WO2021057356A1 - 低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法 - Google Patents
低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法 Download PDFInfo
- Publication number
- WO2021057356A1 WO2021057356A1 PCT/CN2020/110658 CN2020110658W WO2021057356A1 WO 2021057356 A1 WO2021057356 A1 WO 2021057356A1 CN 2020110658 W CN2020110658 W CN 2020110658W WO 2021057356 A1 WO2021057356 A1 WO 2021057356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flame
- parts
- composite material
- expansion coefficient
- low linear
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/48—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/56—Boron-containing linkages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
Definitions
- the invention relates to a polycarbonate composite material, in particular to a low linear expansion coefficient, flame-retardant polycarbonate composite material and a preparation method thereof.
- PC Polycarbonate
- PC Polycarbonate
- LOI limiting oxygen index
- PC polycarbonate
- LOI limiting oxygen index
- PC As a polymer material, its structure determines its own linear expansion coefficient (abbreviation: CLTE) is also relatively large, its 23°C ⁇ 85°C CLTE is 7 ⁇ 9*10 -5 1/K.
- CLTE linear expansion coefficient
- Common flame retardants include brominated flame retardants, phosphate ester flame retardants, and sulfonate flame retardants. Some of these flame retardants will affect the performance, and some will not be resistant to high temperature and easy to precipitate.
- Sc 2 W 3 O 12 is a typical negative thermal expansion (NTE) compound.
- NTE negative thermal expansion
- the NTE effect exists in a wide temperature range (at least -260 ⁇ 920°C), and it may continue to its melting point ( ⁇ 1652). °C), this unique performance can be used to prepare materials with high precision control, low linear expansion coefficient or zero linear expansion coefficient.
- Polyborosiloxane is a new type of organic polymer material. It is a polymer obtained by introducing boron element into the silicon oxygen skeleton of polysiloxane. Compared with ordinary organosiloxane, it has more excellent high temperature resistance. And bonding properties, adding it to polycarbonate materials can significantly improve the flame retardant properties of the material.
- Chinese patent CN 1121451C uses compound flame retardant halogenated epoxy resins, phosphate esters, halogenated aromatic hydrocarbons, decabromodiphenyl ether and their mixtures. Among them, phosphate ester flame retardants are easy to precipitate, and decabromodiphenyl ether is easy to precipitate. Phenyl ether does not comply with the EU RoHS environmental protection directive and is used in large quantities.
- the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a low linear expansion coefficient, flame-retardant polycarbonate composite material.
- the technical solution adopted by the present invention is: a low linear expansion coefficient, flame-retardant polycarbonate composite material, including the following components by weight: Sc 2 W 3 O 12 0.5 to 1.5 parts, polyborosilicate 0.7 to 1.5 parts of oxane and 90 to 100 parts of polycarbonate.
- the present invention prepares a low linear expansion coefficient, flame-retardant polycarbonate composite material through the combination of polyborosiloxane and negative thermal expansion material Sc 2 W 3 O 12 , and the CLTE of the final composite material can reach as low as 1.8*10 -5 1/K, the best flame retardant can reach UL94-5VA/1.6mm, and the oxygen index can reach more than 40%.
- the Sc 2 W 3 O 12 is Sc 2 W 3 O 12 powder, and the particle size D50 of the Sc 2 W 3 O 12 powder is 100-300 nanometers.
- the low linear expansion coefficient, flame-retardant polycarbonate composite material further comprises the following components in parts by weight: 0.2-0.6 parts of dispersant and 0.2-0.6 parts of antioxidant.
- the dispersant is a silicone-based dispersant.
- the antioxidant is ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) n-octadecyl propionate (1076) and tris[2,4-di-tert-butylbenzene Base] phosphite (168) compound.
- the polyborosiloxane is prepared by the following method:
- step (1) Add 80-100 parts by weight of silicon tetrachloride and distilled water to the three-necked flask of step (1), and react for 6-8 hours to obtain a hydrolyzate.
- the hydrolyzed product is washed with deionized water at a temperature of 120-130°C. Under reduced pressure distillation to remove small molecules to obtain polyborosiloxane.
- the metallocene catalyst and the co-catalyst are added for 50-60 minutes, and nitrogen protection is introduced during the whole process; in the step (2), the silicon tetrachloride , The time for adding distilled water is 25-40 minutes, and nitrogen protection is introduced during the whole process.
- the metallocene catalyst is zirconocene dichloride, and the co-catalyst is triethyl aluminum.
- the present invention also provides a method for preparing the low linear expansion coefficient, flame-retardant polycarbonate composite material, which includes the following steps:
- the mixed materials are added to a twin-screw extruder for drawing, granulation, cooling, and packaging to obtain the low linear expansion coefficient, flame-retardant polycarbonate composite material, wherein the twin-screw extruder
- the temperature from the feeding section to the nose is 150°C, 230°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 265°C
- the screw diameter is 62mm
- the screw length-to-diameter ratio Is 48 is
- the polycarbonate is air-dried at 110° C. for 8-10 hours before being added to the high-speed mixer.
