WO2021057361A1 - 一种在飞机上测量高度的方法及设备 - Google Patents

一种在飞机上测量高度的方法及设备 Download PDF

Info

Publication number
WO2021057361A1
WO2021057361A1 PCT/CN2020/111077 CN2020111077W WO2021057361A1 WO 2021057361 A1 WO2021057361 A1 WO 2021057361A1 CN 2020111077 W CN2020111077 W CN 2020111077W WO 2021057361 A1 WO2021057361 A1 WO 2021057361A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
altitude
module
gnss
air pressure
Prior art date
Application number
PCT/CN2020/111077
Other languages
English (en)
French (fr)
Inventor
钟振
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/762,579 priority Critical patent/US20220342088A1/en
Priority to EP20870144.1A priority patent/EP4024086A4/en
Publication of WO2021057361A1 publication Critical patent/WO2021057361A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/005Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels altimeters for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • A63B2220/73Altitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude

Definitions

  • This application relates to the field of terminal technology, and in particular to a method and equipment for measuring altitude on an airplane.
  • an “altimeter” function that is, the current altitude of the device can be displayed on the device.
  • the smart watch has an "altimeter” function, which shows that the current altitude of the smart watch is 121 meters.
  • the wearable device realizes the "altimeter” function through the air pressure sensor. Atmospheric pressure changes with altitude, and the pressure altitude formula describes the law of atmospheric pressure changing with altitude.
  • the wearable device can calculate the current altitude based on the pressure value measured by the pressure sensor and the pressure height formula.
  • the pressure of the environment where the wearable device is located is not atmospheric pressure.
  • the air pressure value measured by the air pressure sensor is not the atmospheric pressure value corresponding to the current altitude because the cockpit of the airplane will be pressurized.
  • the height value calculated by the wearable device based on the air pressure value measured by the air pressure sensor and the pressure height formula is not the true altitude of the wearable device; that is, the data of the air pressure sensor of the wearable device is unreliable in this case Yes, the "altimeter" function of the wearable device fails. For example, when a user wears a smart watch and takes an airplane, the airplane has already flown to an altitude of nearly 10,000 meters, while the altitude displayed by the smart watch is only about 2,000 meters.
  • the embodiments of the present application provide a method and device for measuring altitude on an airplane, which can realize that electronic devices such as wearable devices can display accurate altitude when the data of the air pressure sensor is unreliable when the user is flying in an airplane.
  • an embodiment of the present application provides a method for measuring altitude on an airplane.
  • the method may include: an electronic device displaying the altitude obtained according to the first detection method; determining that the first switching condition is satisfied, the electronic device displaying 2.
  • the altitude obtained by the detection method may include: an electronic device displaying the altitude obtained according to the first detection method; determining that the first switching condition is satisfied, the electronic device displaying 2. The altitude obtained by the detection method.
  • the electronic device can switch the detection method for obtaining the altitude according to the environment and other conditions. In this way, when one detection method fails, another detection method can be switched so that the electronic device displays an accurate altitude.
  • the first switching condition includes: the data acquired by the electronic device according to the first detection method is invalid. That is to say, when the first detection method fails, the altitude obtained according to the first detection method is inaccurate, and the electronic device switches from displaying the altitude obtained according to the first detection method to displaying the altitude obtained according to the second detection method. Altitude, you can display the accurate altitude.
  • the increase in the altitude value of the electronic device is greater than the preset first altitude threshold; then it is determined that the data obtained according to the first detection method is invalid.
  • the increase in the altitude value of the electronic device is greater than the preset first altitude threshold, then it can be determined that the plane on which the user is wearing the electronic device takes off. After the plane takes off, the cabin of the plane is pressurized, and the data obtained according to the first detection method is invalid.
  • the electronic device when the electronic device displays the altitude obtained according to the second detection method, if it is determined that the second switching condition is satisfied, the electronic device displays the altitude obtained according to the first detection method.
  • the electronic device can switch back to display the altitude obtained according to the first detection method according to conditions such as the environment in which it is located.
  • the second switching condition includes: the data obtained by the electronic device according to the first detection method is restored to be valid. That is to say, when the first detection method is restored to be effective, the altitude obtained according to the first detection method is accurate, and the electronic device switches from displaying the altitude obtained according to the second detection method to displaying the altitude obtained according to the first detection method. Altitude. In some scenarios, for example, the altitude obtained by the first detection method is more accurate, and the electronic device promptly switches back to display the altitude obtained according to the first detection method, which can make the altitude value displayed by the electronic device more accurate. For example, the second detection method consumes more power, and the electronic device promptly switches back to display the altitude obtained according to the first detection method, which can reduce power consumption.
  • the absolute value of the difference between the altitude obtained according to the first detection method and the altitude obtained according to the second detection method is less than the preset threshold, then it is indicated that the absolute value of the difference between the altitude obtained according to the first detection method is less than the preset threshold.
  • the obtained altitude is accurate, and it can be determined that the data obtained according to the first detection method is restored to be valid.
  • the altitude value of the electronic device is reduced by a value greater than the preset second altitude threshold, it means that the user wearing the electronic device is landing on the plane, and it can be determined The data obtained according to the first detection method is restored to be valid.
  • the second switching condition includes: the electronic device detects that the user closes the second detection mode operation. If the user turns off the second detection method, the electronic device cannot obtain the altitude through the second detection method. The electronic device switches from displaying the altitude obtained according to the second detection method to displaying the altitude obtained according to the first detection method.
  • the first detection method is to detect the altitude of the electronic device through the air pressure sensor; the second detection method is to receive the altitude data in the GNSS data to obtain the altitude of the electronic device.
  • the electronic device turns on the GNSS function of the electronic device before displaying the altitude obtained according to the second detection method.
  • the electronic device can receive the altitude data in the GNSS data, thereby obtaining the altitude of the electronic device, and displaying the altitude.
  • the electronic device periodically turns on the GNSS function of the electronic device according to a preset first time interval. Due to the high power consumption of the GNSS function, compared to turning on the GNSS function all the time, this method of turning on the GNSS function periodically according to the time interval can effectively reduce the power consumption.
  • an embodiment of the present application provides an electronic device that can implement the method for measuring altitude on an airplane as described in the first aspect.
  • the electronic device can implement the above method through software, hardware, or through hardware executing corresponding software.
  • the electronic device may include a display screen, a processor, and a memory.
  • the display screen and the processor are configured to support the electronic device to perform the corresponding functions in the above-mentioned method in the first aspect.
  • the memory is used for coupling with the processor, and it stores the necessary program instructions and data of the electronic device.
  • the electronic device may also include a communication interface for supporting communication between the electronic device and other electronic devices.
  • the communication interface can be a transceiver or a transceiver circuit.
  • the electronic device may include: a processing module, a display module, a first detection module, and a second detection module.
  • the display module is used to display the altitude obtained by the first detection module; it is also used to display the altitude obtained by the second detection module; the processing module is used to determine whether the first switching condition is satisfied, and if it is determined that the first switching condition is satisfied, then It is determined that the display module displays the altitude obtained by the second detection module.
  • the first switching condition includes: the data acquired by the first detection module is invalid.
  • the failure of the data acquired by the first detection module includes: the processing module determines that within the first preset time period, the increase in the altitude value of the electronic device is greater than the preset first altitude threshold.
  • the processing module is further configured to determine whether the second switching condition is satisfied, and if it is determined that the second switching condition is satisfied, it is determined that the display module displays the altitude obtained by the first detection module.
  • the second switching condition includes: the data acquired by the first detection module is restored to be valid.
  • the effective restoration of the data acquired by the first detection module includes: the processing module determines the altitude acquired by the first detection module, and the absolute value of the difference between the altitude acquired by the second detection module is less than the preset value. Set the threshold.
  • the effective restoration of the data acquired by the first detection module includes: the processing module determines that within the second preset time period, the value of the decrease in the altitude value of the electronic device is greater than the preset second altitude threshold.
  • the second switching condition includes: the processing module determines an operation of detecting that the user closes the detection mode of the second detection module.
  • the first detection module is an air pressure sensor
  • the second detection module is a GNSS module.
  • the processing module is also used to determine to enable the GNSS function of the GNSS module.
  • the processing module is further configured to determine that the GNSS module periodically turns on the GNSS function according to a preset first time interval.
  • embodiments of the present application provide a computer storage medium, which includes computer instructions, when the computer instructions run on an electronic device, the electronic device executes as described in the first aspect and its possible design methods. The method of measuring altitude on an airplane is described.
  • the embodiments of the present application provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute the altitude measurement on an airplane as described in the first aspect and its possible design methods. Methods.
  • the electronic equipment described in the second aspect, the computer storage medium described in the third aspect, and the computer program product described in the fourth aspect are all used to execute the corresponding methods provided above, and therefore, the beneficial effects that can be achieved Reference may be made to the beneficial effects of the corresponding solutions in the corresponding methods provided above, which will not be repeated here.
  • FIG. 1 is a schematic diagram 1 of an example of a display interface of an electronic device provided by an embodiment of the application;
  • FIG. 2A is a first schematic diagram of the structural composition of an electronic device provided by an embodiment of this application.
  • 2B is a second schematic diagram of the structural composition of an electronic device provided by an embodiment of the application.
  • 2C is a third schematic diagram of the structural composition of an electronic device provided by an embodiment of this application.
  • 2D is a fourth schematic diagram of the structural composition of an electronic device provided by an embodiment of this application.
  • FIG. 3 is a first flowchart of a method for measuring altitude on an airplane according to an embodiment of the application
  • FIG. 4 is a second schematic diagram of an example of a display interface of an electronic device provided by an embodiment of the application.
  • 5A is a third schematic diagram of an example of a display interface of an electronic device provided by an embodiment of this application.
  • 5B is a fourth schematic diagram of an example of a display interface of an electronic device provided by an embodiment of this application.
  • 5C is a schematic diagram five of an example of a display interface of an electronic device provided by an embodiment of this application.
  • FIG. 6 is a sixth schematic diagram of an example of a display interface of an electronic device provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram five of the structural composition of an electronic device provided by an embodiment of this application.
  • FIG. 8 is a second flowchart of a method for measuring altitude on an airplane according to an embodiment of this application.
  • FIG. 9 is a third flowchart of a method for measuring altitude on an airplane provided by an embodiment of the application.
  • FIG. 10 is a sixth structural diagram of an electronic device provided by an embodiment of this application.
  • the method for measuring altitude on an airplane can be applied to electronic equipment with an "altimeter” function.
  • the electronic device can be wearable devices (such as smart watches, smart bracelets, smart glasses or smart helmets, etc.), portable computers (such as mobile phones, etc.), notebook computers, tablet computers, augmented reality (AR) ⁇ virtual reality (virtual reality, VR) devices, etc., the embodiment of the present application does not impose special restrictions on the specific form of the electronic device.
  • FIG. 2A is a schematic structural diagram of an electronic device 100 provided by an embodiment of this application.
  • the electronic device 100 may include a processor 110, a memory 120, a display screen 130, a power supply module 140, a sensor module 150, a positioning module 160, and so on.
  • the sensor module 150 may include an air pressure sensor 150A, a touch sensor 150B, and the like.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented by hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processors.
  • the processor 110 may include an application processor, a controller, a digital signal processor (digital signal processor, DSP), and so on.
  • DSP digital signal processor
  • different processors may be independent devices, or integrated in one or more processors.
  • the controller may be the nerve center and command center of the electronic device 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the operating system of the electronic device 100 may be installed on the application processor for managing the hardware and software resources of the electronic device 100. For example, manage and configure memory, determine the priority of system resource supply and demand, control input and output devices, operate the network, manage file systems, manage drivers, etc.
  • the operating system can also be used to provide an interface for users to interact with the system.
  • various types of software can be installed in the operating system, such as drivers, applications (applications, App), and so on.
  • the memory 120 is used to store instructions and data.
  • the memory 120 is a cache memory.
  • the memory can store instructions or data used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory 120. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the memory 120 may also be provided in the processor 110, that is, the processor 110 includes the memory 120.
  • the processor 110 includes the memory 120.
  • the embodiment of the present application does not limit this.
  • the display screen 130 is used to display images, videos, etc.
  • the display screen 130 includes a display panel.
  • the display panel can use liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the electronic device 100 may include one or N display screens 130, and N is a positive integer greater than one.
  • the power module 140 may be used to supply power to various components included in the electronic device 100.
  • the power module 140 may be a battery, such as a rechargeable battery.
  • the air pressure sensor 150A is used to measure air pressure.
  • the electronic device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 150A.
  • the electronic device 100 calculates the altitude according to the air pressure value measured by the air pressure sensor 150A and the pressure height formula.
  • the pressure height formula is a formula that describes the law of air pressure changing with altitude. The specific method for calculating the height according to the air pressure value and the pressure height formula can refer to the description in the conventional technology, and the details are not repeated here in the embodiment of the present application.
  • the touch sensor 150B is also called "touch panel”.
  • the touch sensor 150B may be disposed on the display screen 130, and a touch screen composed of the touch sensor 150B and the display screen 130 is also called a “touch screen”.
  • the touch sensor 150B is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 130.
  • the touch sensor 150B may also be disposed on the surface of the electronic device 100, which is different from the position of the display screen 130.
  • the positioning module 160 is used for positioning the electronic device 100.
  • the positioning module 160 may receive data from a global navigation satellite system (GNSS), and the GNSS data includes plane longitude and latitude, altitude, and so on.
  • the electronic device 100 may obtain its altitude through the altitude data of the GNSS.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi-zenith satellite system, QZSS), Galileo satellite navigation system (GSNS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • GSNS Galileo satellite navigation system
  • SBAS satellite-based augmentation systems
  • the method for measuring altitude on an airplane can be applied to the above-mentioned electronic device 100.
  • the electronic device 100 has an “altimeter” function, which can display the current altitude of the electronic device 100 on the display screen 130.
  • the electronic device 100 may obtain the altitude of the electronic device 100 through the air pressure value measured by the air pressure sensor 150A; the electronic device 100 may also obtain the altitude of the electronic device 100 through the altitude data received by the positioning module 160.
  • the altitude displayed on the display 130 is the altitude obtained by the air pressure sensor 150A .
  • the display screen 130 displays the altitude received by the positioning module 160. In this way, the electronic device 100 can also display the accurate altitude when the data of the air pressure sensor is unreliable when the user is on an airplane or the like.
  • the function of the electronic device 100 to display the current altitude on the display screen 130 may also be another name, and the electronic device 100 does not display the word “altimeter” on the display screen 130.
  • the display screen 130 of the electronic device 100 displays “altitude: XX meters” and so on.
  • the above-mentioned air pressure sensor and/or positioning module of the electronic device 100 may not be provided on the electronic device 100, that is, the electronic device 100 can rely on the air pressure sensor and/or the other device (electronic device 200) connected to it.
  • the positioning module obtains the current altitude and displays it on the electronic device 100.
  • the electronic device 100 and the electronic device 200 are connected wirelessly.
  • the electronic device 100 includes a processor 110, a memory 120, a display screen 130, a power supply module 140, a sensor module 150, etc.;
  • the electronic device 200 includes a positioning module 210, and the positioning module 210 can receive GNSS data.
  • the electronic device 100 can obtain the altitude of the electronic device 100 through the air pressure value measured by the air pressure sensor 150A of the sensor module 150; it can also receive the altitude data of the positioning module 210 of the electronic device 200 to obtain the altitude of the electronic device 200, that is, obtain To the altitude of the electronic device 100.
  • the electronic device 100 and the electronic device 200 are connected wirelessly.
  • the electronic device 100 includes a processor 110, a memory 120, a display screen 130, a power supply module 140, a positioning module 160, etc.;
  • the electronic device 200 includes a sensor module 220, and the sensor module 220 includes an air pressure sensor 220A for measuring air pressure.
  • the electronic device 100 can obtain the altitude of the electronic device 100 through the altitude data received by the positioning module 160; it can also receive the pressure value data of the pressure sensor 220A of the sensor module 220 of the electronic device 200, and acquire the electronic device according to the received pressure value data.
  • the altitude of 200 is the altitude of the electronic device 100 obtained.
  • the electronic device 100 and the electronic device 200 are connected wirelessly.
  • the electronic device 100 includes a processor 110, a memory 120, a display screen 130, a power supply module 140, etc.;
  • the electronic device 200 includes a positioning module 210, a sensor module 220, etc., wherein the sensor module 220 includes an air pressure sensor 220A.
  • the positioning module 210 can receive GNSS data; the air pressure sensor 220A is used to measure air pressure.
  • the electronic device 100 can receive the air pressure value data of the air pressure sensor 220A of the sensor module 220 of the electronic device 200, and obtain the altitude of the electronic device 200 according to the received air pressure value data, that is, the altitude of the electronic device 100 is obtained; it can also receive the electronic device
  • the altitude data of the positioning module 210 of the 200 obtains the altitude of the electronic device 200, that is, the altitude of the electronic device 100 is obtained.
