WO2021057187A1 - 单三相兼容的高效车载双向充电机 - Google Patents
单三相兼容的高效车载双向充电机 Download PDFInfo
- Publication number
- WO2021057187A1 WO2021057187A1 PCT/CN2020/101122 CN2020101122W WO2021057187A1 WO 2021057187 A1 WO2021057187 A1 WO 2021057187A1 CN 2020101122 W CN2020101122 W CN 2020101122W WO 2021057187 A1 WO2021057187 A1 WO 2021057187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- phase
- dcdc
- module
- bus
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the invention belongs to the technical field of electric vehicle charging, and specifically relates to a single three-phase compatible high-efficiency vehicle-mounted two-way charger.
- the present invention aims to solve the above-mentioned problems of the prior art, and proposes a single and three-phase compatible high-efficiency vehicle-mounted two-way charger.
- the technical solution adopted by the present invention is to design a single and three-phase compatible high-efficiency vehicle-mounted two-way charger, which includes an AC switching module, a PFC module, a bus capacitor bank, and a DCDC module connected in sequence, wherein the AC switching module passes through its internal
- the switch's opening and closing combination is to connect the PFC module to the external single-phase AC circuit in the single-phase mode, or connect the PFC module to the external three-phase AC circuit in the three-phase mode;
- the PFC module is used for AC-DC conversion,
- the DCDC module is connected through the bus;
- the bus capacitor group includes a first capacitor C1, a second capacitor C2, and a third capacitor C3 connected in series between the positive bus and the negative bus.
- the third capacitor C3 and the second The capacitor C2 is connected in parallel or in parallel with the first capacitor C1;
- the DCDC module includes a first DCDC module and a second DCDC module.
- the input ends of the first and second DCDC modules are connected in series between the positive bus and the negative bus.
- the output ends of the first and second DCDC modules are connected in parallel to the vehicle load;
- the two ends of the first capacitor C1 are respectively connected to the head end and the tail end of the input end of the first DCDC module, and the two ends of the second capacitor C2
- the head end and the tail end of the input end of the second DCDC module are respectively connected.
- the first capacitor C1 and the second capacitor C2 are small-capacity capacitors, and the third capacitor C3 is a large-capacity capacitor.
- the first capacitor C1 and the second capacitor C2 are film capacitors or ceramic capacitors, and the third capacitor C3 is electrolytic capacitors or large-capacity film capacitors.
- the third capacitor C3 is connected in series with a switch S1, and the switch S1 is controlled by the controller to be closed when the AC switching module is connected to a single-phase AC circuit, and disconnected when the AC switching module is connected to a three-phase AC circuit.
- the primary switch tube of the transformer in the first DCDC module is normally closed, the first DCDC stops DC conversion, and the second DCDC module performs Normal DC conversion; in the three-phase mode, the first and second DCDC modules perform normal DC conversion.
- the primary switch tube of the transformer in the second DCDC module is normally closed, the second DCDC stops DC conversion, and the first DCDC module performs Normal DC conversion; in the three-phase mode, the first and second DCDC modules perform normal DC conversion.
- the first DCDC module and the second DCDC module adopt one of a single-phase LLC topology structure, an SRC topology structure, a full bridge topology structure, a half bridge topology structure, a bidirectional DAB topology structure, and a bidirectional LLCC bidirectional full bridge topology structure.
- the PFC module adopts a three-phase six-switch topology structure or a three-phase Vienna topology structure.
- Both the single-phase mode and the three-phase mode described above include the charging state and the inverter state.
- the beneficial effect of the technical solution provided by the present invention is that the present invention can reduce the bus voltage during single-phase operation to improve the efficiency of the charger during single-phase operation, while reducing the use of electrolytic capacitors in the whole machine when the single-phase three-phase input compatibility is satisfied. Increase the life of the charger, reduce the size of the charger, and increase the power density.
- Figure 1 is a schematic diagram of a three-phase working mode circuit
- Figure 2 is a schematic diagram of a single-phase working mode circuit
- Figure 3 is a schematic diagram of a capacitor series connection control switch
- Figure 4 is a circuit diagram of a preferred embodiment.
