external-priority patent/CN112909344B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/763,476 priority Critical patent/US20220344733A1/en
Priority to JP2022519022A priority patent/JP7369283B2/ja
Priority to BR112022005264A priority patent/BR112022005264A2/pt
Priority to EP20870279.5A priority patent/EP4020654B1/en
Publication of WO2021057632A1 publication Critical patent/WO2021057632A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiments of the present application relate to charging technology, and in particular to a battery module, a charging module, and an electronic device that support high-power fast charging.
  • the charging system currently used in electronic terminals includes processing circuits and batteries.
  • the processing circuit processes the charging voltage and charging current received from the outside and provides them to the battery cell.
  • the battery cell performs electric energy storage according to the charging voltage and the charging current.
  • each cell includes a positive pole and a negative pole, and the positive pole and the negative pole provide a charging path and a discharge path for the cell.
  • the prior art can add batteries and processing circuits to the charging system to increase the charging speed.
  • the electric core and the processing circuit need to occupy additional physical space, which makes it impossible to meet the restriction requirements of the electronic terminal for the layout space. Therefore, if the battery cell is not added, the charging and discharging current of a single battery cell needs to be increased to improve the charging efficiency.
  • increasing the charging and discharging currents of a single battery cell can easily lead to a sharp increase in the heat generation of the tabs, and the processing circuit and the battery core cannot meet the heating limit requirements of the electronic terminal.
  • embodiments of the present application provide a battery module, a charging module, and an electronic device that support high-power fast charging, which generates less heat and occupies less space.
  • An embodiment of the present application provides a battery module, which includes a battery cell.
  • the battery core includes a battery core body, a first tab, a second tab, and a third tab; the first tab, the second tab, and the third tab are connected to the battery core respectively.
  • the body is electrically connected; the first tab and the third tab have a first polarity, and the second tab has a second polarity.
  • the second tab can cooperate with the first tab to input voltage and current to the cell body or can output voltage and current from the cell body.
  • the cooperation of the second tab and the third tab can input voltage and current to the battery core body or can output voltage and current from the battery core body.
  • the first polarity and the second polarity are opposite to each other. When the first polarity is a positive polarity, the second polarity is a negative polarity. The first polarity is a negative polarity, and the second polarity is a positive polarity.
  • At least two conductive paths are formed by the set of three tabs to perform charging, thereby effectively improving the charging efficiency of the battery cell.
  • the two conductive paths shunt the current during charging, Then, the current transmitted in each tab is effectively reduced, thereby effectively reducing the heat generation of each tab.
  • the first battery protection board includes a first protection circuit, a first battery interface, and a second battery interface; the first battery interface and the second battery interface are used for It is electrically connected to the external components of the battery module.
  • the first battery interface is electrically connected to the second tab and the first tab through the first protection circuit, and the first battery interface is connected to the first tab and the battery cell.
  • the main body, the second tab and the first protection circuit constitute a first conductive loop.
  • the second battery interface is electrically connected to the second tab and the third tab through the first protection circuit, and the second battery interface is electrically connected to the third tab and the battery cell.
  • the main body, the second tab and the first protection circuit constitute a second conductive loop.
  • the first protection circuit is used to detect the voltage and current of the first conductive loop and the second conductive loop. When the voltage or the current exceeds a threshold range, the first protection circuit turns off the The first conductive loop and the second conductive loop.
  • the first battery protection board and the three tabs form two conductive circuits to charge the battery cell, and the first protection circuit detects the current of the battery cell charging or discharging to prevent the battery cell from overvoltage during the charging and discharging process. , Under-voltage or over-current and be damaged to ensure the safety of the battery.
  • the first tab, the second tab, and the third tab are all disposed on the first side of the battery core body.
  • the first tab and the second tab are arranged on the first side of the cell body, and the third tab is arranged on the second side of the cell body.
  • the first tab and the third tab are arranged on the first side of the cell body, and the second tab is arranged on the second side of the cell body.
  • the first tab is provided on the first side of the battery body
  • the second tab is provided on the second side of the battery body
  • the third tab is provided on the battery body The third side.
  • the setting of the three tabs is not limited by the specific position on the body of the battery.
  • the setting position of each tab can be adjusted according to the actual situation to ensure the cooperation of the battery with other circuits, thereby reducing the complexity of wiring and improving the charging mode.
  • the degree of integration of the group is not limited by the specific position on the body of the battery.
  • the first tab, the second tab, and the third tab are all disposed on the first side of the cell body, and the first tab and the first tab
  • the three pole ears are respectively arranged on both sides of the second pole ear.
  • Three tabs are arranged on the same side of the battery cell, and two tabs with the same first polarity are set on both sides of a second polarity tab, so that the two tabs are connected to the first battery protection plate
  • the wiring is more uniform and simple.
  • it further includes a fourth, fifth, and sixth tab; the fourth, fifth, and sixth tabs are connected to the battery cell, respectively The body is electrically connected; the fourth pole and the sixth pole have the first polarity, and the fifth pole has the second polarity; or, the fourth pole and the The sixth pole has the second polarity, and the fifth pole has the first polarity;
  • the fifth tab and the fourth tab can be used to input voltage and current to the battery core body or can output voltage and current from the battery core body;
  • the fifth tab and the sixth tab can be matched to input voltage and current to the battery core body or can output voltage and current from the battery core body.
  • At least four conductive paths are formed by the set of six tabs to perform charging, thereby further improving the charging efficiency of the battery cell.
  • the current during charging is changed due to the four conductive paths.
  • a large degree of shunting effectively reduces the current transmitted in each tab, thereby effectively reducing the heat generated by each tab.
  • the second battery protection board includes a second protection circuit, a third battery interface, and a fourth battery interface; the third battery interface and the fourth battery interface are used for It is electrically connected to the external components of the battery module.
  • the third battery interface is electrically connected to the fifth tab and the fourth tab through the second protection circuit, and the third battery interface is electrically connected to the fourth tab and the battery cell.
  • the main body, the fifth tab and the second protection circuit constitute a third conductive loop.
  • the fourth battery interface is electrically connected to the fifth tab and the sixth tab through the second protection circuit, and the fourth battery interface is electrically connected to the sixth tab and the battery cell.
  • the main body, the fifth tab and the second protection circuit constitute a fourth conductive loop.
  • the second protection circuit is used to detect the voltage and current of the third conductive loop and the fourth conductive loop. When the voltage or the current exceeds a threshold range, the second protection circuit turns off the The third conductive loop and the fourth conductive loop.
  • the second battery protection board and the other three tabs form two conductive circuits to charge the battery cell, and the second protection circuit detects the current of the battery cell charging or discharging to prevent the battery cell from being charged or discharged during the charging and discharging process. It is damaged by overvoltage, undervoltage or overcurrent to ensure the safety of the battery cell.
  • the first protection circuit and the second protection circuit have the same circuit structure.
  • the protection of the batteries is basically consistent and synchronized, which further ensures the safety of the batteries.
  • the first tab, the second tab, and the third tab are all disposed on the first side of the battery core body, and the fourth tab, the first tab Both the pentode lug and the sixth lug are arranged on the second side of the battery core body.
  • the first side of the cell body and the second side of the cell body are opposite sides of the cell body; or, the first side of the cell body and the second side of the cell body The two sides are adjacent two sides of the battery core body.
  • connection wiring between the two tabs and the first battery protection board is more uniform and simple, and the heat dissipation space of each tab is larger and the heat dissipation is more uniform.
  • the first protection circuit includes a first protection control unit, a first sampling unit, and a first switch unit.
  • the first protection control unit is electrically connected to the first conductive loop and the second conductive loop, and the first protection control unit detects voltages of the first conductive loop and the second conductive loop.
  • the first sampling unit is electrically connected to the second tab, the first protection control unit, and the first switch unit, respectively, and the first protection control unit detects the The current of the first conductive loop and the second conductive loop.
  • the first switch unit is electrically connected to the first protection control unit, the first sampling unit, the first battery interface, and the second battery interface, respectively.
  • the first protection control unit is used to determine that when the voltage or current of the first conductive loop or the second conductive loop exceeds a first threshold range, control the switch unit to turn off to disconnect the first conductive loop. Loop and the second conductive loop.
  • the conductive circuit connected with the tabs is cut off in time to ensure the safety of the battery core.
  • the first switch unit includes a first switch and a second switch, the first switch is located in the first conductive loop, and the second switch is located in the second conductive loop.
  • the conductive circuit connected with the tab can be cut off simply and in time through two switches.
  • the first protection circuit further includes a second protection control unit and a second switch unit,
  • the second protection control unit is electrically connected to the first conductive loop and the second conductive loop, and the second protection control unit detects the voltage of the first conductive loop and the second conductive loop;
  • the second protection control unit is electrically connected to the first sampling unit, and is configured to detect the currents of the first conductive loop and the second conductive loop through the first sampling unit;
  • the second switch unit is electrically connected to the second protection control unit, the first switch unit, the first battery interface, and the second battery interface, respectively;
  • the second protection control unit is used to determine that when the voltage or current of the first conductive loop or the second conductive loop exceeds a second threshold range, control the second switch unit to turn off, so as to turn off the first A conductive loop and the second conductive loop.
  • the first threshold value range is the same as the second threshold value range, or the first threshold value range is smaller than or greater than the second threshold value range.
  • the second protection control unit and the second switch unit can promptly replace the first protection control unit and the first switch unit in the first protection circuit to perform cell protection after the first protection circuit fails, that is, the first protection circuit It can be replaced with the second protection circuit and can work synchronously, which further improves the reliability of battery cell protection.
  • the second switch unit includes a third switch and a fourth switch, the third switch is located in the first conductive loop, and the fourth switch is located in the second conductive loop.
  • the conductive circuit connected with the tab can be cut off simply and in time through two switches.
  • the battery core body has a winding structure.
  • the battery cell includes a first pole piece with the first polarity and a second pole piece with the second polarity.
  • the first tab and the third tab are disposed on the first tab, and the second tab is disposed on the second tab.
  • the first pole piece and the second pole piece are wound to form the cell having three tabs, and the first tab, the second tab, and the third tab are located in the Different positions of the batteries.
  • the battery core has a winding structure.
  • the battery cell includes a first pole piece with the first polarity and a second pole piece with the second polarity.
  • the first tab, the third tab, the fourth tab, and the sixth tab are disposed on the first tab, and the second tab and the fifth tab are disposed On the second pole piece.
  • the first pole piece and the second pole piece are wound to form the battery core with six tabs, the first tab, the second tab, the third tab, and the The fourth tab, the fifth tab, and the sixth tab are in different positions of the battery core.
  • the battery cell has a laminated structure.
  • the battery cell includes at least two first pole pieces with the first polarity and at least two second pole pieces with the second polarity.
  • Each of the first pole pieces is provided with a first sub-tab and a third sub-tab, and each of the second pole pieces is provided with a second sub-tab. All the first pole pieces and all the second pole pieces are superimposed to form the battery cell, all the first sub-tabs are electrically connected to form the first tab, and the first tab is Two sub tabs are electrically connected to form the second tab, and all the third sub tabs are electrically connected to form the third tab; the first tab, the second tab, and the The third tabs are in different positions of the battery core.
  • the battery cell has a laminated structure.
  • the battery cell includes at least two first pole pieces with the first polarity and at least two second pole pieces with the second polarity.
  • a first sub-ear, a third sub-ear, a fourth sub-ear and a sixth sub-ear are arranged on each of the first pole pieces, and a second sub-ear and a fifth sub-ear are arranged on each of the second pole pieces.
  • Sub-earth Sub-earth.
  • All the first pole pieces and all the second pole pieces are superimposed to form the battery cell, all the first sub-tabs are electrically connected to form the first tab, and the first tab is Two sub-tabs are electrically connected to form the second tab, all the third sub tabs are electrically connected to form the third tab, and all the fourth sub tabs are electrically connected to form the The fourth tab, the fifth sub tab is electrically connected to form the fifth tab, and all the sixth sub tabs are electrically connected to form the sixth tab; the first The tabs, the second tabs, the third tabs, the fourth tabs, the fifth tabs, and the sixth tabs are in different positions of the battery core.
  • the cell includes a cell body, a first tab, a second tab, a third tab, and a fourth tab.
  • the first tab, the second tab, the third tab, and the fourth tab are respectively electrically connected to the battery core body; the first tab and the third tab It has a first polarity, and the second pole and the fourth pole have a second polarity.
  • the second tab can cooperate with the first tab to input voltage and current to the cell body or can output voltage and current from the cell body.
  • the cooperation of the fourth tab and the third tab can input voltage and current to the cell body or can output voltage and current from the cell body.
  • the first polarity is a positive polarity
  • the second polarity is a negative polarity
  • the first polarity is a negative polarity
  • the second polarity is a positive polarity.
  • At least two conductive paths are formed by the four tabs to perform charging, thereby effectively improving the charging efficiency of the battery cell.
  • the two conductive paths are relatively independent and the current during charging is relatively independent. By shunting, the current transmitted in each tab is effectively reduced, thereby effectively reducing the heat generation of each tab.
  • the first tab and the second tab are disposed on the first side of the battery core body, and the third tab and the fourth tab are disposed on the battery.
  • the first tab is disposed on the first side of the battery body, and the second tab, the third tab, and the fourth tab are disposed on the second side of the battery body. side.
  • the battery module further includes: a first battery protection board and a second battery protection board; the first battery protection board includes a first protection circuit and a first battery interface, the second battery protection board It includes a second protection circuit and a second battery interface.
  • the first battery interface is electrically connected to the second tab and the first tab through the first protection circuit, and the first battery interface is connected to the first tab and the battery cell.
  • the main body, the second tab and the first protection circuit constitute a first conductive loop.
  • the second battery interface is electrically connected to the third tab and the fourth tab through the second protection circuit, and the second battery interface is connected to the third tab and the battery cell.
  • the main body, the fourth tab and the first protection circuit constitute a second conductive loop.
  • the first protection circuit is used to detect the voltage and current of the first conductive loop, and when the voltage or the current exceeds a threshold range, the first protection circuit disconnects the first conductive loop.
  • the second protection circuit is used to detect the voltage and current of the second conductive loop, and when the voltage or the current exceeds a threshold range, the second protection circuit disconnects the second conductive loop.
  • the battery core has a winding structure.
  • the cell body includes a first pole piece with the first polarity and a second pole piece with the second polarity; the first tab and the third tab are arranged in the The first pole piece; the second pole piece and the fourth pole piece are arranged on the second pole piece.
  • the first pole piece and the second pole piece are wound to form the cell body with four tabs, the first tab, the second tab, the third tab, and the The fourth tabs are located at different positions of the battery core body.
  • the battery core body has a laminated structure.
  • the cell body includes at least two first pole pieces with the first polarity and at least two second pole pieces with the second polarity.
  • a first sub-ear and a third sub-ear are arranged on each of the first pole pieces, and a second sub-ear and a fourth sub-ear are arranged on each of the second pole pieces. All the first pole pieces and all the second pole pieces are superimposed to form the cell body, all the first sub-tabs are electrically connected to form the first tab, and the The second sub tab is electrically connected to form the second tab, all the third sub tabs are electrically connected to form the third tab, and all the fourth sub tabs are electrically connected to form the The fourth pole ear.
  • the first tab, the second tab, the third tab, and the fourth tab are in different positions of the battery core body. By arranging multiple tabs on different pole pieces and stacking them sequentially, the manufacturing process of the four tabs is effectively simplified.
  • a charging module including the aforementioned battery module and a circuit board, the circuit board is electrically connected to the battery module for receiving a first charging voltage provided from the outside, and The charging voltage is converted into the voltage and current and output to the battery module.
  • the battery module in the charging module includes at least two conductive paths for charging the tabs in the battery cell, thereby effectively increasing the charging path of the battery core and reducing the current that each tab bears, shortening the charging time at the same time. It also effectively reduces the heat generated by each tab.
  • the circuit board includes a first circuit board and a third circuit board
  • the first circuit board includes an interface for receiving the first charging voltage and converting the first charging voltage into The second charging voltage
  • the first circuit board transmits the second charging voltage to the third circuit board
  • the third circuit board is electrically connected to the battery module for connecting the second The charging voltage converts the voltage and outputs it to the battery module.
  • the first circuit board and the second circuit board cooperate to process the received charging voltage into a voltage suitable for charging the battery core, so as to ensure the safety of the battery core during charging.
  • the circuit board includes a first circuit board and a third circuit board
  • the first circuit board includes an interface for receiving the first charging voltage and transmitting the first charging voltage to
  • the third circuit board which is electrically connected to the battery module, is used to convert the first charging voltage to the voltage and output to the battery module.
  • the first circuit board and the second circuit board cooperate to process the received charging voltage into a voltage suitable for charging the battery core, so as to ensure the safety of the battery core during charging.
  • the circuit board further includes a second circuit board, the first circuit board and the third circuit board are disposed on opposite sides of the battery module, and the second circuit board spans
  • the battery core body is electrically connected to the first circuit board and the second circuit board, respectively.
  • the charging module is used to provide working power for the functional circuit.
  • an electronic device which includes a functional circuit and the aforementioned charging module, and the charging module is used to provide a working power source for the functional circuit.
  • the battery cell has a wound structure
  • the wound battery cell includes a positive pole piece and a negative pole piece, and positive pole tabs are respectively provided on the positive pole piece and the negative pole piece.
  • a negative pole tab and at least one of the positive pole piece and the negative pole piece is provided with at least two tabs of the same polarity on different positions, and the at least two tabs of the same polarity are At least two tabs of the same polarity are formed at different positions of the wound core, so that the wound core includes at least three tabs.
  • the battery cell has a laminated structure, and the laminated battery cell includes more than one positive pole piece and more than one negative pole piece, and each of the positive pole piece and the negative pole piece are respectively At least one positive pole tab and negative pole tab are provided, and at least one of the positive (negative) pole pieces is provided with at least two positive (negative) tabs or at different positions on the positive pole piece or the negative pole piece.
  • the positive (negative) tabs on at least two positive (negative) pole pieces are located at different positions on the pole pieces, so that the laminated cell includes at least three tabs.
  • the battery core includes at least three tabs, and the three tabs are located on the same side of the battery; or the three tabs are located on different sides of the battery.
  • the embodiment of the present application adopts a multi-battery interface and multi-pole mode to expand the current flow capacity of the battery cell.
  • Multi-pole ear It can be 3-pole, 4-pole, 6-pole, N-pole.
  • the negative electrode tab can be shared during charging and discharging, and the positive electrode tab can also be shared.
  • 3 tabs include two positive tabs and one negative tab, and the negative tabs are shared (as shown in Figure 2A); or, 3 tabs include two negative tabs and one positive tab.
  • the ears are shared (as shown in Figure 8).
  • the 6-pole ear can include the above-mentioned two 3-pole ears. Further, more tabs may be included, such as 8 tabs, 9 tabs, 12 tabs, and so on.
  • the embodiment of this application uses a charger IC (charging circuit) with a high-efficiency differential pressure ratio (such as 4:1 or other larger ratios) to step down, and the external charging cable (and the PD protocol limit) input the flow bottleneck of 5A Under certain conditions, increase the charging power by increasing the input voltage.
  • a charger IC charging circuit
  • a high-efficiency differential pressure ratio such as 4:1 or other larger ratios
  • the multi-pole ear of the embodiment of the present application may adopt one of the following methods:
  • the battery core has a structure with double-sided tabs to increase the flow of the battery core, including but not limited to structures such as quadrupoles and hexapoles.
  • the structure of the 4 tabs is shown in Figure 9 below, with a pair of positive and negative tabs on both sides of the battery.
  • the structure of the 6 tabs is shown in Figure 14A below, with three tabs on each side of the battery cell.
  • Figure 14A shows that the negative electrode is shared, and similarly, the positive electrode can also be shared.
  • the protection IC ie, the protection IC in the battery protection board
  • the protection IC can be reused through the distribution of the tabs and circuit optimization, thereby realizing the high power of a single cell Charging avoids the safety problem of dual batteries.
  • the embodiments of the present application can solve the problems of insufficient current flow capacity of a single cell and large heat generation, and can also solve the problems of high cost of double cells, an additional set of protection ICs, and large loss of split capacity.
  • the multi-pole ears of the battery reduce the heat generation of the battery core and increase the current flow capacity of the battery core.
  • the embodiment of the present application implements a set of protection schemes for protecting the IC through the current path planning of the dual battery interface; while reducing the heating of the battery core, compared with the dual battery core, the cost is reduced and the safety is high.
  • a charger IC with multi-pole ears and a high-efficiency differential pressure ratio (for example, 4:1) is used to realize a higher-power charging solution without increasing the heat of the whole machine.
  • the higher-power current flow capability of the multi-pole ears enables a single battery cell to achieve high-power charging, thereby solving the problem caused by the double battery cell.
  • FIG. 1 is a circuit block diagram of a charging module in an embodiment of the application
  • FIGS. 2A and 2B are schematic diagrams of the planar structure of the battery cell
  • 3A and 3B are circuit block diagrams of the first battery protection board shown in FIG. 1;
  • 4A is a circuit block diagram of the first protection circuit and the protection circuit shown in FIG. 1;
  • 4B is a circuit block diagram of the first protection circuit and the protection circuit in another embodiment of the application.
  • FIG. 5 is a schematic diagram of a specific circuit structure of the first protection board in the battery module shown in FIG. 4A;
  • FIG. 6 is a circuit block diagram of a battery module in a charging module in another embodiment of the application.
  • FIG. 7 is a circuit block diagram of a charging module in another embodiment of the application.
  • FIG. 8 is a circuit block diagram of a battery module in a charging module in another embodiment of the application.
  • FIG. 9 is a circuit block diagram of a charging module in another embodiment of the application.
  • FIG. 10 is a circuit block diagram of the charging module
  • Figure 11 is a schematic diagram of the circuit structure of the battery module
  • FIG. 12 is a schematic diagram of the circuit structure of one of the first battery protection boards
  • FIG. 13 is a circuit block diagram of a charging module in another embodiment of the application.
  • FIG. 14A is a schematic structural diagram of a battery module in the charging module shown in FIG. 13;
  • FIG. 14B is a schematic diagram of a pentode ear provided by an embodiment of the application.
  • FIG. 15 is a schematic diagram of the circuit structure of the battery module in the charging module shown in FIG. 13;
  • 16A-16C are schematic diagrams of an exploded structure of a battery with three tabs in an embodiment of the application.
  • Figure 17 is a top view of the battery cell shown in Figure 16A;
  • FIG. 18 is a schematic diagram of the front structure of the battery cell shown in FIG. 16A;
  • 19 is a schematic diagram of an exploded structure of a battery with three tabs in an embodiment of the application.
  • Figure 20 is a top view of the battery cell shown in Figure 19;
  • 21 is a schematic diagram of an exploded structure of a battery with three tabs in an embodiment of the application.
  • Figure 22 is a top view of the battery cell shown in Figure 21;
  • FIG. 23 is a schematic diagram of an exploded structure of a battery with three tabs in an embodiment of the application.
  • Figure 24 is a top view of the battery cell shown in Figure 23;
  • FIG. 25 is a schematic diagram of the front structure of the battery cell shown in FIG. 24;
  • FIG. 26 is a schematic diagram of an exploded structure of a battery with three tabs in an embodiment of the application.
  • FIG. 27 is a schematic diagram of the three-dimensional structure of the battery cell shown in FIG. 26;
  • Figure 28 is a left side view of the battery cell shown in Figure 27;
  • FIG. 29 is a schematic diagram of an exploded structure of an electric core in an embodiment of the application.
  • FIG. 30 is a schematic diagram of an exploded structure of a battery core in an embodiment of the application.
  • FIG. 31 is a schematic diagram of the three-dimensional structure of the battery cell shown in FIG. 30;
  • Fig. 32 is a left side view of the battery cell shown in Fig. 31;
  • Fig. 33 is a front view of the battery cell of Fig. 31;
  • FIG. 34 is a schematic diagram of an exploded structure of a battery with six tabs in an embodiment of the application.
  • 35 is a schematic diagram of an exploded structure of a battery with six tabs in an embodiment of the application.
  • Fig. 36 is a schematic plan view of the battery core shown in Fig. 34;
  • FIG. 37 is a schematic diagram of a planar structure of a battery cell with four tabs in an embodiment of the application.
  • Fig. 38 is a schematic diagram of the front structure of the battery cell shown in Fig. 36;
  • FIG. 39 is a schematic diagram of a battery cell with three tabs in an embodiment of the application.
  • 40 is a schematic diagram of a battery cell with four tabs in an embodiment of the application.
  • 41 is a schematic diagram of a battery cell with five tabs in an embodiment of the application.
  • FIG. 42 is a schematic diagram of a battery cell with six tabs in an embodiment of the application.
  • FIG. 43 is a schematic diagram of a non-penetrating battery cell in an embodiment of the application.
  • FIG. 44 is a schematic diagram of a penetrating cell in an embodiment of this application.
  • FIG. 45 is a schematic diagram of a battery cell with three tabs in an embodiment of the application.
  • FIG. 46 is a schematic diagram of a battery cell with four tabs in an embodiment of the application.
  • FIG. 47 is a schematic diagram of a battery cell with five tabs in an embodiment of the application.
  • FIG. 48 is a schematic diagram of a battery cell with six tabs in an embodiment of the application.
  • FIG. 1 is a circuit block diagram of the charging module 10 in an embodiment of the application.
  • the charging module 10 includes a first circuit board 11, a second circuit board 12, a third circuit board 13, and a battery module 100 including a battery cell 14 and a first battery protection board 15.
  • the first circuit board 11, the second circuit board 12 and the third circuit board 13 cooperate to process the voltage and current received from the outside for charging into voltage and current suitable for charging the battery module 100.
  • the battery module 100 receives the processed voltage and current and charges and stores electric energy. At the same time, the battery module 100 can also release the stored electric energy to the third circuit board 13 for discharge, which is the third circuit board 13 and other functional circuits. (Not shown in the figure) Provide drive power.
  • the first circuit board 11 is configured to receive the first charging voltage and the first charging current from the outside, and perform voltage conversion on the first charging voltage, and convert the first charging voltage into the second charging voltage.
  • the second circuit board 12 is electrically connected to the first circuit board 11 and the third circuit board 13 for providing the first charging voltage and the first charging current to the third circuit board 13.
  • the third circuit board 13 is electrically connected to the first battery protection board 15.
  • the third circuit board 13 is used to perform voltage conversion processing on the second charging voltage into the cell voltage, and provide the cell voltage to the first battery Protection board 15.
  • the first circuit board 11 and the third circuit board 13 also convert the first charging current into the cell current.
  • the first battery protection board 15 is electrically connected to the battery core 14 for transmitting the battery cell voltage and the battery current to the battery core 14 through at least two conductive paths, so that the battery core 14 performs electric energy storage and charging; or the battery cell 14 transmits the cell voltage and cell current to the first battery protection circuit 15 through at least two conductive paths, so that the cell 14 releases the stored electric energy to the third circuit board 13 for discharge.
  • the cell voltage is less than the first charging voltage and the second charging voltage.
  • the cell voltage is the rated voltage for charging and discharging the cell 14, for example, the cell voltage is 5 volts (V), and the first charging current is 12 amperes (A).
  • the first circuit board 11 may be directly electrically connected to the third circuit board 13, without the second circuit board 12 performing the connection, that is, in another embodiment, the second circuit board 12 may not be provided.
  • the first circuit board 11 and the third circuit board 13 are directly electrically connected.
  • the first circuit board 11 and the third circuit board 13 may be implemented by the same circuit board, that is, the first circuit board 11 and the third circuit board 13 are the same circuit board, and there is no second circuit board. Circuit board 12.
  • the first circuit board 11, the second circuit board 12, and the third circuit board 13 are respectively provided with a plurality of functional circuits and conductive lines, so as to perform processing and transmission of the received voltage and current. More specifically, the first circuit board 11 includes a first transmission interface 111 and a first voltage conversion unit C1.
  • the first transmission interface 111 is used to electrically connect with an external power supply system, and is used to receive the first charging voltage and the first charging current.
  • the first transmission interface 111 may be, for example, a Mini USB interface, a Micro USB 2.0 interface, a Micro USB 2.0 interface, or a Type-C interface.
  • the first charging voltage is, for example, 12 volts (V)
  • the first charging current is, for example, It is 5 Abe (A).
  • the first voltage conversion unit C1 is electrically connected to the first transmission interface 111, and is configured to perform conversion processing on the first charging voltage into a second charging voltage, for example, the first charging voltage can be stepped down.