  • the electronic device 100 is a smart watch, and the electronic device 200 is a mobile phone; or, the electronic device 100 is a mobile phone, and the electronic device 200 is a smart watch.
  • the electronic device 100 is a smart watch, and the smart watch includes the structure shown in FIG. 2A as an example for description. It can be understood that the method for measuring altitude on an airplane provided by the embodiment of the present application is also applicable to the electronic device 100 in FIG. 2B, FIG. 2C, or FIG. 2D.
  • the method for measuring altitude on an airplane may include:
  • the electronic device displays the altitude obtained according to the first detection method.
  • the first detection method may be the default altitude detection method of the electronic device.
  • the first detection method is a method of detecting the altitude through the air pressure sensor.
  • the electronic device obtains the current altitude according to the air pressure value measured by the air pressure sensor.
  • the electronic device displays the current altitude obtained according to the air pressure value measured by the air pressure sensor.
  • the electronic device displays an interface as shown in FIG. 1, and the current altitude value is 121 meters.
  • the electronic device determines whether the first switching condition is satisfied; if it is determined that the first switching condition is satisfied, S303 is executed, and the electronic device displays the altitude obtained according to the second detection method; if it is determined that the first switching condition is not satisfied, S301 is executed. The electronic device displays the altitude obtained according to the first detection method.
  • the first switching condition is that the data of the air pressure sensor is invalid.
  • the user wears the electronic device to take an airplane and the airplane takes off.
  • the cockpit of the airplane is pressurized, and the air pressure value detected by the air pressure sensor of the electronic device is inconsistent with the atmospheric pressure value corresponding to the altitude of the electronic device; that is, the data of the air pressure sensor is invalid.
  • the first preset condition is that within the first preset time period, the increase in the altitude value of the electronic device is greater than the preset first altitude threshold.
  • the first preset duration is 30 seconds
  • the first height threshold is 100 meters.
  • the altitude of the electronic device is obtained according to the first detection method.
  • the electronic device detects that within the first preset time period, the increase in the altitude value of the electronic device is greater than the preset first altitude threshold, then it is determined that the aircraft takes off. Since the cockpit of the aircraft is pressurized after the plane takes off, the air pressure value detected by the air pressure sensor of the electronic device is inconsistent with the atmospheric pressure value corresponding to the altitude where the electronic device is located, and the data of the air pressure sensor of the electronic device is invalid.
  • the electronic device displays the altitude obtained according to the second detection method.
  • the second detection method is a different detection method from the first detection method.
  • the second detection method is a method of detecting altitude through GNSS.
  • the electronic device receives the altitude data in the GNSS data, thereby obtaining the current altitude.
  • the smart watch displays the altitude data in the received GNSS data.
  • the smart watch shows that the current altitude is 8500 meters.
  • the GNSS function on the electronic device includes the open state and the closed state. In the on state, the electronic device can receive GNSS data; in the off state, the electronic device does not receive GNSS data.
  • the electronic device determines that the GNSS function on the electronic device is turned on after determining that the data of the air pressure sensor is invalid; the electronic device can directly display the altitude in the received GNSS data.
  • GNSS GNSS
  • GPS GPS
  • the electronic device determines that the data of the air pressure sensor is invalid and determines that the GPS function on the electronic device is turned on, it can directly display the altitude data in the received GPS data.
  • the electronic device can turn on the GPS function by turning on certain modes, such as sports mode.
  • sports mode For example, the electronic device determines that the user has turned on the outdoor sports mode, and then turns on the GPS function.
  • the user can turn on the outdoor sports mode by turning on the sports mode of the electronic device.
  • the exercise mode of the electronic device may include walking, outdoor running, indoor running, cycling, indoor cycling, mountain climbing, and the like.
  • the outdoor sports mode includes walking, outdoor running, cycling, mountain climbing and other sports modes in the sports mode.
  • the motion mode of the electronic device may also have other names; for example, in some electronic devices, turning on the motion mode is called turning on a "single motion"; the embodiment of the present application does not limit this in any way.
  • the electronic device determines that it has received the user's operation to turn on the sports mode such as walking, outdoor running, cycling or mountain climbing, that is, the user turns on the outdoor sports mode, the electronic device turns on the GPS function.
  • the sports mode such as walking, outdoor running, cycling or mountain climbing
  • the user can turn on the sports mode on the smart watch.
  • the user can turn on the exercise mode on the mobile phone with the smart watch management App installed.
  • the user can set various setting items of the smart watch on the interface 501 of the smart watch.
  • the interface 501 includes a “workout” option 502, a “settings” option 503, a “battery” option 504, and a “phone” option 505.
  • the "exercise” option 502 is used to set the exercise mode, and different exercise modes can be used to detect different exercise types;
  • the "setting” option 503 is used to set various general options and applications of the smart watch, for example, it can include Set the dial style, font size, sound size, etc.;
  • the "battery” option 504 is used to set and view the battery, for example, set the battery to power saving mode, check the remaining battery power, etc.;
  • the "phone” option 505 is used to set the phone application, such as , Set the call volume, etc.
  • the smart watch can receive a user's click operation on the "exercise” option 502, and in response to the user's click operation on the "exercise” option 502, the smart watch displays an exercise interface 506.
  • the exercise interface 506 includes a “walking” option 507, an “outdoor running” option 508, and an “indoor running” option 509.
  • the user can open the walking mode by clicking the "walking” option 507, clicking the "outdoor running” option 508 to open the outdoor running mode, and clicking the "indoor running” option 509 to open the indoor running mode.
  • the smart watch may receive a user's click operation on the "outdoor running” option 508, and in response to the user's click operation on the "outdoor running” option 508, the smart watch turns on the outdoor running mode.
  • the interface 501 may also include a "timer” option, a "music” option, etc.; the exercise interface 506 may also include a “riding” option, an "indoor bicycle “Options, "climbing” options, etc.; the embodiments of this application will not be shown one by one.
  • the user can trigger other options on the smart watch display interface through preset gestures.
  • the preset gesture can be a finger sliding upwards or a finger sliding downwards.
  • the sport mode may also include flying by plane. If the electronic device determines that the user has turned on the flight in the sport mode, that is, it determines that it receives the user's operation to turn on the flight in the sport mode, the GPS function is turned on.
  • the smart watch receives the user's click operation on the "exercise” option 502 on the interface 501, and in response to the user's click operation on the "exercise” option 502, the smart watch displays the exercise interface 506.
  • the exercise interface 506 includes an option 510 of "flight by plane", and the user can turn on the mode of flying by plane by clicking the option 510 of "flight by plane”.
  • the smart watch can receive a user's click operation on the "take a plane” option 510, and in response to the user's click operation on the "take a plane” option 510, the smart watch turns on the flight mode.
  • the user can set the GNSS function switch on the smart watch or mobile phone to turn the GNSS function on or off.
  • the user can set a positioning function switch on the mobile phone to turn on or off the positioning function (that is, turn on or off the GPS).
  • the mobile phone may receive the user's first gesture on the desktop and display the drop-down menu 511.
  • the first gesture may be a single finger swiping down at the top of the screen.
  • the drop-down menu 511 includes switches such as a WLAN switch, a Bluetooth switch, a vibration switch, a position information switch 512, and a wireless projection switch.
  • the user can turn on or off the corresponding function by clicking the switch.
  • the position information switch 512 is used to control to turn on or turn off the positioning function on the mobile phone.
  • the mobile phone receives the user's click operation on the position information switch 512, and the positioning function is turned on; when the positioning function on the mobile phone is turned on, the mobile phone receives the user's click operation on the position information switch 512 , Then close the positioning function.
  • the functions of other switches in the drop-down menu 511 can refer to the function description in the conventional technology, which is not limited in the embodiment of the present application, and will not be repeated here.
  • the GNSS function on the electronic device is determined to be off; the GNSS function on the electronic device is turned on; and the altitude in the received GNSS data is displayed.
  • the electronic device periodically turns on the GNSS function according to a preset first time interval; in each cycle, after the GNSS function is turned on for a preset duration, the GNSS function is turned off.
  • the preset first time interval may be 10 minutes, and the preset duration is 30 seconds.
  • the electronic device turns on the GPS function every 10 minutes to receive the altitude in the GPS data; 30 seconds after the GPS function is turned on, the GPS function is turned off.
  • the electronic device displays the altitude in the GPS data received this time in the first time interval before turning on the GPS function next time. Compared with the GNSS function which is always on, the GNSS function is turned on and off intermittently, which can save the power consumption of electronic devices.
  • the electronic device determines whether the second switching condition is satisfied; if it is determined that the second switching condition is satisfied, S305 is executed, and the electronic device displays the altitude obtained according to the first detection method; if it is determined that the second switching condition is not satisfied, S303 is executed. The electronic device displays the altitude obtained according to the second detection method.
  • the user’s aircraft lands, the cockpit of the aircraft stops pressurizing, and the electronic device detects that the data from the air pressure sensor is restored. Then the electronic device can stop displaying the altitude in the received GNSS data, and display the altitude based on the air pressure sensor. The altitude obtained by the obtained air pressure value.
  • the second switching condition is that the electronic device determines that the data of the air pressure sensor is valid.
  • the electronic device can stop receiving GNSS data. For example, the electronic device stops periodically turning on the GNSS function according to the preset first time interval.
  • the air pressure value detected by the air pressure sensor of the electronic device is consistent with the atmospheric pressure value corresponding to the altitude where the electronic device is located; that is, the data of the air pressure sensor is valid.
  • the electronic device detects that the second preset condition is satisfied, and then determines that the data of the air pressure sensor is valid.
  • the second preset condition is that the absolute value of the difference between the altitude obtained by the electronic device according to the air pressure value measured by the air pressure sensor and the altitude in the received GNSS data is less than the predetermined value.
  • Set the threshold Exemplarily, the preset threshold may be 100 meters.
  • the electronic device periodically compares the altitude obtained according to the air pressure value measured by the air pressure sensor with the altitude in the received GNSS data according to a preset second time interval. If it is determined that the absolute value of the difference between the altitude obtained according to the air pressure value measured by the air pressure sensor and the altitude in the received GNSS data is less than the preset threshold value for consecutive M (M>1) times, the air pressure sensor is determined The data is valid.
  • the electronic device periodically turns on the GNSS function according to the preset first time interval.
  • the electronic device obtains the altitude according to the air pressure value measured by the air pressure sensor, and compares the altitude obtained according to the air pressure value measured by the air pressure sensor with the altitude in the received GNSS data.
  • the second time interval is the same as the first time interval.
  • the GNSS function of the smart watch is continuously turned on; for example, the user turns on the airplane mode.
  • the electronic device periodically compares the altitude obtained according to the air pressure value measured by the air pressure sensor with the altitude in the received GNSS data according to a preset second time interval.
  • the second time interval may be the same as or different from the first time interval.
  • the GPS function of the smart watch is turned on, and the smart watch receives GPS data every 2 seconds.
  • the smart watch determines that the altitude is 500 meters based on the received GPS data, and obtains the altitude of 560 meters based on the air pressure value measured by the air pressure sensor, and determines that the difference between the two is less than 100 meters; after 2 seconds, the smart watch is based on The received GPS data determines that the altitude is 480 meters, and the altitude is 550 meters obtained according to the air pressure value measured by the air pressure sensor, and the difference between the two is determined to be less than 100 meters; after 2 seconds, the smart watch determines the altitude based on the received GPS data
  • the electronic device detects that the third preset condition is satisfied, and then determines that the data of the air pressure sensor is valid.
  • the third preset condition is that within the second preset time period, the value by which the altitude value of the electronic device decreases is greater than the preset second altitude threshold.
  • the second preset duration is 30 seconds
  • the second height threshold is 200 meters.
  • the altitude of the electronic device is obtained according to the second detection method. The electronic device detects that within the second preset time period, the altitude value of the electronic device decreases by a value greater than the preset second altitude threshold, and then determines that the plane the user is riding in is landing, and the data of the air pressure sensor is restored to be valid at this time.
  • the GNSS function of the smart watch is kept on continuously, and the electronic device receives the altitude data in the GNSS data to obtain the current altitude. If it is determined that within the second preset time period, the reduced value of the altitude value of the electronic device is greater than the preset second altitude threshold, then it is determined that the data of the air pressure sensor is valid.
  • the user can turn off the GNSS function during the flight of the aircraft, and the electronic device stops receiving GNSS data, stops displaying the altitude in the received GNSS data, and displays the altitude obtained from the air pressure value measured by the air pressure sensor .
  • the second switching condition is that the electronic device determines that the user turns off the GNSS function.
  • the user turns off outdoor sports modes such as walking, outdoor running, cycling, and climbing on the smart watch, and the smart watch may turn off the GNSS function.
  • This scenario is especially suitable for the situation where the user turns on the GNSS function by turning on the outdoor sports mode.
  • the user turns off the airplane mode on the smart watch, and the smart watch may also turn off the GNSS function.
  • the GNSS function is turned off.
  • the user can turn off the GNSS function during the flight of the aircraft. If the electronic device determines that the data of the air pressure sensor is invalid at this time, the GNSS function on the electronic device is turned on. For example, the electronic device periodically turns on the GNSS function according to a preset first time interval. In this way, the electronic device can display the altitude in the received GNSS data.
  • the cockpit of the plane stops pressurizing, and the electronic device detects that the air pressure sensor data is restored, the electronic device can stop displaying the altitude in the received GNSS data, and display the air pressure value measured by the air pressure sensor Obtained altitude. And, the electronic device stops receiving GNSS data. For example, the electronic device stops periodically turning on the GNSS function according to the preset first time interval.
  • the second switching condition is that the electronic device determines that the data of the air pressure sensor is valid.
  • the electronic device may record that the air pressure sensor is in a failed state. After that, if the electronic device detects that the data of the air pressure sensor is restored to be valid, it records that the air pressure sensor is in a valid state. Exemplarily, the electronic device can record and update the air pressure sensor status flag.
  • the air pressure sensor status flag is used to indicate the status of the air pressure sensor; the air pressure sensor status flag is 0, indicating that the data of the air pressure sensor is valid; the air pressure sensor status flag is 1, indicating the air pressure The data of the sensor is invalid.
  • the data of the air pressure sensor of the smart watch is valid, and the smart watch displays the altitude obtained according to the air pressure value measured by the air pressure sensor; the air pressure sensor status flag is 0.
  • the GPS function is turned on. After that, the user wears the smart watch and takes off on the plane. After the plane took off, the cockpit of the plane was pressurized, and the data of the air pressure sensor became invalid.
  • the smart watch determines that the data of the air pressure sensor is invalid, it determines that the GPS function is turned on, and then displays the altitude of the received GPS data.
  • the status flag of the air pressure sensor is updated to 1, indicating that the data of the air pressure sensor is invalid.
  • the GPS function is turned off.
  • the smart watch detects that the GPS function is turned off and determines that the data of the air pressure sensor is invalid at this time (the air pressure sensor status is marked as 1), and the GPS function is periodically turned on according to the preset first time interval. In this way, the smart watch can display the altitude in the received GPS data.
  • the cockpit of the plane stops pressurizing, and the smart watch detects that the air pressure sensor data is restored to be valid, it stops periodically turning on the GPS function according to the preset first time interval; and displays the data measured by the air pressure sensor. The altitude obtained by the obtained air pressure value.
  • the electronic device displays the altitude obtained according to the first detection method.
  • the electronic device displays the current altitude obtained according to the air pressure value measured by the air pressure sensor.
  • the smart watch displays the altitude obtained according to the air pressure value measured by the air pressure sensor. As shown in Figure 6, the smart watch shows that the current altitude is 230 meters.
  • the smart watch can display the altitude change curve over a period of time.
  • the curve 601 in FIG. 6 is the change curve of the altitude of the smart watch on the day.
  • the altitude value displayed by the electronic device is the altitude obtained by the air pressure sensor.
  • the electronic device determines that the data of the air pressure sensor is invalid, the electronic device displays the altitude in the received GNSS data. In this way, the electronic device can also display the accurate altitude when the data of the air pressure sensor is unreliable when the user is flying in an airplane.
  • the electronic device When the user landed on an airplane, the electronic device detects that the data of the air pressure sensor is restored to be valid, and the electronic device displays the altitude obtained by the air pressure sensor. Since the altitude obtained by the air pressure value measured by the air pressure sensor is more accurate than the altitude obtained by the electronic device receiving GNSS data, the electronic device can display a more accurate altitude when the user is not in an airplane. Moreover, in this way, the electronic device can reduce the power consumption of the electronic device without turning on the GNSS function when the user is not in an airplane.
  • the method for measuring altitude on an airplane can also be applied to other scenarios where the data of the air pressure sensor is invalid, other than the user wearing an electronic device while riding in an airplane.
  • the electronic device displays the altitude obtained by the air pressure sensor.
  • the electronic device determines that the data of the air pressure sensor is invalid, it displays the altitude in the received GNSS data.
  • the electronic device detects that the data of the air pressure sensor is restored to be valid, it displays the altitude obtained by the air pressure sensor. In this way, regardless of whether the data from the air pressure sensor is valid, the electronic device can display the accurate altitude.
  • the above-mentioned electronic device includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the embodiments of the present application.
  • the embodiments of the present application may divide the above-mentioned electronic equipment into functional modules according to the above-mentioned method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 7 shows a schematic diagram of a possible structure of the electronic device involved in the foregoing embodiment.
  • the electronic device 700 includes a barometer 701, a GNSS module 702, an altitude measurement module 703, and a GNSS control module 704.
  • the barometer 701 is used to detect the air pressure value.
  • the barometer 701 may be the barometric pressure sensor 150A in FIG. 2A.
  • the GNSS module 702 is used to receive GNSS data.
  • the GNSS module 702 may be the positioning module 160 in FIG. 2A.
  • the altitude measurement module 703 is used to calculate the altitude of the electronic device.