- the linear expansion coefficient and flame retardant performance can be taken into consideration at the same time.
- the present invention catalyzes the synthesis of polyborosiloxane by using a metallocene catalyst, and the obtained product is transparent and its molecular weight is easy to control.
- the production process of the invention is simple and suitable for mass production.
- MD refers to CLTE in the flow direction
- TD refers to CLTE in the vertical flow direction
- AVG refers to the average value of MD and TD.
- the flame retardant performance is tested according to UL-94 standard; the limiting oxygen index is tested according to ASTM D2863.
- Polycarbonate model PC-1100 Manufacturer: Lotte Korea;
- Triethoxyborane Analytical pure manufacturer: Aladdin;
- Silicon tetrachloride model analytical pure manufacturer: Aladdin;
- Zirconium dichloride Manufacturer Yueyang Jinmaotai Technology Co., Ltd.;
- Triethyl aluminum manufacturer Wuhan Methyl Technology Co., Ltd.;
- Dispersant Silicone-based dispersant manufacturer German Degussa;
- Antioxidant Model 168 Manufacturer: Angel Synthetic Chemistry, Yixing City;
- Sc 2 W 3 O 12 powder has a particle size D50 of 100-300 nanometers.
- Manufacturer Kingfa Technology Co., Ltd.
- An embodiment of the low linear expansion coefficient and flame-retardant polycarbonate composite material of the present invention is as follows:
- the metallocene catalyst is zirconocene dichloride
- the co-catalyst is triethylaluminum
- the low linear expansion coefficient, flame-retardant polycarbonate composite material of this embodiment is prepared by the following method:
- the speed of the high-speed mixer is 800 rpm. /Min;
- the mixed materials are added to the twin-screw extruder for drawing, granulation, cooling, and packaging; the polycarbonate needs to be air-dried at 110°C for 8 hours before being added to the high-speed mixer.
- the temperature of the twin-screw extruder is from the feed From the material section to the machine head, the order is 150°C, 230°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 265°C, the screw diameter is 62 mm, and the screw length to diameter ratio is 48.
- the specific performance is shown in Table 1.
- Comparative Example 1 In Comparative Example 1, except that it does not contain polyborosiloxane, everything else is the same as Example 1;
- Comparative Example 2 In Comparative Example 2, except that Sc 2 W 3 O 12 is not included, the others are the same as Example 1.
- An embodiment of the low linear expansion coefficient and flame-retardant polycarbonate composite material of the present invention is as follows:
- the metallocene catalyst is zirconocene dichloride
- the co-catalyst is triethylaluminum
- the low linear expansion coefficient, flame-retardant polycarbonate composite material of this embodiment is prepared by the following method:
- the speed of the high-speed mixer is 1000 rpm. /Min;
- 0.6 parts by weight of dispersant and 0.6 parts by weight of antioxidant are weighed and mixed in a high-speed mixer at room temperature for 20 minutes, and the speed of the high-speed mixer is 1000 rpm.
- the mixed materials are added to the twin-screw extruder for drawing, granulation, cooling, and packaging; the polycarbonate needs to be air-dried at 110°C for 8 hours before being added to the high-speed mixer.
- the temperature of the twin-screw extruder is from the feed From the material section to the machine head, the order is 150°C, 230°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 265°C, the screw diameter is 62 mm, and the screw length to diameter ratio is 48.
- the specific performance is shown in Table 1.
- An embodiment of the low linear expansion coefficient and flame-retardant polycarbonate composite material of the present invention is as follows:
- the metallocene catalyst is zirconocene dichloride
- the co-catalyst is triethylaluminum
- silicon tetrachloride and excess distilled water for example, 1500 parts by weight
- the reaction is carried out for 6.7 hours, and finally the hydrolyzed product is obtained.
- the obtained hydrolyzed product is washed with deionized water, and finally the small molecules are removed by vacuum distillation at a temperature of 120° C., and finally polyborosiloxane is obtained.
- the silicon tetrachloride and excess distilled water were slowly added in the second step for 32 minutes. Nitrogen protection is required during the whole process.
- the low linear expansion coefficient, flame-retardant polycarbonate composite material of this embodiment is prepared by the following method:
- the speed of the high-speed mixer is 858 rpm. /Min; then weigh 0.36 parts by weight of dispersant and 0.42 parts by weight of antioxidant and mix them at room temperature in a high-speed mixer for 14 minutes, and the speed of the high-speed mixer is 924 rpm.
