WO2021057136A1 - 一种基于dic技术的桥梁实际应力自动化测试系统 - Google Patents

一种基于dic技术的桥梁实际应力自动化测试系统 Download PDF

Info

Publication number
WO2021057136A1
WO2021057136A1 PCT/CN2020/098256 CN2020098256W WO2021057136A1 WO 2021057136 A1 WO2021057136 A1 WO 2021057136A1 CN 2020098256 W CN2020098256 W CN 2020098256W WO 2021057136 A1 WO2021057136 A1 WO 2021057136A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
dic
camera
phosphor
actual stress
Prior art date
Application number
PCT/CN2020/098256
Other languages
English (en)
French (fr)
Inventor
刘朵
张建东
熊辉
冯晓楠
王贤强
陆军
Original Assignee
苏交科集团股份有限公司
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏交科集团股份有限公司, 南京工业大学 filed Critical 苏交科集团股份有限公司
Priority to US17/763,218 priority Critical patent/US11802808B2/en
Publication of WO2021057136A1 publication Critical patent/WO2021057136A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • G01M5/005Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection

Definitions

  • the present disclosure relates to the technical field of bridge engineering detection, and in particular to a bridge actual stress automatic test system based on DIC technology.
  • the technical condition of the bridge can be assessed through detection technology, and the impact of certain defects or damages of the bridge on the quality and use of the load-bearing capacity of the bridge can be analyzed, so as to provide data for the reinforcement and maintenance of the bridge; Carry out stress monitoring, analyze the technical status of the bridge construction process, and provide technical basis for the construction.
  • Traditional bridge stress detection is dangerous, difficult, and inaccurate, and requires a lot of manpower.
  • the present disclosure proposes a bridge actual stress automatic test system based on DIC technology, which aims to solve the problem of inaccurate measurement of traditional bridge stress detection in the prior art.
  • the present disclosure proposes a bridge actual stress automatic test system based on DIC technology, including: a camera, a phosphor spray device, a computer, and a slide rail; the slide rail is arranged on both sides of the upper wing of the box-shaped concrete beam; The powder injection device is used to spray phosphor powder on the web of the box-shaped concrete beam to form speckles with different light and dark; the camera is slidingly connected with the slide rail through a bracket to take pictures of the speckles, and The captured images are transmitted to the computer; the computer is used to analyze and process the images captured by the camera and generate a stress time history diagram.
  • the phosphor spraying device is arranged at the angle between the upper wing and the web of the box-shaped concrete beam.
  • the phosphor spraying device includes a nozzle, a tube, and phosphor; the tube is provided with a chamber for placing the phosphor; the nozzle is provided on the wall of the tube and is in contact with the tube.
  • the chambers of the catheter are in communication, and the nozzles are provided with a plurality of nozzles along the longitudinal direction of the catheter.
  • nozzles are arranged equidistantly.
  • the sliding rail is fixedly connected to both sides of the upper wing by expansion screws.
  • the bracket includes a body, a sliding part and a fixing part provided at both ends of the body; the sliding part is clamped in the sliding rail and is slidably connected to the sliding rail; the fixing part It is used to clamp the camera; the body is bent so that the fixed part faces the web.
  • the beneficial effect of the present disclosure is that the DIC technology-based automatic bridge actual stress test system provided by the present disclosure performs stress test on the bridge web through the DIC technology. Compared with the traditional test method, the test process is safer and more efficient. The measurement results are accurate and the personnel investment is small.
  • FIG. 1 is a schematic diagram of the overall structure of a bridge actual stress automatic test system based on DIC technology provided by an embodiment of the disclosure
