WO2021057333A1 - 一种铰链结构及可折叠电子设备 - Google Patents

一种铰链结构及可折叠电子设备 Download PDF

Info

Publication number
WO2021057333A1
WO2021057333A1 PCT/CN2020/109566 CN2020109566W WO2021057333A1 WO 2021057333 A1 WO2021057333 A1 WO 2021057333A1 CN 2020109566 W CN2020109566 W CN 2020109566W WO 2021057333 A1 WO2021057333 A1 WO 2021057333A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
sleeve
rotating shaft
angle
rotating
Prior art date
Application number
PCT/CN2020/109566
Other languages
English (en)
French (fr)
Inventor
朱明超
龙腾
钟梅芳
杨峻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20868525.5A priority Critical patent/EP4023895A4/en
Publication of WO2021057333A1 publication Critical patent/WO2021057333A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/10Arrangements for locking
    • F16C11/103Arrangements for locking frictionally clamped
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1681Details related solely to hinges
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2999/00Subject-matter not otherwise provided for in this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • H04M1/0216Foldable in one direction, i.e. using a one degree of freedom hinge

Definitions

  • This application relates to the technical field of electronic devices, and in particular to a hinge structure and a foldable electronic device.
  • the hinge structure is a key component for connecting the foldable electronic device, and its main function is to connect the different main bodies of the foldable electronic device and provide damping.
  • the hinge structure is mainly used to connect the screen of the notebook computer and the keyboard base, and the torsion force generated by the hinge structure itself provides support for the screen during normal use.
  • the traditional hinge structure can provide sufficient support when the notebook screen is opened to the working angle.
  • the torsion force generated by the hinge structure itself is generally greater than the gravity of the screen. Therefore, for a notebook computer with a lighter keyboard base, the traditional The hinge structure is difficult to open the screen of the notebook with one hand, that is, the keyboard base will be lifted when the screen is turned on. At this time, the user needs to press the keyboard base with one hand and apply force with the other hand to the screen.
  • the screen can only be turned on by rotating it away from the keyboard base, and this operation causes a relatively poor user experience for the user.
  • the current routine operation is to reduce the screen weight of the notebook computer while increasing the weight of the keyboard base, so as to achieve the purpose of opening the screen with one hand.
  • the increase in technological requirements for reducing the weight of the screen will increase the cost of the screen, and increasing the weight of the keyboard base will increase the weight of the entire notebook, making it inconvenient to use and carry.
  • the screen may be dropped due to the inability of the hinge structure to provide sufficient support for the screen in the working state of the notebook.
  • the so-called screen drop means that the screen suddenly faces the keyboard base during the use of the notebook. In the direction of falling.
  • the embodiments of the present application provide a hinge structure and a foldable electronic device.
  • the hinge structure is applied to a foldable electronic device, which can open the foldable electronic device with one hand without increasing the cost and weight of the whole machine. Ensure the stability of the foldable electronic device in the open state.
  • the present application provides a hinge structure that includes a shaft sleeve, a first shaft and a second shaft.
  • a foldable electronic device such as a notebook computer
  • the shaft sleeve can be connected
  • the first body of the foldable electronic device such as the keyboard base of a notebook computer
  • the first shaft can be connected to the second body of the foldable electronic device (such as the screen of the notebook computer); wherein, the first shaft extends into the
  • the shaft sleeve is rotatable relative to the shaft sleeve about the axis of the first shaft.
  • the first shaft is frictionally fitted with the shaft sleeve when it rotates relative to the shaft sleeve; the second shaft extends into the shaft sleeve and can be opposed to the shaft sleeve.
  • the shaft sleeve rotates around the axis line of the second shaft, and the second shaft cooperates with the shaft sleeve when rotating relative to the shaft sleeve; during the process of the foldable electronic device from the folded state to the open state, the first body and the second
  • the angle between the two main bodies gradually increases, and the first rotating shaft rotates relative to the sleeve to generate a first torsion force by friction between the two; and the second rotating shaft and the sleeve are in the foldable electronic device from the folded state to the open state
  • the entire hinge structure only outputs the first torsion force generated when the first rotating shaft and the shaft sleeve frictionally rotate.
  • the first torsion force is relatively small, which is convenient for the user to open the foldable electronic device with one hand;
  • the included angle between the two main bodies is greater than the first angle and smaller than the second angle (of course, the second angle here is greater than the first angle), except for the first torsion force generated by the friction between the first shaft and the sleeve, the second The frictional fit between the rotating shaft and the sleeve will also generate a third torsion force.
  • the second torsion here is larger than the first torsion.
  • the first body can maintain a stable open state relative to the second body, which is convenient for the user to work on the foldable electronic device, and provides convenience for the user to use.
  • the above-mentioned hinge structure may also be provided with a stopper on the shaft sleeve, corresponding to Ground, a stopper is provided on the first rotating shaft.
  • the stopper and the stopper cooperate with each other to limit the maximum rotation angle of the first rotating shaft with respect to the sleeve, thereby limiting the first main body relative to The maximum included angle between the second body.
  • the first rotating shaft can rotate relative to the second rotating shaft around its own axis, and the second rotating shaft and the A limit mechanism is provided between the first rotating shafts for limiting the rotation angle of the first rotating shaft relative to the second rotating shaft to be smaller than the first angle, when the included angle between the first body and the second body is less than or equal to At a first angle, the first rotating shaft rotates relative to the second rotating shaft.
  • the first rotating shaft rotates relative to the sleeve, and the second rotating shaft is stationary relative to the sleeve.
  • the limit mechanism can make the first rotating shaft relative to the second rotating shaft.
  • the rotation is limited to a first angle; when the angle of the first rotation shaft relative to the second rotation shaft is greater than the first angle, the first rotation shaft will drive the second rotation shaft to rotate together under the restriction of the limit mechanism to achieve linkage, then At this time, the first rotating shaft is frictionally rotated with respect to the shaft sleeve to generate a first torsion, while the second rotating shaft is frictionally rotating with respect to the shaft sleeve to generate a third torsion.
  • the first rotating shaft and the second rotating shaft can be rotationally matched through a shaft hole.
  • the shaft sleeve can be split into a relatively stationary first shaft sleeve and a second shaft sleeve, and the first shaft extends into the first shaft sleeve and can surround the first shaft sleeve relative to the first shaft sleeve.
  • the axis of a rotating shaft rotates, and the first rotating shaft frictionally fits with the first sleeve when rotating relative to the first sleeve;
  • the second rotating shaft is mounted on the second sleeve and can be opposed to the second sleeve Rotating around the axis of the second rotating shaft, the second rotating shaft frictionally fits with the second shaft sleeve when rotating relative to the second shaft sleeve.
  • Such a structure provides a possible hinge structure installation method, and the first rotating shaft and the second rotating shaft can be relatively flexibly matched with the shaft sleeve according to the use scene.
  • the first shaft and the first shaft sleeve can be an interference fit or a friction washer can be provided between the two, so that friction is generated when the first shaft rotates relative to the first sleeve.
  • the first torque
  • the second rotating shaft and the second sleeve can also be similar to the first rotating shaft and the first sleeve, so that when the second rotating shaft rotates relative to the second sleeve under the drive of the first rotating shaft, The frictional fit of the two shaft sleeves produces a third torque.
  • the limit mechanism provided between the first rotating shaft and the second rotating shaft needs to be set according to the specific structure of the first rotating shaft and the second rotating shaft.
  • the second shaft may be formed with a collar, and the collar may be sleeved on the first shaft, so that the first shaft can rotate without friction relative to the collar, and a first shaft is formed on the inner wall of the collar.
  • Protrusions, and second protrusions are formed on the first shaft.
  • the first protrusions and the second protrusions are equivalent to the limit mechanism.
  • the first shaft rotates relative to the second shaft
  • the first protrusions and the second protrusions The two protrusions are used for cooperating to define the rotation angle of the first rotating shaft relative to the second rotating shaft.
  • the sleeve ring can also be friction-fitted with the shaft sleeve. When the sleeve ring rotates relative to the shaft sleeve, a third torsion force can be generated between the two;
  • the first rotating shaft and the second rotating shaft are arranged opposite to each other;
  • the above-mentioned limiting mechanism may include a limiting member and a rotating member, and the limiting member may be disposed on the second rotating shaft and the first rotating shaft.
  • the rotating member On one of the rotating shafts, correspondingly, the rotating member is arranged on the other of the second rotating shaft and the first rotating shaft, and the setting positions of the limiting member and the rotating member can be exchanged;
  • a side of the positioning member facing the rotating member is formed with a avoidance notch, and the avoiding notch is used to cooperate with the above-mentioned rotating member to limit the rotation of the rotating member relative to the limiting member within the first angle, thereby limiting the first angle.
  • the rotating shaft rotates within a first angle relative to the second rotating shaft to ensure that when the angle between the first body and the second body is smaller than the first angle, only the first rotating shaft rotates relative to the sleeve, while the second rotating shaft is stationary relative to the sleeve.
  • the entire hinge structure only outputs the first torsion force; and when the angle between the first body and the second body is larger than the first angle and smaller than the second angle, the rotation of the first shaft will be due to the rotation of the rotating member and the limiting member.
  • the entire hinge structure outputs the second torsion after the first torsion and the third torsion are superimposed.
  • the limiting member may include a connecting end surface and a limiting boss protruding from the connecting end surface toward the rotating member, the connecting end surface is perpendicular to the rotation axis of the rotating member, and the limiting boss is connected to the rotating member.
  • the avoidance gap is formed between the connecting end surfaces.
  • the above-mentioned limiting member may include a connecting end surface and a limiting groove formed on the connecting end surface, the connecting end surface is perpendicular to the rotation axis of the rotating member, and the structure of the limiting groove itself is formed here. Describe the avoidance gap. Both of these two ways to avoid the gap can form a rotating space for the rotating part to rotate.
  • the cross section of the limit boss parallel to the connection end surface may be fan-shaped or arc-shaped.
  • the limit boss may have Various deformation structures, for example, a gap can be formed on the limiting boss; and, the outer diameter of the limiting boss can be made smaller than the outer diameter of the connecting end surface or the outer diameter of the connecting end surface can be smaller than the outer diameter of the connecting end surface.
  • the outer diameter of the second rotating shaft, these two structural deformations can form a shoulder on the limiting member.
  • the cross section of the limiting groove parallel to the connecting end surface may also be fan-shaped or arc-shaped.
  • the hinge structure may include a first shaft sleeve and a second shaft sleeve; wherein, the first shaft extends into the first shaft sleeve and can be wound relative to the first shaft sleeve.
  • the axis of the first shaft rotates, and when the first shaft rotates relative to the first shaft sleeve, it frictionally fits with the first shaft sleeve; and the second shaft extends into the second shaft sleeve and can be opposed to the second shaft sleeve.
  • the shaft sleeve rotates around the axis of the second shaft sleeve, and the second shaft sleeve is matched with the second shaft sleeve when the second shaft sleeve rotates relative to the second shaft sleeve.
  • first shaft and the second shaft which corresponds to the process of the foldable electronic device from the folded state to the opened state, when the first body and the second body are different from each other.
  • the included angle between the first and second shafts is less than or equal to the first angle
  • the second shaft and the second shaft sleeve rotate without friction; when the included angle between the first body and the second body is greater than the first angle and smaller than the first angle
  • the second rotating shaft and the second sleeve are frictionally and rotationally matched to generate the third torsion force.
  • the second rotating shaft may have a friction portion protruding from the peripheral surface of the second rotating shaft, and the friction portion can be frictionally fitted with the second sleeve;
  • the second sleeve is provided with a groove area capable of accommodating the friction portion, and the angle corresponding to the groove area along the direction surrounding the axis of the second sleeve is the first angle;
  • the present application also provides a foldable electronic device.
  • the foldable electronic device includes a first body and a second body.
  • the first body Any hinge structure provided by the above technical solution is arranged between the hinge structure and the second body.
  • the shaft sleeve of the hinge structure can be connected to the first body, and the first rotating shaft of the hinge structure can be connected to the second body.
  • FIG. 1 is a schematic structural diagram of an existing foldable electronic device in a folded state
  • Figure 2 is a schematic structural diagram of an existing foldable electronic device in an open state
  • FIG. 3 is a schematic structural diagram of an existing foldable electronic device in an open state
  • FIG. 4 is a schematic diagram of a torsion curve of a hinge structure in the prior art during the opening process of a foldable electronic device