  • the altitude measurement module 703 includes a barometric altitude sub-module 7031, which is used to calculate the altitude of the electronic device based on the barometric pressure value detected by the barometer 701; the GNSS altitude sub-module 7032 is used to obtain the altitude of the electronic device based on GNSS data;
  • the altitude validity judgment sub-module 7033 is used to judge whether the data of the barometer 701 is valid; the altitude measurement sub-module 7034 is used to obtain the altitude of the electronic device in combination with the data of each sub-module in the altitude measurement module 703; also used as the altitude
  • the interface module of the measurement module 703 interacts with other modules of the electronic device.
  • the GNSS control module 704 is used to control turning on or turning off the GNSS function of the electronic device.
  • the GNSS control module 704 may be used to control the GNSS function of the electronic device to be turned on or off according to the user's operation of turning on or turning off the motion mode.
  • the GNSS control module 704 determines that it receives the user's operation to turn on outdoor sports modes such as walking, outdoor running, cycling, climbing, etc., or determines that it receives the user's operation to turn on the airplane in the sports mode, and then controls to turn on the GNSS of the electronic device Features.
  • the GNSS control module 704 determines that it receives the user's operation to turn off outdoor sports modes such as walking, outdoor running, cycling, mountain climbing, or determines that it receives the user's operation to turn off flying in the sports mode, and then controls to turn off the GNSS function of the electronic device.
  • the GNSS control module 704 may also be used to control the GNSS function of the electronic device to be turned on or off according to the user's operation to turn on or turn off the positioning function.
  • the content of controlling turning on/off the GNSS function has been described in detail in the foregoing embodiment, and will not be repeated here.
  • the height measurement module 703 and the GNSS control module 704 may be implemented by the processor 110 in FIG. 2A.
  • the method for measuring altitude on an airplane provided by the embodiment of the present application will be specifically introduced below in conjunction with the interaction process between the various modules of the electronic device 700.
  • Scenario 1 The user turns on the GNSS function of the electronic device before the plane takes off. After that, the user wears the electronic device to take the plane and the plane takes off. After the plane took off, the cockpit of the plane was pressurized, and the barometer data of the electronic device became invalid.
  • the user turns on the GNSS function of the electronic device by turning on the outdoor sports mode on the electronic device or taking an airplane as an example for description.
  • the user can also turn on the GNSS function in other ways.
  • the user turns on the GNSS function by turning on the positioning function on the electronic device.
  • the specific way the user opens the GNSS function does not affect the function of each module in this embodiment; the description of the function of each module in this embodiment and the description of the interaction process between each module are also applicable to the user in other ways The scene where the GNSS function is turned on.
  • sports modes involved in this embodiment refer to outdoor sports modes such as walking, outdoor running, cycling, mountain climbing, etc., or flying modes. It is not specifically pointed out in the detailed description of the embodiments.
  • the method for measuring altitude on an airplane may include:
  • the barometer periodically reports the detected air pressure value data to the air pressure altitude sub-module according to a set period (for example, 1 second).
  • the barometric altitude sub-module receives barometric data reported by the barometer.
  • the air pressure altitude sub-module receives the air pressure value data reported by the barometer, and can calculate the altitude of the electronic device based on the air pressure value.
  • the air pressure altitude sub-module can send the altitude data of the electronic device to the altitude measurement sub-module; it can also send the altitude data of the electronic device to the air pressure altitude validity judging sub-module.
  • S803 The barometric altitude sub-module periodically sends the altitude data of the electronic device to the altitude measurement sub-module.
  • the altitude measurement sub-module receives the altitude data of the electronic device from the air pressure altitude sub-module.
  • the electronic device can display the altitude on the display screen.
  • the electronic device displays the interface shown in FIG. 1, and the altitude value of the electronic device is 121 meters.
  • the altitude measurement submodule may also send the altitude data of the electronic device received from the air pressure altitude submodule to the air pressure altitude validity judging submodule.
  • the GNSS control module receives the user's operation of turning on the motion mode on the electronic device.
  • the GNSS control module receives the user's operation to turn on the motion mode on the electronic device, and in response to the user's operation to turn on the motion mode on the electronic device, notifies the GNSS module to turn on the GNSS function.
  • the GNSS module enables the GNSS function.
  • the GNSS module can turn on the GNSS function, and until the GNSS control module receives the user's operation to turn off the motion mode on the electronic device, it notifies the GNSS module to turn off the GNSS function.
  • the GNSS module can report the received GNSS data to the GNSS altitude sub-module periodically (for example, the reporting period is 1 second).
  • the GNSS altitude sub-module receives the GNSS data, and can obtain the altitude of the electronic device according to the GNSS data.
  • the barometric altitude validity judgment sub-module determines that the data of the barometer is invalid.
  • the air pressure altitude validity judging sub-module periodically receives the altitude data of the electronic device sent by the altitude measurement sub-module (the altitude data of the electronic device is received from the air pressure altitude sub-module). If the air pressure altitude validity judgment sub-module determines that the first preset condition is satisfied according to the altitude data of the electronic device received from the air pressure altitude sub-module, it is determined that the data of the barometer is invalid. Exemplarily, the barometric altitude validity judging sub-module determines that within 30 seconds, the altitude data of the electronic device has increased by 100 meters; it is determined that the barometer data is invalid.
  • the user wears the electronic device to take an airplane and the airplane takes off. After the plane took off, the cabin of the plane was pressurized, and the barometer data became invalid.
  • the barometric altitude validity judgment sub-module notifies the altitude measurement sub-module that the data of the barometer is invalid.
  • the altitude measurement sub-module receives the altitude of the electronic device from the GNSS altitude sub-module.
  • the altitude measurement sub-module After the altitude measurement sub-module receives the notification message that the barometer data is invalid, it determines that the GNSS function of the electronic device is turned on, and then receives the altitude of the electronic device from the GNSS altitude sub-module. In this way, the electronic device displays the altitude data in the received GNSS data.
  • the electronic device displays the interface shown in FIG. 4, and the altitude value of the electronic device is 8500 meters.
  • the altitude measurement sub-module may also send the altitude data of the electronic device received from the GNSS altitude sub-module to the air pressure altitude validity judging sub-module.
  • the method may also include:
  • the barometric altitude validity judging sub-module determines that the data of the barometer is valid.
  • the air pressure altitude validity determination sub-module compares the altitude data of the electronic device received from the air pressure altitude sub-module with the altitude data of the electronic device received from the GNSS altitude sub-module; if it is determined from the air pressure altitude sub-module If the absolute value of the difference between the altitude data of the electronic device received by the module and the altitude data of the electronic device received from the GNSS altitude sub-module is less than the preset threshold, it is determined that the barometer data is valid.
  • the barometric altitude validity judgment sub-module informs the altitude measurement sub-module that the barometer data is valid.
  • the altitude measurement sub-module receives the altitude of the electronic device from the air pressure altitude sub-module.
  • the altitude measurement sub-module stops receiving the altitude of the electronic device from the GNSS altitude sub-module, and resumes receiving the altitude of the electronic device from the air pressure altitude sub-module. In this way, the electronic device displays the altitude data of the electronic device received from the air pressure altitude sub-module.
  • the electronic device displays the interface shown in FIG. 6, and the altitude value of the electronic device is 230 meters.
  • the user can turn off the GNSS function during the flight of the aircraft.
  • the user turns off the exercise mode on the electronic device on the smart watch, which may trigger the turning off of the GNSS function.
  • the method may also include:
  • the GNSS control module receives the user's operation to turn off the exercise mode on the electronic device.
  • the GNSS control module receives the user's operation to turn off the motion mode on the electronic device, and in response to the user's operation to turn off the motion mode on the electronic device, the GNSS control module notifies the GNSS module to turn off the GNSS function.
  • the GNSS module stops periodically reporting the received GNSS data to the GNSS altitude sub-module.
  • the height measurement sub-module is an interface module between the height measurement module and other modules, and the GNSS control module can notify the GNSS module to turn off the GNSS function through the height measurement sub-module. In this way, the height measurement sub-module can determine that the GNSS function has been turned off.
  • the altitude measurement sub-module receives the altitude of the electronic device from the air pressure altitude sub-module.
  • the altitude measurement sub-module stops receiving the altitude of the electronic device from the GNSS altitude sub-module, and resumes receiving the altitude of the electronic device from the air pressure altitude sub-module. In this way, the electronic device displays the altitude data of the electronic device received from the air pressure altitude sub-module.
  • the altitude value displayed by the electronic device is the altitude obtained by the air pressure sensor.
  • the user can turn on the GNSS function of the electronic device.
  • the electronic device determines that the data of the air pressure sensor is invalid, the electronic device displays the altitude in the received GNSS data. In this way, the electronic device can also display the accurate altitude when the data of the air pressure sensor is unreliable when the user is flying in an airplane.
  • the electronic device When the user landed on an airplane, the electronic device detects that the data of the air pressure sensor is restored to be valid, and the electronic device displays the altitude obtained by the air pressure sensor. Since the altitude obtained by the air pressure value measured by the air pressure sensor is more accurate than the altitude obtained by the electronic device receiving GNSS data, the electronic device can display a more accurate altitude when the user is not in an airplane.
  • the electronic device displays the altitude obtained by the air pressure sensor.
  • Scenario 2 The user wears an electronic device to take an airplane and the airplane takes off. After the plane took off, the cockpit of the plane was pressurized, and the barometer data of the electronic device became invalid. The user has not turned on the GNSS function on the electronic device.
  • the method for measuring altitude on an airplane may include:
  • S901 The barometer periodically reports the barometric pressure value data to the barometric altitude sub-module.
  • S902 The barometric altitude sub-module receives barometric data reported by the barometer.
  • the barometric altitude sub-module periodically sends the altitude data of the electronic device to the altitude measurement sub-module.
  • the altitude measurement sub-module receives the altitude data of the electronic device from the air pressure altitude sub-module.
  • S901-S904 can refer to S801-S804, which will not be repeated here.
  • S905 The barometric altitude validity judging sub-module determines that the data of the barometer is invalid.
  • S905 can refer to S807, which will not be repeated here.
  • S906 The barometric altitude validity judgment sub-module notifies the altitude measurement sub-module that the data of the barometer is invalid.
  • the altitude measurement sub-module notifies the GNSS altitude sub-module to enable the GNSS function.
  • the altitude measurement sub-module determines that the electronic device no longer displays the altitude data of the electronic device received from the air pressure altitude sub-module. And notify the GNSS altitude sub-module to turn on the GNSS function.
  • the altitude measurement sub-module continues to receive the altitude data of the electronic device from the barometric altitude sub-module. In this way, the altitude measurement sub-module can determine the altitude of the barometer based on the altitude data of the electronic device received from the barometric altitude sub-module. Whether the data recovery is valid.
  • the GNSS altitude sub-module notifies the GNSS module to enable the GNSS function.
  • the GNSS altitude sub-module notifies the GNSS module to enable the GNSS function. After receiving the notification of the GNSS altitude sub-module to enable the GNSS function, the GNSS module turns on the GNSS function to receive GNSS data.
  • the GNSS altitude sub-module determines to periodically turn on the GNSS function according to a preset first time interval; in each cycle, after the GNSS function is turned on for a preset duration, the GNSS function is turned off. Then the GNSS module periodically turns on the GNSS function according to the preset first time interval; in each cycle, after receiving the GNSS data for a preset duration, it stops receiving the GNSS data.
  • the GNSS module periodically reports the GNSS data to the GNSS altitude sub-module.
  • the GNSS module reports GNSS data to the GNSS altitude sub-module.
  • the GNSS altitude sub-module receives the GNSS data, and can obtain the altitude of the electronic device according to the GNSS data.
  • the altitude measurement sub-module receives the altitude of the electronic device from the GNSS altitude sub-module.
  • the altitude measurement sub-module receives the altitude of the electronic device from the GNSS altitude sub-module, so that the electronic device displays the altitude data in the received GNSS data.
  • the electronic device displays the interface shown in FIG. 4, and the altitude value of the electronic device is 8500 meters.
  • the altitude measurement sub-module may also send the altitude of the electronic device received from the GNSS altitude sub-module to the air pressure altitude validity judging sub-module.
  • the barometric altitude validity judging sub-module determines that the data of the barometer is valid.
  • the air pressure altitude validity judgment sub-module determines that the barometer data is valid.
  • the air pressure altitude validity determination sub-module compares the altitude data of the electronic device received from the air pressure altitude sub-module with the altitude data of the electronic device received from the GNSS altitude sub-module; if it is determined from the air pressure altitude sub-module If the absolute value of the difference between the altitude data of the electronic device received by the module and the altitude data of the electronic device received from the GNSS altitude sub-module is less than the preset threshold, it is determined that the barometer data is valid.
  • the barometric altitude validity judgment sub-module informs the altitude measurement sub-module that the barometer data is valid.
  • the altitude measurement sub-module receives the altitude of the electronic device from the air pressure altitude sub-module.
  • the altitude measurement sub-module stops receiving the altitude of the electronic device from the GNSS altitude sub-module, and resumes receiving the altitude of the electronic device from the air pressure altitude sub-module. In this way, the electronic device displays the altitude data of the electronic device received from the air pressure altitude sub-module. Exemplarily, after the plane has landed, the electronic device displays the interface shown in FIG. 6, and the altitude value of the electronic device is 230 meters.
  • the altitude measurement sub-module notifies the GNSS altitude sub-module to close the GNSS function.
  • the altitude measurement sub-module determines that the electronic device no longer displays the altitude data of the electronic device received from the GNSS altitude sub-module, and informs the GNSS altitude sub-module to turn off the GNSS function.
  • the GNSS altitude sub-module notifies the GNSS module to turn off the GNSS function.
  • the GNSS altitude sub-module notifies the GNSS module to turn off the GNSS function. After the GNSS module receives the notification of turning off the GNSS function from the GNSS altitude sub-module, it turns off the GNSS function and no longer receives GNSS data.
  • the GNSS altitude sub-module determines to stop periodically turning on the GNSS function according to a preset first time interval.
  • the GNSS altitude sub-module informs the GNSS module to stop periodically turning on the GNSS function according to the preset first time interval.
  • the GNSS module stops periodically receiving GNSS data according to the preset first time interval.
  • the altitude value displayed by the electronic device is the altitude obtained by the air pressure sensor.
  • the electronic device can turn on the GNSS function and display the altitude in the received GNSS data. In this way, the electronic device can also display the accurate altitude when the data of the air pressure sensor is unreliable when the user is flying in an airplane.
  • the electronic device can periodically turn on the GNSS function intermittently, which can reduce the power consumption of the electronic device.
  • the electronic device When the user landed on an airplane, the electronic device detects that the data of the air pressure sensor is restored to be valid, and the electronic device displays the altitude obtained by the air pressure sensor. Since the altitude obtained by the air pressure value measured by the air pressure sensor is more accurate than the altitude obtained by the electronic device receiving GNSS data, the electronic device can display a more accurate altitude when the user is not in an airplane. Moreover, in this way, the electronic device can reduce the power consumption of the electronic device without turning on the GNSS function when the user is not in an airplane.
  • FIG. 10 shows a schematic diagram of a possible structure of the electronic device involved in the foregoing embodiment.
  • the electronic device 1000 includes: a processing module 1001, a display module 1002, an air pressure module 1003, a positioning module 1004, and a storage module 1005.
  • the processing module 1001 is used to control and manage the actions of the electronic device 1000. For example, it can be used to perform the processing steps of S302 and S304 in FIG. 3; and/or other processes used in the technology described herein.
  • the display module 1002 is used to display the interface of the electronic device. For example, it can be used to display the altitude of the electronic device; it can also be used to display the setting interface for turning on and off the exercise mode of the electronic device, and to display the setting interface for turning on and off the positioning function. For example, it can be used to perform the processing steps of S301, S303, and S305 in FIG. 3; and/or other processes used in the technology described herein.
  • the air pressure module 1003 is used to detect the air pressure of the environment where the electronic device 1000 is located.
  • the positioning module 1004 is used for positioning the electronic device 1000. For example, it can be used to receive GNSS data.
  • the storage module 1005 is used to store the program code and data of the electronic device 1000. For example, it can be used to store the status indicator of the air pressure sensor.
  • the unit modules in the above-mentioned electronic device 1000 include but are not limited to the above-mentioned processing module 1001, display module 1002, air pressure module 1003, positioning module 1004, and storage module 1005.
  • the electronic device 1000 may also include a power supply module and the like.
  • the processing module 1001 may be a processor or a controller, for example, a central processing unit (CPU), a digital signal processor (digital signal processor, DSP), or an application-specific integrated circuit (ASIC). ), a field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the processor may include an application processor and a baseband processor. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the display module 1002 may be a display screen.
  • the air pressure module 1003 may be an air pressure sensor.
  • the storage module 1005 may be a memory.
  • the processing module 1001 is a processor (such as the processor 110 shown in FIG. 2A), and the display module 1002 is a display screen (such as the display screen 130 shown in FIG. 2A).
  • the display screen 130 may be a touch screen, and the touch screen may be integrated Display panel and touch panel
  • the air pressure module 1003 is an air pressure sensor (as shown in FIG. 2A, the air pressure sensor 150A)
  • the positioning module 1004 may be the positioning module 160 shown in FIG. 2A
  • the storage module 1005 may be a memory (as shown in FIG. 2A)
  • the memory shown is 120).
  • the foregoing processor, memory, etc. may be coupled together, for example, connected by a bus.
  • the embodiment of the present application also provides a computer storage medium, the computer storage medium stores computer program code, when the above-mentioned processor executes the computer program code, the electronic device executes the relevant method steps in FIG. 3 to implement the steps in the above-mentioned embodiment method.
  • the embodiments of the present application also provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute the relevant method steps in FIG. 3 to implement the method in the foregoing embodiment.
  • the electronic device 1000, the computer storage medium, or the computer program product provided in the embodiments of the present application are all used to execute the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding methods provided above. The beneficial effects of the method will not be repeated here.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephone Function (AREA)
  • Measuring Fluid Pressure (AREA)
  • Electric Clocks (AREA)

