WO2021057589A1 - 信号的发送、接收方法及终端 - Google Patents

信号的发送、接收方法及终端 Download PDF

Info

Publication number
WO2021057589A1
WO2021057589A1 PCT/CN2020/115874 CN2020115874W WO2021057589A1 WO 2021057589 A1 WO2021057589 A1 WO 2021057589A1 CN 2020115874 W CN2020115874 W CN 2020115874W WO 2021057589 A1 WO2021057589 A1 WO 2021057589A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
ssb
terminal
pbch
information
Prior art date
Application number
PCT/CN2020/115874
Other languages
English (en)
French (fr)
Inventor
任晓涛
赵锐
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/637,404 priority Critical patent/US20220286985A1/en
Priority to EP20869605.4A priority patent/EP4037228A4/en
Priority to KR1020227012218A priority patent/KR20220063223A/ko
Publication of WO2021057589A1 publication Critical patent/WO2021057589A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method and terminal for sending and receiving signals.
  • a PC5 port (Sidelink, direct link) is used for direct communication between the terminal and the terminal.
  • the two terminals that need to communicate first need to establish synchronization on the PC5 port (Sidelink).
  • the method of establishing synchronization is that one terminal A sends synchronization and broadcast signals, and the other terminal B receives the synchronization and broadcast signals sent by terminal A. Once terminal B receives and demodulates successfully, the two terminals can establish synchronization. Communication is ready.
  • the synchronization signal of the NR UU port is carried by SSB (Synchronization Signal Block).
  • SSB Synchronization Signal Block
  • Each Slot carries 2 SSB blocks, and PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal) do not have a time domain repetition mechanism.
  • Beam scanning means that the base station sends the SSB once in each possible beam direction within a certain time interval (5ms). Then the terminal measures the SSB signal strength of each beam and reports the measurement result to the base station. The base station selects the most suitable beam to send data to the terminal according to the measurement result reported by the terminal. According to different carrier frequencies and different sub-carrier spacings, the number of beam scanning directions is also different. The maximum values of SSB beam scanning candidate directions in different carrier frequency ranges are: 4/8/64, and the number of actually configured beam scanning directions cannot exceed the maximum value.
  • a maximum of 3 synchronization subframes are configured on the Sidelink direct link every 160ms, and the UE (User Equipment, user equipment or terminal) is configured in these synchronization subframes.
  • the sidelink synchronization signal and broadcast information are sent and received, and when the UE sends and receives the synchronization signal and broadcast information on these synchronization subframes, beam scanning is not performed, and the coverage area of the synchronization signal and the broadcast information is small.
  • the embodiments of the present disclosure provide a signal transmission and reception method and a terminal, which solves the problem of the transmission and reception of synchronization signals and broadcast information that the terminal cannot perform in the case of beam scanning or beam repetition in the related art.
  • the embodiments of the present disclosure provide the following technical solutions:
  • a signal sending method, applied to a terminal, and the method includes:
  • a synchronization signal block SSB is sent;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH;
  • At least one of the following information is configured in a pre-configured manner, the PBCH, and at least one of the demodulation pilot reference signals DMRS and SSS corresponding to the PBCH:
  • the index number information of the currently sent SSB is the index number information of the currently sent SSB.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs sent by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually sent by the terminal in a synchronization period and/or the time domain location information of the SSB; the SSBs actually sent by the terminal in a synchronization period are synchronized in the configuration
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually sent by the terminal in a synchronization period and/or the time domain location information of the SSB; the SSBs actually sent by the terminal in a synchronization period are synchronized in the configuration It is continuous in subframes or time slots.
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N subframes or time slots, the SSB is sent in the synchronization subframes or time slots, and the consecutive M Synchronization subframes or time slots are a group of synchronization resources, N ⁇ 1, M ⁇ 1;
  • the configuration method of synchronization subframes or time slots includes: setting consecutive M available subframes or time slots every N direct link Synchronization subframes or time slots, SSB is sent in synchronization subframes or time slots, the consecutive M synchronization subframes or time slots are a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to represent the index number information of the SSB currently sent by the terminal.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time domain location information of the SSBs, and the index of the SSB currently sent by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently sent by the terminal At least one item of is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • the embodiment of the present disclosure also provides a signal receiving method, which is applied to a terminal, and the method includes:
  • a synchronization signal block SSB is received;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH;
  • At least one of the PBCH and the demodulation pilot reference signal DMRS and SSS corresponding to the PBCH is configured to configure at least one of the following information: the information of the SSB actually received by the terminal in a synchronization period Quantity information; time domain location information of the SSB; index number information of the currently received SSB.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs received by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period It is continuous in subframes or time slots.
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N subframes or time slots, the SSB is received in the synchronization subframes or time slots, and the consecutive M
  • the synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1; or,
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and the SSB is received in the synchronization subframes or time slots, and the continuous M
  • Each synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to indicate the index number information of the SSB currently received by the terminal.
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain location information of the SSBs, and the index of the SSB currently sent by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the secondary synchronization signal SSS is used for PBCH channel estimation and there is no DMRS
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently sent by the terminal At least one item is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • the embodiment of the present disclosure also provides a terminal, including: a processor, a transmitter, and a memory, the memory stores a program executable by the processor, and when the processor executes the program, the following is achieved:
  • a synchronization signal block SSB is sent;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH;
  • At least one of the following information is configured by means of pre-configuration, at least one of the PBCH, the demodulation pilot reference signal DMRS and SSS corresponding to the PBCH: Quantity information; time domain location information of the SSB; index number information of the currently sent SSB.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs sent by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually sent by the terminal in a synchronization period and/or the time domain location information of the SSB; the SSBs actually sent by the terminal in a synchronization period are synchronized in the configuration
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually sent by the terminal in a synchronization period and/or the time domain position information of the SSB; the SSBs actually sent by the terminal in a synchronization period are synchronized in the configuration It is continuous in subframes or time slots.
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N subframes or time slots, the SSB is sent in the synchronization subframes or time slots, and the consecutive M
  • the synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1; or,
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, SSB is sent in the synchronization subframes or time slots, and the continuous M Each synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to represent the index number information of the SSB currently sent by the terminal.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time domain location information of the SSBs, and the index of the SSB currently sent by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently sent by the terminal At least one item of is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • the embodiment of the present disclosure also provides a signal sending device, including:
  • the sending module is used to send a synchronization signal block SSB in a synchronization subframe or a time slot;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH; in a pre-configured manner, the PBCH, the At least one of the demodulation pilot reference signals DMRS and SSS corresponding to the PBCH is configured with at least one of the following information: information on the number of SSBs actually sent by the terminal in a synchronization period; time-domain location information of the SSB ; The index number information of the currently sent SSB.
  • the embodiment of the present disclosure also provides a terminal, including: a processor, a receiver, and a memory.
  • the memory stores a program executable by the processor, and when the processor executes the program, it realizes: Or in the case of beam repetition, in the synchronization subframe or time slot, the synchronization signal block SSB is received; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; the solutions corresponding to the PBCH and the PBCH At least one of the pilot reference signals DMRS and SSS carries at least one of the following information: the number of SSBs actually received by the terminal in a synchronization period; the time-domain position information of the SSBs; the information of the currently received SSBs Index number information.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs received by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period It is continuous in subframes or time slots.
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N subframes or time slots, the SSB is received in the synchronization subframes or time slots, and the consecutive M
  • the synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1; or,
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and the SSB is received in the synchronization subframes or time slots, and the continuous M
  • Each synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to indicate the index number information of the SSB currently received by the terminal.
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain position information of the SSBs, and the index of the SSB currently received by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently received by the terminal At least one item of is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • the embodiment of the present disclosure also provides a signal receiving device, including:
  • the receiving module is used to receive a synchronization signal block SSB in a synchronization subframe or a time slot;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH; in a pre-configured manner, the PBCH, the At least one of the demodulation pilot reference signals DMRS and SSS corresponding to the PBCH is configured with at least one of the following information: information on the number of SSBs actually sent by the terminal in a synchronization period; time domain location information of the SSB ; The index number information of the currently sent SSB.
  • Embodiments of the present disclosure also provide a computer storage medium, including instructions, which when run on a computer, cause the computer to execute the method as described above.
  • the synchronization signal block SSB is transmitted in a synchronization subframe or a time slot;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH; in a pre-configured manner, the At least one of the PBCH and the demodulation pilot reference signal DMRS and SSS corresponding to the PBCH is configured with at least one of the following information: information on the number of SSBs actually sent by the terminal in a synchronization period; time of the SSB Domain location information; the index number information of the currently sent SSB.
  • the terminal can complete the broadcast of the number of SSBs actually sent, the time domain position of the SSBs and the index number information through the above method, which not only reduces the signaling overhead, but also enables the terminal to complete the synchronization process according to the received SSB related information.
  • Figure 1 is a schematic diagram of the design of 5G NR V2X pass-through link synchronization signal block
  • FIG. 2 is a flowchart of a signal sending method provided by an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of the transmission period of service data and SSB in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the architecture of a terminal on the sending side provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of modules of a signal sending device provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the architecture of a terminal on the receiving side provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of modules of a signal receiving device provided by an embodiment of the present disclosure.
  • FIG. 1 it is the V2X Sidelink synchronous broadcast information design diagram.
  • the UE Before the UE is ready to perform service transmission on Sidelink, it first needs to obtain synchronization on Sidelink. In order to expand the coverage of the synchronization signal, P-SSS/S- The time domain of the SSS signal is repeated to enhance the detection performance of the synchronization signal.
  • a slot contains a synchronization signal block (SSB), and a synchronization signal block includes S-PSS (Sidelink Primary Synchronization Signal, direct link-primary synchronization signal), S-SSS (Sidelink Secondary Synchronization Signal, direct link- Secondary synchronization signal), S-PBCH (Sidelink Physical Broadcast Channel, direct link-physical broadcast channel) signal, and necessary DMRS (Demodulation Reference Signal, demodulation reference signal) signal.
  • S-PSS Systemlink Primary Synchronization Signal, direct link-primary synchronization signal
  • S-SSS Sidelink Secondary Synchronization Signal, direct link- Secondary synchronization signal
  • S-PBCH Sidelink Physical Broadcast Channel, direct link-physical broadcast channel
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the content included in PBCH includes:
  • SFN system frame
  • half radio frame sub-broadcast frame
  • ssb-SubcarrierOffset subcarrier offset of SSB
  • pdcch-ConfigSIB1 (Configuration SIB1 of the physical downlink control channel);
  • Cell related information cellBarred (cell access barring indication), intraFreqReselection (same frequency reselection: allowed).
  • NR PBCH Some content in NR PBCH is not applicable to V2X, so it does not appear in V2X PSBCH.
  • the frequency domain information pdcch-ConfigSIB1 in NR PBCH is used to indicate the time-frequency domain position of the initial BWP (initial bandwidth part) and the PDCCH (physical) (Downlink control channel) monitoring opportunity, this field can be omitted in V2X PSBCH, used to transmit other V2X information.
  • an embodiment of the present disclosure provides a method for sending a signal, which is applied to a terminal, and the method includes:
  • the synchronization signal block SSB is sent; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; in a pre-configured manner, the solution corresponding to the PBCH and the PBCH
  • At least one of the pilot reference signals DMRS and SSS is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; time-domain location information of the SSBs; currently sent SSBs The index number information.
  • the DMRS configures the index number information of the currently sent SSB.
  • information such as the number of SSBs sent by the terminal, the time domain position and index number of the SSBs can be determined, and a smaller load can be used to complete the actual transmission.
  • the broadcast of the number of SSBs, the time domain location of the SSBs, and the index number information not only reduces the signaling overhead, but also enables the terminal to complete the synchronization process according to the received SSB related information.
  • the frequency domain information pdcch-ConfigSIB1 in NR PBCH is used to indicate the time-frequency domain position of initial BWP (initialized bandwidth part) and PDCCH monitoring Timing, this field can be omitted in the V2X PSBCH, and is used to transmit information such as the number of SSBs sent by the V2X terminal, the time domain position and index number of the SSBs.
  • the maximum number of SSBs sent by the terminal in a period is related to the subcarrier interval SCS of the SSB, that is, the pre-configuration method is used to determine the number of SSBs that can be sent in a period according to the sidelink subcarrier interval (Sidelink SCS)
  • SCS sidelink subcarrier interval
  • the advantage of the method described in this embodiment is that it is simple and direct, does not occupy an air interface or Sidelink signaling, and has low overhead.
  • a signal sending method, applied to a terminal, and the method includes:
  • the synchronization signal block SSB is sent; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; in a pre-configured manner, the solution corresponding to the PBCH and the PBCH
  • At least one of the pilot reference signals DMRS and SSS is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; time-domain location information of the SSBs; currently sent SSBs The index number information.
  • 2 bits are used to indicate the number of SSBs and/or time-domain position information actually sent by the terminal in a period. Since there are only 2 bits, it can indicate the sending positions of 2 SSBs at most. At this time, the SSB actually sent by the terminal in a period may be discontinuously sent in the configured synchronization subframe or time slot, for example, a bitmap is used to map the time domain position of the SSB.
  • the method for configuring synchronization subframes or time slots may be: setting consecutive M synchronization subframes or time slots every N subframes or time slots, SSB is sent in the synchronization subframes or time slots, and the continuous M synchronization subframes Or a time slot is a set of synchronization resources, N ⁇ 1, M ⁇ 1; the interval of synchronization subframes or time slots is fixed to N subframes or time slots.
  • a large number of SSBs that actually need to be sent it is reduced
  • the service delay of the direct link is reduced, and the complexity and signaling overhead of the synchronization subframe or time slot configuration are reduced.
  • the method for configuring synchronization subframes or time slots can also be: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and the SSB is sent in the synchronization subframes or time slots.
  • Continuous M synchronization subframes or time slots are a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • N and/or M here is determined according to the subcarrier spacing SCS of the SSB.
  • Each square in the following table represents a synchronization subframe or time slot Slot, and SSB can only be sent in a synchronization subframe or time slot.
  • X indicates that the SSB is not sent in the synchronization subframe or time slot, and O indicates that the SSB is sent in the synchronization subframe or time slot.
  • 2 bits are used to notify the actual number of SSBs sent in a period and time domain location information, and the signaling overhead is relatively small.
  • a signal sending method, applied to a terminal, and the method includes:
  • the synchronization signal block SSB is sent; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; in a pre-configured manner, the solution corresponding to the PBCH and the PBCH
  • At least one of the pilot reference signals DMRS and SSS is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; time-domain location information of the SSBs; currently sent SSBs The index number information.
  • 4 bits are used to indicate the number of SSBs and/or time domain position information actually sent by the terminal in a period. Since there are 4 bits, it can indicate the sending positions of 4 SSBs at most. At this time, the SSB actually sent by the terminal in a period may be discontinuously sent in the configured synchronization subframe or time slot, for example, a bitmap method is used to map the time domain position of the SSB.
  • the method for configuring synchronization subframes or time slots may be: setting consecutive M synchronization subframes or time slots every N subframes or time slots, SSB is sent in the synchronization subframes or time slots, and the continuous M synchronization subframes Or a time slot is a set of synchronization resources, N ⁇ 1, M ⁇ 1; the interval of synchronization subframes or time slots is fixed to N subframes or time slots.
  • a large number of SSBs that actually need to be sent it is reduced
  • the service delay of the direct link is reduced, and the complexity and signaling overhead of the synchronization subframe or time slot configuration are reduced.
  • the method for configuring synchronization subframes or time slots can also be: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and the SSB is sent in the synchronization subframes or time slots.
  • Continuous M synchronization subframes or time slots are a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • N and/or M here is determined according to the subcarrier spacing SCS of the SSB.
  • each square in the following table represents a synchronization subframe or time slot, and the SSB can only be sent in the synchronization subframe or time slot.
  • X indicates that the SSB is not sent in the synchronization subframe or time slot, and O indicates that the SSB is sent in the synchronization subframe or time slot.
  • This embodiment uses 4 bits to notify the actual number of SSBs sent in a period and time-domain position information, which can accommodate information of 4 SSBs.
  • a signal sending method, applied to a terminal, and the method includes:
  • the synchronization signal block SSB is sent; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH, and the solution corresponding to the PBCH and the PBCH is pre-configured.
  • At least one of the pilot reference signals DMRS and SSS is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; time-domain location information of the SSBs; currently sent SSBs The index number information.
  • 1 bit is used to indicate the number of SSBs and/or time-domain location information actually sent by the terminal in a period.
  • the SSBs actually sent by the terminal in a period are continuously sent in the configured synchronization subframes or time slots.
  • 0 means sending 1 SSB
  • 1 means sending 2 SSBs continuously.
  • the method for configuring synchronization subframes or time slots may be: setting consecutive M synchronization subframes or time slots every N subframes or time slots, SSB is sent in the synchronization subframes or time slots, and the continuous M synchronization subframes Or a time slot is a set of synchronization resources, N ⁇ 1, M ⁇ 1; the interval of synchronization subframes or time slots is fixed to N subframes or time slots.