  • the first voltage conversion unit C1 can output after reducing the input voltage by 1/2 at most, that is, the second charging voltage (output voltage) can be at least 1/of the first charging voltage (input voltage). 2.
  • the first voltage conversion unit C1 determines the magnitude of the voltage drop according to the actual situation.
  • the first voltage conversion unit C1 may have other voltage reduction capabilities (4:1, 3:1 or other ratios of voltage reduction), for example, the first voltage conversion unit C1 may be 4: Charger IC (charger IC) 1 can reduce the output voltage to 1/4 of the input voltage.
  • the first charging voltage may not need to be converted, for example, the first charging voltage does not need to be stepped down. For example: if the voltage value of the first charging voltage is low, there is no need to step down; in this case, the first circuit board 11 may not include the first voltage conversion unit C1, and the first circuit board 11 may directly transfer the first charging voltage Transmitted to the third circuit board 13.
  • the second circuit board 12 includes a first connection interface 121 and a second connection interface 122.
  • the first connection interface 121 is electrically connected to the first circuit board 11, and the second connection interface 122 is electrically connected to the third circuit board 13.
  • the first circuit board 11 and the third circuit board 13 are arranged on opposite sides of the battery core 14. Therefore, the second circuit board 12 spans the opposite sides of the battery core 14 and connects the first circuit board 11 and the second circuit board.
  • the three circuit boards 13 are electrically connected to transmit the second charging voltage to the third circuit board 13.
  • the second circuit board 12 may be a flexible circuit board.
  • the embodiment of the present application does not limit the positions where the first circuit board 11, the second circuit board 12, and the third circuit board 13 are arranged.
  • the structures in the embodiments and the drawings are only exemplary descriptions of the connection relationship, and do not limit the arrangement of specific devices.
  • the second circuit board 12 in FIG. 1 is located on the left side of the figure, but in an actual product, the second circuit board 12 can be arranged in any suitable position.
  • the second circuit board 12 may be set in an intermediate position, that is, the battery core and the protection circuit may be symmetrical based on the second circuit board 12.
  • the third circuit board 13 includes a first conductive interface 131, a second conductive interface 132, and two second voltage conversion units C2.
  • the third circuit board 13 may usually also include other circuit elements to cooperate to realize the charging and discharging functions of the electronic device.
  • the third circuit board 13 may further include a first sampling unit 133 and a fuel gauge 134.
  • the first sampling unit 133 is electrically connected to the first conductive interface 131 and the second conductive interface 132.
  • the fuel gauge 134 is electrically connected to the first sampling unit 133.
  • the first sampling unit 133 may be a sampling resistor, which is used for sampling during current detection or power detection.
  • the fuel gauge 134 (also called a coulomb meter) is used to measure battery power.
  • the fuel gauge 134 can measure the battery power through a sampling resistor.
  • the two second voltage conversion units C2 are electrically connected to the second connection interface 122, respectively, for receiving a second charging voltage and a charging current, and converting the second charging voltage into a cell voltage, for example, The second charging voltage is stepped down into a battery cell voltage.
  • the second voltage conversion unit C2 can be a 2:1 charging IC, which can reduce the input voltage by at most 1/2 and then output, that is, the cell voltage (output voltage) can be at least the second charging voltage (Input voltage) 1/2.
  • the second voltage conversion unit C2 determines the magnitude of the voltage drop according to the actual situation.
  • the second voltage conversion unit C2 may have other voltage reduction capabilities (4:1, 3:1, or other ratios of voltage reduction).
  • the second voltage conversion unit C2 may have a 4:1 voltage reduction capability.
  • Charger IC charger IC
  • Charger IC can reduce the output voltage to 1/4 of the input voltage.
  • the voltages described in the embodiments of the present application are merely examples. During the actual charging process of the battery module 100, the charging or discharging voltage may fluctuate.
  • the battery cell voltage of the current battery module 14 cannot exceed 5V at the maximum when charging, and generally the maximum cell voltage is 4.22V or 4.45V.
  • the two second voltage conversion units C2 are electrically connected to the first conductive interface 131 and the second conductive interface 132, respectively, to provide the cell voltage and the cell current to the first conductive interface 131 and the second conductive interface 131 and the second conductive interface 132, respectively.
  • Interface 132 In other words, the first conductive interface 131 receives the cell voltage and the cell current, and the second conductive interface 132 also receives the cell voltage and the cell current.
  • the two second voltage conversion units C2 may be, for example, charger ICs.
  • the two charging ICs can both be the main charging IC, or one of the main charging ICs, and the other one as the secondary charging IC.
  • the main charging IC also supports other charging functions in addition to performing voltage conversion, for example, it can also support BUCK structure charging, USB On-The-Go (USB On-The-Go) functions, and so on.
  • the secondary charging IC is mainly used for functions such as voltage conversion and increasing charging current.
  • FIG. 2A is a schematic diagram of the planar structure of the battery core 14.
  • the cell 14 includes a cell body 140, a first side 141 and a second side 142 opposite to each other.
  • the first circuit board 11 is arranged on one side of the first side 141 of the battery core 14, and the third circuit board 13 and the first battery protection board 15 are arranged on one side of the second side 142 of the battery core.
  • the second circuit board 12 is electrically connected to the first circuit board 11 and the third circuit board 13 across the first side 141 and the second side 142 of the cell 14, respectively.
  • the first side 141 of the cell body 140 is provided with a tab 14a, a tab 14b, and a tab 14c, wherein the tab 14a has a polarity 1, and the tab 14b and the tab 14c have a polarity 2.
  • polarity 1 and polarity 2 are opposite.
  • Polarity 1 is the positive polarity
  • polarity 2 is the negative polarity
  • polarity 1 is a negative polarity
  • polarity 2 is a positive polarity.
  • the tab 14b and the tab 14a form the positive and negative poles of a conductive loop
  • the tab 14c and the tab 14a form the positive and negative poles of a conductive loop.
  • the voltage and current are input (charged) or output (discharged) from the cell body 140 through the two conductive loops, respectively.
  • the tab 14b and the tab 14c can be directly electrically connected, that is, the voltage (electric potential) of the tab b and the tab c are the same.
  • the battery cell 14 includes two charging or discharging conductive loops, and the charging efficiency of the battery cell 14 can be improved and the charging time can be reduced without increasing the charging current transmitted by each tab.
  • the position of these tabs in the battery core is not limited in this embodiment, as long as the electrical connection relationship is the same, the solution of this embodiment can be implemented. The position of the tab in the battery cell is described in detail in the specific structural embodiment of the subsequent battery cell.
  • FIG. 3A is a circuit block diagram of the first battery protection board 15 shown in FIG. 1.
  • the first battery protection board 15 includes a first battery interface 151, a second battery interface 152, a first protection circuit 153 and a second protection circuit 154.
  • the first battery interface 151 is electrically connected to the first conductive interface 131 (FIG. 1 ).
  • the second battery interface 152 is electrically connected to the second conductive interface 132 (FIG. 1 ).
  • the first protection circuit 153 is electrically connected between the tabs 14a, 14b, 14c and the first battery interface 151. At the same time, the first protection circuit 153 is also electrically connected to the tabs 14a, 14b, and Between the ear 14c and the second battery interface 152. The first protection circuit 153 is used for the voltage and current between the tab 14a, the tab 14b, the tab 14c and the first battery interface 151 and the second battery interface 152 when the battery cell 14 is being charged or discharged. At this time, the conductive paths between the tab 14a, the tab 14b, the tab 14c and the first battery interface 151 and the second battery interface 152 are disconnected to prevent the battery core 14 from being damaged.
  • the second protection circuit 154 is electrically connected between the tab 14a, the tab 14b, the tab 14c and the first battery interface 151. At the same time, the second protection circuit 154 is also electrically connected to the tab 14a, the tab 14b, the tab Between the ear 14c and the second battery interface 152.
  • the second protection circuit 153 is used for the voltage and current between the tab 14a, the tab 14b, the tab 14c and the first battery interface 151 and the second battery interface 152 when the battery cell 14 is being charged or discharged. At this time, the conductive paths between the tab 14a, the tab 14b, the tab 14c and the first battery interface 151 and the second battery interface 152 are disconnected, so as to protect the battery cell 14 from damage.
  • the first protection circuit 153 and the second protection circuit 154 protect the battery core 14 at the same time, and when any one of them fails, the other one can protect the battery core 14. That is, the first protection circuit 153 and the second protection circuit 154 can serve as backups for each other.
  • the first protection control unit 1531 fails, the second protection control unit 1541 performs voltage and current protection. Or, when the second protection control unit 1541 fails, the first protection control unit 1531 performs voltage and current protection.
  • the voltage and current threshold ranges for the input and output of the cell 14 corresponding to the first protection circuit 153 and the voltage and current threshold ranges for the input and output of the cell 14 corresponding to the second protection circuit 154 may be the same or different. .
  • the protection circuit that reaches the threshold range first performs the action of disconnecting the path.
  • the protection circuit of the first protection circuit 153 and the second protection circuit 154 that has previously detected that the voltage or current exceeds the corresponding threshold range performs the protection operation. More specifically, the first battery interface 151, the tab 14b, the cell body, the tab 14a, and the first protection circuit 153 constitute a first conductive loop, and the first conductive loop transmits the cell voltage and cell current. .
  • the first conductive loop includes a first conductive path P1 and a third conductive path P3.
  • the first conductive path P1 is located between the first battery interface 151 and the tab 14b, and the third conductive path P3 is located at the first battery interface. Between 151 and tab 14a.
  • the second battery interface 152, the tab 14c, the cell body, the tab 14a, and the first protection circuit 153 constitute a second conductive loop, and the second conductive loop transmits the cell voltage and the cell current.
  • the second conductive loop includes a second conductive path P2 and a fourth conductive path P4.
  • the second conductive path P2 is located between the second battery interface 152 and the tab 14c, and the fourth conductive path P4 is located at the second battery interface. Between 152 and tab 14a.
  • the third conductive path P3 and the fourth conductive path P4 are directly electrically connected through a conductive line, so that the voltage and current flowing through the third conductive path P3 and the fourth conductive path P4 are substantially the same.
  • the first protection circuit 153 is used to detect the voltage and current of the first conductive loop and the second conductive loop. When the voltage exceeds the first voltage threshold range, the first protection circuit 153 disconnects the first conductive loop and the second conductive loop to prevent overvoltage charging or undervoltage discharge of the battery cell 14. When the current exceeds the first current threshold, the first protection circuit 153 disconnects these two conductive loops to prevent the battery cell 14 from over-current charging or over-current discharging.
  • the second protection circuit 154 is also used to detect the voltage and current of the first conductive loop and the second conductive loop. When the voltage exceeds the second voltage threshold range, the second protection circuit 154 disconnects these two conductive loops to prevent over-voltage charging or under-voltage discharge of the cell 14. When the current exceeds the second current threshold, the second protection circuit 154 disconnects these two conductive loops to prevent the cell 14 from over-current charging or over-current discharging.
  • the first voltage threshold range may be composed of an undervoltage threshold of 1 to an overvoltage threshold of 1, where the undervoltage threshold of 1 is smaller than the overvoltage threshold of 1.
  • the second voltage threshold range may be composed of an undervoltage threshold 2 to an overvoltage threshold 2, where the undervoltage threshold 2 is smaller than the overvoltage threshold 2.
  • the undervoltage threshold 1 is equal to the undervoltage threshold 2
  • the overvoltage threshold 1 is equal to the overvoltage threshold 2.
  • the undervoltage threshold 1 is not equal to the undervoltage threshold 2, or the overvoltage threshold 1 is not equal to the overvoltage threshold 2.
  • the undervoltage threshold 2 is less than the undervoltage threshold 1, and the overvoltage threshold 2 is greater than the overvoltage threshold 1.
  • the undervoltage threshold 2 is greater than the undervoltage threshold 1, and the overvoltage threshold 2 is greater than the overvoltage threshold 1.
  • the first voltage threshold range may be 2.4V to 4.422V
  • the second voltage threshold range may be 2.2V to 4.45V, that is, the overvoltage threshold 1 is 4.422V, and the undervoltage threshold 1 is 2.4V.
  • the overvoltage threshold 2 is 4.45V
  • the undervoltage threshold 2 is 2.2V.
  • the first voltage threshold range may be, for example, 2.2V to 4.422V
  • the second voltage threshold range may be, for example, 2.4V to 4.45V.
  • the voltage exceeding the voltage threshold range refers to: the voltage is less than the undervoltage threshold or the voltage is greater than the overvoltage threshold.
  • the first current threshold or the second current threshold is a specific value.
  • the first current threshold and the second current threshold may be the same or different.
  • the current exceeding the current threshold means that the current is greater than or equal to the current threshold.
  • FIG. 4A is a circuit block diagram of the first protection circuit 153 and the second protection circuit 154 shown in FIG. 1.
  • the first protection circuit 153 includes a first protection control unit 1531, a first voltage sampling unit 1532, a first current sampling unit 1534, and a first switching unit 1533.
  • the first protection control unit 1531 is electrically connected to the first conductive loop and the second conductive loop, respectively.
  • the first protection control unit 1531 detects the voltage and current in the first conductive loop and the second conductive loop, and determines whether the detected voltage and current exceed the corresponding threshold range. When the voltage and the current exceed the corresponding threshold range, the first protection control unit 1531 outputs a protection signal to the first switch unit 1533, and the first switch unit 1533 turns off the protection signal according to the protection signal.
  • the first conductive loop and the second conductive loop protect the cell 14 from damage due to overvoltage, overcurrent, or undervoltage.
  • the first voltage sampling unit 1532 is electrically connected to the tab 14b, the tab 14c, and the first protection control unit 1531, and is used to detect the cell voltage and transmit the detected cell voltage to the first protection control unit 1531.
  • the first voltage sampling unit 1532 may be, for example, a sampling resistor.
  • the embodiment of the present application may not have a voltage sampling unit, but the protection control unit directly detects the voltage of the conductive circuit.
  • the first current sampling unit 1534 is electrically connected to the tab 14a, the first protection control unit 1531, and the first switch unit 1533, and is used to detect the currents of the first conductive loop and the second conductive loop and transmit them to the first protection Control unit 1531.
  • the first current sampling unit 1534 may be, for example, a sampling resistor.
  • the first switch unit 1533 is electrically connected to the first protection control unit 1531, the first current sampling unit 1534, the first battery interface 151, and the second battery interface 152, respectively. And the first switch unit 1533 is located in the third conductive path P3 in the first conductive loop and the fourth conductive path P4 in the second conductive loop.
  • the first switch unit 1533 may include a first switch S1 and a second switch S2.
  • the first switch S1 is electrically connected to the first current sampling unit 1534, the first protection control unit 1531, and the third switch S3 in the second protection circuit 154, respectively.
  • the first switch S1 is in an on state or an off state according to the protection signal provided by the first protection control unit 1531.
  • the second switch S2 is electrically connected to the first current sampling unit 1534, the first protection control unit 1531, and the fourth switch S4 in the second second protection circuit 154, respectively.
  • the second switch S2 is turned on or off according to the protection signal provided by the first protection control unit 1531.
  • the first switch S1 and the second switch S2 are turned on or turned off synchronously, and the first switch S1 and the second switch S2 can be implemented by using the same type of transistor MOS, for example, both are N-type transistors. Or all are P-type transistors. Of course, the first switch S1 and the second switch S2 can also use different types of transistors or other elements to implement the switches.
  • the embodiment of the present application may further include a second protection circuit 154.
  • the second protection circuit 154 includes a second protection control unit 1541, a second voltage sampling unit 1542, and a second switch unit 1543.
  • the second protection control unit 1541 is electrically connected to the first conductive loop and the second conductive loop, respectively.
  • the second protection control unit 1541 detects the voltage and current in the first conductive loop and the second conductive loop, and determines whether the voltage exceeds the second voltage threshold range, and determines whether the current exceeds the corresponding current threshold.
  • the second protection control unit 1541 outputs a protection signal to the second switch unit 1543, and the second switch unit 1543 turns off the protection signal according to the protection signal.
  • the first conductive loop and the second conductive loop is electrically connected to the first conductive loop and the second conductive loop, respectively.
  • the second protection control unit 1541 detects the voltage and current in the first conductive loop and the second conductive loop, and determines whether the voltage exceeds the second voltage threshold range, and determines whether the current exceeds the corresponding current threshold.
  • the second protection control unit 1541 outputs a protection signal to the second switch unit 1543, and the second switch unit 1543 turns off the protection signal according to the protection signal.
  • the second voltage sampling unit 1542 is electrically connected to the tab 14b, the tab 14c, and the second protection control unit 1541, respectively, for detecting voltage, and transmitting the detected voltage to the second protection control unit 1541.
  • the circuit structure of the first voltage sampling unit 1532 and the second voltage sampling unit 1542 may be the same.
  • the embodiment of the present application may not have a voltage sampling unit, but the protection control unit directly detects the voltage of the conductive circuit.
  • the first battery interface 151 and the second battery interface 152 can be directly electrically connected through a conductive wire, that is, the third conductive path P3 and the fourth conductive path P4 are shorted to each other, so that the third conductive path P3
  • the current flowing through the fourth conductive path P4 is basically the same.
  • the second switch unit 1543 is electrically connected to the second protection control unit 1541, the first switch unit 1533, the first battery interface 151, and the second battery interface 152, respectively. And the second switch unit 1543 is located in the third conductive path P3 in the first conductive loop and the fourth conductive path P4 in the second conductive loop.
  • the second switch unit 1543 includes a third switch S3 and a fourth switch S4.
  • the third switch S3 is electrically connected to the first switch S1, the second protection control unit 1541, and the first battery interface 151, respectively.
  • the third switch S3 is turned on or off according to the protection signal provided by the second protection control unit 1541.
  • the third switch S3 and the first switch S1 are both in the conductive state, the first conductive loop is turned on, and the first conductive path P1 and the third conductive path P3 are electrically conductive.
  • the third switch S3 or the first switch S1 is in the off state, the first conductive loop is disconnected, and the first conductive path P1 and the third conductive path P3 are electrically disconnected.
  • the fourth switch S4 is electrically connected to the second switch S2, the second protection control unit 1541, and the second battery interface 152, respectively.
  • the fourth switch S4 is turned on or off according to the protection signal provided by the first protection control unit 1541.
  • the second conductive loop is turned on, and the second conductive path P2 and the fourth conductive path P4 are electrically conductive, that is, the cell current and the cell voltage It can be transmitted between the second battery interface 152 and the tab 14a.
  • the fourth switch S4 or the second switch S2 is in the off state, the second conductive loop is disconnected, and the second conductive path P2 and the fourth conductive path P4 are electrically disconnected.
  • the third switch S3 and the fourth switch S4 are turned on or turned off synchronously, and the third switch S3 and the fourth switch S4 can be implemented by using the same type of transistor MOS, for example, both are N-type transistors. Or all are P-type transistors.
  • the third switch S3 and the fourth switch S4 can also use different types of transistors or other elements to implement the switches.
  • the tab 14a can be divided into two tabs, and the matching of the two tabs has the same function as the tab 14a.
  • the tab 14a can be two tabs with the same polarity (also called sub tabs).
  • One of the two tabs and tab 14b form the positive and negative poles of a conductive loop, which can input voltage and current to the cell body or can output voltage and current from the cell body; these two tabs
  • the other tab and tab 14c form the positive and negative poles of another conductive loop, and can input voltage and current to the cell body or can output voltage and current from the cell body.
  • These two conductive loops are similar to the two conductive loops in Figure 2A.
  • the circuit block diagram of the corresponding first battery protection board 15 is shown in FIG. 3B, and the corresponding first protection circuit 153 and the second protection circuit 154 are The circuit block diagram is shown in Figure 4B.
  • the difference between FIG. 3B and FIG. 3A is that the tab 14a is divided into two tabs with the same polarity.
  • the difference between FIG. 4B and FIG. 4A is that the tab 14a is divided into two tabs with the same polarity.
  • FIG. 5 is a schematic diagram of a specific circuit structure of the first protection board 15 in the battery module 100 shown in FIG. 5.
  • the first voltage sampling unit 1532 includes a first voltage detection resistor RV1 and a second voltage detection resistor RV2.
  • the first voltage sampling resistor RV1 is electrically connected to the tab 14b of the first conductive path P1
  • the second sampling resistor RV2 is electrically connected to the tab 14c of the second conductive loop P2.
  • the first voltage sampling resistor RV1 and the second sampling resistor RV2 are respectively used to collect the voltage on the first conductive path P1 and the voltage on the second conductive path P2.
  • the first voltage sampling resistor RV1 and the second voltage sampling resistor RV2 are connected in parallel with each other.
  • the first voltage sampling unit 1532 can collect the average voltage values on the two conductive paths of the first conductive path P1 and the second conductive path P2, and provide them to the first protection control unit 1531.
  • the first voltage sampling unit 1532 may only be provided with the first voltage detection resistor RV1, so that the first voltage detection resistor RV1 detects and obtains the voltage of the first conductive path P1 as the charging or discharging of the battery cell 14. Voltage.
  • the first voltage sampling unit 1532 may only provide the second voltage detection resistor RV2, so that the second voltage detection resistor RV2 detects and obtains the voltage of the second conductive path P2 as the voltage when the battery cell 14 is charged or discharged.
  • the first current detection unit 1534 includes a first current detection resistor RI1 and a second current detection resistor RI2.
  • the first current sampling resistor RI1 is electrically connected between the tab 14a and the first battery interface 151
  • the second sampling resistor RV2 is electrically connected between the tab 14a and the second battery interface 152.
  • the first current sampling resistor RI1 and the second current sampling resistor RI2 are used to collect the current on the third conduction path P3 and the current on the fourth conduction path P3, respectively.
  • the third conductive path P3 and the fourth conductive path P4 are shorted to each other, so that the third conductive path P3
  • the current flowing through the fourth conductive path P4 is basically the same.
  • the second voltage sampling unit 1542 includes a third voltage detection resistor RV3 and a fourth voltage detection resistor RV4.
  • the third voltage sampling resistor RV3 is electrically connected to the tab 14b of the first conductive path P1
  • the fourth sampling resistor RV4 is electrically connected to the tab 14c of the second conductive circuit P2.
  • the third voltage sampling resistor RV3 and the fourth sampling resistor RV4 are respectively used to collect the voltage on the first conductive path P1 and the voltage on the second conductive path P2.
  • the second voltage sampling unit 1542 can collect the average voltage value on the two conductive paths of the first conductive path P1 and the second conductive path P2, and provide the average voltage value to the first protection control unit 1531.
  • the second voltage sampling unit 1542 may only be provided with the third voltage detection resistor RV3, so that the third voltage detection resistor RV3 detects and obtains the voltage of the first conductive path P1 as the charging or discharging of the cell 14 Voltage.
  • the second voltage sampling unit 1542 may only be provided with the fourth voltage detection resistor RV4, so that the fourth voltage detection resistor RV4 detects and obtains the voltage of the second conductive path P2 as the voltage when the battery cell 14 is charged or discharged.
  • the first protection control unit 1531 includes a first voltage detection terminal PV1, a first current detection terminal PI1, a first charge control terminal CO1, and a first discharge control terminal DO1.
  • the first voltage detection terminal PV1 is electrically connected to the first voltage detection resistor RV1 and the second voltage detection resistor RV2 for voltage detection.
  • the first current detection terminal PI1 is electrically connected to the first current detection resistor RI1 and the second current detection resistor RI2 for current detection.
  • the first charging control terminal CO1 and the first discharging control terminal DO1 are both electrically connected to the first switch S1, and are used to output a protection signal to control the first switch S1 to be in an on state or an off state.
  • the first protection control unit 1531 determines whether the voltage and current detected from the first voltage detection terminal PV1 and the first current detection terminal PI1 exceed the threshold range. When the voltage or current exceeds the threshold range, the first charging control The terminal CO1 and the first discharge control terminal DO1 output protection signals.
  • the first switch S1 in the first switch unit 1533 includes a first control terminal SC1, a second control terminal SC2, a first conductive terminal SD1, and a second conductive terminal SD2.
  • the first control terminal SC1 is electrically connected to the first discharge control terminal DO1
  • the second control terminal SC2 is electrically connected to the first charge control terminal CO1
  • the first conductive terminal SD1 is electrically connected to the tab 14a
  • the second conductive terminal SD1 is electrically connected to the tab 14a.
  • the terminal SD2 is electrically connected to the first battery interface 151 through the second switch unit 1543.
  • the protection signal output by the first protection control unit 1531 from the first charge control terminal CO1 and the first discharge control terminal DO1 controls the on and off of the first switch S1 through the first control terminal SC1 and the second control terminal SC2.
  • the first switch S1 when the first switch S1 is turned on under the control of the protection signal, the first conductive terminal SD1 and the second conductive terminal SD2 are electrically conducted; when the first switch S1 is turned off under the control of the protection signal, the first conductive terminal SD1 It is electrically disconnected from the second conductive terminal SD2.
  • the first switch S1 can conduct bidirectional conduction. That is, for the third conductive path P3 in the first conductive loop, when the current flows from the first tab 14a to the first battery interface 151 when the battery cell 14 is being charged, the first switch S1 can be turned on or off. In addition, when the current flows from the first battery interface 151 to the first tab 14a when the battery cell 14 is discharged, the first switch S1 can be turned on or off.
  • the first charging control terminal CO1 and the first discharging control terminal DO1 are both electrically connected to the second switch S2 for outputting a protection signal to control the second switch S2 to be in an on state or an off state.
  • the second switch S2 in the first switch unit 1533 includes a third control terminal SC3, a fourth control terminal SC4, a third conductive terminal SD3, and a fourth conductive terminal SD4.
  • the third control terminal SC3 is electrically connected to the first discharge control terminal DO1
  • the fourth control terminal SC4 is electrically connected to the first charge control terminal CO1
  • the third conductive terminal SD3 is electrically connected to the tab 14a
  • the fourth conductive terminal SD3 is electrically connected to the tab 14a.
  • the terminal SD4 is electrically connected to the second battery interface 152 through the second switch unit 1543.
  • the protection signal output by the first protection control unit 1531 from the first charge control terminal CO1 and the first discharge control terminal DO1 controls the on and off of the second switch S2 through the third control terminal SC3 and the fourth control terminal SC4.
  • the third conductive terminal SD3 and the fourth conductive terminal SD4 are electrically conducted;
  • the third conductive terminal SD3 It is electrically disconnected from the fourth conductive terminal SD4.
  • the second switch S2 can conduct bidirectional conduction. That is, for the fourth conductive path P4 in the first conductive loop, when the current flows from the first tab 14a to the second battery interface 152 when the battery cell 14 is being charged, the second switch S2 can be turned on or off. In addition, when the current flows from the second battery interface 152 to the first tab 14a when the battery cell 14 is discharged, the first switch S1 can be turned on or off.
  • the second protection control unit 1541 includes a second voltage detection terminal PV2, a second current detection terminal PI2, a second charge control terminal CO2, and a second discharge control terminal DO2.
  • the second voltage detection terminal PV2 is electrically connected to the third voltage detection resistor RV3 and the fourth voltage detection resistor RV4 for voltage detection.
  • the second current detection terminal PI2 is electrically connected to the first current detection resistor RI1 and the second current detection resistor RI2 for current detection.
  • the second protection control unit 1541 determines whether the voltage and the current obtained from the second voltage detection terminal PV2 and the second current detection terminal PI2 exceed the threshold range. When the voltage or current exceeds the threshold range, a protection signal is output from the second charge control terminal CO2 and the second discharge control terminal DO2.
  • the second charging control terminal CO2 and the second discharging control terminal DO2 are both electrically connected to the third switch S3, and are used to output a protection signal to control the third switch S3 to be in an on state or an off state.
  • the third switch S3 in the second switch unit 1543 includes a fifth control terminal SC5, a sixth control terminal SC6, a fifth conductive terminal SD5, and a sixth conductive terminal SD6.
  • the fifth control terminal SC5 is electrically connected to the second discharge control terminal DO2
  • the sixth control terminal SC6 is electrically connected to the second charge control terminal CO2
  • the fifth conductive terminal SD5 is electrically connected to the second switch S1.
  • the conductive terminal SD2 and the sixth conductive terminal SD5 are electrically connected to the first battery interface 151.
  • the second protection control unit 1541 outputs protection signals from the second charge control terminal CO2 and the second discharge control terminal DO2, and controls the on and off of the third switch S3 through the fifth control terminal SC5 and the sixth control terminal SC6.
  • the third switch S3 when the third switch S3 is turned on under the control of the protection signal, the fifth conductive terminal SD5 and the sixth conductive terminal SD6 are electrically conducted; when the third switch S3 is turned off under the control of the protection signal, the fifth conductive terminal SD5 It is electrically disconnected from the sixth conductive terminal SD6.
  • the third switch S3 can conduct bidirectional conduction. That is, for the third conductive path P3 in the first conductive loop, the third switch S3 can be turned on or off when the battery cell 14 is being charged or discharged.
  • the second charging control terminal CO2 and the second discharging control terminal DO2 are both electrically connected to the fourth switch S4 for outputting a protection signal to control the fourth switch S4 to be in an on state or an off state.
  • the fourth switch S4 in the second switch unit 1543 includes a seventh control terminal SC7, an eighth control terminal SC8, a seventh conductive terminal SD7, and an eighth conductive terminal SD8.
  • the seventh control terminal SC7 is electrically connected to the second discharge control terminal DO2
  • the eighth control terminal SC8 is electrically connected to the second charge control terminal CO2
  • the seventh conductive terminal SD7 is electrically connected to the fourth switch S2.
  • the conductive terminal SD4 and the eighth conductive terminal SD8 are electrically connected to the second battery interface 152.
  • the second protection control unit 1541 outputs protection signals from the second charge control terminal CO2 and the second discharge control terminal DO2, and controls the on and off of the fourth switch S3 through the seventh control terminal SC7 and the eighth control terminal SC8.
  • the seventh conductive terminal SD7 and the eighth conductive terminal SD8 are electrically conducted; when the fourth switch S4 is turned off under the control of the protection signal, the seventh conductive terminal SD7 It is electrically disconnected from the eighth conductive terminal SD8.