  • Fig. 2 is a schematic diagram for embodying the position of the stent provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a phosphor spraying device provided by an embodiment of the disclosure.
  • the DIC technology-based automatic bridge actual stress test system proposed by the embodiment of the present disclosure includes a camera 2, a phosphor injection device 3, a computer 4, and a slide rail 5, wherein the slide rail 5 Set on both sides of the upper wing 11 of the box-shaped concrete beam 1, the phosphor spray device 3 is used to spray phosphor powder on the web 12 of the box-shaped concrete beam 1 to form speckles with different light and dark.
  • the sliding rail 5 is slidingly connected to capture speckles and transmit the captured images to the computer 4, and the computer 4 analyzes and processes the images captured by the camera 2 and generates a stress time history diagram.
  • the embodiments of the present disclosure apply the DIC technology to the stress test of the bridge web.
  • the DIC (Digital Image Correlation, digital image correlation) technology is a high-tech formed in the measurement field in recent years.
  • the measured image is used as a measure of transmission and detection information or a carrier for analysis and utilization. This method can find out the signals that can be used through the analysis of the image. This avoids the problems of high danger, high difficulty, and inaccurate detection in traditional detection, and has the advantages of high efficiency, fast speed, and high accuracy of detection results, and also saves labor costs.
  • the phosphor spraying device 3 is arranged at the corner between the upper wing 11 and the web 12 of the box-shaped concrete beam 1, which can avoid wind, sun and rain.
  • the phosphor spraying device 3 includes a nozzle 31 , The conduit 32, the phosphor 33, wherein the conduit 32 is provided with a chamber for placing the phosphor 33, the spray head 31 is arranged on the wall of the conduit 32 and communicates with the chamber of the conduit 32, and the spray head 31 is along the length of the conduit 32 There are multiple directions.
  • a number of nozzles 31 are arranged equidistantly. Specifically, one nozzle can be set at 2 m.
  • the phosphor spray device 3 can be connected to a pneumatic device, and the phosphor 33 is sprayed out by air pressure.
  • the slide rail 5 is fixedly connected to both sides of the upper wing 11 by expansion screws 7.
  • the bracket 6 includes a body 62, a sliding part 61 and a fixing part 63 provided at both ends of the body 62, wherein the sliding part 61 is clamped in the sliding rail 5 and slidably connected to the sliding rail 5, and the fixing part 63 To clamp the camera 2, the main body 62 is bent so that the fixing portion 63 faces the web 12, so that the shooting is clearer.
  • the automatic bridge actual stress test system based on the DIC technology proposed by the embodiment of the invention can monitor the technical condition of the bridge in the entire process from construction to operation of the bridge, and can provide technical data for bridge construction to ensure construction quality and safety. It can also detect areas that cannot be detected by traditional methods.
  • DIC Digital Image Correlation
  • the method of analyzing and using the carrier which can find the signal that can be used through the analysis of the image. This avoids the problems of high danger, high difficulty, and inaccurate detection in traditional detection, and has the advantages of high efficiency, fast speed, and high accuracy of detection results, and also saves labor costs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Bridges Or Land Bridges (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本公开提供了一种基于DIC技术的桥梁实际应力自动化测试系统,包括:摄像头、荧光粉喷射装置、计算机、滑轨;滑轨设置在箱型混凝土梁的上翼两侧;荧光粉喷射装置用以对箱型混凝土梁的腹板喷涂荧光粉,形成光暗不一的散斑;摄像头通过支架与滑轨滑移连接,用以对散斑进行拍摄,并将拍摄的图像传输至计算机;计算机用以分析处理摄像头拍摄的图像,并生成应力时程图。与现有技术相比,本公开的有益效果在于,本公开提供的基于DIC技术的桥梁实际应力自动化测试系统通过DIC技术对桥梁腹板进行应力测试,较传统测试方法相比,测试过程安全且测量结果准确,人员投入少。

