WO2021057601A1 - 一种无人机飞行方法、装置和无人机 - Google Patents

一种无人机飞行方法、装置和无人机 Download PDF

Info

Publication number
WO2021057601A1
WO2021057601A1 PCT/CN2020/115969 CN2020115969W WO2021057601A1 WO 2021057601 A1 WO2021057601 A1 WO 2021057601A1 CN 2020115969 W CN2020115969 W CN 2020115969W WO 2021057601 A1 WO2021057601 A1 WO 2021057601A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
drone
unmanned aerial
aerial vehicle
distance
Prior art date
Application number
PCT/CN2020/115969
Other languages
English (en)
French (fr)
Inventor
钟自鸣
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021057601A1 publication Critical patent/WO2021057601A1/zh
Priority to US17/656,374 priority Critical patent/US20220214703A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/66Governor units providing for co-operation with control dependent upon a variable other than speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the embodiments of the present invention relate to the technical field of unmanned aerial vehicles, and in particular to an unmanned aerial vehicle flying method, device and unmanned aerial vehicle.
  • unmanned aerial vehicles With the development of unmanned aerial vehicle technology, unmanned aerial vehicles have been widely used in military and civilian fields, especially the rise of consumer-grade unmanned aerial vehicles, which has led to increasingly serious airspace security problems. Therefore, in order to ensure an orderly and safe flight in the airspace, there are strict restrictions on the flight of civil unmanned aerial vehicles in certain sensitive areas (such as airports), such as height restrictions, flight restrictions, and no-fly flights.
  • certain sensitive areas such as airports
  • a virtual electronic fence is constructed on the map of the unmanned aerial vehicle in the form of a software program to hinder or restrict the actual flight of the unmanned aerial vehicle in the electronic fence area.
  • the electronic fence is the boundary between the normal flight area and the restricted area.
  • the above-mentioned software program needs to ensure that the UAV normally flies in the normal flight area, responds to flight commands, and limits the height, hovering or even forced landing in the restricted area according to the corresponding restriction rules.
  • the inventor found that the above method has at least the following problems: when the unmanned aerial vehicle approaches the restricted area from the normal flight area, the speed of the unmanned aerial vehicle needs to be rapidly reduced. The situation where the aircraft crosses the electronic fence and rushes into the restricted area.
  • the purpose of the embodiments of the present invention is to provide an unmanned aerial vehicle flying method and device, and an unmanned aerial vehicle, which can reduce the distance for the unmanned aerial vehicle to cross the electronic fence and rush into the restricted area.
  • an embodiment of the present invention provides a drone flight method, the method is used in the drone, and is characterized in that the method includes:
  • the virtual resistance is obtained according to a virtual impedance model.
  • the obtaining a speed command according to the virtual resistance includes:
  • the speed command is obtained according to the expected acceleration.
  • the method further includes:
  • the virtual resistance is unloaded.
  • the virtual impedance model includes at least any one of a virtual spring, a virtual damping, and a virtual mass.
  • an embodiment of the present invention provides an unmanned aerial vehicle flying device, the device is used for an unmanned aerial vehicle, and the device includes:
  • the distance acquisition module is used to acquire the distance between the drone and the electronic fence
  • a virtual resistance applying module configured to apply virtual resistance to the drone when the distance is less than a preset distance threshold
  • the speed command acquisition module is used to obtain a speed command according to the virtual resistance so as to adjust the flying speed of the drone according to the speed command.
  • the virtual resistance is obtained according to a virtual impedance model.
  • the speed command acquisition module is specifically used for:
  • the speed command is obtained according to the expected acceleration.
  • the device further includes:
  • the virtual resistance unloading module is configured to unload the virtual resistance when the distance is greater than the preset distance threshold.
  • the virtual impedance model includes at least any one of a virtual spring, a virtual damping, and a virtual mass.
  • an embodiment of the present invention provides an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes a fuselage, an arm connected to the fuselage, a power system provided on the arm, and an unmanned aerial vehicle.
  • At least one processor and,
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the foregoing method.
  • an embodiment of the present invention provides a non-volatile computer-readable storage medium, characterized in that the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are When the drone is executed, the drone is made to execute the above-mentioned method.
  • the embodiments of the present application also provide a computer program product
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium
  • the computer program includes program instructions, when the When the program instructions are executed by the drone, the drone is caused to execute the above-mentioned method.
  • the drone flying method, device and drone of the embodiments of the present invention when the distance between the drone and the electronic fence is less than the preset distance threshold, a virtual resistance is applied to it, and a speed command is obtained according to the virtual resistance, To adjust the flying speed of the drone.
  • the embodiment of the present invention can reduce the speed of the drone, thereby reducing the distance for the drone to rush into the restricted area, and pulling the drone back to the normal flight area outside the electronic fence as soon as possible.
  • FIG. 1 is a schematic diagram of an application scenario of an unmanned aerial vehicle flying method and device according to an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of an embodiment of the unmanned aerial vehicle of the present invention.
  • FIG. 3 is a schematic flowchart of an embodiment of the drone flight method of the present invention.
  • Figure 4 is a schematic diagram of a virtual impedance model in an embodiment of the drone flight method of the present invention.