  • the fourth switch S4 can conduct bidirectional conduction.
  • the first battery protection board 15 may further include an anti-counterfeiting unit 155, which is electrically connected to the second conductive path P2, and is used to detect the cell voltage and cell current that the cell 14 can withstand, thereby preventing The cell 14 does not match the cell voltage or cell current, which results in damage to the cell 14.
  • an anti-counterfeiting unit 155 which is electrically connected to the second conductive path P2, and is used to detect the cell voltage and cell current that the cell 14 can withstand, thereby preventing The cell 14 does not match the cell voltage or cell current, which results in damage to the cell 14.
  • FIGS. 1 and 5 Please refer to FIGS. 1 and 5 to specifically describe the working process of charging (executing electric energy storage) and discharging (executing electric energy release) in the battery cell 14 by the first protection board 15 in the battery module 100.
  • the battery cell 14 performs the charging process:
  • the cell voltage and cell current output by the third circuit board 13 from the first conductive interface 131 and the second conductive interface 132 are transmitted to the first battery interface 151 and the second battery interface 152 of the first battery protection board 14.
  • the cell voltage and the cell current are transmitted from the first battery interface 151 to the tab 14b through the first conductive path P1.
  • the cell voltage charges the first capacitor C1 through the first voltage detection resistor RV1.
  • the first protection control unit 1531 outputs a turn-on signal to the first capacitor C1.
  • a charging control terminal CO1 further controls the first switch S1 to be in an on state.
  • the cell voltage charges the second capacitor C2 through the third voltage detection resistor RV3.
  • the second protection control unit 1541 outputs a turn-on signal to the first
  • the second charging control terminal CO2 further controls the third switch S3 to be in a conducting state.
  • the cell current is transmitted from the tab 14b to the tab 14a, and from the tab 14a through the first current detection resistor RI1 to the first conductive terminal SD1 of the first switch S1, and then to the second conductive terminal SD2.
  • the third switch S3 Since the third switch S3 is also in the on state, and the fifth conductive terminal SD5 of the third switch S3 is electrically connected to the second conductive terminal SD2, the cell current passes through the second conductive terminal SD2, the fifth conductive terminal SD5, and The sixth conductive terminal SD6 is transmitted to the first battery interface 151 so as to charge the battery cell 14 in the first conductive loop.
  • the cell voltage and cell current are transmitted from the second battery interface 152 to the tab 14c through the second conductive path P2.
  • the cell voltage charges the first capacitor C1 through the second voltage detection resistor RV2.
  • the first protection control unit 1531 outputs a turn-on signal to the first capacitor C1.
  • a charging control terminal CO1 further controls the second switch S2 to be in an on state.
  • the cell voltage charges the second capacitor C2 through the fourth voltage detection resistor RV4.
  • the second protection control unit 1541 outputs a turn-on signal to the first
  • the second charging control terminal CO2 further controls the fourth switch S4 to be in an on state.
  • the cell current is transmitted from the tab 14c to the tab 14a, and from the tab 14a through the second current detection resistor RI2 to the third conductive terminal SD3 of the second switch S2, and then to the fourth conductive terminal SD4.
  • the fourth switch S4 Since the fourth switch S4 is also in the on state, and the seventh conductive terminal SD7 of the fourth switch S4 is electrically connected to the third conductive terminal SD3, the cell current passes through the third conductive terminal SD3, the seventh conductive terminal SD7, and The eighth conductive terminal SD8 is transmitted to the second battery interface 152 so as to charge the battery cell 14 in the second conductive loop.
  • the first protection control unit 1531 and the second protection control unit 1541 performs protection for the battery cell 14.
  • the undervoltage threshold corresponding to the first protection control unit 1531 is 2.4V, and the overvoltage threshold is 4.422V; the undervoltage threshold corresponding to the second protection control unit 1541 is 2.2V, and the overvoltage threshold is 4.45V .
  • the first protection control unit 1531 when the voltage on the first conductive path P1 or the second conductive path P1 is undervoltage, for example, when the voltage of the cell 14 is less than 2.4V, the first protection control unit 1531 outputs a protection signal to the first charging control terminal CO1, The first switch S1 and the second switch S2 are controlled to be in an off state (ie, an off state), thereby disconnecting the first conductive loop and the second conductive loop.
  • the first protection control unit 1531 When the voltage on the first conductive path P1 or the second conductive path P1 is overvoltage, for example, when the voltage of the cell 14 is greater than 4.422V, the first protection control unit 1531 outputs a protection signal to the first charging control terminal CO1 to control the first The switch S1 and the second switch S2 are in an off state, thereby disconnecting the first conductive loop and the second conductive loop.
  • the second protection control voltage 1541 can timely and accurately disconnect the first conductive loop or the second conductive loop when the battery core 14 is overvoltage or undervoltage.
  • the second protection control unit 1541 outputs a protection signal to the second charging control terminal CO2, and controls the third switch S3 and the fourth switch S4 to be at The cut-off state, thereby disconnecting the first conductive loop and the second conductive loop.
  • the second protection control unit 1541 If the first protection unit 1531 fails, when the voltage of the cell 14 is greater than 4.45V, the second protection control unit 1541 outputs a protection signal to the second charging control terminal CO2, and controls the third switch S3 and the fourth switch S4 to be in an off state , Thereby disconnecting the first conductive loop and the second conductive loop.
  • the working principles of the first protection control unit 1531 and the second protection control voltage 1541 are the same as the working principles of the over-voltage and under-voltage of the cell , I won’t repeat it here.
  • the cell voltage and cell current flow from the tab 14a to the tab 14b and the tab 14c, respectively.
  • the cell voltage and cell current are transmitted from the tab 14b through the first conductive path P1 to the first battery interface 151, and then from the first battery interface 151 It is transmitted to the first tab 14a through the third switch S3 and the first switch S1, so that the battery cell 14 is discharged to the first battery interface 151 in the first conductive loop.
  • the cell voltage and cell current are transmitted from the tab 14c through the second conductive path P2 to the first battery interface 152, and then from the second The battery interface 152 is transmitted to the first tab 14a through the fourth switch S4 and the second switch S2, so that the battery cell 14 is discharged to the second battery interface 152 in the second conductive loop.
  • the voltage and current on the first conductive path P1 or the second conductive path P2 or the third conductive path P3 or the fourth conductive path P4 exceed the corresponding threshold range, that is, the cell voltage is overvoltage or undervoltage
  • the first protection control unit 1531 and the second protection control unit 1541 perform protection for the cell 14.
  • the protection process is similar to the charging process, so I won't repeat it here.
  • At least two conductive loops can be simultaneously charged and discharged at the same time, which improves the charging efficiency. .
  • each conductive loop has a current of 6A.
  • FIG. 6 is a circuit block diagram of the battery module 100 in another embodiment of the application.
  • the structure is basically the same as that of the battery module 100 shown in FIG. 4A, except that the first battery protection board 15 only includes the first protection circuit 153 and does not include the second protection circuit 154.
  • the second protection circuit is used to back up the first protection circuit. If the first protection circuit fails, the second protection circuit can protect the cells from voltage and current. Therefore, only one protection circuit can also implement the solution of the embodiment of the present application.
  • the number of protection circuits may also be increased.
  • the battery module 100 may include three, four or more protection circuits.
  • the newly added protection circuit refer to the structure and layout of the first protection circuit and the second protection circuit.
  • FIG. 7 is a circuit block diagram of the charging module 30 in another embodiment of the application.
  • the circuit of the charging module 30 is basically the same as that of the charging module 10 shown in FIG. 1, except that the first circuit board 11 is not provided with a first voltage conversion unit C1, and the third circuit board 13 is provided with a first voltage conversion unit C1.
  • Two voltage conversion units C2, and the second voltage conversion unit C2 directly converts the first charging voltage into the battery cell voltage, and provides the first battery interface 151 and the second battery interface 152 respectively.
  • the second voltage conversion unit C2 in this embodiment has a higher voltage conversion efficiency than the voltage conversion units C1 and C2 in the charging module 10, for example, the conversion efficiency can be doubled.
  • the second voltage conversion unit C2 in this embodiment may be a 4:1 Charger IC.
  • FIG. 8 is a circuit block diagram of the battery module 400 in the charging module 40 in another embodiment of the application.
  • the circuit of the battery module 400 is basically the same as that of the battery module 100 shown in FIGS. 1 and 2A. The difference is that the tab 14a in the battery cell 14 has a positive polarity, and the tab 14b and the tab 14c have Negative polarity.
  • FIG. 9 is a circuit block diagram of the charging module 50 in another embodiment of the application.
  • the circuit block diagram of the battery module 500 in the charging module 50 is similar to the circuit of the battery module 100 in the charging module 10 shown in FIG.
  • the four tabs are respectively tab 14a, tab 14b, tab 14c, and tab 14d.
  • the tab 14 a and the tab 14 b are disposed on the first side 141 of the battery core 14, and the tab 14 c and the tab 14 d are disposed on the second side 142 of the battery core 14.
  • the tab 14a and the tab 14c have a first polarity
  • the tab 14b and the tab 14d have a second polarity.
  • the first polarity is negative polarity
  • the second polarity is positive polarity.
  • the first voltage conversion unit C1 is not provided on the first circuit board 11, and the third circuit board 13 is provided with a second voltage conversion unit C2.
  • the second voltage conversion unit C2 directly converts the first charging voltage into the battery cell voltage, and provides the first battery interface 151 and the second battery interface 152 respectively.
  • the second voltage conversion unit C2 may be a 4:1 charger IC.
  • FIG. 10 is a circuit block diagram of the charging module 50.
  • the two first battery protection plates 15 are respectively disposed on the first side 141 and the second side 142 of the battery cell 14. That is, a first battery protection board 15 is correspondingly electrically connected to the tab 14a and the tab 14b, and another first battery protection board 15 is electrically connected to the tab 14c and the tab 14d.
  • FIG. 11 is a schematic diagram of the circuit structure of the battery module 500
  • FIG. 12 is a schematic diagram of the circuit structure of one of the first battery protection boards 15.
  • the first battery protection board 15 on the second side 142 of the battery cell 14 and the first battery interface 151 are electrically connected to the tab 14a and the tab 14b, and form a first conductive loop;
  • the first battery protection board 15 on the first side 141 of the core 14 and the second battery interface 152 are electrically connected to the tab 14c and the tab 14d, and form a second conductive loop.
  • the first battery protection board 15 includes two protection circuits 153 and 154.
  • the protection circuits 153 and 154 perform voltage and current protection for the conductive circuit.
  • the two protection circuits 153 and 154 are electrically connected to the first battery interface 151.
  • both protection circuits are electrically connected to the second battery interface 151. It is understandable that the two protection circuits 153 and 154 are mutually backup functions. Therefore, it is also possible to provide only one protection circuit on one battery protection board, or to provide more protection circuits.
  • FIG. 13 is a circuit block diagram of the charging module 60 in another embodiment of the application.
  • the battery module 600 included in the charging module 60 has a circuit similar to that of the battery module 100 shown in the charging module 10 shown in FIG. Six tabs, two battery protection boards and four battery ports. That is, the battery module 600 has three more tabs, one more battery protection board, and two more battery ports than the battery module 100. It can be understood that the battery module 600 can be equivalent to two batteries with three-pole ears, but there is only one battery cell body.
  • the battery module 600 included in the charging module 60 includes more components than the battery module 100 shown in FIGS. 1 to 2A. Based on the battery module 100, as shown in FIG. 13, the battery module 600 further includes a second battery protection board 16, a third battery interface 156, and a fourth battery interface 157 disposed on the first side 141 of the battery cell 14. . Among them, the circuit structure, connection mode and working principle of the second battery protection board 16 are completely the same as those of the first battery protection board 15.
  • the charging module 60 has one more voltage conversion unit C3 on the circuit board of the charging module 10.
  • the first circuit board 11 includes a third voltage conversion unit C3.
  • the third battery interface 156 and the fourth battery interface 157 are respectively electrically connected to the third voltage conversion unit C3 in the first circuit board 11 to transmit voltage and current to the battery core 14.
  • the third voltage conversion unit C3 may be the same as the second voltage conversion unit C2 on the third circuit board.
  • the third voltage conversion unit C3 or the second voltage conversion unit C2 may be replaced by two or more conversion units with low conversion efficiency.
  • a 4:1 charger IC (C3 or C2) can be replaced by two or three 2:1 charger ICs.
  • the embodiment shown in FIG. 7 uses a 4:1 charger IC to achieve voltage reduction.
  • the external voltage and current are received through the first transmission interface 111, and then shunted and transmitted to the third voltage conversion unit C3 in the first circuit board 11 and the second voltage conversion in the third circuit board 13 respectively.
  • Unit C2 For the subsequent processing flow, please refer to the description in the above-mentioned three-pole ear embodiment (the embodiment shown in FIG. 1 to FIG. 8).
  • FIG. 14A is a schematic diagram of the structure of the battery module 600 in the charging module 60 shown in FIG. 13.
  • the battery cell 14 in addition to the tab 14a, the tab 14b, and the tab 14c provided on the second side 142, the battery cell 14 also includes the tab 14d, the tab 14e, and the tab 14f provided on the first side 141.
  • the polarity of the tab 14d, the tab 14f, the tab 14b and the tab 14c are the same
  • the polarity of the tab 14e and the tab 14a are the same
  • the tab 14e and the tab 14f are arranged at the tab with a preset distance.
  • the left and right sides of 14d the structure and layout of the tab 14d, the tab 14e, and the tab 14f can refer to the tab 14a, the tab 14b, and the tab 14c in the foregoing embodiment.
  • FIG. 15 is a schematic diagram of the circuit structure of the battery module 600 in the charging module 60 shown in FIG. 13.
  • the second battery protection board 16 is disposed on the first side 141 of the battery cell 14 for receiving the battery cell voltage and battery current from the first circuit board 11 and passing the third battery interface 156 ,
  • the fourth battery interface 157 is electrically connected to the tab 14d, the tab 14e, and the tab 14f.
  • the circuit structure, connection mode, and working principle of the second battery protection board 16 are the same as the circuit structure, connection mode, and working principle of the first battery board board 15, the specific connection mode will not be repeated in this embodiment.
  • the upper and lower ends of the battery can be used for charging when charging, that is, all four or six tabs are used for charging.
  • the tabs and circuits at one end of the cell can be used to discharge.
  • only two tabs such as one positive and one negative two tabs connected to the third circuit board
  • all the tabs can also be used for discharge.
  • another embodiment of the present application further provides a battery module with five tabs (may be referred to as a five tab battery module).
  • the five-pole battery module also includes two battery protection boards and four battery interfaces; the difference is that the battery cell of the five-pole battery module One side includes three tabs, and the other side includes two tabs.
  • the structure of the three tabs and the corresponding circuit structure can be referred to the description in the embodiment shown in Figs. 1 to 8; the structure of the two tabs and the corresponding circuit structure can be referred to the quadrupole shown in Figs. 9-12.
  • a battery module with six-terminal ears can be equivalent to two batteries with three-terminal ears, but there is only one battery core body.
  • a battery module with quadrupole ears can be equivalent to a battery with two dipole ears, but there is only one battery cell body.
  • a battery module with five-pole ears can be equivalent to a battery with three-pole ears and a battery with two-pole ears, but only one battery core body is required.
  • three of the tabs can be arranged on one side of the battery core body, and the other two tabs can be arranged on the other side of the battery core body.
  • the two sides can be opposite sides, adjacent sides, or two spaced apart sides.
  • the battery module may also include two more tabs, that is, another type of six tabs is provided.
  • the six-pole battery module may include a battery core body, six tabs, three battery protection boards, and six battery ports, which is equivalent to three two-pole battery modules.
  • the positions of the six tabs are not limited, and every two tabs can be located on one side of the cell body, that is, tabs are provided on three sides of the cell body, and two tabs with different polarities are provided on each side.
  • the six tabs three tabs have the first polarity, and the other three tabs have the second polarity.
  • three tabs with the same polarity are arranged on the same pole piece.
  • the test situation of the charging module that only includes two tabs (existing technology) in the battery cell is as follows:
  • test conditions of the charging module 100 (three tabs) in the embodiment shown in FIG. 1 are as follows:
  • test conditions of the charging module 500 are as follows:
  • test conditions of the charging module 600 are as follows:
  • the power consumption of the whole machine is 5.195W.
  • the power consumption of the charging module including three tabs is only 2.615W, and the power consumption of the charging module including four tabs in the embodiment of the application is only 2.292W.
  • the overall power consumption of the charging module including three tabs in the embodiment of the present application is 4.799W, and the overall power consumption of the charging module including four tabs in the embodiment of the present application
  • the power consumption is 4.073W, and the power consumption of the entire charging module including six tabs in the embodiment of the present application is 2.883W.
  • the hexapole solution has lower power consumption than the quadrupole solution, and the quadrupole solution has lower power consumption than the three-pole solution.
  • the six-pole solution can support more power charging than the four-pole solution, and the four-pole solution can support more power charging than the three-pole solution.
  • the structure of the battery core 14 in the embodiment of the present application is described below.
  • the battery cell may include two pole pieces.
  • Each pole piece includes an active area (Active Area, AA), and further, it may also include a surrounding area (ie, non-active area, NA).
  • the effective area AA is coated with a conductive material.
  • the conductive material coated in the effective area of the two pole pieces cooperates to perform the storage and release of electric energy.
  • the two pole pieces have different polarities.
  • Each pole piece has one or more pole ears.
  • the two pole pieces are wound together to form a battery.
  • the tabs on the pole piece are the tabs of the battery cell. According to the number of tabs required by the battery, a corresponding number of tabs are set on the pole piece.
  • FIG. 16A is a schematic diagram of an exploded structure of a battery cell 14 with three tabs in an embodiment of the application.
  • the cell 14 includes two pole pieces with different polarities, the pole piece 144 and the pole piece 145.
  • the pole piece 144 has a first polarity and the pole piece 145 has a second polarity; or, the pole piece 144 has a second polarity, and the pole piece 145 has a first polarity.
  • the pole piece 144 includes a first effective area AA1 and two first peripheral areas NA1.
  • the first effective area AA1 is coated with a first conductive material M1.
  • the two first peripheral areas NA1 are located on two opposite sides of the first effective area AA1.
  • One tab is provided in each first peripheral area NA1, such as tabs 14b and 14c as shown in FIG. 16A.
  • the pole piece 145 includes a second effective area AA2 and two second peripheral areas NA2. Alternatively, in other embodiments, the pole piece 145 may include only one peripheral area NA2 (not shown in the figure).
  • the second effective area AA2 is coated with a second conductive material M2.
  • the two second peripheral areas NA2 are located on two opposite sides of the second effective area AA1.
  • One of the second peripheral areas NA2 is provided with a tab, such as tab 14a.
  • the first conductive material M1 and the second conductive material M2 cooperate to perform the storage and release of electric energy.
  • FIG. 17 is a top view of the cell 14 shown in FIG. 16A.
  • the pole piece 144 and the pole piece 145 are wound together, wherein the lug 14a and the lug 14c are adjacently arranged inside the winding structure, and the lug 14c follows the pole piece 144 and the pole piece 145.
  • the winding is located on the outer edge of the winding structure.
  • FIG. 18 is a schematic diagram of the front structure of the battery core 14 shown in FIG. 16A.
  • the two tabs 14b and 14c are located on the left and right sides of the tab 14a.
  • the tab 14b and the tab 14c are the same. Among them, the tab 14b and the tab 14c are only for distinguishing marks. That is to say, in each embodiment of the present application, the positions of the tab 14b and the tab 14c can be exchanged.
  • FIG. 16A and FIG. 17 are only a schematic diagram of a structure of three tab electric cores.
  • the three tab cells may also have other structures.
  • the two tabs in the pole piece 144 can be located at other different positions.
  • the two tabs can be located in the peripheral area at both ends of the pole piece 144, as shown in FIG. 16A.
  • one of the two tabs can be located in the peripheral area of one end of the pole piece 144, and the other can be located in the effective area AA of the pole piece 144.
  • the tab 14c is located in a peripheral area NA1 of the pole piece 144 (the left or right end of the pole piece 144), and the tab 14c is located in the first effective area AA1 of the pole piece 144.
  • the two tabs 14b and 14c may also be located in the first effective area of the pole piece 144.
  • the two tabs can be connected or disconnected.
  • the end of the tab 14b disposed on the pole piece is connected to the end of the tab 14c disposed on the pole piece. From the appearance, the two lugs are separated, but inside the pole piece, the two lugs may be connected.
  • the tabs can be set in the effective area AA of the pole piece 144 in the following two ways. One is: after the conductive material is coated on the effective area AA1, part of the conductive material can be removed at a preset position, and then the tabs can be electrically set at the preset position. For example, the tabs can be welded to the tabs. The other is: the tabs are electrically connected to the tabs, and then conductive materials are coated except for the positions of the tabs.
  • FIG. 20 is a top view of the battery cell 14 shown in FIG. 19.
  • the pole piece 144 and the pole piece 145 are wound together, wherein the lug 14a and the lug 14c are arranged adjacent to the inside of the winding structure, and the other second lug 14b follows the pole piece 144
  • the winding with the pole piece 145 is located at other positions of the winding structure.
  • the front structure of the cell 14 shown in FIG. 19 and FIG. 20 can be referred to FIG. 18.
  • the tab 14b and the tab 14c may also be located in the effective area AA, respectively. Both the tab 14b and the tab 14c are located in the effective area AA1 of the pole piece 144.
  • the tab 14a in the pole piece 145 and the tab 14c in the tab 144 may also be located in the effective area AA, respectively. As shown in FIG. 21, the tab 14 a is located in the effective area AA2 of the pole piece 145, and the tab 14 c is located in the effective area AA1 of the pole piece 144.
  • the tabs in the pole piece 145 may also be located at different positions of the pole piece.
  • the tabs can be located in the peripheral area of either end of the pole piece 145, as shown in FIG. 16A.
  • the tab may be located in the effective area of the pole piece 145, as shown in FIG. 21, the tab 14a is located in the second effective area AA2 of the pole piece 145.
  • FIG. 22 is a top view of the battery core 14 shown in FIG. 21.
  • the pole piece 144 and the pole piece 145 are wound together, wherein the lug 14a and the lug 14c are adjacently arranged inside the winding structure, and the lug 14b follows the pole piece 144 and the pole piece 145.
  • the winding is located elsewhere in the winding structure.
  • the front structure of the cell 14 shown in FIG. 21 and FIG. 22 can be referred to FIG. 18.
  • one tab in order to form a battery with three tabs, one tab can be arbitrarily set on one tab, and two tabs can be set on the other tab.
  • a tab 14a can be provided on the pole piece 144
  • a tab 14b and a tab 14c can be provided on the pole piece 145.
  • the multiple tabs provided on the pole piece can face different directions.
  • the tabs 14a, 14b and the tab 14c all face the same direction, as shown in the figure, they all face upwards.
  • the three tabs can face in different directions.
  • any two of the three tabs can face the same direction, and the other can face a different direction.
  • the tab 14b and one tab 14a face in the same direction, as shown in the figure, facing upward, and the tab 14c faces in a different direction from the tab 14b, as shown in the figure, facing downward. It is understandable that the tab 14b and one tab 14a may both face downward, and the tab 14c may face upward.
  • FIG. 24 is a top view of the battery core 14 shown in FIG. 23.
  • FIG. 25 is a schematic diagram of the front structure of the battery core 14 shown in FIG. 24.
  • the tabs on the pole pieces correspond to the tabs of the electric core one to one. That is, the battery has three tabs, and there are three tabs in total on the two pole pieces. In other embodiments, multiple tabs on the pole piece may correspond to one tab of the battery cell.
  • the pole piece 144 may include a plurality of tabs 14-1 (also called sub tabs) and a plurality of tabs 14-2. When the pole piece 144 and the pole piece 145 are wound together, the multiple lugs 14-1 overlap and are electrically connected to form a lug 14b of the battery cell, and the multiple lugs 14-2 overlap to form a lug of the battery cell 14c.
  • the pole piece 145 may also include a plurality of pole ears 14-3. After the pole piece 144 and the pole piece 145 are wound together, the plurality of tabs 14-3 overlap and are electrically connected to form one tab 14a of the battery cell.
  • the embodiments of the present application do not limit the number and positions of the tabs (sub tabs) in the pole pieces, as long as it is ensured that the required number and positions of tabs can be formed after the two pole pieces are wound. Those skilled in the art can set the number and positions of the tabs according to the circuit design and layout.
  • FIG. 27 is a schematic diagram of the three-dimensional structure of the battery core 14 shown in FIG. 26.
  • Fig. 28 is a left side view of the battery cell 14 shown in Fig. 27. Refer to Figure 18 for the front view of the battery cell shown in Figures 26-28.
  • the battery core has a wound structure including two pole pieces wound together.
  • the internal structure of the battery cell may also include other pole piece structures, such as a laminated structure.
  • the battery cell may include a plurality of pole pieces 144 having a first polarity and a plurality of pole pieces 145 having a second polarity. These pole pieces 144 and pole pieces 145 are superimposed together to form a battery cell.
  • pole pieces 144 and pole pieces 145 may be arranged at intervals, that is, a pole piece 145 is superimposed between two pole pieces 144, and a pole piece 144 is superimposed between two pole pieces 145.
  • two tabs in order to form a cell with three tabs, two tabs can be arranged on any side of one pole piece, and one tab can be set on any side of the other pole piece.
  • FIG. 29 which is a schematic diagram of the exploded structure of the battery cell 14 in an embodiment of this application, two sub tabs 14b-1 and 14c-1 may be provided on the first side of each pole piece 144, and each A tab 14a-1 is provided on each pole piece 145. All the pole pieces 144 and all the pole pieces 145 are stacked together, and the sub-tabs 14b-1 on all the pole pieces 144 are electrically connected (for example, welded together) to form the tab 14b on the battery. The sub tabs 14c-1 on the pole piece 144 are electrically connected to form the tab 14c on the cell, and all the sub tabs 14a-1 on the pole piece 145 are electrically connected to form the cell. ⁇ tab 14a.
  • the multiple sub tabs provided on the pole piece may face different directions. As shown in FIG. 29, the sub tab 14b-1, the sub tab 14c-1, and the sub tab 14a-1 all face upward. In other embodiments, the three tabs can face in different directions. For example, the sub tab 14a-1 may face right or left.
  • FIG. 31 is a schematic diagram of the three-dimensional structure of the battery core 14 shown in FIG. 30.
  • Fig. 32 is a left side view of the battery cell 14 shown in Fig. 31.
  • Fig. 33 is a front view of the battery cell shown in Fig. 31.
  • the pole piece 144 may include a plurality of sub tabs 14-1, a plurality of sub tabs 14-2, a plurality of sub tabs 14-3, and a plurality of sub tabs 14-4.
  • a plurality of sub-tabs 14-1 overlap and are electrically connected to form one tab 14b of the battery cell
  • the multiple sub-tabs 14-2 are overlapped and electrically connected to form a battery cell
  • a tab 14c of the battery multiple sub tabs 14-3 are overlapped and electrically connected to form a tab 14e of the battery core
  • a plurality of sub tabs 14-4 overlap to form a tab 14f of the battery core.
  • the pole piece 145 may also include a plurality of sub pole ears 14-5. After the pole piece 144 and the pole piece 145 are wound together, the multiple sub-tabs 14-5 overlap and are electrically connected to form one tab 14a of the cell, and the multiple sub-tabs 14-6 are overlapped and electrically connected to form the cell. One lug 14d.
  • FIG. 36 is a schematic front view of the battery core 14 shown in FIG. 35.
  • all the tabs of the same polarity are electrically connected to each other inside the body of the cell, so that the tabs of the same polarity have the same voltage.
  • two pole ears 14b and 14d arranged along different sides and facing two opposite directions are directly electrically connected in the pole piece 144, or the two poles
  • the lug 14b and the lug 14d are directly integrally formed in the pole piece 144.
  • two tabs 14a and 14c arranged along different sides and facing two opposite directions are directly electrically connected in the pole piece 145, or the two tabs 14a and 14c are electrically connected. It is integrally formed in the pole piece 145.
  • 38 is a schematic diagram of the front structure of the cell 14 shown in FIG. 37, and FIG. 37 and FIG. 38 are schematic diagrams of the structure of a quadrupole.
  • the pole piece may not be provided with a peripheral area, or only one end may be provided with a peripheral area.
  • the tab and the tab can be two components connected together by welding.
  • the tabs and the tabs can be integrated, and the tabs are cut out according to the required positions and numbers in the tabs.
  • multi-tab battery module provided by each embodiment of the present application, multiple tabs can be arranged at any position of the battery body.
  • FIG. 39 the structure of some possible tri-terminal ear battery modules provided by the embodiments of this application.
  • FIG. 40 the structure of some possible quadrupole battery modules provided by the embodiments of this application.
  • FIG. 41 the structure of some possible five-terminal ear battery modules provided by the embodiments of this application.
  • FIG. 42 some possible structures of the hexapole battery module provided by the embodiments of this application.
  • the battery modules provided in the embodiments of the present application do not limit the structure of the battery core body.
  • the battery core body may have a conventional shape, such as a rectangle or a square, or a shape similar to a rectangle or a square.
  • the body of the battery cell may also be irregular.
  • the battery core body can be a non-penetrating type.
  • the non-penetrating cell body can be: the cell body or the edge has an impermeable area A (the shape of the area is not limited); the aluminum plastic film of the battery at the corresponding position of the area A does not have a through hole, but
  • the positive electrode, the negative electrode, and the separator can be provided with through holes.
  • the components of the electronic device can extend into the area A in whole or in part, but cannot pass through the battery core body.
  • the cell body may be a penetrating type.
  • the penetrating cell body may be: the cell body or the edge is provided with through holes (area B); the aluminum plastic film, the positive electrode, the negative electrode, and the diaphragm of the battery at the corresponding position of the area B are all provided with through holes.
  • the components of the electronic device can pass through the area B of the battery.
  • the main materials of the battery include aluminum plastic film, positive electrode, negative electrode, and separator.
  • the shape of the cell body is not limited, and the cell body can have various shapes and have different tab distributions.
  • FIG. 45 the structure of some possible tri-terminal ear battery modules provided by the embodiments of this application.
  • FIG. 46 the structure of some possible quadrupole battery modules provided by the embodiments of this application.
  • FIG. 47 the structure of some possible five-terminal ear battery modules provided by the embodiments of this application.
  • FIG. 48 the structure of some possible hexapole battery modules provided by the embodiments of this application.
  • the embodiment of the present application also provides an electronic device.
  • the electronic device includes a functional circuit and the charging module described in the foregoing embodiments.
  • the charging module is used to provide working power for the functional circuit.
  • the electronic device can be a variety of portable devices that can be charged, such as mobile phones, notebook computers, wearable devices (such as smart watches, bracelets, etc.), tablet computers, and so on.
  • the charging module receives the electric energy from the external power source and stores the electric energy; the battery module supplies power to other parts of the mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种支持高功率快充的电池模组(100),电池模组(100)包括电芯(14),电芯(14)包括电芯本体(140)、第一极耳、第二极耳和第三极耳。第一极耳、第二极耳和第三极耳分别与所述电芯本体(140)电连接。第一极耳和第三极耳具有第一极性,第二极耳具有第二极性。第二极耳与第一极耳配合能够向电芯本体(140)输入电压和电流或者能够从电芯本体(140)输出电压和电流。第二极耳与第三极耳配合能够向电芯本体(140)输入电压和电流或者能够从电芯本体(140)输出电压和电流。第一极性不同于第二极性。