Description

一种基于DIC技术的桥梁实际应力自动化测试系统
本公开以2019年9月24日递交的、申请号为201910905518.2且名称为“一种基于DIC技术的桥梁实际应力自动化测试系统”的专利文件为优先权文件,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及桥梁工程检测技术领域,具体而言,涉及一种基于DIC技术的桥梁实际应力自动化测试系统。
背景技术
随着我国公共基础建设不断扩大,新建高速公路桥梁建设的项目也随之增多,同时我国还存在大量的桥梁已经随着使用时间的增多而进入了养护维修时期,据有关部门统计我国当前使用年限超过二十五年的桥梁就已经进入了老化期,在全国桥梁总数上这部分进入老化期的桥占的比例已经超过40%。并且随着时间的不断增长,进入老化期的桥梁会逐渐增多,不能继续履行桥梁的功能,对桥梁的管理养护工作逐渐得到人们的重视。所以此时桥梁检测技术就显得格外重要。可以通过检测技术对桥梁的技术状况进行一个评定,分析桥梁的某些缺陷或损伤对桥梁质量和使用承载能力的影响,从而为后面的桥梁加固维修提供数据;再者目前需要对建设中的桥梁进行应力监控,分析桥梁建设过程中的技术状况,为施工提供技术依据。传统桥梁应力检测危险性高、难度高、且测量不准确,同时需要投入大量人力。
发明内容
鉴于此,本公开提出了一种基于DIC技术的桥梁实际应力自动化测试系统,旨在解决现有技术中的传统桥梁应力检测的测量不准确的问题。
本公开提出了一种基于DIC技术的桥梁实际应力自动化测试系统,包括:摄像头、荧光粉喷射装置、计算机、滑轨;所述滑轨设置在箱型混凝土梁的上翼两侧;所述荧光粉喷射装置用以对箱型混凝土梁的腹板喷涂荧光粉,形成光暗不一的散斑;所述摄像头通过支架与所述滑轨滑移连接,用以对散斑进行拍摄,并将拍摄的图像传输至所述计算机;所述计算机用以分析处理所述摄像头拍摄的图像,并生成应力时程图。
可选地,所述荧光粉喷射装置设置在箱型混凝土梁的上翼和腹板的夹角处。
可选地,所述荧光粉喷射装置包括喷头、导管、荧光粉;所述导管内设置有用以放置所述荧光粉的腔室;所述喷头设置在所述导管的管壁上,且与所述导管的腔室连通,所述喷头沿所述导管长度方向设置有多个。
可选地,若干所述喷头等距设置。
可选地,所述滑轨通过膨胀螺丝与所述上翼的两侧固接。
可选地,所述支架包括本体以及设置在所述本体两端的滑移部、固定部;所述滑移部卡设在所述滑轨内,与所述滑轨滑动连接;所述固定部用以夹持所述摄像头;所述本体通过折弯使所述固定部正对所述腹板。
与现有技术相比,本公开的有益效果在于,本公开提供的基于DIC技术的桥梁实际应力自动化测试系统通过DIC技术对桥梁腹板进行应力测试,较传统测试方法相比,测试过程安全且测量结果准确,人员投入少。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的基于DIC技术的桥梁实际应力自动化测试系统的整体结构示意图;
图2为本公开实施例提供的用于体现支架位置的示意简图;
图3为本公开实施例提供的荧光粉喷射装置的结构示意图。
其中,上述附图包括以下附图标记:
1、箱型混凝土梁;11、上翼;12、腹板;2、摄像头;3、荧光粉喷射装置;31、喷头;32、导管;33、荧光粉;4、计算机;5、滑轨;6、支架;61、滑移部;62、本体;63、固定部;7、膨胀螺丝。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。而且,在说明书以及权利要求书中,当描述有元件“连接”至另一元件时,该元件可“直接连接”至该另一元件,或者通过第三元件“连接”至该另一元件。
参阅图1至图3,由图可知,本公开实施例提出的基于DIC技术的桥梁实际应力自动化测试系统,包括摄像头2、荧光粉喷射装置3、计算机4和滑轨5,其中,滑轨5设置在箱型混凝土梁1的上翼11两侧,荧光粉喷射装置3用以对箱型混凝土梁1的腹板12喷涂荧光粉,形成光暗不一的散斑,摄像头2通过支架6与滑轨5滑移连接,用以对散斑进行拍摄,并将拍摄的图像传输至计算机4,计算机4用以分析处理摄像头2拍摄的图像,并生成应力时程图。
与现有技术相比,本公开实施例通过将DIC技术应用于对桥梁腹板应力测试,DIC(Digital Image correlation,数字图像相关)技术是近几年来在测量领域中形成的高新技术,测量时,将测量的图像当作传递和检测信息的措施或者载体进行分析利用的方式,这种方式能够通过对图像的分析找出能够进行利用的信号。这就避免了传统检测危险高、难度高、测不准的问题,具有效率高,速度快,检测结果准确度高的优点,再者也节省了人力成本。
本实施例中,荧光粉喷射装置3设置在箱型混凝土梁1的上翼11和腹板12的夹角处,可以避免风吹日晒雨淋,具体地,荧光粉喷射装置3包括喷头31、导管32、荧光粉33,其中,导管32内设置有用以放置荧光粉33的腔室,喷头31设置在导管32的管壁上,且与导管32的腔室连通,喷头31沿导管32长度方向设置有多个,优选地,为了保证喷头喷出的荧光粉33均匀,若干喷头31等距设置,具体可以2m设置一个喷头。荧光粉喷射装置3可以和气动装置连接,通过空气压力将荧光粉33喷出。
本实施例中,滑轨5通过膨胀螺丝7与上翼11的两侧固接。
本实施例中,支架6包括本体62以及设置在本体62两端的滑移部61、固定部63,其中,滑移部61卡设在滑轨5内,与滑轨5滑动连接,固定部63用以夹持摄像头2,本体62通过折弯使固定部63正对腹板12,使得拍摄更加清晰。
发明实施例提出的基于DIC技术的桥梁实际应力自动化测试系统可以监测桥梁从建设到运营的全部过程的桥梁技术状况,可以为桥梁施工提供技术资料,保证施工质量和安全。还可以对传统方法无法检测的区域进行检测。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
通过将DIC技术应用于对桥梁腹板应力测试,DIC(Digital Image correlation,数字图像相关)技术是近几年来在测量领域中形成的高新技术,测量时,将测量的图像当作传递和检测信息的措施或者载体进行分析利用的方式,这种方式能够通过对图像的分析找出能够进行利用的信号。这就避免了传统检测危险高、难度高、测不准的问题,具有效率高,速度快,检测结果准确度高的优点,再者也节省了人力成本。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (6)