- the mixed materials are added to the twin-screw extruder for drawing, granulation, cooling, and packaging; the polycarbonate needs to be air-dried at 110°C for 8 hours before being added to the high-speed mixer.
- the temperature of the twin-screw extruder is from the feed From the material section to the machine head, the order is 150°C, 230°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 265°C, the screw diameter is 62 mm, and the screw length to diameter ratio is 48.
- the specific performance is shown in Table 1.
- An embodiment of the low linear expansion coefficient and flame-retardant polycarbonate composite material of the present invention is as follows:
- the metallocene catalyst is zirconocene dichloride
- the co-catalyst is triethylaluminum
- the low linear expansion coefficient, flame-retardant polycarbonate composite material of this embodiment is prepared by the following method:
- the speed of the high-speed mixer is 898 rpm. /Min;
- the speed of the high-speed mixer is 967 rpm.
- the mixed materials are added to the twin-screw extruder for drawing, granulation, cooling and packaging; the polycarbonate needs to be dried at 110°C for 9.2 hours before being added to the high-speed mixer.
- the order is 150°C, 230°C, 260°C, 260°C, 260°C, 260°C, 260°C, 260°C, 265°C, the screw diameter is 62 mm, and the screw length to diameter ratio is 48.
- the specific performance is shown in Table 1.
- Comparative Example 1 does not contain polyborosiloxane, the limiting oxygen index is reduced from 40% to 28%, and the UL-94 flame retardant performance is reduced from 5VB to V2; Comparative Example 2 does not contain Sc 2 W 3 O 12 , CLTE-AVG increased from 4.5*10 -5 1/K to 7.8*10 -5 1/K, and the UL-94 flame retardant rating was also reduced from 5VB to V0.
- Examples 1 to 3 Contains Sc 2 W 3 O 12 and polyborosiloxane at the same time, and has the characteristics of low linear expansion coefficient and high flame retardant performance.
- this application contains Sc 2 W 3 O 12 and polyborosiloxane at the same time,
- the CLTE of the final composite material can reach as low as 1.8*10 -5 1/K, the best flame retardant can reach UL94-5VA/1.6mm, and the oxygen index can reach more than 40%.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