- the invention discloses a single and three-phase compatible high-efficiency vehicle-mounted two-way charger, which includes an AC switching module, a PFC module, a bus capacitor bank, and a DCDC module connected in sequence, wherein the AC switching module is opened and closed by its internal switch Combination, connect the PFC module to an external single-phase AC circuit in single-phase mode, or connect the PFC module to an external three-phase AC circuit in three-phase mode;
- the PFC module is used for AC-DC conversion and connected via a bus DCDC module, the typical DC voltage range of PFC module is 550V ⁇ 800V;
- the bus capacitor group includes a first capacitor C1, a second capacitor C2, and a third capacitor C3 connected in series between the positive bus and the negative bus.
- the third capacitor C3 is connected in parallel with the second capacitor C2 or in parallel with the first capacitor C1;
- the DCDC module includes a first DCDC module and a second DCDC module, and the input ends of the first and second DCDC modules are connected in series after the end Between the positive bus and the negative bus, the output ends of the first and second DCDC modules are connected in parallel to the vehicle load; the two ends of the first capacitor C1 are respectively connected to the head end and the tail end of the input end of the first DCDC module.
- the two ends of the second capacitor C2 are respectively connected to the head end and the tail end of the input end of the second DCDC module.
- the first and second DCDC modules can work in interleaved mode to reduce ripple, and when using a widened topology, they can also work at the same frequency as the previous-stage PFC module to reduce bus capacitor ripple.
- Figure 1 shows a schematic diagram of a three-phase working mode circuit.
- the left side of the PFC module is connected to three live wires, L1, L2, and L3.
- Figure 2 shows a schematic diagram of a single-phase working mode circuit.
- the left side of the PFC module is connected to two live wires L1, L1, N and a neutral wire.
- the two live wires L1 are used in parallel with two circuits, which can expand the output power.
- the first capacitor C1 and the second capacitor C2 are small-capacity capacitors, and the third capacitor C3 is a large-capacity capacitor.
- the first capacitor C1 and the second capacitor C2 are film capacitors or ceramic capacitors, and the third capacitor C3 is electrolytic capacitors or large-capacity film capacitors. Since the three-phase input ripples can cancel each other, the bus capacitor capacity needs less, so C1 can be realized by using a smaller non-electrolytic capacitor.
- the third capacitor C3 is connected in series with a switch S1, and the switch S1 is controlled by the controller to connect the AC switching module to the single-phase AC circuit When the AC switching module is connected to the three-phase AC circuit, it is disconnected.
- the third capacitor C3 is connected in parallel with the second capacitor C2.
- the primary side switch tube of the transformer in the first DCDC module is normally closed, and the first DCDC stops DC conversion.
- the second DCDC module performs normal DC conversion; in the three-phase mode, the first and second DCDC modules perform normal DC conversion.
- Q1 ⁇ Q4 in Figure 3 are the primary side switch tubes of the transformer in the first DCDC module. Close Q1 ⁇ Q4 to make the bus voltage close to the C3C2 voltage.
- L1 and N are input to the PFC module through the switching circuit.
- the PFC module can work in interleaved mode, and the PFC bus voltage can be controlled below 450V.
- the third capacitor C3 is connected in parallel with the first capacitor C1.
- the primary switch tube of the transformer in the second DCDC module is normally closed, and the second DCDC stops DC conversion.
- the first DCDC module performs normal DC conversion; in the three-phase mode, the first and second DCDC modules perform normal DC conversion. Since the working principle of this embodiment is the same as that of the technical solution shown in FIG. 3, except that the upper and lower positions are reversed, the circuit diagram is not drawn.
- Figure 4 shows a circuit diagram of a preferred embodiment.
- the first DCDC module and the second DCDC module adopt a single-phase LLC topology, an SRC topology, a full-bridge topology, a half-bridge topology, a two-way DAB topology, and a two-way LLCC.
- the PFC module adopts a three-phase six-switch topology structure or a three-phase Vienna topology structure.
