WO2021056927A1 - 可实现指令切换的有形编程指令积木 - Google Patents

可实现指令切换的有形编程指令积木 Download PDF

Info

Publication number
WO2021056927A1
WO2021056927A1 PCT/CN2020/070422 CN2020070422W WO2021056927A1 WO 2021056927 A1 WO2021056927 A1 WO 2021056927A1 CN 2020070422 W CN2020070422 W CN 2020070422W WO 2021056927 A1 WO2021056927 A1 WO 2021056927A1
Authority
WO
WIPO (PCT)
Prior art keywords
building block
basic
storage
tube
block
Prior art date
Application number
PCT/CN2020/070422
Other languages
English (en)
French (fr)
Inventor
毛昕
Original Assignee
杭州高低科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州高低科技有限公司 filed Critical 杭州高低科技有限公司
Publication of WO2021056927A1 publication Critical patent/WO2021056927A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/30Creation or generation of source code
    • G06F8/31Programming languages or programming paradigms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/3017Runtime instruction translation, e.g. macros

Definitions

  • the invention belongs to the technical field of decomposition and optimization of tangible programming instruction building blocks, and specifically relates to tangible programming instruction building blocks that can realize instruction switching.
  • the existing tangible programming instruction building blocks are generally connected by magnetic attraction to organize several tangible programming instruction building blocks in series according to the sequence of program execution instruction design requirements.
  • the instructions are passed to the host module, and then the host computer
  • the module uses Bluetooth or WIFI to control the robot or smart home to execute instructions.
  • the tangible programming instruction building block of Codey Cheng robot needs to be able to support the programming instructions and parameters of all the sensors of Codey Cheng. For example, there must be different programming instructions and different parameters for the objects such as the sound judgment of Codey Cheng robot, the judgment of color, the judgment of distance and the judgment of whether it is shaking.
  • the tangible programming instruction building block To support the tangible programming instruction building block of Huawei smart home, it is necessary for the tangible programming instruction building block to support the programming instructions and parameters of all the sensors of the Huawei smart home. For example, there must be different programming instructions and different parameters for the judgment of turning on the light, the judgment of turning off the light, the judgment of changing the color of the light, and the judgment of opening and closing the door.
  • the tangible programming instruction building block of the Daqi robot must be able to support the programming instructions and parameters of all the sensors of the Daqi robot. For example, there must be different programming instructions and different parameters for objects such as the judgment of looking at the picture, the judgment of the speech, the judgment of changing the shape of the lamp, and the judgment of the turning circle of the Daqi robot.
  • each existing tangible programming instruction building block respectively include the main program and the instructions. Instructions refer to the part of the program that needs to be executed by the object; the main program refers to the part of the program necessary to load and run these instructions. Since the instruction will not run by itself, the instruction must be loaded into the main program to run.
  • the executed instruction is transmitted from the main program to the host module, and then the instruction is passed to the corresponding object through the host module, and the corresponding object executes the instructions specified by the instruction. Run the action.
  • the main program needs to load instructions and run processing instructions, the main program has higher requirements for hardware devices.
  • the hardware devices of the main program need to have the ability to run and process. Therefore, the hardware devices that carry the main program are generally more expensive.
  • Every existing tangible programming instruction building block includes at least one hardware device that carries the main program and one hardware device that carries instructions.
  • a programming instruction needs multiple tangible programming instruction blocks to carry, then this programming instruction needs multiple hardware devices to carry the main program. The greater the number of tangible programming instruction blocks, the more hardware devices that need to carry the main program.
  • the user buys a set of tangible programming blocks. If the number of tangible programming instruction blocks required is larger, the user will need to spend more money to purchase more expensive hardware devices that carry the main program, and also spend more Money is used to purchase hardware devices that carry instructions, which leads to an increase in the economic cost required for users to use tangible programming blocks to train children's programming thinking.
  • the increase in the cost of hardware equipment for tangible programming instruction blocks is not conducive to the promotion of tangible programming instruction blocks to train children's programming thinking training education.