Description

支持高功率快充的电池模组、充电模组和电子设备
本申请要求在2019年9月25日提交中国国家知识产权局、申请号为201910916013.6的中国专利申请的优先权,发明名称为“一种支持高功率快充的电池和电子设备”的中国专利申请的优先权,在2019年10月17日提交中国国家知识产权局、申请号为201910990087.4的中国专利申请的优先权,发明名称为“支持高功率快充的电池模组、充电模组和电子设备”的中国专利申请的优先权,在2020年5月19日提交中国国家知识产权局、申请号为202010426700.2的中国专利申请的优先权,发明名称为“支持高功率快充的电池模组、充电模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及充电技术,尤其涉及一种支持高功率快充的电池模组、充电模组和电子设备。
背景技术
目前应用于电子终端内的充电系统包括有处理电路和电芯。处理电路对自外部接收的充电电压与充电电流进行处理后提供至电芯。电芯依据充电电压与充电电流执行电能存储。现有技术中,每个电芯包括一个正极性的极耳与一个负极性的极耳,所述正极性的极耳与所述负极性的极耳为电芯提供充电通路与放电通路。
随着对电芯的快速充电需求的增加,为了解决快速充电的问题,现有技术可以在充电系统中增加电芯和处理电路来提高充电速度。但是,电芯与处理电路需要额外占用物理空间,导致无法满足电子终端针对布局空间的限制要求。由此,若不增加电芯,则需要提高单个电芯的充、放电的电流来提供充电效率。然而,增加单个电芯的充、放电电流容易导致极耳发热量急剧增加,导致处理电路与电芯无法满足电子终端针对发热量的限制要求。
发明内容
为解决前述问题,本申请实施例提供一种支持高功率快充的电池模组、充电模组和电子设备,发热量较小且占用空间较小。
本申请一实施例提供一种电池模组,所述电池模组包括括电芯。所述电芯包括电芯本体、第一极耳、第二极耳和第三极耳;所述第一极耳、所述第二极耳和所述第三极耳分别与所述电芯本体电连接;所述第一极耳和所述第三极耳具有第一极性,所述第二极耳具有第二极性。
所述第二极耳与所述第一极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。所述第二极耳与所述第三极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。所述第一极性与所述第二极性互为相反的极性,当第一极性为正极性,第二极性为负极性。所述第一极性为负极性,所述第二极性为正极性。
对电芯而言,通过设置的三个极耳构成至少两个导电通路执行充电,由此,有效提高了电芯的充电效率,同时,由于两个导电通路对充电时的电流进行了分流,则有效降低了每个极耳中传输的电流,进而有效降低了每个极耳的发热量。
本申请一实施例中,还包括第一电池保护板,所述第一电池保护板包括第一保护电路、第一电池接口和第二电池接口;所述第一电池接口和第二电池接口用于与所述电池模组外部 的元件电性连接。
所述第一电池接口通过所述第一保护电路分别与所述第二极耳与所述第一极耳电性连接,所述第一电池接口与所述第一极耳、所述电芯本体、所述第二极耳和所述第一保护电路构成第一导电回路。所述第二电池接口通过所述第一保护电路分别与所述第二极耳与所述第三极耳电性连接,所述第二电池接口与所述第三极耳、所述电芯本体、所述第二极耳和所述第一保护电路构成第二导电回路。
所述第一保护电路用于检测所述第一导电回路与所述第二导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第一保护电路断开所述第一导电回路与所述第二导电回路。
第一电池保护板与三个极耳构成两个导电回路对电芯进行充电,并且通过第一保护电路针对电芯充电或者放电的电流进行检测,防止电芯在充电、放电过程中由于过压、欠压或者过流而被损坏,保证电芯的安全性。
本申请一实施例中,所述第一极耳、所述第二极耳和所述第三极耳均设置在所述电芯本体的第一侧。或者,所述第一极耳和所述第二极耳设置在所述电芯本体的第一侧,所述第三极耳设置在所述电芯本体的第二侧。所述第一极耳和所述第三极耳设置在所述电芯本体的第一侧,所述第二极耳设置在所述电芯本体的第二侧。或者所述第一极耳设置在所述电芯本体的第一侧,所述第二极耳设置在所述电芯本体的第二侧,所述第三极耳设置在所述电芯本体的第三侧。
三个极耳的设置并不受到电芯本体上具体位置的限定,各个极耳的设置位置可以依据实际情况进行调整,保证电芯与其他电路的配合,从而能够降低布线复杂度以及提高充电模组的集成度。
本申请一实施例中,所述第一极耳、所述第二极耳和所述第三极耳均设置在所述电芯本体的第一侧,所述第一极耳和所述第三极耳分别设置在所述第二极耳的两侧。
三个极耳设置于电芯的同一侧,且两个相同第一极性的极耳设置在一个第二极性的极耳两侧,从而使得两个极耳与第一电池保护板的连接布线较为均匀且简便。
本申请一实施例中,还包括第四极耳、第五极耳和第六极耳;所述第四极耳、所述第五极耳和所述第六极耳分别与所述电芯本体电连接;所述第四极耳和所述第六极耳具有所述第一极性,所述第五极耳具有所述第二极性;或者,所述第四极耳和所述第六极耳具有所述第二极性,所述第五极耳具有所述第一极性;
所述第五极耳与所述第四极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流;
所述第五极耳与所述第六极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。
对电芯而言,通过设置的六个极耳构成至少四个导电通路执行充电,由此,更进一步提高了电芯的充电效率,同时,由于四个导电通路对充电时的电流进行了更大程度的分流,则有效降低了每个极耳中传输的电流,进而有效降低了每个极耳的发热量。
本申请一实施例中,还包括第二电池保护板,所述第二电池保护板包括第二保护电路、第三电池接口和第四电池接口;所述第三电池接口和第四电池接口用于与所述电池模组外部的元件电性连接。
所述第三电池接口通过所述第二保护电路分别与所述第五极耳与所述第四极耳电性连接,所述第三电池接口与所述第四极耳、所述电芯本体、所述第五极耳和所述第二保护电路 构成第三导电回路。所述第四电池接口通过所述第二保护电路分别与所述第五极耳与所述第六极耳电性连接,所述第四电池接口与所述第六极耳、所述电芯本体、所述第五极耳和所述第二保护电路构成第四导电回路。
所述第二保护电路用于检测所述第三导电回路与所述第四导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第二保护电路断开所述第三导电回路与所述第四导电回路。
第二电池保护板与另外三个极耳再构成两个导电回路对电芯进行充电,并且通过第二保护电路针对电芯充电或者放电的电流进行检测,防止电芯在充电、放电过程中由于过压、欠压或者过流而被损坏,保证电芯的安全性。
本申请一实施例中,所述第一保护电路与所述第二保护电路具有相同的电路结构。由此,针对电芯的保护基本是一致与同步的,更进一步保证对电芯的安全性。
本申请一实施例中,所述第一极耳、所述第二极耳和所述第三极耳均设置在所述电芯本体的第一侧,所述第四极耳、所述第五极耳和所述第六极耳均设置在所述电芯本体的第二侧。所述电芯本体的第一侧和所述电芯本体的第二侧为所述电芯本体中相对的两侧;或者,所述电芯本体的第一侧和所述电芯本体的第二侧为所述电芯本体中相邻的两侧。
三个极耳设置于电芯的同一侧,另外三个极耳设置于电芯的另外一侧,且两个相同第一极性的极耳设置在一个第二极性的极耳两侧,从而使得两个极耳与第一电池保护板的连接布线较为均匀且简便,且各个极耳的散热空间更大且散热更为均匀。
本申请一实施例中,所述第一保护电路包括第一保护控制单元、第一采样单元与第一开关单元。所述第一保护控制单元分别与所述第一导电回路和所述第二导电回路电性连接,所述第一保护控制单元检测所述第一导电回路和所述第二导电回路的电压。所述第一采样单元分别与所述第二极耳、所述第一保护控制单元和所述第一开关单元电性连接,所述第一保护控制单元通过所述第一采样单元检测所述第一导电回路和所述第二导电回路的电流。所述第一开关单元分别与第一保护控制单元、所述第一采样单元、所述第一电池接口和所述第二电池接口电性连接。所述第一保护控制单元用于判断所述第一导电回路或所述第二导电回路的电压或电流超过第一阈值范围时,控制所述开关单元断开,以断开所述第一导电回路与所述第二导电回路。
通过第一采样单元针对两个导电回路检测的电流以及第一保护控制单元采集的电压,能够准确判断各个极耳上传输的电压与电流是否超过对应的阈值范围,且在各个极耳上传输的电压与电流超出对应的阈值范围时,及时切断与极耳连通的导电回路,保证从而保证电芯的安全性。
本申请一实施例中,所述第一开关单元包括第一开关与第二开关,所述第一开关位于所述第一导电回路中,所述第二开关位于所述第二导电回路中。通过两个开关能够简便、及时地切断与极耳连通的导电回路。
本申请一实施例中,所述第一保护电路还包括第二保护控制单元与第二开关单元,
所述第二保护控制单元分别与所述第一导电回路和所述第二导电回路电性连接,所述第二保护控制单元检测所述第一导电回路和所述第二导电回路的电压;
所述第二保护控制单元与所述第一采样单元电性连接,用于通过所述第一采样单元检测所述第一导电回路和所述第二导电回路的电流;
所述第二开关单元分别与所述第二保护控制单元、所述第一开关单元、所述第一电池接口和所述第二电池接口电性连接;
所述第二保护控制单元用于判断所述第一导电回路或所述第二导电回路的电压或电流超过第二阈值范围时,控制所述第二开关单元断开,以断开所述第一导电回路与所述第二导电回路。
具体地,所述第一阈值范围与所述第二阈值范围相同,或者,所述第一阈值范围小于或大于所述第二阈值范围。
第二保护控制单元与第二开关单元能够在第一保护电路失效后,及时替代第一保护电路中的第一保护控制单元与第一开关单元执行电芯的保护,也即是第一保护电路与第二保护电路能够相互替换并能够同步工作,进一步提高了针对电芯保护的可靠性。
本申请一实施例中,所述第二开关单元包括第三开关与第四开关,所述第三开关位于所述第一导电回路中,所述第四开关位于所述第二导电回路中。通过两个开关能够简便、及时地切断与极耳连通的导电回路。
本申请一实施例中,所述电芯本体为卷绕式结构。所述电芯包含一个具有所述第一极性的第一极片和一个具有所述第二极性的第二极片。所述第一极耳和所述第三极耳设置在所述第一极片上,所述第二极耳设置在所述第二极片上。所述第一极片和所述第二极片卷绕形成具有三个极耳的所述电芯,所述第一极耳、所述第二极耳和所述第三极耳处于所述电芯的不同位置。通过分别在不同极片上设置多个极耳并卷绕形成,有效简化了三个极耳的制程。
本申请一实施例中,所述电芯为卷绕式结构。所述电芯包含一个具有所述第一极性的第一极片和一个具有所述第二极性的第二极片。所述第一极耳、所述第三极耳、所述第四极耳和所述第六极耳设置在所述第一极片上,所述第二极耳和所述第五极耳设置在所述第二极片上。所述第一极片和所述第二极片卷绕形成具有六个极耳的所述电芯,所述第一极耳、所述第二极耳、所述第三极耳、所述第四极耳、所述第五极耳和所述第六极耳处于所述电芯的不同位置。通过分别在不同极片上设置多个极耳并卷绕形成,有效简化了六个极耳的制程。
本申请一实施例中,所述电芯为叠片式结构。所述电芯包含至少两个具有所述第一极性的第一极片和至少两个具有所述第二极性的第二极片。每个所述第一极片上设置第一子极耳和第三子极耳,每个所述第二极片上设置第二子极耳。所有的所述第一极片和所有的所述第二极片叠加形成所述电芯,所有的所述第一子极耳电性连接形成所述第一极耳,所述的所述第二子极耳电性连接形成所述第二极耳,所有的所述第三子极耳电性连接形成所述第三极耳;所述第一极耳、所述第二极耳和所述第三极耳处于所述电芯的不同位置。通过分别在不同极片上设置多个极耳并依次堆叠形成,有效简化了三个极耳的制程。
本申请一实施例中,所述电芯为叠片式结构。所述电芯包含至少两个具有所述第一极性的第一极片和至少两个具有所述第二极性的第二极片。每个所述第一极片上设置第一子极耳、第三子极耳、第四子极耳和第六子极耳,每个所述第二极片上设置第二子极耳和第五子极耳。所有的所述第一极片和所有的所述第二极片叠加形成所述电芯,所有的所述第一子极耳电性连接形成所述第一极耳,所述的所述第二子极耳电性连接形成所述第二极耳,所有的所述第三子极耳电性连接形成所述第三极耳,所有的所述第四子极耳电性连接形成所述第四极耳,所述的所述第五子极耳电性连接形成所述第五极耳,所有的所述第六子极耳电性连接形成所述第六极耳;所述第一极耳、所述第二极耳、所述第三极耳、所述第四极耳、所述第五极耳和所述第六极耳处于所述电芯的不同位置。通过分别在不同极片上设置多个极耳并依次堆叠形成,有效简化了六个极耳的制程。
本申请一实施例中,所述电芯包括电芯本体、第一极耳、第二极耳、第三极耳与第四极耳。所述第一极耳、所述第二极耳、所述第三极耳与所述第四极耳分别与所述电芯本体电连 接;所述第一极耳和所述第三极耳具有第一极性,所述第二极耳与所述第四极耳具有第二极性。所述第二极耳与所述第一极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。所述第四极耳与所述第三极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。所述第一极性为正极性,所述第二极性为负极性;或者,所述第一极性为负极性,所述第二极性为正极性。
对电芯而言,通过设置的四个极耳构成至少两个导电通路执行充电,由此,有效提高了电芯的充电效率,同时,由于两个导电通路相对独立且在对充电时的电流进行了分流,则有效降低了每个极耳中传输的电流,进而有效降低了每个极耳的发热量。
本申请一实施例中,所述第一极耳、所述第二极耳设置于所述电芯本体的第一侧,所述第三极耳和所述第四极耳设置在所述电芯本体的第二侧。或者,所述第一极耳设置在所述电芯本体的第一侧,所述第二极耳、所述第三极耳以及所述第四极耳设置在所述电芯本体的第二侧。
本申请一实施例中,电池模组还包括:第一电池保护板和第二电池保护板;所述第一电池保护板包括第一保护电路和第一电池接口,所述第二电池保护板包括第二保护电路和第二电池接口。所述第一电池接口通过所述第一保护电路分别与所述第二极耳和所述第一极耳电性连接,所述第一电池接口与所述第一极耳、所述电芯本体、所述第二极耳和所述第一保护电路构成第一导电回路。所述第二电池接口通过所述第二保护电路分别与所述第三极耳和所述第四极耳电性连接,所述第二电池接口与所述第三极耳、所述电芯本体、所述第四极耳和所述第一保护电路构成第二导电回路。所述第一保护电路用于检测所述第一导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第一保护电路断开所述第一导电回路。所述第二保护电路用于检测所述第二导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第二保护电路断开所述第二导电回路。
本申请一实施例中,所述电芯为卷绕式结构。所述电芯本体包含一个具有所述第一极性的第一极片和一个具有所述第二极性的第二极片;所述第一极耳和所述第三极耳设置在所述第一极片上;所述第二极耳和所述第四极耳设置在所述第二极片上。所述第一极片和所述第二极片卷绕形成具有四个极耳的所述电芯本体,所述第一极耳、所述第二极耳、所述第三极耳和所述第四极耳处于所述电芯本体的不同位置。通过分别在不同极片上设置多个极耳并卷绕形成,有效简化了四个极耳的制程。
本申请一实施例中,所述电芯本体为叠片式结构。所述电芯本体包含至少两个具有所述第一极性的第一极片和至少两个具有所述第二极性的第二极片。每个所述第一极片上设置第一子极耳和第三子极耳,每个所述第二极片上设置第二子极耳和第四子极耳。所有的所述第一极片和所有的所述第二极片叠加形成所述电芯本体,所有的所述第一子极耳电性连接形成所述第一极耳,所述的所述第二子极耳电性连接形成所述第二极耳,所有的所述第三子极耳电性连接形成所述第三极耳,所有的所述第四子极耳电性连接形成所述第四极耳。所述第一极耳、所述第二极耳、所述第三极耳和所述第四极耳处于所述电芯本体的不同位置。通过分别在不同极片上设置多个极耳并依次堆叠形成,有效简化了四个极耳的制程。
本申请一实施例中,提供一种充电模组,包括前述电池模组与电路板,所述电路板电性连接于所述电池模组,用于接收外部提供的第一充电电压,并且将所述充电电压转换为所述电压和电流并输出至所述电池模组。所述充电模组中电池模组由于电芯至少包括的两条针对极耳充电的导电通路,进而有效增加电芯的充电通路以及降低了每个极耳承受的电流,缩短了充电时间的同时还有效降低了每个极耳产生的热量。
本申请一实施例中,所述电路板包括第一电路板与第三电路板,所述第一电路板包括接口用于接收所述第一充电电压,并且将所述第一充电电压转换为第二充电电压,所述第一电路板将所述第二充电电压传输至所述第三电路板,所述第三电路板电性连接于所述电池模组,用于将所述第二充电电压转换所述电压并输出至所述电池模组。第一电路板与第二电路板配合针对接收的充电电压进行处理为适合电芯充电用的电压,保证电芯在充电时的安全性。
本申请一实施例中,所述电路板包括第一电路板与第三电路板,所述第一电路板包括接口用于接收所述第一充电电压,并且将所述第一充电电压传输至所述第三电路板,所述第三电路板电性连接于所述电池模组,用于将所述第一充电电压转换所述电压并输出至所述电池模组。第一电路板与第二电路板配合针对接收的充电电压进行处理为适合电芯充电用的电压,保证电芯在充电时的安全性。
本申请一实施例中,所述电路板还包括第二电路板,所述第一电路板与所述第三电路板设置于所述电池模组的相对两侧,所述第二电路板跨越所述电芯本体分别电性连接所述第一电路板与所述第二电路板。通过第二电路板针对第一电路板与第三电路板进行连接,保证了第一电路板与第三电路板位置设置的灵活性。
本申请一实施例中,所述充电模组用于为所述功能电路提供工作电源。
本申请一实施例中,提供一种电子设备,包括功能电路与前述充电模组,所述充电模组用于为所述功能电路提供工作电源。
本申请一实施例中,电芯为卷绕式结构,所述卷绕式电芯包含一个正极极片和一个负极极片,所述正极极片和所述负极极片上分别设置有正极极耳和负极极耳;并且所述正极极片和所述负极极片中至少有一个极片上不同位置设置有至少两个相同极性的极耳,所述的至少两个相同极性的极耳在卷绕后的卷芯不同位置形成至少两个相同极性的极耳,使所述卷绕后的卷芯包含至少三个极耳。
本申请一实施例中,电芯为叠片式结构,所述叠片式电芯包含一个以上的正极极片和一个以上的负极极片,所述每一个正极极片和负极极片上都分别设置有至少一个正极极耳和负极极耳,且所述正极极片或负极极片中,至少有一个正(负)极极片上的不同位置设置有至少两个正(负)极极耳或至少有两个正(负)极极片上的正(负)极极耳位于极片上的不同位置,使所述叠片式电芯包含至少三个极耳。
本申请一实施例中,所述电芯包含至少三个极耳,所述三个极耳位于电芯的相同侧边;或者所述三个极耳分别位于所述电芯的不同侧边。
本申请实施例采用多电池接口、多极耳的模式,扩展电芯的通流能力。
多极耳:可以是3极耳、4极耳、6极耳、N极耳。其中,在充放电时可以共用负极极耳,也可以共用正极极耳。例如:3极耳包括两个正极极耳和一个负极极耳,该负极极耳共用(如图2A所示);或者,3极耳包括两个负极极耳和一个正极极耳,该正极极耳共用(如图8所示)。6极耳可以包括上述两个3极耳。进一步的,还可以包括更多个极耳,例如8极耳、9极耳、12极耳等。
本申请实施例采用高效压差比(例如4:1,或者其它更大比例的)的charger IC(充电电路)进行降压,在外部充电线缆(以及PD协议限制)输入通流瓶颈5A的条件下,通过提升输入电压,提升充电功率。
本申请实施例的多极耳例如可以采用以下方式中的一种:
A、采用增加一个极耳,复用一个极耳(即上述的共用正极或者共用负极)的模式,将电流分流,既降低了极耳的阻抗,又降低了电池本体(包括电芯和电池保护板)的发热;其 中,在结构上,可以增加被共用的极耳的体积,例如可以加宽、加长、和/或加厚被共用的极耳。
B、扩展极耳,电芯具有双面出极耳的结构,增加电芯的通流,包括但不限于四极耳、六极耳等结构。4极耳的结构如下图9所示,电芯双面各出一对正负极耳。6极耳的结构如下图14A所述,电芯双面各出三个极耳。图14A中示出的是共用负极,类似的,也可以共用正极。
本申请实施例在3极耳、6极耳等方案中,可以通过极耳的分布以及电路优化来复用保护IC(即电池保护板中的保护IC),由此实现单电芯的大功率充电,避免了双电芯的安全性问题。
本申请实施例可以解决单电芯通流能力不足,发热量大的问题,也可以解决双电芯的成本高、保护IC需额外增加一套、拆分容量损失大的问题。
本申请实施例通过电池的多极耳降低电芯的发热,增加电芯的通流能力。本申请实施例通过双电池接口电流路径规划实现一套保护IC的保护方案;在降低电芯发热的同时,与双电芯相比,降低成本,安全性高。本申请实施例通过多极耳和高效压差比(例如4:1)的charger IC,在不增加整机热的情况下,实现更高功率的充电方案。本申请实施例通过多极耳更高功率的通流能力,使得单电芯即可实现高功率的充电,从而解决双电芯带来的问题。
附图说明
图1为本申请一实施例中充电模组的电路框图;
图2A和图2B为电芯的平面结构示意图;
图3A和图3B为图1所示第一电池保护板的电路框图;
图4A为图1所示第一保护电路与保护电路的电路框图;
图4B为本申请另一实施例中的第一保护电路与保护电路的电路框图;
图5为如图4A所示的电池模组中第一保护板的具体电路结构示意图;
图6为本申请另一实施例中充电模组中电池模组的电路框图;
图7为本申请另一实施例中充电模组的电路框图;
图8为本申请另一实施例中充电模组中电池模组的电路框图;
图9为本申请另一实施例中充电模组的电路框图;
图10为充电模组的电路框图;
图11为电池模组的电路结构示意图;
图12为其中一个第一电池保护板的电路结构示意图;
图13为本申请另一实施例中充电模组的电路框图;
图14A为图13所示充电模组中电池模组的结构示意图;
图14B为本申请一实施例提供的五极耳的示意图;
图15为如图13所示充电模组中电池模组的电路结构示意图;
图16A-图16C为本申请一实施例中具有三个极耳的电芯的分解结构示意图;
图17为图16A所示电芯的俯视图;
图18为图16A所示电芯的正面结构示意图;
图19为本申请一实施例中具有三个极耳的电芯的分解结构示意;
图20为图19所示电芯的俯视图;
图21为本申请一实施例中具有三个极耳的电芯的分解结构示意;
图22为图21所示电芯的俯视图;
图23为本申请一实施例中具有三个极耳的电芯的分解结构示意;
图24为图23所示电芯的俯视图;
图25为图24所示电芯的正面结构示意图;
图26为本申请一实施例中具有三个极耳的电芯的分解结构示意;
图27为图26所示电芯的立体结构示意图;
图28为图27所示电芯的左视图;
图29为本申请一实施例中电芯的分解结构示意图;
图30为本申请一实施例中电芯的分解结构示意图;
图31为图30所示电芯的立体结构示意图;
图32为图31所示电芯的左视图;
图33为图31所述电芯的主视图;
图34为本申请一实施例中具有六个极耳的电芯的分解结构示意;
图35为本申请一实施例中具有六个极耳的电芯的分解结构示意;
图36为图34所示电芯的平面结构示意图;
图37为本申请一实施例中具有四个极耳电芯的平面结构示意图;
图38为如图36所示电芯的正面结构示意图;
图39为本申请一实施例中具有三个极耳的电芯的示意图;
图40为本申请一实施例中具有四个极耳的电芯的示意图;
图41为本申请一实施例中具有五个极耳的电芯的示意图;
图42为本申请一实施例中具有六个极耳的电芯的示意图;
图43为本申请一实施例中非穿透型电芯的示意图;
图44为本申请一实施例中穿透型电芯的示意图;
图45为本申请一实施例中具有三个极耳的电芯的示意图;
图46为本申请一实施例中具有四个极耳的电芯的示意图;
图47为本申请一实施例中具有五个极耳的电芯的示意图;
图48为本申请一实施例中具有六个极耳的电芯的示意图。
具体实施方式
请参阅图1,其为本申请一实施例中充电模组10的电路框图。
如图1所示,充电模组10包括第一电路板11、第二电路板12、第三电路板13与包括有电芯14以及第一电池保护板15的电池模组100。第一电路板11、第二电路板12以及第三电路板13配合,将自外部接收充电用的电压与电流处理为适合电池模组100进行充电的电压与电流。电池模组100接收经处理后的电压与电流并进行充电存储电能,同时,电池模组100还能够将存 储的电能释放至第三电路板13进行放电,为第三电路板13以及其他功能电路(图未示)提供驱动电源。
具体地,第一电路板11用于自外部接收第一充电电压与第一充电电流,并针对第一充电电压执行电压转换,将所述第一充电电压转换为第二充电电压。第二电路板12电性连接于第一电路板11与第三电路板13,用于将第一充电电压与第一充电电流提供至第三电路板13。第三电路板13电性连接第一电池保护板15,第三电路板13用于将所述第二充电电压执行电压转换处理为电芯电压,并将所述电芯电压提供至第一电池保护板15。同时,第一电路板11和第三电路板13也将第一充电电流转换为电芯电流。
第一电池保护板15电性连接于电芯14,用于通过至少两个导电通路将电芯电压与电芯电流传输至电芯14中,以使得电芯14执行电能存储充电;或者电芯14通过至少两个导电通路将电芯电压与电芯电流传输至第一电池保护电路15,以使得电芯14将存储电能释放至第三电路板13执行放电。
本实施例中,电芯电压小于第一充电电压与第二充电电压。电芯电压为电芯14充电、放电的额定电压,例如电芯电压为5伏特(V),第一充电电流为12安培(A)。在本申请其他实施例中,第一电路板11可以直接电性连接于第三电路板13,无需第二电路板12执行连接,即在另一实施例中,可以没有第二电路板12,由第一电路板11和第三电路板13直接电性连接。或者,在另一实施例中,第一电路板11和第三电路板13可以由同一个电路板来实现,即第一电路板11和第三电路板13是同一块电路板,没有第二电路板12。
需要说明的是,第一电路板11、第二电路板12以及第三电路板13分别设置有多个功能电路与导电线路,从而对接收到的电压与电流执行处理以及传输。更为具体地,第一电路板11包括第一传输接口111与第一电压转换单元C1。第一传输接口111用于与外部供电系统电性连接,用于接收第一充电电压与第一充电电流。本实施例中,第一传输接口111例如可以为Mini USB接口、Micro USB2.0接口、Micro USB 2.0接口或者Type-C接口,第一充电电压例如为12伏特(V),第一充电电流例如为5安倍(A)。
第一电压转换单元C1电性连接于第一传输接口111,用于将第一充电电压执行转换处理为第二充电电压,例如可以对所述第一充电电压进行降压。本实施例中,第一电压转换单元C1最多能够将输入电压降低1/2之后输出,即所述第二充电电压(输出电压)最低可以为所述第一充电电压(输入电压)的1/2。在充电过程中,所述第一电压转换单元C1根据实际情况来确定降压的幅度。当然,在本申请其他实施例中,第一电压转换单元C1可以具有其它的降压能力(4:1、3:1或者其它比例的降压),比如第一电压转换单元C1可以为4:1的充电IC(charger IC),能够将输出电压降低为输入电压的1/4。需要说明的是,在其它实施例中,可能不需要对第一充电电压执行转换,例如不需要对第一充电电压进行降压。例如:若第一充电电压的电压值较低,则不需要进行降压;此时,第一电路板11可以不包括第一电压转换单元C1,第一电路板11可以直接将第一充电电压传输至第三电路板13。
第二电路板12包括第一连接接口121与第二连接接口122,第一连接接口121电性连接于第一电路板11,第二连接接口122电性连接于第三电路板13。本实施例中,电芯14相对两侧位置设置第一电路板11与第三电路板13,由此,第二电路板12横跨电芯14的相对两侧将第一电路板11与第三电路板13电性连接,以将第二充电电压传输至第三电路板13。本实施例中,第二电路板12可以为柔性电路板。