  • a large number of SSBs that actually need to be sent it is reduced
  • the service delay of the direct link is reduced, and the complexity and signaling overhead of the synchronization subframe or time slot configuration are reduced.
  • the method for configuring synchronization subframes or time slots can also be: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and the SSB is sent in the synchronization subframes or time slots.
  • Continuous M synchronization subframes or time slots are a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • N and/or M here is determined according to the subcarrier spacing SCS of the SSB.
  • each square in the following table represents a synchronization subframe or time slot, and the SSB can only be sent in the synchronization subframe or time slot.
  • X indicates that the SSB is not sent in the synchronization subframe or time slot, and O indicates that the SSB is sent in the synchronization subframe or time slot.
  • 1 bit is used to notify the actual number of SSBs sent in a period and time domain location information, and the signaling overhead is relatively small.
  • a signal sending method, applied to a terminal, and the method includes:
  • the synchronization signal block SSB is sent; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; in a pre-configured manner, the solution corresponding to the PBCH and the PBCH
  • At least one of the pilot reference signals DMRS and SSS is configured with at least one of the following information: the number of SSBs actually sent by the terminal in a synchronization period; the time-domain location information of the SSBs; the information of the currently sent SSBs Index number information.
  • 2 bits are used to indicate the number of SSBs and/or time-domain position information actually sent by the terminal in a period.
  • the SSBs actually sent by the terminal in a period are continuously sent in the configured synchronization subframes or time slots. For example, 00 means sending 1 SSB, and 01 means sending 2 SSBs continuously.
  • the method for configuring synchronization subframes or time slots may be: setting consecutive M synchronization subframes or time slots every N subframes or time slots, SSB is sent in the synchronization subframes or time slots, and the continuous M synchronization subframes Or a time slot is a set of synchronization resources, N ⁇ 1, M ⁇ 1; the interval of synchronization subframes or time slots is fixed to N subframes or time slots.
  • a large number of SSBs that actually need to be sent it is reduced
  • the service delay of the direct link is reduced, and the complexity and signaling overhead of the synchronization subframe or time slot configuration are reduced.
  • the method for configuring synchronization subframes or time slots can also be: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and the SSB is sent in the synchronization subframes or time slots.
  • Continuous M synchronization subframes or time slots are a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • N and/or M here is determined according to the subcarrier spacing SCS of the SSB.
  • each square in the following table represents a synchronization subframe or time slot, and the SSB can only be sent in the synchronization subframe or time slot.
  • X indicates that the SSB is not sent in the synchronization subframe or time slot, and O indicates that the SSB is sent in the synchronization subframe or time slot.
  • 2 bits are used to notify the actual number of SSBs sent in a period and time domain location information, and the signaling overhead is relatively small.
  • a signal sending method, applied to a terminal, and the method includes:
  • a synchronization signal block SSB is sent in a synchronization subframe or a time slot;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH, the PBCH and the PBCH
  • At least one of the corresponding demodulation pilot reference signals DMRS and SSS carries at least one of the following information: the number of SSBs actually sent by the terminal in a synchronization period; the time-domain position information of the SSBs; the currently sent SSB index number information.
  • 1 bit is used to indicate the index number information of the current terminal sending the SSB.
  • 0 indicates that the index number of the currently transmitted SSB is #0
  • 1 indicates that the index number of the currently transmitted SSB is #1.
  • each square in the table below represents a time slot, and the SSB can only be sent in a synchronization subframe or a time slot.
  • O indicates that the SSB is sent in the synchronization subframe or time slot.
  • This embodiment uses 1 bit to notify the index number information of the SSB currently being sent, and the signaling overhead is relatively small.
  • a signal sending method, applied to a terminal, and the method includes:
  • a synchronization signal block SSB is sent in a synchronization subframe or a time slot;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH;
  • the PBCH, the PBCH At least one of the corresponding demodulation pilot reference signals DMRS and SSS carries at least one of the following information: the number of SSBs actually sent by the terminal in a synchronization period; the time domain location information of the SSBs; the current sending The index number information of the SSB.
  • 2 bits are used to represent the index number information of the current terminal sending the SSB.
  • 00 indicates that the index number of the currently sent SSB is #0
  • 01 indicates that the index number of the currently sent SSB is #1, and so on.
  • each square in the following table represents a subframe or time slot, and SSB can only be sent in a synchronized subframe or time slot.
  • O indicates that the SSB is sent in the synchronization subframe or time slot. 4 SSBs are sent in one cycle.
  • This embodiment uses 2 bits to notify the index information of the SSB currently being sent, and the maximum number of SSBs that can be notified is 4.
  • a signal sending method, applied to a terminal, and the method includes:
  • the synchronization signal block SSB is sent; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; in a pre-configured manner, the solution corresponding to the PBCH and the PBCH
  • At least one of the pilot reference signals DMRS and SSS is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; time-domain location information of the SSBs; currently sent SSBs The index number information.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time-domain location information of the SSBs, and/or the index number information of the SSBs currently sent by the terminal are determined by the DMRS sequence And/or PBCH load carrying.
  • the number of SSBs actually sent by the terminal in a period and the time-domain position information are carried by 4 bits
  • the currently sent SSB index number information is carried by 2 bits
  • the DMRS sequence carries 3 bits of information
  • PBCH The payload carries the remaining 3 bits.
  • the advantage of this embodiment is that the DMRS sequence and the PBCH payload are used to jointly carry the information of the synchronization signal block, which reduces the signaling overhead.
  • a signal sending method, applied to a terminal, and the method includes:
  • the synchronization signal block SSB is sent; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; in a pre-configured manner, the solution corresponding to the PBCH and the PBCH
  • At least one of the pilot reference signals DMRS and SSS is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; time-domain location information of the SSBs; currently sent SSBs The index number information.
  • the number of SSBs actually sent by the terminal in a synchronization period, time domain location information and/or the index number information of the SSB currently sent by the terminal is carried by the PBCH payload .
  • the number of SSBs actually sent by the terminal in a period and the time domain position information are carried by 4 bits, and the currently sent SSB index number information is carried by 2 bits, and there are 6 bits of information in total, all carried by the PBCH payload.
  • This embodiment only uses the PBCH payload to carry the information of the synchronization signal block, and does not map the DMRS, which reduces the code rate of the PBCH and improves the demodulation performance of the PBCH.
  • the method for configuring synchronization subframes or time slots in the second, third, fourth, and fifth embodiments may include: setting consecutive M (M ⁇ 1) synchronization subframes every N (N ⁇ 1) subframes or time slots Or time slot, SSB is only sent in synchronization subframes or time slots, and the consecutive M synchronization subframes or time slots are a group of synchronization resources.
  • the interval of each group of synchronization resources is fixed to N subframes or time slots.
  • each subframe (1ms) includes 4 time slots (each time slot occupies 0.25ms). If the number of SSBs actually sent is 16, configure a group of SSBs to include 4 SSBs, and each SSB occupies 1 Slot, so there are 4 groups of SSBs. If it is configured to send a group of SSBs every 12 Slots, it means to send a group of SSBs every 3ms. In this way, time slots where no SSBs are sent can be used to transmit service data, reducing service delay. As shown in the figure, the time period 31 is used to send service data, and the time period 32 is used to send SSB.
  • 4S means that 4 SSBs are sent within 1 ms.
  • this configuration method reduces the service delay of the direct link, and reduces the complexity and signaling overhead of the synchronization subframe or time slot configuration.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is the direct link physical broadcast channel PSBCH.
  • the terminal in the case of beam scanning or beam repetition, can determine the number of SSBs sent by the terminal, the time domain position and index number of the SSB and other information according to the method of the terminal for PBCH channel estimation.
  • the PBCH load completes the broadcast of the actual number, location and index number of the SSBs sent, which not only reduces the signaling overhead, but also enables the terminal to complete the synchronization process based on the received synchronization signal block related information.
  • an embodiment of the present disclosure also provides a signal receiving method, which is applied to a terminal, and the method includes:
  • Step 41 in the synchronization subframe or time slot, receive the synchronization signal block SSB;
  • the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; in a pre-configured manner, the PBCH and the PBCH
  • At least one of the corresponding demodulation pilot reference signals DMRS and SSS is configured with at least one of the following information: information about the number of SSBs actually received by the terminal in a synchronization period; time-domain location information of the SSBs; current The index number information of the received SSB.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs received by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period It is continuous in subframes or time slots.
  • the method for configuring the synchronization subframe or time slot includes:
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N subframes or time slots, SSB is received in the synchronization subframes or time slots, and the continuous M synchronization subframes or A time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1; or,
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and the SSB is received in the synchronization subframes or time slots, and the continuous M
  • Each synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to indicate the index number information of the SSB currently received by the terminal.
