WO2021056983A1 - 电池模组 - Google Patents

电池模组 Download PDF

Info

Publication number
WO2021056983A1
WO2021056983A1 PCT/CN2020/079532 CN2020079532W WO2021056983A1 WO 2021056983 A1 WO2021056983 A1 WO 2021056983A1 CN 2020079532 W CN2020079532 W CN 2020079532W WO 2021056983 A1 WO2021056983 A1 WO 2021056983A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
buffer member
battery
thickness
battery module
Prior art date
Application number
PCT/CN2020/079532
Other languages
English (en)
French (fr)
Inventor
邵长健
周锦兵
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921648504.9U external-priority patent/CN210897379U/zh
Priority claimed from CN201910933711.7A external-priority patent/CN110828727B/zh
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Priority to AU2020202293A priority Critical patent/AU2020202293B2/en
Priority to JP2020518509A priority patent/JP7175972B2/ja
Priority to EP20712426.4A priority patent/EP4037075A4/en
Priority to US17/218,101 priority patent/US20210218100A1/en
Publication of WO2021056983A1 publication Critical patent/WO2021056983A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/269Mechanical means for varying the arrangement of batteries or cells for different uses, e.g. for changing the number of batteries or for switching between series and parallel wiring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • This application relates to an energy storage device, and more particularly to a battery, which has a rechargeable battery module, for example, a battery module used in electric vehicles such as electric bicycles and electric vehicles.
  • the battery Due to the increasing demand for energy conservation and environmental protection, electric vehicles such as electric bicycles and electric vehicles are being used more and more widely.
  • the battery has a pivotal role and significance as a power source, which is directly related to the manufacturing cost, service life and so on of this type of electric transportation.
  • the battery has problems such as insufficient life span and a sharp decline in capacity as the number of recharges increases.
  • the soft pack lithium battery in the prior art has some shortcomings.
  • the battery cell expands or the battery pole piece is deformed due to the lithium insertion behavior of the negative electrode material, and the thickness of the battery cell becomes thicker, so the battery capacity rapidly decays, resulting in the shortening of the cycle life of the entire battery.
  • an arrangement method in which a gap is reserved between the battery core and the battery core is generally adopted at present. But this structure will cause other problems. For example, since there is no pressure between the battery cell and the battery cell, the overall structure of the battery module is relatively loose, and the battery cell can expand freely during use, which will also shorten the cycle life of the battery cell.
  • this application aims to solve at least one of the above technical problems existing in the prior art.
  • this application provides a battery module: the battery cell is under certain pressure when it is not being charged, so the overall structure of the battery module is compact and in a compressed state, and the battery cell is allowed to have a certain degree when charging. As the discharge progresses and the cell continues to shrink, the cell still bears a certain amount of pressure, so as to continue to maintain a compressed state. In this way, the overall cycle life of the battery module is significantly prolonged.
  • a battery module which includes: a plurality of battery cells stacked in sequence; and at least one buffer member, which is disposed between at least two of the plurality of battery cells, and The buffer member can be elastically deformed, so that when the battery core expands, the buffer member provides an expansion space, and when the battery core contracts, the buffer member recovers.
  • restoration is not necessarily 100% restoration, that is, it may not be completely restored to its original state.
  • the buffer member is generally close to the adjacent battery core.
  • at least one of the thickness, length, and width of the buffer member is associated with a corresponding one of the thickness, length, or width of the battery core.
  • a force of 0 to 1 Mpa is provided to (for example, the cell adjacent to it). This may be determined by the performance parameters of the cushioning member, or jointly determined by the performance parameters of the cushioning member and the size (for example, thickness) of the cushioning member.
  • the thickness, length, and width of the buffer member is associated with a corresponding one of the thickness, length, or width of the battery core.
  • a force of 0 to 0.5Mpa is provided to (for example, the cell adjacent to it); when the buffer member is at 70%
  • a force of 0.5 to 0.8 Mpa is provided to (for example, the cell adjacent to it).
  • the first number is greater than or equal to the second number, and the first number is greater than or equal to the second number.
  • the number is N
  • the thickness of the buffer member is N* (0.12 to 0.18) times the thickness of the battery core.
  • the thickness of the buffer member is N* (0.14 to 0.16) times the thickness of the battery core.
  • the buffer member is provided between adjacent cells in the plurality of cells, and the thickness of the buffer member is 0.14 to 0.16 times the thickness of the cell.
  • the thickness of the buffer member is about 0.15 times the thickness of the battery core.
  • the buffer member is provided between each two of the plurality of cells and two adjacent cells, and the thickness of the buffer member is the same as the thickness of the cell. 0.28 to 0.32 times the thickness of the core. For example, the thickness of the buffer member is about 0.3 times the thickness of the battery core.
  • the cushioning member contains polypropylene, polyethylene or EVA foam.
  • both the battery core and the buffer member have a flat structure, and the length of the buffer member is 0.9 to 1.05 times the length of the battery core.
  • the length of the buffer member is 0.95 to 1.0 times the length of the battery core.
  • both the battery core and the buffer member have a flat structure, and the width of the buffer member is 0.9 to 1.05 times the width of the battery core.
  • the width of the buffer member is 0.95 to 1.0 times the width of the battery core.
  • the battery module further includes a cell holder for supporting the battery cell, and the battery cell holder has a frame structure to cover the periphery of the battery cell to prevent it from being exposed.
  • the battery module further includes a first end plate and a second end plate that are arranged oppositely, wherein each of the battery cell, the buffer member, and the battery cell bracket are located at the first end. The plate and the second end plate are clamped by them.
  • the battery module further includes a fixing member for fixing the battery cell, the buffer member, and the battery cell bracket to the first end plate and the second end Between the boards.
  • the fixing member may be an annular binding member, which is made of a steel belt.
  • the battery module includes an elastically deformable barrier layer disposed between the first end plate and the cell support adjacent to the first end plate.
  • the battery module includes an elastically deformable barrier layer disposed between the second end plate and the cell support adjacent thereto.
  • the buffer member is in a certain strain range during the charging of the battery module and the expansion of the battery cell. Deformation occurs inside (for example, 0% to 85%), and a certain force (for example, 0 to 1Mpa) is always provided to the battery during this period.
  • the buffer can not only effectively provide a buffer for the battery cell, but also provide proper pressure to the battery core at the same time.
  • the buffer member recovers due to its elasticity, and it can still apply a certain pressure to the cell, so that the cell continues to maintain a compressed state. In this way, the cycle life of the battery cell and even the battery module as a whole can be significantly prolonged.
  • FIG. 1 is a schematic diagram of the overall structure of an embodiment of a battery module according to the present application.
  • Fig. 2 is an exploded schematic diagram of the battery module shown in Fig. 1 provided according to the present application;
  • Fig. 3 is an exploded schematic diagram of an embodiment of a sub-module in the battery module provided by the present application
  • FIG. 4 is an exploded schematic diagram of another embodiment of the seed module in the battery module provided by the present application.
  • FIG. 5 is an exploded schematic diagram of an embodiment of still another sub-module in the battery module provided by the present application.
  • FIG. 6 is a schematic diagram of the relationship between the strain range of the buffer member in the battery module provided by the present application and the generated pressure (ie, the force applied to (for example) the adjacent battery cell);
  • FIG. 7A is a schematic diagram of the capacity retention rate of the battery module according to the preferred embodiment provided by the present application.
  • FIG. 7B is a schematic diagram of the capacity retention rate of the battery module according to Comparative Example 1 provided by the present application.
  • FIG. 7C is a schematic diagram of the capacity retention rate of the battery module according to Comparative Example 2 provided by the present application.
  • FIG. 8A is a schematic diagram of pressure changes of the battery module according to the preferred embodiment provided by the present application.
  • FIG. 8B is a schematic diagram of the pressure change of the battery module according to Comparative Example 1 provided by the present application.
  • FIG. 8C is a schematic diagram of pressure changes of the battery module according to Comparative Example 2 provided by the present application.
  • Fig. 1 shows a schematic diagram of the overall structure of a battery module provided according to the present application.
  • the battery module 100 may include: a battery cell 1, a battery cell support 3, end plates 41, 42, and a fixing member 5.
  • the battery module 100 may further include: a buffer (not labeled in FIG. 1).
  • the battery module 100 may include a plurality of battery cells 1, a plurality of battery cell supports 3, end plates 41 and 42, and a plurality of fixing members 5.
  • the battery module 100 may further include: a plurality of buffer members (not labeled in FIG. 1).
  • the battery cell 1 may include a plate-like structure.
  • the cell 1 may include, but is not limited to, for example, a polygonal flat structure.
  • the battery cell 1 may include, but is not limited to, for example, a quadrilateral flat structure.
  • the battery cell 1 may include, but is not limited to, for example, a rectangular plate-shaped structure.
  • the battery cell 1 may include, but is not limited to, for example, a square flat structure.
  • the battery cell 1 can be used to store energy.
  • each battery cell 1 has substantially the same size (length, width, and thickness), so it is easy to manufacture and install.
  • the cell support 3 may include a frame structure to cover the periphery of the cell 1 to prevent it from being exposed.
  • the battery cell 1 can be arranged in the frame of the battery cell holder 3.
  • the number of battery cell holders 3 is the same as that of battery cells 1. That is, one cell holder 3 corresponds to one cell 1.
  • the cell support 3 may include, but is not limited to, for example, a polygonal frame structure.
  • the cell support 3 may include, but is not limited to, for example, a quadrilateral frame structure.
  • the cell support 3 may include, but is not limited to, for example, a rectangular frame structure.
  • the cell support 3 may include, but is not limited to, for example, a square frame structure.
  • the structure of the cell support 3 can match the structure of the cell 1.
  • the cell support 3 may be located under the cell 1.
  • the battery cell bracket 3 can be used to place the battery cell 1.
  • the cell support 3 can be used to support the cell 1.
  • the cell holder 3 can be used to fix the cell 1.
  • the cell support 3 can be connected to the cell 1.
  • the cell support 3 can be directly connected to the cell 1.
  • the cell support 3 can be directly connected to the cell 1 by, but not limited to, for example, a mortise joint method.