  • FIG. 5 is a schematic diagram of a torsion curve of another type of hinge structure in the prior art during the opening process of the foldable electronic device;
  • FIG. 6 is a schematic diagram of a torsion curve of a hinge structure during an opening process of a foldable electronic device according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a hinge structure provided by Embodiment 1 of the present invention.
  • FIG. 8 is an exploded view of a hinge structure provided by Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of an assembly structure of a shaft sleeve of a hinge structure and a first rotating shaft according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of the matching structure of the stopper of the shaft sleeve of the hinge structure and the stopper of the first rotating shaft according to the first embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a mating state of a first shaft and a second shaft of a hinge structure according to the first embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a first rotating shaft rotating relative to a second rotating shaft of a hinge structure according to the first embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of another mating state of the first rotating shaft and the second rotating shaft of a hinge structure according to the first embodiment of the present invention
  • FIG. 14 is a structural schematic diagram of a mating state in which the first rotating shaft of the hinge structure rotates in the opposite direction relative to the second rotating shaft according to the first embodiment of the present invention
  • 15 is a structural schematic diagram of the mating state after the first rotating shaft of the hinge structure is reversely rotated by a first angle relative to the second rotating shaft according to the first embodiment of the present invention
  • 16 is a schematic structural diagram of a mating state in which the first rotating shaft of the hinge structure rotates in the opposite direction relative to the second rotating shaft according to the first embodiment of the present invention
  • FIG. 17 is a schematic diagram of torsion curves of a hinge structure in the opening process and the closing process of the foldable electronic device according to the first embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 19 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 20 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 21 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 22 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 23 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 24 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 25 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 26 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 27 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 28 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 29 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 30 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 31 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 32 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 33 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 34 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • FIG. 35 is a schematic structural diagram of a limiting member of a hinge structure according to Embodiment 1 of the present invention.
  • 36 is a schematic structural diagram of a hinge structure provided by the second embodiment of the present invention.
  • Fig. 37 is an exploded view of a hinge structure provided by the second embodiment of the present invention.
  • Fig. 38 is an exploded view of a hinge structure provided by the second embodiment of the present invention.
  • FIG. 39 is a schematic structural diagram of a hinge structure provided by Embodiment 3 of the present invention.
  • FIG. 40 is an exploded view of a hinge structure provided by Embodiment 3 of the present invention.
  • 41 is a schematic cross-sectional structure diagram of a hinge structure provided by a fourth embodiment of the present invention in which the second shaft and the second shaft sleeve cooperate;
  • FIG. 42 is a schematic cross-sectional structure diagram of a hinge structure provided by a fourth embodiment of the present invention in which the second shaft and the second shaft sleeve cooperate;
  • FIG. 43 is a schematic cross-sectional structure diagram of a hinge structure provided by a fourth embodiment of the present invention in which the second shaft and the second shaft sleeve cooperate;
  • FIG. 44 is a schematic structural diagram of a hinge structure provided by Embodiment 5 of the present invention.
  • FIG. 45 is a schematic structural diagram of a shaft sleeve and a second rotating shaft in a hinge structure provided by Embodiment 5 of the present invention.
  • 46 is a schematic cross-sectional structure diagram of the first rotating shaft and the second rotating shaft in the hinge structure provided by the fifth embodiment of the present invention.
  • FIG. 47 is a schematic cross-sectional structure diagram of a hinge structure provided by Embodiment 6 of the present invention.
  • FIG. 48 is a schematic cross-sectional structure diagram of a hinge structure provided by Embodiment 7 of the present invention.
  • FIG. 49 is a schematic cross-sectional structure diagram of a hinge structure provided by Embodiment 7 of the present invention.
  • FIG. 50 is a schematic cross-sectional structure diagram of a hinge structure provided by Embodiment 7 of the present invention.
  • a foldable electronic device which has a foldable function, and includes electronic devices such as foldable mobile phones and laptop computers.
  • a foldable electronic device as shown in FIGS. 1 to 3 includes a first body 10 (for example, the screen of a laptop computer), a second body 20 (for example, a keyboard base of a laptop computer), and the first body 10 and In the hinge structure 30 between the second main bodies 20, one end of the hinge structure 30 is connected to the first main body 10 and the other end is connected to the second main body 20.
  • the first main body 10 can rotate around the hinge structure 30 relative to the second main body 20. Under the connection effect of the hinge structure 30, the first body 10 and the second body 20 can exhibit a change from the folded state to the opened state as shown in FIGS. 1 to 3.
  • the first body 10 and the second body 20 may be in a folded state (as shown in FIG. 1, the angle between the first body 10 and the second body 20 is 0°).
  • the first body 10 and the second body 20 can be in an open state (as shown in FIGS. 2 and 3, the first body 10 and the second body 20 are All have an included angle greater than 0°, where the included angle ⁇ 1 between the first body 10 and the second body 20 as shown in FIG. 2 is smaller than that between the first body 10 and the second body 20 as shown in FIG. 3 Angle ⁇ 2).
  • the included angle between the first body 10 and the second body 20 is greater than or equal to 0° (ignoring the pre-tightening angle of the hinge structure 30 when the first body 10 is closed relative to the second body 20), and the first body
  • the maximum value of the included angle between 10 and the second body 20 is less than or equal to 360°.
  • the maximum value of the included angle between the first body 10 and the second body 20 may vary in product design. Different options.
  • an existing hinge structure includes a shaft and a shaft sleeve.
  • the shaft rotates and rubs against the shaft sleeve, torsion is generated.
  • the screen is opened relative to the keyboard base until the angle between the two is ⁇ , the curve of the torsion is As shown in Figure 4 (ignoring the pre-tightening angle of the shaft and sleeve when the screen is closed relative to the keyboard base).
  • Another hinge structure is provided with a washer between the rotating shaft and the shaft sleeve.
  • This hinge structure has a self-locking angle ⁇ .
  • none of the above-mentioned hinge structures can meet the convenience requirements of the user to open with one hand and the working stability requirements of the foldable electronic device in the opened state.
  • the hinge structure 30 provided by the embodiment of the present application can be in a self-folding state of the first body 10 relative to the second body 20 (as shown in FIG. 1, the first body 10 and the second body 20 are clamped at 0° Angle) to the open state (the included angle between the first body 10 and the second body 20 is greater than 0° as shown in Figure 2 or 3), different torques are output to adapt to the first body 10 and the second body 10
  • the main body 20 needs torsion force in the state.
  • the first body 10 of the foldable electronic device provided by the present application is output from the hinge structure 30 when the first body 10 is relative to the second body 20 from the folded state to when the angle between the two is at the maximum value.
  • 6 represents the torque value generated by the hinge structure 30, the origin O of the abscissa is the first body 10 is in a folded state relative to the second body 20; when the first body 10 and the second body 20 are in a folded state
  • the included angle between is less than or equal to the first angle, and the first angle is set to ⁇ (for example, ⁇ is 60°), and the range of the first angle refers to greater than 0° and less than or equal to ⁇ .
  • the hinge The first torsion force T1 generated by the structure 30 is relatively small, and the user can open the first body 10 relative to the second body 20 by applying a relatively small force, so that the foldable electronic device can be opened with one hand; when the first body 10 The included angle with the second body 20 is greater than the first angle and smaller than the second angle, where the second angle is the maximum value of the included angle between the first body 10 and the second body 20, and the second angle is set to ⁇ (For example, ⁇ is 150°), the angle range larger than the first angle and smaller than the second angle refers to larger than ⁇ - ⁇ and smaller than or equal to ⁇ .
  • the output of the hinge structure 30 is greater than the first torque T1
  • the second torque T2 can maintain the open state between the first body 10 and the second body 20, which is convenient for operation and use. For example, the user can operate the notebook computer when the notebook computer is opened.
  • a hinge structure 30 provided by an embodiment of the present application includes a shaft sleeve 31, a first shaft 32, and a second shaft 33.
  • the set shaft sleeve 31 can be used to connect the first body 10 and the first shaft 32. It can be used to connect the second main body 20.
  • FIG. 7 here shows the structure of the hinge structure 30 installed in perspective.
  • FIG. 8 shows an exploded schematic diagram of the installation structure of the shaft sleeve 31, the first shaft 32 and the second shaft 33 in this embodiment.
  • One end of the first shaft 32 extends into the shaft sleeve 31 and can be wound relative to the shaft sleeve 31.
  • the axis line of the first rotating shaft 32 rotates.
  • the first rotating shaft 32 When the first rotating shaft 32 rotates relative to the sleeve 31, the first rotating shaft 32 frictionally cooperates with the sleeve 31 to form a first hinge pair; wherein, the first rotating shaft 32 may pass through the sleeve 31 Fit structure, when the first rotating shaft 32 rotates relative to the sleeve 31, there is friction between the two, and the entire hinge structure outputs the first torsion force (the first torsion force here is only limited to the force caused by the frictional rotation of the first rotating shaft 32 relative to the sleeve 31 The amount of force generated is not limited); and the second rotating shaft 33 is installed in the sleeve 31 and can rotate relative to the sleeve 31 around the axis of the second rotating shaft 33, and the second rotating shaft 33 rotates relative to the sleeve 31 When the second rotating shaft 33 and the sleeve 31 frictionally cooperate to form a second hinge pair; when the second rotating shaft 33 rotates relative to the sleeve 31, the friction between the two generate
  • a stopper 312 is provided on the sleeve 31, and a stopper 322 is provided on the first rotating shaft 32.
  • the stopper 312 has a first On one side 312A and the second side 312B, when the first rotating shaft 32 rotates relative to the sleeve 31, the stopper 312 restricts the rotation of the stopper 322 to realize the rotation range of the first rotating shaft 32 relative to the sleeve 31.
  • FIG. 9 in order to limit the angle at which the first rotating shaft 32 rotates relative to the second rotating shaft 33, FIG.
  • a limiter including a matching limiter 331 and a rotating member 321 is provided between the first rotating shaft 32 and the second rotating shaft 33.
  • Bit institutions Exemplarily, the limiting member 331 is disposed on the second rotating shaft 33, and the rotating member 321 is disposed on the first rotating shaft 32. It can be understood that the limiting member 331 and the rotating member 321 in the above structure are matched with each other, and the setting positions of the limiting member 331 and the rotating member 321 can be interchanged, and the limiting member 331 is arranged on the first rotating shaft 32, The rotating member 321 is arranged on the second rotating shaft 33.
  • the butt portion of the first shaft 32 and the second shaft 33 is covered in the shaft sleeve 31, and the shaft sleeve 31 is integrally formed with a connecting plate 311, and the connecting plate 311 A mounting hole 3111 is formed, which can be used to connect to the first body 10; the shaft end 32A of the first rotating shaft 32 away from the second rotating shaft 33 is exposed outside the sleeve 31, and the shaft end 32A is formed with tooth grooves, which can be used to connect to the second main body 20; and the second rotating shaft 33 is only used to assume the role of rotating relative to the sleeve 31 under the drive of the first rotating shaft 32 to generate a third torsion, so the end of the second rotating shaft 33 away from the first rotating shaft 32 is enclosed in the sleeve 31
  • the second rotating shaft 33 may also be exposed outside the sleeve 31, as long as the above functions can be realized.
  • the hinge structure 30 in this embodiment will be described in detail by taking “the limiting member 331 is disposed on the second rotating shaft 33 and the rotating member 321 is disposed on the first rotating shaft 32" as an example.
  • one end of the second rotating shaft 33 facing the first rotating shaft 32 forms a convex stopper 331
  • the stopper 331 is formed with an escape notch
  • the first rotating shaft 32 faces the second rotating shaft 33.
  • a protruding rotating member 321 is formed at one end of the rotating member 321, and the rotating member 321 can be matched with the limiting member 331 (as shown in FIG.
  • the rotating member 321 and the limiting member 331 Mutual matching); wherein the avoidance notch on the limiting member 331 forms a rotation space that limits the rotation of the rotating member 321 within a first angle range, when the first rotating shaft 32 is relative to the second rotating shaft 33 around the axis of the first rotating shaft 32 When rotating, the rotating member 321 rotates in the rotating space formed by the avoiding notch on the limiting member 331.
  • the working process of the hinge structure 30 corresponds to the process of the foldable electronic device provided in the present application from the folded state to the opened state (that is, the angle between the first body 10 and the second body 20 is a continuous and gradually increasing process ), when the first body 10 and the second body 20 are folded, that is, the angle between the two is 0°, as shown in FIG.
  • the mating relationship between the first shaft 32 and the second shaft 33 is the first rotation member 321