- the present invention is applicable to the charging mode and also applicable to the inverter mode, and the demand circuit for the inverter can work in the three-phase inverter and the single-phase inverter mode.
- the single-phase inverter always closes the MOS tube on the primary side of the first DCDC module, and only the second DCDC module works. In three-phase operation, the first and second DCDC modules work simultaneously.
- both the single-phase mode and the three-phase mode include a charging state and an inverter state.
- the charging state the AC side is the energy input side
- the on-board battery is the energy receiving side.
- the inverter state the on-board battery is the energy input side
- the AC side is the energy receiving side.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Dc-Dc Converters (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种单三相兼容的高效车载双向充电机,其包括依次连接的交流切换模块、PFC模块、母线电容组、DCDC模块,其中所述母线电容组包括串接在正极母线和负极母线之间的第一电容C1和第二电容C2、以及第三电容C3,所述第三电容C3与第二电容C2并联、或者与第一电容C1并联;所述DCDC模块,包括第一DCDC模块和第二DCDC模块,第一和第二DCDC模块的输入端头尾串联后连接在正极母线和负极母线之间,第一和第二DCDC模块的输出端并联后连接车辆负载;该双向充电机可以在满足单三相输入兼容的情况下,降低单相工作时母线电压以提高单相工作时充电机效率,同时可以减少整机电解电容使用量,提高充电机寿命,提高功率密度。
Description
本发明属于电动汽车充电技术领域,具体涉及一种单三相兼容的高效车载双向充电机。
随着节能减排,以及控制大气污染的需求,新能源汽车逐渐在市场商用,而电动汽车更是新能源汽车的主力军。伴随着续航里程的增加,电动车动力电池容量也在日益增长,为了减少充电等待时间,车载充电机对于高功率的需求越来越强烈,三相输入的高功率充电器将成为未来市场的主力军。同时市场存在大量的单相充电桩,因此单三相兼容充电机将长时间存在于市场上。但现有单三相兼容的充电机存在效率低、使用较多电解电容、体积较大的缺陷。
故此业内亟需开发一种充电效率高、电解电容使用量少、体积小的高功率密度的单三相兼容的车载双向充电机。
发明内容
本发明是要解决现有技术的上述问题,提出一种单三相兼容的高效车载双向充电机。
本发明采用的技术方案是设计一种单三相兼容的高效车载双向充电机,其包括依次连接的交流切换模块、PFC模块、母线电容组、DCDC模块,其中所述交流切换模块,通过其内部开关的开闭组合,在单相模式时将PFC模块连接至外部单相交流电路、或在三相模式时将PFC模块连接至外部三相交流电路;所述PFC模块,用于交流直流变换、并通过母线连接DCDC模块;所述母线电容组,包括串接在正极母线和负极母线之间的第一电容C1和第二电容C2、以及第三电容C3,所述第三电容C3与第二电容C2并联、或者与第一电容C1并联;所述DCDC模块,包括第一DCDC模块和第二DCDC模块,第一和第二DCDC模块的输入端头尾串联后连接在正极母线和负极母线之间,第一和第二DCDC模块的输出端并联后连接车辆负载;所述第一电容C1的两端分别连接第一DCDC模块输入端的头端和尾端,所述第二电容C2的两端分别连接第二DCDC模块输入端的头端 和尾端。
所述第一电容C1和第二电容C2采用小容量电容,第三电容C3采用大容量电容。
所述第一电容C1和第二电容C2采用薄膜电容、或者陶瓷电容,第三电容C3采用电解电容或者大容量薄膜电容。
所述第三电容C3串接一个开关S1,该开关S1受控制器控制在交流切换模块连接单相交流电路时闭合、在交流切换模块连接三相交流电路时断开。