  • the battery core holder 3 can be indirectly connected to the battery core 1 through, but not limited to, for example, the use of a connector (not labeled in FIG. 1 ).
  • the connecting member may include, but is not limited to, for example, an adhesive and the like.
  • the end plate 41 may include a generally flat plate-like structure.
  • the end plate 41 may include, but is not limited to, for example, a polygonal flat structure.
  • the end plate 41 may include, but is not limited to, for example, a quadrilateral flat plate structure.
  • the end plate 41 may include, but is not limited to, for example, a rectangular flat plate structure.
  • the end plate 41 may include, but is not limited to, for example, a square flat plate structure.
  • the structure of the end plate 41 can match the structure of the cell support 3 adjacent to it.
  • the end plate 41 may be located below/outside the cell holder 3 (left side in FIGS. 1 and 2).
  • the end plate 41 can be used to fix the cell bracket 3.
  • the end plate 41 can be connected with the battery cell bracket 3.
  • the end plate 42 may also include a generally flat plate-like structure.
  • the end plate 42 may include, but is not limited to, for example, a polygonal flat structure.
  • the end plate 42 may include, but is not limited to, for example, a quadrilateral flat plate structure.
  • the end plate 42 may include, but is not limited to, for example, a rectangular flat structure.
  • the end plate 42 may include, but is not limited to, for example, a square flat structure.
  • the structure of the end plate 42 can match the structure of the cell support 3 adjacent to it.
  • the end plate 42 may be located above/outside the cell holder 3 (right side in FIGS. 1 and 2).
  • the end plate 42 can be used to fix the cell bracket 3.
  • the end plate 42 can be connected to the battery cell bracket 3.
  • the end plate 41 and the end plate 42 may be arranged opposite to each other.
  • the battery cell 1 may be located between the end plate 41 and the end plate 42.
  • the cell support 3 may be located between the end plate 41 and the end plate 42.
  • the end plate 41 and the end plate 42 are arranged opposite to the outermost sides of the two ends, respectively.
  • the end plate 41 and the end plate 42 can clamp the cell holder 3 and the cell 1.
  • the fixing member 5 can be sleeved on the end plate 41 and the end plate 42.
  • the fixing member 5 may be a ring structure.
  • the fixing member 5 may be a ring-shaped binding member.
  • the fixing member 5 can fix the battery core 1 and the battery support 3 between the end plate 41 and the end plate 42.
  • the fixing member 5 may have elasticity.
  • the fixing member 5 may include, but is not limited to, for example, steel, rubber, or other suitable materials.
  • Fig. 2 is an exploded schematic diagram of the battery module shown in Fig. 1.
  • the battery module 100 provided according to the embodiment of the present application may include a battery cell 1, at least one buffer member 2, a battery cell support 3, end plates 41, 42, and a fixing member 5.
  • the battery module 100 may include a plurality of battery cells 1, a plurality of buffer members 2, a plurality of battery cell supports 3, end plates 41, 42, and a plurality of fixing members 5.
  • each cell 1, each buffer member 2, and each cell holder 3 have substantially the same size (length, width, and thickness).
  • a plurality of electric cores 1 can be stacked one after another, and the buffer member 2 is arranged between at least two of the plurality of electric cores 1.
  • the buffer member 2 can be elastically deformed, so that when the cell 1 expands, the buffer member 2 absorbs its expansion, and when the cell 1 contracts, the buffer member 2 recovers and closely adheres to the adjacent cell 1.
  • at least one of the thickness, length, and width of the buffer member 2 is associated with the corresponding one of the thickness, length, or width of the battery core 1, so that when the buffer member 2 is between 0% and 85%
  • a force of 0 to 1 Mpa is provided to the cell 1 adjacent to it. Therefore, during charging and during the expansion of the battery cell, the buffer member always provides a force of 0 to 1Mpa to the battery cell.
  • the buffer member 2 can not only effectively provide a buffer for the battery cell 1, but also provide proper pressure to the battery core 1 at the same time. In the process of discharging, as the cell 1 shrinks, the buffer member 2 recovers due to its elasticity, and it can still apply a certain pressure to the cell 1 so that the cell 1 continues to maintain a compressed state. In this way, the overall cycle life of the battery module is significantly extended.
  • the battery module 100 may include a barrier layer 2'disposed between the first end plate 41 and the cell holder 3 adjacent thereto, or may include a barrier layer 2'disposed between the first end plate 41 and the cell holder 3 adjacent thereto.
  • the barrier 2'between the end plate 42 and the cell support 3 adjacent thereto see FIG. 2). That is, in this embodiment, the battery module 100 may include a plurality of battery cells 1, a plurality of battery cell holders 3, a plurality of buffer members 2, a plurality of barrier layers 2', end plates 41, 42, and a plurality of fixed Piece 5.
  • the barrier layer 2 ′ can also be made of the same material as the buffer member 2, so it can also be elastically deformed, thereby also providing a buffer for the expansion of the battery core 1.
  • the buffer 2 may include a plate-like structure.
  • the buffer member 2 may include, but is not limited to, for example, a polygonal flat structure.
  • the buffer member 2 may include, but is not limited to, for example, a quadrilateral flat structure.
  • the buffer 2 may include, but is not limited to, for example, a rectangular flat structure.
  • the buffer 2 may include, but is not limited to, for example, a square flat structure.
  • the buffer 2 may be located between the battery core 1 and the battery core 1.
  • the buffer member 2 can be used to provide a buffer function to the battery cell 1.
  • the buffer member 2 can be used to provide a buffer function to the cell holder 3.
  • the buffer 2 can be used to provide a buffer to the end plate 41.
  • the buffer 2 can be used to provide a buffering effect to the end plate 42.
  • the buffer member 2 may include, but is not limited to, for example, foam.
  • the buffer member 2 may include, but is not limited to, for example, foam made of microcellular foamed polyolefin materials.
  • the buffer member 2 may include, but is not limited to, for example, polypropylene, polyethylene or EVA foam.
  • the density of the buffer member 2 can be between 10 and 500 kg/m 3 .
  • the density of the buffer member 2 can preferably be between 10 and 300 kg/m 3 .
  • the density of the buffer member 2 can optimally be between 20-60 kg/m 3 .
  • the hardness of the buffer member 2 can be between 20 and 80 degrees (HC).
  • the hardness of the buffer member 2 can preferably be between 30-70 degrees (HC).
  • the hardness of the cushioning member 2 is optimally between 50 and 70 degrees (HC).
  • the buffer 2 may have air holes.
  • the pore diameter of the buffer member 2 can be between 10 and 300 microns.
  • the pore diameter of the buffer member 2 can preferably be between 10 and 150 microns.
  • the pore diameter of the buffer member 2 is optimally between 10 and 80 microns.
  • the size of the buffer member 2 may be related to the size of the battery cell 1. In other words, the size of the buffer member 2 can be determined according to the size of the cell 1. As mentioned above, generally, each battery cell in the same battery module 100 has substantially the same size.
  • the size of the cell 1 may include thickness.
  • the size of the cell 1 may include the length.
  • the size of the cell 1 may include the width.
  • the size of the buffer member 2 may include the thickness.
  • the size of the buffer member 2 may include the length.
  • the size of the buffer member 2 may include the width.
  • the buffer member 2 may have certain elasticity. The buffer 2 can be changed under the action of the squeezing force.
  • the buffer member 2 when the cell 1 becomes thicker due to expansion (charging process), the buffer member 2 may become thinner due to being squeezed by it, and the buffer member 2 may provide a certain buffer for the cell 1. In some embodiments, when the cell 1 becomes thin due to shrinkage (discharge process), the buffer member 2 can be restored to the original thickness (or close to the original thickness) under the action of elastic force, and the buffer member 2 can prevent the cell There is looseness between 1 and the battery support 3.
  • the spacer 2' may include a plate-like structure.
  • the spacer 2' may include, but is not limited to, for example, a polygonal flat structure.
  • the spacer 2' may include, but is not limited to, for example, a quadrilateral flat structure.
  • the spacer 2' may include, but is not limited to, for example, a rectangular plate-shaped structure.
  • the spacer 2' may include, but is not limited to, for example, a square plate-like structure.
  • the barrier 2 ′ can be located under the cell support 3.
  • the barrier 2 ′ can be located between the cell support 3 and the end plates 41 and 42.
  • the interlayer 2' can be used to provide a buffering effect to the battery core 1.
  • the barrier 2 ′ can be used to provide a buffering effect to the cell support 3.
  • the barrier 2 ′ can be used to provide a cushioning effect to the end plate 41.
  • the barrier 2' may include, but is not limited to, for example, foam.
  • the barrier layer 2' may include, but is not limited to, for example, foam made of microcellular foamed polyolefin materials.
  • the barrier 2' may include, but is not limited to, for example, polypropylene, polyethylene or EVA foam.
  • the density of the barrier layer 2'can be between 10 and 500 kg/m 3 .
  • the density of the barrier layer 2'can preferably be between 10 and 300 kg/m 3 .
  • the density of the barrier layer 2'can optimally be between 20-60 kg/m 3 .
  • the hardness of the barrier layer 2'can be between 20 and 80 degrees (HC).
  • the hardness of the barrier layer 2'can preferably be between 30-70 degrees (HC).
  • the hardness of the barrier layer 2'can optimally be between 50 and 70 degrees (HC).
  • the barrier 2' may have pores.
  • the pore diameter of the barrier layer 2'can be between 10 and 300 microns.
  • the pore diameter of the barrier layer 2'can preferably be between 10 and 150 microns.
  • the pore diameter of the barrier layer 2' is optimally between 10 and 80 microns.
  • the size of the barrier layer 2 ′ can be related to the size of the cell 1. In other words, the size of the barrier layer 2 ′ can be determined according to the size of the cell 1.
  • the size of the cell 1 may include thickness.
  • the size of the cell 1 may include the length.
  • the size of the cell 1 may include the width.
  • the size of the barrier 2' may include thickness.
  • the size of the barrier 2' may include the length.
  • the size of the barrier 2' may include the width.
  • the barrier 2' may have a certain degree of elasticity.
  • the barrier 2' can be changed under the action of squeezing force. In some embodiments, when the cell 1 becomes thicker due to expansion, the barrier layer 2 ′ may become thinner due to being squeezed by it, and the barrier layer 2 ′ may provide a certain buffer for the cell 1.
  • the sub-module 300 may include a unit A.
  • the sub-module 300 may include a plurality of units A.
  • a battery module may include multiple sub-modules 300.
  • a unit A may include a battery cell 1, a buffer member 2 and a battery cell holder 3.
  • the battery cell holder 3 may have a frame structure, and the battery cell 1 is installed in the frame of the battery cell holder 3.
  • the buffer member 2 is located on one side of the cell 1 so as to separate it from the adjacent cell 1 (that is, the cell 1 of another unit A).
  • a buffer member 2 is provided between each adjacent battery cell 1 among the plurality of battery cells 1 (that is, a "buffer member/battery core/buffer member/battery core /Buffer...Battery/buffer" structure).
  • the size of the buffer member 2 may depend on the size of the cell 1.
  • the size of the cell 1 may include thickness.
  • the size of the cell 1 may include the length.
  • the size of the cell 1 may include the width.
  • the size of the buffer member 2 may include the thickness.
  • the size of the buffer member 2 may include the length.
  • the size of the buffer member 2 may include the width.