Abstract

一种在飞机上测量高度的方法,通常情况下,电子设备(100,200)显示根据第一检测方式获取的海拔高度。当满足第一切换条件后,电子设备(100,200)显示根据第二检测方式获取的海拔高度。这样,通常情况下,电子设备(100,200)显示根据气压传感器检测到的海拔高度;当电子设备(100,200)所在环境的气压值与大气压值不一致时,气压传感器的数据失效;电子设备(100,200)显示其他检测方式获取的海拔高度。可以实现在用户乘坐飞机的情况下,电子设备(100,200)能够显示准确的海拔高度。

Description

一种在飞机上测量高度的方法及设备
本申请要求于2019年09月24日提交国家知识产权局、申请号为201910905161.8、申请名称为“一种在飞机上测量高度的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种在飞机上测量高度的方法及设备。
背景技术
很多可穿戴设备,比如各类运动手表类产品,都有“高度计”功能,即可以在设备上显示设备当前的海拔高度。如图1,智能手表上有“高度计”功能,显示了智能手表当前的海拔高度为121米。
一般来说,可穿戴设备通过气压传感器实现“高度计”功能。大气压是随着海拔高度变化的,压高公式描述了大气压随海拔高度变化的规律。可穿戴设备可以根据气压传感器测量到的气压值和压高公式计算出当前的海拔高度。
但是,在一些情况下,可穿戴设备所处环境的气压并不是大气压。比如,用户佩戴可穿戴设备乘坐飞机时,由于飞机的座舱会增压,气压传感器测量到的气压值并不是当前海拔高度对应的大气压值。可穿戴设备根据气压传感器测量到的气压值和压高公式计算出的高度值,并不是可穿戴设备所处的真实海拔高度;即可穿戴设备的气压传感器的数据在这种情况下是不可信的,可穿戴设备的“高度计”功能失效。例如,用户佩戴智能手表乘坐飞机时,飞机已经飞上近万米的高空,而智能手表显示的海拔高度仅为2000米左右。
发明内容
本申请实施例提供一种在飞机上测量高度的方法及设备,可以实现在用户乘坐飞机等情况下,气压传感器的数据不可信时,可穿戴设备等电子设备能够显示准确的海拔高度。
第一方面,本申请实施例提供一种在飞机上测量高度的方法,该方法可以包括:电子设备显示根据第一检测方式获取的海拔高度;确定满足第一切换条件,该电子设备显示根据第二检测方式获取的海拔高度。
在该方法中,电子设备可以根据所处的环境等条件,切换获取海拔高度的检测方式。这样,当一种检测方式失效时,可以切换另一种检测方式,使得电子设备显示准确的海拔高度。
在一种可能的设计中,第一切换条件包括:电子设备根据第一检测方式获取的数据失效。也就是说,当第一检测方式失效时,根据第一检测方式获取的海拔高度是不准确的,电子设备由显示根据第一检测方式获取的海拔高度,切换为显示根据第二检测方式获取的海拔高度,则可以显示准确的海拔高度。
在一种可能的设计中,如果确定在第一预设时长内,电子设备的海拔高度值增加的数值大于预设的第一高度阈值;则确定根据第一检测方式获取的数据失效。
在该方式中,确定在第一预设时长内,电子设备的海拔高度值增加的数值大于预设的 第一高度阈值,则可以确定用户佩戴该电子设备乘坐的飞机起飞。飞机起飞后,飞机座舱加压,则根据第一检测方式获取的数据失效。
在一种可能的设计中,电子设备显示根据第二检测方式获取的海拔高度时,如果确定满足第二切换条件,电子设备显示根据第一检测方式获取的海拔高度。
在该方法中,电子设备可以根据所处的环境等条件,切换回显示根据第一检测方式获取的海拔高度。
在一种可能的设计中,第二切换条件包括:电子设备根据第一检测方式获取的数据恢复有效。也就是说,当第一检测方式恢复有效时,根据第一检测方式获取的海拔高度是准确的,电子设备由显示根据第二检测方式获取的海拔高度,切换为显示根据第一检测方式获取的海拔高度。在一些场景中,比如,第一检测方式获取的海拔高度更精确,电子设备及时地切换回显示根据第一检测方式获取的海拔高度,则可以使得电子设备显示的海拔高度值更精确。比如,第二检测方式比较耗电,电子设备及时地切换回显示根据第一检测方式获取的海拔高度,可以降低耗电量。
在一种可能的设计中,如果确定根据第一检测方式获取的海拔高度,与根据第二检测方式获取的海拔高度之间的差值的绝对值小于预设阈值,则说明根据第一检测方式获取的海拔高度是准确的,可以确定根据第一检测方式获取的数据恢复有效。
在一种可能的设计中,如果确定在第二预设时长内,电子设备的海拔高度值减小的数值大于预设的第二高度阈值,则说明用户佩戴电子设备乘坐的飞机降落,可以确定根据第一检测方式获取的数据恢复有效。
在一种可能的设计中,第二切换条件包括:电子设备检测到用户关闭第二检测方式的操作。用户关闭了第二检测方式,则电子设备不能通过第二检测方式获取海拔高度,电子设备由显示根据第二检测方式获取的海拔高度,切换为显示根据第一检测方式获取的海拔高度。
在一种可能的设计中,第一检测方式为通过气压传感器检测电子设备的海拔高度;第二检测方式为接收GNSS数据中的海拔高度数据,获取电子设备的海拔高度。
在一种可能的设计中,电子设备显示根据第二检测方式获取的海拔高度之前,开启电子设备的GNSS功能。电子设备开启了GNSS功能,才可以接收GNSS数据中的海拔高度数据,从而获取电子设备的海拔高度,并显示海拔高度。
在一种可能的设计中,电子设备按照预设的第一时间间隔,周期性的打开电子设备的GNSS功能。由于GNSS功能的功耗较大,相比一直打开GNSS功能,这种按照时间间隔周期性的打开GNSS功能的方法,可以有效降低耗电量。
第二方面,本申请实施例提供一种电子设备,该电子设备可以实现第一方面所述的在飞机上测量高度的方法。该电子设备可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的设计中,该电子设备可以包括显示屏、处理器和存储器。该显示屏和处理器被配置为支持该电子设备执行上述第一方面方法中相应的功能。存储器用于与处理器耦合,其保存该电子设备必要的程序指令和数据。另外该电子设备中还可以包括通信接口,用于支持该电子设备与其他电子设备之间的通信。该通信接口可以是收发器或收发电路。
在一种可能的设计中,该电子设备可以包括:处理模块,显示模块,第一检测模块和 第二检测模块。其中,显示模块用于显示第一检测模块获取的海拔高度;还用于显示第二检测模块获取的海拔高度;处理模块用于确定是否满足第一切换条件,如果确定满足第一切换条件,则确定显示模块显示第二检测模块获取的海拔高度。
在一种可能的设计中,第一切换条件包括:第一检测模块获取的数据失效。
在一种可能的设计中,第一检测模块获取的数据失效包括:处理模块确定在第一预设时长内,电子设备的海拔高度值增加的数值大于预设的第一高度阈值。
在一种可能的设计中,处理模块还用于确定是否满足第二切换条件,如果确定满足第二切换条件,则确定显示模块显示第一检测模块获取的海拔高度。
在一种可能的设计中,第二切换条件包括:第一检测模块获取的数据恢复有效。
在一种可能的设计中,第一检测模块获取的数据恢复有效包括:处理模块确定第一检测模块获取的海拔高度,与第二检测模块获取的海拔高度之间的差值的绝对值小于预设阈值。
在一种可能的设计中,第一检测模块获取的数据恢复有效包括:处理模块确定在第二预设时长内,电子设备的海拔高度值减小的数值大于预设的第二高度阈值。
在一种可能的设计中,第二切换条件包括:处理模块确定检测到用户关闭第二检测模块的检测方式的操作。
在一种可能的设计中,第一检测模块为气压传感器,第二检测模块为GNSS模块。
在一种可能的设计中,处理模块还用于确定开启GNSS模块的GNSS功能。
在一种可能的设计中,处理模块还用于确定GNSS模块按照预设的第一时间间隔,周期性的打开GNSS功能。
第三方面,本申请实施例提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在电子设备上运行时,使得电子设备执行如第一方面及其可能的设计方式所述的在飞机上测量高度的方法。
第四方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面及其可能的设计方式所述的在飞机上测量高度的方法。
第二方面所述的电子设备,第三方面所述的计算机存储介质以及第四方面所述的计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文提供的对应的方法中对应方案的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种电子设备的显示界面实例示意图一;
图2A为本申请实施例提供的一种电子设备的结构组成示意图一;
图2B为本申请实施例提供的一种电子设备的结构组成示意图二;
图2C为本申请实施例提供的一种电子设备的结构组成示意图三;
图2D为本申请实施例提供的一种电子设备的结构组成示意图四;
图3为本申请实施例提供的一种在飞机上测量高度的方法流程图一;
图4为本申请实施例提供的一种电子设备的显示界面实例示意图二;
图5A为本申请实施例提供的一种电子设备的显示界面实例示意图三;
图5B为本申请实施例提供的一种电子设备的显示界面实例示意图四;
图5C为本申请实施例提供的一种电子设备的显示界面实例示意图五;
图6为本申请实施例提供的一种电子设备的显示界面实例示意图六;
图7为本申请实施例提供的一种电子设备的结构组成示意图五;
图8为本申请实施例提供的一种在飞机上测量高度的方法流程图二;
图9为本申请实施例提供的一种在飞机上测量高度的方法流程图三;
图10为本申请实施例提供的一种电子设备的结构组成示意图六。
具体实施方式
本申请实施例提供的在飞机上测量高度的方法,可以应用于具有“高度计”功能的电子设备。该电子设备可以为可穿戴设备(如智能手表、智能手环、智能眼镜或者智能头盔等)、便携式计算机(如手机等)、笔记本电脑、平板电脑、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备等,本申请实施例对该电子设备的具体形式不做特殊限制。
请参考图2A,为本申请实施例提供的一种电子设备100的结构示意图。其中,电子设备100可以包括处理器110,存储器120,显示屏130,电源模块140、传感器模块150、定位模块160等。其中,传感器模块150可以包括气压传感器150A、触摸传感器150B等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以是硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理器,例如:处理器110可以包括应用处理器,控制器,数字信号处理器(digital signal processor,DSP)等。其中,不同的处理器可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
应用处理器上可以安装有电子设备100的操作系统,用于管理电子设备100的硬件与软件资源。比如,管理与配置内存、决定系统资源供需的优先次序、控制输入与输出设备、操作网络、管理文件系统、管理驱动程序等。操作系统也可以用于提供一个让用户与系统交互的操作界面。其中,操作系统内可以安装各类软件,比如,驱动程序,应用程序(application,App)等。
存储器120,用于存储指令和数据。在一些实施例中,存储器120为高速缓冲存储器。该存储器可以保存处理器110使用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从存储器120中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,存储器120也可以设置于处理器110中,即处理器110包括存储器120。本申请实施例对此不进行限定。
显示屏130,用于显示图像,视频等。显示屏130包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled, MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏130,N为大于1的正整数。
电源模块140,可以用于向电子设备100包含的各个部件供电。在一些实施例中,该电源模块140可以是电池,如可充电电池。
气压传感器150A,用于测量气压。本申请实施例中,电子设备100通过气压传感器150A测得的气压值计算海拔高度。在一种示例中,电子设备100根据气压传感器150A测得的气压值和压高公式计算海拔高度。压高公式是描述气压随高度变化规律的公式。根据气压值和压高公式计算高度的具体方法可以参考常规技术中的描述,本申请实施例在此不再赘述。
触摸传感器150B,也称“触控面板”。触摸传感器150B可以设置于显示屏130,由触摸传感器150B与显示屏130组成触摸屏,也称“触控屏”。触摸传感器150B用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏130提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器150B也可以设置于电子设备100的表面,与显示屏130所处的位置不同。
定位模块160,用于定位电子设备100。本申请实施例中,定位模块160可以接收全球导航卫星系统(global navigation satellite system,GNSS)的数据,GNSS的数据包括平面经纬度、海拔高度等。电子设备100可以通过GNSS的海拔高度数据获取其海拔高度。其中,所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS),伽利略卫星导航系统(galileo satellite navigation system,GSNS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