  • the present invention is to solve the problem that the instructions of the same tangible programming instruction building block and the main program are all set in the same tangible programming instruction building block, so that the increase of the tangible programming instruction building block will inevitably lead to the increase and loading of the hardware equipment that carries the main program.
  • the increase in instruction hardware devices has led to an increase in the cost of purchasing hardware devices, and the tangible programming blocks corresponding to any two objects are not suitable for exchange.
  • the programming instruction building block is to separate the hardware device that carries the main program from the hardware device that carries the instructions. When in use, the basic building block where the hardware device that needs to carry the corresponding main program is located and the storage building block where the hardware device that needs to carry the corresponding instruction is located can be used.
  • the required instruction can be obtained.
  • the switchable tangible programming instruction building block and in the time period staggered with each other, when the same operation action is performed between different objects, the same instructions can be used between different objects
  • the same storage block or the same basic block with the same main program can be used.
  • the tangible programming instruction building blocks that can realize instruction switching include several basic building block groups and several storage building block groups. Each basic building block group includes several mutually independent basic building blocks, and each storage building block group includes several mutually independent blocks. Store building blocks;
  • each basic building block there is an independent basic module, and each basic module is independently installed with a main program, and two basic modules corresponding to any two basic building blocks in the same basic building block group
  • the two main programs installed inside are the same, and the two main programs installed in the two basic modules corresponding to any two basic building blocks that are not in the same basic building block group are different;
  • Each storage block has an independent storage module, and each storage module stores instructions separately, and in the two storage modules corresponding to any two storage blocks in the same storage block group The two stored instructions are the same, and the two instructions stored in the two storage modules corresponding to any two storage blocks that are not in the same storage block group are different;
  • each storage block On the outer surface of each storage block is silk-printed a display mark corresponding to the instruction stored in the storage module in the corresponding storage block;
  • Each basic building block is provided with four communication modules respectively connected to the corresponding basic modules;
  • Each storage block is provided with a communication module connected to its corresponding storage module;
  • the communication module on any storage block can be connected to any communication module on any basic building block one by one, so that the corresponding basic module can be connected to the corresponding storage module; After the storage module is connected, the main program in the basic module can read the instructions in the connected storage module and run the read instructions.
  • the basic module in this scheme is a single-chip microcomputer.
  • the hardware device that carries the main program is set in the basic building block
  • the hardware device that carries the instruction is set in the storage building block.
  • the basic building block where the basic module carrying the corresponding main program is located and the storage building block where the storage module carrying the corresponding instruction is located are connected together through the communication module to form a tangible programming building block containing the instruction and the main program.
  • the instructions in the storage module will be read and run by the main program in the basic module, and the running results will be uploaded to the host module of the corresponding object, and then the host module will control the corresponding object through Bluetooth or WIFI to execute the instruction.
  • the two objects can use the same storage block in the staggered time period; in the same way, when the main program to be run by the two objects is the same, the two objects can also be used.
  • different objects perform the same running action more, the more basic building blocks or storage building blocks can be saved, so the cost of purchasing basic building blocks or purchasing storage building blocks is less, which is convenient for the promotion of tangible programming instruction building blocks.
  • object A and object B can use instruction A
  • object B can use instruction A
  • object A can use instruction A
  • Instruction A if both object A and object B can use main program A, when object A does not use main program A, object B can use main program A.
  • object B can use main program A.
  • object A can use main program A.
  • the number of basic modules required in this solution can be far less than the number of basic modules required in the prior art.
  • the number of storage modules required can also be far less than the number of storage modules required in the prior art.
  • the reduction in the number of building blocks reduces the cost and facilitates the promotion of tangible programming instruction building blocks.
  • the tangible programming instruction building block is to separate the hardware device that carries the main program and the hardware device that carries the instruction.
  • the hardware device that needs to carry the corresponding main program is located.
  • the building block and the storage building block where the hardware device that needs to carry the corresponding instruction is located can be detachably connected together to obtain the required instruction.
  • the switchable tangible programming instruction building block, and in the time period staggered with each other, different objects must execute the same When running action, different objects can use the same storage block with the same instruction or the same basic block with the same main program.