  • the ratio of the size of the buffer member 2 to the size of the battery cell 1 is very important. For example, compared with the battery cell 1, if the buffer member 2 is too thin, it may not be able to effectively provide a buffer for the battery cell 1, because the deformation of the buffer member 2 is very limited and cannot provide enough space for the battery core 1 to expand.
  • the thickness of the buffer member 2 is too thick, the space of the battery cell 1 will be unnecessarily occupied, so that the overall capacity and efficiency of the battery module will decrease, and the overall volume of the battery module will increase.
  • the thickness T1 of the buffer member 2 may be associated with the thickness T0 of the cell 1.
  • the thickness T1 of the buffer member 2 may depend on the thickness T0 of the cell 1.
  • the thickness of the buffer member 2 is 0.12 to 0.18 times the thickness of the cell 1 (ie, 0.12T0 ⁇ T1 ⁇ 0.18T0). More preferably, the thickness of the buffer member 2 is 0.14 to 0.16 times the thickness of the cell 1 (ie, 0.14T0 ⁇ T1 ⁇ 0.16T0).
  • the thickness of the buffer member 2 is optimally about 0.15 times the thickness of the cell 1.
  • the length L1 of the buffer member 2 may be associated with the length L0 of the cell 1 or depends on the length L0 of the cell 1. Specifically, for example, the length L1 of the buffer member 2 may be greater than or equal to 0.8 times the length L0 of the cell 1, and more preferably may be greater than or equal to 0.9 times the length L0 of the cell 1.
  • the length L1 of the buffer member 2 is 0.9 to 1.05 times the length of the cell 1 (ie, 0.9L0 ⁇ L1 ⁇ 1.05L0), more preferably the length L1 of the cell 1
  • the length is 0.95 to 1.0 times (ie, 0.95L0 ⁇ L1 ⁇ L0)
  • the length of the buffer member 2 is preferably about 0.95 times the length of the cell 1.
  • the width W1 of the buffer member 2 may be associated with the width W0 of the battery cell 1 or may depend on the width W0 of the battery cell 1. In unit A, the width W1 of the buffer member 2 may be greater than or equal to 0.8 times the width W0 of the battery cell 1, and more preferably greater than or equal to 0.9 times the width W0 of the battery cell 1.
  • the width W1 of the buffer member 2 is 0.9 to 1.05 times the length of the cell 1 (ie, 0.9W0 ⁇ W1 ⁇ 1.05W0), and more preferably the width W1 of the cell 1
  • the length is 0.95 to 1.0 times (ie, 0.95W0 ⁇ W1 ⁇ 1.0W0)
  • the width of the buffer member 2 is preferably about 0.95 times the width of the cell 1.
  • the thickness of the buffer member 2 may be about 0.15 times the thickness of the cell 1.
  • the buffer member 2 with this thickness can bring about superior technical effects: it can not only effectively provide a buffer for the battery cell 1, but also does not unreasonably occupy the space of the battery cell 1, which is beneficial to increase the overall capacity of the battery module.
  • the length of the buffer member 2 in the case of matching with a suitable length of the buffer member 2, but not limited to, for example, can be about 0.95 times the length of the battery cell 1, which can also make the battery module at a certain Within the charging cycle (for example, 4,500 times), the battery capacity is maintained above a certain level.
  • the width of the buffer member 2 is about 0.95 times the width of the battery core 1, which can also make the battery module in a certain Maintain the battery capacity above a certain level within the charging cycle (for example, 4500 times).
  • the sub-module 400 may include one unit B.
  • the sub-module 400 may include a plurality of units B.
  • the sub-module 400 may include a plurality of cells B arranged periodically.
  • a unit B may include a battery cell 1, a battery cell 1', a battery cell support 3, and a buffer member 2.
  • the battery core holder 3 may have a frame structure, and the battery cores 1, 1 ′ are respectively installed in the frame of the battery core holder 3.
  • the cell 1' is located on one side of the cell 1, so that the two are stacked together, and the buffer 2 is located on the other side of the cell 1, so as to connect it with the adjacent (that is, the cell 1'of the other unit B). , 1 separated.
  • the battery module constituted in this way is different from the battery module constituted by the unit A.
  • a buffer member 2 is arranged between every two adjacent battery cores 1 among the plurality of battery cells 1 (that is, the formation of " Buffer/battery/battery/buffer/battery/battery/buffer...battery/battery/buffer" structure).
  • the size of the buffer member 2 may depend on the size of the cell 1.
  • the size of the cell 1 may include thickness.
  • the size of the cell 1 may include the length.
  • the size of the cell 1 may include the width.
  • the size of the buffer member 2 may include the thickness.
  • the size of the buffer member 2 may include the length.
  • the size of the buffer member 2 may include the width.
  • the ratio of the size of the buffer member 2 to the size of the battery cell 1 is very important. For example, compared with the battery cell 1, if the buffer member 2 is too thin, it may not be able to effectively provide a buffer for the battery cell 1, because the deformation of the buffer member 2 is very limited and cannot provide enough space for the battery core 1 to expand. For example, compared with the battery cell 1, if the thickness of the buffer member 2 is too thick, it will uselessly occupy the space of the battery cell, so that the overall capacity and efficiency of the battery module will decrease, and the overall volume of the battery module will become larger.
  • the thickness T1 of the buffer member 2 may be associated with the thickness T0 of the cell 1.
  • the thickness T1 of the buffer member 2 may depend on the thickness T0 of the cell 1.
  • the thickness of the buffer member 2 is 0.24 to 0.36 times the thickness of the cell 1 (ie, 0.24T0 ⁇ T1 ⁇ 0.36T0). More preferably, the thickness of the buffer member 2 is 0.28 to 0.32 times the thickness of the cell 1 (ie, 0.28T0 ⁇ T1 ⁇ 0.32T0).
  • the thickness of the buffer member 2 is preferably about 0.3 times the thickness of the battery core 1.
  • the relationship between the length and width of the buffer member 2 and the length and width of the battery core 1 is the same as the relationship between the length and width of the buffer member 2 and the length and width of the battery core 1 in unit A, see above, this Do not repeat it here.
  • the buffer 2 with the best thickness ratio (that is, the thickness of the buffer 2 is 0.3 times the thickness of the cell 1) can bring superior technical effects: it can not only be effective for the cells 1, 1' It provides a buffer without unreasonably occupying the space of the battery core 1, 1', which is beneficial to increase the overall capacity of the battery module.
  • the length of the buffer member 2 can be about 0.95 times the length of the battery core 1, 1', and it can also make the battery mold
  • the battery can maintain the battery capacity above a certain level within a certain charging cycle (for example, 4,500 charging times).
  • the width of the buffer member 2 is about 0.95 times the width of the cell 1, which can also make the battery module in a certain Maintain the battery capacity above a certain level within the charging cycle (for example, 4,500 charging times).
  • the same battery module may include multiple cells A and B at the same time.
  • FIG. 5 is similar to FIGS. 3 and 4, and also shows an exploded schematic diagram of an embodiment of the sub-module 500 in the battery module provided according to the present application.
  • cell A and cell B are arranged periodically.
  • Unit A includes a battery cell 1, a buffer member 2 and a battery cell support 3.
  • the cell 1 is installed in the cell holder 3, and the buffer 2 is located on one side of the cell 1, so as to separate it from the cells 1, 1'in the unit B.
  • there are different numbers of cells on both sides of the buffer 2 (the left side of the figure has two cells (two cells in unit B), and the right side has one cell (in unit A). Cell)), thereby forming a structure of “cell/cell/buffer/cell/buffer/cell/cell.../buffer”.
  • the thickness T1 of the buffer member 2 is still associated with the thickness T0 of the cells 1, 1'.
  • the size of the barrier layer 2 ′ provided between the first end plate 41, the second end plate 42 and the cell support 3 adjacent thereto can be designed with reference to the size of the buffer member 2.
  • the thickness of the interlayer 2' is N*(0.14 to 0.16) times the thickness of the cell 1, where N is the number of cells 1 adjacent to it.
  • the thickness of the interlayer 2' is N*0.15 times the thickness of the battery core 1.
  • the thickness, length, and width of the buffer member 2 are associated with the corresponding one of the thickness, length, or width of the battery cell 1, when the buffer member 2 is When deformation occurs in the strain range of 0% to 85%, a force of 0 to 1Mpa is provided to (for example, the adjacent cell 1); when it deforms in the strain range of 10% to 70% , Provide a force of 0 to 0.5Mpa to (for example, the cell 1 adjacent to it); when it deforms in the strain range of 70% to 80%, it is against (for example, the cell 1 adjacent to it) ) Provide a force of 0.5 to 0.8Mpa.
  • a range of force can be very helpful in maintaining the capacity of the battery module and prolonging its service life.
  • T0, L0 and W0 respectively represent the thickness, length and width of the cell.
  • the battery module adopts the small module composed of the above-mentioned unit A. That is, there is a buffer between adjacent cells, and the stacking method of buffer/cell/buffer/cell/buffer...cell/buffer is used, and the module is fixed with strapping/end plate.
  • the thickness of the buffer member 2 is 0.15 times of the thickness of the battery core 1, and the length and width are respectively 0.95 times of the battery core.
  • the material of the buffer member 2 is polypropylene foam with a density of 35-40 kg/m 3 and a hardness of 55 ⁇ 65 degrees (HC); the pore size is distributed in the range of 10 ⁇ 80um, concentrated in the interval of 30 ⁇ 50um.
  • SOH% capacity retention rate
  • FIGS 8A-8C show the pressure test levels under different experimental conditions.
  • the battery module adopts the small module formed by the above unit A. That is, there is a buffer between adjacent cells, and the stacking method of buffer/cell/buffer/cell/buffer...cell/buffer is used, and the module is fixed with strapping/end plate.
  • the thickness of the buffer member 2 is 0.15 times the thickness of the battery cell, and the length and width are respectively 0.95 times that of the battery cell 1, and the material of the buffer member 2 is polypropylene foam, with a density of 35-40 kg/m 3 and a hardness of 55 ⁇ 65 degrees (HC); the pore size is distributed in the range of 10 ⁇ 80um, concentrated in the interval of 30 ⁇ 50um.
  • the pressure and the number of charging times are basically in a linear relationship, and it becomes larger as the number of charging times increases. When it is charged 4500 times, its pressure reaches 286KG/F, as shown in the above table.
  • the buffer member (foam) in the embodiment shown in FIG. 8B has a small thickness.
  • the buffer space provided by it is small, resulting in a large expansion of the battery cell and shortening the battery life;
  • the buffer member shown in FIG. 8C has a small area, which does not cover the area of the battery cell, and therefore provides a small buffer space, which results in a large expansion of the battery cell and shortens the battery life.
  • spatially relative terms such as “below”, “below”, “lower”, “above”, “upper”, “lower”, “left side”, “ The “right side” and so on describe the relationship between one component or feature and another component or feature as illustrated in the figure.
  • the spatial relative terms are intended to cover different orientations of the device in use or operation.
  • the device can be oriented in other ways (rotated by 90 degrees or in other orientations), and the spatial relative descriptors used in this application can also be interpreted accordingly. It should be understood that when a component is referred to as being “connected to” or “coupled to” another component, it can be directly connected or coupled to the other component, or intervening components may be present.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及一种电池模组,其包括:依次层叠设置的多个电芯及至少一个缓冲件。缓冲件设置于多个电芯中的至少两个之间,缓冲件能够发生弹性变形,以当电芯膨胀时,缓冲件提供膨胀空间,而当电芯收缩时缓冲件复原。其中缓冲件的厚度、长度及宽度中的至少一者与电芯的厚度、长度或宽度中的对应一者相关联。当缓冲件在0%至85%的应变区间范围内发生变形时,提供0至1Mpa的作用力。该电池模组在未充电时电芯即承受一定的压力,因而电池模组整体结构紧凑、处于压紧状态,而在充电时又允许电芯有一定程度的膨胀。因此,电池模组的循环寿命显著延长。