需要说明的是,本申请实施例并不限定第一电路板11、第二电路板12与第三电路板13设置的位置。各实施例及附图中的结构仅为连接关系的示例性说明,并不是限定具体的各个器 件的排布。例如:图1中的第二电路板12位于图中的左侧,而在实际产品中,第二电路板12可以设置于任何合适的位置。例如,为了平衡,第二电路板12可以设置在中间位置,即电芯、保护电路可以基于第二电路板12对称。
第三电路板13包括第一导电接口131、第二导电接口132和两个第二电压转换单元C2。在具体实现的过程中,第三电路板13通常还可以包括其它电路元件在配合实现电子设备的充放电功能。例如第三电路板13还可以包括第一采样单元133以及电量计134。第一采样单元133电性连接第一导电接口131与第二导电接口132。电量计134电性连接所述第一采样单元133。其中,第一采样单元133可以为采样电阻,用于进行电流检测或者电量检测时的采样。电量计134(也叫库仑计)用于测量电池电量。电量计134可以通过采样电阻进行电池电量的测量。
所述两个第二电压转换单元C2分别电性连接第二连接接口122,分别用于接收第二充电电压与充电电流,并且将所述第二充电电压执行转换处理为电芯电压,例如可以对所述第二充电电压进行降压处理为电芯电压。本实施例中,第二电压转换单元C2可以为2:1充电IC,最多能够将输入电压降低1/2之后输出,即所述电芯电压(输出电压)最低可以为所述第二充电电压(输入电压)的1/2。在充电过程中,所述第二电压转换单元C2根据实际情况来确定降压的幅度。在本申请其他实施例中,第二电压转换单元C2可以具有其它的降压能力(4:1、3:1或者其它比例的降压),比如第二电压转换单元C2可以为4:1的充电IC(charger IC),能够将输出电压降低为输入电压的1/4。
需要说明的是,本申请各实施例中所述的电压,仅是举例说明,在电池模组100实际充电过程中,充电或者放电的电压会有波动。目前的电池模组14充电时的电芯电压最大不能超过5V,一般最大的电芯电压为4.22V或者4.45V。
所述两个第二电压转换单元C2分别电性连接于第一导电接口131与第二导电接口132,以分别将电芯电压与电芯电流提供至所述第一导电接口131以及第二导电接口132。也即是说,第一导电接口131接收到电芯电压与电芯电流,第二导电接口132也接收到电芯电压与电芯电流。
本申请一实施例中,所述两个第二电压转换单元C2例如可以为充电IC(charger IC)。其中,这两个充电IC均可以为主充电IC,也可以为其中一个主充电IC,另外一个为副充电IC。其中,主充电IC在执行电压转换之外,还支持其它充电功能,例如还可以支持BUCK结构充电、USB OTG(USB On-The-Go)功能等。副充电IC主要用于进行电压转换、增加充电电流等功能。
请结合图1一并参阅图2A,其为电芯14的平面结构示意图。
如图1与图2A所示,电芯14包括电芯本体140、相对的第一侧边141与第二侧边142。其中,第一电路板11设置于电芯14的第一侧边141的一侧,第三电路板13与第一电池保护板15设置于电芯的第二侧边142的一侧。第二电路板12则跨越电芯14的第一侧边141与第二侧边142分别电性连接第一电路板11与第三电路板13。
本实施例中,电芯本体140的第一侧边141设置有极耳14a、极耳14b以及极耳14c,其中,极耳14a为极性1,极耳14b与极耳14c为极性2。其中,极性1和极性2相反。极性1为正极极性,极性2为负极极性。或者,极性1为负极极性,极性2为正极极性。
极耳14b与极耳14a构成一个导电回路的正负极,极耳14c与极耳14a构成一个导电回路的正负极。从而通过两个导电回路分别向电芯本体140输入(充电)或者自电芯本体140输出(放电)电压与电流。
本实施例中,极耳14b与极耳14c可以直接电性连接,也即是说,极耳b和极耳c的电压(电势)相同。
由此,电芯14包括两个充电或者放电的导电回路,则能够在不提高每一个极耳传输的充电电流情形下,提高电芯14的充电效率,降低充电时间。需要说明的是,本实施例中并不限定这些极耳在电芯中的位置,只要电连接关系相同,就能实施本实施例的方案。后续电芯的具体结构实施例中详细描述极耳在电芯中的位置。
请结合图1一并参阅图3A,图3A为图1所示第一电池保护板15的电路框图。
如图3A所示,第一电池保护板15包括第一电池接口151、第二电池接口152以及第一保护电路153与第二保护电路154。
第一电池接口151电性连接于第一导电接口131(图1)。第二电池接口152电性连接于第二导电接口132(图1)。
第一保护电路153电性连接于极耳14a、极耳14b、极耳14c与第一电池接口151之间,同时,第一保护电路153也电性连接于极耳14a、极耳14b、极耳14c与第二电池接口152之间。第一保护电路153用于在电芯14在充电或者放电过程中,极耳14a、极耳14b、极耳14c与第一电池接口151、第二电池接口152之间的电压与电流超过阈值范围时,断开极耳14a、极耳14b、极耳14c与第一电池接口151、第二电池接口152之间的导电通路,防止电芯14损坏。
第二保护电路154电性连接于极耳14a、极耳14b、极耳14c与第一电池接口151之间,同时,第二保护电路154也电性连接于极耳14a、极耳14b、极耳14c与第二电池接口152之间。第二保护电路153用于在电芯14在充电或者放电过程中,极耳14a、极耳14b、极耳14c与第一电池接口151、第二电池接口152之间的电压与电流超过阈值范围时,断开极耳14a、极耳14b、极耳14c与第一电池接口151、第二电池接口152之间的导电通路,达到保护电芯14以防止电芯14损坏。
第一保护电路153与第二保护电路154同时针对电芯14进行保护,并且在其中任意一个失效时,另外一个能够对电芯14进行保护。也即是第一保护电路153和第二保护电路154可以相互作为对方的备份。当第一保护控制单元1531失效时,第二保护控制单元1541执行电压和电流保护。或者,当第二保护控制单元1541失效时,第一保护控制单元1531执行电压和电流保护。
其中,第一保护电路153对应的针对电芯14输入与输出的电压与电流阈值范围与第二保护电路154对应的针对电芯14输入与输出的电压与电流阈值范围可以为相同,也可以不同。当二者对应的范围不同时,先达到阈值范围的保护电路来执行断开通路的动作。当二者对应的范围相同时,第一保护电路153与第二保护电路154二者中预先检测到电压或者电流超过对应的阈值范围的保护电路执行保护操作。更为具体地,第一电池接口151、极耳14b、电芯本体、极耳14a和第一保护电路153构成第一导电回路,所述第一导电回路传输所述电芯电压与电芯电流。
本实施例中,第一导电回路包括第一导电通路P1与第三导电通路P3,第一导电通路P1位于第一电池接口151与极耳14b之间,第三导电通路P3位于第一电池接151与极耳14a之间。
第二电池接口152、极耳14c、电芯本体、极耳14a以及第一保护电路153构成第二导电回路,第二导电回路传输电芯电压与所述电芯电流。
本实施例中,第二导电回路包括第二导电通路P2与第四导电通路P4,第二导电通路P2位于第二电池接口152与极耳14c之间,第四导电通路P4位于第二电池接口152与极耳14a之间。
可选的,第三导电通路P3与第四导电通路P4通过导电线路直接电性连接,从而使得第三导电通路P3与第四到通路P4的流通的电压与电流基本相同。
第一保护电路153用于检测第一导电回路与所述第二导电回路的电压与电流。当所述电压超过第一电压阈值范围时,所述第一保护电路153断开所述第一导电回路与所述第二导电回路,防止电芯14的过压充电或者欠压放电。当所述电流超过第一电流阈值时,所述第一保护电路153断开这两个导电回路,防止电芯14过流充电或者过流放电。
同样的,第二保护电路154也用于检测第一导电回路与所述第二导电回路的电压与电流。当所述电压超过第二电压阈值范围时,所述第二保护电路154断开这两个导电回路,防止电芯14的过压充电或者欠压放电。当所述电流超过第二电流阈值时,所述第二保护电路154断开这两个导电回路,防止电芯14过流充电或者过流放电。
本实施例中,第一电压阈值范围可以由欠压阈值1~过压阈值1构成,其中,欠压阈值1小于过压阈值1。第二电压阈值范围可以由欠压阈值2~过压阈值2构成,其中,欠压阈值2小于过压阈值2。
当第一电压阈值范围与第二电压阈值范围相同时,欠压阈值1等于欠压阈值2,过压阈值1等于过压阈值2。
当第一电压阈值范围与第二电压阈值范围不相同时,欠压阈值1不等于欠压阈值2,或者,过压阈值1不等于过压阈值2。其中一实施例中,欠压阈值2小于欠压阈值1,过压阈值2大于过压阈值1;或者,欠压阈值2大于欠压阈值1,过压阈值2大于过压阈值1。
举例来说,第一电压阈值范围例如可以为2.4V~4.422V,第二电压阈值范围例如可以为2.2V~4.45V,也即是过压阈值1为4.422V,欠压阈值1为2.4V;过压阈值2为4.45V,欠压阈值2为2.2V。或者,第一电压阈值范围例如可以为2.2V~4.422V,第二电压阈值范围例如可以为2.4V~4.45V。其中,电压超过电压阈值范围指的是:电压小于欠压阈值或者电压大于过压阈值。
本实施例中,第一电流阈值或第二电流阈值为一具体数值。第一电流阈值和第二电流阈值可以相同也可以不相同。电流超过电流阈值指的是电流大于或等于电流阈值。
请结合图1一并参阅图4A,图4A为图1所示第一保护电路153与第二保护电路154的电路框图。
如图4A所示,第一保护电路153包括第一保护控制单元1531、第一电压采样单元1532、第一电流采样单元1534与第一开关单元1533。
第一保护控制单元1531分别与所述第一导电回路和第二导电回路电性连接。第一保护控制单元1531检测第一导电回路与第二导电回路中的电压与电流,以及判断检测获得的电压与电流是否超过对应的阈值范围。当所述电压与所述电流超过对应的阈值范围时,所述第一保护控制单元1531输出保护信号至所述第一开关单元1533,所述第一开关单元1533依据所述保护信号断开所述第一导电回路与所述第二导电回路,从而对电芯14执行保护,防止电芯14由于过压、过流或者欠压而被损坏。
第一电压采样单元1532分别与极耳14b、极耳14c和第一保护控制单元1531电性连接,用于检测电芯电压,并将检测获得的电芯电压传输至所述第一保护控制单元1531。第一电压采样单元1532例如可以为采样电阻。可选的,本申请实施例也可以没有电压采样单元,而是由保护控制单元直接检测导电回路的电压。
第一电流采样单元1534分别与极耳14a、第一保护控制单元1531和所述第一开关单元1533电性连接,用于检测第一导电回路和第二导电回路的电流并传输至第一保护控制单元 1531。第一电流采样单元1534例如可以为采样电阻。
第一开关单元1533分别与第一保护控制单元1531、第一电流采样单元1534、第一电池接口151和第二电池接口152电性连接。并且第一开关单元1533位于第一导电回路中的第三导电通路P3和第二导电回路中的第四导电通路P4中。
本实施例中,第一开关单元1533可以包括第一开关S1与第二开关S2。
第一开关S1分别与第一电流采样单元1534、第一保护控制单元1531以及第二保护电路154中的第三开关S3电性连接。第一开关S1依据第一保护控制单元1531提供的保护信号处于导通状态或者断开状态。
第二开关S2分别与第一电流采样单元1534、第一保护控制单元1531以及第二第二保护电路154中的第四开关S4电性连接。第二开关S2依据第一保护控制单元1531提供的保护信号处于导通或者断开状态。
本实施例中,第一开关S1与第二开关S2是同步导通或者同步截止,且第一开关S1与第二开关S2可以采用相同类型的晶体管MOS来实现,例如均为N型的晶体管,或者均为P型的晶体管。当然,第一开关S1与第二开关S2也可以采用不同类型的晶体管或者其它元件来实现开关。
如图4A所示,本申请实施例还可以包括第二保护电路154。第二保护电路154包括第二保护控制单元1541、第二电压采样单元1542与第二开关单元1543。
第二保护控制单元1541分别与第一导电回路和第二导电回路电性连接。第二保护控制单元1541检测第一导电回路与第二导电回路中的电压以及电流,以及判断所述电压是否超过第二电压阈值范围,判断所述电流是否超过对应电流阈值。当所述电压与所述电流超过对应的阈值范围时,所述第二保护控制单元1541输出保护信号至所述第二开关单元1543,所述第二开关单元1543依据所述保护信号断开所述第一导电回路与所述第二导电回路。
第二电压采样单元1542分别与极耳14b、极耳14c和第二保护控制单元1541电性连接,用于检测电压,并将检测获得的电压传输至所述第二保护控制单元1541。本实施例中,第一电压采样单元1532与第二电压采样单元1542的电路结构可以相同。可选的,本申请实施例也可以没有电压采样单元,而是由保护控制单元直接检测导电回路的电压。
本实施例中,第一电池接口151与第二电池接口152可以通过导电线直接电性连接,也即是第三导电通路P3与第四导电通路P4相互短接,从而使得第三导电通路P3与第四导电通路P4流通的电流基本相同。
第二开关单元1543分别与第二保护控制单元1541、第一开关单元1533、第一电池接口151和第二电池接口152电性连接。并且第二开关单元1543位于第一导电回路中的第三导电通路P3和第二导电回路中的第四导电通路P4中。
本实施例中,第二开关单元1543包括第三开关S3与第四开关S4。
第三开关S3分别与第一开关S1、第二保护控制单元1541以及第一电池接口151电性连接。第三开关S3依据第二保护控制单元1541提供的保护信号处于导通或者断开状态。
当第三开关S3和第一开关S1均处于导通状态时,第一导电回路导通,第一导电通路P1和第三导电通路P3电性导通。当第三开关S3或第一开关S1处于断开状态时,第一导电回路断开,第一导电通路P1和第三导电通路P3电性断开。
第四开关S4分别与第二开关S2、第二保护控制单元1541以及第二电池接口152电性连 接。第四开关S4依据第一保护控制单元1541提供的保护信号处于导通或者断开状态。
当第四开关S4和第二开关S2均处于导通状态时,第二导电回路导通,第二导电通路P2和第四导电通路P4电性导通,也即是电芯电流与电芯电压能够在第二电池接口152与极耳14a之间传输。当第四开关S4或第二开关S2处于断开状态时,第二导电回路断开,第二导电通路P2和第四导电通路P4电性断开。
本实施例中,第三开关S3与第四开关S4是同步导通或者同步截止,且第三开关S3与第四开关S4可以采用相同类型的晶体管MOS来实现,例如均为N型的晶体管,或者均为P型的晶体管。当然,第三开关S3与第四开关S4也可以采用不同类型的晶体管或者其它元件来实现开关。
在另一种实施方式中,极耳14a可以分为两个极耳,这两个极耳相配合与极耳14a的作用相同。如图2B所示,极耳14a可以为两个极性相同的极耳(也可以称为子极耳)。这两个极耳中的一个极耳与极耳14b构成一个导电回路的正负极,能够向电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流;这两个极耳中的另一个极耳与极耳14c构成另一个导电回路的正负极,能够向电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。这两个导电回路与图2A中的两个导电回路相类似。相应的,当极耳14a分为两个极性相同的极耳时,相应的第一电池保护板15的电路框图如图3B所示,相应的第一保护电路153与第二保护电路154的电路框图如图4B所示。图3B与图3A的区别在于,极耳14a被分为两个极性相同的极耳。图4B与图4A的区别在于,极耳14a被分为两个极性相同的极耳。
请参阅图5,其为如图5所示的电池模组100中第一保护板15的具体电路结构示意图。
第一电压采样单元1532包括第一电压检测电阻RV1与第二电压检测电阻RV2。其中,第一电压采样电阻RV1电性连接于第一导电通路P1的极耳14b,第二采样电阻RV2电性连接第二导电回路P2的极耳14c。第一电压采样电阻RV1和第二采样电阻RV2分别用于采集第一导通通路P1上的电压与第二导电通路P2上的电压。
本实施例中,由于两个极耳14b和极耳14c直接电性连接,从而使得第一电压采样电阻RV1与第二电压采样电阻RV2相互并联。由此,第一电压采样单元1532可以采集到第一导电通路P1与第二导电通路P2两条导电通路上的平均电压值,并提供至第一保护控制单元1531。
在本申请其他实施例中,第一电压采样单元1532可以仅设置第一电压检测电阻RV1,使得第一电压检测电阻RV1检测获得第一导电通路P1的电压作为电芯14的充电或者放电时的电压。或者,第一电压采样单元1532可以仅设置第二电压检测电阻RV2,使得第二电压检测电阻RV2检测获得第二导电通路P2的电压作为电芯14的充电或者放电时的电压。
第一电流检测单元1534包括第一电流检测电阻RI1与第二电流检测电阻RI2。其中,第一电流采样电阻RI1电性连接于极耳14a与第一电池接口151之间,第二采样电阻RV2电性连接于极耳14a与第二电池接口152之间。第一电流采样电阻RI1与第二电流采样电阻RI2分别用于采集第三导通通路P3上的电流与第四导电通路P3上的电流。
本实施例中,由于第一电池接口151与第二电池接口152通过导电线直接电性连接,也即是第三导电通路P3与第四导电通路P4相互短接,从而使得第三导电通路P3与第四导电通路P4流通的电流基本相同。
第二电压采样单元1542包括第三电压检测电阻RV3与第四电压检测电阻RV4。其中, 第三电压采样电阻RV3电性连接于第一导电通路P1的极耳14b,第四采样电阻RV4电性连接第二导电回路P2的极耳14c。第三电压采样电阻RV3和第四采样电阻RV4分别用于采集第一导通通路P1上的电压与第二导电通路P2上的电压。
本实施例中,由于两个第二极耳中的极耳14b和极耳14c直接电性连接,从而使得第三电压采样电阻RV3与第四电压采样电阻RV4相互并联。由此,第二电压采样单元1542可以采集到第一导电通路P1与第二导电通路P2两条导电通路上的平均电压值,并将该平均电压值提供至第一保护控制单元1531。
在本申请其他实施例中,第二电压采样单元1542可以仅设置第三电压检测电阻RV3,使得第三电压检测电阻RV3检测获得第一导电通路P1的电压作为电芯14的充电或者放电时的电压。或者,第二电压采样单元1542可以仅设置第四电压检测电阻RV4,使得第四电压检测电阻RV4检测获得第二导电通路P2的电压作为电芯14的充电或者放电时的电压。
如图5所示,第一保护控制单元1531包括第一电压检测端PV1、第一电流检测端PI1、第一充电控制端CO1、第一放电控制端DO1。
具体地,第一电压检测端PV1电性连接第一电压检测电阻RV1与第二电压检测电阻RV2,用于检测电压。
第一电流检测端PI1电性连接第一电流检测电阻RI1与第二电流检测电阻RI2,用于检测电流。
第一充电控制端CO1与第一放电控制端DO1均电性连接于第一开关S1,用于输出保护信号控制第一开关S1处于导通状态或者断开状态。
第一保护控制单元1531依据自第一电压检测端PV1与第一电流检测端PI1检测获得的电压与电流,判断二者是否超过阈值范围,当电压或者电流超过阈值范围后,自第一充电控制端CO1与第一放电控制端DO1输出保护信号。
本实施例中,第一开关单元1533中的第一开关S1包括第一控制端SC1、第二控制端SC2、第一导电端SD1、第二导电端SD2。
其中,第一控制端SC1电性连接于第一放电控制端DO1,第二控制端SC2电性连接于第一充电控制端CO1,第一导电端SD1电性连接于极耳14a,第二导电端SD2通过第二开关单元1543电性连接于第一电池接口151。
第一保护控制单元1531自第一充电控制端CO1与第一放电控制端DO1输出的保护信号,通过第一控制端SC1与第二控制端SC2控制第一开关S1的导通与截止。其中,当第一开关S1在保护信号控制下导通时,第一导电端SD1与第二导电端SD2电性导通;当第一开关S1在保护信号控制下截止时,第一导电端SD1与第二导电端SD2电性断开。
本实施例中,第一开关S1能够双向导通。也即是,对于第一导电回路中的第三导电通路P3,在电芯14充电时在电流自第一极耳14a流向第一电池接口151时,第一开关S1可以执行导通或者截止。并且,在电芯14放电时电流自第一电池接口151流向第一极耳14a时,第一开关S1可以执行导通或者截止。
同时,第一充电控制端CO1与第一放电控制端DO1均电性连接于第二开关S2,用于输出保护信号控制第二开关S2处于导通状态或者断开状态。
第一开关单元1533中的第二开关S2包括第三控制端SC3、第四控制端SC4、第三导电端SD3、第四导电端SD4。
其中,第三控制端SC3电性连接于第一放电控制端DO1,第四控制端SC4电性连接于第一充电控制端CO1,第三导电端SD3电性连接于极耳14a,第四导电端SD4通过第二开关单元1543电性连接于第二电池接口152。
第一保护控制单元1531自第一充电控制端CO1与第一放电控制端DO1输出的保护信号,通过第三控制端SC3与第四控制端SC4控制第二开关S2的导通与截止。其中,当第二开关S2在保护信号控制下导通时,第三导电端SD3与第四导电端SD4电性导通;当第二开关S2在保护信号控制下截止时,第三导电端SD3与第四导电端SD4电性断开。
本实施例中,第二开关S2能够双向导通。也即是,对于第一导电回路中的第四导电通路P4,在电芯14充电时在电流自第一极耳14a流向第二电池接口152时,第二开关S2能够执行导通或者截止。并且,在电芯14放电时电流自第二电池接口152流向第一极耳14a时,第一开关S1能够执行导通或者截止。
第二保护控制单元1541包括第二电压检测端PV2、第二电流检测端PI2、第二充电控制端CO2、第二放电控制端DO2。
具体地,第二电压检测端PV2电性连接第三电压检测电阻RV3与第四电压检测电阻RV4,用于检测电压。
第二电流检测端PI2电性连接第一电流检测电阻RI1与第二电流检测电阻RI2,用于检测电流。
第二保护控制单元1541依据自第二电压检测端PV2与第二电流检测端PI2检测获得的电压与电流,判断二者是否超过阈值范围。当电压或者电流超过阈值范围后,自第二充电控制端CO2与第二放电控制端DO2输出保护信号。
第二充电控制端CO2与第二放电控制端DO2均电性连接于第三开关S3,用于输出保护信号控制第三开关S3处于导通状态或者断开状态。
本实施例中,第二开关单元1543中的第三开关S3包括第五控制端SC5、第六控制端SC6、第五导电端SD5以及第六导电端SD6。
其中,第五控制端SC5电性连接于第二放电控制端DO2,第六控制端SC6电性连接于第二充电控制端CO2,第五导电端SD5电性连接于第一开关S1的第二导电端SD2,第六导电端SD5电性连接于第一电池接口151。
第二保护控制单元1541自第二充电控制端CO2与第二放电控制端DO2输出保护信号,通过第五控制端SC5与第六控制端SC6控制第三开关S3的导通与截止。其中,当第三开关S3在保护信号控制下导通时,第五导电端SD5与第六导电端SD6电性导通;当第三开关S3在保护信号控制下截止时,第五导电端SD5与第六导电端SD6电性断开。
本实施例中,第三开关S3能够双向导通。也即是,对于第一导电回路中的第三导电通路P3,在电芯14充电时或者放电时,第三开关S3均能执行导通或者截止。
同时,第二充电控制端CO2与第二放电控制端DO2均电性连接于第四开关S4,用于输出保护信号控制第四开关S4处于导通状态或者断开状态。
第二开关单元1543中的第四开关S4包括第七控制端SC7、第八控制端SC8、第七导电端SD7以及第八导电端SD8。
其中,第七控制端SC7电性连接于第二放电控制端DO2,第八控制端SC8电性连接于第二充电控制端CO2,第七导电端SD7电性连接于第二开关S2的第四导电端SD4,第八导电端SD8电性连接于第二电池接口152。
第二保护控制单元1541自第二充电控制端CO2与第二放电控制端DO2输出保护信号,通过第七控制端SC7、第八控制端SC8控制第四开关S3的导通与截止。其中,当第四开关S4在保护信号控制下导通时,第七导电端SD7与第八导电端SD8电性导通;当第四开关S4在保护信号控制下截止时,第七导电端SD7与第八导电端SD8电性断开。
本实施例中,第四开关S4能够双向导通。
本实施例中,第一电池保护板15还可以包括防伪单元155,防伪单元155电性连接于第二导电通路P2,用于检测电芯14能够承受的电芯电压与电芯电流,从而防止电芯14与电芯电压或者电芯电流不匹配而导致电芯14损坏。
请结合图1与图5,具体说明电池模组100中第一保护板15在电芯14执行充电(执行电能存储)以及执行放电(执行电能释放)的工作过程。
电芯14执行充电的过程:
第三电路板13自第一导电接口131与第二导电接口132输出的电芯电压与电芯电流,传输至第一电池保护板14的第一电池接口151与第二电池接口152。
对于第一电池接口151对应的第一导电回路而言,电芯电压与电芯电流自第一电池接口151通过第一导电通路P1传输至极耳14b。
电芯电压通过第一电压检测电阻RV1针对第一电容C1进行充电,当第一电容C1充电电压达到第一开关S1的导通阈值电压Vth时,第一保护控制单元1531输出导通信号至第一充电控制端CO1,进而控制第一开关S1处于导通状态。
电芯电压通过第三电压检测电阻RV3针对第二电容C2进行充电,当第二电容C2充电电压达到第三开关S3的导通阈值电压Vth时,第二保护控制单元1541输出导通信号至第二充电控制端CO2,进而控制第三开关S3处于导通状态。
电芯14内部,电芯电流自极耳14b传输至极耳14a,并且自极耳14a通过第一电流检测电阻RI1传输至第一开关S1的第一导电端SD1,然后再传输至第二导电端SD2。
由于第三开关S3也处于导通状态,且第三开关S3的第五导电端SD5电性连接于第二导电端SD2,则电芯电流则通过第二导电端SD2、第五导电端SD5以及第六导电端SD6传输至第一电池接口151,从而在第一导电回路中针对电芯14充电。
同理,对于第二电池接口152对应的第二导电回路而言,电芯电压与电芯电流自第二电池接口152通过第二导电通路P2传输至极耳14c。
电芯电压通过第二电压检测电阻RV2针对第一电容C1进行充电,当第一电容C1充电电压达到第二开关S2的导通阈值电压Vth时,第一保护控制单元1531输出导通信号至第一充电控制端CO1,进而控制第二开关S2处于导通状态。
电芯电压通过第四电压检测电阻RV4针对第二电容C2进行充电,当第二电容C2充电电压达到第四开关S4的导通阈值电压Vth时,第二保护控制单元1541输出导通信号至第二充电控制端CO2,进而控制第四开关S4处于导通状态。
电芯14内部,电芯电流自极耳14c传输至极耳14a,并且自极耳14a通过第二电流检测电阻RI2传输至第二开关S2的第三导电端SD3,然后再传输至第四导电端SD4。
由于第四开关S4也处于导通状态,且第四开S4的第七导电端SD7电性连接于第三导电端SD3,则电芯电流则通过第三导电端SD3、第七导电端SD7以及第八导电端SD8传输至第二电池接口152,从而在第二导电回路中针对电芯14充电。
在充电过程中,第一导电通路P1或者第二导电通路P2上的电压与电流超过对应的阈值范围,也即是电压过压或者欠压,电流过流时,第一保护控制单元1531与第二保护控制单元1541执行针对电芯14的保护。此处以以下数值为例:第一保护控制单元1531对应的欠压阈值为2.4V,过压阈值为4.422V;第二保护控制单元1541对应的欠压阈值为2.2V,过压阈值为4.45V。
具体地,当第一导电通路P1或者第二导电通路P1上的电压欠压时,例如电芯14的电压小于2.4V时,第一保护控制单元1531输出保护信号至第一充电控制端CO1,控制第一开关S1与第二开关S2处于截止状态(即断开状态),从而断开第一导电回路和第二导电回路。