  • Figure 5 is a schematic structural diagram of an embodiment of the drone flying device of the present invention.
  • Figure 6 is a schematic structural diagram of an embodiment of the drone flying device of the present invention.
  • Fig. 7 is a schematic diagram of the hardware structure of the flight controller in an embodiment of the unmanned aerial vehicle of the present invention.
  • the drone flight method and device provided by the embodiments of the present invention can be applied to the application scenario shown in FIG. 1.
  • the drone 100 and the electronic fence 200 are included.
  • the UAV 100 may be suitable unmanned aerial vehicles including fixed-wing unmanned aerial vehicles and rotary-wing unmanned aerial vehicles, such as helicopters, quadrotors, and aircraft with other numbers of rotors and/or rotor configurations.
  • the UAV 100 may also be other movable objects, such as a manned aircraft, a model airplane, an unmanned airship, and an unmanned hot air balloon.
  • the electronic fence 200 is a kind of virtual fence, which is a virtual electronic fence constructed on the flight map of the drone through a software program. The electronic fence is used to distinguish between the normal flight area and the restricted area. In the normal flight area, the drone can To achieve normal flight, in response to flight commands, drones in restricted areas need to limit height, hover or even force landing in accordance with corresponding restrictions.
  • UAV 100 includes a fuselage, an arm connected to the fuselage, a power system provided on the arm, and a control system (airframe) provided on the fuselage 10 , Arm, power system and control system are not shown in the figure).
  • the power system is used to provide thrust, lift, etc. for the flight of the UAV 100, and includes an electronic governor 20, a motor 30, and blades (not shown in the figure).
  • the control system includes a flight controller 10 for sending a throttle control signal (such as a speed command) and other control signals to the electronic governor 20.
  • the electronic speed governor 20 is used to adjust the rotation speed of the motor 30 according to the control signal sent by the flight controller 10, and the motor 30 is used to drive the blades of the drone 100 to rotate so as to provide power for the flight of the drone 100.
  • the embodiment of the present invention applies a virtual resistance to the UAV 100 when it approaches the boundary of the electronic fence, and then obtains a speed command according to the virtual resistance, and according to the speed command Adjust the flying speed of the drone.
  • the embodiment of the present invention can reduce the flying speed of the drone 100, thereby reducing the distance for the drone to rush into the restricted area.
  • the application of virtual resistance to the UAV described in the embodiment of the present invention does not actually apply force to the UAV, but introduces the virtual drag into the control strategy of the UAV, thereby obtaining the introduction of virtual resistance.
  • the desired speed after resistance is the speed command, and then the flying speed of the UAV is regulated according to the speed command to achieve the goal of overall and smooth speed reduction.
  • FIG. 3 is a schematic flowchart of a drone flight method provided by an embodiment of the present invention.
  • the method may be executed by a drone (for example, the drone 100 in FIG. 1, specifically, in some embodiments, The method is executed by the flight controller in the drone 100), as shown in Fig. 3, the method includes:
  • the drone obtains its own position and the position of each boundary point of the electronic fence in real time, and obtains the minimum distance of the distance between the drone and each boundary point, and the minimum distance is The distance between the drone and the electronic fence.
  • the distance between the drone and the electronic fence is less than the preset distance threshold, it means that the drone is already closer to the boundary of the electronic fence.
  • a virtual resistance is imposed on the drone at this time. Wherein, the virtual resistance does not actually act on the drone, but introduces the virtual resistance into the control strategy of the drone to adjust the flight of the drone.
  • the virtual resistance may be obtained according to a virtual impedance model, where the virtual impedance model may include at least any one of a virtual spring, a virtual damping, and a virtual mass. That is, the virtual impedance model includes one or more of virtual spring, virtual damping, and virtual mass.
  • the virtual impedance model includes virtual spring and virtual mass, or the virtual impedance model includes virtual spring, virtual damping, and virtual mass at the same time.
  • Figure 4 shows a virtual impedance model including virtual spring, virtual damping and virtual mass at the same time.
  • the virtual spring, the virtual damping and the virtual mass can be connected in series or in parallel, and the virtual resistance can be obtained according to the connection relationship between the virtual element of the impedance model and each virtual element.
  • the virtual resistance F resistance can be obtained by the following formula:
  • X is the displacement of the drone from the beginning of the virtual force to the boundary of the electronic fence
  • M is the mass of the virtual mass
  • K is the stiffness coefficient of the virtual spring
  • C is the damping coefficient of the virtual damping.
  • M, K and C can select appropriate parameters according to the boundary limit flight response requirements, for example, according to the maximum distance requirement or stabilization time requirement to rush into the restricted area.
  • the preset distance threshold can be set according to actual application conditions, such as 100 meters, 50 meters, 30 meters, and so on.
  • the UAV is subjected to a variety of forces, such as thrust, lift, and gravity. These forces work together to affect the acceleration of the UAV, which in turn affects the flight speed of the UAV.
  • the embodiment of the present invention applies a virtual resistance to the drone, that is, it is assumed that the drone is also subjected to a virtual resistance. This virtual resistance has the effect of reducing the acceleration of the drone, thereby reducing the speed of the drone.
  • the direction of resistance can be the opposite of the drone's flight speed.