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain location information of the SSBs, and the index of the SSB currently sent by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the secondary synchronization signal SSS is used for PBCH channel estimation and there is no DMRS
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently sent by the terminal At least one item is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • an embodiment of the present disclosure further provides a terminal 50, which includes a processor 52, a transmitter 51, and a memory 53, on which a program executable by the processor 52 is stored.
  • a terminal 50 which includes a processor 52, a transmitter 51, and a memory 53, on which a program executable by the processor 52 is stored.
  • the processor 52 executes the program:
  • the synchronization signal block SSB is sent; the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; in a pre-configured manner, the solution corresponding to the PBCH and the PBCH
  • At least one of the pilot reference signals DMRS and SSS is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; time-domain location information of the SSBs; currently sent SSBs The index number information.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs sent by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually sent by the terminal in a synchronization period and/or the time domain location information of the SSB; the SSBs actually sent by the terminal in a synchronization period are synchronized in the configuration
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually sent by the terminal in a synchronization period and/or the time domain position information of the SSB; the SSBs actually sent by the terminal in a synchronization period are synchronized in the configuration It is continuous in subframes or time slots.
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N subframes or time slots, the SSB is sent in the synchronization subframes or time slots, and the consecutive M
  • the synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1; or,
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, SSB is sent in the synchronization subframes or time slots, and the continuous M Each synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to represent the index number information of the SSB currently sent by the terminal.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time domain location information of the SSBs, and the index of the SSB currently sent by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently sent by the terminal At least one item of is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • the transmitter 51 and the memory 53, as well as the transmitter 51 and the processor 52 can all be communicatively connected via a bus interface.
  • the functions of the processor 52 can also be implemented by the transmitter 51, and the functions of the transmitter 51 can also be implemented by the processor. 52 achieved.
  • an embodiment of the present disclosure also provides a signal sending device 60, including:
  • the sending module 61 is configured to send a synchronization signal block SSB in a synchronization subframe or a time slot;
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH; in a pre-configured manner, the PBCH,
  • At least one of the demodulation pilot reference signals DMRS and SSS corresponding to the PBCH is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; the time domain position of the SSB Information; the index number information of the currently sent SSB.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs sent by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually sent by the terminal in a synchronization period and/or the time domain location information of the SSB; the SSBs actually sent by the terminal in a synchronization period are synchronized in the configuration
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually sent by the terminal in a synchronization period and/or the time domain position information of the SSB; the SSBs actually sent by the terminal in a synchronization period are synchronized in the configuration It is continuous in subframes or time slots.
  • the method for configuring the synchronization subframe or time slot includes:
  • SSB is sent in the synchronization subframes or time slots, and the continuous M synchronization subframes or time slots are a group of synchronization resources, N ⁇ 1 , M ⁇ 1; or,
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, SSB is sent in the synchronization subframes or time slots, and the continuous M Each synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to represent the index number information of the SSB currently sent by the terminal.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time domain location information of the SSBs, and the index of the SSB currently sent by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the number of SSBs actually sent by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently sent by the terminal At least one item of is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • the device may further include a processing module 62 and the like for processing the information sent by the sending module 61 and so on.
  • an embodiment of the present disclosure further provides a terminal 70, including a processor 72, a receiver 71, and a memory 73.
  • the memory 73 stores a program executable by the processor 72, and When the processor 72 executes the program, it realizes: in a synchronization subframe or a time slot, a synchronization signal block SSB is received; the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH; in a pre-configured manner, At least one of the PBCH and the demodulation pilot reference signal DMRS and SSS corresponding to the PBCH is configured with at least one of the following information: the number of SSBs actually received by the terminal in one synchronization period; Time domain location information; the index number information of the currently received SSB.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs received by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period It is continuous in subframes or time slots.
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N subframes or time slots, the SSB is received in the synchronization subframes or time slots, and the consecutive M
  • the synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1; or,
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and the SSB is received in the synchronization subframes or time slots, and the continuous M
  • Each synchronization subframe or time slot is a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to indicate the index number information of the SSB currently received by the terminal.
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain position information of the SSBs, and the index of the SSB currently received by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently received by the terminal At least one item of is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • the receiver 71 and the memory 73, as well as the receiver 71 and the processor 72 can be connected through a bus interface.
  • the function of the processor 72 can also be realized by the receiver 71, and the function of the receiver 71 can also be realized by the processor. 72 achieved.
  • an embodiment of the present disclosure also provides a signal receiving device 80, including:
  • the receiving module 81 is configured to receive a synchronization signal block SSB in a synchronization subframe or a time slot; the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH; in a pre-configured manner, the PBCH, At least one of the demodulation pilot reference signals DMRS and SSS corresponding to the PBCH is configured with at least one of the following information: information about the number of SSBs actually sent by the terminal in a synchronization period; the time domain position of the SSB Information; the index number information of the currently sent SSB.
  • the DMRS configures the index number information of the currently sent SSB.
  • the maximum number of SSBs received by the terminal in a synchronization period is determined according to the subcarrier interval SCS of the SSB.
  • At least 2 bits are used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period
  • the subframes or time slots are discontinuous or continuous.
  • At least 1 bit is used to indicate the number of SSBs actually received by the terminal in a synchronization period and/or the time domain location information of the SSB; the configured synchronization of the SSBs actually received by the terminal in a synchronization period It is continuous in subframes or time slots.
  • the method for configuring the synchronization subframe or time slot includes:
  • the method for configuring synchronization subframes or time slots includes: setting consecutive M synchronization subframes or time slots every N available subframes or time slots of the direct link, and SSB is in the synchronization subframe or time slot During receiving, the consecutive M synchronization subframes or time slots are a group of synchronization resources, N ⁇ 1, M ⁇ 1.
  • the value of N and/or M is determined according to the subcarrier spacing SCS of the SSB.
  • At least one bit is used to indicate the index number information of the SSB currently received by the terminal.
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain position information of the SSBs, and the index of the SSB currently received by the terminal At least one item of the number information is carried by the DMRS sequence and/or the payload of the PBCH.
  • the number of SSBs actually received by the terminal in a synchronization period, the time domain position information, and the index number information of the SSB currently received by the terminal At least one item of is carried by the PBCH payload.
  • the SSB is the direct link synchronization signal block S-SSB
  • the PSS is the direct link primary synchronization signal S-PSS
  • the SSS is the direct link secondary synchronization signal S-SSS
  • the PBCH is The direct link physical broadcast channel PSBCH.
  • the device may further include a processing module 82 and the like for processing the information received by the sending module 81 and the like.
  • the embodiment of the present disclosure also provides a computer storage medium, including instructions, which when the instructions are run on the computer, cause the computer to execute the method shown in FIG. 2 or FIG. 4 as described above.
  • the terminal in the case of beam scanning or beam repetition, can determine the number of SSBs sent by the terminal, the time domain position and index number of the SSB and other information according to the method of the terminal for PBCH channel estimation.
  • the PBCH load completes the broadcast of the actual number of SSBs sent, the time domain location of the SSBs, and the index number information, which not only reduces the signaling overhead, but also enables the terminal to complete the synchronization process based on the received synchronization signal block related information.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • each component or each step can be decomposed and/or recombined. These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above series of processing can naturally be performed in chronological order in the order of description, but do not necessarily need to be performed in chronological order, and some steps can be performed in parallel or independently of each other.
  • Those of ordinary skill in the art can understand that all or any of the steps or components of the method and device of the present disclosure can be used in any computing device (including a processor, storage medium, etc.) or a network of computing devices, using hardware and firmware. , Software, or a combination of them. This can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • the program can be stored in a computer readable storage medium, and the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM).
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in the present disclosure.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Abstract