  • One side 321A is in contact with the first side 331A of the limiting member 331, and the angle between the second side 321B of the rotating member 321 and the second side 331B of the limiting member 331 is the aforementioned first angle ⁇ ;
  • the relative second body 20 is gradually opened until the angle between the two is ⁇ , that is, the rotating member 321 contacts the first side 331A of the limiting member 331 from the first side 321A of the rotating member 321 in the rotating direction as shown in FIG. 12 ( At this time, the contact state of the rotating member and the limiting member is shown in Fig. 11).
  • the rotation angle of the rotating member 321 is the above-mentioned first angle ⁇ , in this process, only the first rotating friction between the first rotating shaft 32 and the sleeve 31 generates the first torsion force.
  • the second rotating shaft 33 is stationary relative to the sleeve 31 and there is no torque output between the two.
  • the first rotating shaft 32 rotates in the direction of rotation shown in FIG. 13, due to the rotating member 321 and the limiting member 331 is matched in the state shown in FIG. 13 (the second side 321B of the rotating member 321 is in contact with the second side 331B of the limiting member 331), as the first rotating shaft 32 rotates, the rotating member 321 pushes the limiting member 331 to rotate coaxially (Because the first rotating shaft 32 and the second rotating shaft 33 are coaxially rotated and arranged in the sleeve 31), the second rotating shaft 33 is rotated relative to the sleeve 31 around its own axis.
  • the first rotating shaft 32 and the second rotating shaft 32 The two rotating shafts 33 are relatively stationary.
  • the first rotating shaft 32 and the sleeve 31 generate a first torsion force by rotating friction
  • the second rotating shaft 33 and the sleeve 31 generate a third torque force by rotating and friction.
  • the sum of the first torque force and the third torque force is the second torque force.
  • the torsion force output by the entire hinge structure 30 is the second torsion force.
  • the first torsion force during this movement can be the same as the first torsion force during the rotation of the first body 10 relative to the second body 20 from 0° to the first angle ⁇ , or it can be different in magnitude.
  • the value of the second torque which is the sum of the first torque and the third torque at this stage, may be greater than the value of the first torque.
  • the stopper 322 rotates from contact with the first side 312A of the stopper 312 (not shown in the figure) to The stopper 322 is in contact with the second side 312B of the stopper 312 (as shown in FIG. 10), that is, the cooperation of the stopper 322 and the stopper 312 defines the angle between the first body 10 and the second body 20 The maximum value.
  • the hinge structure 30 provided in this embodiment, if the foldable electronic device is in a self-opening state (as shown in FIG. 2 or 3, the included angle between the first body 10 and the second body 20 is greater than 0° ) Is gradually closed to the folded state (the angle between the first body 10 and the second body 20 is 0° as shown in Figure 1) (the angle between the first body 10 and the second body 20 is continuous The process of gradual reduction), the working process of the hinge structure 30 is as follows: As shown in FIG.
  • the first rotating shaft 32 and The matching relationship between the second rotating shaft 33 is that the second side 321B of the rotating member 321 is in contact with the second side 331B of the limiting member 331, and the first side 321A of the rotating member 321 is between the first side 331A of the limiting member 331
  • the included angle is the above-mentioned first angle ⁇ .
  • FIG. 15 shows the second side 321B of the rotating member 321 and the second side of the limiting member 331 The included angle between 331B is ⁇ equivalent to the angle at which the rotating member 321 rotates relative to the limiting member 331;
  • FIG. 16 shows a state where the first side 321A of the rotating member 321 is in contact with the first side 331A of the limiting member 331.
  • the first torsion force is generated by the rotational friction between the first rotating shaft 32 and the sleeve 31, and the second rotating shaft 33 is stationary relative to the sleeve 31 during this process, and there is no torque output between the two.
  • the first body 10 continues to rotate relative to the second body 20 until the two are folded, that is, the angle between the two is 0°
  • the first rotating shaft 32 continues to rotate in the above-mentioned rotating direction, because the rotating member 321 and the limiting member 331 are shown in Fig. 16
  • the state shown in the figure is matched (the first side 321A of the rotating member 321 is in contact with the first side 331A of the limiting member 331).
  • the rotating member 321 pushes the limiting member 331 to rotate coaxially (because the first The rotating shaft 32 and the second rotating shaft 33 are coaxially rotatable and arranged in the sleeve 31), so that the second rotating shaft 33 rotates around its own axis relative to the sleeve 31.
  • the first rotating shaft 32 and the second rotating shaft 33 are opposite to each other.
  • the first rotating shaft 32 and the sleeve 31 rotate and friction produce a first torsion
  • the second rotating shaft 33 and the sleeve 31 rotate and friction produce a third torsion.
  • the sum of the first torsion and the third torsion is the above-mentioned second torsion.
  • the torque output by 30 is a second torque greater than the first torque.
  • the hinge structure 30 provided in this embodiment when the first body 10 rotates in the reverse direction relative to the second body 20, its torque output state is the same as the torque output state during forward rotation, and can be compared with forward rotation. Obtained as shown in Figure 17 torsion state change diagram. Wherein, the abscissa represents the angle between the first body 10 and the second body 20, and the ordinate represents the torque value generated by the hinge structure 30. The first body 10 of the foldable electronic device is opened from the folded state to the second body 20.
  • the change curve of the torsion force generated by the hinge structure 30 is shown by the line above the abscissa, and the first body 10 relative to the second body 20 is opened from the maximum included angle to the folded state.
  • the change curve of the torsion force generated by the hinge structure 30 in the process is shown by the line below the abscissa.
  • the first torsion force generated by the hinge structure 30 corresponds to T1 of the ordinate Value; in the process of increasing the angle between the first body 10 and the second body 20 from ⁇ to the maximum angle ⁇ , the second torsion force generated by the hinge structure 30 corresponds to the T2 value of the ordinate; in the first body 10 When the included angle with the second body 20 gradually decreases from the maximum angle ⁇ to ⁇ - ⁇ , the first torsion force generated by the hinge structure 30 corresponds to the T1' value of the ordinate; between the first body 10 and the second body In the process that the included angle between 20 is gradually reduced from ⁇ - ⁇ to 0°, the second torsion force generated by the hinge structure 30 corresponds to the T2' value of the ordinate.
  • T1 and T1' are equal in magnitude and opposite in direction
  • T2 and T2' are equal in magnitude and opposite in direction.
  • the specific structure of the limiting member 331 and the rotating member 321 there may be multiple achievable ways, as long as the above working process can be realized. Among them, taking “the limiting member 331 is disposed on the second rotating shaft 33" as an example, the specific structure of the limiting member 331 can be described by at least the following several exemplary structures.
  • the limiting member 331 includes a connecting end surface 3311 formed by an end surface of the second rotating shaft 33 facing the first rotating shaft 32 and perpendicular to the axis line of the second rotating shaft 33, and an upper edge of the connecting end surface 3311.
  • the connecting end surface faces the first rotating shaft 32 to form a limiting boss 3312.
  • the limiting boss 3312 extends along the circumferential surface of the second rotating shaft 33, and the cross section of the limiting boss 3312 parallel to the connecting end surface 3311 is arc-shaped, so that the outer wall of the limiting boss 3312 and the outer circumference of the second rotating shaft 33 The same curved surface; here, between the two end faces of the limiting boss 3312 extending along the circumferential surface of the second rotating shaft 33 and the connecting end face 3311, an avoidance gap for cooperating with the rotating part is formed.
  • the limiting member 331 may also have other deformed structures.
  • a cylindrical body 333 formed integrally with the limiting boss 3312 is provided on the side of the connecting end surface 3311 facing the first rotating shaft 32, and the limiting boss 3312 extends along the peripheral surface of the second rotating shaft 33.
  • the above-mentioned avoidance gap is formed between the two end surfaces (ie, the first side 331A and the second side 331B of the limiting member 331 shown in FIG. 24), the connecting end surface 3311, and the outer peripheral surface 333A of the cylindrical body 333, and the cylindrical body 333 is vertical
  • the end surface 333B in the direction of its axis is kept flush with the end surface of the limiting boss 3312; on the basis of the structure shown in FIG.
  • the limiting boss 3312 extends discontinuously along the circumferential direction of the second rotating shaft 33
  • a gap N is formed between the two end surfaces to obtain the structure of the limiting member 331 shown in FIG. 25; on the basis of the deformation one shown in FIG. 24, if the first rotating shaft 32 and the second rotating shaft 33 are rotationally matched through the shaft hole
  • the second rotating shaft 33 has a rotating hole 332 to obtain the structure of the limiting member 331 as shown in FIG. 26.
  • a cylindrical body 333 is provided on the side of the connecting end surface 3311 facing the first rotating shaft 32.
  • the outer diameter of the cylindrical body 333 matches the inner diameter of the limiting boss 3312, and the cylindrical body 333 Along the axis line of the second rotating shaft 33, it protrudes from the limiting boss 3312 in a direction away from the second rotating shaft 33.
  • the limiting boss 3312 extends along the peripheral surface of the second rotating shaft 33 at both ends (that is, as shown in Fig. 27).
  • the above-mentioned avoidance gap is formed between the first side 331A and the second side 331B of the limiting member 331, the connecting end surface 3311, and the outer circumference of the cylindrical body 333; on the basis of FIG. 27, if the first shaft 32 and the second shaft 32
  • the rotating shaft 33 is rotatably matched through a shaft hole and the second rotating shaft 33 has a rotating hole 332 to obtain the structure of the limiting member 331 as shown in FIG. 28.
  • the cross section of the limiting boss 3312 parallel to the connecting end surface 3311 is fan-shaped, and the above-mentioned avoidance gap is formed between the limiting boss 3312 and the connecting end surface 3311; based on the mechanism shown in Figure 29 If the extension of the limiting boss 3312 is discontinuous and a notch W is formed along the circumferential surface of the second rotating shaft 33, the structure of the limiting member 331 as shown in FIG. 30 is obtained.
  • the limiting member 331 includes a connecting end surface 3311 formed by the end surface of the second rotating shaft 33 facing the first rotating shaft 32 and perpendicular to the axis line of the second rotating shaft 33, and a connecting end surface formed on the connecting end surface.
  • the limiting groove 3313 forms the above-mentioned avoidance gap.
  • a convex rotating member 321 (not shown in the figure) will be formed at the end of the first rotating shaft 32 facing the second rotating shaft 33 ), the rotating member 321 can be matched with the limiting groove 3313; wherein the section of the limiting groove 3313 parallel to the connecting end surface 3311 is fan-shaped (as shown in Figure 31) or arc-shaped (as shown in Figure 32) ,
  • the rotation formed by the avoiding gap of the rotating member 321 on the limiting member 331 Rotate in space.
  • the rotating member 321 disposed on the first rotating shaft 32 and the self-rotating member 321 interacts with the first limiting groove 3313.
  • the end 3313A contacts and rotates until the rotating member contacts the second end 3313B of the limiting groove 3313 (as shown in FIG. 32), and the angle at which the first rotating shaft 32 rotates relative to the second rotating shaft 33 is a first angle ⁇ .
  • the limiting position shown in FIG. 33 is obtained.
  • the hinge structure 30 with any one of the limit mechanisms provided in this example is applied to the process of the foldable electronic device from the folded state to the open state (that is, the angle between the first body 10 and the second body 20 gradually increases.
  • the working principle and working process of the large process are similar to that of Example 1, and will not be repeated here.
  • the sleeve 31 is split into two parts, the sleeve 31 shown in Figures 36 to 38 is transformed into a first sleeve 31A and a second sleeve 31B, and the first sleeve 31A is formed
  • a connecting plate 311 which can be used to connect with the first body 10; there may be no corresponding connection relationship between the first sleeve 31A and the second sleeve 31B, as long as the two are relatively stationary.
  • as shown in FIG.
  • a stopper 312 is provided on the first shaft sleeve 31A, and a stopper is provided on the first shaft 32.
  • the stopper 322 is specifically shown in FIG. 36.
  • the stopper 312 has a first side 312A and a second side 312B.
  • the rotation limitation realizes the rotation range of the first shaft 32 relative to the first sleeve 31A, which corresponds to the rotation state of the first body 10 relative to the second body 20 of the foldable electronic device.
  • the first body 10 is relatively free from the second body 20.
  • the stopper 322 rotates from the first side 312A of the stopper 312 (as shown in the mating state shown in FIG. 36) to the second side of the stopper 322 and the stopper 312 312B contact.
  • the first rotating shaft 32 is hinged with the first sleeve 31A to form a first hinge pair
  • the second rotating shaft 33 is hinged with the second sleeve 31B to form a second hinge pair (not shown in FIG. 36).
  • the first rotating shaft 32 may have an interference fit structure with the first sleeve 31A.
  • a connecting member 323 may be provided on the first rotating shaft 32, and the connecting member 323 can be used to connect with the second main body 20, as shown in FIG. 36, as for the connection between the connecting member 323 and the first rotating shaft 32 Whether the movable connection or the fixed connection can be set, it needs to be set according to specific practical needs.
  • the hinge structure 30 shown in FIG. 36 is split to obtain an exploded view as shown in FIG. 37. It can be seen from FIG. 37 that the first shaft 32 and the first shaft sleeve 31A, the second shaft 33 and the second shaft sleeve 31B, and the first shaft According to the matching structure of 32 and the second shaft 33, it can be seen that a protrusion 311 is formed on the side of the second shaft sleeve 31B facing the first shaft sleeve 31A to be connected to the first shaft sleeve 31A. A first hinge pair is formed between the first sleeve 31A and the first rotating shaft 32, and a second hinge pair is formed between the second sleeve 31B and the second rotating shaft 33.