  • the virtual drag can be introduced into the force synthesis, and the expected acceleration is calculated by introducing the synthetic force of the virtual drag, and then the expected speed is calculated, and the flying speed of the drone can be adjusted according to the expected speed.
  • v1 the speed after ⁇ t (that is, the desired speed)
  • v0 is the initial speed
  • v0 can pass through the UAV's speed sensor (such as ultrasonic speed sensor or airspeed tube) Etc.) Obtained by
  • the speed of the drone will continue to decrease.
  • the drone may be at a safe distance, or it may still be in a restricted area or the distance is less than the preset distance.
  • the distance threshold At the distance threshold. Therefore, in some embodiments of the present invention, the virtual resistance is not unloaded when the speed of the drone is reduced to zero. Under the effect of the virtual resistance, the drone will fly to the normal flight area, that is, it will be pushed back to safety. Distance. When the distance between the drone and the electronic fence boundary is greater than the preset distance threshold, the virtual resistance is unloaded. The embodiment of the present invention can ensure that the drone returns to a safe distance, and further improves flight safety.
  • the embodiment of the present invention when the distance between the drone and the electronic fence is less than the preset distance threshold, a virtual resistance is applied to it, and a speed command is obtained according to the virtual resistance to adjust the flying speed of the drone.
  • the embodiment of the present invention can reduce the flying speed of the drone, thereby reducing the distance for the drone to rush into the restricted area.
  • the embodiments of the present invention can make the drone's speed limit command near the electronic fence boundary smoother, avoid steeply deformed commands, and make the drone's boundary flight behavior more smooth and natural.
  • an embodiment of the present invention also provides an unmanned aerial vehicle flying device, which can be used for an unmanned aerial vehicle (for example, the unmanned aerial vehicle shown in FIG. 1), an unmanned aerial vehicle flying device 500 includes:
  • the distance obtaining module 501 is configured to obtain the distance between the drone and the electronic fence;
  • the virtual resistance applying module 502 is configured to apply virtual resistance to the drone if the distance is less than a preset distance threshold
  • the speed command acquisition module 503 is configured to obtain a speed command according to the virtual resistance, so as to adjust the flying speed of the drone according to the speed command.
  • the embodiments of the present invention when the distance between the drone and the electronic fence is less than the preset distance threshold, a virtual resistance is applied to it, and a speed command is obtained according to the virtual resistance to adjust the flying speed of the drone.
  • the embodiments of the present invention can reduce the flying speed of the drone, thereby reducing the distance for the drone to rush into the restricted area.
  • the embodiments of the present invention can make the drone's speed limit command near the electronic fence boundary smoother, avoid steeply deformed commands, and make the drone's boundary flight behavior more smooth and natural.
  • the virtual resistance is obtained according to a virtual impedance model.
  • the speed command acquisition module 503 is specifically used for:
  • the speed command is obtained according to the expected acceleration.
  • the device further includes:
  • the virtual resistance unloading module 504 is configured to unload the virtual resistance when the distance is greater than the preset distance threshold.
  • the virtual impedance model includes at least any one of a virtual spring, a virtual damping, and a virtual mass.
  • the above-mentioned device can execute the method provided in the embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the above-mentioned device can execute the method provided in the embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the methods provided in the embodiments of the present application please refer to the methods provided in the embodiments of the present application.
  • FIG. 7 is a schematic diagram of the hardware structure of the flight controller 10 in an embodiment of the unmanned aerial vehicle of the present invention. As shown in FIG. 7, the flight controller 10 includes:
  • One or more processors 11 and memory 12, one processor 11 is taken as an example in FIG. 7.
  • the processor 11 and the memory 12 may be connected by a bus or in other ways.
  • the connection by a bus is taken as an example.
  • the memory 12 can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as those corresponding to the drone flight method in the embodiments of the present application.
  • Program instructions/modules for example, the distance obtaining module 501, the virtual resistance applying module 502, and the speed command obtaining module 503 shown in FIG. 5.
  • the processor 11 executes various functional applications and data processing of the flight controller by running non-volatile software programs, instructions, and modules stored in the memory 12, that is, realizing the drone flight method of the foregoing method embodiment.
  • the memory 12 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the controller.
  • the memory 12 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 12 may optionally include memories remotely provided with respect to the processor 11, and these remote memories may be connected to the flight controller via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 12, and when executed by the one or more processors 11, the drone flight method in any of the foregoing method embodiments is executed, for example, the above-described diagram is executed. Steps 101 to 103 of the method in 3; realize the functions of modules 501-503 in Fig. 5 and modules 501-504 in Fig. 6.
  • the embodiment of the present application provides a non-volatile computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, as shown in FIG. 7
  • a processor 11 of the above-mentioned one or more processors can execute the drone flight method in any of the above-mentioned method embodiments, for example, execute the above-described method steps 101 to 103 in FIG. 3; implementation of FIG. 5
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each embodiment can be implemented by software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium, and the program can be stored in a computer readable storage medium. When executed, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