  • the communication module includes a round tube, a wire protection tube, a tension spring, a magnet tube, an interface sliding tube, a serial interface, a magnetic metal ring and a wire;
  • the length of the wire protection tube is less than the length of the round tube;
  • the tube wall is tightly connected to the inner tube wall at the inner end of the round tube;
  • the outer ring wall of the magnetic metal ring is tightly connected to the inner tube wall at the outer port of the round tube;
  • the magnet tube is slidably arranged on the protective wire tube
  • the inner tube wall of the magnet tube is tightly connected to the middle of the outer tube wall of the interface sliding tube, and the inner and outer tube walls of the interface sliding tube are slidably arranged in the lumen of the protective wire tube.
  • the outer tube wall of the interface sliding tube is slidably arranged in the inner ring of the magnetic metal ring; the two ends of the tension spring are tightened and fixedly connected to the outer end surface of the protective wire tube and the magnet tube
  • the inner nozzle surface; the serial interface is arranged on the outer nozzle of the interface sliding tube, the serial interface is connected to the corresponding basic module through a wire or the corresponding storage module through a wire;
  • the magnetic metal strip is fixedly installed In the basic building block located on the side of the outer section of the hole, and the inner end surface of the magnetic metal strip falls in the middle section of the hole, and the outer end surface of the magnetic metal strip falls on the side surface of the basic building block.
  • the tangible programming instruction building block also includes an ejector rod; the upper surface of the basic building block is provided with a cylindrical basic circular semi-through hole; the bottom surface of the basic circular semi-through hole is provided with a lower part of the basic building block The ejector through hole connected to the surface; the diameter of the ejector through hole is larger than the diameter of the ejector rod;
  • the four side surface centers of the basic building blocks are respectively provided with side wall grooves; the depth of the side wall grooves is equal to the length of the circular tube; the four communication modules are fixedly arranged in the side wall grooves;
  • Straight holes communicating with the basic circular semi-through holes are respectively provided on the groove bottom surface of each side wall groove, and the four straight holes are respectively communicated with the corresponding basic circular semi-through holes;
  • An inner sliding tube is slidably arranged in the straight hole, and the outer tube wall of the inner sliding tube is slidably arranged in the inner lumen of the protective wire tube of the communication module; a sleeve is slidably arranged in the round tube at the inner end of the protective wire tube.
  • the inner ring of the sleeve is tightly connected to the outer tube wall of the inner sliding tube; the two ends of an extrusion spring are respectively squeezed and fixedly connected to the inner end surface of the grommet and the outer end surface of the inner ring;
  • the inner end of the sliding pipe is provided with a tight butt connection mechanism; the tight butt connection mechanism on the inner sliding pipe is connected to the serial interface on the corresponding communication module through a wire;
  • a cylindrical block is detachably inserted and fixed in the basic circular semi-through hole, the height of the cylindrical block is less than or equal to the depth of the basic circular semi-through hole, and the diameter of the cylindrical block is equal to the diameter of the basic circular semi-through hole;
  • the basic modules corresponding to the basic building blocks are arranged in the cylindrical block; the vertical side surfaces of the cylindrical blocks that are opposite to the tight butt connecting mechanism on the inner end surface of the inner sliding tube are also provided with tight butting one-to-one respectively.
  • Each abutting butting connection mechanism on the cylindrical block is connected to the corresponding basic module through a wire; and when the cylindrical block is detachably inserted and fixed in the basic circular semi-through hole, each abutting connection mechanism on the cylindrical block is tightly butted
  • the connection mechanisms can all be connected to the pressing butt connection mechanisms on the inner end surfaces of the four inner sliding pipes in one-to-one pressure contact butt connection to realize the information conduction between the corresponding basic module and the corresponding serial interface.
  • This structure of the communication module makes the connection of the serial communication more reliable.