本公开公开了一种信号的发送、接收方法及终端,其中,信号的发送方法包括:在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。

Description

信号的发送、接收方法及终端
相关申请的交叉引用
本申请主张在2019年9月26日在中国提交的中国专利申请号No.201910919201.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信号的发送、接收方法及终端。
背景技术
在5G NR(NR Radio Access,新无线接入技术)V2X系统中,终端与终端之间使用PC5口(Sidelink,直通链路)进行直接通信。在进行业务数据传输之前,首先需要进行通信的两个终端之间在PC5口(Sidelink)建立同步。建立同步的方法就是一个终端A发送同步与广播信号,另外一个终端B接收终端A发送的同步与广播信号,一旦终端B接收并解调成功,这两个终端就能够建立同步,为下一步直接通信做好了准备。
NR UU口的同步信号是通过SSB(Synchronization Signal Block,同步信号块)携带的。每个Slot(时隙)中携带2个SSB块并且PSS(Primary Synchronization Signal,主同步信号)与SSS(Secondary Synchronization Signal,辅同步信号)没有时域重复机制。
为了完成波束测量与波束选择,NR UU口的SSB需要做波束扫描(Beam Sweeping),波束扫描是指基站在一定的时间区间内(5ms),将SSB在可能的各个波束方向上都发送一次,然后终端测量各个波束的SSB信号强度并将测量结果上报给基站,基站根据终端上报的测量结果,选择最合适的波束给终端发送数据。根据不同的载波频率与不同的子载波间隔,需要做波束扫描的方向的数量也是不同的。SSB波束扫描候选方向在不同的载频范围的最大值分别为:4/8/64个,实际配置的波束扫描方向的数量不能超过该最大值。
在相关的LTE V2X技术中(Rel-14/Rel-15 LTE V2X技术),Sidelink直通链路上每160ms最多配置3个同步子帧,UE(User Equipment,用户设 备或者终端)在这些同步子帧上进行Sidelink同步信号与广播信息的发送与接收,并且UE在这些同步子帧上发送与接收同步信号与广播信息时,并不会进行波束扫描,同步信号与广播信息的覆盖范围较小。
随着5G NR的出现,促使车联网技术进一步发展,以满足新应用场景的需求。LTE V2X技术中UE在同步子帧上所进行的同步信号与广播信息的发送与接收的方法无法满足5G NR的新应用场景的需求。
发明内容
本公开实施例提供了一种信号的发送、接收方法及终端,解决相关技术中在波束扫描或波束重复的情况下,终端无法进行的同步信号与广播信息的发送与接收的问题。
为解决上述技术问题,本公开的实施例提供如下技术方案:
一种信号的发送方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:
终端在一个同步周期内实际发送的SSB的数量信息;
所述SSB的时域位置信息;
当前发送的SSB的索引号信息。
可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内发送的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是不连续的或者是连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际发送的SSB 的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前发送的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际发送的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际发送的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
本公开的实施例还提供一种信号的接收方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际接收的SSB的数量信息;所述SSB的时域位置信息;当前接收的SSB的索引号信息。
可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内接收的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前接收的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际接收的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际接收的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为 直通链路物理广播信道PSBCH。
本公开的实施例还提供一种终端,包括:处理器,发送机,存储器,所述存储器上存有所述处理器可执行的程序,所述处理器执行所述程序时实现:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内发送的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是不连续的或者是连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前发送的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际发送的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际发送的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
本公开的实施例还提供一种信号的发送装置,包括:
发送模块,用于在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
本公开的实施例还提供一种终端,包括:处理器,接收机,存储器,所述存储器上存有所述处理器可执行的程序,所述处理器执行所述程序时实现:在波束扫描或波束重复情况下,在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项携带有如下信息中的至少一项:终端在一个同步周期内实际接收的SSB的数量;所述SSB的时域位置信息;当前接收的SSB的索引号信息。
可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内接收的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前接收的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际接收的SSB的数量、所述SSB的时域位置信息和终端当前接收的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际接收的SSB的数量、时域位置信息和终端当前接收的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
本公开的实施例还提供一种信号的接收装置,包括:
接收模块,用于在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS 中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
本公开的实施例还提供一种计算机存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述的方法。
本公开的一些实施例的有益效果是:
本公开的上述实施例中,在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。终端通过上述方法可以完成实际发送的SSB的数量、所述SSB的时域位置及索引号信息的广播,既降低了信令开销,又使得终端根据接收到的SSB的相关信息可以完成同步过程。
附图说明
图1为5G NR V2X直通链路同步信号块的设计示意图;
图2为本公开的实施例提供的信号的发送方法流程图;
图3为本公开的一实施例中业务数据和SSB的发送时段示意图;
图4为本公开的实施例提供的信号的接收方法流程图;
图5为本公开的实施例提供的发送侧的终端的架构示意图;
图6为本公开的实施例提供的信号的发送装置的模块示意图;
图7为本公开的实施例提供的接收侧的终端的架构示意图;
图8本公开的实施例提供的信号的接收装置的模块示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地 理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图1所示,为V2X Sidelink同步广播信息设计图,当UE准备在Sidelink上进行业务传输之前,首先需要在Sidelink上取得同步,为了扩大同步信号的覆盖范围,需要进行P-SSS/S-SSS信号的时域重复,以增强同步信号的检测性能。
按照图1所示,横坐标是时域,每列代表一个OFDM符号。纵坐标是频域,该图中是6RB。一个Slot里容纳了一个同步信号块(SSB),一个同步信号块包括有S-PSS(Sidelink Primary Synchronization Signal,直通链路-主同步信号)、S-SSS(Sidelink Secondary Synchronization Signal,直通链路-辅同步信号)、S-PBCH(SidelinkPhysical Broadcast Channel,直通链路-物理广播信道)信号以及必要的DMRS(Demodulation Reference Signal,解调参考信号)信号。
在NR中,PBCH中包括的内容包括有:
系统定时信息:SFN(系统帧),half radio frame(半广播帧);
频域信息:
subCarrierSpacingCommon(公共子载波搜索);
ssb-SubcarrierOffset(SSB的子载波偏移);
dmrs-TypeA-Position(解调参考信号的类型A定位);
pdcch-ConfigSIB1(物理下行控制信道的配置SIB1);
MSB of the subcarrier offset between SSB and the common resource block grid(FR1)/SSB index(FR2)(ssb和公共资源块网格之间的子载波偏移量的msb);
小区相关信息:cellBarred(小区接入禁止指示),intraFreqReselection(同频重选:允许)。
NR PBCH中的一些内容由于不适用于V2X,所以不用出现在V2X PSBCH中,比如NR PBCH中的频域信息pdcch-ConfigSIB1用来指示initial BWP(初始带宽部分)的时频域位置以及PDCCH(物理下行控制信道)监听时机,该字段可以在V2X PSBCH中省略,用来传输V2X的其他信息。
第一实施例:
如图2所示,本公开的实施例提供一种信号的发送方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
本公开的该实施例,在波束扫描或波束重复的情况下,可以确定终端发送的SSB的数量、所述SSB的时域位置及索引号等信息,可以使用较小的载荷,完成实际发送的SSB的数量、所述SSB的时域位置及索引号信息的广播,既降低了信令开销,又使得终端根据接收到的SSB的相关信息可以完成同步过程。
NR PBCH中的一些内容由于不适用于V2X,所以不用出现在V2X PSBCH中,比如NR PBCH中的频域信息pdcch-ConfigSIB1用来指示initial BWP(初始化的带宽部分)的时频域位置以及PDCCH监听时机,该字段可以在V2X PSBCH中省略,用来传输V2X的终端发送的SSB的数量、所述SSB的时域位置及索引号等信息。
进一步的,所述终端在一个周期内发送的SSB的最大数量与SSB的子载波间隔SCS相关,即采用预配置的方法,根据直通链路子载波间隔(Sidelink SCS)确定一个周期内可以发送的SSB的最大数量,如下表所示:
Figure PCTCN2020115874-appb-000001
该实施例所述的方法的优点是简单直接,不占用空口或Sidelink信令,开销小。
第二实施例:
一种信号的发送方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
此时可以使用至少2个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
例如,使用2个比特表示终端在一个周期内实际发送的SSB的数量和/或时域位置信息,由于只有2个比特,所以最多可以表示2个SSB的发送位置。此时终端在一个周期内实际发送的SSB可以在配置的同步子帧或时隙中是不连续发送的,例如采用bitmap(位图)的方式来映射SSB的时域位置。
同步子帧或时隙的配置方法可以是:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;同步子帧或时隙的间隔固定为N个子帧或时隙,在实际需要发送的SSB个数比较多的情况下,即降低了直通链路的业务时延,又降低了同步子帧或时隙配置的复杂度与信令开销。
为了避免直通链路通信(UE与UE之间的通信)对正常的空口通信(基站与UE之间的通信)的干扰,只有上行子帧或时隙是直通链路可以使用的。同步子帧或时隙的配置方法还可以是:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
这里的N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
bitmap的映射方法如下表所示:下表中每个方格表示一个同步子帧或者时隙Slot,SSB只能在同步子帧或者时隙中发送。X表示在该同步子帧或者 时隙中不发送SSB,O表示在该同步子帧或者时隙中发送SSB。
Figure PCTCN2020115874-appb-000002
该实施例使用2比特来通知一个周期内实际发送的SSB的数量与时域位置信息,信令开销比较小。
第三实施例:
一种信号的发送方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH;通过预配置的方式、所述 PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
此时可以使用至少2个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
例如,使用4个比特表示终端在一个周期内实际发送的SSB的数量和/或时域位置信息,由于有4个比特,所以最多可以表示4个SSB的发送位置。此时终端在一个周期内实际发送的SSB可以在配置的同步子帧或时隙中是不连续发送的,例如采用bitmap的方式来映射SSB的时域位置。
同步子帧或时隙的配置方法可以是:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;同步子帧或时隙的间隔固定为N个子帧或时隙,在实际需要发送的SSB个数比较多的情况下,即降低了直通链路的业务时延,又降低了同步子帧或时隙配置的复杂度与信令开销。
为了避免直通链路通信(UE与UE之间的通信)对正常的空口通信(基站与UE之间的通信)的干扰,只有上行子帧或时隙是直通链路可以使用的。同步子帧或时隙的配置方法还可以是:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
这里的N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
所述的bitmap的映射方法如下表所示:下表中每个方格表示一个同步子帧或者时隙,SSB只能在同步子帧或者时隙中发送。X表示在该同步子帧或者时隙中不发送SSB,O表示在该同步子帧或者时隙中发送SSB。
注:下表是示例,并没有将所有可能的情况都列出。
Figure PCTCN2020115874-appb-000003
Figure PCTCN2020115874-appb-000004
该实施例使用4比特来通知一个周期内实际发送的SSB的数量与时域位 置信息,可以容纳4个SSB的信息。
第四实施例:
一种信号的发送方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH,通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
此时可以使用至少1个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是连续的。
例如,使用1个比特表示终端在一个周期内实际发送的SSB的数量和/或时域位置信息,此时终端在一个周期内实际发送的SSB在配置的同步子帧或时隙中是连续发送的,例如采用0表示发送1个SSB,1表示连续发送2个SSB。