当所述第三电容C3与第二电容C2并联,在单相模式时,所述第一DCDC模块中的变压器原边开关管常闭,第一DCDC停止直流变换,所述第二DCDC模块进行正常直流变换;在三相模式时,所述第一和第二DCDC模块进行正常直流变换。
当所述第三电容C3与第一电容C1并联,在单相模式时,所述第二DCDC模块中的变压器原边开关管常闭,第二DCDC停止直流变换,所述第一DCDC模块进行正常直流变换;在三相模式时,所述第一和第二DCDC模块进行正常直流变换。
所述第一DCDC模块和第二DCDC模块采用单相LLC拓扑结构、SRC拓扑结构、全桥拓扑结构、半桥拓扑结构、双向DAB拓扑结构、双向LLCC双向全桥拓扑结构中的一种。
所述PFC模块采用三相六开关拓扑结构或三相维也纳拓扑结构。
上述单相模式和三相模式皆包括充电状态和逆变状态。
本发明提供的技术方案的有益效果是:本发明可以在满足单三相输入兼容的情况下,降低单相工作时母线电压以提高单相工作时充电机效率,同时可以减少整机电解电容使用量,提高充电机寿命,减小充电机体积,提高功率密度。
下面结合实施例和附图对本发明进行详细说明,其中:
图1是三相工作模式电路示意图;
图2是单相工作模式电路示意图;
图3是电容串接控制开关示意图;
图4是较佳实施例电路图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
本发明公开了一种单三相兼容的高效车载双向充电机,其包括依次连接的交流切换模块、PFC模块、母线电容组、DCDC模块,其中所述交流切换模块,通过其内部开关的开闭组合,在单相模式时将PFC模块连接至外部单相交流电路、或在三相模式时将PFC模块连接至外部三相交流电路;所述PFC模块,用于交流直流变换、并通过母线连接DCDC模块,PFC模块典型直流电压范围为550V~800V;所述母线电容组,包括串接在正极母线和负极母线之间的第一电容C1和第二电容C2、以及第三电容C3,所述第三电容C3与第二电容C2并联、或者与第一电容C1并联;所述DCDC模块,包括第一DCDC模块和第二DCDC模块,第一和第二DCDC模块的输入端头尾串联后连接在正极母线和负极母线之间,第一和第二DCDC模块的输出端并联后连接车辆负载;所述第一电容C1的两端分别连接第一DCDC模块输入端的头端和尾端,所述第二电容C2的两端分别连接第二DCDC模块输入端的头端和尾端。一和第二DCDC模块可以工作在交错模式以降低纹波,使用调宽拓扑时也可以和前级PFC模块同频工作以减少母线电容纹波。
图1示出的是三相工作模式电路示意图,PFC模块左侧连接的是L1、L2、L3三条火线。图2示出的是单相工作模式电路示意图,PFC模块左侧连接的是L1、L1、N二条火线和一条零线,其中二条火线L1是两路并联使用,可扩大输出功率。
在较佳实施例中,所述第一电容C1和第二电容C2采用小容量电容,第三电容C3采用大容量电容。所述第一电容C1和第二电容C2采用薄膜电容、或者陶瓷电容,第三电容C3采用电解电容或者大容量薄膜电容。由于三相输入纹波可以互相抵消,使得母线电容容量需求较少,因此C1可以使用容量较小的非电解电容实现。
参看图3示出的实施例,为了三相工作时两路输出DCDC模块控制一致,所述第三电容C3串接一个开关S1,该开关S1受控制器控制在交流切换模块连接单相交流电路时闭合、在交流切换模块连接三相交流电路时断开。
参看图3示出的实施例,所述第三电容C3与第二电容C2并联,在单相模式时,所述第一DCDC模块中的变压器原边开关管常闭,第一DCDC停止直流变换,所述第二DCDC模块进行正常直流变换;在三相模式时,所述第一和第二DCDC模块进行正常直流变换。图3中的Q1~Q4为第一DCDC模块中的变压器原边开关管,闭合Q1~Q4使得母线电压和C3C2电压相近。此时通过切换电路将L1和N输入到PFC模块。变换时,PFC模块可以工作在交错模式下,PFC母线电压可控制在450V以下,此时单相PFC工作效率将得到提升。同时由于大容量电容C3的存在,可以吸收单相输入时的纹波电流,从而减少输出的电流纹波。因此C3电解电容的选择可以依据单相工作状态进行选择。
在其它实施例中,所述第三电容C3与第一电容C1并联,在单相模式时,所述第二DCDC模块中的变压器原边开关管常闭,第二DCDC停止直流变换,所述第一DCDC模块进行正常直流变换;在三相模式时,所述第一和第二DCDC模块进行正常直流变换。由于该实施例的工作原理与图3示出技术方案的工作原理相同,只是上下位置对调而已,故此未绘出电路图。
图4示出了较佳实施例电路图,所述第一DCDC模块和第二DCDC模块采用单相LLC拓扑结构、SRC拓扑结构、全桥拓扑结构、半桥拓扑结构、双向DAB拓扑结构、双向LLCC双向全桥拓扑结构中的一种。所述PFC模块采用三相六开关拓扑结构或三相维也纳拓扑结构。