一种低线性膨胀系数、阻燃聚碳酸酯复合材料,包括以下重量份的成分:Sc 2W 3O 120.5~1.5份、聚硼硅氧烷0.7~1.5份和聚碳酸酯90~100份。通过聚硼硅氧烷配合负热膨胀材料Sc 2W 3O 12,制备出了一种低线性膨胀系数、阻燃聚碳酸酯复合材料,最终复合材料的CLTE最低可达1.8*10 -51/K,阻燃最佳可达UL94-5VA/1.6mm,氧指数可达40%以上。同时,还公开了所述低线性膨胀系数、阻燃聚碳酸酯复合材料的制备方法。
Description
本发明涉及一种聚碳酸酯复合材料,尤其是一种低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法。
聚碳酸酯(PC)是一种性能优异的工程塑料,在汽车、家电、电子电器等领域有着很好的应用。PC本身可以达到UL94-V2的阻燃等级,极限氧指数LOI约为26%。对于通用塑料来说,其阻燃性能不俗,但在某些特殊的场合却达不到阻燃要求。PC作为高分子材料,其结构决定了其本身线性膨胀系数(简称:CLTE)也是比较大的,其23℃~85℃的CLTE在7~9*10
-51/K。为了达到阻燃要求,一般需要在PC中加入阻燃剂,常见的阻燃剂有溴系阻燃剂、磷酸酯类阻燃剂、磺酸盐类阻燃剂等。这些阻燃剂有的会影响性能,有的会不耐高温易析出。
Sc
2W
3O
12是一种典型的负热膨胀化合物(negative thermal expansion,简称NTE),在很宽的温度范围(至少-260~920℃)存在NTE效应,并可能持续到其熔点(~1652℃),这种独特的性能可以用于制备高精控、低线性膨胀系数或零线性膨胀系数的材料。
聚硼硅氧烷是一种新型的有机高分子材料,它是将硼元素引入聚硅氧烷的硅氧骨架中而得到的聚合物,较普通的有机硅氧烷有更加优异的耐高温性能和粘接性能,将其加入到聚碳酸酯材料中可显著提高材料的阻燃性能。
中国专利CN 1121451C中采用复合阻燃剂卤代环氧树脂类、磷酸酯类、卤代芳香烃类、十溴二苯醚以及它们的混合物,其中磷酸酯类阻燃剂易析出、十溴二苯醚不符合欧盟RoHS环保指令且使用量较大。
中国文献《聚硼硅氧烷的制备及阻燃性能》SILICONE MATERIAL 2013,27(3):162~164中是以二苯基硅二醇、羟基硅油、甲基三乙氧基硅烷和硼酸为原料制备聚硼硅氧烷,这种制备方法产率低、纯度低。
发明内容
基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种低线性膨胀系数、阻燃聚碳酸酯复合材料。
为实现上述目的,本发明所采取的技术方案为:一种低线性膨胀系数、阻燃聚碳酸酯复合材料,包括以下重量份的成分:Sc
2W
3O
120.5~1.5份、聚硼硅氧烷0.7~1.5份和聚碳酸酯90~100份。
本发明通过聚硼硅氧烷配合负热膨胀材料Sc
2W
3O
12,制备出了一种低线性膨胀系数、阻燃聚碳酸酯复合材料,最终复合材料的CLTE最低可达1.8*10
-51/K,阻燃最佳可达UL94-5VA/1.6mm,氧指数可达40%以上。
优选地,所述Sc
2W
3O
12为Sc
2W
3O
12粉末,所述Sc
2W
3O
12粉末的粒径D50为100~300纳米。
优选地,所述的低线性膨胀系数、阻燃聚碳酸酯复合材料,还包含以下重量份的成分:分散剂0.2~0.6份和抗氧剂0.2~0.6份。
优选地,所述分散剂为有机硅类分散剂。
优选地,所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯(1076)和三[2,4-二叔丁基苯基]亚磷酸酯(168)的复配。
优选地,所述聚硼硅氧烷通过以下方法制备所得:
(1)制备聚硼硅氧烷中间体
将100重量份的三乙氧基硼烷和2~6重量份的四氯化硅置于三口烧瓶中,在90~100℃下加热、搅拌,然后缓慢加入0.01~0.02重量份的茂金属催化剂和0.025~0.045重量份的助催化剂,反应6~8小时,得到聚硼硅氧烷中间体;
(2)制备聚硼硅氧烷
在步骤(1)的三口烧瓶中加入80~100重量份的四氯化硅、蒸馏水,反应6~8小时,得到水解产物,将所得水解产物进行去离子水洗涤,在120~130℃的温度下进行减压蒸馏去除小分子,得到聚硼硅氧烷。
优选地,所述步骤(1)中,所述茂金属催化剂和助催化剂加入的时间为50~60分钟,整个过程中通入氮气保护;所述步骤(2)中,所述四氯化硅、蒸馏水加入的时间为25~40分钟,整个过程中通入氮气保护。
优选地,所述步骤(1)中,所述茂金属催化剂为二氯二茂锆,所述助催化剂为三乙基铝。
同时,本发明还提供一种所述的低线性膨胀系数、阻燃聚碳酸酯复合材料的制备方法,包括如下步骤:
(1)将聚碳酸酯、聚硼硅氧烷、Sc
2W
3O
12在高速混合机中混合10~20分钟,高速混合机的转速为800~1000转/分钟;
(2)将分散剂、抗氧剂加入高速混合机中混合10~20分钟,高速混合机的转速为800~1000转/分钟;
(3)将混合好的物料加入双螺杆挤出机中进行拉丝造粒、冷却、装包,即得所述低线性膨胀系数、阻燃聚碳酸酯复合材料,其中,双螺杆挤出机从喂料段到机头的温度依次为150℃、230℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、265℃,螺杆直径为62毫米,螺杆长径比为48。
优选地,所述步骤(1)中,聚碳酸酯在加入高速混合机之前,在110℃鼓风干燥8~10小时。
相对于现有技术,本发明的有益效果为:
1、本发明通过Sc
2W
3O
12和聚硼硅氧烷复配,可以同时兼顾线性膨胀系数和阻燃性能。
2、本发明通过使用茂金属催化剂催化合成聚硼硅氧烷,所得该产品透明,且分子量容易控制。
3、本发明生产工艺简单、适合大批量生产。
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明;以下实施例只是本发明的典型例,本发明的保护范围并 不局限于此。
本发明实施例及对比例中具体性能的测试方法如下:
(1)线性膨胀系数(简称:CLTE)
按ISO 11359测试,温度范围23℃~85℃,150*150*3mm方板中间位置截取10*10*3mm尺寸样片进行测试,MD是指流动方向的CLTE,TD是指垂直流动方向的CLTE,AVG是指MD与TD的平均值。
(2)阻燃性能
阻燃性能按照UL-94标准进行测试;极限氧指数按照ASTM D2863进行测试。
本发明实施例和对比例中用到的主要代表材料如下,其他未做说明的原料,均为本领域所公知的可市购产品:
聚碳酸酯型号:PC-1100 厂家:韩国乐天;
三乙氧基硼烷:分析纯 厂家:阿拉丁;
四氯化硅型号:分析纯 厂家:阿拉丁;
二氯二茂锆 厂家:岳阳市金茂泰科技有限公司;
三乙基铝 厂家:武汉甲基科技有限公司;
分散剂 有机硅类分散剂 厂家:德国德固赛;
抗氧剂 型号:1076 厂家:宜兴市天使合成化学;
抗氧剂 型号:168 厂家:宜兴市天使合成化学;
Sc
2W
3O
12粉末粒径D50为100~300纳米,厂家:金发科技股份有限公司。
实施例1
本发明所述低线性膨胀系数、阻燃聚碳酸酯复合材料的一种实施例,本实施例中,聚硼硅氧烷的制备方法如下:
第一步:制备聚硼硅氧烷中间体
首先称取100重量份的三乙氧基硼烷和2重量份的四氯化硅于5000ml的三口烧瓶中,置于加热套中加热、搅拌(温度保持90℃、搅拌速度保持220转/分钟),接着同时且缓慢加入0.01重量份茂金属催化剂(茂金属催化剂为二氯二茂 锆)和0.025重量份助催化剂(助催化剂为三乙基铝),加完催化剂后反应6小时(反应过程中一直处于加热和搅拌状态),得聚硼硅氧烷中间体;茂金属催化剂和助催化剂缓慢加入的时间为50分钟,整个过程中需要通入氮气保护。
第二步:制备聚硼硅氧烷
接着同时称取80重量份的四氯化硅和过量的蒸馏水(如:1500重量份)缓慢加入三口烧瓶中,加完后进行反应6小时,最后得水解产物;所得水解产物进行去离子水洗涤,最后在120℃的温度下进行减压蒸馏去除小分子,最后得聚硼硅氧烷。第二步中的四氯化硅和过量的蒸馏水缓慢加入的时间为30分钟,整个过程中需要通入氮气保护。
本实施例所述低线性膨胀系数、阻燃聚碳酸酯复合材料通过以下方法制备所得:
首先称取90重量份聚碳酸酯、0.7重量份上述方法制备的聚硼硅氧烷、0.5重量份Sc
2W
3O
12与高速混合机中常温混合10分钟,高速混合机的转速为800转/分钟;接着称取0.2重量份的分散剂、0.2重量份抗氧剂与高速混合机中常温混合10分钟,高速混合机的转速为800转/分钟。将混合好的物料加入双螺杆挤出机中拉丝造粒、冷却、装包;聚碳酸酯在加入高速混合机之前需110℃鼓风干燥8小时,其中,双螺杆挤出机的温度从喂料段到机头依次为150℃、230℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、265℃,螺杆直径为62毫米,螺杆长径比为48,具体性能如表1所示。
对比例1:对比例1中除不包含聚硼硅氧烷外,其他均与实施例1相同;
对比例2:对比例2中除不包含Sc
2W
3O
12外,其他均与实施例1相同。
实施例2
本发明所述低线性膨胀系数、阻燃聚碳酸酯复合材料的一种实施例,本实施例中,聚硼硅氧烷的制备方法如下:
第一步:制备聚硼硅氧烷中间体
首先称取100重量份的三乙氧基硼烷和6重量份的四氯化硅于5000ml的三口烧瓶中,置于加热套中加热、搅拌(温度保持100℃、搅拌速度保持220转/ 分钟),接着同时且缓慢加入0.02重量份茂金属催化剂(茂金属催化剂为二氯二茂锆)和0.045重量份助催化剂(助催化剂为三乙基铝),加完催化剂后反应8小时(反应过程中一直处于加热和搅拌状态),得聚硼硅氧烷中间体;茂金属催化剂和助催化剂缓慢加入的时间为60分钟,整个过程中需要通入氮气保护。
第二步:制备聚硼硅氧烷
接着同时称取100重量份的四氯化硅和过量的蒸馏水(如:1500重量份)缓慢加入三口烧瓶中,加完后进行反应8小时,最后得水解产物。所得水解产物进行去离子水洗涤,最后在130℃的温度下进行减压蒸馏去除小分子,最后得聚硼硅氧烷。第二步中的四氯化硅和过量的蒸馏水缓慢加入的时间为40分钟。整个过程中需要通入氮气保护。
本实施例所述低线性膨胀系数、阻燃聚碳酸酯复合材料通过以下方法制备所得:
首先称取100重量份聚碳酸酯、1.5重量份上述方法制备的聚硼硅氧烷、1.5重量份Sc
2W
3O
12与高速混合机中常温混合20分钟,高速混合机的转速为1000转/分钟;接着称取0.6重量份的分散剂、0.6重量份抗氧剂与高速混合机中常温混合20分钟,高速混合机的转速为1000转/分钟。将混合好的物料加入双螺杆挤出机中拉丝造粒、冷却、装包;聚碳酸酯在加入高速混合机之前需110℃鼓风干燥8小时,其中,双螺杆挤出机的温度从喂料段到机头依次为150℃、230℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、265℃,螺杆直径为62毫米,螺杆长径比为48,具体性能如表1所示。