同步子帧或时隙的配置方法可以是:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;同步子帧或时隙的间隔固定为N个子帧或时隙,在实际需要发送的SSB个数比较多的情况下,即降低了直通链路的业务时延,又降低了同步子帧或时隙配置的复杂度与信令开销。
为了避免直通链路通信(UE与UE之间的通信)对正常的空口通信(基站与UE之间的通信)的干扰,只有上行子帧或时隙是直通链路可以使用的。同步子帧或时隙的配置方法还可以是:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
这里的N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
所述的映射方法如下表所示:下表中每个方格表示一个同步子帧或者时隙,SSB只能在同步子帧或者时隙中发送。X表示在该同步子帧或者时隙中不发送SSB,O表示在该同步子帧或者时隙中发送SSB。
Figure PCTCN2020115874-appb-000005
该实施例使用1比特来通知一个周期内实际发送的SSB的数量与时域位置信息,信令开销比较小。
第五实施例:
一种信号的发送方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
此时可以使用至少1个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是连续的。
例如,使用2个比特表示终端在一个周期内实际发送的SSB的数量和/或时域位置信息,此时终端在一个周期内实际发送的SSB在配置的同步子帧 或时隙中是连续发送的,例如采用00表示发送1个SSB,01表示连续发送2个SSB。
同步子帧或时隙的配置方法可以是:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;同步子帧或时隙的间隔固定为N个子帧或时隙,在实际需要发送的SSB个数比较多的情况下,即降低了直通链路的业务时延,又降低了同步子帧或时隙配置的复杂度与信令开销。
为了避免直通链路通信(UE与UE之间的通信)对正常的空口通信(基站与UE之间的通信)的干扰,只有上行子帧或时隙是直通链路可以使用的。同步子帧或时隙的配置方法还可以是:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
这里的N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
所述的映射方法如下表所示:下表中每个方格表示一个同步子帧或者时隙,SSB只能在同步子帧或者时隙中发送。X表示在该同步子帧或者时隙中不发送SSB,O表示在该同步子帧或者时隙中发送SSB。
Figure PCTCN2020115874-appb-000006
Figure PCTCN2020115874-appb-000007
该实施例使用2比特来通知一个周期内实际发送的SSB的数量与时域位置信息,信令开销比较小。
第六实施例:
一种信号的发送方法,应用于终端,所述方法包括:
在波束扫描或波束重复情况下,在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH,所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项携带如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
此时使用至少1个比特表示终端当前发送的SSB的索引号信息。
例如,使用1个比特表示当前终端发送SSB的索引号信息。0表示当前发送的SSB的索引号是#0,1表示当前发送的SSB的索引号是#1。
所述的表示方法如下表所示:下表中每个方格表示一个时隙,SSB只能在同步子帧或者时隙中发送。O表示在该同步子帧或者时隙中发送SSB。一个周期内发送2个SSB。
Figure PCTCN2020115874-appb-000008
Figure PCTCN2020115874-appb-000009
该实施例使用1比特来通知当前正在发送的SSB的索引号信息,信令开销比较小。
第七实施例:
一种信号的发送方法,应用于终端,所述方法包括:
在波束扫描或波束重复情况下,在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH;所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项中携带如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
此时使用至少1个比特表示终端当前发送的SSB的索引号信息。
例如,使用2个比特表示当前终端发送SSB的索引号信息。00表示当前发送的SSB的索引号是#0,01表示当前发送的SSB的索引号是#1,以此类推。
所述的表示方法如下表所示:下表中每个方格表示一个子帧或者时隙,SSB只能在同步子帧或者时隙中发送。O表示在该同步子帧或者时隙中发送SSB。一个周期内发送4个SSB。
Figure PCTCN2020115874-appb-000010
Figure PCTCN2020115874-appb-000011
该实施例使用2比特来通知当前正在发送的SSB的索引号信息,能够通知的最大SSB个数为4。
第八实施例:
一种信号的发送方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
在使用DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际发送的SSB的数量、所述SSB的时域位置信息和/或终端当前发送的SSB的索引号信息,由所述DMRS序列和/或PBCH的载荷携带。
例如:终端在一个周期内实际发送的SSB的数量和时域位置信息由4比特携带,当前发送的SSB索引号信息由2比特携带,共有6比特信息,DMRS序列携带其中的3比特信息,PBCH载荷携带剩余的3比特。DMRS序列共有8种候选序列,接收终端通过盲检DMRS序列,来获知发送终端使用的是8种候选序列中的哪一个序列,从而可以获得3比特信息。
该实施例的优点是使用了DMRS序列和PBCH载荷共同携带同步信号块的信息,降低了信令开销。
第九实施例:
一种信号的发送方法,应用于终端,所述方法包括:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS与物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
在仅使用SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际发送的SSB的数量、时域位置信息和/或终端当前发送的SSB的索引号信息,由PBCH的载荷携带。
例如:终端在一个周期内实际发送的SSB的数量和时域位置信息由4比特携带,当前发送的SSB索引号信息由2比特携带,共有6比特信息,全部由PBCH载荷携带。
该实施例仅仅使用了PBCH载荷携带同步信号块的信息,没有映射DMRS,降低了PBCH的码率并且提升了PBCH的解调性能。
第十实施例:
上述第二、三、四、五实施例中的同步子帧或时隙的配置方法可以包括:每隔N(N≥1)个子帧或时隙设置连续M(M≥1)个同步子帧或时隙,SSB仅在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源。每组同步资源的间隔固定为N个子帧或时隙。
例如:如图3所示,对于60KHz SCS,每子帧(1ms)包括有4个时隙(每个时隙占用0.25ms)。如果实际发送的SSB的个数是16,配置一组SSB中包括4个SSB,每个SSB占用1个Slot,这样共有4组SSB。如果配置每隔12个Slot发送一组SSB,就是每隔3ms发送一组SSB,这样没有发送SSB的时隙就可以用来传输业务数据,降低了业务时延。如图中,时段31中用来发送业务数据,时段32中用来发送SSB,4S表示在1ms内发送4个SSB。这种配置方法在实际需要发送的SSB个数比较多的情况下,即降低了直通链路的业务时延,又降低了同步子帧或时隙配置的复杂度与信令开销。
本公开的上述各实施例中,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
本公开的上述实施例,在波束扫描或波束重复情况下,终端可以根据终端进行PBCH信道估计的方法,确定终端发送的SSB的数量、SSB的时域位置及索引号等信息,可以使用较小的PBCH载荷,完成实际发送的SSB的数量、位置及索引号信息的广播,既降低了信令开销,又使得终端根据接收到的同步信号块的相关信息可以完成同步过程。
如图4所示,本公开的实施例还提供一种信号的接收方法,应用于终端,所述方法包括:
步骤41,在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际接收的 SSB的数量信息;所述SSB的时域位置信息;当前接收的SSB的索引号信息。可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内接收的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:
同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前接收的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际接收的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际接收的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
需要说明的是,上述第二实施例至第十实施例的具体实现方式同样适用于该终端的实施例中,也能达到相同的技术效果。
如图5所示,本公开的实施例还提供一种终端50,包括:处理器52,发送机51,存储器53,所述存储器53上存有所述处理器52可执行的程序,所述处理器52执行所述程序时实现:
在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内发送的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是不连续的或者是连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M 个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前发送的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际发送的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际发送的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
需要说明的是,上述第二实施例至第十实施例的具体实现方式同样适用于该终端的实施例中,也能达到相同的技术效果。该终端中,发送机51与存储器53,以及发送机51与处理器52均可以通过总线接口通讯连接,处理器52的功能也可以由发送机51实现,发送机51的功能也可以由处理器52实现。
如图6所示,本公开的实施例还提供一种信号的发送装置60,包括:
发送模块61,用于在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内发送的SSB的最大数量,根据所述 SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是不连续的或者是连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:
每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前发送的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际发送的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际发送的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
需要说明的是,上述第二实施例至第十实施例的具体实现方式同样适用于该装置的实施例中,也能达到相同的技术效果。该装置还可以进一步包括 处理模块62等,用于对发送模块61发送的信息进行处理等。
如图7所示,本公开的实施例还提供一种终端70,包括:处理器72,接收机71,存储器73,所述存储器73上存有所述处理器72可执行的程序,所述处理器72执行所述程序时实现:在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际接收的SSB的数量;所述SSB的时域位置信息;当前接收的SSB的索引号信息。可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内接收的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前接收的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际接收的SSB的数量、所述SSB的时域位置信息和终端当前接收的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际接收的SSB的数量、时域位置信息和终端当前接收的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
需要说明的是,上述第二实施例至第十实施例的具体实现方式同样适用于该终端的实施例中,也能达到相同的技术效果。该终端中,接收机71与存储器73,以及接收机71与处理器72均可以通过总线接口通讯连接,处理器72的功能也可以由接收机71实现,接收机71的功能也可以由处理器72实现。
如图8所示,本公开的实施例还提供一种信号的接收装置80,包括:
接收模块81,用于在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。可选的,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
可选的,所述终端在一个同步周期内接收的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少2个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
可选的,使用至少1个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是连续的。
可选的,同步子帧或时隙的配置方法包括:
每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
可选的,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
可选的,使用至少1个比特表示终端当前接收的SSB的索引号信息。
可选的,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际接收的SSB的数量、所述SSB的时域位置信息和终端当前接收的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
可选的,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际接收的SSB的数量、时域位置信息和终端当前接收的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
可选的,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
需要说明的是,上述第二实施例至第十实施例的具体实现方式同样适用于该装置的实施例中,也能达到相同的技术效果。该装置还可以进一步包括处理模块82等,用于对发送模块81接收的信息进行处理等。
本公开的实施例还提供一种计算机存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如上所述图2或者图4所示的方法。
本公开的上述实施例,在波束扫描或波束重复情况下,终端可以根据终端进行PBCH信道估计的方法,确定终端发送的SSB的数量、SSB的时域位 置及索引号等信息,可以使用较小的PBCH载荷,完成实际发送的SSB的数量、SSB的时域位置及索引号信息的广播,既降低了信令开销,又使得终端根据接收到的同步信号块的相关信息可以完成同步过程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固 件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (47)