本申请实施例提供的在飞机上测量高度的方法,可以应用于上述电子设备100。电子设备100具有“高度计”功能,可以在显示屏130上显示电子设备100的当前海拔高度。电子设备100可以通过气压传感器150A测得的气压值获取电子设备100的海拔高度;电子设备100也可以通过定位模块160接收的海拔高度数据获取电子设备100的海拔高度。通常情况下,由于通过气压传感器测得的气压值获取的海拔高度,比电子设备接收GNSS的数据获取的海拔高度更精确,显示屏130上显示的高度值为通过气压传感器150A获取到的海拔高度。当电子设备100确定通过气压传感器150A获取的海拔高度数据不可信时,显示屏130上显示定位模块160接收的海拔高度。这样,在用户乘坐飞机等情况下,气压传感器的数据不可信时,电子设备100也可以显示准确的海拔高度。当然,电子设备100在显示屏130上显示当前海拔高度的功能也可以是其他名称,电子设备100在显示屏130上并不显示“高度计”字样。比如,电子设备100的显示屏130上显示“海拔高度:XX米”等。
在一些实施例中,上述电子设备100的气压传感器和/或定位模块可以不设置在该电子设备100上,即电子设备100可以借助与其连接的其他设备(电子设备200)的气压传感器和/或定位模块获取当前海拔高度,并在电子设备100上进行显示。
在一种示例中,如图2B,电子设备100和电子设备200通过无线连接。电子设备100 包括处理器110,存储器120,显示屏130,电源模块140,传感器模块150等;电子设备200包括定位模块210,定位模块210可以接收GNSS的数据。电子设备100可以通过传感器模块150的气压传感器150A测得的气压值获取电子设备100的海拔高度;也可以接收电子设备200的定位模块210的海拔高度数据,获取电子设备200的海拔高度,即获取到电子设备100的海拔高度。
在另一种示例中,如图2C,电子设备100和电子设备200通过无线连接。电子设备100包括处理器110,存储器120,显示屏130,电源模块140,定位模块160等;电子设备200包括传感器模块220,传感器模块220包括气压传感器220A,用于测量气压。电子设备100可以通过定位模块160接收的海拔高度数据获取到电子设备100的海拔高度;也可以接收电子设备200的传感器模块220的气压传感器220A的气压值数据,根据接收的气压值数据获取电子设备200的海拔高度,即获取到电子设备100的海拔高度。
在又一种示例中,如图2D,电子设备100和电子设备200通过无线连接。电子设备100包括处理器110,存储器120,显示屏130,电源模块140等;电子设备200包括定位模块210,传感器模块220等,其中,传感器模块220包括气压传感器220A。定位模块210可以接收GNSS的数据;气压传感器220A用于测量气压。电子设备100可以接收电子设备200的传感器模块220的气压传感器220A的气压值数据,根据接收的气压值数据获取电子设备200的海拔高度,即获取到电子设备100的海拔高度;也可以接收电子设备200的定位模块210的海拔高度数据,获取电子设备200的海拔高度,即获取到电子设备100的海拔高度。
示例性的,电子设备100为智能手表,电子设备200为手机;或者,电子设备100为手机,电子设备200为智能手表。
下面结合附图对本申请实施例提供的在飞机上测量高度的方法进行具体介绍。
本申请实施例以电子设备100为智能手表,智能手表包括如图2A所示的结构为例进行说明。可以理解的,本申请实施例提供的在飞机上测量高度的方法也适用于图2B、图2C或图2D中电子设备100。
如图3,本申请实施例提供的在飞机上测量高度的方法,可以包括:
S301、电子设备显示根据第一检测方式获取的海拔高度。
第一检测方式可以是电子设备默认的海拔高度检测方式。比如,第一检测方式为通过气压传感器检测海拔高度的方式。电子设备根据气压传感器测得的气压值获取当前的海拔高度。
比如,用户在未乘坐飞机时,电子设备显示根据气压传感器测得的气压值获取的当前的海拔高度。示例性的,电子设备显示如图1所示界面,当前海拔高度的值为121米。
S302、电子设备确定是否满足第一切换条件;如果确定满足第一切换条件,则执行S303,电子设备显示根据第二检测方式获取的海拔高度;如果确定不满足第一切换条件,则执行S301,电子设备显示根据第一检测方式获取的海拔高度。
其中,第一切换条件为气压传感器的数据失效。
比如,用户佩戴该电子设备乘坐飞机,飞机起飞。飞机起飞后,飞机的座舱加压,电子设备的气压传感器检测到的气压值与该电子设备所在海拔高度对应的大气压值不一致;即气压传感器的数据失效。
电子设备检测到满足第一预设条件,则确定气压传感器的数据失效。
在一种实现方式中,该第一预设条件为,在第一预设时长内,电子设备的海拔高度值增加的数值大于预设的第一高度阈值。示例性的,第一预设时长为30秒,第一高度阈值为100米。其中,电子设备的海拔高度是根据第一检测方式获取的。
电子设备检测到,在第一预设时长内,电子设备的海拔高度值增加的数值大于预设的第一高度阈值,则确定飞机起飞。由于飞机起飞后,飞机的座舱加压,电子设备的气压传感器检测到的气压值与该电子设备所在海拔高度对应的大气压值不一致,电子设备的气压传感器的数据失效。
S303、电子设备显示根据第二检测方式获取的海拔高度。
第二检测方式是与第一检测方式不同的检测方式。比如,第二检测方式为通过GNSS检测海拔高度的方式。电子设备接收GNSS数据中的海拔高度数据,从而获取当前的海拔高度。
示例性的,在飞机起飞后,智能手表显示的为接收的GNSS数据中的海拔高度数据。如图4,智能手表显示当前海拔高度为8500米。
电子设备上的GNSS功能包括打开状态和关闭状态。在打开状态,电子设备可以接收GNSS的数据;在关闭状态,电子设备不接收GNSS的数据。
在一些实施例中,电子设备确定气压传感器的数据失效后,确定电子设备上的GNSS功能为打开状态;则电子设备可以直接显示接收到的GNSS数据中的海拔高度。
在飞机起飞前,用户可以在一些场景中打开GNSS功能。以GNSS为GPS为例。如果电子设备确定气压传感器的数据失效后,确定该电子设备上的GPS功能是打开状态,则可以直接显示接收到的GPS数据中的高度数据。
在一种实现方式中,电子设备可以通过打开某些模式,例如运动模式,来打开GPS功能。例如电子设备确定用户打开了户外运动模式,则打开GPS功能。用户可以通过打开电子设备的运动模式,打开户外运动模式。电子设备的运动模式可以包括步行、户外跑步、室内跑步、骑行、室内单车、爬山等。在一种实现方式中,户外运动模式包括运动模式中的步行、户外跑步、骑行、爬山等运动模式。需要说明的是,电子设备的运动模式也可以有其他名称;比如,在一些电子设备中,打开运动模式称为打开一次“单次运动”;本申请实施例对此并不进行任何限定。
如果电子设备确定接收到用户打开步行、户外跑步、骑行或爬山等运动模式的操作,即用户打开了户外运动模式,则电子设备打开GPS功能。
在一种示例中,用户可以在智能手表上打开运动模式。在另一种示例中,用户可以在安装了智能手表管理App的手机上打开运动模式。
示例性的,如图5A,用户可以在智能手表的界面501对智能手表的各个设置项进行设置。界面501包括“锻炼”选项502、“设置”选项503、“电池”选项504和“电话”选项505。其中,“锻炼”选项502用于设置运动模式,不同的运动模式可以用于检测不同的运动类型;“设置”选项503用于对智能手表的各项通用选项和应用进行设置,比如,可以包括设置表盘样式、字体大小、声音大小等;“电池”选项504用于设置和查看电池,比如,设置电池为省电模式,查看电池剩余电量等;“电话”选项505用于设置电话应用,比如,设置通话音量等。智能手表可以接收用户对“锻炼”选项502的点击操作,响应于 用户对“锻炼”选项502的点击操作,智能手表显示锻炼界面506。锻炼界面506包括“步行”选项507、“户外跑”选项508、“室内跑”选项509。用户可以通过点击“步行”选项507打开步行模式,点击“户外跑”选项508打开户外跑步模式,点击“室内跑”选项509打开室内跑步模式。比如,智能手表可以接收用户对“户外跑”选项508的点击操作,响应于用户对“户外跑”选项508的点击操作,智能手表打开户外跑步模式。
可以理解的,上述各个界面包括的选项仅为示例性说明,比如,界面501还可以包括“定时器”选项、“音乐”选项等;锻炼界面506还可以包括“骑行”选项、“室内单车”选项、“爬山”选项等;本申请实施例不再一一示出。用户可以通过预设手势来触发智能手表显示界面上的其他选项。比如,该预设手势可以为手指向上滑动,或手指向下滑动。
在另一种实现方式中,运动模式还可以包括乘飞机。如果电子设备确定用户打开了运动模式的乘飞机,即确定接收到用户打开运动模式中乘飞机的操作,则打开GPS功能。
示例性的,如图5B,智能手表在界面501接收用户对“锻炼”选项502的点击操作,响应于用户对“锻炼”选项502的点击操作,智能手表显示锻炼界面506。锻炼界面506包括“乘飞机”选项510,用户可以通过点击“乘飞机”选项510打开乘飞机模式。智能手表可以接收用户对“乘飞机”选项510的点击操作,响应于用户对“乘飞机”选项510的点击操作,智能手表打开乘飞机模式。
在另一种示例中,用户可以在智能手表或手机上设置GNSS功能的开关,从而打开或关闭GNSS功能。以手机为例,用户可以在手机上设置定位功能的开关,从而打开或关闭定位功能(即打开或关闭GPS)。
示例性的,如图5C,手机可以在桌面接收用户的第一手势,显示下拉菜单511。比如,第一手势可以为在屏幕顶端单指向下滑动。下拉菜单511包括WLAN开关、蓝牙开关、振动开关、位置信息开关512、无线投屏开关等开关。用户可以通过点击开关,打开或关闭对应的功能。其中,位置信息开关512,用于控制打开或关闭手机上的定位功能。比如,当手机上的定位功能关闭时,手机接收到用户对位置信息开关512的点击操作,则打开定位功能;当手机上的定位功能打开时,手机接收到用户对位置信息开关512的点击操作,则关闭定位功能。下拉菜单511中其他开关的功能可以参考常规技术中的功能描述,本申请实施例对此不进行限定,此处不再赘述。
在一些实施例中,电子设备确定气压传感器的数据失效后,确定电子设备上的GNSS功能为关闭状态;则开启该电子设备上的GNSS功能;并显示接收到的GNSS数据中的海拔高度。
在一种实现方式中,电子设备按照预设的第一时间间隔,周期性的打开GNSS功能;在每个周期内,GNSS功能为打开状态持续预设持续时长后,关闭GNSS功能。示例性的,预设的第一时间间隔可以为10分钟,预设持续时长为30秒。比如,以GNSS为GPS为例。电子设备每隔10分钟打开一次GPS功能,接收GPS数据中的海拔高度;GPS功能打开30秒之后,关闭GPS功能。电子设备在下一次打开GPS功能之前的第一时间间隔内,显示本次接收到的GPS数据中的海拔高度。相比GNSS功能一直为打开状态,GNSS功能断续打开和关闭,可以节省电子设备的功耗。
S304、电子设备确定是否满足第二切换条件;如果确定满足第二切换条件,则执行S305,电子设备显示根据第一检测方式获取的海拔高度;如果确定不满足第二切换条件,则执行 S303,电子设备显示根据第二检测方式获取的海拔高度。
在一种场景中,用户乘坐的飞机降落,飞机的座舱停止增压,电子设备检测到气压传感器的数据恢复有效,则电子设备可以停止显示接收的GNSS数据中的海拔高度,显示根据气压传感器测得的气压值获取的海拔高度。该第二切换条件为电子设备确定气压传感器的数据有效。
电子设备可以停止接收GNSS的数据。比如,电子设备停止按照预设的第一时间间隔,周期性的打开GNSS功能。
飞机降落后,电子设备的气压传感器检测到的气压值与该电子设备所在海拔高度对应的大气压值一致;即气压传感器的数据有效。
在一种实现方式中,电子设备检测到满足第二预设条件,则确定气压传感器的数据有效。
在一种可能的设计中,该第二预设条件为,电子设备根据气压传感器测得的气压值获取的海拔高度,与接收的GNSS数据中的海拔高度之间的差值的绝对值小于预设阈值。示例性的,该预设阈值可以为100米。
比如,电子设备按照预设的第二时间间隔,周期性的比较根据气压传感器测得的气压值获取的海拔高度,与接收的GNSS数据中的海拔高度。若确定连续M(M>1)次,根据气压传感器测得的气压值获取的海拔高度,与接收的GNSS数据中的海拔高度之间的差值的绝对值小于预设阈值,则确定气压传感器的数据有效。
在一种示例中,电子设备按照预设的第一时间间隔,周期性的打开GNSS功能。电子设备每次打开GNSS功能,接收GNSS数据时,根据气压传感器测得的气压值获取海拔高度,并比较根据气压传感器测得的气压值获取的海拔高度,与接收的GNSS数据中的海拔高度。在该示例中,第二时间间隔与第一时间间隔相同。
示例性的,智能手表第一次打开GPS功能,接收GPS数据,确定海拔高度为500米,根据气压传感器测得的气压值获取海拔高度为560米,确定二者差值小于100米;10分钟后,智能手表第二次打开GPS功能,接收GPS数据,确定海拔高度为180米,根据气压传感器测得的气压值获取海拔高度为210米,确定二者差值小于100米;10分钟后,智能手表第三次打开GPS功能,接收GPS数据,确定海拔高度为270米,根据气压传感器测得的气压值获取海拔高度为210米,确定二者差值小于100米;智能手表确定连续3次(M=3),根据气压传感器测得的气压值获取的海拔高度,与接收的GPS数据中的海拔高度之间的差值的绝对值小于预设阈值(100米),则确定气压传感器的数据有效。
在另一种示例中,智能手表的GNSS功能持续保持打开状态;比如,用户打开了乘飞机模式。电子设备按照预设的第二时间间隔,周期性的比较根据气压传感器测得的气压值获取的海拔高度,与接收的GNSS数据中的海拔高度。该第二时间间隔可以与第一时间间隔相同,也可以不同。