本发明实施例涉及一种无人机飞行方法、装置和无人机,所述方法包括:获取所述无人机与电子围栏的距离;如果所述距离小于预设距离阈值,则将虚拟阻力施加于所述无人机;根据所述虚拟阻力获得速度指令,以根据所述速度指令调整无人机的飞行速度。本发明实施例在无人机距离电子围栏的距离小于预设距离阈值时,为其施加一个虚拟阻力,并根据所述虚拟阻力获得速度指令,以调整无人机的飞行速度。本发明实施例可以降低无人机的加速度,从而减小无人机冲入限制区域的距离。

Description

一种无人机飞行方法、装置和无人机 技术领域
本发明实施例涉及无人飞行器技术领域,特别涉及一种无人机飞行方法、装置和无人机。
背景技术
随着无人机技术的发展,无人机在军事及民用领域都得到了广泛的应用,尤其是消费级无人机的兴起,导致空域安全问题日益严重。因此,为了保证空域有序及安全飞行,在某些敏感区域(例如机场)对民用无人飞行器的飞行有着严格限制,例如限高、限飞和禁飞等。
目前,对无人飞行器在敏感区域的限制通常通过电子围栏技术来实现,通过软件程序的形式在无人飞行器的地图上构建虚拟的电子围栏,以阻碍或者限制无人飞行器在电子围栏区域实际飞行。该电子围栏为正常飞行区域和限制区域的边界,上述软件程序需保证无人飞行器在正常飞行区域正常飞行,响应飞行命令,在限制区域按相应的限制规则限高、悬停甚至强制降落等。
在实现本发明过程中,发明人发现上述方法至少存在如下问题:在无人飞行器由正常飞行区域接近限制区域时,需要无人机速度迅速降低,然而由于惯性作用,不可避免的会出现无人飞行器跨越电子围栏冲入限制区域的情况。
发明内容
本发明实施例的目的是提供一种无人机飞行方法、装置和无人机,能减小无人机跨越电子围栏、冲入限制区域的距离。
第一方面,本发明实施例提供了一种无人机飞行方法,所述方法用 于无人机,其特征在于,所述方法包括:
获取所述无人机与电子围栏的距离;
如果所述距离小于预设距离阈值,则将虚拟阻力施加于所述无人机,以降低所述无人机的速度;
根据所述虚拟阻力获得速度指令,以根据所述速度指令调整无人机的飞行速度。
在其中一些实施例中,所述虚拟阻力根据虚拟阻抗模型获得。
在其中一些实施例中,所述根据所述虚拟阻力获得速度指令,包括:
将所述虚拟阻力与所述无人机受到的力进行矢量合成,获得合成力;
根据所述合成力获得所述无人机的期望加速度;
根据所述期望加速度获得所述速度指令。
在其中一些实施例中,所述方法还包括:
在所述距离大于所述预设距离阈值时,卸载所述虚拟阻力。
在其中一些实施例中,所述虚拟阻抗模型至少包括虚拟弹簧、虚拟阻尼和虚拟质量中的任意一种。
第二方面,本发明实施例提供了一种无人机飞行装置,所述装置用于无人机,所述装置包括:
距离获取模块,用于获取所述无人机与电子围栏的距离;
虚拟阻力施加模块,用于当所述距离小于预设距离阈值时,将虚拟阻力施加于所述无人机;
速度指令获取模块,用于根据所述虚拟阻力获得速度指令,以根据所述速度指令调整无人机的飞行速度。
在其中一些实施例中,所述虚拟阻力根据虚拟阻抗模型获得。
在其中一些实施例中,所述速度指令获取模块具体用于:
将所述虚拟阻力与所述无人机受到的力进行矢量合成,获得合成力;
根据所述合成力获得所述无人机的期望加速度;
根据所述期望加速度获得所述速度指令。
在其中一些实施例中,所述装置还包括:
虚拟阻力卸载模块,用于在所述距离大于所述预设距离阈值时,卸载所述虚拟阻力。
在其中一些实施例中,所述虚拟阻抗模型至少包括虚拟弹簧、虚拟阻尼和虚拟质量中的任意一种。
第三方面,本发明实施例提供了一种无人机,所述无人机包括机身、与所述机身相连的机臂、设于所述机臂的动力系统、设置于所述机身的飞行控制器;其中,所述飞行控制器包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的方法。
第四方面,本发明实施例提供了一种非易失性计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被无人机执行时,使所述无人机执行上述的方法。
第五方面,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被无人机执行时,使所述无人机执行上述的方法。
本发明实施例的无人机飞行方法、装置和无人机,在无人机距离电子围栏的距离小于预设距离阈值时,为其施加一个虚拟阻力,并根据所述虚拟阻力获得速度指令,以调整无人机的飞行速度。本发明实施例可以降低无人机的速度,从而减小无人机冲入限制区域的距离,尽快地将无人机拉回电子围栏外的正常飞行区域。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例无人机飞行方法和装置的应用场景示意图;
图2是本发明无人机的一个实施例的结构示意图;
图3是本发明无人机飞行方法的一个实施例的流程示意图;
图4是本发明无人机飞行方法的一个实施例中虚拟阻抗模型示意图;