当第一导电通路P1或者第二导电通路P1上的电压过压时,例如电芯14的电压大于4.422V时,第一保护控制单元1531输出保护信号至第一充电控制端CO1,控制第一开关S1与第二开关S2处于截止状态,从而断开第一导电回路和第二导电回路。
若第一保护控制单元1531失效,也即是第一保护单元1531在电芯14过压或者欠压时无法及时、准确地断开第一导电回路或者第二导电回路,则第二保护控制电压1541在电芯14过压或者欠压时,可以及时、准确地断开第一导电回路或者第二导电回路。
例如,若第一保护单元1531失效,则当电芯14的电压小于2.2V时,第二保护控制单元1541输出保护信号至第二充电控制端CO2,控制第三开关S3与第四开关S4处于截止状态,从而断开第一导电回路和第二导电回路。
若第一保护单元1531失效,则当电芯14的电压大于4.45V时,第二保护控制单元1541输出保护信号至第二充电控制端CO2,控制第三开关S3与第四开关S4处于截止状态,从而断开第一导电回路和第二导电回路。
同理,对于第三导电通路P3或者第四导电通路P4过流或者欠流时,第一保护控制单元1531与第二保护控制电压1541的工作原理与电芯过压、欠压的工作原理相同,在此不再赘述。
电芯14执行放电的过程:
电性14内部,电芯电压与电芯电流自极耳14a分别流向极耳14b和极耳14c。
对于第一电池接口151对应的第一导电回路而言,电芯电压与电芯电流自极耳14b,并且通过第一导电通路P1传输至第一电池接口151,然后再自第一电池接口151通过第三开关S3以及第一开关S1传输至第一极耳14a,从而在第一导电回路中电芯14向第一电池接口151放电。
同理,对于第二电池接口152对应的第二导电回路而言,电芯电压与电芯电流自极耳14c,并且通过第二导电通路P2传输至第一电池接口152,然后再自第二电池接口152通过第四开关S4以及第二开关S2传输至第一极耳14a,从而在第二导电回路中电芯14向第二电池接口152放电。
在放电过程中,第一导电通路P1或者第二导电通路P2或者第三导电通路P3或者第四导电通路P4上的电压与电流超过对应的阈值范围,也即是电芯电压过压或者欠压,电芯电流过流、欠流时,第一保护控制单元1531与第二保护控制单元1541执行针对电芯14的保护。保护的过程与充电过程类似,此处不再赘述。
对于图1-图5所示的充电电池模组10中电芯的电路,对于一个电芯14而言,其最少能同时包括两个导电回路执行充电与放电,这样就有提高了充电的效率。相较于一个导电回路的电芯而言,其减小了至少一半的充电时间,同时,每个极耳承受的电流也相对减小,从而每个极耳上的发热量也得到有效降低。即在高充电效率的同时能够控制每个极耳上的发热量。
举例而言,当电芯仅具有两个极耳时,例如进行12A电流充电时,以保护板阻抗为20mOHM为例,极耳与保护板发热量为P=I^2R=144*20=2.88W。
但是,对于本实施例的电芯14而言,由于电芯14包括三个极耳并包括至少两个导电回路,那么,每一个导电回路进行分流以后,每一个导电回路具有电流各为6A。以保护板阻抗20mOHM为例,极耳与保护板发热量为P=2*I^2R=2*36*20=1.44W。可见,整体的发热量降低了一半(从2.88W降低到1.44W)。
请参阅图6,其为本申请另一实施例中电池模组100的电路框图。如图6所示,其与图4A所示的电池模组100的结构基本相同,区别仅在于第一电池保护板15仅包括第一保护电路153,而不包括第二保护电路154。如前所述,第二保护电路是为了对第一保护电路进行备份,若第一保护电路失效时,可以由第二保护电路对电芯进行电压电流保护。由此,只有一个保护电路也可以实现本申请实施例的方案。可选的,为了进一步增加保护的可靠性,也可以增加保护电路的数量。例如:该电池模组100中可以包括三个、四个或者更多的保护电路。新增的保护电路可以参见第一保护电路和第二保护电路的结构和布局。
请参阅图7,其为本申请另一实施例中充电模组30的电路框图。
本实施例中,充电模组30与图1所示的充电模组10的电路基本相同,区别在于第一电路板11上未设置有第一电压转换单元C1,第三电路板13设置一个第二电压转换单元C2,且所述第二电压转换单元C2直接将第一充电电压转换为电芯电压,并分别提供至第一电池接口151与第二电池接口152。本实施例中的第二电压转换单元C2比充电模组10中的电压转换单元C1和C2的电压转换效率高,例如转换效率可以高一倍。例如:若充电模组10中的电压转换单元C1和C2均为2:1的Charger IC,则本实施例中的第二电压转换单元C2可以为4:1的Charger IC。
请参阅图8,其为本申请另一实施例中充电模组40中电池模组400的电路框图。
如图8所示,电池模组400与图1、图2A所示的电池模组100的电路基本相同,区别在于,电芯14中极耳14a具有正极性,极耳14b与极耳14c具有负极性。
请参阅图9,其为本申请另一实施例中充电模组50的电路框图。
如图9所示,充电模组50中电池模组500的电路框图与图1所示的充电模组10中电池模组100的电路类似,区别在于,电池模组500中电芯14包括四个极耳以及两个第一电池保护板15,且第一电池接口151与第二电池接口152分别设置于电芯14相对两侧。
具体地,所述四个极耳分别为极耳14a、极耳14b、极耳14c以及极耳14d。极耳14a与极耳14b设置于电芯14的第一侧141,极耳14c与极耳14d设置于电芯14的第二侧142。其中,极耳14a与极耳14c具有第一极性,极耳14b与极耳14d具有第二极性。本实施例中,第一极性为负极性,第二极性为正极性。
另外,本实施例中,第一电路板11上未设置有第一电压转换单元C1,第三电路板13设置一个第二电压转换单元C2。所述第二电压转换单元C2直接将第一充电电压转换为电芯电压,并分别提供至第一电池接口151与第二电池接口152。例如:所述第二电压转换单元C2可以为4:1的charger IC。
请参阅图10,图10为充电模组50的电路框图。如图10所示,两个第一电池保护板15分别设置于电芯14的第一侧141与第二侧142。也即是,一个第一电池保护板15对应电性连接极耳14a和极耳14b,另外一个第一电池保护板15电性连接极耳14c和极耳14d。
更为具体地,请一并参阅图11与图12,图11为电池模组500的电路结构示意图,图12为其中一个第一电池保护板15的电路结构示意图。
如图11与图12所述,位于电芯14第二侧142的第一电池保护板15与第一电池接口151电性连接极耳14a与极耳14b,并构成第一导电回路;位于电芯14第一侧141的第一电池保护板15与第二电池接口152电性连接极耳14c与极耳14d,并构成第二导电回路。
如图12所示,第一电池保护板15上包括两个保护电路153和154。保护电路153和154对导电回路进行电压和电流保护。具体原理参见前述实施例中的描述。图12所示的实施例中,两个保护电路153和154都是与第一电池接口151电性连接。在另一个电池保护板中,两个保护电路都与第二电池接口151电性连接。可以理解的,两个保护电路153和154是相互备份的作用,由此,也可以在一个电池保护板上只设置一个保护电路,或者设置更多的保护电路。
请参阅图13,其为本申请另一实施例中充电模组60的电路框图。
如图13所示,充电模组60中包括的电池模组600与图1所示的充电模组10所示的电池模组100的电路类似,区别在于,电池模组600中电芯14包括六个极耳、两个电池保护板以及四个电池接口。即电池模组600比电池模组100多了三个极耳、多了一个电池保护板,还多了两个电池接口。可以理解,电池模组600可以相当于两个三极耳的电池,但是只有一个电芯本体。
具体地,充电模组60中包括的电池模组600与图1-图2A所示电池模组100相比,包括更多的元件。在电池模组100的基础上,如图13所示,电池模组600还包括设置于电芯14的第一侧141的第二电池保护板16、第三电池接口156与第四电池接口157。其中,第二电池保护板16的电路结构、连接方式以及工作原理与第一电池保护板15完全相同。
此外,充电模组60比充电模组10的电路板上多了一个电压转换单元C3。如图13所示,第一电路板11包括第三电压转换单元C3。第三电池接口156与第四电池接口157分别电性连接于第一电路板11中的第三电压转换单元C3,以向电芯14传输电压与电流。其中,第三电压转换单元C3可以与第三电路板上的第二电压转换单元C2相同。需要说明的是,在其它实施例中,第三电压转换单元C3或者第二电压转换单元C2可以由两个或多个低转换效率的转换单元代替。例如:一个4:1的charger IC(C3或者C2)可以被两个或者三个2:1的charger IC代替。例如图1所示实施例采用三个2:1的charger IC来实现两次降压。而图7所示实施例采用一个4:1的charger IC来实现降压。充电模组60中,通过第一传输接口111从接收外部电压与电流,然后进行分流分别传输给第一电路板11中的第三电压转换单元C3和第三电路板13中的第二电压转换单元C2。之后的处理流程可以参见上述三极耳实施例(图1-图8所示实施例)中的描述。
请参阅图14A,其为图13所示充电模组60中电池模组600的结构示意图。如图14A所示,电芯14除了设置于第二侧142的极耳14a、极耳14b、极耳14c,还包括设置于第一侧141的极耳14d、极耳14e、极耳14f。其中,极耳14d、极耳14f、极耳14b与极耳14c的极性相同,极耳14e与极耳14a的极性相同,且极耳14e与极耳14f间隔预设距离设置于极耳14d的左右两侧。其中,极耳14d、极耳14e、极耳14f的结构和布局可以参见前述实施例中的极耳14a、极耳14b、极耳14c。
请参阅图15,其为如图13所示充电模组60中电池模组600的电路结构示意图。如图15所示,第二电池保护板16设置于电芯14的第一侧141的位置,用于自第一电路板11接收到电芯电压与 电芯电流,并且通过第三电池接口156、第四电池接口157电性连接至极耳14d、极耳14e、极耳14f。其中,由于第二电池保护板16的电路结构,连接方式、工作原理与第一电池板板15的电路结构,连接方式、工作原理相同,故而其具体的连接方式本实施例不再赘述。
需要说明的是,在四极耳或者六极耳的实施方案中,当充电时可以采用电芯上下两端充电,即四个极耳或者六个极耳都被使用来充电。而当放电时,可以只采用电芯一端的极耳和电路来放电。例如四极耳放电时,可以只采用两个极耳(如与第三电路板相连的一正一负两个极耳)来进行放电。六极耳放电是,也可以只采用部分极耳形成的回路进行放电。当然,也可以采用所有的极耳进行放电。
如图14B所示,本申请另一实施例还提供具有五个极耳的电池模组(可以称为五极耳电池模组)。与图14A所示的六极耳电池模组相比,该五极耳电池模组也包括两个电池保护板以及四个电池接口;不同之处在于,五极耳电池模组的电芯的一侧包括三个极耳,另一侧包括两个极耳。三个极耳的结构以及相应的电路结构可以参见前述图1-图8所示的实施例中的描述;两个极耳的结构以及相应的电路结构可以参见图9-图12所示四极耳结构中关于两极耳的描述。可以理解,具有六极耳的电池模组可以相当于两个三极耳的电池,但是只有一个电芯本体。具有四极耳的电池模组可以相当于两个二极耳的电池,但是只有一个电芯本体。具有五极耳的电池模组可以相当于一个三极耳的电池和一个二极耳的电池,但是只要一个电芯本体。
五极耳电池模组中,可以其中三个极耳设置在电芯本体的一侧,另外两个极耳设置在电芯本体的另一侧。这两侧可以是相对的两侧,也可以是相邻的两侧,还可以是相间隔的两侧。
在本申请另一实施例中,在图9-图12所示实施例的四极耳电池模组的基础上,电池模组还可以多包括两个极耳,即提供另一种六极耳电池模组。该六极耳电池模组可以包括一个电芯本体、六个极耳、三个电池保护板以及六个电池接口,即相当于三个二极耳电池模组。其中,这六个极耳的位置不限定,可以每两个极耳位于电芯本体的一侧,即电芯本体的三侧都设置有极耳,每侧设置两个极性不同的极耳。这六个极耳中,有三个极耳具有第一极性,另三个极耳具有第二极性。其中,极性相同的三个极耳设置在相同的极片上。
以下为对现有的两极耳电芯结构,以及本申请各实施例提供的充电模组进行充电时的测试数据。
对于电芯仅包括两个极耳(现有技术)的充电模组测试情况如下:
充电电流(A) 充电效率 总功耗(W)
8 0.964 5.195
7 0.97 4.026
6 0.974 3.062
5 0.975 2.337
4 0.975 1.746
3 0.975 1.262
对于图1所示实施例中的充电模组100(三个极耳)的测试情况如下:
充电电流(A) 充电效率 总功耗(W)
13 0.98 5.503
12 0.98 4.799
10 0.98 3.615
8 0.98 2.615
6 0.98 1.799
4 0.98 1.167
对于图9所示实施例中的充电模组500(四个极耳)的测试情况如下:
充电电流(A) 充电效率 总功耗(W)
16 0.98 6.430
14 0.98 5.180
12 0.98 4.073
10 0.98 3.111
8 0.98 2.292
6 0.98 1.618
对于图13所示实施例中的充电模组600(六个极耳)的测试情况如下:
充电电流(A) 充电效率 总功耗(W)
24 0.98 8.105
20 0.98 6.054
16 0.98 4.313
14 0.98 3.559
12 0.98 2.883
10 0.98 2.284
从上述测试可知:
当第一充电电流(外部输入的充电电流)为8A时,对于现有的一个电芯仅具有两个极耳方案来讲,其整机功耗为5.195W。而本申请实施例中包括三个极耳的充电模组中整机功耗仅为2.615W,本申请实施例中包括四个极耳的充电模组的整机功耗仅为2.292W。
当第一充电电流为12A时,本申请实施例中包括三个极耳的充电模组的整机功耗为4.799W,本申请实施例中包括四个极耳的充电模组的整机功耗为4.073W,本申请实施例中包括六个极耳的充电模组的整机功耗为2.883W。
相比于现有技术,本申请各实施例中的充电模组的功耗得到极大降低,同时充电速率有效提高。由此,在满足功耗的要求下,本申请各实施例提供的充电模组能够进行大功率的快速充电。例如:若整机功耗的要求是5W-6W左右,那么本申请实施例的三极耳方案能够支持大约12-13A的电流,即能够支持大约60-65W(12A*5V=60W,13A*5V=65W)的充电功率(充电电压为5V);四极耳方案能够支持大约14-16A的电流,即能够支持大约70-90W的充电功率;六极耳方案能够支持大约20A的电流,即能够支持大约100W的充电功率。本申请实施例提供的方案中,六极耳的方案比四极耳方案的功耗低,四极耳的方案比三极耳方案的功耗低。也 就是说,六极耳方案比四极耳方案能够支持更大功率的充电,四极耳方案比三极耳方案能够支持更大功率的充电。
下面介绍本申请实施例中的电芯14的结构。
电芯可以包括两个极片。每个极片都包括有效区域(Active Area,AA),进一步的,也还可以包括周边区域(即无效区域,Non active Area,NA)。有效区域AA涂覆有导电材料。两个极片的有效区域中涂覆的导电材料进行配合执行电能的存储与释放。这两个极片具有不同的极性。每个极片上具有一个或多个极耳。两个极片卷绕在一起形成电芯。极片上的极耳即为电芯的极耳。根据电芯所需的极耳数量,在极片上设置相应数量的极耳。
请参阅图16A,其为本申请一实施例中具有三个极耳的电芯14的分解结构示意图。
如图16A所示,电芯14包括具有不同极性的两个极片,极片144与极片145。例如:极片144具有第一极性,极片145具有第二极性;或者,极片144具有第二极性,极片145具有第一极性。
极片144包括第一有效区域AA1与两个第一周边区域NA1。
第一有效区域AA1涂覆有第一导电材料M1。两个第一周边区域NA1位于第一有效区域AA1的两个相对的侧边。每个第一周边区域NA1中设置一个极耳,如图16A所示的极耳14b和14c。
极片145包括第二有效区域AA2与两个第二周边区域NA2。或者,在其它实施方式中,极片145可以只包括一个周边区域NA2(图中未示出)。
第二有效区域AA2涂覆有第二导电材料M2。两个第二周边区域NA2位于第二有效区域AA1的两个相对的侧边。其中一个第二周边区域NA2设置一个极耳,如极耳14a。
其中,第一导电材料M1与第二导电材料M2配合执行电能的存储与释放。
请参阅图17,其为图16A所示电芯14的俯视图。如图17所示,极片144与极片145被一并卷绕,其中,极耳14a与极耳14c相邻设置于卷绕结构内部,极耳14c则随着极片144与极片145的卷绕位于卷绕结构的外部边缘。
请参阅图18,其为图16A所示电芯14的正面结构示意图。两个极耳14b和14c位于极耳14a的左右两侧。
本申请各实施例中,极耳14b和极耳14c是相同的。其中极耳14b、极耳14c仅为了区别标识。也就是说,本申请各实施例中,极耳14b和极耳14c可以互换位置。
图16A和图17仅为三个极耳电芯的一种结构示意。在其它实施方式中,三个极耳电芯还可以具有其它结构。其中,极片144中的两个极耳可以位于其它不同的位置。
如,这两个极耳可以位于极片144两端的周边区域,如图16A所示。
或者,这两个极耳也可以一个位于极片144一端的周边区域,另一个位于极片144的有效区域AA中。如图19所示,极耳14c位于极片144的一个周边区域NA1中(极片144的左端或右端),极耳14c位于极片144的第一有效区域AA1中。
或者,如图16B所示,这两个极耳14b和14c也可以均位于极片144的第一有效区域中。当两个极耳均位于极片的有效区域中时,这两个极耳可以相连,也可以不相连。如图16C所示,极耳14b设置在极片上的一端与极耳14c设置在极片上的一端相连。从外观上看,这两个极耳时分开的,但是在极片内部,这两个极耳可能是相连的。
其中,可以通过以下两种方式在极片144的有效区域AA中设置极耳。一种为:可以在有效区域AA1涂覆完导电材料后,在预设位置将部分导电材料去除,然后将极耳电性设置于所述预设位置,例如可以将极耳焊接到极片上。另一种为:极耳与极片电性连接,然后在除极耳的位置之外涂覆导电材料。
图20为图19所示电芯14的俯视图。如图20所示,极片144与极片145被一并卷绕,其中,极耳14a与极耳14c相邻设置于卷绕结构内部,另外一个第二极耳14b则随着极片144与极片145的卷绕位于卷绕结构的其它位置。图19、图20所示的电芯14的正面结构可以参阅图18。
或者,极耳14b与极耳14c也可以分别均位于有效区域AA中。极耳14b与极耳14c均位于极片144的有效区域AA1中。
或者,极片145中极耳14a以及极耳144中的极耳14c也可以分别均位于有效区域AA中。如图21所示,极耳14a位于极片145的有效区域AA2中,极耳14c位于极片144的有效区域AA1中。
在其它实施例中,极片145中的极耳也可以位于极片的不同位置。极耳可以位于极片145任一端的周边区域,如图16A所示。或者,极耳可以位于极片145的有效区域中,如图21所示,极耳14a位于极片145的第二有效区域AA2中。
图22为图21所示电芯14的俯视图。如图22所示,极片144与极片145被一并卷绕,其中,极耳14a与极耳14c相邻设置于卷绕结构内部,极耳14b则随着极片144与极片145的卷绕位于卷绕结构的其它位置。图21、图22所示的电芯14的正面结构可以参阅图18。
本申请实施例中,为了形成三个极耳的电芯,可以任意在一个极片上设置一个极耳,在另一个极片上设置两个极耳。如图23所示,可以在极片144上设置一个极耳14a,在极片145上设置极耳14b和极耳14c。
可选的,极片上设置的多个极耳可以朝向不同的方向。如前述图16A-图22所示的各实施例中,极耳14a、14b和极耳14c均朝向相同的方向,如图中所示,均朝向上方。而在其它实施例中,这三个极耳可以朝向不同的任意方向。
例如:这三个极耳中的任意两个可以朝向同一个方向,另一个朝向不同的方向。如图23所示,极耳14b和一个极耳14a朝向相同的方向,如图所示朝向上方,极耳14c朝向与极耳14b不同的方向,如图中所示朝向下方。可以理解的,也可以极耳14b和一个极耳14a均朝向下方,极耳14c朝向上方。图24为图23所示电芯14的俯视图。图25为图24所示电芯14的正面结构示意图。
上述图16A-图25所示的实施例中,极片上的极耳与电芯的极耳一一对应。即电芯具有三极耳,则两个极片上总共也是三个极耳。而在其它实施例中,极片上的多个极耳可以对应电芯的一个极耳。如图26所示,极片144中可以包括多个极耳14-1(也可以叫子极耳)和多个极耳14-2。当极片144与极片145卷绕到一起后,多个极耳14-1重合并电性连接形成电芯的一个极耳14b,多个极耳14-2重合形成电芯的一个极耳14c。可选的,极片145中也可以包括多个极耳14-3。当极片144与极片145卷绕到一起后,多个极耳14-3重合并电性连接形成电芯的一个极耳14a。本申请实施例并不限定极片中极耳(子极耳)的数量和位置,只要保证两个极片卷绕之后,能够形成所需数量和所需位置的极耳即可。本领域技术人员可以根据电路设计和布局来设置极耳的数量和位置。当极片中包括多个极耳时,这些极耳可以设置在极片的有效区域,也可以设置在极片的周边区域,也可以部分设置在有效区域,部分设置在周边区域。图 27为图26所示电芯14的立体结构示意图。图28为图27所示电芯14的左视图。图26-图28所示的电芯的主视图可以参见图18。
前述实施例中,电芯具有卷绕式结构,包括卷绕在一起的两个极片。可选的,电芯的内部结构还可以包括其它极片结构,例如叠片式结构。例如,电芯可以包括多个具有第一极性的极片144和多个具有第二极性的极片145。这些极片144和极片145叠加在一起形成电芯。其中,在叠加时,可以间隔设置极片144和极片145,即两个极片144之间叠加一个极片145,两个极片145之间叠加一个极片144。
本申请实施例中,为了形成三个极耳的电芯,可以任意在一个极片上的任意一侧设置两个极耳,在另一个极片上的任意一侧设置一个极耳。如图29所示,为本申请一实施例中电芯14的分解结构示意图,可以在每个极片144上的第一侧设置两个子极耳14b-1与极耳14c-1,在每个极片145上设置极耳14a-1。所有的极片144和所有极片145被叠在一起,所有的极片144上的子极耳14b-1之间进行电性连接(例如焊接在一起)形成电芯上的极耳14b,所有的极片144上的子极耳14c-1之间进行电性连接形成电芯上的极耳14c,所有的极片145上的子极耳14a-1之间进行电性连接形成电芯上的极耳14a。
可选的,极片上设置的多个子极耳可以朝向不同的方向,如图29所示,子极耳14b-1、子极耳14c-1以及子极耳14a-1均朝向上方。而在其它实施例中,这三个极耳可以朝向不同的任意方向。例如子极耳14a-1可以朝向右方或者左方。
图29中的极片144与极片145叠加后的电芯立体结构示意图可以参见图27。
可选的,同一个极片上设置的多个子极耳可以朝向不同的方向,例如,极片144中的子极耳14b-1与子极耳14c-1分别朝向不同的方向。如图30所示,子极耳14b-1与子极片14a-1朝向上方,子极耳14c-1朝向左方。图31为图30所示电芯14的立体结构示意图。图32为图31所示电芯14的左视图。图33为图31所述电芯的主视图。
在本申请一实施例中,如图34所示,当电芯具有六个极耳时,两个极片上总共也是六个极耳。例如,如图34所示,极片144上设置四个相同极性的极耳,极片145上设置两个相同极性的极耳。而在其它实施例中,极片上的多个子极耳可以对应电芯的一个极耳。如图35所示,极片144中可以包括多个子极耳14-1、多个子极耳14-2、多个子极耳14-3、多个子极耳14-4。当极片144与极片145卷绕到一起后,多个子极耳14-1重合并电性连接形成电芯的一个极耳14b,多个子极耳14-2重合并电性连接形成电芯的一个极耳14c,多个子极耳14-3重合并电性连接形成电芯的一个极耳14e,多个子极耳14-4重合形成电芯的一个极耳14f。
可选的,极片145中也可以包括多个子极耳14-5。当极片144与极片145卷绕到一起后,多个子极耳14-5重合并电性连接形成电芯的一个极耳14a,多个子极耳14-6重合并电性连接形成电芯的一个极耳14d。
本申请实施例并不限定极片中极耳的数量和位置,只要保证两个极片卷绕之后,能够形成所需数量和所需位置的极耳即可。本领域技术人员可以根据电路设计和布局来设置极耳的数量和位置。当极片中包括多个极耳时,这些极耳可以设置在极片的有效区域,也可以设置在极片的周边区域,也可以部分设置在有效区域,部分设置在周边区域。图36为图35所示电芯14的正面示意图。
可选的,电芯14中,所有相同极性的极耳在电芯本体内部相互电性连接,从而使得相同极性的极耳具有相同的电压。如图37所示,极片144中,两个沿着不同侧边、朝两个相反方向设置的两个极耳14b、极耳14d在极片144中直接电性连接,或者,两个极耳14b、极耳14d在极片144中直接一体成型。极片145中,两个沿着不同侧边、朝两个相反方向设置的两个极耳14a、极耳14c在极片145中直接电性连接,或者,两个极耳14a、极耳14c在极片145中一体成型。图38为图37所示电芯14的正面结构示意图,且图37和图38所示为四极耳结构的示意图。
需要说明的是,当极耳位于极片的有效区域AA中时,极片可以不设置周边区域,或者只在一端设置周边区域。
需要说明的是,本申请各实施例中,极耳与极片可以是两个组件经焊接连接在一起。或者,极耳和极片可以是一体的,在极片中按照所需的位置和数量切割出极耳。
需要说明的是,本申请各实施例提供的多极耳电池模组,其中的多个极耳可以设置在电芯本体的任意位置。如图39所示,为本申请实施例提供的一些可能的三极耳电池模组的结构。如图40所示,为本申请实施例提供的一些可能的四极耳电池模组的结构。如图41所示,为本申请实施例提供的一些可能的五极耳电池模组的结构。如图42所示,为本申请实施例提供的一些可能的六极耳电池模组的结构。
需要说明的是,本申请各实施例提供的电池模组,并不限定电芯本体的结构。该电芯本体可以为常规的形状,例如长方形或者正方形,或者类似长方形或者正方形的形状。或者,该电芯本体也可以为异形的。例如:如图43所示,该电芯本体可以为非穿透型。其中,非穿透型电芯本体可以为:电芯本体或边缘存在一个不穿透的区域A(该区域的形状不限);电池在区域A对应位置的铝塑膜不设置通孔,但正极、负极、隔膜上可以设置通孔。当该电池模组装入电子设备后,电子设备的器件可以全部或部分延伸入该区域A,但不能穿过电芯本体。或者,如图44所示,该电芯本体可以为穿透型。其中,穿透型电芯本体可以为:电芯本体或边缘设置有通孔(区域B);电池在区域B对应位置的铝塑膜、正极、负极、隔膜都设置有通孔。当该电池模组装入电子设备后,电子设备的器件可以穿过电池的区域B。其中,电池的主材包括铝塑膜、正极、负极、隔膜。
此外,本申请各实施例提供的电子模组中,不限定电芯本体的形状,电芯本体可以为各种形状,并且具有不同的极耳分布。如图45所示,为本申请实施例提供的一些可能的三极耳电池模组的结构。如图46所示,为本申请实施例提供的一些可能的四极耳电池模组的结构。如图47所示,为本申请实施例提供的一些可能的五极耳电池模组的结构。如图48所示,为本申请实施例提供的一些可能的六极耳电池模组的结构。
本申请实施例还提供一种电子设备。该电子设备包括功能电路和前述各实施例中所述的充电模组。所述充电模组用于为所述功能电路提供工作电源。该电子设备可以为可充电的各种便携式设备,例如:手机、笔记本电脑、穿戴设备(如智能手表、手环等)、平板电脑等等。当该电子设备为手机时,充电模组接收外部电源的电能并储存该电能;电池模组为手机的其它部件供电。
以上对本申请实施例所提供的一种执行充电的电路进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方 法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (38)