Description

电池模组 技术领域
本申请涉及一种储能装置,尤其涉及一种电池,其具有可充电的电池模组,例如,电动自行车、电动汽车等电动交通工具所采用的电池模组。
背景技术
因日益增长的节能环保方面的需求,电动交通工具例如电动自行车、电动汽车等得到越来越广泛的使用。对于这类电动交通工具而言,电池作为动力源具有举足轻重的作用和意义,其直接关系这类电动交通的制造成本、使用寿命等等。而现有技术中,电池存在寿命不够长、容量随着充电次数的增加而急剧下降等问题。
具体而言,目前的电动交通工具(例如电动二轮车、三轮车、电动汽车等)通常采用软包锂电池。然而,现有技术中的软包锂电池存在一些不足之处。例如,在充放电循环过程中,由于负极材料的嵌锂行为导致电芯膨胀或者电芯极片变形,电芯的厚度变厚,因而电池容量迅速衰减,导致整个电池的循环寿命缩短。为了解决电芯膨胀因而厚度变厚的问题,目前一般采用在电芯与电芯之间预留间隙的布置方式。但是这种结构又会导致存在其它问题。例如,由于电芯与电芯之间没有压力,电池模组整体结构较为松弛,在使用过程中电芯可以自由膨胀,这样也会导致电芯的循环寿命缩短。
发明内容
本申请旨在至少解决现有技术中存在的上述技术问题之一。为此,本申请提供这样一种电池模组:其在未充电时电芯即承受一定的压力,因而电池模组整体结构紧凑、处于压紧状态,而在充电时又允许电芯有一定程度的膨胀,并且随着放电的进行、电芯不断收缩的过程中,电芯仍然承受一定的压力,从而继续保持被压紧的状态。通过这种方式使得电池模组整体的循环寿命显著延长。
本申请的一些实施例提供一种电池模组,其包括:依次层叠设置的多个电芯;和至少一个缓冲件,其设置于多个所述电芯中的至少两个之间,所述缓冲件能够发生弹性变 形,以当所述电芯膨胀时,所述缓冲件提供膨胀空间,而当所述电芯收缩时所述缓冲件复原。当然,复原并不一定是100%复原,即可能并未完全复原至其初始状态。复原过程中,所述缓冲件一般是紧贴与之相邻的所述电芯。其中所述缓冲件的厚度、长度及宽度中的至少一者与所述电芯的厚度、长度或宽度中的对应一者相关联。当所述缓冲件在0%至85%的应变区间范围内发生变形时,对(例如,与其相邻的所述电芯)提供0至1Mpa的作用力。这可以是由所述缓冲件的性能参数决定的,也可以是由所述缓冲件的性能参数和所述缓冲件的尺寸(例如厚度)共同决定的。
具体而言,所述缓冲件的厚度、长度及宽度中的至少一者与所述电芯的厚度、长度或宽度中的对应一者相关联。当所述缓冲件在10%至70%的应变区间范围内发生变形时,对(例如,与其相邻的所述电芯)提供0至0.5Mpa的作用力;当所述缓冲件在70%至80%的应变区间范围内发生变形时,对(例如,与其相邻的所述电芯)提供0.5至0.8Mpa的作用力。
按照本申请的一种实施方式,所述缓冲件的两侧分别具有第一数量的所述电芯和第二数量的所述电芯,其中第一数量大于或等于第二数量,且第一数量为N,所述缓冲件的厚度为所述电芯的厚度的N*(0.12至0.18)倍。优选地,所述缓冲件的厚度为所述电芯的厚度的N*(0.14至0.16)倍。
在一些实施方式中,所述多个电芯中的各相邻的电芯之间均设置有所述缓冲件,所述缓冲件的厚度为所述电芯的厚度的0.14至0.16倍。例如,所述缓冲件的厚度约为所述电芯的厚度的0.15倍。
按照本申请的另一种实施方式,所述多个电芯中的每两个电芯与相邻的两个电芯之间均设置所述缓冲件,所述缓冲件的厚度为所述电芯的厚度的0.28至0.32倍。例如,所述缓冲件的厚度约为所述电芯的厚度的0.3倍。
通常,所述缓冲件包含聚丙烯、聚乙烯或者EVA泡棉。
按照本申请的一种实施方式,所述电芯和所述缓冲件均具有平板状结构,所述缓冲件的长度为所述电芯的长度的0.9至1.05倍。较佳地,其所述缓冲件的长度为所述电芯的长度的0.95至1.0倍。
按照本申请的一种实施方式,所述电芯和所述缓冲件均具有平板状结构,所述缓冲件的宽度为所述电芯的宽度的0.9至1.05倍。较佳地,其所述缓冲件的宽度为所述电芯的宽度的0.95至1.0倍。
按照本申请的一些实施方式,该电池模组还包括用于支撑所述电芯的电芯支架,所 述电芯支架具有框架结构,以包覆所述电芯的周边从而防止其外露。
按照本申请的一些实施方式,该电池模组还包相对设置的第一端板和第二端板,其中各所述电芯、所述缓冲件及所述电芯支架位于所述第一端板和所述第二端板之间并被二者夹持。
按照本申请的一些实施方式,该电池模组还包括固定件,其用于将所述电芯、所述缓冲件及所述电芯支架固定在所述第一端板和所述第二端板之间。例如,所述固定件可为环状捆绑件,其由钢带制成。
按照本申请的一些实施方式,该电池模组包含设置于所述第一端板和与其相邻的所述电芯支架之间的能够发生弹性变形的隔层。
按照本申请的一些实施方式,该电池模组包含设置于所述第二端板和与其相邻的所述电芯支架之间的能够发生弹性变形的隔层。
按照本申请提供的电池模组,由于在电芯与电芯之间设置有能够发生弹性变形的缓冲件(通常为泡棉),并且缓冲件的尺寸与电芯的尺寸(即厚度、长度及宽度中的至少一者)相关联,即缓冲件的尺寸与电芯的尺寸具有很好的比例关系,因而在电池模组充电、电芯发生膨胀的过程中,缓冲件在一定的应变区间范围内(例如0%至85%)发生变形,而此期间始终对电芯提供一定(例如0至1Mpa)的作用力。因而缓冲件不仅能够有效地为与电芯提供缓冲,并且同时给该电芯提供适当的压力。而在放电过程中,随着电芯的收缩,缓冲件由于弹性而复原,其仍然能够给电芯施加一定的压力,从而使电芯继续保持被压紧的状态。通过这种方式使得电芯乃至电池模组整体的循环寿命得到显著延长。
附图说明
为了更清楚地说明本申请的具体实施方式及其优越的技术效果,下面结合附图对本申请实施例进行详细描述。
图1是根据本申请所提供的电池模组的一种实施例的整体结构的示意图;
图2是根据本申请所提供的如图1所示的电池模组的分解示意图;
图3是根据本申请所提供的电池模组中的一种子模块的实施例的分解示意图;
图4是根据本申请所提供的电池模组中的另一种子模块的实施例的分解示意图;
图5是根据本申请所提供的电池模组中的再一种子模块的实施例的分解示意图;
图6是根据本申请所提供的电池模组中的缓冲件的应变范围与所产生的压力(即,对(例如)与之相邻的电芯施加的作用力)之间的关系的示意图;
图7A是根据本申请所提供的优选实施例的电池模组的容量保持率示意图;
图7B是根据本申请所提供的比较实施例一的电池模组的容量保持率的示意图;
图7C是根据本申请所提供的比较实施例二的电池模组的容量保持率的示意图;
图8A是根据本申请所提供的优选实施例的电池模组的压力变化示意图;
图8B是根据本申请所提供的比较实施例一的电池模组的压力变化的示意图;以及
图8C是根据本申请所提供的比较实施例二的电池模组的压力变化的示意图。
具体实施方式
下面结合附图具体描述本申请的实施例。当结合附图阅读时,从以下具体实施方式更容易理解本申请的各方面。需要说明的是,这些实施例是示例性的,其仅用于解释、说明本申请的技术方案,而并非对本申请的限制。本领域技术人员在这些实施例的基础上,可以作出各种变型和变换,所有以等同方式变换获得的技术方案均属于本申请的保护范围。
图1示出根据本申请所提供的电池模组的整体结构的示意图。
参见图1,按照本申请实施例所提供的电池模组100可包括:电芯1、电芯支架3、端板41、42、以及固定件5。电池模组100可进一步包括:缓冲件(图1未标示)。在一些实施例中,电池模组100可包括多个电芯1、多个电芯支架3、端板41、42、以及多个固定件5。电池模组100可进一步包括:多个缓冲件(图1未标示)。