  • the end of the first rotating shaft 32 facing the second rotating shaft 33 is provided with a rotating member 321, and the end of the second rotating shaft 33 facing the first rotating shaft 32 is provided with a limiting member 331, specifically regarding the structure of the limiting member 331 and the rotating member 321 and the first rotating shaft
  • the principle of the relative movement of 32 and the second rotating shaft 33 is as described in the first embodiment, and will not be repeated here.
  • first rotating shaft 32 On the basis of the hinge structure 30 shown in FIG. 37, other connecting structures can also be provided on the first rotating shaft 32.
  • first rotating shaft 32 is provided with Installation board 324.
  • the connecting member 323 Similar to the connecting member 323, whether the mounting plate 324 and the first rotating shaft 32 are movably connected or fixedly connected needs to be set according to specific practical requirements.
  • the hinge structure provided in this embodiment is a modification of the structure of the second embodiment.
  • the difference from the second embodiment is that, as shown in FIG. 39 and FIG. 40, the first shaft 32 and the first shaft sleeve 31A in this embodiment are different from each other. It can be a non-rotational friction fit relationship, and a friction washer 5 that can generate friction when the first rotating shaft 32 and the sleeve 31 rotate relative to each other is added between the two; when the first rotating shaft 32 rotates relative to the first sleeve 31A, the first The rotating shaft 32 rubs against the friction washer 5, and the friction washer 5 rubs against the first sleeve 31A, and the three together output the first torsion force.
  • This embodiment is a structural modification of the second embodiment.
  • the first hinge pair and the second hinge pair are also formed between the first body 10 and the second body 20.
  • the difference from the second embodiment is that the first shaft 32 and the second hinge There is no corresponding matching relationship between the two rotating shafts 33.
  • the second hinge pair should realize the following torque output during the process of the foldable electronic device from the folded state to the opened state: when the angle between the first body 10 and the second body 20 is less than or equal to the first angle ⁇ , the second rotation axis 33 and the second shaft sleeve 31A are in frictionless rotation and there is no torque output between the two; when the angle between the first body 10 and the second body 20 is greater than the first angle ⁇ and smaller than the second angle ⁇ , the second rotating shaft 33 There is friction and rotation cooperation with the second sleeve 31B, and a third torsion force is generated between the two.
  • FIG. 41 the cross-sectional structure diagram of the second hinge pair perpendicular to the axis line of the second rotating shaft 33 is shown.
  • the second rotating shaft 33 has a substantially cylindrical shape and is provided somewhere on its peripheral surface.
  • the friction portion E protruding from the outer peripheral surface; at the same time, a groove area F capable of accommodating the friction portion E is provided in the shaft hole of the second sleeve 31B, and the groove area F surrounds the shaft hole of the second sleeve 31B
  • the angle corresponding to the direction of the center line is the first angle ⁇ ; when the friction part E of the second shaft 33 and the non-groove area of the second sleeve 31B are interference fit, the friction between the two produces a third torsion force, when the first The friction portion E of the second rotating shaft 33 is matched with the groove area F of the second sleeve 31B, and there is no friction and no torsion output between the two.
  • the first shaft 32 in the first hinge pair is connected to the first main body 10, and the first shaft sleeve 31A is connected to the second main body 20.
  • the first shaft 32 and the first shaft sleeve 31A are in rotational friction fit;
  • the two rotating shafts 33 are connected to the first body 10 and the second sleeve 31B is connected to the second body 20.
  • the working process of the hinge structure 30 corresponds to the process of the foldable electronic device provided in the present application from the folded state to the opened state (that is, the process in which the angle between the first body 10 and the second body 20 gradually increases), Initially the first body 10 and the second body 20 are folded, that is, the angle between the two is 0°, and the first shaft 32 and the first shaft sleeve 31A are in a normal shaft hole friction fit (the first shaft 32 and the first shaft sleeve 31A
  • the matching structure is the same as that of the first embodiment, which will not be described here), the friction portion E of the second shaft 33 is located in the groove area F of the second sleeve 31B, and the first side e1 of the friction portion E and the groove area
  • the first side f1 of F is in contact, as shown in Figure 42; as the first body 10 is gradually opened relative to the second body 20 until the angle between the two is a first angle ⁇ , the first shaft 32 and the first sleeve 31A continue Rotational
  • the second shaft 33 rotates relative to the second sleeve 31B in the direction of rotation as shown in FIG. 43, and the friction part E moves to the second side of the friction part E in the groove area F of the second sleeve 31B.
  • e2 is in contact with the second side f2 of the groove area F.
  • the rotation angle of the second shaft 33 relative to the second sleeve 31B is a first angle ⁇ ;
  • the direction of rotation continues to rotate until the included angle between the first body 10 and the second body 20 is the maximum value ⁇ , the first rotating shaft 32 and the second sleeve 31B continue to rotate and friction to generate the first torsion force, and the friction portion E of the second rotating shaft 33 Remove the groove area F of the second sleeve 31B and frictionally cooperate with the shaft hole of the second sleeve 31B to generate a third torsion force.
  • the first torsion force generated by the first hinge pair and the third torsion force generated by the second hinge pair are combined,
  • the torsion force output by the entire hinge structure 30 is the second torsion force.
  • This embodiment is a structural modification of the first embodiment.
  • a first hinge pair and a second hinge pair are also formed between the first body 10 and the second body 20.
  • the first rotating shaft 32 is like this
  • the first embodiment shows a friction fit with the shaft sleeve 31.
  • the first hinge pair composed of the first shaft 32 and the shaft sleeve 31 produces The first torque is not repeated here; the difference from the first embodiment is the matching relationship between the second rotating shaft 33 and the sleeve 31 and the first rotating shaft 32.
  • the matching structure between the three is not shown in FIG. 44.
  • the structure of the second rotating shaft 33 and the shaft sleeve 31 is expanded to obtain the structure shown in FIG. 45, the second rotating shaft 33 has an integral structure of the collar 33A (here, the second rotating shaft 33 may also be deformed into the collar 33A), Fig. 45 omits the second rotating shaft 33.
  • a ring wall 313 for frictionally fitting with the outer circumference of the collar 33A is formed on the inner wall of the sleeve 31.
  • the collar 33A of the second rotating shaft 33 can be sleeved on the first rotating shaft 32 and has a gap with the first rotating shaft 32.
  • the first rotation shaft 32 can rotate without friction relative to the collar 33A; a first protrusion J is formed on the inner wall of the collar 33A, and a second protrusion K is formed on the outer peripheral surface of the first rotation shaft 32.
  • the first protrusion J is used to cooperate with the second protrusion K to define the rotation angle of the first rotating shaft 32 relative to the collar 33A.
  • the working process of the hinge structure 30 corresponds to the process of the foldable electronic device provided in the present application from the folded state to the opened state (that is, the angle between the first body 10 and the second body 20 is a continuous and gradually increasing process ), referring to Figure 46, when the first body 10 and the second body 20 are folded, that is, the angle between the two is 0°, the second protrusion K on the first shaft 32 is at the position indicated by the dotted line composition; The main body 10 is gradually opened relative to the second main body 20 until the angle between the two is ⁇ , and the first rotating shaft 32 rotates relative to the collar 33A in the direction of rotation as shown in FIG.
  • the angle at which the first rotating shaft 32 rotates relative to the collar 33A is the first angle ⁇ ; when the first rotating shaft 32 rotates relative to the collar 33A in the direction of rotation as shown in FIG. 46 to the maximum angle ⁇ , the first rotating shaft 32 is The cooperation of the second protrusion K and the first protrusion J pushes the collar 33A to rotate (equivalent to pushing the second shaft 33 to rotate), so that the collar 33A rotates relative to the sleeve 31.
  • the sleeve The ring 33A rubs against the ring wall 313 of the sleeve 31 to generate a third torsion force.
  • the position of the first protrusion J on the collar 33A and the position of the second protrusion K on the first shaft 32 are not limited, but when the first shaft 32 and the second shaft 32 are installed When the shaft 33 is in the closed state, the first protrusion J on the collar 33A of the second shaft 33 and the second protrusion K on the first shaft 32 are clamped relative to the axis of the first shaft 32 when the electronic product is in the closed state.
  • the angle is the above-mentioned first angle ⁇ .
  • the hinge structure 30 as shown in FIG. 47 includes a hinged shaft sleeve 31 and a rotating shaft 34.
  • the shaft sleeve 31 may be used to connect the first body 10 of the foldable device (for example, the screen of a laptop computer), and the rotating shaft 34. It can be used to connect the second body 20 of the foldable device.
  • the cross section of the shaft hole of the shaft sleeve 31 is substantially circular, and the inner wall of the shaft hole is provided with a groove area G recessed in the direction away from the shaft center line of the shaft hole, and the groove area G surrounds the shaft hole.
  • the angle corresponding to the direction of the axis of the shaft is the first angle ⁇ ; correspondingly, the cross section of the shaft 34 perpendicular to the direction of the shaft has a radial long end (the free end of the radial long end is connected to the shaft line of the shaft 34).
  • the length of is shown as L) in Fig. 47, wherein the radial length of the radially long end is greater than the inner diameter of the groove G of the sleeve 31.
  • the working process of the hinge structure 30 corresponds to the relationship between the first body 10 and the second body 20 of the present application.
  • the radial long end of the rotating shaft 34 is located in the groove region G .
  • the rotating shaft 34 continues to rotate relative to the sleeve 31 and the friction between the two generates a first torsion force; the first body 10 is relatively
  • the radially long end of the rotating shaft 34 moves out of the groove area of the shaft hole of the sleeve 31 G frictionally cooperates with the shaft hole of the shaft sleeve 31 to generate a second torsion force.
  • this embodiment proposes a possible hinge structure.
  • two groove regions G recessed in the direction away from the axis of the shaft hole are symmetrically provided on the inner wall of the shaft hole.
  • the angle corresponding to each groove area G in the direction of the axis around the shaft hole is the first angle ⁇ ; next, the working process of the hinge structure 30 in this embodiment will be performed in conjunction with the hinge structure 30 shown in FIG. 48 Illustrate by way of example.
  • the working process of the hinge structure 30 corresponds to the continuous rotation process of the first body 10 relative to the second body 20 of the present application (That is, the included angle between the first body 10 and the second body 20 is a process of continuously increasing from 0° to the maximum included angle), the initial folding of the first body 10 and the second body 20 is the angle between the two Is 0°, the radial long end of the rotating shaft 34 is located in the groove area G and is in contact with the first side g1 of the groove area G, as shown in FIG.
  • the rotating shaft 34 continues to rotate relative to the sleeve 31 and the friction between the two generates a first torsion force.
  • the radial long end of the rotating shaft 34 is at the first of the groove area G of the shaft hole of the sleeve 31
  • the side g1 (as shown in FIG. 49) moves until the radial long end is in contact with the second side g2 of the groove area G (as shown in FIG.
  • the rotation angle of the rotating shaft 34 relative to the sleeve 31 is a first angle ⁇ ;
  • a main body 10 continues to rotate relative to the second main body 20 in the illustrated rotation direction until the angle between the first main body 10 and the second main body 20 reaches the maximum value ⁇ , the radial long end of the rotating shaft 34 moves out of the shaft sleeve 31
  • the groove area G of the hole is frictionally fitted with the shaft hole of the sleeve 31 to generate a second torsion force (the fitted state shown in FIG. 48).
  • the hinge structure 30 provided in the first, second and third embodiments can also provide the same torsion force as the torsion state changes when the first body 10 and the second body 20 are closed, while the fourth, fifth, sixth and seventh embodiments Then, only when the first body 10 is opened relative to the second body 20, the same torsion force as in the first or second embodiment can be output.
  • the hinge structure 30 provided by the first six embodiments can be applied to the opening process of the angle between the first body 10 and the second body 20 in the range of 0-360°, while the hinge structure provided by the seventh embodiment The structure 30 can only be applied to the opening process of the angle between the first body 10 and the second body 20 in the range of 0-180°.
  • the hinge structure 30 provided by the embodiments of the present application can easily open the foldable electronic device with one hand when it is applied to a foldable electronic device, and can ensure the stability of the foldable electronic device in the opened state, and provide convenience At the same time, it does not affect the actual use, and has a good application prospect.
  • a hinge structure applied to a foldable electronic device, includes a shaft sleeve and a shaft extending into the shaft sleeve, the shaft sleeve is used to connect the first body of the foldable electronic device, and the shaft is used to connect the The second body of the foldable electronic device;
  • the shaft sleeve is provided with a groove area, and the angle corresponding to the groove area along the axis line direction surrounding the shaft sleeve is a first angle; the rotating shaft has a radial direction perpendicular to the axis line direction. The long end, the length of the radial long end from the axis of the rotating shaft to the free end is greater than the radius of the groove area;
  • the rotating shaft rotates relative to the sleeve and the radial long end of the rotating shaft is opposite to the concave of the sleeve.
  • the groove area is in frictional fit, and the hinge structure generates a first torsion force
  • the shaft rotates relative to the sleeve and the radial long end of the shaft is connected to the shaft
  • the sleeve is in friction fit, and the hinge structure generates a second torsion force
  • the second torsion force is greater than the first torsion force.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Telephone Set Structure (AREA)