图5是本发明无人机飞行装置的一个实施例的结构示意图;
图6是本发明无人机飞行装置的一个实施例的结构示意图;
图7是本发明无人机的一个实施例中飞行控制器的硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的无人机飞行方法和装置可以应用于如图1所示的应用场景,在图1所示的应用场景中,包括无人机100和电子围栏200。其中,无人机100可以为合适的无人飞行器包括固定翼无人飞行器和旋转翼无人飞行器,例如直升机、四旋翼机和具有其它数量的旋翼和/或旋翼配置的飞行器。无人机100还可以是其他可移动物体,例如载人飞行器、航模、无人飞艇、无人热气球等。电子围栏200是一种虚拟围栏,其是通过软件程序在无人机的飞行地图上构建的虚拟的电子围栏,该电子围栏用于区分正常飞行区域和限制区域,在正常飞行区域无人机可以实现正常飞行,响应飞行命令,在限制区域无人机需按相应的限制规则限高、悬停甚至强制降落。
其中,在一些实施例中,请参照图2,无人机100包括机身、与所述机身相连的机臂、设于机臂的动力系统和设于机身10的控制系统(机身、机臂、动力系统和控制系统图中均未示出)。动力系统用于提供无人机100飞行的推力、升力等,包括电子调速器20、电机30和桨叶(图中未示出)。控制系统包括飞行控制器10,用于向电子调速器20发送油门控制信号(例如速度指令)以及其他控制信号。电子调速器20用于根据飞行控制器10发送的控制信号调整电机30的转速,电机30用于 带动无人机100的桨叶旋转从而为无人机100的飞行提供动力。
无人机100在接近电子围栏边界由正常飞行区域向限制区域方向飞行时,由于惯性作用容易冲破电子围栏边界、冲进限制区域。为了减小无人机100冲进限制区域的距离,本发明实施例在无人机100接近电子围栏边界时,为其施加一个虚拟阻力,然后根据该虚拟阻力获得速度指令,并根据该速度指令调整无人机的飞行速度。本发明实施例可以降低无人机100的飞行速度,从而减小无人机冲入限制区域的距离。
需要说明的是,本发明实施例中所述的为无人机施加虚拟阻力,并非真正的将力作用于无人机,而是将该虚拟阻力引入无人机的控制策略,从而获得引入虚拟阻力后的期望速度即速度指令,进而根据该速度指令调控无人机的飞行速度,达到整体、平滑降速的目的。
图3为本发明实施例提供的一种无人机飞行方法的流程示意图,所述方法可以由无人机执行(例如图1中的无人机100,具体的,在一些实施例中,所述方法由无人机100中的飞行控制器执行),如图3所示,所述方法包括:
101:获取所述无人机与电子围栏的距离。
具体的,在其中一些实施例中,无人机实时的获取自身的位置和电子围栏边界各边界点的位置,并获得无人机距各边界点的距离中的最小距离,该最小距离即为无人机距离电子围栏的距离。
102:如果所述距离小于预设距离阈值,则将虚拟阻力施加于所述无人机。
如果无人机与电子围栏的距离小于预设距离阈值,说明无人机已经较接近电子围栏边界,为减小无人机冲入限制区域的距离,此时为无人机施加虚拟阻力。其中,所述虚拟阻力,并非真正作用于无人机,而是将该虚拟阻力引入无人机的控制策略,以对无人机的飞行进行调整。
在其中一些实施例中,可以根据虚拟阻抗模型获得所述虚拟阻力,其中,虚拟阻抗模型可以至少包括虚拟弹簧、虚拟阻尼和虚拟质量中的任意一种。即虚拟阻抗模型包括虚拟弹簧、虚拟阻尼和虚拟质量中的一种或者两种以上,例如虚拟阻抗模型包括虚拟弹簧和虚拟质量,或者虚 拟阻抗模型同时包括虚拟弹簧、虚拟阻尼和虚拟质量等等。
图4示出了同时包括虚拟弹簧、虚拟阻尼和虚拟质量的虚拟阻抗模型。虚拟弹簧、虚拟阻尼和虚拟质量之间可以串联或者并联,虚拟阻力可以根据阻抗模型的虚拟元件和各虚拟元件的连接关系获得。
以图4所示的实施例为例,虚拟阻力F 可以通过以下公式获得:
Figure PCTCN2020115969-appb-000001
其中,X为从施加虚拟力开始至电子围栏边界无人机的位移,M为虚拟质量的质量,K为虚拟弹簧的刚度系数,C为虚拟阻尼的阻尼系数。其中,M、K和C可以根据边界限飞响应要求选择合适的参数,例如根据冲入限制区域的最大距离要求或者稳定时间要求设定。
其中,预设距离阈值可以根据实际应用情况设定,例如100米、50米、30米等。
无人机在飞行过程中,受到多种力的作用,例如推力、升力、重力等。这些力共同作用影响着无人机的加速度,进而影响无人机的飞行速度。本发明实施例为无人机施加一虚拟阻力,即假设无人机还受到了一个虚拟阻力,这个虚拟阻力具有减小无人机的加速度,进而减小无人机的速度的作用,该虚拟阻力的方向可以是无人机飞行速度的反方向。
103:根据所述虚拟阻力获得速度指令,以根据所述速度指令调整无人机的飞行速度。
在本发明的其中一些实施例中,可以将所述虚拟阻力引入力的合成中,通过引入虚拟阻力的合成力计算期望加速度,进而计算期望速度,并根据期望速度调整无人机的飞行速度达到降速的目的。具体的,先将虚拟阻力与无人机受到的其他力进行矢量合成,获得合成力,然后根据动力学方程F=ma获得期望加速度a,再根据期望加速度a获得期望速度即速度指令。