  1. 一种电池模组,其特征在于,包括电芯;
    所述电芯包括电芯本体、第一极耳、第二极耳和第三极耳;所述第一极耳、所述第二极耳和所述第三极耳分别与所述电芯本体电连接;所述第一极耳和所述第三极耳具有第一极性,所述第二极耳具有第二极性;
    所述第二极耳与所述第一极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流;
    所述第二极耳与所述第三极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流;
    所述第一极性为正极性,所述第二极性为负极性;或者,所述第一极性为负极性,所述第二极性为正极性。
  2. 根据权利要求1所述的电池模组,其特征在于,还包括第一电池保护板,所述第一电池保护板包括第一保护电路、第一电池接口和第二电池接口;所述第一电池接口和第二电池接口用于与所述电池模组外部的元件电性连接;
    所述第一电池接口通过所述第一保护电路分别与所述第二极耳和所述第一极耳电性连接,所述第一电池接口与所述第一极耳、所述电芯本体、所述第二极耳和所述第一保护电路构成第一导电回路;
    所述第二电池接口通过所述第一保护电路分别与所述第二极耳和所述第三极耳电性连接,所述第二电池接口与所述第三极耳、所述电芯本体、所述第二极耳和所述第一保护电路构成第二导电回路;
    所述第一保护电路用于检测所述第一导电回路与所述第二导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第一保护电路断开所述第一导电回路与所述第二导电回路。
  3. 根据权利要求1或2所述的电池模组,其特征在于,
    所述第一极耳、所述第二极耳和所述第三极耳均设置在所述电芯本体的第一侧;或者
    所述第一极耳和所述第二极耳设置在所述电芯本体的第一侧,所述第三极耳设置在所述电芯本体的第二侧;或者
    所述第一极耳和所述第三极耳设置在所述电芯本体的第一侧,所述第二极耳设置在所述电芯本体的第二侧;或者
    所述第一极耳设置在所述电芯本体的第一侧,所述第二极耳设置在所述电芯本体的第二侧,所述第三极耳设置在所述电芯本体的第三侧。
  4. 根据权利要求1或2所述的电池模组,其特征在于,所述第一极耳、所述第二极耳和所述第三极耳均设置在所述电芯本体的第一侧,所述第一极耳和所述第三极耳分别设置在所述第二极耳的两侧。
  5. 根据权利要求1-4任意一项所述的电池模组,其特征在于,还包括第四极耳、第五极耳和第六极耳;所述第四极耳、所述第五极耳和所述第六极耳分别与所述电芯本体电连接;所 述第四极耳和所述第六极耳具有所述第一极性,所述第五极耳具有所述第二极性;或者,所述第四极耳和所述第六极耳具有所述第二极性,所述第五极耳具有所述第一极性;
    所述第五极耳与所述第四极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流;
    所述第五极耳与所述第六极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。
  6. 根据权利要求5所述的电池模组,其特征在于,还包括第二电池保护板,所述第二电池保护板包括第二保护电路、第三电池接口和第四电池接口;所述第三电池接口和第四电池接口用于与所述电池模组外部的元件电性连接;
    所述第三电池接口通过所述第二保护电路分别与所述第五极耳与所述第四极耳电性连接,所述第三电池接口与所述第四极耳、所述电芯本体、所述第五极耳和所述第二保护电路构成第三导电回路;
    所述第四电池接口通过所述第二保护电路分别与所述第五极耳与所述第六极耳电性连接,所述第四电池接口与所述第六极耳、所述电芯本体、所述第五极耳和所述第二保护电路构成第四导电回路;
    所述第二保护电路用于检测所述第三导电回路与所述第四导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第二保护电路断开所述第三导电回路与所述第四导电回路。
  7. 根据权利要求6所述的电池模组,其特征在于,所述第一保护电路与所述第二保护电路具有相同的电路结构。
  8. 根据权利要求5-7任意一项所述的电池模组,其特征在于,所述第一极耳、所述第二极耳和所述第三极耳均设置在所述电芯本体的第一侧,所述第四极耳、所述第五极耳和所述第六极耳均设置在所述电芯本体的第二侧;
    所述电芯本体的第一侧和所述电芯本体的第二侧为所述电芯本体中相对的两侧;或者,所述电芯本体的第一侧和所述电芯本体的第二侧为所述电芯本体中相邻的两侧;或者,所述电芯本体的第一侧和所述电芯本体的第二侧为所述电芯本体中相间隔的两侧。
  9. 根据权利要求1-8任意一项所述的电池模组,其特征在于,所述第一保护电路包括第一保护控制单元、第一采样单元与第一开关单元;
    所述第一保护控制单元分别与所述第一导电回路和所述第二导电回路电性连接,所述第一保护控制单元检测所述第一导电回路和所述第二导电回路的电压;
    所述第一采样单元分别与所述第二极耳、所述第一保护控制单元和所述第一开关单元电性连接,所述第一保护控制单元通过所述第一采样单元检测所述第一导电回路和所述第二导电回路的电流;
    所述第一开关单元分别与第一保护控制单元、所述第一采样单元、所述第一电池接口和所述第二电池接口电性连接;
    所述第一保护控制单元用于判断所述第一导电回路或所述第二导电回路的电压或电流超过第一阈值范围时,控制所述开关单元断开,以断开所述第一导电回路与所述第二导电回路。
  10. 根据权利要求9所述的电池模组,其特征在于,所述第一开关单元包括第一开关与第二开关,所述第一开关位于所述第一导电回路中,所述第二开关位于所述第二导电回路中。
  11. 根据权利要求9所述的电池模组,其特征在于,所述第一保护电路还包括第二保护控制单元与第二开关单元,
    所述第二保护控制单元分别与所述第一导电回路和所述第二导电回路电性连接,所述第二保护控制单元检测所述第一导电回路和所述第二导电回路的电压;
    所述第二保护控制单元与所述第一采样单元电性连接,用于通过所述第一采样单元检测所述第一导电回路和所述第二导电回路的电流;
    所述第二开关单元分别与所述第二保护控制单元、所述第一开关单元、所述第一电池接口和所述第二电池接口电性连接;
    所述第二保护控制单元用于判断所述第一导电回路或所述第二导电回路的电压或电流超过第二阈值范围时,控制所述第二开关单元断开,以断开所述第一导电回路与所述第二导电回路。
  12. 根据权利要求11所述的电池模组,其特征在于,所述第一阈值范围与所述第二阈值范围相同,或者,所述第一阈值范围小于或大于所述第二阈值范围。
  13. 根据权利要求11所述的电池模组,其特征在于,所述第二开关单元包括第三开关与第四开关,所述第三开关位于所述第一导电回路中,所述第四开关位于所述第二导电回路中。
  14. 根据权利要求1-4任一项所述的电池模组,其特征在于,所述电芯为卷绕式结构;
    所述电芯包含一个具有所述第一极性的第一极片和一个具有所述第二极性的第二极片;
    所述第一极耳和所述第三极耳设置在所述第一极片上,所述第二极耳设置在所述第二极片上;
    所述第一极片和所述第二极片卷绕形成具有三个极耳的所述电芯,所述第一极耳、所述第二极耳和所述第三极耳处于所述电芯的不同位置。
  15. 根据权利要求5-8任一项所述的电池模组,其特征在于,所述电芯为卷绕式结构;
    所述电芯包含一个具有所述第一极性的第一极片和一个具有所述第二极性的第二极片;
    所述第一极耳、所述第三极耳、所述第四极耳和所述第六极耳设置在所述第一极片上,所述第二极耳和所述第五极耳设置在所述第二极片上;
    所述第一极片和所述第二极片卷绕形成具有六个极耳的所述电芯,所述第一极耳、所述第二极耳、所述第三极耳、所述第四极耳、所述第五极耳和所述第六极耳处于所述电芯的不同位置。
  16. 根据权利要求1-4任一项所述的电池模组,其特征在于,所述电芯为叠片式结构;
    所述电芯包含至少两个具有所述第一极性的第一极片和至少两个具有所述第二极性的第二极片;
    每个所述第一极片上设置第一子极耳和第三子极耳,每个所述第二极片上设置第二子极 耳;
    所有的所述第一极片和所有的所述第二极片叠加形成所述电芯,所有的所述第一子极耳电性连接形成所述第一极耳,所述的所述第二子极耳电性连接形成所述第二极耳,所有的所述第三子极耳电性连接形成所述第三极耳;所述第一极耳、所述第二极耳和所述第三极耳处于所述电芯的不同位置。
  17. 根据权利要求5-8任一项所述的电池模组,其特征在于,所述电芯为叠片式结构;
    所述电芯包含至少两个具有所述第一极性的第一极片和至少两个具有所述第二极性的第二极片;
    每个所述第一极片上设置第一子极耳、第三子极耳、第四子极耳和第六子极耳,每个所述第二极片上设置第二子极耳和第五子极耳;
    所有的所述第一极片和所有的所述第二极片叠加形成所述电芯,所有的所述第一子极耳电性连接形成所述第一极耳,所述的所述第二子极耳电性连接形成所述第二极耳,所有的所述第三子极耳电性连接形成所述第三极耳,所有的所述第四子极耳电性连接形成所述第四极耳,所述的所述第五子极耳电性连接形成所述第五极耳,所有的所述第六子极耳电性连接形成所述第六极耳;所述第一极耳、所述第二极耳、所述第三极耳、所述第四极耳、所述第五极耳和所述第六极耳处于所述电芯的不同位置。
  18. 根据权利要求1-4任意一项所述的电池模组,其特征在于,还包括具有不同极性的第四极耳和第五极耳;所述第四极耳和所述第五极耳分别与所述电芯本体电连接;
    所述第五极耳与所述第四极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。
  19. 根据权利要求18所述的电池模组,其特征在于,所述第一极耳、所述第二极耳和所述第三极耳均设置在所述电芯本体的第一侧,所述第四极耳和所述第五极耳均设置在所述电芯本体的第二侧;
    所述电芯本体的第一侧和所述电芯本体的第二侧为所述电芯本体中相对的两侧;或者,所述电芯本体的第一侧和所述电芯本体的第二侧为所述电芯本体中相邻的两侧;或者,所述电芯本体的第一侧和所述电芯本体的第二侧为所述电芯本体中相间隔的两侧。
  20. 根据权利要求14所述的电池模组,其特征在于,所述第一极耳设置在所述第一极片上的一端与所述第三极耳设置在所述第一极片上的一端相连。
  21. 根据权利要求1-20任一项所述的电池模组,其特征在于:
    所述第二极耳包括具有相同极性的第一子极耳和第二子极耳;
    其中,
    所述第一子极耳与所述第一极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流;
    所述第二子极耳与所述第三极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。
  22. 根据权利要求1-21任一项所述的电池模组,其特征在于:
    所述电芯本体的形状为长方形、正方形或异形;或者
    所述电芯本体的部分为穿透结构或者非穿透结构。
  23. 一种电池模组,其特征在于,包括电芯;
    所述电芯包括电芯本体、第一极耳、第二极耳、第三极耳与第四极耳;
    所述第一极耳、所述第二极耳、所述第三极耳与所述第四极耳分别与所述电芯本体电连接;所述第一极耳和所述第三极耳具有第一极性,所述第二极耳与所述第四极耳具有第二极性;
    所述第二极耳与所述第一极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流;
    所述第四极耳与所述第三极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流;
    所述第一极性为正极性,所述第二极性为负极性;或者,所述第一极性为负极性,所述第二极性为正极性。
  24. 根据权利要求23所述的电池模组,其特征在于,
    所述第一极耳、所述第二极耳设置于所述电芯本体的第一侧,所述第三极耳和所述第四极耳设置在所述电芯本体的第二侧;或者
    所述第一极耳设置在所述电芯本体的第一侧,所述第二极耳、所述第三极耳以及所述第四极耳设置在所述电芯本体的第二侧。
  25. 根据权利要求23或24所述的电池模组,其特征在于,还包括:第一电池保护板和第二电池保护板;所述第一电池保护板包括第一保护电路和第一电池接口,所述第二电池保护板包括第二保护电路和第二电池接口;
    所述第一电池接口通过所述第一保护电路分别与所述第二极耳和所述第一极耳电性连接,所述第一电池接口与所述第一极耳、所述电芯本体、所述第二极耳和所述第一保护电路构成第一导电回路;
    所述第二电池接口通过所述第二保护电路分别与所述第三极耳和所述第四极耳电性连接,所述第二电池接口与所述第三极耳、所述电芯本体、所述第四极耳和所述第二保护电路构成第二导电回路;
    所述第一保护电路用于检测所述第一导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第一保护电路断开所述第一导电回路;
    所述第二保护电路用于检测所述第二导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第二保护电路断开所述第二导电回路。
  26. 根据权利要求23-25任一项所述的电池模组,其特征在于,所述电芯为卷绕式结构;
    所述电芯本体包含一个具有所述第一极性的第一极片和一个具有所述第二极性的第二极片;
    所述第一极耳和所述第三极耳设置在所述第一极片上;
    所述第二极耳和所述第四极耳设置在所述第二极片上;
    所述第一极片和所述第二极片卷绕形成具有四个极耳的所述电芯本体,所述第一极耳、所述第二极耳、所述第三极耳和所述第四极耳处于所述电芯本体的不同位置。
  27. 根据权利要求23-25任一项所述的电池模组,其特征在于,所述电芯本体为叠片式结构;
    所述电芯本体包含至少两个具有所述第一极性的第一极片和至少两个具有所述第二极性的第二极片;
    每个所述第一极片上设置第一子极耳和第三子极耳;
    每个所述第二极片上设置第二子极耳和第四子极耳;
    所有的所述第一极片和所有的所述第二极片叠加形成所述电芯本体,所有的所述第一子极耳电性连接形成所述第一极耳,所有的所述第二子极耳电性连接形成所述第二极耳,所有的所述第三子极耳电性连接形成所述第三极耳,所有的所述第四子极耳电性连接形成所述第四极耳;
    所述第一极耳、所述第二极耳、所述第三极耳和所述第四极耳处于所述电芯本体的不同位置。
  28. 根据权利要求23-27任意一项所述的电池模组,其特征在于,所述电芯还包括:第五极耳和第六极耳;
    所述第五极耳和所述第六极耳分别与所述电芯本体电连接;所述第五极耳与第一极耳和所述第三极耳具有相同的极性,所述第六极耳与所述第二极耳与所述第四极耳具有相同的极性;
    所述第五极耳与所述第六极耳配合能够向所述电芯本体输入电压和电流或者能够从所述电芯本体输出电压和电流。
  29. 根据权利要求28所述的电池模组,其特征在于,所述第五极耳与所述第六极耳设置在所述电芯本体的第三侧。
  30. 根据权利要求28或29所述的电池模组,其特征在于,还包括:第三电池保护板,所述第三电池保护板包括第三保护电路和第三电池接口;
    所述第三电池接口通过所述第三保护电路分别与所述第五极耳和所述第六极耳电性连接,所述第三电池接口与所述第五极耳、所述电芯本体、所述第六极耳和所述第三保护电路构成第三导电回路;
    所述第三保护电路用于检测所述第三导电回路的电压与电流,当所述电压或者所述电流超过阈值范围时,所述第三保护电路断开所述第三导电回路。
  31. 根据权利要求30所述的电池模组,其特征在于,所述电芯为卷绕式结构;
    所述电芯本体包含一个具有所述第一极性的第一极片和一个具有所述第二极性的第二极片;
    所述第一极耳、所述第三极耳和所述第五极耳设置在所述第一极片上;
    所述第二极耳、所述第四极耳和所述第六极耳设置在所述第二极片上;
    所述第一极片和所述第二极片卷绕形成具有六个极耳的所述电芯本体,所述第一极耳、 所述第二极耳、所述第三极耳、所述第四极耳、所述第五极耳和所述第六极耳处于所述电芯本体的不同位置。
  32. 根据权利要求31所述的电池模组,其特征在于,所述电芯本体为叠片式结构;
    所述电芯本体包含至少两个具有所述第一极性的第一极片和至少两个具有所述第二极性的第二极片;
    每个所述第一极片上设置第一子极耳、第三子极耳和第五子极耳;
    每个所述第二极片上设置第二子极耳、第四子极耳和第六子极耳;
    所有的所述第一极片和所有的所述第二极片叠加形成所述电芯本体,所有的所述第一子极耳电性连接形成所述第一极耳,所有的所述第二子极耳电性连接形成所述第二极耳,所有的所述第三子极耳电性连接形成所述第三极耳,所有的所述第四子极耳电性连接形成所述第四极耳,所有的所述第五子极耳电性连接形成所述第五极耳,所有的所述第六子极耳电性连接形成所述第六极耳;
    所述第一极耳、所述第二极耳、所述第三极耳、所述第四极耳、所述第五极耳和所述第六极耳处于所述电芯本体的不同位置。
  33. 根据权利要求23-32任一项所述的电池模组,其特征在于:
    所述电芯本体的形状为长方形、正方形或异形;或者
    所述电芯本体的部分为穿透结构或者非穿透结构。
  34. 一种充电模组,包括电路板与权利要求1-33任意一项所述的电池模组,所述电路板电性连接于所述电池模组;
    所述电路板电性用于接收外部提供的第一充电电压,将所述第一充电电压进行降压后得到电芯电压,并将所述电芯电压输出至所述电池模组。
  35. 根据权利要求34所述的充电模组,其特征在于,所述电路板包括第一电路板与第三电路板;
    所述第一电路板包括用于接收所述第一充电电压的接口,所述第一电路板将所述第一充电电压转换为第二充电电压,所述第一电路板将所述第二充电电压传输至所述第三电路板;
    所述第三电路板电性连接于所述电池模组,用于将所述第二充电电压转换为所述电芯电压并输出至所述电池模组。
  36. 根据权利要求34所述的充电模组,其特征在于,所述电路板包括第一电路板与第三电路板;
    所述第一电路板包括用于接收所述第一充电电压的接口,所述第一电路板将所述第一充电电压传输至所述第三电路板;
    所述第三电路板电性连接于所述电池模组,所述第三电路板用于将所述第一充电电压转换为所述电芯电压并输出至所述电池模组。
  37. 根据权利要求35或者36所述的充电模组,其特征在于,所述电路板还包括第二电路板,所述第一电路板与所述第三电路板设置于所述电池模组的相对两侧,所述第二电路板 跨越所述电芯本体分别电性连接所述第一电路板与所述第二电路板。
  38. 一种电子设备,包括功能电路与权利要求34-37任意一项所述的充电模组,所述充电模组用于为所述功能电路提供工作电源。
PCT/CN2020/116363 2019-09-25 2020-09-21 支持高功率快充的电池模组、充电模组和电子设备 WO2021057632A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/763,476 US20220344733A1 (en) 2019-09-25 2020-09-21 Battery Module, Charging Module, and Electronic Device that Support High-Power Fast Charging
JP2022519022A JP7369283B2 (ja) 2019-09-25 2020-09-21 高出力高速充電をサポートする電池モジュール、充電モジュールおよび電子デバイス
BR112022005264A BR112022005264A2 (pt) 2019-09-25 2020-09-21 Módulo de bateria, módulo de carregamento, e dispositivo eletrônico que suportam carregamento rápido de alta potência
EP20870279.5A EP4020654B1 (en) 2019-09-25 2020-09-21 Battery module supporting high-power fast charging, charging module and electronic device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910916013.6 2019-09-25
CN201910916013 2019-09-25
CN201910990087.4 2019-10-17
CN201910990087 2019-10-17
CN202010426700.2A CN112909344B (zh) 2019-09-25 2020-05-19 支持高功率快充的电池模组、充电模组和电子设备
CN202010426700.2 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021057632A1 true WO2021057632A1 (zh) 2021-04-01