Abstract

一种铰链结构及可折叠电子设备,该铰链结构可应用于可折叠电子设备,包括轴套(31)、第一转轴(32)和第二转轴(33),轴套(31)用于连接可折叠电子设备的第一主体(10),第一转轴(32)用于连接可折叠电子设备的第二主体(20);第一转轴(32)伸入轴套(31)与轴套(31)摩擦配合;第二转轴(33)伸入轴套(31)与轴套(31)配合;在可折叠电子设备自折叠状态到打开状态的过程中,第一转轴(32)相对轴套(31)转动产生第一扭力,且当第一主体(10)与第二主体(20)之间的夹角处于小于等于第一角度范围内,方便可折叠电子设备在开起过程中的单手操作;当第一主体(10)与第二主体(20)之间的夹角处于大于第一角度小于第二角度范围内,铰链结构输出大于第一扭力的第二扭力,可折叠电子设备不会出现掉屏现象,为用户提供便利。

Description

一种铰链结构及可折叠电子设备
相关申请的交叉引用
本申请要求在2019年09月24日提交中国专利局、申请号为201910905927.2、申请名称为“一种铰链结构及可折叠电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种铰链结构及可折叠电子设备。
背景技术
铰链结构是连接可折叠电子设备的关键组件,其主要功能是连接可折叠电子设备的不同主体并提供阻尼。以笔记本电脑举例,铰链结构主要用于连接笔记本电脑的屏幕和键盘基座,并在正常使用过程中通过铰链结构自身产生的扭力为屏幕提供支撑力。传统的铰链结构为了在笔记本的屏幕打开到工作角度状态时能够提供足够的支撑力,铰链结构自身产生的扭力一般大于屏幕的重力,因此,对于键盘基座重量比较轻的笔记本电脑而言,传统的铰链结构很难实现单手开起笔记本的屏幕,即开启屏幕的时候键盘基座会被连带提起,此时就需要用户一只手压着键盘基座,另一只手施力于屏幕使其向远离键盘基座的方向旋转才能打开屏幕,这样的操作对用户造成比较差的使用体验。
为了解决这个问题,目前的常规操作是降低笔记本电脑的屏幕重量,同时提高键盘基座的重量,从而实现对屏幕单手开起的目的。而降低屏幕重量的工艺要求提高,会增加屏幕的成本,提高键盘基座的重量则会使得笔记本整机重量增大,不便于使用携带。若是减小铰链结构的扭力则可能会出现笔记本电脑在工作状态中由于铰链结构不能为屏幕提供足够的支撑所引起的掉屏现象,所谓掉屏是指笔记本在使用过程中屏幕突然向键盘基座的方向落下。
发明内容
本申请实施例提供一种铰链结构及可折叠电子设备,该铰链结构应用到可折叠电子设备中,能够在不增加成本和整机重量的情况下,实现单手开起可折叠电子设备,同时保证可折叠电子设备在打开状态下的稳定性。
第一方面,本申请提供了一种铰链结构,该铰链结构包括轴套、第一转轴和第二转轴,将该铰链结构应用到可折叠电子设备(例如笔记本电脑)中时,轴套可连接可折叠电子设备的第一主体(例如笔记本电脑的键盘基座),第一转轴可连接可折叠电子设备的第二主体(例如笔记本电脑的屏幕);其中,所述第一转轴伸入所述轴套且可相对所述轴套绕第一转轴的轴心线旋转,第一转轴相对轴套旋转时与所述轴套摩擦配合;所述第二转轴伸入所述轴套且可相对所述轴套绕第二转轴的轴心线旋转,第二转轴相对所述轴套旋转时与所述轴套配合;在可折叠电子设备自折叠状态到打开状态的过程中,第一主体和第二主体之间的夹角逐渐增大,所述第一转轴相对所述轴套转动二者之间摩擦产生第一扭力;而第二 转轴与轴套在可折叠电子设备自折叠状态到打开状态的过程中会有两种不同的扭力输出状态,当所述第一主体与所述第二主体之间的夹角小于等于第一角度,所述第二转轴与轴套之间无扭力输出,整个铰链结构仅输出第一转轴与轴套摩擦转动时的产生第一扭力,此时的第一扭力较小,方便用户单手开起可折叠电子设备;当所述第一主体与所述第二主体之间的夹角大于第一角度小于第二角度(当然,此处的第二角度大于上述第一角度),除了上述第一转轴与轴套摩擦产生的第一扭力,所述第二转轴与轴套摩擦配合还会产生第三扭力,设定第一扭力和第三扭力之和为第二扭力,此处的第二扭力相较于第一扭力较大,在第二扭力的作用下,第一主体能够相对第二主体保持打开的稳定状态,方便用户对可折叠电子设备进行作业,为用户使用提供便利。
对于可折叠电子设备,可能存在最大打开角度,即第一主体和第二主体之间存在最大夹角,为了限位最大打开角度,上述铰链结构在轴套上还可以设置有止挡块,对应地,在第一转轴上设置有止挡件,当第一转轴相对轴套旋转,止挡件与止挡块相互配合以限定第一转轴相对轴套的最大旋转角度,从而限定第一主体相对第二主体之间的最大夹角。
如上所述,当所述第一主体与所述第二主体之间的夹角大于第一角度小于第二角度,需要在第一转轴与轴套之间输出第一扭力的同时第二转轴与轴套之间输出第三扭力,为了达到这一的效果,一种可能实现的结构中,第一转轴可相对所述第二转轴绕自身轴心线旋转、且所述第二转轴与所述第一转轴之间设有用于限定所述第一转轴相对所述第二转轴旋转角度小于第一角度的限位机构,当所述第一主体与所述第二主体之间的夹角小于等于第一角度,所述第一转轴相对所述第二转轴旋转,此时,第一转轴相对轴套旋转,而第二转轴相对轴套静止,该限位机构能够使第一转轴相对第二转轴的旋转限定在第一角度内;当第一转轴相对第二转轴旋转的角度大于该第一角度,在限位机构的限定作用下第一转轴会驱动第二转轴一起旋转二者实现联动,那么此时第一转轴相对轴套摩擦转动产生第一扭力,同时第二转轴相对轴套摩擦转动产生第三扭力,铰链结构整体输出第一扭力与第三扭力叠加后的第二扭力。其中,第一转轴与所述第二转轴之间可以通过轴孔转动配合。
在上述结构的基础上,轴套可以拆分为相对静止的第一轴套和第二轴套,所述第一转轴伸入所述第一轴套且可相对所述第一轴套绕第一转轴的轴心线旋转,第一转轴相对第一轴套旋转时与所述第一轴套摩擦配合;所述第二转轴安装于所述第二轴套且可相对所述第二轴套绕第二转轴的轴心线旋转,第二转轴相对第二轴套旋转时与所述第二轴套摩擦配合。这样的结构提供了一种可能的铰链结构安装方式,第一转轴、第二转轴能够根据使用场景相对灵活地与轴套配合。此外,在这种轴套结构中,第一转轴与第一轴套之间可以是过盈配合也可以在二者之间设置摩擦垫圈,以使第一转轴相对第一轴套旋转时摩擦产生第一扭力。当然,第二转轴和第二轴套之间也可以是这样类似于第一转轴与第一轴套的配合方式,使得第二转轴在第一转轴的驱动下相对第二轴套旋转时与第二轴套摩擦配合产生第三扭力。
具体到设置于第一转轴与第二转轴之间的限位机构,则需要根据第一转轴和第二转轴具体结构进行设置。
一种可能的实现方式中,第二转轴可以形成有套环,该套环可以套设在第一转轴上,使得第一转轴能够相对套环无摩擦转动,在套环的内壁形成有第一凸起,而第一转轴上形成有第二凸起,此处的第一凸起和第二凸起就相当于限位机构,当第一转轴相对第二转轴旋转,第一凸起和第二凸起用于配合限定第一转轴相对第二转轴旋转的角度。此外,该套 环还可以与轴套摩擦配合,当套环相对轴套旋转,二者之间可以产生第三扭力;
另一种可能的实现方式中,第一转轴和第二转轴相对设置;上述限位机构可以包括限位件和旋转件,所述限位件可以设置于所述第二转轴和所述第一转轴中的其中一个上,对应地,所述旋转件设置于所述第二转轴和所述第一转轴中的另一个上,限位件和旋转件的设置位置可以相互调换;在所述限位件朝向所述旋转件的一侧形成有避让缺口,该避让缺口用于配合上述旋转件的以限定所述旋转件相对所述限位件在所述第一角度内旋转,进而限定第一转轴相对第二转轴在第一角度内旋转,保证在第一主体相对第二主体的夹角小于第一角度时,仅第一转轴相对轴套旋转,而第二转轴相对轴套静止,在这种情况下,整个铰链结构仅输出第一扭力;而当第一主体相对第二主体之间的夹角大于第一角度小于第二角度时,第一转轴的旋转会由于旋转件与限位件的配合而推动第二转轴一起转动,从而第二转轴实现相对轴套的旋转(当轴套分为第一轴套和第二轴套时,第二转轴相对第二轴套旋转)以输出第三扭力,整个铰链结构输出第一扭力和第三扭力叠加后的第二扭力。
其中,限位件可以包括连接端面以及自所述连接端面朝向所述旋转件凸起的限位凸台,所述连接端面垂直于所述旋转件的旋转轴线,所述限位凸台与所述连接端面之间形成所述避让缺口。或者,上述限位件可以包括连接端面以及形成于所述连接端面上的限位凹槽,所述连接端面垂直于所述旋转件的旋转轴线,此处的限位凹槽自身的结构形成所述避让缺口。这两种避让缺口的实现方式都能形成一个供旋转件旋转的旋转空间。
当限位件以连接端面和限位凸起的结构实现时,所述限位凸台平行于所述连接端面的截面可以为扇形或弧线形,在此基础上,限位凸台可以有多种变形结构,例如可以在限位凸台上形成豁口;并且,还可以使所述限位凸台的外径小于所述连接端面的外径或使所述连接端面的外径小于所述第二转轴的外径,这两种结构变形可以在限位件上形成轴肩。当限位件以连接端面和限位凹槽的结构实现时,所述限位凹槽平行于所述连接端面的截面也可以为扇形或弧线形。
在另一可能实现的方式中,所述铰链结构可以包括第一轴套和第二轴套;其中,所述第一转轴伸入所述第一轴套且可相对所述第一轴套绕第一转轴的轴心线旋转,第一转轴相对第一轴套旋转时与所述第一轴套摩擦配合;而所述第二转轴伸入所述第二轴套且可相对所述第二轴套绕第二转轴的轴心线旋转,第二转轴相对第二轴套旋转时与所述第二轴套配合。
在这种结构中,第一转轴和第二转轴之间没有对应的配合关系,对应到可折叠电子设备自折叠状态到打开状态的过程中,当所述第一主体与所述第二主体之间的夹角小于等于第一角度,所述第二转轴与所述第二轴套无摩擦转动配合;当所述第一主体与所述第二主体之间的夹角大于第一角度小于第二角度,所述第二转轴与所述第二轴套摩擦转动配合产生所述第三扭力。
为了实现上述第二转轴与第二轴套之间的配合,所述第二转轴可以具有凸出于所述第二转轴周面的摩擦部,该摩擦部能够与第二轴套摩擦配合;对应地所述第二轴套的设有能够容纳所述摩擦部的凹槽区,该凹槽区沿环绕所述第二轴套轴心线方向所对应的角度为所述第一角度;具体到可折叠电子设备自折叠状态到打开状态的过程中,当所述第一主体与所述第二主体之间的夹角小于等于第一角度,所述第二转轴相对所述第二轴套旋转且所述摩擦部位于所述第二轴套的凹槽区内;当所述第一主体与所述第二主体之间的夹角处大于第一角度小于第二角度,所述第二转轴需要与所述第二轴套摩擦转动配合,所述第二转轴 相对所述第二轴套旋转且所述第二转轴的摩擦部位于所述第二轴套的凹槽区外,第二转轴上的摩擦部与第二轴套摩擦产生第三扭力。
另一方面,本申请还提供一种可折叠电子设备,该可折叠电子设备包括有第一主体和第二主体,为了实现第一主体和第二主体之间的可折叠功能,在第一主体和第二主体之间设置有如上述技术方案提供的任一种铰链结构,具体地,铰链结构的轴套可以与第一主体连接,铰链结构的第一转轴可以与第二主体连接。
附图说明
图1为现有的可折叠电子设备处于折叠状态的结构示意图;
图2为现有的可折叠电子设备处于打开状态的结构示意图;
图3为现有的可折叠电子设备处于打开状态的结构示意图;
图4为现有技术中的一种铰链结构在可折叠电子设备打开过程中的扭力曲线示意图;
图5为现有技术中的另一种式铰链结构在可折叠电子设备打开过程中的扭力曲线示意图;
图6为本发明实施例提供的一种铰链结构在可折叠电子设备在打开过程中的扭力曲线示意图;
图7为本发明实施例一提供的一种铰链结构的结构示意图;
图8为本发明实施例一提供的一种铰链结构的爆炸图;
图9为本发明实施例一提供的一种铰链结构的轴套与第一转轴的装配结构示意图;
图10为本发明实施例一提供的一种铰链结构的轴套的止挡块与第一转轴的止挡件配合结构示意图;
图11为本发明实施例一提供的一种铰链结构的第一转轴和第二转轴的一种配合状态的结构示意图;
图12为本发明实施例一提供的一种铰链结构的第一转轴相对第二转轴转动的结构示意图;
图13为本发明实施例一提供的一种铰链结构的第一转轴和第二转轴的另一种配合状态的结构示意图;
图14为本发明实施例一提供的一种铰链结构的第一转轴相对第二转轴反向转动的一种配合状态结构示意图;
图15为本发明实施例一提供的一种铰链结构的第一转轴相对第二转轴反向转动第一角度后的配合状态结构示意图;
图16为本发明实施例一提供的一种铰链结构的第一转轴相对第二转轴反向转动的一种配合状态结构示意图;
图17为本发明实施例一提供的一种铰链结构在可折叠电子设备打开过程和闭合过程的扭力曲线示意图;
图18为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图19为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图20为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图21为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图22为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图23为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图24为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图25为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图26为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图27为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图28为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图29为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图30为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图31为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图32为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图33为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图34为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图35为本发明实施例一提供的一种铰链结构的一种限位件的结构示意图;
图36为本发明实施例二提供的一种铰链结构的结构示意图;
图37为本发明实施例二提供的一种铰链结构的爆炸图;
图38为本发明实施例二提供的一种铰链结构的爆炸图;
图39为本发明实施例三提供的一种铰链结构的结构示意图;
图40为本发明实施例三提供的一种铰链结构的爆炸图;
图41为本发明实施例四提供的一种铰链结构的第二转轴与第二轴套配合的剖面结构示意图;
图42为本发明实施例四提供的一种铰链结构的第二转轴与第二轴套配合的剖面结构示意图;
图43为本发明实施例四提供的一种铰链结构的第二转轴与第二轴套配合的剖面结构示意图;
图44为本发明实施例五提供的一种铰链结构的结构示意图;
图45为本发明实施例五提供的一种铰链结构中的轴套与第二转轴的结构示意图;
图46为本发明实施例五提供的一种铰链结构中第一转轴与第二转轴配合的剖面结构示意图;
图47为本发明实施例六提供的一种铰链结构的剖面结构示意图;
图48为本发明实施例七提供的一种铰链结构的剖面结构示意图;
图49为本发明实施例七提供的一种铰链结构的剖面结构示意图;