由于无人机在短时间内的运动可以近似为加速度不变的匀加速直线运动,因此,在其中一些实施例中,每隔一段较短时间Δt计算一次期望速度。由匀加速直线运动,有v1=v0+aΔt,其中,v1为Δt后的速度(即期望速度),v0为初始速度,v0可以通过无人机的测速传感器 (例如超声波测速传感器或者空速管等)测量获得,由于a和Δt已知,则期望速度v1可以通过上式计算获得。如此每隔Δt获得一个期望速度(即速度指令),获得速度指令后飞行控制器将该速度指令发送至电子调速器,以使电子调速器根据该速度指令调整电机转速,进而调整无人机的飞行速度。
为无人机施加该虚拟阻力后,无人机速度将持续减小,当速度减小至零时,此时无人机有可能位于安全距离,也有可能仍然位于限制区域或者位于距离小于预设距离阈值处。因此,在本发明的一些实施例力中,无人机速度减小至零时并不卸载该虚拟阻力,在该虚拟阻力的作用下,无人机会向正常飞行区域飞行,即被推回安全距离处。当无人机距离电子围栏边界的距离大于预设距离阈值时,卸载虚拟阻力。本发明实施例可以确保无人机返回安全距离处,进一步提高了飞行安全。
本发明实施例在无人机距离电子围栏的距离小于预设距离阈值时,为其施加一个虚拟阻力,并根据所述虚拟阻力获得速度指令,以调整无人机的飞行速度。本发明实施例可以降低无人机的飞行速度,从而减小无人机冲入限制区域的距离。而且,本发明实施例可以使无人机在电子围栏边界附近的限速命令更加平滑,避免陡变型命令,使无人机的边界飞行行为更为流畅自然。
相应的,如图5所示,本发明实施例还提供了一种无人机飞行装置,所述装置可以用于无人机(例如图1所示的无人机),无人机飞行装置500包括:
距离获取模块501,用于获取所述无人机距离电子围栏的距离;
虚拟阻力施加模块502,用于如果所述距离小于预设距离阈值,则将虚拟阻力施加于所述无人机;
速度指令获取模块503,用于根据所述虚拟阻力获得速度指令,以根据所述速度指令调整无人机的飞行速度。
本发明实施例在无人机距离电子围栏的距离小于预设距离阈值时,为其施加一个虚拟阻力,并根据所述虚拟阻力获得速度指令,以调整无人机的飞行速度。本发明实施例可以降低无人机的飞行速度,从而减小 无人机冲入限制区域的距离。而且,本发明实施例可以使无人机在电子围栏边界附近的限速命令更加平滑,避免陡变型命令,使无人机的边界飞行行为更为流畅自然。
在其中一些实施例中,所述虚拟阻力根据虚拟阻抗模型获得。
在其中一些实施例中,速度指令获取模块503具体用于:
将所述虚拟阻力与所述无人机受到的力进行矢量合成,获得合成力;
根据所述合成力获得所述无人机的期望加速度;
根据所述期望加速度获得所述速度指令。
在其中一些实施例中,如图6所示,所述装置还包括:
虚拟阻力卸载模块504,用于在所述距离大于所述预设距离阈值时,卸载所述虚拟阻力。
在其中一些实施例中,所述虚拟阻抗模型至少包括虚拟弹簧、虚拟阻尼和虚拟质量中的任意一种。
需要说明的是,上述装置可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在装置实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
图7是本发明无人机的一个实施例中飞行控制器10的硬件结构示意图,如图7所示,飞行控制器10包括:
一个或多个处理器11以及存储器12,图7中以一个处理器11为例。
处理器11和存储器12可以通过总线或者其他方式连接,图7中以通过总线连接为例。
存储器12作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的无人机飞行方法对应的程序指令/模块(例如,附图5所示的距离获取模块501、虚拟阻力施加模块502和速度指令获取模块503)。处理器11通过运行存储在存储器12中的非易失性软件程序、指令以及模块,从而执行飞行控制器的各种功能应用以及数据处理,即实现上述方法实施例的无人机飞行方法。
存储器12可以包括存储程序区和存储数据区,其中,存储程序区可 存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据控制器的使用所创建的数据等。此外,存储器12可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器12可选包括相对于处理器11远程设置的存储器,这些远程存储器可以通过网络连接至飞行控制器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器12中,当被所述一个或者多个处理器11执行时,执行上述任意方法实施例中的无人机飞行方法,例如,执行以上描述的图3中的方法步骤101至步骤103;实现图5中的模块501-503、图6中的模块501-504的功能。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图7中的一个处理器11,可使得上述一个或多个处理器可执行上述任意方法实施例中的无人机飞行方法,例如,执行以上描述的图3中的方法步骤101至步骤103;实现图5中的模块501-503、图6中的模块501-504的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存 储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种无人机飞行方法,所述方法用于无人机,其特征在于,所述方法包括:
    获取所述无人机与电子围栏的距离;
    如果所述距离小于预设距离阈值,则将虚拟阻力施加于所述无人机;
    根据所述虚拟阻力获得速度指令,以根据所述速度指令调整无人机的飞行速度。
  2. 根据权利要求1所述的方法,其特征在于,所述虚拟阻力根据虚拟阻抗模型获得。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述虚拟阻力获得速度指令,包括:
    将所述虚拟阻力与所述无人机受到的力进行矢量合成,获得合成力;
    根据所述合成力获得所述无人机的期望加速度;
    根据所述期望加速度获得所述速度指令。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述方法还包括:
    在所述距离大于所述预设距离阈值时,卸载所述虚拟阻力。
  5. 根据权利要求2所述的方法,其特征在于,所述虚拟阻抗模型至少包括虚拟弹簧、虚拟阻尼和虚拟质量中的任意一种。
  6. 一种无人机飞行装置,所述装置用于无人机,其特征在于,所述装置包括:
    距离获取模块,用于获取所述无人机与电子围栏的距离;
    虚拟阻力施加模块,用于当所述距离小于预设距离阈值时,将虚拟 阻力施加于所述无人机;
    速度指令获取模块,用于根据所述虚拟阻力获得速度指令,以根据所述速度指令调整无人机的飞行速度。
  7. 根据权利要求6所述的装置,其特征在于,所述虚拟阻力根据虚拟阻抗模型获得。
  8. 根据权利要求6或7所述的装置,其特征在于,所述速度指令获取模块具体用于:
    将所述虚拟阻力与所述无人机受到的力进行矢量合成,获得合成力;
    根据所述合成力获得所述无人机的期望加速度;
    根据所述期望加速度获得所述速度指令。
  9. 根据权利要求6-8任意一项所述的装置,其特征在于,所述装置还包括:
    虚拟阻力卸载模块,用于在所述距离大于所述预设距离阈值时,卸载所述虚拟阻力。
  10. 根据权利要求7所述的装置,其特征在于,所述虚拟阻抗模型至少包括虚拟弹簧、虚拟阻尼和虚拟质量中的任意一种。
  11. 一种无人机,其特征在于,所述无人机包括机身、与所述机身相连的机臂、设于所述机臂的动力系统、设置于所述机身的飞行控制器;其中,所述飞行控制器包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-5任一项所述的方法。
  12. 一种非易失性计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被无人机执行时,使所述无人机执行如权利要求1-5任一项所述的方法。
PCT/CN2020/115969 2019-09-26 2020-09-17 一种无人机飞行方法、装置和无人机 WO2021057601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/656,374 US20220214703A1 (en) 2019-09-26 2022-03-24 Flight method and apparatus for unmanned aerial vehicle and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910917052.8A CN110673631B (zh) 2019-09-26 2019-09-26 一种无人机飞行方法、装置和无人机
CN201910917052.8 2019-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/656,374 Continuation US20220214703A1 (en) 2019-09-26 2022-03-24 Flight method and apparatus for unmanned aerial vehicle and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2021057601A1 true WO2021057601A1 (zh) 2021-04-01