  1. 一种信号的发送方法,应用于终端,包括:
    在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:
    终端在一个同步周期内实际发送的SSB的数量信息;
    所述SSB的时域位置信息;
    当前发送的SSB的索引号信息。
  2. 根据权利要求1所述的信号的发送方法,其中,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
  3. 根据权利要求1所述的信号的发送方法,其中,所述终端在一个同步周期内发送的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
  4. 根据权利要求1所述的信号的发送方法,其中,使用至少2个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是不连续的或者是连续的。
  5. 根据权利要求1所述的信号的发送方法,其中,使用至少1个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是连续的。
  6. 根据权利要求4或5所述的信号的发送方法,其中,
    同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同 步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
  7. 根据权利要求6所述的信号的发送方法,其中,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
  8. 根据权利要求1所述的信号的发送方法,其中,使用至少1个比特表示终端当前发送的SSB的索引号信息。
  9. 根据权利要求1所述的信号的发送方法,其中,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际发送的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
  10. 根据权利要求1所述的信号的发送方法,其中,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际发送的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
  11. 根据权利要求1所述的信号的发送方法,其中,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
  12. 一种信号的接收方法,应用于终端,包括:
    在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际接收的SSB的数量信息;所述SSB的时域位置信息;当前接收的SSB的索引号信息。
  13. 根据权利要求12所述的信号的接收方法,其中,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
  14. 根据权利要求12所述的信号的接收方法,其中,所述终端在一个同 步周期内接收的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
  15. 根据权利要求12所述的信号的接收方法,其中,使用至少2个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
  16. 根据权利要求12所述的信号的接收方法,其中,使用至少1个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是连续的。
  17. 根据权利要求15或16所述的信号的接收方法,其中,
    同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
    同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
  18. 根据权利要求17所述的信号的接收方法,其中,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
  19. 根据权利要求12所述的信号的接收方法,其中,使用至少1个比特表示终端当前接收的SSB的索引号信息。
  20. 根据权利要求12所述的信号的接收方法,其中,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际接收的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
  21. 根据权利要求12所述的信号的接收方法,其中,在使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际接收的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
  22. 根据权利要求12所述的信号的接收方法,其中,所述SSB为直通 链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
  23. 一种终端,包括:处理器,发送机,存储器,所述存储器上存有所述处理器可执行的程序,所述处理器执行所述程序时实现:
    在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
  24. 根据权利要求23所述的终端,其中,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
  25. 根据权利要求23所述的终端,其中,所述终端在一个同步周期内发送的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
  26. 根据权利要求23所述的终端,其中,使用至少2个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是不连续的或者是连续的。
  27. 根据权利要求23所述的终端,其中,使用至少1个比特表示终端在一个同步周期内实际发送的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际发送的SSB在配置的同步子帧或时隙中是连续的。
  28. 根据权利要求26或27所述的终端,其中,
    同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
    同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设 置连续M个同步子帧或时隙,SSB在同步子帧或时隙中发送,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
  29. 根据权利要求28所述的终端,其中,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
  30. 根据权利要求23所述的终端,其中,使用至少1个比特表示终端当前发送的SSB的索引号信息。
  31. 根据权利要求23所述的终端,其中,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际发送的SSB的数量、所述SSB的时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
  32. 根据权利要23所述的终端,其中,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际发送的SSB的数量、时域位置信息和终端当前发送的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
  33. 根据权利要求23所述的终端,其中,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
  34. 一种信号的发送装置,包括:
    发送模块,用于在同步子帧或者时隙中,发送同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
  35. 一种终端,包括:处理器,接收机,存储器,所述存储器上存有所述处理器可执行的程序,所述处理器执行所述程序时实现:在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至 少一项:终端在一个同步周期内实际接收的SSB的数量信息;所述SSB的时域位置信息;当前接收的SSB的索引号信息。
  36. 根据权利要求35所述的终端,其中,通过预配置的方式,配置终端在一个同步周期内实际发送的SSB的数量信息和所述SSB的时域位置信息中的至少一项,并且通过PBCH对应的解调导频参考信号DMRS配置当前发送的SSB的索引号信息。
  37. 根据权利要求35所述的终端,其中,所述终端在一个同步周期内接收的SSB的最大数量,根据所述SSB的子载波间隔SCS确定。
  38. 根据权利要求35所述的终端,其中,使用至少2个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是不连续的或者连续的。
  39. 根据权利要求35所述的终端,其中,使用至少1个比特表示终端在一个同步周期内实际接收的SSB的数量和/或所述SSB的时域位置信息;所述终端在一个同步周期内实际接收的SSB在配置的同步子帧或时隙中是连续的。
  40. 根据权利要求38或39所述的终端,其中,
    同步子帧或时隙的配置方法包括:每隔N个子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1;或者,
    同步子帧或时隙的配置方法包括:每隔N个直通链路可用子帧或时隙设置连续M个同步子帧或时隙,SSB在同步子帧或时隙中接收,所述连续M个同步子帧或时隙为一组同步资源,N≥1,M≥1。
  41. 根据权利要求40所述的信号的终端,其中,所述N和/或M的数值,根据所述SSB的子载波间隔SCS确定。
  42. 根据权利要求35所述的终端,其中,使用至少1个比特表示终端当前接收的SSB的索引号信息。
  43. 根据权利要求35所述的终端,其中,在使用解调导频参考信号DMRS进行PBCH信道估计的情况下,终端在一个同步周期内实际接收的SSB的数 量、所述SSB的时域位置信息和终端当前接收的SSB的索引号信息中的至少一项,由所述DMRS序列和/或PBCH的载荷携带。
  44. 根据权利要求35所述的终端,其中,在仅使用辅同步信号SSS进行PBCH信道估计并且没有DMRS的情况下,终端在一个同步周期内实际接收的SSB的数量、时域位置信息和终端当前接收的SSB的索引号信息中的至少一项,由PBCH的载荷携带。
  45. 根据权利要求35所述的终端,其中,所述SSB为直通链路同步信号块S-SSB,所述PSS为直通链路主同步信号S-PSS,所述SSS为直通链路辅同步信号S-SSS,所述PBCH为直通链路物理广播信道PSBCH。
  46. 一种信号的接收装置,包括:
    接收模块,用于在同步子帧或者时隙中,接收同步信号块SSB;所述SSB包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;通过预配置的方式、所述PBCH、所述PBCH对应的解调导频参考信号DMRS和SSS中的至少一项,配置如下信息中的至少一项:终端在一个同步周期内实际发送的SSB的数量信息;所述SSB的时域位置信息;当前发送的SSB的索引号信息。
  47. 一种计算机存储介质,包括指令,当所述指令在计算机运行时,使得计算机执行如权利要求1至11任一项所述的方法或者权利要求12至22任一项所述的方法。
PCT/CN2020/115874 2019-09-26 2020-09-17 信号的发送、接收方法及终端 WO2021057589A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/637,404 US20220286985A1 (en) 2019-09-26 2020-09-17 Signal transmission method, signal reception method, and user equipment
EP20869605.4A EP4037228A4 (en) 2019-09-26 2020-09-17 METHODS FOR SENDING AND RECEIVING SIGNALS AND TERMINAL
KR1020227012218A KR20220063223A (ko) 2019-09-26 2020-09-17 신호의 송신 방법, 신호의 수신 방법 및 단말