图50为本发明实施例七提供的一种铰链结构的剖面结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请提出一种可折叠电子设备,该可折叠电子设备具有可折叠功能,包括可折叠手机、笔记本电脑等电子设备。如图1至图3所示的一种可折叠电子设备,包括第一主体10(例如笔记本电脑的屏幕)、第二主体20(例如笔记本电脑的键盘基座)以及设置于第一主体10和第二主体20之间的铰链结构30,铰链结构30的一端连接第一主体10,另一端 连接第二主体20,第一主体10可以绕铰链结构30相对第二主体20旋转。在铰链结构30的连接作用下,第一主体10和第二主体20可以呈现如图1至图3所示的自折叠状态到打开状态的变化。第一主体10和第二主体20可以呈现折叠状态(如图1所示,第一主体10和第二主体20之间的夹角为0°)。当第一主体10绕铰链结构30相对第二主体20旋转,第一主体10和第二主体20可以呈现打开状态(如图2和图3所示,第一主体10和第二主体20之间均呈大于0°的夹角,其中,第一主体10和第二主体20之间如图2中呈现的夹角α1小于第一主体10和第二主体20之间如图3中呈现的夹角α2)。可以理解的是,第一主体10和第二主体20之间的夹角是大于等于0°(忽略第一主体10相对第二主体20闭合时铰链结构30的预紧角度),且第一主体10和第二主体20之间夹角的最大值小于等于360°,当然,对于不同的可折叠电子设备,第一主体10和第二主体20之间的夹角最大值在产品设计中可能有不同的选择。
以笔记本电脑为例,现有的一种铰链结构包括转轴和轴套,当转轴相对轴套旋转摩擦产生扭力,在屏幕相对键盘基座打开至二者夹角为β的过程中,扭力的曲线如图4所示(忽略转轴和轴套在屏幕相对键盘基座闭合时所存在的预紧角度)。
另外一种铰链结构在转轴和轴套之间设置有垫圈,当转轴相对轴套旋转,转轴与垫圈之间、轴套与垫圈之间摩擦产生扭力。这种铰链结构存在自锁角度α,在屏幕相对键盘基座逐渐打开过程中,当屏幕和键盘基座之间的角度小于该自锁角度α,上述扭力随角度增大而增大,当屏幕相对键盘基座打开的角度超过该自锁角度α,上述扭力保持恒定,在屏幕相对键盘基座由闭合到打开的过程中,该铰链结构产生的扭力的曲线图如图5所示(忽略转轴和轴套该铰链结构在屏幕相对键盘基座闭合时所存在的预紧角度)。
可见,上述介绍的铰链结构均不能同时满足用户单手开起的便利性要求以及可折叠电子设备在打开状态的工作稳定性要求。
基于上述应用场景,本申请实施例提供的铰链结构30能够在第一主体10相对第二主体20自折叠状态(如图1所示第一主体10与第二主体20之间呈0°的夹角)到打开状态(如图2或3所示第一主体10与第二主体20之间呈大于0°的夹角)的过程中,输出不同的扭力,以适应第一主体10和第二主体20在状态对扭力的需求。
具体地,参照如图6所示的本申请所提供的可折叠电子设备的第一主体10相对第二主体20自折叠状态至打开到二者之间呈夹角最大值过程中铰链结构30输出的扭力变化状态,图6中的纵坐标表示铰链结构30产生的扭力值,横坐标的原点O为第一主体10相对第二主体20为折叠状态;当第一主体10与第二主体20之间的夹角小于等于第一角度,设定第一角度为α(例如α为60°),则第一角度的范围指的是大于0°且小于等于α,在第一角度范围内,铰链结构30产生的第一扭力T1较小,使用者只要施加较小的力即能将第一主体10相对第二主体20打开,因此可以实现单手开起可折叠电子设备;当第一主体10与第二主体20之间的夹角大于第一角度小于第二角度,此处的第二角度即第一主体10和第二主体20之间的夹角最大值,设定第二角度为β(例如β为150°),则大于第一角度小于第二角度的角度范围指的是大于β-α小于等于β,在该角度范围内,铰链结构30输出较之于第一扭力T1更大的第二扭力T2,能够维持第一主体10和第二主体20之间打开的状态,方便操作使用,例如使用人员可以在笔记本电脑打开时对笔记本电脑进行操作。
接下来,将通过具体的实施方式对本申请所提供的铰链结构30的具体实现方式做以 详细介绍。当然,以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
并且,在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
实施例一
结合附图7,本申请实施例所提供的一种铰链结构30,包括轴套31、第一转轴32和第二转轴33,设定轴套31可用于连接第一主体10,第一转轴32可用于连接第二主体20,此处的图7以透视的方式展示铰链结构30安装完成的结构。图8示出了本实施例中轴套31、第一转轴32和第二转轴33的安装结构爆炸示意图,其中,第一转轴32的一端伸入轴套31内、且可相对轴套31绕第一转轴32的轴心线旋转,第一转轴32相对轴套31旋转时,第一转轴32与轴套31摩擦配合形成第一铰接副;其中,第一转轴32可以与轴套31为过盈配合结构,第一转轴32相对轴套31转动时二者之间摩擦,整个铰链结构输出第一扭力(此处的第一扭力仅限定该力是由第一转轴32相对轴套31摩擦转动产生的,并不限定力的大小);而第二转轴33则安装于轴套31内、且可相对轴套31绕第二转轴33的轴心线旋转,第二转轴33相对轴套31旋转时,第二转轴33与轴套31摩擦配合形成第二铰接副;第二转轴33相对轴套31转动时二者之间摩擦产生第三扭力。并且,如图7或图8所示,在轴套31上设置有止挡块312,在第一转轴32上设置有止挡件322,具体地如图9所示,止挡块312具有第一侧312A和第二侧312B,当第一转轴32相对轴套31转动,止挡块312对止挡件322的旋转限定实现了对第一转轴32相对轴套31的旋转范围。此外,为了限定第一转轴32相对第二转轴33旋转的角度,图8示出了在第一转轴32和第二转轴33之间设有包括相互匹配的限位件331和旋转件321的限位机构。示例性地,限位件331设置于第二转轴33上,旋转件321设置于第一转轴32上。可以理解的是,上述结构中的限位件331和旋转件321是相互匹配的,限位件331和旋转件321的设置位置可以相互调换,将限位件331设置于第一转轴32上,将旋转件321设置于第二转轴33上。
另外,如图7所示的铰链结构透视结构示意图,第一转轴32与第二转轴33对接的部分被包覆在轴套31内,轴套31一体形成有连接板311,该连接板311上形成有安装孔3111,可用于连接第一主体10;第一转轴32远离第二转轴33的轴端32A露出于轴套31外,该轴端32A上形成有齿槽,可用于连接第二主体20;而第二转轴33仅用于承担在第一转轴32的驱动下相对轴套31旋转产生第三扭力的作用,因此第二转轴33远离第一转轴32的一端被封闭在轴套31内,当然,第二转轴33也可以外露于轴套31外,只要能够实现上述功能即可。
以下将以“限位件331设置于第二转轴33上,旋转件321设置于第一转轴32上”为例对本实施例中的铰链结构30做以详细介绍。
示例性地,如图8所示,第二转轴33朝向第一转轴32的一端形成凸起状的限位件331, 该限位件331形成有避让缺口,第一转轴32朝向第二转轴33的一端形成凸起状的旋转件321,该旋转件321能够与限位件331相互匹配(如图11所示,第一转轴32和第二转轴33对接后,旋转件321和限位件331相互匹配);其中,限位件331上的避让缺口形成限定旋转件321在第一角度范围内旋转的旋转空间,当第一转轴32相对第二转轴33绕其第一转轴32的轴心线旋转,旋转件321在限位件331上的避让缺口形成的旋转空间内旋转。
将该铰链结构30的工作过程对应到本申请提供的可折叠电子设备自折叠状态到打开状态的过程中(即第一主体10和第二主体20之间的夹角是连续逐渐增大的过程),当第一主体10与第二主体20折叠即二者之间夹角为0°,如图12所示,第一转轴32与第二转轴33之间的配合关系为旋转件321的第一侧321A与限位件331的第一侧331A接触,旋转件321的第二侧321B与限位件331的第二侧331B之间的夹角即上述第一角度α;当第一主体10相对第二主体20逐渐打开至二者之间夹角为α,即旋转件321沿如图12所示旋转方向自旋转件321的第一侧321A与限位件331的第一侧331A接触(此时旋转件和限位件的接触状态如图11所示)绕其自身轴线方向旋转至旋转件321的第二侧321B与限位件331的第二侧331B接触(此时旋转件321和限位件331的接触状态如图13所示),旋转件321旋转的角度为上述第一角度α,在此过程中,仅第一转轴32与轴套31之间转动摩擦产生第一扭力,而第二转轴33在此过程中相对轴套31静止二者之间无扭力输出。
当第一主体10相对第二主体20继续旋转至二者之间的夹角呈夹角最大值β,第一转轴32沿图13中所示的旋转方向旋转,由于旋转件321和限位件331如图13中所示的状态配合(旋转件321的第二侧321B与限位件331的第二侧331B接触),随第一转轴32旋转,旋转件321推动限位件331共轴旋转(因为第一转轴32和第二转轴33共轴转动设置于轴套31内),从而实现第二转轴33相对轴套31绕自身轴心线旋转,在此过程中,第一转轴32和第二转轴33相对静止,第一转轴32和轴套31转动摩擦产生第一扭力,第二转轴33和轴套31转动摩擦产生第三扭力,第一扭力与第三扭力之和为第二扭力,整个铰链结构30输出的扭力为第二扭力。需要说明的是,在这一运动过程中的第一扭力可以与第一主体10相对第二主体20自0°旋转至第一角度α过程中的第一扭力大小相同,也可以大小不同,主要该阶段的第一扭力与第三扭力之和的第二扭力的值大于第一扭力的值即可。
在整个第一主体10相对第二主体20由折叠状态打开到呈最大夹角状态的过程中,止挡件322自与止挡块312的第一侧312A接触(图中未示出)旋转至止挡件322与止挡块312的第二侧312B接触(如图10所示),即止挡件322与止挡块312的配合限定了第一主体10与第二主体20之间夹角的最大值。
需要说明的是,在本实施例提供的铰链结构30中,若可折叠电子设备自打开状态(如图2或3所示第一主体10与第二主体20之间呈大于0°的夹角)逐渐闭合到折叠状态(如图1所示第一主体10与第二主体20之间呈0°的夹角)的过程中(第一主体10和第二主体20之间的夹角是连续逐渐减小的过程),铰链结构30的工作过程如下所示:如图14所示,当第一主体10与第二主体20之间的夹角呈夹角最大值β,第一转轴32与第二转轴33之间的配合关系为旋转件321的第二侧321B与限位件331的第二侧331B接触,旋转件321的第一侧321A与限位件331的第一侧331A之间的夹角即上述第一角度α,随第一转轴32相对第二转轴33沿图示旋转方向旋转至第一主体10相对第二主体20旋转至二者夹角为β-α,旋转件321旋转上述第一角度α至旋转件321的第一侧与321A与限位件331的第一侧331A接触,图15中示出旋转件321的第二侧321B与限位件331的第二侧331B 之间的夹角为α相当于旋转件321相对限位件331旋转的角度;图16中示出了旋转件321的第一侧321A与限位件331的第一侧331A接触的状态。在此过程中,第一转轴32与轴套31之间转动摩擦产生第一扭力,而第二转轴33在此过程中相对轴套31静止二者之间无扭力输出。当第一主体10相对第二主体20继续旋转至二者折叠即二者之间夹角为0°,第一转轴32继续沿上述旋转方向旋转,由于旋转件321和限位件331如图16中所示的状态配合(旋转件321的第一侧321A与限位件331的第一侧331A接触),随第一转轴32旋转,旋转件321推动限位件331共轴旋转(因为第一转轴32和第二转轴33共轴转动设置于轴套31内),从而实现第二转轴33相对轴套31绕自身轴心线旋转,在此过程中,第一转轴32和第二转轴33相对静止,第一转轴32和轴套31转动摩擦产生第一扭力,第二转轴33和轴套31转动摩擦产生第三扭力,第一扭力与第三扭力之和为上述第二扭力,整个铰链结构30输出的扭力为大于第一扭力的第二扭力。
需要注意的是,本实施例所提供的铰链结构30在第一主体10相对第二主体20反向旋转时,其扭力输出状态与正向旋转时的扭力输出状态相同,与正向旋转对比可以得到如图17所示的扭力状态变化图。其中,横坐标表示第一主体10和第二主体20之间的夹角,纵坐标表示铰链结构30产生的扭力值,可折叠电子设备的第一主体10相对第二主体20自折叠状态打开至二者之间呈夹角最大值过程中,铰链结构30产生的扭力的变化曲线如横坐标上方的线条所示,而第一主体10相对第二主体20自打开最大夹角关闭至折叠状态的过程中铰链结构30产生的扭力的变化曲线如横坐标下方的线条所示。设定横坐标的原点O为第一主体10相对第二主体20折叠状态(忽略铰链结构30在第一主体相对第二主体闭合时所存在的预紧角度),即第一主体10与第二主体20之间的夹角为0°,横坐标上的坐标α为上述第一主体10和第二主体20之间呈第一角度,β为第一主体10与第二主体20之间的呈最大夹角;在第一主体10与第二主体20之间的夹角自原点O的0°逐渐增大到第一角度α的过程中,铰链结构30产生的第一扭力对应纵坐标的T1值;在第一主体10与第二主体20之间的夹角自α继续增大至最大角度β的过程中,铰链结构30产生的第二扭力对应纵坐标的T2值;在第一主体10与第二主体20之间的夹角自最大角度β逐渐减小到β-α的过程中,铰链结构30产生的第一扭力对应纵坐标的T1’值;在第一主体10与第二主体20之间的夹角自β-α逐渐减小到0°的过程中,铰链结构30产生的第二扭力对应纵坐标的T2’值。此处,T1与T1’的绝对值大小相等、方向相反,T2与T2’的绝对值大小相等、方向相反。该方式中,设定第一铰接副输出的第一扭力大小是恒定的,第二铰接副输出的第三扭力大小也是恒定的。
关于限位件331和旋转件321的具体结构可以有多种可实现的方式,只要能够实现上述工作过程即可。其中,以“限位件331设置于第二转轴33上”为例,限位件331的具体结构至少可以有以下几种示例性结构说明。
示例1:如图18所示,限位件331包括第二转轴33朝向第一转轴32一侧、垂直于第二转轴33轴心线的端面所形成的连接端面3311以及在连接端面3311上沿连接端面朝向第一转轴32的方向形成限位凸台3312。该限位凸台3312沿第二转轴33的周面延伸且该限位凸台3312平行于连接端面3311的横截面为弧线形,使限位凸台3312的外壁与第二转轴33的外周同一曲面;此处限位凸台3312沿第二转轴33的周面延伸的两端端面与连接端面3311之间形成用于配合旋转件的避让缺口。在第一转轴32相对第二转轴33旋转过程中,设置于第一转轴32上的旋转件321自旋转件321(图18中未示出二者配合关系)与该限 位凸台3312的第一端面(即图18所示的限位件331的第一侧331A)接触旋转到旋转件321与该限位凸台3312的第二端面(即图18所示的限位件331的第二侧331B)接触,第一转轴32相对第二转轴33旋转的角度为第一角度α。在此结构中,若限位凸台3312延伸不连续、沿第二转轴33周面方向的两端端面之间形成有豁口M得到如图19所示的限位件331的结构;在图18所示的限位件331的结构基础上,若第一转轴32与第二转轴33通过轴孔转动配合且第二转轴33具有旋转孔332,得到如图20所示的限位件331的结构;在图20所示的限位件331的结构基础上,当旋转孔332的内壁与限位凸台3312的内壁同一曲面,得到如图21所示的限位件331的结构;在图21所示的限位件331的结构基础上,当第二转轴33的外径大于限位凸台3312的外径,得到如图22所示的限位件331的结构;在图22所示的限位件331的结构基础上,将连接端面3311独立于第二转轴33朝向第一转轴32一侧外且连接端面3311的外径与限位凸台3312的外径同一曲面时,得到如图23所示的限位件331的结构。
在此示例图1所示的限位件331的结构基础上,限位件331还可以有其他的变形结构。
例如图24所示的变形一,在连接端面3311朝向第一转轴32的一侧设置一与限位凸台3312一体成型的圆柱体333,限位凸台3312沿第二转轴33周面延伸的两端端面(即图24所示的限位件331的第一侧331A以及第二侧331B)、连接端面3311以及该圆柱体333的外周面333A之间形成上述避让缺口,而圆柱体333垂直于其轴心线方向的端面333B与限位凸台3312的端面保持平齐;在图24所示的结构基础上,若限位凸台3312延伸不连续、沿第二转轴33周面方向的两端端面之间形成有豁口N得到如图25所示的限位件331的结构;在图24所示的变形一的基础上,若第一转轴32与第二转轴33通过轴孔转动配合且第二转轴33具有旋转孔332,得到如图26所示的限位件331的结构。