Family

ID=75165059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116363 WO2021057632A1 (zh) 2019-09-25 2020-09-21 支持高功率快充的电池模组、充电模组和电子设备

Country Status (6)

Country Link
US (1) US20220344733A1 (zh)
EP (1) EP4020654B1 (zh)
JP (1) JP7369283B2 (zh)
CN (2) CN115275365A (zh)
BR (1) BR112022005264A2 (zh)
WO (1) WO2021057632A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207530023U (zh) * 2017-11-03 2018-06-22 维沃移动通信有限公司 一种电池及移动终端
US20180342759A1 (en) * 2015-11-30 2018-11-29 Gree Electric Appliances, Inc. Of Zhuhai Lithium-ion battery cell and lithium-ion battery
CN108987655A (zh) * 2017-05-31 2018-12-11 东莞新能源科技有限公司 电池
CN208352420U (zh) * 2018-06-13 2019-01-08 东莞塔菲尔新能源科技有限公司 一种多极耳电芯、多端子电池及电池模组
CN109904511A (zh) * 2018-05-14 2019-06-18 刘海云 低阻耗手机充电电池
CN110212148A (zh) * 2019-06-28 2019-09-06 江苏博煦电池科技有限公司 一种电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167188A (ja) * 1997-08-22 1999-03-09 Japan Storage Battery Co Ltd 二次電池用リード端子及びリチウム二次電池
CN102881946B (zh) * 2011-07-15 2015-03-25 深圳市吉阳自动化科技有限公司 一种锂离子电池电芯卷绕方法
KR20130091031A (ko) * 2012-02-07 2013-08-16 에스케이이노베이션 주식회사 배터리 셀
KR102103378B1 (ko) * 2015-12-10 2020-04-22 주식회사 엘지화학 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
CN110365074B (zh) * 2016-09-20 2022-02-11 华为技术有限公司 一种电池、终端以及充电系统
JP6952127B2 (ja) * 2017-04-07 2021-10-20 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 無線充電装置、被充電機器及びその制御方法
CN108649261A (zh) * 2018-06-07 2018-10-12 安徽海锂子新能源科技股份有限公司 一种便捷充电锂电池及其充电电路
CN109786844B (zh) * 2019-01-22 2021-05-04 华为技术有限公司 一种电池及其封装方法和终端
CN109830766A (zh) * 2019-01-31 2019-05-31 维沃移动通信有限公司 电池组件和终端
CN109950959B (zh) * 2019-03-26 2021-11-16 联想(北京)有限公司 电子设备及充电方法
WO2019174653A2 (zh) * 2019-06-17 2019-09-19 广东恒翼能科技有限公司 一种锂电池热失控预警保护系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180342759A1 (en) * 2015-11-30 2018-11-29 Gree Electric Appliances, Inc. Of Zhuhai Lithium-ion battery cell and lithium-ion battery
CN108987655A (zh) * 2017-05-31 2018-12-11 东莞新能源科技有限公司 电池
CN207530023U (zh) * 2017-11-03 2018-06-22 维沃移动通信有限公司 一种电池及移动终端
CN109904511A (zh) * 2018-05-14 2019-06-18 刘海云 低阻耗手机充电电池
CN208352420U (zh) * 2018-06-13 2019-01-08 东莞塔菲尔新能源科技有限公司 一种多极耳电芯、多端子电池及电池模组
CN110212148A (zh) * 2019-06-28 2019-09-06 江苏博煦电池科技有限公司 一种电池

Also Published As

Publication number Publication date
BR112022005264A2 (pt) 2022-06-14
EP4020654A4 (en) 2022-11-02
JP7369283B2 (ja) 2023-10-25
EP4020654A1 (en) 2022-06-29
JP2022550050A (ja) 2022-11-30
US20220344733A1 (en) 2022-10-27
CN115275364A (zh) 2022-11-01
EP4020654B1 (en) 2024-07-03
CN115275365A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN112909344B (zh) 支持高功率快充的电池模组、充电模组和电子设备
US20240149424A1 (en) Power tool system and battery pack thereof
CN102195314B (zh) 电池均衡电路及方法
CN110365074A (zh) 一种电池、终端以及充电系统
TW201924177A (zh) 用於充電站的變流器及對應的充電站
CN103607009A (zh) 一种带自动保护功能的充放电电路
CN105048607B (zh) 一种新型多输出锂电池电源装置及其控制方法
WO2015176577A1 (zh) 小型光伏汇流箱
CN209217098U (zh) 电能储存装置及电动工具
US20210218258A1 (en) Cell Protection Circuit and Electronic Device
CN101630859B (zh) 一种移动终端充电器
CN209217099U (zh) 电能储存装置及电动工具
WO2021057632A1 (zh) 支持高功率快充的电池模组、充电模组和电子设备
JP2009032690A (ja) 直並列回路を具備する燃料電池装置
US20100244772A1 (en) Battery module
EP3255702B1 (en) Battery pack
CN210380317U (zh) 一种组合式储能电站
US10056765B2 (en) Electrical energy storage apparatus having a balun for balancing voltages of storage cells
CN214176205U (zh) 电芯组件和电池模组
CN106450071B (zh) 电池包及其与电动工具的组合和连接它们的方法
RU2795296C1 (ru) Аккумуляторный модуль, зарядный модуль и электронное устройство, поддерживающие быстрый заряд с высокой мощностью
US20140024228A1 (en) Secondary battery pack formed by bridge connection of secondary battery cells and fuses
CN110854953A (zh) 一种电池充放电保护电路以及电池装置
CN204928304U (zh) 一种新型的两节锂电池芯电池组的充电及保护系统
CN210200850U (zh) 一种安全电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022005264

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020870279

Country of ref document: EP

Effective date: 20220325

ENP Entry into the national phase

Ref document number: 112022005264

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220321