  1. 一种基于DIC技术的桥梁实际应力自动化测试系统,其特征在于,包括:摄像头(2)、荧光粉喷射装置(3)、计算机(4)、滑轨(5);
    所述滑轨(5)设置在箱型混凝土梁(1)的上翼(11)两侧;
    所述荧光粉喷射装置(3)用以对箱型混凝土梁(1)的腹板(12)喷涂荧光粉,形成光暗不一的散斑;
    所述摄像头(2)通过支架(6)与所述滑轨(5)滑移连接,用以对散斑进行拍摄,并将拍摄的图像传输至所述计算机(4);
    所述计算机(4)用以分析处理所述摄像头(2)拍摄的图像,并生成应力时程图。
  2. 根据权利要求1所述的基于DIC技术的桥梁实际应力自动化测试系统,其特征在于,所述荧光粉喷射装置(3)设置在箱型混凝土梁(1)的上翼(11)和腹板(12)的夹角处。
  3. 根据权利要求2所述的基于DIC技术的桥梁实际应力自动化测试系统,其特征在于,所述荧光粉喷射装置(3)包括喷头(31)、导管(32)、荧光粉(33);
    所述导管(32)内设置有用以放置所述荧光粉(33)的腔室;
    所述喷头(31)设置在所述导管(32)的管壁上,且与所述导管(32)的腔室连通,所述喷头(31)沿所述导管(32)长度方向设置有多个。
  4. 根据权利要求3所述的基于DIC技术的桥梁实际应力自动化测试系统,其特征在于,若干所述喷头(31)等距设置。
  5. 根据权利要求1所述的基于DIC技术的桥梁实际应力自动化测试系统,其特征在于,所述滑轨(5)通过膨胀螺丝(7)与所述上翼(11)的两侧固接。
  6. 根据权利要求1所述的基于DIC技术的桥梁实际应力自动化测试系统,其特征在于,所述支架(6)包括本体(62)以及设置在所述本体(62)两端的滑移部(61)、固定部(63);
    所述滑移部(61)卡设在所述滑轨(5)内,与所述滑轨(5)滑动连接;
    所述固定部(63)用以夹持所述摄像头(2);
    所述本体(62)通过折弯使所述固定部(63)正对所述腹板(12)。
PCT/CN2020/098256 2019-09-24 2020-06-24 一种基于dic技术的桥梁实际应力自动化测试系统 WO2021057136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/763,218 US11802808B2 (en) 2019-09-24 2020-06-24 Automatic test system for actual stress of a bridge based on DIC technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910905518.2A CN110470444B (zh) 2019-09-24 2019-09-24 一种基于dic技术的桥梁实际应力自动化测试系统
CN201910905518.2 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021057136A1 true WO2021057136A1 (zh) 2021-04-01

Family

ID=68516608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098256 WO2021057136A1 (zh) 2019-09-24 2020-06-24 一种基于dic技术的桥梁实际应力自动化测试系统

Country Status (3)