例如图27所示的变形二,在连接端面3311朝向第一转轴32的一侧设置一圆柱体333,该圆柱体333的外径与限位凸台3312的内径相匹配,且该圆柱体333沿第二转轴33的轴心线向远离第二转轴33的方向凸出于限位凸台3312,限位凸台3312沿第二转轴33周面延伸的两端端面(即图27所示的限位件331的第一侧331A以及第二侧331B)、连接端面3311以及该圆柱体333的外周之间形成上述避让缺口;在图27所示的基础上,若第一转轴32与第二转轴33通过轴孔转动配合且第二转轴33具有旋转孔332,得到如图28所示的限位件331的结构。
例如图29所示的变形三,限位凸台3312平行于连接端面3311的横截面为扇形,限位凸台3312与连接端面3311之间形成上述避让缺口;在图29所示的机构基础上,若限位凸台3312的延伸不连续、沿第二转轴33周面方向形成有豁口W得到如图30所示的限位件331的结构。
示例2:如图31所示,限位件331包括第二转轴33朝向第一转轴32一侧、垂直于第二转轴33轴心线的端面所形成的连接端面3311以及形成在连接端面上的限位凹槽3313,该限位凹槽3313形成上述避让缺口,可以理解的是,在第一转轴32朝向第二转轴33的一端将会形成凸起状的旋转件321(图中未示出),该旋转件321能够与限位凹槽3313相互匹配;其中,限位凹槽3313平行于连接端面3311的截面为扇形(如图31所示)或弧线形(如图32所示),以限定旋转件321在第一角度范围内旋转的旋转空间,当第一转轴32相对第二转轴33绕其自身轴心线旋转,旋转件321在限位件331上的避让缺口形成的旋转空间内旋转。在第一转轴32相对第二转轴33旋转过程中,设置于第一转轴32上的旋 转件321自旋转件321(图中未示出二者配合关系)与该限位凹槽3313的第一端3313A接触旋转到旋转件与该限位凹槽3313的第二端3313B接触(如图32所示),第一转轴32相对第二转轴33旋转的角度为第一角度α。
在图32所示限位件331的结构基础上,若第一转轴32与第二转轴33通过轴孔转动配合,且第二转轴33具有旋转孔332,则得到如图33所示的限位件331的结构;在图32所示限位件331的结构基础上,若第一转轴32与第二转轴33通过轴孔转动配合,且第二转轴33具有旋转轴334,则得到如图34所示的限位件331的结构;在图34所示的限位件331的结构基础上,在旋转轴334上还设有旋转孔332,得到如图35所示的限位件331的结构。
具有本示例中提供的任一种限位机构的铰链结构30应用到可折叠电子设备由折叠状态到打开状态的过程中(即第一主体10和第二主体20之间的夹角连续逐渐增大的过程)的工作原理以及工作过程与示例1类似,此处不再赘述。
实施例二
在实施例一的基础上,将轴套31拆分为两部分,如图36至图38所示的轴套31变形为第一轴套31A和第二轴套31B,第一轴套31A形成有连接板311,该连接板311可用于与第一主体10连接;第一轴套31A和第二轴套31B之间可以没有对应的连接关系,只要保证二者相对静止即可。并且,为了限定第一转轴32相对第一轴套31A的旋转角度最大为β,如图36所示,在第一轴套31A上设置有止挡块312,在第一转轴32上设置有止挡件322,具体地如图36所示,止挡块312具有第一侧312A和第二侧312B,当第一转轴32相对第一轴套31A转动,止挡块312对止挡件322的旋转限定实现了对第一转轴32相对第一轴套31A的旋转范围,对应到可折叠电子设备的第一主体10相对第二主体20的旋转状态中,第一主体10相对第二主体20自折叠状态到打开状态的过程中,止挡件322自与止挡块312的第一侧312A接触(如图36所示的配合状态)旋转至止挡件322与止挡块312的第二侧312B接触。其中,第一转轴32与第一轴套31A铰接形成第一铰接副,第二转轴33与第二轴套31B铰接形成第二铰接副(图36中未示出)。其中,第一转轴32可以与第一轴套31A为过盈配合结构,第一转轴32相对第一轴套31A转动时二者之间摩擦产生第一扭力;为了方便第一转轴32与第二主体20的连接,还可以在第一转轴32上设置连接件323,该连接件323可用于与第二主体20连接,如图36所示,至于该连接件323与第一转轴32之间是可活动连接还是固定连接,需要根据具体的实用需求设置。
将图36所示的铰链结构30拆分得到如图37所示的爆炸图,由图37可知第一转轴32与第一轴套31A、第二转轴33与第二轴套31B、第一转轴32与第二转轴33的配合结构,可以看出第二轴套31B朝向第一轴套31A的一侧形成有凸起311以与第一轴套31A配合连接。第一轴套31A和第一转轴32之间形成第一铰接副,第二轴套31B与第二转轴33之间形成第二铰接副。第一转轴32朝向第二转轴33的一端设置有旋转件321,第二转轴33朝向第一转轴32的一端设置有限位件331,具体关于限位件331和旋转件321的结构以及第一转轴32和第二转轴33相对运动的原理如实施例一中所述,此处不再赘述。
在图37所示的铰链结构30基础上,还可以在第一转轴32上设置其他的连接结构,例如图38所示的一种铰链结构30的爆炸图上,在第一转轴32上设置有安装板324。当然,与连接件323类似,该安装板324与第一转轴32之间是可活动连接还是固定连接,需要根据具体的实用需求设置。
实施例三
本实施例提供一种铰链结构是实施例二结构的变形,与实施例二不同的是,如图39和图40所示,本实施例中的第一转轴32和第一轴套31A之间可为无转动摩擦的配合关系,在二者之间增加能够在第一转轴32和轴套31相对转动时产生摩擦的摩擦垫圈5;当第一转轴32相对第一轴套31A旋转,第一转轴32与摩擦垫圈5摩擦,摩擦垫圈5与第一轴套31A之间摩擦,三者共同输出第一扭力。
本实施例中的其他结构与实施例二结构类似,此处不再赘述。
实施例四
本实施例是实施例二的结构变形,同样是在第一主体10与第二主体20之间形成第一铰接副和第二铰接副,与实施例二不同的是,第一转轴32和第二转轴33之间没有对应的配合关系。
由于第一转轴32和第二转轴33之间没有对应的配合关系,第一铰接副也就不会对第二铰接副的运动产生影响。因此第二铰接副要在可折叠电子设备自折叠状态到打开状态的过程中实现以下扭力输出:当第一主体10与第二主体20之间的夹角小于等于第一角度α,第二转轴33与第二轴套31A无摩擦转动配合,二者之间无扭力输出;当第一主体10和第二主体20之间的夹角大于第一角度α小于第二角度β,第二转轴33与第二轴套31B之间摩擦转动配合,二者之间产生第三扭力。
一种示例性的结构中,如图41所示的第二铰接副垂直于第二转轴33轴心线的剖面结构示意图,第二转轴33为基本的圆柱形,在其周面某处设置有凸出于其外周面的摩擦部E;同时在第二轴套31B的轴孔内设有能够容纳该摩擦部E的凹槽区F,该凹槽区F沿环绕第二轴套31B轴孔中心线的方向所对应的角度为第一角度α;当第二转轴33的摩擦部E与第二轴套31B非凹槽区过盈配合,二者之间转动摩擦产生第三扭力,当第二转轴33的摩擦部E与第二轴套31B的凹槽区F配合,二者之间不会产生摩擦无扭力输出。
接下来,将结合上述第一铰接副和第二铰接副的结构对本实施例中的铰链结构30的工作过程做以示例性说明。
其中第一铰接副中的第一转轴32连接第一主体10、第一轴套31A连接第二主体20,第一转轴32和第一轴套31A为转动摩擦配合;第二铰接副中的第二转轴33连接第一主体10、第二轴套31B连接第二主体20。将该铰链结构30的工作过程对应到本申请提供的可折叠电子设备自折叠状态到打开状态过程中(即第一主体10和第二主体20之间的夹角连续逐渐增大的过程),初始第一主体10与第二主体20折叠即二者之间夹角为0°,第一转轴32与第一轴套31A为正常的轴孔摩擦配合(第一转轴32和第一轴套31A的配合结构与实施例一相同,此处不再附图介绍),第二转轴33的摩擦部E位于第二轴套31B的凹槽区F且摩擦部E的第一侧e1与凹槽区F的第一侧f1接触,如图42所示;随第一主体10相对第二主体20逐渐打开至二者之间夹角为第一角度α,第一转轴32与第一轴套31A持续转动摩擦产生第一扭力,第二转轴33如图43所示的转动方向相对第二轴套31B旋转,摩擦部E在第二轴套31B的凹槽区F移动至摩擦部E的第二侧e2与凹槽区F的第二侧f2接触,如图43所示,第二转轴33相对第二轴套31B的旋转角度为第一角度α;第一主体10相对第二主体20沿图示旋转方向继续旋转至第一主体10与第二主体20之间的夹角为最大值β,第一转轴32与第二轴套31B持续转动摩擦产生第一扭力,第二转轴33的摩擦部E移出第二轴套31B的凹槽区F并与第二轴套31B的轴孔摩擦配合产生第三扭力,第一铰 链副产生的第一扭力和第二铰链副产生的第三扭转力合成,整个铰链结构30输出的扭力为第二扭力。
实施例五
本实施例是实施例一的一种结构变形,如图44所示,同样是在第一主体10与第二主体20之间形成第一铰接副和第二铰接副,第一转轴32上如实施例一所示的与轴套31之间摩擦配合,当第一转轴32相对轴套31绕第一转轴32的轴心线旋转,第一转轴32与轴套31组成的第一铰接副产生第一扭力,此处不再赘述;与实施例一不同的是第二转轴33与轴套31以及第一转轴32之间的配合关系,图44中未示出三者之间的配合结构,将第二转轴33与轴套31的结构展开得到如图45所示的结构,第二转轴33具有一体式结构的套环33A(此处也可以是第二转轴33变形为套环33A),图45省略了第二转轴33,在轴套31的内壁形成有用于与套环33A的外周摩擦配合的环壁313,当套环33A相对轴套31的环壁313绕第二转轴套环33A的轴心线旋转,套环33A与轴套31的环壁313之间产生第三扭力。
关于第一转轴32相对第二转轴33的旋转可以在图45所示结构的基础上参照图46,第二转轴33的套环33A可以套设在第一转轴32上且与第一转轴32间隙配合,使得第一转轴32能够相对套环33A无摩擦转动;在套环33A的内壁形成有第一凸起J,在第一转轴32外周面上形成有第二凸起K,第一凸起J用于配合第二凸起K一起限定第一转轴32相对套环33A旋转的角度。
将该铰链结构30的工作过程对应到本申请提供的可折叠电子设备自折叠状态到打开状态的过程中(即第一主体10和第二主体20之间的夹角是连续逐渐增大的过程),参照图46,当第一主体10与第二主体20折叠即二者之间夹角为0°,第一转轴32上的第二凸起K如虚线构图所示意的位置;当第一主体10相对第二主体20逐渐打开至二者之间夹角为α,第一转轴32相对套环33A如图46所示旋转方向旋转,至第二凸起K与第一凸起J接触,此时,第一转轴32相对套环33A旋转的角度即为第一角度α;当第一转轴32相对套环33A如图46所示旋转方向继续旋转至最大夹角β,第一转轴32由于第二凸起K与第一凸起J的配合推动套环33A旋转(相当于推动第二转轴33旋转),使得套环33A相对轴套31旋转,当套环33A相对轴套31旋转,套环33A与轴套31的环壁313摩擦产生第三扭力。
需要说明的是,在此实施例中,第一凸起J在套环33A上的位置以及第二凸起K在第一转轴32上位置不做限定,但是在安装第一转轴32与第二转轴33时,需要使得在电子产品处于闭合状态时,第二转轴33的套环33A上的第一凸起J、第一转轴32上第二凸起K相对第一转轴32轴心线的夹角为上述第一角度α。
实施例六
本实施例提供了不同于前五个实施例的一种可能实现的铰链结构30,该铰链结构30产生的扭力会随第一主体10相对第二主体20之间的夹角变化而改变。具体地,如图47所示的铰链结构30包括铰接的轴套31和转轴34,此处,轴套31可以用于连接可折叠设备的第一主体10(例如笔记本电脑的屏幕),转轴34可以用于连接可折叠设备的第二主体20。
如图47所示,轴套31的轴孔的横截面为基本圆形,并在轴孔内壁设置有向远离轴孔轴心线方向凹陷的凹槽区G,凹槽区G沿环绕轴孔的轴心线方向所对应的角度为第一角度 α;对应地,转轴34垂直于其轴心线方向的横截面具有径向长端(该径向长端的自由端到转轴34的轴心线的长度如图47所示的L),其中,径向长端的径向长度大于轴套31凹槽区G的内径。可以理解的是,当转轴34伸入轴套31的轴孔内,不论转轴34横截面的径向长端接触轴套31的内壁还是凹槽区G,转轴34与轴套31均为过盈配合,不过,转轴34的径向长端接触轴套31的轴孔转动时转轴34与轴套31之间产生的扭力,小于转轴34径向长端接触凹槽区G转动时转轴34与轴套31之间产生的扭力,设定前者为第一扭力,后者为第二扭力,当转轴34相对轴套31转动,转轴34与轴套31实现了两种扭力输出状态。
可以预见的是,以“转轴34连接第一主体10、轴套31连接第二主体20”为例,将该铰链结构30的工作过程对应到本申请的第一主体10相对第二主体20的持续的旋转过程中(即第一主体10和第二主体20之间的夹角是自0°连续逐渐增大至最大夹角的过程),转轴34的径向长端位于凹槽区G内,随第一主体10相对第二主体20逐渐打开至二者之间夹角为第一角度α,转轴34相对轴套31持续转动二者之间摩擦产生第一扭力;第一主体10相对第二主体20沿图示旋转方向继续旋转至第一主体10与第二主体20之间的夹角为最大值β的过程中,转轴34的径向长端移出轴套31轴孔的凹槽区G并与轴套31的轴孔摩擦配合产生第二扭力。
实施例七
在实施例六的基础上,本实施例提出了一种可能实现的铰链结构,如图48所示,在轴孔内壁对称设置有两个向远离轴孔轴心线方向凹陷的凹槽区G,每一个凹槽区G沿环绕轴孔的轴心线方向所对应的角度为第一角度α;接下来,将结合图48所示铰链结构30对本实施例中的铰链结构30的工作过程做以示例性说明。
以“转轴34连接第一主体10、轴套31连接第二主体20”为例,将该铰链结构30的工作过程对应到本申请的第一主体10相对第二主体20的持续的旋转过程中(即第一主体10和第二主体20之间的夹角是自0°连续逐渐增大至最大夹角的过程),初始第一主体10与第二主体20折叠即二者之间夹角为0°,转轴34的径向长端位于凹槽区G内且与凹槽区G的第一侧g1接触,如图49所示;随第一主体10相对第二主体20逐渐打开至二者之间夹角为第一角度α,转轴34相对轴套31持续转动二者之间摩擦产生第一扭力,转轴34的径向长端在轴套31轴孔的凹槽区G的第一侧g1(如图49所示)移动至径向长端与凹槽区G的第二侧g2接触(如图50所示),转轴34相对轴套31的旋转角度为第一角度α;第一主体10相对第二主体20沿图示旋转方向继续旋转至第一主体10与第二主体20之间的夹角为最大值β的过程中,转轴34的径向长端移出轴套31轴孔的凹槽区G并与轴套31的轴孔摩擦配合产生第二扭力(如图48所示的配合状态)。
上述五种关于铰链结构30的实施方式只是示例性说明,均能够可折叠电子设备打开过程中针对不同的打开角度输出不同的扭力,为用户提供便利,提升使用体验。其中,实施例一、二和三所提供的铰链结构30在闭合第一主体10和第二主体20时也能提供与打开时扭力状态变化相同的扭力,而实施例四、五、六以及七则只能在第一主体10相对第二主体20打开时输出与实施例一或二状态相同的扭力。此外,前六种实施例所提供的铰链结构30能够应用到第一主体10和第二主体20之间的夹角范围0-360°开起过程中,而第七种实施例所提供的铰链结构30只能够应用到第一主体10和第二主体20之间的夹角范围0-180°的开起过程中。
综上,本申请实施例所提供的铰链结构30,当其应用到可折叠电子设备时可以轻松实现单手开起可折叠电子设备且能够保证可折叠电子设备在打开状态的稳定性,提供便利的同时不影响实际使用,具有良好的应用前景。
实施例八
一种铰链结构,应用于可折叠电子设备,包括轴套以及伸入所述轴套的转轴,所述轴套用于连接所述可折叠电子设备的第一主体,所述转轴用于连接所述可折叠电子设备的第二主体;
所述轴套内设有凹槽区,所述凹槽区沿环绕所述轴套的轴心线方向所对应的角度为第一角度;所述转轴垂直于其轴心线方向设有径向长端,所述径向长端的自所述转轴的轴心线到自由端的长度大于所述凹槽区的半径;
在所述可折叠电子设备自折叠状态到打开状态的过程中:
当所述第一主体与所述第二主体之间的夹角小于等于所述第一角度,所述转轴相对所述轴套旋转且所述转轴的径向长端与所述轴套的凹槽区摩擦配合,所述铰链结构产生第一扭力;
当所述第一主体与所述第二主体之间的夹角大于所述第一角度小于第二角度,所述转轴相对所述轴套旋转且所述转轴的径向长端与所述轴套摩擦配合,所述铰链结构产生第二扭力;
其中,所述第二扭力大于所述第一扭力。