Family

ID=69079274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115969 WO2021057601A1 (zh) 2019-09-26 2020-09-17 一种无人机飞行方法、装置和无人机

Country Status (3)

Country Link
US (1) US20220214703A1 (zh)
CN (1) CN110673631B (zh)
WO (1) WO2021057601A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671986A (zh) * 2021-07-28 2021-11-19 合肥工业大学 空地协同下无人机与车辆的任务分配方法和系统
CN113829347A (zh) * 2021-09-30 2021-12-24 上海傅利叶智能科技有限公司 基于物理引擎的机器人控制方法、装置和康复机器人

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446041B1 (en) * 2018-08-23 2019-10-15 Kitty Hawk Corporation User interfaces for mutually exclusive three dimensional flying spaces
US10438495B1 (en) 2018-08-23 2019-10-08 Kitty Hawk Corporation Mutually exclusive three dimensional flying spaces
CN110673631B (zh) * 2019-09-26 2022-05-03 深圳市道通智能航空技术股份有限公司 一种无人机飞行方法、装置和无人机
CN113257045A (zh) * 2021-07-14 2021-08-13 四川腾盾科技有限公司 一种基于大型固定翼无人机电子围栏的无人机控制方法
CN113589849A (zh) * 2021-09-29 2021-11-02 普宙科技(深圳)有限公司 一种无人机动态控制方法、系统、设备及存储介质
CN113900444B (zh) * 2021-10-09 2024-02-23 广东汇天航空航天科技有限公司 一种飞行器的控制方法和装置
CN115833905B (zh) * 2022-11-08 2023-12-12 同济大学 一种地下空间移固协同检测方法及系统
CN116828132A (zh) * 2023-07-05 2023-09-29 广州磐碟塔信息科技有限公司 一种虚拟摄影的控制方法及其系统
CN116820139B (zh) * 2023-08-29 2023-12-12 陕西德鑫智能科技有限公司 基于电子围栏的导航控制方法、装置、无人机及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102650A (zh) * 2017-05-27 2017-08-29 河南科技大学 一种适用于高速环境的无人机动态路径规划方法
CN108549408A (zh) * 2018-05-29 2018-09-18 四川九洲空管科技有限责任公司 一种自动防撞地航迹规划方法及系统
CN109074089A (zh) * 2017-12-29 2018-12-21 深圳市大疆创新科技有限公司 无人机的控制方法、飞行控制器及无人机
US20190138029A1 (en) * 2018-12-27 2019-05-09 Intel Corporation Collision avoidance system, depth imaging system, vehicle, map generator and methods thereof
CN109814455A (zh) * 2019-01-31 2019-05-28 拓攻(南京)机器人有限公司 一种无人机的禁飞控制方法、装置、设备以及存储介质
CN110673631A (zh) * 2019-09-26 2020-01-10 深圳市道通智能航空技术有限公司 一种无人机飞行方法、装置和无人机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133506B2 (ja) * 2014-04-17 2017-05-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 飛行制限区域に対する飛行制御
CN104156595B (zh) * 2014-08-11 2015-06-24 北京航天自动控制研究所 飞行器的飞行轨迹指令的确定方法和装置
JP6759210B2 (ja) * 2014-12-19 2020-09-23 エアロバイロメント, インコーポレイテッドAerovironment, Inc. 無人航空機システム(uas)操縦の制御および制限のための監視安全システム
WO2016154949A1 (en) * 2015-03-31 2016-10-06 SZ DJI Technology Co., Ltd. Authentication systems and methods for generating flight regulations
US10114384B2 (en) * 2016-09-13 2018-10-30 Arrowonics Technologies Ltd. Formation flight path coordination of unmanned aerial vehicles
US10573188B2 (en) * 2016-10-23 2020-02-25 Gopro, Inc. Virtual wall mapping for aerial vehicle navigation
CN106898161A (zh) * 2017-02-28 2017-06-27 农芯科技(北京)有限责任公司 一种飞行器辅助驾驶系统和方法
CN107272681A (zh) * 2017-06-16 2017-10-20 深圳市可飞科技有限公司 自动调整移动平台与目标物体位置关系的方法及移动平台
CN107516437A (zh) * 2017-07-12 2017-12-26 哈尔滨理工大学 无人机空中运行安全管控系统及方法
CN110488867B (zh) * 2019-08-28 2021-11-23 中国人民解放军国防科技大学 一种基于改进虚拟力场的无人机集群护航行为生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102650A (zh) * 2017-05-27 2017-08-29 河南科技大学 一种适用于高速环境的无人机动态路径规划方法
CN109074089A (zh) * 2017-12-29 2018-12-21 深圳市大疆创新科技有限公司 无人机的控制方法、飞行控制器及无人机
CN108549408A (zh) * 2018-05-29 2018-09-18 四川九洲空管科技有限责任公司 一种自动防撞地航迹规划方法及系统
US20190138029A1 (en) * 2018-12-27 2019-05-09 Intel Corporation Collision avoidance system, depth imaging system, vehicle, map generator and methods thereof
CN109814455A (zh) * 2019-01-31 2019-05-28 拓攻(南京)机器人有限公司 一种无人机的禁飞控制方法、装置、设备以及存储介质
CN110673631A (zh) * 2019-09-26 2020-01-10 深圳市道通智能航空技术有限公司 一种无人机飞行方法、装置和无人机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671986A (zh) * 2021-07-28 2021-11-19 合肥工业大学 空地协同下无人机与车辆的任务分配方法和系统
CN113671986B (zh) * 2021-07-28 2022-10-18 合肥工业大学 空地协同下无人机与车辆的任务分配方法和系统
CN113829347A (zh) * 2021-09-30 2021-12-24 上海傅利叶智能科技有限公司 基于物理引擎的机器人控制方法、装置和康复机器人
CN113829347B (zh) * 2021-09-30 2023-08-15 上海傅利叶智能科技有限公司 基于物理引擎的机器人控制方法、装置和康复机器人

Also Published As

Publication number Publication date
US20220214703A1 (en) 2022-07-07
CN110673631B (zh) 2022-05-03
CN110673631A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2021057601A1 (zh) 一种无人机飞行方法、装置和无人机
JP6859350B2 (ja) 単一アーム故障冗長性を備えたマルチローター航空機
CN105620741B (zh) 一种飞行器控制方法及其控制的飞行器
US11117657B2 (en) Aeronautical apparatus
US11505315B2 (en) Flying object and flying object position control system
WO2022037376A1 (zh) 一种无人机保护方法及无人机
WO2020237528A1 (zh) 垂直起降无人机的飞行控制方法、设备及垂直起降无人机
NL2017971A (en) Unmanned aerial vehicle
WO2017095610A1 (en) Multirotor aircraft control systems
CN108572655B (zh) 飞行控制方法及相关装置
US20220371729A1 (en) Autonomous air vehicle delivery system incorporating deployment
US20210053670A1 (en) Aircraft with foldable tail
CA3052416A1 (en) Device and method for improving the pitch control of a fixed-wing aircraft in stall/post-stall regime
Wilson et al. Update on albatrossone semi aeroelastic hinge small scale flying demonstrator project
CN207389553U (zh) 一种扑翼飞行气球
Hassanalian et al. Analysis and optimization of a tilt rotor unmanned air vehicle for long distances delivery and payload transportation
CN111766888A (zh) 基于飞行器的控制方法以及飞行器
Taniguchi Analysis of deepstall landing for uav
TWI688519B (zh) 定翼機起飛系統及其方法
CN107792337A (zh) 一种扑翼飞行气球
Hayama et al. Trial production of variable pitch wing attached multicopter for power saving and long flight
WO2021035623A1 (zh) 一种飞行控制方法、设备及飞行器
CN118331319A (zh) 无人机投放控制方法、装置、设备、存储介质及程序产品
Chen et al. Identification and control of a hovering tiltrotor UAV
JP7242682B2 (ja) 無人航空機発射のパラシュート着陸方法及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869064

Country of ref document: EP

Kind code of ref document: A1