示例性的,智能手表的GPS功能为打开状态,智能手表每隔2秒接收一次GPS数据。第一次,智能手表根据接收到的GPS数据确定海拔高度为500米,根据气压传感器测得的气压值获取海拔高度为560米,确定二者差值小于100米;2秒后,智能手表根据接收到的GPS数据确定海拔高度为480米,根据气压传感器测得的气压值获取海拔高度为550米,确定二者差值小于100米;2秒后,智能手表根据接收到的GPS数据确定海拔高度为470 米,根据气压传感器测得的气压值获取海拔高度为500米,确定二者差值小于100米;智能手表确定连续3次(M=3),根据气压传感器测得的气压值获取的海拔高度,与接收的GPS数据中的海拔高度之间的差值的绝对值小于预设阈值(100米),则确定气压传感器的数据有效。
在另一种实现方式中,电子设备检测到满足第三预设条件,则确定气压传感器的数据有效。
在一种可能的设计中,该第三预设条件为,在第二预设时长内,电子设备的海拔高度值减小的数值大于预设的第二高度阈值。示例性的,第二预设时长为30秒,第二高度阈值为200米。其中,电子设备的海拔高度是根据第二检测方式获取的。电子设备检测到,在第二预设时长内,电子设备的海拔高度值减小的数值大于预设的第二高度阈值,则确定用户乘坐的飞机降落,此时气压传感器的数据恢复有效。
比如,智能手表的GNSS功能持续保持为打开状态,电子设备接收GNSS数据中的海拔高度数据,从而获取当前的海拔高度。如果确定在第二预设时长内,电子设备的海拔高度值减小的数值大于预设的第二高度阈值,则确定气压传感器的数据有效。
在一种场景中,用户可以在飞机飞行过程中关闭GNSS功能,则电子设备停止接收GNSS的数据,停止显示接收的GNSS数据中的海拔高度,显示根据气压传感器测得的气压值获取的海拔高度。该第二切换条件为电子设备确定用户关闭GNSS功能。
比如,在飞机飞行过程中,用户在智能手表上关闭了步行、户外跑步、骑行、爬山等户外运动模式,智能手表可能会关闭GNSS功能。该场景尤其适用于用户通过打开户外运动模式开启GNSS功能的情况。
比如,在飞机飞行过程中,用户在智能手表上关闭乘飞机模式,智能手表也可能关闭GNSS功能。
比如,在飞机飞行过程中,用户在手机上关闭了定位功能,则关闭了GNSS功能。
在一种场景中,用户可以在飞机飞行过程中关闭GNSS功能,若电子设备确定此时气压传感器的数据失效,则开启该电子设备上的GNSS功能。比如,电子设备按照预设的第一时间间隔,周期性的打开GNSS功能。这样,电子设备可以显示接收到的GNSS数据中的海拔高度。
之后,用户乘坐的飞机降落,飞机的座舱停止增压,电子设备检测到气压传感器的数据恢复有效,则电子设备可以停止显示接收的GNSS数据中的海拔高度,显示根据气压传感器测得的气压值获取的海拔高度。并且,电子设备停止接收GNSS的数据。比如,电子设备停止按照预设的第一时间间隔,周期性的打开GNSS功能。
在该场景中,第二切换条件为电子设备确定气压传感器的数据有效。
在一种实现方式中,在S302,电子设备确定气压传感器的数据失效后,可以记录该气压传感器处于失效状态。之后,如果电子设备检测到气压传感器的数据恢复有效,则记录该气压传感器处于有效状态。示例性的,电子设备可以记录并更新气压传感器状态标识,气压传感器状态标识用于表示气压传感器的状态;气压传感器状态标识为0,表示气压传感器的数据有效;气压传感器状态标识为1,表示气压传感器的数据失效。
在一种示例中,智能手表的气压传感器的数据是有效的,智能手表显示根据气压传感器测得的气压值获取的海拔高度;气压传感器状态标识为0。用户在智能手表上打开了乘 飞机模式,则打开了GPS功能。之后,用户佩戴智能手表乘坐飞机,飞机起飞。飞机起飞后,飞机的座舱加压,气压传感器的数据失效。智能手表确定气压传感器的数据失效后,确定GPS功能为打开状态,则显示接收的GPS数据的海拔高度。并且,气压传感器状态标识更新为1,表示气压传感器的数据失效。在飞机飞行过程中,用户在智能手表上关闭乘飞机模式,则关闭GPS功能。智能手表检测到GPS功能被关闭,且确定此时气压传感器的数据失效(气压传感器状态标识为1),则按照预设的第一时间间隔,周期性的打开GPS功能。这样,智能手表可以显示接收的GPS数据中的海拔高度。之后,用户乘坐的飞机降落,飞机的座舱停止增压,智能手表检测到气压传感器的数据恢复有效,则停止按照预设的第一时间间隔,周期性的打开GPS功能;并显示根据气压传感器测得的气压值获取的海拔高度。
S305、电子设备显示根据第一检测方式获取的海拔高度。
比如,电子设备显示根据气压传感器测得的气压值获取的当前海拔高度。
示例性的,在飞机降落后,智能手表显示的为根据气压传感器测得的气压值获取的海拔高度。如图6,智能手表显示当前海拔高度为230米。
可选的,智能手表上可以显示一段时间内的海拔高度变化曲线。比如,图6中曲线601为智能手表在当天的海拔高度变化曲线。
本申请实施例提供的在飞机上测量高度的方法,通常情况下,电子设备显示的高度值为通过气压传感器获取到的海拔高度。当用户佩戴电子设备乘坐飞机时,电子设备确定气压传感器的数据失效,则电子设备显示接收的GNSS数据中的海拔高度。这样,在用户乘坐飞机等情况下,气压传感器的数据不可信时,电子设备也可以显示准确的海拔高度。
当用户乘坐飞机降落后,电子设备检测到气压传感器的数据恢复有效,则电子设备显示通过气压传感器获取到的海拔高度。由于通过气压传感器测得的气压值获取的海拔高度,比电子设备接收GNSS的数据获取的海拔高度更精确,这样,电子设备可以在用户非乘坐飞机的情况下,显示更准确的海拔高度。并且,这样,电子设备可以在用户非乘坐飞机的情况下,不打开GNSS功能,降低电子设备的功耗。
可以理解的,本申请实施例提供的在飞机上测量高度的方法,还可以应用于用户佩戴电子设备乘坐飞机之外的,气压传感器的数据失效的其他场景。通常情况下,电子设备显示通过气压传感器获取到的海拔高度。当电子设备确定气压传感器的数据失效,则显示接收的GNSS数据中的海拔高度。当电子设备检测到气压传感器的数据恢复有效,则显示通过气压传感器获取到的海拔高度。这样,无论气压传感器的数据是否有效,电子设备都可以显示准确的海拔高度。
可以理解的是,上述电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述电子设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块 中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图7示出了上述实施例中所涉及的电子设备的一种可能的结构示意图。该电子设备700包括:气压计701、GNSS模块702、高度测量模块703和GNSS控制模块704。
其中,气压计701用于检测气压值。示例性的,气压计701可以是图2A中的气压传感器150A。
GNSS模块702用于接收GNSS的数据。示例性的,GNSS模块702可以是图2A中的定位模块160。
高度测量模块703用于计算电子设备的海拔高度。其中,高度测量模块703包括气压高度子模块7031,用于根据气压计701检测的气压值计算电子设备的海拔高度;GNSS高度子模块7032,用于根据GNSS的数据获取电子设备的海拔高度;气压高度有效性判断子模块7033,用于判断气压计701的数据是否有效;高度测量子模块7034,用于结合高度测量模块703中各个子模块的数据获取电子设备的海拔高度;还用于作为高度测量模块703的接口模块,与电子设备的其他模块进行交互。
GNSS控制模块704用于控制打开或者关闭电子设备的GNSS功能。比如,GNSS控制模块704可以用于,根据用户开启或者关闭运动模式的操作,控制打开或者关闭电子设备的GNSS功能。示例性的,GNSS控制模块704确定接收到用户打开步行、户外跑步、骑行、爬山等户外运动模式的操作,或者确定接收到用户打开运动模式中乘飞机的操作,则控制打开电子设备的GNSS功能。GNSS控制模块704确定接收到用户关闭步行、户外跑步、骑行、爬山等户外运动模式的操作,或者确定接收到用户关闭运动模式中乘飞机的操作,则控制关闭电子设备的GNSS功能。比如,GNSS控制模块704还可以用于,根据用户打开或者关闭定位功能的操作,控制打开或者关闭电子设备的GNSS功能。控制打开/关闭GNSS功能的内容,已在前述实施例有详细描述,此处不再赘述。
示例性的,高度测量模块703和GNSS控制模块704可以由图2A中的处理器110实现。
下面结合电子设备700各个模块之间的交互流程,对本申请实施例提供的在飞机上测量高度的方法进行具体介绍。
场景一:用户在飞机起飞前,打开电子设备的GNSS功能。之后,用户佩戴该电子设备乘坐飞机,飞机起飞。飞机起飞后,飞机的座舱加压,电子设备的气压计的数据失效。
本实施例以用户通过打开电子设备上的户外运动模式或乘飞机,来打开电子设备的GNSS功能为例进行说明。当然,在飞机起飞前,用户也可以通过其他方式打开GNSS功能。比如,在飞机起飞前,用户通过打开电子设备上的定位功能,来打开GNSS功能。用户打开GNSS功能的具体方式,并不影响本实施例中各个模块的功能;本实施例中对于各个模块功能的描述,以及对于各个模块之间的交互流程的描述,同样适用于用户通过其他方式打开GNSS功能的场景。
需要说明的是,本实施例中涉及到的运动模式,指步行、户外跑步、骑行、爬山等户外运动模式,或者乘飞机模式。在实施例具体描述中不再特意指出。
如图8,本申请实施例提供的在飞机上测量高度的方法,可以包括:
S801、气压计周期性的向气压高度子模块上报气压值数据。
示例性的,气压计按照设定的周期(比如1秒),周期性的向气压高度子模块上报检测到的气压值数据。
S802、气压高度子模块接收气压计上报的气压值数据。
气压高度子模块接收到气压计上报的气压值数据,可以根据气压值计算电子设备的海拔高度。气压高度子模块可以将电子设备的海拔高度数据发送至高度测量子模块;还可以将电子设备的海拔高度数据发送至气压高度有效性判断子模块。
S803、气压高度子模块周期性的向高度测量子模块发送电子设备的海拔高度数据。
S804、高度测量子模块从气压高度子模块接收电子设备的海拔高度数据。
高度测量子模块接收到电子设备的海拔高度数据之后,电子设备可以在显示屏显示该海拔高度。示例性的,用户在未乘坐飞机时,电子设备显示图1所示界面,电子设备的海拔高度值为121米。
高度测量子模块还可以将从气压高度子模块接收的电子设备的海拔高度数据发送给气压高度有效性判断子模块。
S805、GNSS控制模块接收用户打开电子设备上的运动模式的操作。
GNSS控制模块接收到用户打开电子设备上的运动模式的操作,响应于用户打开电子设备上的运动模式的操作,通知GNSS模块开启GNSS功能。
S806、GNSS模块开启GNSS功能。
GNSS模块可以开启GNSS功能,直到GNSS控制模块接收到用户关闭电子设备上的运动模式的操作,则通知GNSS模块关闭GNSS功能。
在GNSS功能开启期间,GNSS模块可以周期性的(比如,上报周期为1秒)向GNSS高度子模块上报接收到的GNSS数据。
GNSS高度子模块接收到GNSS数据,可以根据GNSS数据获取电子设备的海拔高度。
S807、气压高度有效性判断子模块确定气压计的数据失效。
气压高度有效性判断子模块周期性的接收到高度测量子模块发送的电子设备的海拔高度数据(该电子设备的海拔高度数据是从气压高度子模块接收的)。如果气压高度有效性判断子模块根据从气压高度子模块接收的电子设备的海拔高度数据确定满足第一预设条件,则确定气压计的数据失效。示例性的,气压高度有效性判断子模块确定在30秒内,电子设备的海拔高度数据,增加了100米;则确定气压计的数据失效。
比如,用户佩戴该电子设备乘坐飞机,飞机起飞。飞机起飞后,飞机的座舱加压,气压计的数据失效。
S808、气压高度有效性判断子模块通知高度测量子模块,气压计的数据失效。
S809、高度测量子模块从GNSS高度子模块接收电子设备的海拔高度。
高度测量子模块接收到气压计的数据失效的通知消息后,确定电子设备的GNSS功能已开启,则从GNSS高度子模块接收电子设备的海拔高度。这样,电子设备显示接收的GNSS数据中的海拔高度数据。
示例性的,电子设备显示图4所示界面,电子设备的海拔高度值为8500米。
高度测量子模块还可以将从GNSS高度子模块接收的电子设备的海拔高度数据发送给气压高度有效性判断子模块。
在一种可能的场景中,用户乘坐的飞机降落,飞机的座舱停止增压,气压计的数据恢复有效。该方法还可以包括:
S810、气压高度有效性判断子模块确定气压计的数据有效。
在一种实现方式中,气压高度有效性判断子模块比较从气压高度子模块接收的电子设备的海拔高度数据,与从GNSS高度子模块接收的电子设备的海拔高度数据;若确定从气压高度子模块接收的电子设备的海拔高度数据,与从GNSS高度子模块接收的电子设备的海拔高度数据,之间的差值的绝对值小于预设阈值,则确定气压计的数据有效。
S811、气压高度有效性判断子模块通知高度测量子模块,气压计的数据有效。
S812、高度测量子模块从气压高度子模块接收电子设备的海拔高度。
高度测量子模块停止从GNSS高度子模块接收电子设备的海拔高度,恢复从气压高度子模块接收电子设备的海拔高度。这样,电子设备显示从气压高度子模块接收的电子设备的海拔高度数据。
示例性的,在飞机降落后,电子设备显示图6所示界面,电子设备的海拔高度值为230米。
在一种可能的场景中,用户可以在飞机飞行过程中关闭GNSS功能。比如,在飞机飞行过程中,用户在智能手表上关闭了电子设备上的运动模式,则可能触发关闭GNSS功能。该方法还可以包括:
S80a、GNSS控制模块接收用户关闭电子设备上的运动模式的操作。
GNSS控制模块接收到用户关闭电子设备上的运动模式的操作,响应于用户关闭电子设备上的运动模式的操作,GNSS控制模块通知GNSS模块关闭GNSS功能。GNSS模块停止周期性的向GNSS高度子模块上报接收到的GNSS数据。