Claims (16)

  1. 一种铰链结构,应用于可折叠电子设备,其特征在于,包括轴套、第一转轴和第二转轴,所述轴套用于连接所述可折叠电子设备的第一主体,所述第一转轴用于连接所述可折叠电子设备的第二主体;
    所述第一转轴伸入所述轴套、且可相对所述轴套绕所述第一转轴的轴心线旋转,所述第一转轴旋转时与所述轴套摩擦配合;
    所述第二转轴伸入所述轴套、且可相对所述轴套绕所述第二转轴的轴心线旋转,所述第二转轴旋转时与所述轴套配合;
    在所述可折叠电子设备自折叠状态到打开状态的过程中:
    当所述第一主体与所述第二主体之间的夹角小于等于第一角度,所述铰链结构输出第一扭力;
    当所述第一主体与所述第二主体之间的夹角大于第一角度且小于第二角度,所述铰链结构输出第二扭力;
    其中,所述第一角度小于所述第二角度,所述第二扭力大于所述第一扭力。
  2. 根据权利要求1所述的铰链结构,其特征在于,所述第一转轴还可相对所述第二转轴绕所述第一转轴的轴心线旋转,且所述第二转轴与所述第一转轴之间设有用于限定所述第一转轴相对所述第二转轴旋转角度小于所述第一角度限位机构;
    当所述第一主体与所述第二主体之间的夹角小于等于第一角度,所述第一转轴相对所述轴套旋转,所述第二转轴相对所述轴套静止;
    当所述第一主体与所述第二主体之间的夹角大于第一角度且小于第二角度,所述第一转轴相对所述轴套旋转且所述第一转轴驱动所述第二转轴相对所述轴套旋转。
  3. 根据权利要求2所述的铰链结构,其特征在于,所述第一转轴和所述第二转轴相对设置;所述限位机构包括限位件和旋转件,所述限位件设置于所述第二转轴和所述第一转轴中的其中一个上,所述旋转件设置于所述第二转轴和所述第一转轴中的另一个上;
    所述限位件朝向所述旋转件的一端形成有用于配合所述旋转件的避让缺口,以限定所述第一转轴相对所述第二转轴旋转的角度小于等于所述第一角度。
  4. 根据权利要求3所述的铰链结构,其特征在于,所述限位件包括连接端面以及自所述连接端面朝向所述旋转件凸起的限位凸台,所述连接端面垂直于所述旋转件的旋转轴线;
    所述限位凸台与所述连接端面之间形成所述避让缺口。
  5. 根据权利要求4所述的铰链结构,其特征在于,所述限位凸台平行于所述连接端面的截面为扇形或弧线形。
  6. 根据权利要求4所述的铰链结构,其特征在于,所述限位凸台具有豁口。
  7. 根据权利要求4所述的铰链结构,其特征在于,所述限位凸台的外径小于所述连接端面的外径以形成轴肩;
    或,所述连接端面的外径小于所述第二转轴的外径以形成轴肩。
  8. 根据权利要求3所述的铰链结构,其特征在于,所述限位件包括连接端面以及形成于所述连接端面上的限位凹槽,所述连接端面垂直于所述旋转件的旋转轴线;
    所述限位凹槽形成所述避让缺口。
  9. 根据权利要求8所述的铰链结构,其特征在于,所述限位凹槽平行于所述连接端面的截面为扇形或弧线形。
  10. 根据权利要求3所述的铰链结构,其特征在于,所述第一转轴与所述第二转轴之间通过轴孔转动配合。
  11. 根据权利要求2所述的铰链结构,其特征在于,所述第二转轴具有套环,所述套环套设于所述第一转轴上;
    所述限位机构包括形成于所述套环内壁的第一凸起以及形成于所述第一转轴外壁、用于配合所述第一凸起的第二凸起。
  12. 根据权利要求2所述的铰链结构,其特征在于,所述轴套包括相对静止的第一轴套和第二轴套;
    所述第一转轴伸入所述第一轴套、且可相对所述第一轴套绕所述第一转轴的轴心线旋转,所述第一转轴旋转时与所述第一轴套摩擦配合;
    所述第二转轴伸入所述第二轴套、且可相对所述第二轴套绕所述第二转轴的轴心线旋转,所述第二转轴旋转时与所述第二轴套摩擦配合。
  13. 根据权利要求12所述的铰链结构,其特征在于,所述第一转轴与所述第一轴套之间还设置有摩擦垫圈,和/或,所述第二转轴与所述第二轴套之间还设置有摩擦垫圈。
  14. 根据权利要求1所述的铰链结构,其特征在于,所述轴套包括第一轴套和第二轴套;
    所述第一转轴伸入所述第一轴套、且可相对所述第一轴套绕所述第一转轴的轴心线旋转,所述第一转轴旋转时与所述第一轴套摩擦配合;
    所述第二转轴伸入所述第二轴套、且可相对所述第二轴套绕所述第二转轴的轴心线旋转,所述第二转轴旋转时与所述第二轴套配合;
    其中,所述第二转轴具有凸出于所述第二转轴的周面、且能够与所述第二轴套摩擦配合的摩擦部,所述第二轴套设有能够容纳所述摩擦部的凹槽区,所述凹槽区沿环绕所述第二轴套轴心线方向所对应的角度为所述第一角度;
    在所述可折叠电子设备自折叠状态到打开状态的过程中:
    当所述第一主体与所述第二主体之间的夹角小于等于第一角度,所述第二转轴相对所述第二轴套转动且所述第二转轴的摩擦部位于所述第二轴套的凹槽区内;
    当所述第一主体与所述第二主体之间的夹角大于第一角度且小于第二角度,所述第二转轴相对所述第二轴套转动且所述第二转轴的摩擦部位于所述第二轴套的凹槽区外。
  15. 根据权利要求1-14中任一项所述的铰链结构,其特征在于,所述轴套上设置有止挡块,第一转轴上设置有止挡件,所述止挡件用于与所述止挡块配合以限定所述第一主体相对所述第二主体打开的最大角度。
  16. 一种可折叠电子设备,其特征在于,包括第一主体、第二主体以及如权利要求1-15中任一项所述的铰链结构。
PCT/CN2020/109566 2019-09-24 2020-08-17 一种铰链结构及可折叠电子设备 WO2021057333A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20868525.5A EP4023895A4 (en) 2019-09-24 2020-08-17 HINGE STRUCTURE AND FOLDABLE ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910905927.2A CN110792688B (zh) 2019-09-24 2019-09-24 一种铰链结构及可折叠电子设备
CN201910905927.2 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021057333A1 true WO2021057333A1 (zh) 2021-04-01

Family

ID=69439842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109566 WO2021057333A1 (zh) 2019-09-24 2020-08-17 一种铰链结构及可折叠电子设备

Country Status (3)

Country Link
EP (1) EP4023895A4 (zh)
CN (1) CN110792688B (zh)
WO (1) WO2021057333A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110792688B (zh) * 2019-09-24 2021-03-05 华为技术有限公司 一种铰链结构及可折叠电子设备
CN111879282A (zh) * 2020-06-22 2020-11-03 济南市交通工程质量监督站 便于测量测点高差及坡度的测量仪及其使用方法
CN112987856B (zh) * 2021-03-30 2023-06-09 广东虹勤通讯技术有限公司 一种可折叠设备的控制方法、装置及存储介质
CN113050286A (zh) * 2021-03-31 2021-06-29 联想(北京)有限公司 一种电子设备
CN115030951B (zh) * 2022-07-07 2023-07-25 武汉华星光电半导体显示技术有限公司 铰链、柔性显示面板及显示终端

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865369A (ja) * 1994-08-24 1996-03-08 Nifco Inc ヒンジ部材
US20070186382A1 (en) * 2006-02-16 2007-08-16 Asustek Computer Inc. Hinge with variable torque
TWM324133U (en) * 2007-05-04 2007-12-21 Jr-Jiun Chen Two-stage pivot for notebook
CN201078397Y (zh) * 2007-09-18 2008-06-25 兆利科技工业股份有限公司 转轴结构
CN201225362Y (zh) * 2008-07-04 2009-04-22 可胜科技(苏州)有限公司 铰链装置
CN202991827U (zh) * 2012-11-08 2013-06-12 宏碁股份有限公司 转轴结构
US20150000465A1 (en) * 2012-02-09 2015-01-01 Ihi Corporation Rotation Restricting Device For Rotation Machine
CN108757716A (zh) * 2018-06-29 2018-11-06 联想(北京)有限公司 转轴装置和电子设备
CN108916211A (zh) * 2018-08-02 2018-11-30 合肥联宝信息技术有限公司 转轴组件及电子设备
CN110792688A (zh) * 2019-09-24 2020-02-14 华为技术有限公司 一种铰链结构及可折叠电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7124473B2 (en) * 2004-12-07 2006-10-24 Shin Zu Shing Co., Ltd. Hinge for a notebook computer
CN100518460C (zh) * 2006-07-10 2009-07-22 东友科技股份有限公司 支撑机构
US9964989B2 (en) * 2015-12-24 2018-05-08 Intel Corporation Orbiting hinge
TWM524052U (zh) * 2016-03-15 2016-06-11 華碩電腦股份有限公司 電子裝置之鉸接組件
CN109944867B (zh) * 2019-03-29 2020-10-30 联想(北京)有限公司 一种转轴机构及电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865369A (ja) * 1994-08-24 1996-03-08 Nifco Inc ヒンジ部材
US20070186382A1 (en) * 2006-02-16 2007-08-16 Asustek Computer Inc. Hinge with variable torque
TWM324133U (en) * 2007-05-04 2007-12-21 Jr-Jiun Chen Two-stage pivot for notebook
CN201078397Y (zh) * 2007-09-18 2008-06-25 兆利科技工业股份有限公司 转轴结构
CN201225362Y (zh) * 2008-07-04 2009-04-22 可胜科技(苏州)有限公司 铰链装置
US20150000465A1 (en) * 2012-02-09 2015-01-01 Ihi Corporation Rotation Restricting Device For Rotation Machine
CN202991827U (zh) * 2012-11-08 2013-06-12 宏碁股份有限公司 转轴结构
CN108757716A (zh) * 2018-06-29 2018-11-06 联想(北京)有限公司 转轴装置和电子设备
CN108916211A (zh) * 2018-08-02 2018-11-30 合肥联宝信息技术有限公司 转轴组件及电子设备
CN110792688A (zh) * 2019-09-24 2020-02-14 华为技术有限公司 一种铰链结构及可折叠电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023895A4 *

Also Published As

Publication number Publication date
CN110792688A (zh) 2020-02-14
EP4023895A1 (en) 2022-07-06
EP4023895A4 (en) 2022-11-02
CN110792688B (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2021057333A1 (zh) 一种铰链结构及可折叠电子设备
WO2021058034A1 (zh) 一种转轴组件及电子设备
JP3119116U (ja) 心棒位置決め構造及びその構造を用いた電子デバイス
KR100288657B1 (ko) 힌지장치
US10168746B2 (en) Hinge mechanism for a computing device
TWI449850B (zh) 軸承機構及其掀蓋式裝置
US11023017B2 (en) Hinge for rotating part and a mobile terminal
US20110047754A1 (en) Hinge device and apparatus using hinge device
CN108930708A (zh) 转轴与支架联动装置及应用它的电子装置
US20200011101A1 (en) Rotating part hinge and mobile terminal
JP2001152728A (ja) ヒンジ装置
WO2004029468A1 (ja) 電子機器およびその開閉機構
TWM542167U (zh) 樞紐結構及應用其之電子裝置
CN109944867B (zh) 一种转轴机构及电子设备
CN108415513B (zh) 预警笔记本电脑的最大打开角度的方法及笔记本电脑
US11675396B2 (en) Hinge assembly and portable electronic device
US10767406B2 (en) Hinge mechanism
JP2005195135A (ja) ヒンジ装置
CN109114097B (zh) 电子设备和转动方法
KR102224256B1 (ko) 힌지장치
CN210509940U (zh) 开轻关重型皮套转轴以及皮套键盘
CN216789742U (zh) 旋转阻尼器和电子设备
TWI521150B (zh) 樞軸結構
CN213750828U (zh) 一种阻停式笔记本电脑转轴
CN214196938U (zh) 转轴结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020868525

Country of ref document: EP

Effective date: 20220330