本发明适用于充电模式,同样也适用于逆变模式,针对逆变的需求电路可以工作在三相逆变和单相逆变模式。单相逆变时常闭第一DCDC模块原边的MOS管,仅第二DCDC模块工作。三相工作时第一和第二DCDC模块同时工作。
在较佳实施例中,所述单相模式和三相模式皆包括充电状态和逆变状态。在充电状态中交流侧为能量输入侧,车载电池为能量接收侧。在逆变状态中车载电池为能量输入侧,交流侧为能量接收侧。
以上实施例仅为举例说明,非起限制作用。任何未脱离本申请精神与范畴,而对其进行的等效修改或变更,均应包含于本申请的权利要求范围之中。
Claims (9)
- 一种单三相兼容的高效车载双向充电机,其特征在于:包括依次连接的交流切换模块、PFC模块、母线电容组、DCDC模块,其中所述交流切换模块,通过其内部开关的开闭组合,在单相模式时将PFC模块连接至外部单相交流电路、或在三相模式时将PFC模块连接至外部三相交流电路;所述PFC模块,用于交流直流变换、并通过母线连接DCDC模块;所述母线电容组,包括串接在正极母线和负极母线之间的第一电容C1和第二电容C2、以及第三电容C3,所述第三电容C3与第二电容C2并联、或者与第一电容C1并联;所述DCDC模块,包括第一DCDC模块和第二DCDC模块,第一和第二DCDC模块的输入端头尾串联后连接在正极母线和负极母线之间,第一和第二DCDC模块的输出端并联后连接车辆负载;所述第一电容C1的两端分别连接第一DCDC模块输入端的头端和尾端,所述第二电容C2的两端分别连接第二DCDC模块输入端的头端和尾端。
- 如权利要求1所述的单三相兼容的高效车载双向充电机,其特征在于:所述第一电容C1和第二电容C2采用小容量电容,第三电容C3采用大容量电容。
- 如权利要求2所述的单三相兼容的高效车载双向充电机,其特征在于:所述第一电容C1和第二电容C2采用薄膜电容、或者陶瓷电容,第三电容C3采用电解电容或者大容量薄膜电容。
- 如权利要求3所述的单三相兼容的高效车载双向充电机,其特征在于:所述所述第三电容C3串接一个开关S1,该开关S1受控制器控制在交流切换模块连接单相交流电路时闭合、在交流切换模块连接三相交流电路时断开。
- 如权利要求3或4所述的单三相兼容的高效车载双向充电机,其特征在于:所述第三电容C3与第二电容C2并联,在单相模式时,所述第一DCDC模块中的变压器原边开关管常闭,第一DCDC停止直流变换,所述第二DCDC模块进行正常直流变换;在三相模式时,所述第一和第二DCDC模块进行正常直流变换。
- 如权利要求3或4所述的单三相兼容的高效车载双向充电机,其特征 在于:所述第三电容C3与第一电容C1并联,在单相模式时,所述第二DCDC模块中的变压器原边开关管常闭,第二DCDC停止直流变换,所述第一DCDC模块进行正常直流变换;在三相模式时,所述第一和第二DCDC模块进行正常直流变换。
- 如权利要求1所述的单三相兼容的高效车载双向充电机,其特征在于:所述第一DCDC模块和第二DCDC模块采用单相LLC拓扑结构、SRC拓扑结构、全桥拓扑结构、半桥拓扑结构、双向DAB拓扑结构、双向LLCC、双向全桥拓扑结构中的一种。
- 如权利要求1所述的单三相兼容的高效车载双向充电机,其特征在于:所述PFC模块采用三相六开关拓扑结构或三相维也纳拓扑结构。
- 如权利要求1所述的单三相兼容的高效车载双向充电机,其特征在于:所述单相模式和三相模式皆包括充电状态和逆变状态。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910935364.1A CN110682810B (zh) | 2019-09-29 | 2019-09-29 | 单三相兼容的高效车载双向充电机 |
CN201910935364.1 | 2019-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021057187A1 true WO2021057187A1 (zh) | 2021-04-01 |
Family
ID=69111120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/101122 WO2021057187A1 (zh) | 2019-09-29 | 2020-07-09 | 单三相兼容的高效车载双向充电机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110682810B (zh) |
WO (1) | WO2021057187A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110682810B (zh) * | 2019-09-29 | 2024-10-11 | 深圳威迈斯新能源(集团)股份有限公司 | 单三相兼容的高效车载双向充电机 |