实施例3
本发明所述低线性膨胀系数、阻燃聚碳酸酯复合材料的一种实施例,本实施例中,聚硼硅氧烷的制备方法如下:
第一步:制备聚硼硅氧烷中间体
首先称取100重量份的三乙氧基硼烷和3.4重量份的四氯化硅于5000ml的三口烧瓶中,置于加热套中加热、搅拌(温度保持90℃、搅拌速度保持220转/分钟),接着同时且缓慢加入0.014重量份茂金属催化剂(茂金属催化剂为二氯二茂锆)和0.031重量份助催化剂(助催化剂为三乙基铝),加完催化剂后反应 6.7小时(反应过程中一直处于加热和搅拌状态),得聚硼硅氧烷中间体;茂金属催化剂和助催化剂缓慢加入的时间为53分钟,整个过程中需要通入氮气保护。
第二步:制备聚硼硅氧烷
接着同时称取84重量份的四氯化硅和过量的蒸馏水(如:1500重量份)缓慢加入三口烧瓶中,加完后进行反应6.7小时,最后得水解产物。所得水解产物进行去离子水洗涤,最后在120℃的温度下进行减压蒸馏去除小分子,最后得聚硼硅氧烷。第二步中的四氯化硅和过量的蒸馏水缓慢加入的时间为32分钟。整个过程中需要通入氮气保护。
本实施例所述低线性膨胀系数、阻燃聚碳酸酯复合材料通过以下方法制备所得:
首先称取93重量份聚碳酸酯、1重量份上述方法制备的聚硼硅氧烷、1重量份Sc
2W
3O
12与高速混合机中常温混合13分钟,高速混合机的转速为858转/分钟;接着称取0.36重量份的分散剂、0.42重量份抗氧剂与高速混合机中常温混合14分钟,高速混合机的转速为924转/分钟。将混合好的物料加入双螺杆挤出机中拉丝造粒、冷却、装包;聚碳酸酯在加入高速混合机之前需110℃鼓风干燥8小时,其中,双螺杆挤出机的温度从喂料段到机头依次为150℃、230℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、265℃,螺杆直径为62毫米,螺杆长径比为48,具体性能如表1所示。
实施例4
本发明所述低线性膨胀系数、阻燃聚碳酸酯复合材料的一种实施例,本实施例中,聚硼硅氧烷的制备方法如下:
第一步:制备聚硼硅氧烷中间体
首先称取100重量份的三乙氧基硼烷和3.9重量份的四氯化硅于5000ml的三口烧瓶中,置于加热套中加热、搅拌(温度保持90℃、搅拌速度保持220转/分钟),接着同时且缓慢加入0.019重量份茂金属催化剂(茂金属催化剂为二氯二茂锆)和0.038重量份助催化剂(助催化剂为三乙基铝),加完催化剂后反应7.4小时(反应过程中一直处于加热和搅拌状态),得聚硼硅氧烷中间体;茂金属催化剂和助催化剂缓慢加入的时间为58分钟,整个过程中需要通入氮气保护。
第二步:制备聚硼硅氧烷
接着同时称取89重量份的四氯化硅和过量的蒸馏水(如:1500重量份)缓慢加入三口烧瓶中,加完后进行反应6.9小时,最后得水解产物。所得水解产物进行去离子水洗涤,最后在120℃的温度下进行减压蒸馏去除小分子,最后得聚硼硅氧烷。第二步中的四氯化硅和过量的蒸馏水缓慢加入的时间为37分钟。整个过程中需要通入氮气保护。
本实施例所述低线性膨胀系数、阻燃聚碳酸酯复合材料通过以下方法制备所得:
首先称取95重量份聚碳酸酯、1.2重量份上述方法制备的聚硼硅氧烷、1.2重量份Sc
2W
3O
12与高速混合机中常温混合17分钟,高速混合机的转速为898转/分钟;接着称取0.39重量份的分散剂、0.46重量份抗氧剂与高速混合机中常温混合18分钟,高速混合机的转速为967转/分钟。将混合好的物料加入双螺杆挤出机中拉丝造粒、冷却、装包;聚碳酸酯在加入高速混合机之前需110℃鼓风干燥9.2小时,其中,双螺杆挤出机的温度从喂料段到机头依次为150℃、230℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、265℃,螺杆直径为62毫米,螺杆长径比为48,具体性能如表1所示。
表1 实施例1-4与对比例1-2复合材料的性能
从表1可以看出,对比例1不含有聚硼硅氧烷,极限氧指数从40%降到28%、UL-94阻燃性能从5VB降到V2等级;对比例2中不含有Sc
2W
3O
12,CLTE-AVG 从4.5*10
-51/K上升到7.8*10
-51/K,且UL-94阻燃等级也从5VB降到了V0等级,而实施例1~3中同时含有Sc
2W
3O
12和聚硼硅氧烷,同时具有低线性膨胀系数和高阻燃性能的特点;由此可知,本申请同时含有Sc
2W
3O
12和聚硼硅氧烷,最终所得复合材料的CLTE最低可达1.8*10
-51/K,阻燃最佳可达UL94-5VA/1.6mm,氧指数可达40%以上。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
Claims (10)
- 一种低线性膨胀系数、阻燃聚碳酸酯复合材料,其特征在于,包括以下重量份的成分:Sc 2W 3O 120.5~1.5份、聚硼硅氧烷0.7~1.5份和聚碳酸酯90~100份。
- 如权利要求1所述的低线性膨胀系数、阻燃聚碳酸酯复合材料,其特征在于,所述Sc 2W 3O 12为Sc 2W 3O 12粉末,所述Sc 2W 3O 12粉末的粒径D50为100~300纳米。
- 如权利要求1所述的低线性膨胀系数、阻燃聚碳酸酯复合材料,其特征在于,还包含以下重量份的成分:分散剂0.2~0.6份和抗氧剂0.2~0.6份。
- 如权利要求3所述的低线性膨胀系数、阻燃聚碳酸酯复合材料,其特征在于,所述分散剂为有机硅类分散剂。