电芯1可包括平板状结构。电芯1可包括,但不限于,例如,多边形的平板状结构。电芯1可包括,但不限于,例如,四边形的平板状结构。电芯1可包括,但不限于,例如,矩形的平板状结构。电芯1可包括,但不限于,例如,正方形的平板状结构。电芯1可用于储存能量。通常,在一个电池模组100中,各个电芯1具有基本相同的尺寸(长度、宽度和厚度),因而便于制造和安装。
电芯支架3可包括框架结构,以包覆所述电芯1的周边从而防止其外露。例如,电芯1可设置于电芯支架3的框架内。通常,一个电池模组内,电芯支架3与电芯1的数量相同。 即一个电芯支架3对应于一个电芯1。当然,也可以两个相邻的电芯1共用一个电芯框架3。电芯支架3可包括,但不限于,例如,多边形的框架结构。电芯支架3可包括,但不限于,例如,四边形的框架结构。电芯支架3可包括,但不限于,例如,矩形的框架结构。电芯支架3可包括,但不限于,例如,正方形的框架结构。电芯支架3的结构可匹配电芯1的结构。电芯支架3可位于电芯1下方。电芯支架3可用于安置电芯1。电芯支架3可用于支撑电芯1。电芯支架3可用于固定电芯1。电芯支架3可和电芯1连接。电芯支架3可和电芯1直接连接。电芯支架3可藉由,但不限于,例如,榫接方式和电芯1直接连接。电芯支架3可通过,但不限于,例如,连接件(图1未标示)的使用和电芯1间接连接。连接件可包括,但不限于,例如,黏合剂等。
端板41可包括大体上平板状结构。端板41可包括,但不限于,例如,多边形的平板状结构。端板41可包括,但不限于,例如,四边形的平板状结构。端板41可包括,但不限于,例如,矩形的平板状结构。端板41可包括,但不限于,例如,正方形的平板状结构。端板41的结构可匹配与之相邻的电芯支架3的结构。例如,端板41可位于该电芯支架3的下方/外侧(图1、2中的左侧)。端板41可用于固定电芯支架3。端板41可与电芯支架3连接。
端板42也可包括大体上平板状结构。端板42可包括,但不限于,例如,多边形的平板状结构。端板42可包括,但不限于,例如,四边形的平板状结构。端板42可包括,但不限于,例如,矩形的平板状结构。端板42可包括,但不限于,例如,正方形的平板状结构。端板42的结构可匹配与之相邻的电芯支架3的结构。例如,端板42可位于电芯支架3上方/外侧(图1、2中的右侧)。端板42可用于固定电芯支架3。端板42可与电芯支架3连接。
端板41和端板42可相对设置。电芯1可位于端板41和端板42之间。电芯支架3可位于端板41和端板42之间。端板41和端板42分别相对设置于两端最外侧。端板41和端板42可夹持电芯支架3和电芯1。
固定件5可套设于端板41和端板42上。固定件5可为环状结构。固定件5可为环状的捆绑件。固定件5可将电芯1和电芯支架3固定在端板41、端板42之间。固定件5可具有弹性。固定件5可包括,但不限于,例如,钢、橡胶、或其他适当的材料。
图2是根据图1所示的电池模组的分解示意图。参见图2,按照本申请实施例所提供的电池模组100可包括电芯1、至少一个缓冲件2、电芯支架3、端板41、42、以及固定件5。在一些实施例中,电池模组100可包括多个电芯1、多个缓冲件2、多个电芯支架3、端板41、42、以及多个固定件5。通常,各个电芯1、各个缓冲件2和各个电芯支架3分别具有基本相同的尺寸(长度、宽度和厚度)。多个电芯1可依次层叠设置,缓冲件2设置于多个所述电芯1中 的至少两个之间。缓冲件2能够发生弹性变形,以当电芯1膨胀时缓冲件2吸收其膨胀,而当所述电芯1收缩时所述缓冲件2复原从而紧贴与之相邻的电芯1。其中所述缓冲件2的厚度、长度及宽度中的至少一者与所述电芯1的厚度、长度或宽度中的对应一者相关联,使得当所述缓冲件2在0%至85%的应变区间范围内发生变形(例如,厚度变为其原始厚度的0%至15%)时,对与其相邻的所述电芯1提供0至1Mpa的作用力。因此,在充电时、电芯发生膨胀的过程中,缓冲件始终对电芯提供0至1Mpa的作用力。从而缓冲件2不仅能够有效地为与电芯1提供缓冲,并且同时给该电芯1提供适当的压力。而在放电的过程中,随着电芯1的收缩,缓冲件2由于弹性而复原,其仍然能够给电芯1施加一定的压力,从而使电芯1继续保持被压紧的状态。通过这种方式使得电池模组整体的循环寿命得到显著延长。
在另一些实施例中,电池模组100可包括设置于所述第一端板41和与其相邻的所述电芯支架3之间的隔层2′,也可包括设置于所述第二端板42和与其相邻的所述电芯支架3之间的隔层2′(参见图2)。即,在该实施例中,电池模组100可包括多个电芯1、多个电芯支架3、多个缓冲件2、多个隔层2′、端板41、42、以及多个固定件5。该隔层2′也可采用与缓冲件2相同的材料,因而其也能够发生弹性变形,从而也能够为电芯1的膨胀提供缓冲。
缓冲件2可包括平板状结构。缓冲件2可包括,但不限于,例如,多边形的平板状结构。缓冲件2可包括,但不限于,例如,四边形的平板状结构。缓冲件2可包括,但不限于,例如,矩形的平板状结构。缓冲件2可包括,但不限于,例如,正方形的平板状结构。缓冲件2可位于电芯1与电芯1之间。缓冲件2可用于提供缓冲作用至电芯1。缓冲件2可用于提供缓冲作用至电芯支架3。缓冲件2可用于提供缓冲作用至端板41。缓冲件2可用于提供缓冲作用至端板42。
缓冲件2可包括,但不限于,例如,泡棉。缓冲件2可包括,但不限于,例如,为由微孔发泡聚烯烃类材料制成的泡棉。缓冲件2可包括,但不限于,例如,聚丙烯、聚乙烯或者EVA泡棉。缓冲件2的密度可介于10~500kg/m 3之间。缓冲件2的密度较佳地可介于10~300kg/m 3之间。缓冲件2的密度最佳地可介于20~60kg/m 3之间。缓冲件2的硬度可介于20~80度(HC)之间。缓冲件2的硬度较佳地可介于30-70度(HC)之间。缓冲件2的硬度最佳地可介于50~70度(HC)之间。缓冲件2可具有气孔。缓冲件2的气孔孔径可介于10~300微米之间。缓冲件2的气孔孔径较佳地可介于10~150微米之间。缓冲件2的气孔孔径最佳地可介于10~80微米之间。
缓冲件2的尺寸可与电芯1的尺寸相关联。换言之,缓冲件2的尺寸可根据电芯1的尺寸 而确定。如前所述,通常同一电池模组100中的各个电芯具有基本相同的尺寸。电芯1的尺寸可包含厚度。电芯1的尺寸可包含长度。电芯1的尺寸可包含宽度。缓冲件2的尺寸可包含厚度。缓冲件2的尺寸可包含长度。缓冲件2的尺寸可包含宽度。缓冲件2可具有一定的弹性。缓冲件2可在挤压力的作用下发生变化。在一些实施例中,当电芯1由于膨胀而变厚(充电过程)时,缓冲件2可由于被其挤压而变薄,缓冲件2可为电芯1提供一定的缓冲。在一些实施例中,当电芯1由于收缩而变薄(放电过程)时,缓冲件2可在弹性力的作用下重新恢复到初始厚度(或者接近初始厚度),缓冲件2可防止电芯1与电芯支架3之间发生松动。
隔层2′可包括平板状结构。隔层2′可包括,但不限于,例如,多边形的平板状结构。隔层2′可包括,但不限于,例如,四边形的平板状结构。隔层2′可包括,但不限于,例如,矩形的平板状结构。隔层2′可包括,但不限于,例如,正方形的平板状结构。隔层2′可位于电芯支架3下方。隔层2′可位于电芯支架3与端板41、42之间。隔层2′可用于提供缓冲作用至电芯1。隔层2′可用于提供缓冲作用至电芯支架3。隔层2′可用于提供缓冲作用至端板41。隔层2′可用于提供缓冲作用至端板42。