CZ308969B6 (cs) * | 2020-04-24 | 2021-10-27 | Vysoká Škola Báňská - Technická Univerzita Ostrava | Nabíječka pro obousměrný tok energie a způsob jejího řízení |
CN112636577A (zh) * | 2020-11-27 | 2021-04-09 | 联合汽车电子有限公司 | 兼容单相和三相交流输入的pfc电路、控制方法及充电机 |
CN115230507B (zh) * | 2022-09-21 | 2023-02-03 | 浙大城市学院 | 同时实现双绕组电机控制及obc充电的复用拓扑结构 |
CN116231703B (zh) * | 2022-12-30 | 2024-03-01 | 苏州博沃创新能源科技有限公司 | 11kW双向单相/三相兼容电动汽车非车载直流充电模块 |
CN116231705B (zh) * | 2022-12-30 | 2024-02-20 | 苏州博沃创新能源科技有限公司 | 20kW双向单相/三相兼容电动汽车非车载直流充电模块 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2621076A1 (en) * | 2012-01-24 | 2013-07-31 | Ingeteam Power Technology, S.A. | Multicell AC/DC power converter with isolated DC/DC converter stages |
CN103684202A (zh) * | 2013-12-27 | 2014-03-26 | 大洋电机新动力科技有限公司 | 集成驱动及充放电功能的电机控制器 |
CN103730940A (zh) * | 2014-01-07 | 2014-04-16 | 乐金电子研发中心(上海)有限公司 | 电动汽车车载充电器 |
CN105141019A (zh) * | 2015-09-25 | 2015-12-09 | 西安特锐德智能充电科技有限公司 | 一种电动汽车充电系统 |
CN109687722A (zh) * | 2019-02-01 | 2019-04-26 | 华南理工大学 | 一种电动汽车用集成多模式功率转换器及其控制方法 |
CN209282879U (zh) * | 2018-12-28 | 2019-08-20 | 苏州英威腾电力电子有限公司 | 车载移动电源及车载移动电源拓扑 |
CN110682810A (zh) * | 2019-09-29 | 2020-01-14 | 深圳威迈斯新能源股份有限公司 | 单三相兼容的高效车载双向充电机 |
CN211075561U (zh) * | 2019-09-29 | 2020-07-24 | 深圳威迈斯新能源股份有限公司 | 单三相兼容的高效车载双向充电机 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9931951B2 (en) * | 2014-06-13 | 2018-04-03 | University Of Maryland | Integrated dual-output grid-to-vehicle (G2V) and vehicle-to-grid (V2G) onboard charger for plug-in electric vehicles |
JP6642014B2 (ja) * | 2016-01-12 | 2020-02-05 | 富士電機株式会社 | 電源システム |
CN108512423B (zh) * | 2018-05-23 | 2023-11-10 | 威腾电气集团股份有限公司 | 一种高效大功率车载dcdc电源 |
CN109842287B (zh) * | 2019-01-07 | 2022-05-06 | 深圳陆巡科技有限公司 | 一种兼容单相和三相交流输入的pfc电路及其控制方法 |
-
2019
- 2019-09-29 CN CN201910935364.1A patent/CN110682810B/zh active Active
-
2020
- 2020-07-09 WO PCT/CN2020/101122 patent/WO2021057187A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2621076A1 (en) * | 2012-01-24 | 2013-07-31 | Ingeteam Power Technology, S.A. | Multicell AC/DC power converter with isolated DC/DC converter stages |