- 如权利要求3所述的低线性膨胀系数、阻燃聚碳酸酯复合材料,其特征在于,所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯和三[2,4-二叔丁基苯基]亚磷酸酯的复配。
- 如权利要求1~5任一项所述的低线性膨胀系数、阻燃聚碳酸酯复合材料,其特征在于,所述聚硼硅氧烷通过以下方法制备所得:(1)制备聚硼硅氧烷中间体将100重量份的三乙氧基硼烷和2~6重量份的四氯化硅置于三口烧瓶中,在90~100℃下加热、搅拌,然后缓慢加入0.01~0.02重量份的茂金属催化剂和0.025~0.045重量份的助催化剂,反应6~8小时,得到聚硼硅氧烷中间体;(2)制备聚硼硅氧烷在步骤(1)的三口烧瓶中加入80~100重量份的四氯化硅、蒸馏水,反应6~8小时,得到水解产物,将所得水解产物进行去离子水洗涤,在120~130℃的温度下进行减压蒸馏去除小分子,得到聚硼硅氧烷。
- 如权利要求6所述的低线性膨胀系数、阻燃聚碳酸酯复合材料,其特征在于,所述步骤(1)中,所述茂金属催化剂和助催化剂加入的时间为50~60分 钟,整个过程中通入氮气保护;所述步骤(2)中,所述四氯化硅、蒸馏水加入的时间为25~40分钟,整个过程中通入氮气保护。
- 如权利要求6所述的低线性膨胀系数、阻燃聚碳酸酯复合材料,其特征在于,所述步骤(1)中,所述茂金属催化剂为二氯二茂锆,所述助催化剂为三乙基铝。
- 一种如权利要求3~8任一项所述的低线性膨胀系数、阻燃聚碳酸酯复合材料的制备方法,其特征在于,包括如下步骤:(1)将聚碳酸酯、聚硼硅氧烷、Sc 2W 3O 12在高速混合机中混合10~20分钟,高速混合机的转速为800~1000转/分钟;(2)将分散剂、抗氧剂加入高速混合机中混合10~20分钟,高速混合机的转速为800~1000转/分钟;(3)将混合好的物料加入双螺杆挤出机中进行拉丝造粒、冷却、装包,即得所述低线性膨胀系数、阻燃聚碳酸酯复合材料,其中,双螺杆挤出机从喂料段到机头的温度依次为150℃、230℃、260℃、260℃、260℃、260℃、260℃、260℃、260℃、265℃,螺杆直径为62毫米,螺杆长径比为48。
- 如权利要求9所述的低线性膨胀系数、阻燃聚碳酸酯复合材料的制备方法,其特征在于,所述步骤(1)中,聚碳酸酯在加入高速混合机之前,在110℃鼓风干燥8~10小时。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910922361.4 | 2019-09-26 | ||
CN201910922361.4A CN110564129A (zh) | 2019-09-26 | 2019-09-26 | 一种低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021057356A1 true WO2021057356A1 (zh) | 2021-04-01 |
Family
ID=68782764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/110658 WO2021057356A1 (zh) | 2019-09-26 | 2020-08-22 | 低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110564129A (zh) |
WO (1) | WO2021057356A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110564129A (zh) * | 2019-09-26 | 2019-12-13 | 金发科技股份有限公司 | 一种低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法 |
CN111576684B (zh) * | 2020-04-03 | 2021-05-11 | 东联建设科技股份有限公司 | 一种建筑幕墙单元板块及其构建方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030187117A1 (en) * | 2002-03-29 | 2003-10-02 | Starkovich John A. | Materials and method for improving dimensional stability of precision electronic optical photonic and spacecraft components and structures |
CN102745747A (zh) * | 2011-12-14 | 2012-10-24 | 江苏大学 | 一种棒状Sc2W3O12负热膨胀材料的制备方法 |
CN105670259A (zh) * | 2014-11-21 | 2016-06-15 | 合肥杰事杰新材料股份有限公司 | 一种聚硼硅氧烷阻燃剂与含有聚硼硅氧烷阻燃剂的聚碳酸酯复合材料及其制备方法 |
CN106317607A (zh) * | 2015-06-18 | 2017-01-11 | 合肥杰事杰新材料股份有限公司 | 一种超低线性膨胀系数聚丙烯复合材料及其制备方法 |