隔层2′可包括,但不限于,例如,泡棉。隔层2′可包括,但不限于,例如,为由微孔发泡聚烯烃类材料制成的泡棉。隔层2′可包括,但不限于,例如,聚丙烯、聚乙烯或者EVA泡棉。隔层2′的密度可介于10~500kg/m 3之间。隔层2′的密度较佳地可介于10~300kg/m 3之间。隔层2′的密度最佳地可介于20~60kg/m 3之间。隔层2′的硬度可介于20~80度(HC)之间。隔层2′的硬度较佳地可介于30-70度(HC)之间。隔层2′的硬度最佳地可介于50~70度(HC)之间。隔层2′可具有气孔。隔层2′的气孔孔径可介于10~300微米之间。隔层2′的气孔孔径较佳地可介于10~150微米之间。隔层2′的气孔孔径最佳地可介于10~80微米之间。
隔层2′的尺寸可与电芯1的尺寸相关联。换言之,隔层2′的尺寸可根据电芯1的尺寸而确定。电芯1的尺寸可包含厚度。电芯1的尺寸可包含长度。电芯1的尺寸可包含宽度。隔层2′的尺寸可包含厚度。隔层2′的尺寸可包含长度。隔层2′的尺寸可包含宽度。隔层2′可具有一定的弹性。隔层2′可在挤压力的作用下发生变化。在一些实施例中,当电芯1由于膨胀而变厚时,隔层2′可由于被其挤压而变薄,隔层2′可为电芯1提供一定的缓冲。在一些实施例中,当电芯1由于收缩而变薄时,隔层2′可在弹性力的作用下重新恢复到初始厚度(或者接近初始厚度),隔层2′可防止电芯支架3与端板41之间发生松动。在一些实施例中,当电芯1由于收缩而变薄时,隔层2′可在弹性力的作用下重新恢复到初始厚度(或者接近初始厚度),隔层2′可防止电芯支架3与端板42之间发生松动。
参见图3,其为根据本申请所提供的电池模组中的子模块的一种实施例的分解示意 图。如图3中所示,子模组300可包括一个单元A。在一些实施例中,子模组300可包括多个单元A。而一个电池模组中可包括多个子模组300。在子模组300中,一个单元A可包括一个电芯1、一个缓冲件2和一个电芯支架3。如前所述,电芯支架3内可为框架结构,电芯1安装于电芯支架3的框架内。缓冲件2位于电芯1的一侧,从而将其与相邻的(即另一个单元A的)电芯1隔开。通过这种方式构成的电池模组,其包含的多个电芯1中的各相邻的电芯1之间均设置有缓冲件2(即形成“缓冲件/电芯/缓冲件/电芯/缓冲件...电芯/缓冲件”的结构)。
在单元A中,缓冲件2的尺寸可取决于电芯1的尺寸。电芯1的尺寸可包含厚度。电芯1的尺寸可包含长度。电芯1的尺寸可包含宽度。缓冲件2的尺寸可包含厚度。缓冲件2的尺寸可包含长度。缓冲件2的尺寸可包含宽度。对于电池模组而言,缓冲件2的尺寸与电芯1的尺寸的比例非常重要。例如,与电芯1相比,如果缓冲件2太薄,则可能无法有效地为电芯1提供缓冲,因为缓冲件2的变形非常有限,不能给电芯1提供足够的空间供其膨胀。例如,与电芯1相比,如果缓冲件2厚度太厚,则会无谓地占用电芯1的空间,使得电池模组整体的容量、效能下降,并且使得电池模组整体的体积变大。
在单元A中,缓冲件2的厚度T1可与电芯1的厚度T0相关联。在单元A中,缓冲件2的厚度T1可取决于电芯1的厚度T0。在单元A中,较佳地,缓冲件2的厚度为电芯1的厚度的0.12至0.18倍(即,0.12T0≤T1≤0.18T0)。更佳地,缓冲件2的厚度为电芯1的厚度的0.14至0.16倍(即,0.14T0≤T1≤0.16T0)。在单元A中,缓冲件2的厚度最佳地约为电芯1的厚度的0.15倍。
在单元A中,缓冲件2的长度L1可与电芯1的长度L0相关联,或者取决于电芯1的长度L0。具体而言,例如,缓冲件2的长度L1可大于或等于电芯1的长度L0的0.8倍,更佳地可大于或等于电芯1的长度L0的0.9倍。在本申请的优选实施例中,在单元A中,缓冲件2的长度L1为电芯1的长度的0.9至1.05倍(即,0.9L0≤L1≤1.05L0),更佳为电芯1的长度的0.95至1.0倍(即,0.95L0≤L1≤L0),缓冲件2的长度最佳地约为电芯1的长度的0.95倍。
在单元A中,缓冲件2的宽度W1可与电芯1的宽度W0相关联,或者可取决于电芯1的宽度W0。在单元A中,缓冲件2的宽度W1可大于或等于电芯1的宽度W0的0.8倍,更佳地可大于或等于电芯1的宽度W0的0.9倍。在本申请的优选实施例中,在单元A中,缓冲件2的宽度W1为电芯1的长度的0.9至1.05倍(即,0.9W0≤W1≤1.05W0),更佳为电芯1 的长度的0.95至1.0倍(即,0.95W0≤W1≤1.0W0),缓冲件2的宽度最佳地约为电芯1的宽度的0.95倍。
如上所述,在单元A中,缓冲件2的厚度可约为电芯1的厚度的0.15倍。具有该厚度的缓冲件2能够带来优越的技术效果:其不仅能够为电芯1有效地提供缓冲,而且不会不合理占用电芯1的空间,有利于提高电池模组整体的容量。在单元A中,在与缓冲件2合适的长度相配合的情形下,但不限于,例如,缓冲件2的长度可约为电芯1的长度的0.95倍,还能使得电池模组在一定的充电周期(例如充电4500次)以内,维持电池容量在一定的水平之上。在单元A中,在与缓冲件2合适的宽度相配合的情形下,但不限于,例如,缓冲件2的宽度约为电芯1的宽度的0.95倍,还能使得电池模组在一定的充电周期(例如充电4500次)以内,维持电池容量在一定的水平之上。
参见图4,其为根据本申请所提供的电池模组中的子模块的一种实施例的分解示意图。如图4中所示,子模组400可包括一个单元B。在一些实施例中,子模组400可包括多个单元B。在一些实施例中,子模组400可包括周期性排列的多个单元B。在子模组400中,一个单元B可包括一个电芯1、一个电芯1′、一个电芯支架3、和一个缓冲件2。如前所述,电芯支架3内可为框架结构,电芯1、1′分别安装于电芯支架3的框架内。电芯1′位于电芯1的一侧,从而二者层叠在一起,缓冲件2位于电芯1的另一侧,从而将其与相邻的(即另一个单元B的)电芯1′、1隔开。通过这种方式构成的电池模组与由单元A构成的电池模组不同,其包含的多个电芯1中的每两个相邻的电芯1之间设置有缓冲件2(即形成“缓冲件/电芯/电芯/缓冲件/电芯/电芯/缓冲件...电芯/电芯/缓冲件”的结构)。
在单元B中,缓冲件2的尺寸可取决于电芯1的尺寸。电芯1的尺寸可包含厚度。电芯1的尺寸可包含长度。电芯1的尺寸可包含宽度。缓冲件2的尺寸可包含厚度。缓冲件2的尺寸可包含长度。缓冲件2的尺寸可包含宽度。对于电池模组而言,缓冲件2的尺寸与电芯1的尺寸的比例非常重要。例如,与电芯1相比,如果缓冲件2太薄,则可能无法有效地为电芯1提供缓冲,因为缓冲件2的变形非常有限,不能给电芯1提供足够的空间供其膨胀。例如,与电芯1相比,如果缓冲件2厚度太厚,则会无谓地占用电芯的空间,使得电池模组整体的容量、效能下降,并且使得电池模组整体的体积变大。
在单元B中,缓冲件2的厚度T1可与电芯1的厚度T0相关联。在单元B中,缓冲件2的厚度T1可取决于电芯1的厚度T0。在单元B中,较佳地,缓冲件2的厚度为电芯1的厚度的0.24至0.36倍(即,0.24T0≤T1≤0.36T0)。更佳地,缓冲件2的厚度为电芯1的厚度的0.28至0.32倍(即,0.28T0≤T1≤0.32T0)。在单元B中,缓冲件2的厚度最佳地约为电芯1的 厚度的0.3倍。
在单元B中,缓冲件2的长度、宽度与电芯1的长度、宽度的关系和在单元A中缓冲件2的长度、宽度与电芯1的长度、宽度的关系相同,参见如上,此处不赘述。
与单元A类似,采用最佳厚度比(即缓冲件2的厚度为电芯1的厚度的0.3倍)的缓冲件2能够带来优越的技术效果:其不仅能够为电芯1、1′有效地提供缓冲,而且不会不合理占用电芯1、1′的空间,有利于提高电池模组整体的容量。在单元B中,在与缓冲件2合适的长度相配合的情形下,但不限于,例如,缓冲件2的长度可约为电芯1、1′的长度的0.95倍,还能使得电池模组在一定的充电周期(例如充电4500次)以内,维持电池容量在一定的水平之上。在单元B中,在与缓冲件2合适的宽度相配合的情形下,但不限于,例如,缓冲件2的宽度约为电芯1的宽度的0.95倍,还能使得电池模组在一定的充电周期(例如充电4500次)以内,维持电池容量在一定的水平之上。