可以理解的,高度测量子模块为高度测量模块与其他模块的接口模块,GNSS控制模块可以通过高度测量子模块通知GNSS模块关闭GNSS功能。这样,高度测量子模块可以确定GNSS功能已关闭。
S80b、高度测量子模块从气压高度子模块接收电子设备的海拔高度。
高度测量子模块停止从GNSS高度子模块接收电子设备的海拔高度,恢复从气压高度子模块接收电子设备的海拔高度。这样,电子设备显示从气压高度子模块接收的电子设备的海拔高度数据。
本申请实施例提供的在飞机上测量高度的方法,通常情况下,电子设备显示的高度值为通过气压传感器获取到的海拔高度。用户可以打开电子设备的GNSS功能。当用户佩戴电子设备乘坐飞机时,电子设备确定气压传感器的数据失效,则电子设备显示接收的GNSS数据中的海拔高度。这样,在用户乘坐飞机等情况下,气压传感器的数据不可信时,电子设备也可以显示准确的海拔高度。
当用户乘坐飞机降落后,电子设备检测到气压传感器的数据恢复有效,则电子设备显示通过气压传感器获取到的海拔高度。由于通过气压传感器测得的气压值获取的海拔高度,比电子设备接收GNSS的数据获取的海拔高度更精确,这样,电子设备可以在用户非乘坐飞机的情况下,显示更准确的海拔高度。
如果用户在飞机飞行过程中关闭GNSS功能,则电子设备显示通过气压传感器获取到的海拔高度。
场景二:用户佩戴电子设备乘坐飞机,飞机起飞。飞机起飞后,飞机的座舱加压,电子设备的气压计的数据失效。用户未打开电子设备上的GNSS功能。
如图9,本申请实施例提供的在飞机上测量高度的方法,可以包括:
S901、气压计周期性的向气压高度子模块上报气压值数据。
S902、气压高度子模块接收气压计上报的气压值数据。
S903、气压高度子模块周期性的向高度测量子模块发送电子设备的海拔高度数据。
S904、高度测量子模块从气压高度子模块接收电子设备的海拔高度数据。
其中,S901-S904的具体描述可参考S801-S804,此处不再赘述。
S905、气压高度有效性判断子模块确定气压计的数据失效。
其中,S905的具体描述可参考S807,此处不再赘述。
S906、气压高度有效性判断子模块通知高度测量子模块,气压计的数据失效。
其中,S906的具体描述可参考S808,此处不再赘述。
S907、高度测量子模块通知GNSS高度子模块开启GNSS功能。
高度测量子模块确定电子设备不再显示从气压高度子模块接收的电子设备的海拔高度数据。并通知GNSS高度子模块开启GNSS功能。
在一种实现方式中,高度测量子模块继续从气压高度子模块接收电子设备的海拔高度数据,这样,高度测量子模块可以根据从气压高度子模块接收的电子设备的海拔高度数据判断气压计的数据是否恢复有效。
S908、GNSS高度子模块通知GNSS模块开启GNSS功能。
GNSS高度子模块通知GNSS模块开启GNSS功能,GNSS模块接收到GNSS高度子模块的开启GNSS功能的通知后,开启GNSS功能,接收GNSS的数据。
在一种实现方式中,GNSS高度子模块确定按照预设的第一时间间隔,周期性的打开GNSS功能;在每个周期内,GNSS功能为打开状态持续预设持续时长后,关闭GNSS功能。则GNSS模块按照预设的第一时间间隔,周期性的打开GNSS功能;在每个周期内,接收GNSS的数据预设持续时长后,停止接收GNSS的数据。
S909、GNSS模块周期性的向GNSS高度子模块上报GNSS数据。
在GNSS功能开启期间,GNSS模块向GNSS高度子模块上报GNSS数据。GNSS高度子模块接收到GNSS数据,可以根据GNSS数据获取电子设备的海拔高度。
S910、高度测量子模块从GNSS高度子模块接收电子设备的海拔高度。
高度测量子模块从GNSS高度子模块接收电子设备的海拔高度,这样,电子设备显示接收的GNSS数据中的海拔高度数据。
示例性的,电子设备显示图4所示界面,电子设备的海拔高度值为8500米。
高度测量子模块还可以将从GNSS高度子模块接收的电子设备的海拔高度发送给气压高度有效性判断子模块。
S911、气压高度有效性判断子模块确定气压计的数据有效。
比如,用户乘坐的飞机降落,飞机的座舱停止增压,气压计的数据恢复有效;气压高度有效性判断子模块确定气压计的数据有效。
在一种实现方式中,气压高度有效性判断子模块比较从气压高度子模块接收的电子设备的海拔高度数据,与从GNSS高度子模块接收的电子设备的海拔高度数据;若确定从气 压高度子模块接收的电子设备的海拔高度数据,与从GNSS高度子模块接收的电子设备的海拔高度数据,之间的差值的绝对值小于预设阈值,则确定气压计的数据有效。
S912、气压高度有效性判断子模块通知高度测量子模块,气压计的数据有效。
S913、高度测量子模块从气压高度子模块接收电子设备的海拔高度。
高度测量子模块停止从GNSS高度子模块接收电子设备的海拔高度,恢复从气压高度子模块接收电子设备的海拔高度。这样,电子设备显示从气压高度子模块接收的电子设备的海拔高度数据。示例性的,在飞机降落后,电子设备显示图6所示界面,电子设备的海拔高度值为230米。
S914、高度测量子模块通知GNSS高度子模块关闭GNSS功能。
高度测量子模块确定电子设备不再显示从GNSS高度子模块接收的电子设备的海拔高度数据,通知GNSS高度子模块关闭GNSS功能。
S915、GNSS高度子模块通知GNSS模块关闭GNSS功能。
GNSS高度子模块通知GNSS模块关闭GNSS功能,GNSS模块接收到GNSS高度子模块的关闭GNSS功能的通知后,关闭GNSS功能,不再接收GNSS的数据。
在一种实现方式中,GNSS高度子模块确定停止按照预设的第一时间间隔,周期性的打开GNSS功能。GNSS高度子模块通知GNSS模块,停止按照预设的第一时间间隔,周期性的打开GNSS功能。GNSS模块接收到GNSS高度子模块的通知后,停止按照预设的第一时间间隔,周期性的接收GNSS的数据。
本申请实施例提供的在飞机上测量高度的方法,通常情况下,电子设备显示的高度值为通过气压传感器获取到的海拔高度。当用户佩戴电子设备乘坐飞机时,电子设备确定气压传感器的数据失效,则电子设备可以打开GNSS功能,显示接收的GNSS数据中的海拔高度。这样,在用户乘坐飞机等情况下,气压传感器的数据不可信时,电子设备也可以显示准确的海拔高度。并且,电子设备可以周期性的断续打开GNSS功能,这样可以降低电子设备的功耗。
当用户乘坐飞机降落后,电子设备检测到气压传感器的数据恢复有效,则电子设备显示通过气压传感器获取到的海拔高度。由于通过气压传感器测得的气压值获取的海拔高度,比电子设备接收GNSS的数据获取的海拔高度更精确,这样,电子设备可以在用户非乘坐飞机的情况下,显示更准确的海拔高度。并且,这样,电子设备可以在用户非乘坐飞机的情况下,不打开GNSS功能,降低电子设备的功耗。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的电子设备的一种可能的结构示意图。该电子设备1000包括:处理模块1001、显示模块1002、气压模块1003、定位模块1004和存储模块1005。
其中,处理模块1001,用于对电子设备1000的动作进行控制管理。例如,可以用于执行图3中,S302和S304的处理步骤;和/或用于本文所描述的技术的其它过程。
显示模块1002,用于显示电子设备的界面。比如,可以用于显示电子设备的海拔高度;还可以用于显示打开和关闭电子设备的运动模式的设置界面,显示打开和关闭定位功能的设置界面。例如,可以用于执行图3中,S301、S303和S305的处理步骤;和/或用于本文所描述的技术的其它过程。
气压模块1003,用于检测电子设备1000所处环境的气压。
定位模块1004,用于定位电子设备1000。例如,可以用于接收GNSS的数据。
存储模块1005,用于保存电子设备1000的程序代码和数据。例如,可以用于储存气压传感器状态标识等。
当然,上述电子设备1000中的单元模块包括但不限于上述处理模块1001、显示模块1002、气压模块1003、定位模块1004和存储模块1005。例如,电子设备1000中还可以包括电源模块等。
其中,处理模块1001可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器可以包括应用处理器和基带处理器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。显示模块1002可以是显示屏。气压模块1003可以是气压传感器。存储模块1005可以是存储器。
例如,处理模块1001为处理器(如图2A所示的处理器110),显示模块1002为显示屏(如图2A所示的显示屏130,该显示屏130可以为触摸屏,该触摸屏中可以集成显示面板和触控面板),气压模块1003为气压传感器(如图2A所示的气压传感器150A),定位模块1004可以为图2A所示的定位模块160,存储模块1005可以为存储器(如图2A所示的存储器120)。其中,上述处理器、存储器等可以耦合在一起,例如通过总线连接。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行图3中的相关方法步骤实现上述实施例中的方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行图3中的相关方法步骤实现上述实施例中的方法。
其中,本申请实施例提供的电子设备1000、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个 不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以使用硬件的形式实现,也可以使用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种在飞机上测量高度的方法,其特征在于,包括:
    电子设备显示根据第一检测方式获取的海拔高度;
    确定满足第一切换条件,所述电子设备显示根据第二检测方式获取的海拔高度。
  2. 根据权利要求1所述的方法,其特征在于,所述第一切换条件包括:
    所述电子设备根据所述第一检测方式获取的数据失效。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一检测方式获取的数据失效包括:
    在第一预设时长内,所述电子设备的海拔高度值增加的数值大于预设的第一高度阈值。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述方法还包括:
    确定满足第二切换条件,所述电子设备显示根据所述第一检测方式获取的海拔高度。
  5. 根据权利要求4所述的方法,其特征在于,所述第二切换条件包括:
    所述电子设备根据所述第一检测方式获取的数据恢复有效。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一检测方式获取的数据恢复有效包括:
    根据所述第一检测方式获取的海拔高度,与根据所述第二检测方式获取的海拔高度之间的差值的绝对值小于预设阈值。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述第一检测方式获取的数据恢复有效包括:
    在第二预设时长内,所述电子设备的海拔高度值减小的数值大于预设的第二高度阈值。
  8. 根据权利要求4所述的方法,其特征在于,所述第二切换条件包括:
    所述电子设备检测到用户关闭所述第二检测方式的操作。
  9. 根据权利要求1-8任意一项所述的方法,其特征在于,
    所述第一检测方式为通过气压传感器检测所述电子设备的海拔高度;
    所述第二检测方式为接收全球导航卫星系统GNSS数据中的海拔高度数据,获取所述电子设备的海拔高度。
  10. 根据权利要求9所述的方法,其特征在于,所述电子设备显示根据第二检测方式获取的海拔高度之前,所述方法还包括:
    所述电子设备开启所述电子设备的GNSS功能。
  11. 根据权利要求10所述的方法,其特征在于,所述电子设备开启所述电子设备的GNSS功能包括:
    所述电子设备按照预设的第一时间间隔,周期性的打开所述电子设备的GNSS功能。
  12. 一种电子设备,其特征在于,所述电子设备包括:显示屏、处理器、存储器和通信接口;所述存储器用于存储计算机程序代码;所述计算机程序代码包括计算机指令,当所述处理器执行上述计算机指令时,所述电子设备执行如权利要求1-11任意一项所述的方法。
  13. 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1-11任意一项所述 的方法。
  14. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-11任意一项所述的方法。
PCT/CN2020/111077 2019-09-24 2020-08-25 一种在飞机上测量高度的方法及设备 WO2021057361A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/762,579 US20220342088A1 (en) 2019-09-24 2020-08-25 Method for Measuring Height on Plane and Device
EP20870144.1A EP4024086A4 (en) 2019-09-24 2020-08-25 METHOD AND DEVICE FOR MEASURING ALTITUDE ON AN AIRCRAFT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910905161.8 2019-09-24
CN201910905161.8A CN112629482A (zh) 2019-09-24 2019-09-24 一种在飞机上测量高度的方法及设备