Country Link
US (1) US11802808B2 (zh)
CN (1) CN110470444B (zh)
WO (1) WO2021057136A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470444B (zh) * 2019-09-24 2020-12-01 苏交科集团股份有限公司 一种基于dic技术的桥梁实际应力自动化测试系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013158933A1 (en) * 2012-04-18 2013-10-24 Drexel University Integration of digital image correlation with acoustic emissions
CN103439029A (zh) * 2013-09-11 2013-12-11 南京工业大学 一种钢结构残余应力检测dic系统可调固定支架
CN109029278A (zh) * 2018-06-29 2018-12-18 广西大学 格栅防护边坡表面应力应变的监测装置及监测方法
CN109945776A (zh) * 2019-02-01 2019-06-28 天津大学 一种电化学中基于荧光颗粒标记与主动光学测量的位移/应变测量方法
CN110470444A (zh) * 2019-09-24 2019-11-19 苏交科集团股份有限公司 一种基于dic技术的桥梁实际应力自动化测试系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724321A (en) * 1986-08-11 1988-02-09 The United States Of America As Represented By The Secretary Of The Army Beam intensity monitor for a high energy particle beam system
TWI405967B (zh) * 2009-12-25 2013-08-21 Univ Chang Gung While the detection of a variety of small nucleic acid method
CN105067208B (zh) * 2015-08-14 2017-08-25 哈尔滨工业大学 一种基于ccd的多通道桥梁挠度监测方法
CN207846210U (zh) * 2018-01-26 2018-09-11 苏交科集团股份有限公司 桥梁检测用行走装置
CN207706334U (zh) * 2018-01-26 2018-08-07 苏交科集团股份有限公司 桥梁检测装置
US10845187B2 (en) * 2018-03-02 2020-11-24 Drexel University Multiscale deformation measurements leveraging tailorable and multispectral speckle patterns

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013158933A1 (en) * 2012-04-18 2013-10-24 Drexel University Integration of digital image correlation with acoustic emissions
CN103439029A (zh) * 2013-09-11 2013-12-11 南京工业大学 一种钢结构残余应力检测dic系统可调固定支架
CN109029278A (zh) * 2018-06-29 2018-12-18 广西大学 格栅防护边坡表面应力应变的监测装置及监测方法
CN109945776A (zh) * 2019-02-01 2019-06-28 天津大学 一种电化学中基于荧光颗粒标记与主动光学测量的位移/应变测量方法
CN110470444A (zh) * 2019-09-24 2019-11-19 苏交科集团股份有限公司 一种基于dic技术的桥梁实际应力自动化测试系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, JUNDA: "Studies on Theory and Application of Digital Speckle Correlation Method", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE (BASIC SCIENCES), no. 8, 15 August 2008 (2008-08-15), pages 1 - 128, XP055795703, ISSN: 1674-022X *

Also Published As

Publication number Publication date
US20220357235A1 (en) 2022-11-10
CN110470444A (zh) 2019-11-19
CN110470444B (zh) 2020-12-01
US11802808B2 (en) 2023-10-31

Similar Documents

Publication Publication Date Title
CN111239189A (zh) 一种既有建筑玻璃幕墙的检测方法
CN106284070A (zh) 带检测系统的轻型碳纤维爬索机器人及其用于拉索检测的方法
CN109580137B (zh) 一种基于计算机视觉技术的桥梁结构位移影响线实测方法
WO2021057136A1 (zh) 一种基于dic技术的桥梁实际应力自动化测试系统
CN102506744B (zh) 一种基于数字图像的高层结构动态位移监测方法
CN104316443A (zh) 一种基于ccd后向散射的pm 2.5浓度监测方法
CN105891228A (zh) 基于机器视觉的光纤外观缺陷检测及外径测量装置
CN102661715A (zh) Ccd式的间隙测量系统及方法
CN107218891A (zh) 一种尺寸测量方法、装置及系统
CN114594533A (zh) 一种基于自适应高斯混合算法的视频雨量监测方法与装置
CN102914727B (zh) 一种测试紫外检测仪的紫外可见光重合偏差的系统及方法
CN106855394A (zh) 铁路声风屏障安全监测装置、系统及方法
CN203881301U (zh) 混凝土裂缝现场检测与成像装置
CN113740155A (zh) 一种金属料断后伸长率、最大力总延伸率、断面收缩率自动测量设备
CN117073910A (zh) 一种换流站阀厅屋顶漏水监测系统
CN114998789A (zh) 一种基于视频识别的滑坡地质灾害变形监测系统和方法
WO2022183678A1 (zh) 一种多相机拍摄的疲劳裂纹三维测量系统和方法
CN104697629A (zh) 基于图像分析的照明环境测量方法
CN105389824A (zh) 电气化铁路接触网光学成像设备的标定装置及标定方法
CN205374979U (zh) 一种180°及以上超广角镜头检测装置
CN105214906A (zh) 一种涂布装置及其清除异物误报的方法
CN205210957U (zh) 电气化铁路接触网光学成像设备的标定装置
CN207991461U (zh) 一种受电弓碳滑板磨耗检测装置
CN109443221A (zh) 一种视频辅助的激光位移检测装置
CN106197660B (zh) 公路隧道照明评估装置及动态评估方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869432

Country of ref document: EP

Kind code of ref document: A1