CN103684202A (zh) * | 2013-12-27 | 2014-03-26 | 大洋电机新动力科技有限公司 | 集成驱动及充放电功能的电机控制器 |
CN103730940A (zh) * | 2014-01-07 | 2014-04-16 | 乐金电子研发中心(上海)有限公司 | 电动汽车车载充电器 |
CN105141019A (zh) * | 2015-09-25 | 2015-12-09 | 西安特锐德智能充电科技有限公司 | 一种电动汽车充电系统 |
CN209282879U (zh) * | 2018-12-28 | 2019-08-20 | 苏州英威腾电力电子有限公司 | 车载移动电源及车载移动电源拓扑 |
CN109687722A (zh) * | 2019-02-01 | 2019-04-26 | 华南理工大学 | 一种电动汽车用集成多模式功率转换器及其控制方法 |
CN110682810A (zh) * | 2019-09-29 | 2020-01-14 | 深圳威迈斯新能源股份有限公司 | 单三相兼容的高效车载双向充电机 |
CN211075561U (zh) * | 2019-09-29 | 2020-07-24 | 深圳威迈斯新能源股份有限公司 | 单三相兼容的高效车载双向充电机 |
Also Published As
Publication number | Publication date |
---|---|
CN110682810A (zh) | 2020-01-14 |
CN110682810B (zh) | 2024-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021057187A1 (zh) | 单三相兼容的高效车载双向充电机 | |
TWI397250B (zh) | 雙向全橋式零電壓-零電流直流/直流轉換器 | |
CN110768531A (zh) | 双向高频隔离型dc/dc模块 | |
CN102111008A (zh) | 电动汽车的高压电池充电系统架构 | |
CN103312178B (zh) | 一种双向dc/dc变换器及应用其的电池检测设备 | |
CN108900100A (zh) | 一种单相高效高频隔离型整流器 | |
CN106961220B (zh) | 一种具有均流特性的高效并联llc谐振变换器 | |
CN105896993A (zh) | 一种多单元二极管电容网络高增益隔离型直流变换器 | |
CN104578881A (zh) | 一种新型z源并网变流器 | |
CN110417268B (zh) | 车载充电机和电动车辆 | |
CN107204707A (zh) | 一种用于抑制尖峰电压的双向隔离dcdc变换器及其控制方法 | |
WO2024016601A1 (zh) | 一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置 | |
CN109367417A (zh) | 具有充电及v2g功能的两级双向功率变换器及控制方法 | |
CN101572429A (zh) | 一种ups系统 | |
CN107834581A (zh) | 一种多绕组谐振独立电流控制的电池储能系统 | |
CN206259854U (zh) | 一种车载dcdc变换器 | |
CN105827109B (zh) | 一种冗余直流变换电路及其控制方法 | |
CN209079670U (zh) | 具有充电及v2g功能的两级双向功率变换器 | |
CN105553271B (zh) | 一种三相直流变换器的控制方法 | |
CN110061626A (zh) | 一种带高压直流母线的充电站 | |
CN208571618U (zh) | 一种多绕组谐振独立电流控制的电池储能系统 | |
CN211557153U (zh) | 一种新型的双向全桥切换电路 | |
CN209313739U (zh) | 一种高频隔离型交直流变换电路 | |
CN107769389A (zh) | 一种隔离对称式串联反激电路的电池储能系统 | |
CN211075561U (zh) | 单三相兼容的高效车载双向充电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20869891 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20869891 Country of ref document: EP Kind code of ref document: A1 |