作为一种替换实施例,在同一个电池模组中,可同时包括含多个单元A和B。具体请参见图5,其与图3和4类似,也示出了根据本申请所提供的电池模组中的子模块500的一种实施例的分解示意图。如图5中所示,单元A和单元B周期性排列。单元A包括一个电芯1、一个缓冲件2和一个电芯支架3。电芯1安装于电芯支架3内,缓冲件2位于电芯1的一侧,从而将其与单元B中的电芯1、1′隔开。按照这种排列方式,缓冲件2两侧具有不同数量的电芯(图中其左侧具有两个电芯(单元B中的两个电芯)、右侧具有一个电芯(单元A中的电芯)),从而形成“电芯/电芯/缓冲件/电芯/缓冲件/电芯/电芯.../缓冲件”的结构。
在这种实施方式中,缓冲件2的厚度T1仍然与电芯1、1′的厚度T0相关联。具体而言,根据缓冲件2的电芯数量较多的一侧的电芯数量来确定缓冲件2的厚度。假设电芯数量较多的一侧的电芯数量为N,那么较佳地,缓冲件2的厚度为电芯1的厚度的N*(0.12至0.18)倍。更佳地,缓冲件2的厚度为电芯1的厚度的N*(0.14至0.16)倍。例如,在图5的实施例中,N=2。因此,较佳地,缓冲件2的厚度为电芯1的厚度的0.24至0.36倍。更佳地,缓冲件2的厚度为电芯1的厚度的0.28至0.32倍。最佳地,缓冲件2的厚度约为电芯1的厚度的0.3倍。
在上述各个实施例中,设置于第一端板41、第二端板42和与其相邻的电芯支架3之间的隔层2′的尺寸可参照缓冲件2的尺寸来设计。例如,隔层2′的厚度为电芯1的厚度的N*(0.14至0.16)倍,其中N为与其相邻的电芯1的数量。最佳地,隔层2′的厚度为电芯1 的厚度的N*0.15倍。隔层2′长度和宽度分别为电芯1的长度和宽度的0.9至1.05倍,最佳地,隔层2′长度和宽度分别为电芯1的长度和宽度的0.95倍。
参见图6,按照本申请所提供的电池模组,由于缓冲件2的厚度、长度及宽度与所述电芯1的厚度、长度或宽度中的对应一者相关联,使得当缓冲件2在0%至85%的应变区间范围内发生变形时,对(例如,与其相邻的电芯1)提供0至1Mpa的作用力;当其在10%至70%的应变区间范围内发生变形时,对(例如,与其相邻的电芯1)提供0至0.5Mpa的作用力;当其在70%至80%的应变区间范围内发生变形时,对(例如,与其相邻的电芯1)提供0.5至0.8Mpa的作用力。这样的作用力范围能够非常有助于保持电池模组的容量,延长其使用寿命。
为了更清楚地说明本申请的上述实施例所带来的优越的技术效果,下面进一步结合附图7A-7C、8A-8C提供优选实施例与比较实施例的实验数据列表如下。其中,T0、L0和W0分别表示电芯的厚度、长度和宽度。
表1
Figure PCTCN2020079532-appb-000001
参见图7A,图中的实验数据基于这样的实验条件:电池模组采用上述单元A所构成的小模组。即,相邻电芯间隔1个缓冲件,采用缓冲件/电芯/缓冲件/电芯/缓冲件……电芯/缓冲件的堆叠方式,并使用捆扎带/端板固定模组。缓冲件2的厚度为电芯1厚度的0.15倍,长度 和宽度分别为电芯的0.95倍,且缓冲件2的材质是聚丙烯泡棉,其密度为35~40kg/m 3;硬度为55~65度(HC);孔径为10~80um范围内分布,集中分布在30~50um区间。此时,从图中可以看出,其容量保持率(SOH%)缓慢下降。当对其充电4500次时,其容量保持率仍然能达到80.93%,如上述表中所示。
作为比较实施例1,在其他实验条件不变的情况下,如果将缓冲件2的厚度调整为电芯1的厚度的0.1倍,容量保持率的就会得到图7B所示的实验结果。如图中所示,当对其充电4500次时,其容量保持率仍然能达到66.62%,如上述表中所示。
作为比较实施例2:在其他实验条件不变的情况下,如果将缓冲件2的长度和宽度分别调整为电芯长度和宽度的0.8倍,容量保持率的就会得到图7C所示的实验结果。如图中所示,当对电池模组充电4500次,其容量保持率为63.86%,
通过上述对比图7A-7C可以看出,对于单元A这类的电池模组结构而言,当缓冲件2的厚度为电芯厚度的0.15倍,长度和宽度分别为电芯的0.95倍,电池模组能达到最高的容量保持率。
图8A-8C示出了不同的实验条件下压力的测试水平。基于与上述图7A实施例中同样的实验条件:电池模组采用上述单元A所构成的小模组。即,相邻电芯间隔1个缓冲件,采用缓冲件/电芯/缓冲件/电芯/缓冲件……电芯/缓冲件的堆叠方式,并使用捆扎带/端板固定模组。缓冲件2的厚度为电芯厚度的0.15倍,长度和宽度分别为电芯1的0.95倍,且缓冲件2的材质是聚丙烯泡棉,其密度为35~40kg/m 3;硬度为55~65度(HC);孔径为10~80um范围内分布,集中分布在30~50um区间。此时,参见图8A,从图中可以看出,压力和充电次数基本呈线性关系,且随着充电次数的增加而变大。当对其充电4500次时,其压力达到在286KG/F,如上述表中所示。
作为比较实施例1,在其他实验条件不变的情况下,如果将缓冲件2的厚度调整为电芯1的厚度的0.1倍,其压力和充电次数之间的关系如图8B所示。如图中所示,在大约3400次以前,压力和充电次数基本呈线性关系,且随着充电次数的增加而逐渐变大。但当超过3500次,压力会迅速增加。当对其充电4500次时,其压力为1545KG/F,如上述表中所示。
作为比较实施例2:在其他实验条件不变的情况下,如果将缓冲件2的长度和宽度分别调整为电芯1的长度和宽度的0.8倍,其压力和充电次数之间的关系的就会得以图8C所示的实验结果。该图中的曲线与图8A类似,但压力值要低于同样充电次数中图8A所示 的压力值。例如,当对电池模组充电4500次,其压力值为232KG/F。
通过上述对比图8A-8C可以看出,对于单元A这类的电池模组结构而言,当缓冲件2的厚度为电芯厚度的0.15倍,长度和宽度分别为电芯的0.95倍,当对电池模组充电4500次,其压力能保持最优。
更具体地说,图8B所示的实施例中缓冲件(泡棉)厚度较小,当循环次数较多时,其提供的缓冲空间很小,导致电芯膨胀很大,会导致电池寿命缩短;而图8C所示的缓冲件面积小,未足够覆盖电芯的面积,因而提供缓冲空间很小,导致电芯膨胀很大,也会导致电池寿命缩短。
如本申请中所使用,为易于描述可在本申请中使用空间相对术语例如“下面”、“下方”、“下部”、“上方”、“上部”、“下部”、“左侧”、“右侧”等描述如图中所说明的一个组件或特征与另一组件或特征的关系。除图中所描绘的定向之外,空间相对术语意图涵盖在使用或操作中的装置的不同定向。设备可以其它方式定向(旋转90度或处于其它定向),且本申请中所使用的空间相对描述词同样可相应地进行解释。应理解,当一组件被称为“连接到”或“耦合到”另一组件时,其可直接连接或耦合到所述另一组件,或可存在中间组件。
在本申请中,术语“约”通常意指在给定值或范围的±10%、±5%、±1%或±0.5%内。范围可在本申请中表示为从一个端点到另一端点或在两个端点之间。除非另外指定,否则本申请中所公开的所有范围包括端点。
上文中概述本申请的若干实施例和细节方面的特征。本领域技术人员在不脱离本申请的精神和范围的前提下,还可作出各种不同变化、替代和改变,所有这些等效构造均属于本申请的保护范围。