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910919201.4A CN112564868B (zh) 2019-09-26 2019-09-26 一种信号的发送、接收方法及终端
CN201910919201.4 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021057589A1 true WO2021057589A1 (zh) 2021-04-01

Family

ID=75030210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115874 WO2021057589A1 (zh) 2019-09-26 2020-09-17 信号的发送、接收方法及终端

Country Status (6)

Country Link
US (1) US20220286985A1 (zh)
EP (1) EP4037228A4 (zh)
KR (1) KR20220063223A (zh)
CN (1) CN112564868B (zh)
TW (1) TW202114391A (zh)
WO (1) WO2021057589A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022262864A1 (zh) * 2021-06-18 2022-12-22 维沃移动通信有限公司 信号获取方法及终端

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286328A (zh) * 2021-10-11 2022-04-05 北京物资学院 一种无线通信系统中的信号处理方法和装置
CN115119298A (zh) * 2022-07-12 2022-09-27 上海应用技术大学 一种适用于5g-v2x的同步方法
CN116113033B (zh) * 2023-04-11 2023-06-30 上海新基讯通信技术有限公司 一种nr系统与lte系统同步的方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076478A (zh) * 2018-08-10 2018-12-21 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
CN109155728A (zh) * 2018-08-10 2019-01-04 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
US20190020517A1 (en) * 2017-07-14 2019-01-17 Qualcomm Incorporated Reference signal design

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559206B (zh) * 2015-09-30 2019-04-23 中兴通讯股份有限公司 同步信号的传输方法及装置
CN106507439B (zh) * 2016-10-28 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
US10616847B2 (en) * 2016-12-22 2020-04-07 Qualcomm Incorporated Techniques and apparatuses for multiple transmission of synchronization signal blocks in new radio
US10523354B2 (en) * 2017-02-24 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for design of NR-SS burst set
CN112134674B (zh) * 2017-03-17 2023-01-24 Oppo广东移动通信有限公司 同步信号块检测方法、同步信号块传输方法、装置及系统
CA3062307A1 (en) * 2017-05-04 2018-11-08 Sharp Kabushiki Kaisha Synchronization signal transmission and reception for radio system
JP6938671B2 (ja) * 2017-05-04 2021-09-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 信号を伝送する方法、ネットワーク機器及び端末機器
WO2018201470A1 (zh) * 2017-05-05 2018-11-08 富士通株式会社 时间索引指示方法、定时获取方法及其装置、通信系统
KR102049866B1 (ko) * 2017-05-05 2020-01-22 엘지전자 주식회사 동기 신호를 수신하는 방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190020517A1 (en) * 2017-07-14 2019-01-17 Qualcomm Incorporated Reference signal design
CN109076478A (zh) * 2018-08-10 2018-12-21 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
CN109155728A (zh) * 2018-08-10 2019-01-04 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion of sidelink synchronization mechanism for NR V2X", 3GPP DRAFT; R1-1908222_DISCUSSION OF SIDELINK SYNCHRONIZATION MECHANISM FOR NR V2X, vol. RAN WG1, 16 August 2019 (2019-08-16), Prague, CZ, pages 1 - 6, XP051764841 *
HUAWEI, HISILICON: "Sidelink synchronization mechanisms for NR V2X", 3GPP DRAFT; R1-1810139, vol. RAN WG1, 29 September 2018 (2018-09-29), Chengdu, China, pages 1 - 4, XP051517554 *
See also references of EP4037228A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022262864A1 (zh) * 2021-06-18 2022-12-22 维沃移动通信有限公司 信号获取方法及终端

Also Published As

Publication number Publication date
EP4037228A4 (en) 2022-12-28
US20220286985A1 (en) 2022-09-08
CN112564868B (zh) 2023-04-07
TW202114391A (zh) 2021-04-01
EP4037228A1 (en) 2022-08-03
CN112564868A (zh) 2021-03-26
KR20220063223A (ko) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2021129060A1 (zh) 定位参考信号的传输资源的配置、接收方法及终端
WO2021057589A1 (zh) 信号的发送、接收方法及终端
CN107534516B (zh) 用于接收控制信令的方法和设备
EP3522579B1 (en) Control channel transmission and reception method and system
WO2020164617A1 (zh) 信号的发送、接收方法、网络设备及终端
US11917621B2 (en) Method, device, and apparatus for transporting common control information
CN113692000B (zh) 接收公共控制消息的方法、终端及存储介质
CN103931128A (zh) 用于控制信道发射和接收的方法和装置
WO2016134532A1 (zh) 一种数据传输的方法、装置和用户设备及系统
CN110741591A (zh) 在减少的延迟操作中用于下行链路控制物理结构的方法和设备
US9674695B2 (en) Method, terminal, and base station for transmitting information
US11337180B2 (en) Channel transmission method, base station, and terminal device
EP4068885A1 (en) Terminal device, base station device, and communication method
US20220256487A1 (en) Rate matching indication method and apparatus, and device and storage medium
WO2020030254A1 (en) Joint channel estimation
WO2017133676A1 (zh) 参考信号的发送、接收方法、装置及传输系统
EP2745482B1 (en) Flexible transmission of messages in a wireless communication system
WO2020088636A1 (zh) 信号的发送方法及终端
CN111465109A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
JP2017518686A (ja) Mbsfn構成方法および装置
WO2020088637A1 (zh) 信号的发送方法及终端
WO2018218539A1 (zh) 一种调度系统信息块的方法及装置
WO2017049988A1 (zh) 一种数据发送、接收方法及装置
WO2014113972A1 (zh) 系统消息的获取方法、用户设备和基站
CN112566245B (zh) 一种信号的发送、接收方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227012218

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020869605

Country of ref document: EP

Effective date: 20220426