CN110564129A (zh) * | 2019-09-26 | 2019-12-13 | 金发科技股份有限公司 | 一种低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法 |
-
2019
- 2019-09-26 CN CN201910922361.4A patent/CN110564129A/zh active Pending
-
2020
- 2020-08-22 WO PCT/CN2020/110658 patent/WO2021057356A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030187117A1 (en) * | 2002-03-29 | 2003-10-02 | Starkovich John A. | Materials and method for improving dimensional stability of precision electronic optical photonic and spacecraft components and structures |
CN102745747A (zh) * | 2011-12-14 | 2012-10-24 | 江苏大学 | 一种棒状Sc2W3O12负热膨胀材料的制备方法 |
CN105670259A (zh) * | 2014-11-21 | 2016-06-15 | 合肥杰事杰新材料股份有限公司 | 一种聚硼硅氧烷阻燃剂与含有聚硼硅氧烷阻燃剂的聚碳酸酯复合材料及其制备方法 |
CN106317607A (zh) * | 2015-06-18 | 2017-01-11 | 合肥杰事杰新材料股份有限公司 | 一种超低线性膨胀系数聚丙烯复合材料及其制备方法 |
CN110564129A (zh) * | 2019-09-26 | 2019-12-13 | 金发科技股份有限公司 | 一种低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110564129A (zh) | 2019-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021057356A1 (zh) | 低线性膨胀系数、阻燃聚碳酸酯复合材料及其制备方法 | |
CN108102213B (zh) | 一种阻燃聚丙烯组合物及其制备方法和应用 | |
CN111205796A (zh) | 一种半导体封装用浅色耐黄变的环氧树脂组合物 | |
CN104086970A (zh) | 一种高效溴硅阻燃耐气候聚碳酸酯复合材料及其制备方法 | |
CN108059810A (zh) | 一种高透明阻燃聚碳酸酯薄膜/片材及其制备方法和用途 | |
CN115895212A (zh) | 一种阻燃耐磨pbt复合材料及其制备方法 | |
CN112048118A (zh) | 一种基于紫外线交联的阻燃高强聚乙烯材料及其制备方法 | |
CN114836005A (zh) | 一种对氨基苯腈衍生物阻燃环氧树脂复合材料的制备方法 | |
CN110922720A (zh) | 一种用于半导体器件封装三元热固性树脂组合物 | |
CN114437460A (zh) | 一种高耐热阻燃聚丙烯复合材料及其制备方法 | |
CN112143207A (zh) | 一种低介电常数无卤阻燃ppe材料及其制备方法 | |
CN104710732B (zh) | 一种用于制备led灯基座和散热器的相变导热材料及其制备方法 | |
CN100365065C (zh) | 一种聚碳酸酯/丙烯腈-丁二烯-苯乙烯树脂共混物的制备方法 | |
CN113462154B (zh) | 一种高耐热氰酸酯树脂及其制备方法 | |
CN116102785A (zh) | 一种pc抗老化剂及其制备方法 | |
CN108219427A (zh) | 生物级透明阻燃聚碳酸酯复合物及其制备方法 | |
CN111363273B (zh) | 一种改进流动性的abs/pvc组合物及其制备方法 | |
WO2021057357A1 (zh) | 聚丙烯用超低线性膨胀系数母粒及其应用 | |
CN112979951A (zh) | 一种新型阻燃剂、阻燃透明聚碳酸酯树脂及其制备方法 | |
CN116355367B (zh) | 一种阻燃pbt组合物 | |
KR20160083528A (ko) | 폴리에스터 수지 조성물 및 이를 이용한 플라스틱 성형체 제조 | |
CN114605702B (zh) | 一种无载体溴锑阻燃母粒及其制备方法与应用 | |
CN116239837B (zh) | 一种高导热阻燃pp材料及其制备方法 | |
CN116332983B (zh) | 改性环状硅氧烷阻燃剂、透明阻燃聚碳酸酯组合物及其制备方法 | |
CN114539731B (zh) | 一种阻燃材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20868839 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20868839 Country of ref document: EP Kind code of ref document: A1 |