Claims (11)

  1. 一种电池模组,其包括:
    依次层叠设置的多个电芯(1);
    至少一个缓冲件(2),其设置于多个所述电芯(1)中的至少两个之间,所述缓冲件(2)能够发生弹性变形,以当所述电芯(1)膨胀时,所述缓冲件(2)提供膨胀空间,而当所述电芯(1)收缩时所述缓冲件(2)复原;
    其中所述缓冲件(2)的厚度、长度及宽度中的至少一者与所述电芯(1)的厚度、长度或宽度中的对应一者相关联,
    当所述缓冲件(2)在0%至85%的应变区间范围内发生变形时,提供0至1Mpa的作用力。
  2. 根据权利要求1所述的电池模组,其中:所述缓冲件(2)的厚度、长度及宽度中的至少一者与所述电芯(1)的厚度、长度或宽度中的对应一者相关联,所述缓冲件(2)在10%至70%的应变区间范围内发生变形时,提供0至0.5Mpa的作用力。
  3. 根据权利要求1所述的电池模组,其中:所述缓冲件(2)的厚度、长度及宽度中的至少一者与所述电芯(1)的厚度、长度或宽度中的对应一者相关联,所述缓冲件在70%至80%的应变区间范围内发生变形时,提供0.5至0.8Mpa的作用力。
  4. 根据权利要求1所述的电池模组,其中:所述缓冲件(2)的两侧分别具有第一数量的所述电芯(1)和第二数量的所述电芯(1),其中第一数量大于或等于第二数量,且第一数量为N,所述缓冲件(2)的厚度为所述电芯(1)的厚度的N*(0.12至0.18)倍。
  5. 根据权利要求4所述的电池模组,其中:所述缓冲件(2)的厚度为所述电芯(1)的厚度的N*(0.14至0.16)倍。
  6. 根据权利要求1所述的电池模组,其中:所述多个电芯(1)中的各相邻的电芯(1)之间均设置有所述缓冲件(2),所述缓冲件(2)的厚度为所述电芯(1)的厚度的0.14至0.16倍。
  7. 根据权利要求6所述的电池模组,其中:所述缓冲件(2)的厚度为所述电芯(1)的厚度的0.15倍。
  8. 根据权利要求1所述的电池模组,其中:所述电芯(1)和所述缓冲件(2)均具有平板状结构,所述缓冲件(2)的长度为所述电芯(1)的长度的0.9至1.05倍。
  9. 根据权利要求8所述的电池模组,其中:其所述缓冲件(2)的长度为所述电芯(1)的长度的0.95至1.0倍。
  10. 根据权利要求1所述的电池模组,其中:所述电芯(1)和所述缓冲件(2)均具有平板状结构,所述缓冲件(2)的宽度为所述电芯(1)的宽度的0.9至1.05倍。
  11. 根据权利要求10所述的电池模组,其中:其所述缓冲件(2)的宽度为所述电芯(1)的宽度的0.95至1.0倍。
PCT/CN2020/079532 2019-09-29 2020-03-16 电池模组 WO2021056983A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2020202293A AU2020202293B2 (en) 2019-09-29 2020-03-16 Battery module
JP2020518509A JP7175972B2 (ja) 2019-09-29 2020-03-16 電池モジュール
EP20712426.4A EP4037075A4 (en) 2019-09-29 2020-03-16 BATTERY MODULE
US17/218,101 US20210218100A1 (en) 2019-09-29 2021-03-30 Battery module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910933711.7 2019-09-29
CN201921648504.9 2019-09-29
CN201921648504.9U CN210897379U (zh) 2019-09-29 2019-09-29 电池模组
CN201910933711.7A CN110828727B (zh) 2019-09-29 2019-09-29 电池模组

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/218,101 Continuation US20210218100A1 (en) 2019-09-29 2021-03-30 Battery module

Publications (1)

Publication Number Publication Date
WO2021056983A1 true WO2021056983A1 (zh) 2021-04-01

Family

ID=75166636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079532 WO2021056983A1 (zh) 2019-09-29 2020-03-16 电池模组

Country Status (5)

Country Link
US (1) US20210218100A1 (zh)
EP (1) EP4037075A4 (zh)
JP (1) JP7175972B2 (zh)
AU (1) AU2020202293B2 (zh)
WO (1) WO2021056983A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD998560S1 (en) * 2019-02-08 2023-09-12 Cps Technology Holdings Llc Battery housing
US11945294B2 (en) * 2019-04-11 2024-04-02 Volvo Truck Corporation Modular battery pack for mounting to a vehicle frame
US20230291061A1 (en) * 2022-03-08 2023-09-14 Cuberg, Inc. Battery assemblies comprising lithium-metal electrochemical cells and pressure-applying structures
CN114784441B (zh) * 2022-06-22 2022-10-25 宁德时代新能源科技股份有限公司 电池以及用电装置
CN117313281B (zh) * 2023-11-30 2024-03-19 瑞浦兰钧能源股份有限公司 一种电池模组缓冲垫确认方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207925540U (zh) * 2018-01-29 2018-09-28 天津中聚新能源科技有限公司 分体式电池模组
CN208690361U (zh) * 2018-10-25 2019-04-02 台州钱江新能源研究院有限公司 一种具有膨胀缓释结构的电池模组
CN110828727A (zh) * 2019-09-29 2020-02-21 东莞新能源科技有限公司 电池模组

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157678A (ja) * 2005-05-23 2007-06-21 Matsushita Electric Ind Co Ltd ラミネート電池の安全機構
JP5114950B2 (ja) * 2006-02-13 2013-01-09 日産自動車株式会社 電池モジュール、組電池及びそれらの電池を搭載した車両
KR101816813B1 (ko) * 2010-12-30 2018-01-11 에스케이이노베이션 주식회사 파우치형 셀 케이스
RU2014134843A (ru) * 2012-03-27 2016-03-20 Сони Корпорейшн Секция батареи, модуль батареи, система аккумулирования электроэнергии, электронное устройство, энергосистема и электрическое транспортное средство
CN106537639B (zh) * 2014-07-14 2020-04-17 株式会社钟化 组电池以及包含多个该组电池的蓄电单元
US9929441B2 (en) * 2015-10-02 2018-03-27 Bosch Battery Systems, Llc Elastic bellows and battery cell assemblies including same
US10804580B2 (en) * 2016-03-03 2020-10-13 Lg Chem, Ltd. Cell assembly having cushion member
CN109643778B (zh) * 2016-09-27 2023-07-11 松下知识产权经营株式会社 电池模块
US10784477B2 (en) * 2016-11-28 2020-09-22 Viking Power Systems Pte. Ltd. Rechargeable battery with elastically compliant housing
US11024900B2 (en) * 2017-04-20 2021-06-01 Ford Global Technologies, Llc Battery cell support assembly
US11450917B2 (en) * 2018-01-17 2022-09-20 Panasonic Intellectual Property Management Co., Ltd. Power storage device
WO2019189850A1 (ja) * 2018-03-30 2019-10-03 三菱ケミカル株式会社 仕切り部材及び組電池
CN110265591B (zh) * 2018-08-31 2020-01-24 宁德时代新能源科技股份有限公司 电池模组
US20210194041A1 (en) * 2019-12-20 2021-06-24 Enevate Corporation Pressure regulation system for silicon dominant anode lithium-ion cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207925540U (zh) * 2018-01-29 2018-09-28 天津中聚新能源科技有限公司 分体式电池模组
CN208690361U (zh) * 2018-10-25 2019-04-02 台州钱江新能源研究院有限公司 一种具有膨胀缓释结构的电池模组
CN110828727A (zh) * 2019-09-29 2020-02-21 东莞新能源科技有限公司 电池模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4037075A4 *

Also Published As

Publication number Publication date
EP4037075A1 (en) 2022-08-03
JP2022512261A (ja) 2022-02-03
US20210218100A1 (en) 2021-07-15
AU2020202293A1 (en) 2021-04-15
AU2020202293B2 (en) 2021-08-05
JP7175972B2 (ja) 2022-11-21
EP4037075A4 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
WO2021056983A1 (zh) 电池模组
CN110828727B (zh) 电池模组
CN210897379U (zh) 电池模组
JP6524053B2 (ja) 電気化学セルスタックのためのクランプ装置
JP2018533825A (ja) バッテリーモジュール及びそれを含むバッテリーパック、自動車
JP2003203615A (ja) モジュール
US8835035B2 (en) Battery pack
US11024930B2 (en) Battery with a buffer layer adhered to separators
JPWO2019142645A1 (ja) 蓄電装置
CN108475830B (zh) 散热材料、制造散热材料的方法及包括散热材料的电池模块
JP2001167745A (ja) セル積層構造の加圧構造
KR20130123762A (ko) 이차전지 조립체 및 이에 적용되는 가압 장치
JPH07235326A (ja) 密閉形アルカリ蓄電池の単電池及び単位電池
KR101239622B1 (ko) 안전성이 향상된 원통형 이차전지
JP2019114477A (ja) 電池モジュール
JP2003303579A (ja) 扁平型二次電池を内包したモジュール
WO2007063857A1 (ja) リチウムイオン二次電池
US20210202981A1 (en) Pressure Regulation System For Silicon Dominant Anode Lithium-Ion Cell
JP2016039023A (ja) 電池モジュール
US20190207265A1 (en) Battery Cell Having Structure For Prevention of Swelling
US11495847B2 (en) Secondary battery and device including the same
JP2022533852A (ja) バッテリーモジュール、それを含むバッテリーラック及び電力貯蔵装置
KR20180092406A (ko) 면압이 적용된 배터리 모듈 및 이를 갖는 배터리 팩
WO2024140420A1 (zh) 电池包及用电装置
KR20200070895A (ko) 전극조립체 및 그 전극조립체를 내장한 이차전지 및 그 이차전지를 내장한 전지 팩

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020518509

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020202293

Country of ref document: AU

Date of ref document: 20200316

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020712426

Country of ref document: EP

Effective date: 20220429