Publications (1)

Publication Number Publication Date
WO2021057361A1 true WO2021057361A1 (zh) 2021-04-01

Family

ID=75165570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111077 WO2021057361A1 (zh) 2019-09-24 2020-08-25 一种在飞机上测量高度的方法及设备

Country Status (4)

Country Link
US (1) US20220342088A1 (zh)
EP (1) EP4024086A4 (zh)
CN (1) CN112629482A (zh)
WO (1) WO2021057361A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117367487A (zh) * 2022-07-01 2024-01-09 荣耀终端有限公司 爬高状态识别方法和装置
CN115388854A (zh) * 2022-08-26 2022-11-25 南京高华科技股份有限公司 一种气压高度传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037470A1 (en) * 2010-09-17 2012-03-22 Qualcomm Atheros, Inc. Indoor positioning using pressure sensors
CN103713305A (zh) * 2013-12-25 2014-04-09 李青花 一种定位颈圈及定位方法
CN103728644A (zh) * 2013-12-25 2014-04-16 李青花 一种定位系统及定位方法
CN104208865A (zh) * 2013-06-03 2014-12-17 飞比特公司 具有高度计的健身监视装置
CN206728014U (zh) * 2017-05-10 2017-12-08 歌尔科技有限公司 蓝牙耳机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010680A2 (en) * 2000-07-27 2002-02-07 Innovative Solutions & Support, Inc. Method and system for high precision altitude measurement over hostile terrain
JP5652418B2 (ja) * 2012-03-27 2015-01-14 カシオ計算機株式会社 高度情報取得装置、及び、高度情報取得システム
US9599632B2 (en) * 2012-06-22 2017-03-21 Fitbit, Inc. Fitness monitoring device with altimeter
CN106153001B (zh) * 2015-04-01 2018-11-30 新士达光通股份有限公司 海拔高度计算系统及海拔高度计算方法
JP6668873B2 (ja) * 2016-03-28 2020-03-18 セイコーエプソン株式会社 電子時計
CN205785183U (zh) * 2016-07-05 2016-12-07 西安展意信息科技有限公司 基于卫星定位的海拔高测量装置
JP6797613B2 (ja) * 2016-09-02 2020-12-09 五洋建設株式会社 高度算出システム
CN106772496A (zh) * 2016-11-04 2017-05-31 上海斐讯数据通信技术有限公司 一种海拔的测量方法和系统
CN108072356B (zh) * 2016-11-11 2020-07-17 成都康烨科技有限公司 高度测量方法、装置及无人机
CN106595577B (zh) * 2016-12-29 2019-12-31 中国航天电子技术研究院 一种强风条件下四旋翼无人机高度测量方法
JP6627823B2 (ja) * 2017-06-19 2020-01-08 カシオ計算機株式会社 電子機器、高度測定方法及びプログラム
CN109282786B (zh) * 2017-07-21 2021-07-09 昊翔电能运动科技(昆山)有限公司 用于固定翼无人机的测量高度方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037470A1 (en) * 2010-09-17 2012-03-22 Qualcomm Atheros, Inc. Indoor positioning using pressure sensors
CN104208865A (zh) * 2013-06-03 2014-12-17 飞比特公司 具有高度计的健身监视装置
CN103713305A (zh) * 2013-12-25 2014-04-09 李青花 一种定位颈圈及定位方法
CN103728644A (zh) * 2013-12-25 2014-04-16 李青花 一种定位系统及定位方法
CN206728014U (zh) * 2017-05-10 2017-12-08 歌尔科技有限公司 蓝牙耳机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024086A4

Also Published As

Publication number Publication date
US20220342088A1 (en) 2022-10-27
EP4024086A1 (en) 2022-07-06
CN112629482A (zh) 2021-04-09
EP4024086A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
US10845767B2 (en) Watch face selection
KR102280603B1 (ko) 조도 센서를 제어하기 위한 전자 장치 및 방법
EP3427253B1 (en) Display driving integrated circuits and electronic device having the same
JP6146594B1 (ja) 表示装置及びその制御方法、制御プログラム
US9625987B1 (en) Updating and displaying information in different power modes
WO2021057361A1 (zh) 一种在飞机上测量高度的方法及设备
US9904380B2 (en) Method for controlling rotation recognition unit of rotating body and electronic device thereof
CN107710724B (zh) 控制显示器的方法、电子设备及计算机可读记录介质
KR20170138667A (ko) 어플리케이션을 활성화하는 방법 및 이를 제공하는 전자 장치
CN108304151B (zh) 用于显示内容的方法及其电子设备
US10217401B2 (en) Displaying content on a display in power save mode
US10151602B2 (en) Electronic device and method for calibrating gyro sensor thereof
US20180061309A1 (en) Method for displaying time information and electronic device supporting the same
EP3612862B1 (en) State-based location monitoring
US10592305B2 (en) Application session and enhancement for a wearable electronic device
US20160234642A1 (en) Method for obtaining location information and electronic device thereof
WO2022253210A1 (zh) 显示方法及装置
JP7192260B2 (ja) 電子機器、情報処理方法及び情報処理プログラム
US20160274738A1 (en) Display method using virtual widget and associated device
US20190180616A1 (en) Electronic device, method of communication, and non-transitory computer readable storage medium
JP2020056882A (ja) 表示装置、画面焼付抑制方法及び画面焼付抑制プログラム
CN116897567A (zh) 用于软接入点的信标对准的系统和方法
US20220167132A1 (en) Sensor hierarchy for context inference
CN116700585B (zh) 熄屏控制方法、电子设备及存储介质
US11508282B2 (en) Display control device, display control method, and non-transitory recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020870144

Country of ref document: EP

Effective date: 20220330