  • This structure includes at least three advantages: First, it is convenient to store the connection between the communication module on the building block and any communication module on the basic building block. After the communication module on the storage building block is connected to one of the communication modules on the basic building block, the basic module is connected to the storage module by adjusting the corresponding internal interface on the cylindrical block. Thereby, the positions of the output interface, input interface and parameter interface on the basic building blocks are determined, which is convenient for users to use. Second, when the basic module is broken, you only need to replace the cylindrical block instead of replacing the entire basic building block, which reduces the cost. The third is that any two basic building blocks can be used interchangeably with the cylindrical block part, which has good reliability.
  • the abutting butting connection mechanism includes an insulating fixing plate provided with a plurality of holes, and a conductive metal column is fixed in each hole on the insulating fixing plate; the abutting butting connection mechanism is located on the inner end surface of the inner sliding tube.
  • Each conductive metal column on the insulating fixing plate is connected to the corresponding basic module through a wire; each conductive metal column of the butt-butting connection mechanism located on the inner end surface of the inner sliding tube is connected to the corresponding serial interface through a wire. connection.
  • This structure makes the connection between the communication modules highly reliable.
  • each cylindrical block immediately above the butting connection mechanism on the cylindrical block is respectively provided with interface identifications on a one-to-one screen.
  • the interface identifications include input interface identification, output interface identification, internal interface identification and Parameter interface identification, and the input interface identification and output interface identification are arranged right and left, and the internal interface identification and parameter interface identification are arranged up and down. This structure is easy to use and easy to identify.
  • an upper surface groove is provided in the middle of the upper surface of the basic building block, and a positioning protrusion matching the upper surface groove is provided in the middle of the lower surface of the storage building block; several communications located on the same basic building block
  • One of the communication modules in the module is set in the middle of the upper groove on the basic building block; the communication module on the storage block is set in the middle of the positioning protrusion on the corresponding storage block; any storage block can be
  • the detachable fixed connection between the storage building block and the corresponding basic building block is realized by the one-to-one clamping and fixed connection of its own positioning protrusions in the upper surface groove on any basic building block, and the When the positioning protrusion is clamped and fixedly connected in the upper surface groove on the basic building block, the communication module on the storage building block is butt-connected with the communication module on the corresponding basic building block.
  • each basic building block and the upper surface of each basic building block are respectively provided with communication modules connected to their corresponding basic modules; on the lower surface of each storage building block are also provided respectively.
  • the communication modules are all serial communication.
  • the child of the present invention does not need to use the screen when learning programming, and uses the building block connection mode to write the program to be executed into the main control module.
  • the main control module controls the controlled object to complete the corresponding instruction actions according to the written program, thereby achieving no need for a screen It allows children to learn programming, which is highly reliable and interesting.
  • FIG. 1 is a schematic diagram of a connection structure of the tangible programming instruction building block A and the tangible programming instruction building block B of the present invention.
  • Fig. 2 is a schematic diagram of a demonstration connection in which three storage blocks can be connected to the basic blocks one-to-one in accordance with the present invention.
  • Fig. 3 is a schematic diagram of the relationship between the hardware cost and the number of instructions of the present invention.
  • Fig. 4 is a schematic diagram of the present invention where the basic building block group has three basic building blocks and the storage building block group has two storage blocks placed together.
  • Fig. 5 is a schematic diagram of a water surface cross-sectional connection structure in which a storage building block is not connected to a basic building block according to the present invention.
  • Fig. 6 is a schematic diagram of a horizontal cross-sectional connection structure when a cylindrical block is placed in the basic circular semi-through hole on the basic building block of the present invention.
  • Fig. 7 is a schematic diagram of a horizontal cross-sectional connection structure at the cylindrical block of the present invention.
  • Fig. 8 is a schematic diagram of a vertical section connection structure when the cylindrical block has been inserted into the basic circular semi-through hole on the basic building block of the present invention.
  • Fig. 9 is a schematic diagram of a connection structure at the inner sliding tube of the present invention.
  • Fig. 10 is a schematic diagram of a connection structure of the communication module of the present invention.
  • Fig. 11 is a schematic diagram of a connection structure in which the inner sliding tube of the present invention is connected to the communication module.
  • Figure 12 is a schematic diagram of a connection structure of the butt-butting connection mechanism on the cylindrical block of the present invention.
  • Fig. 13 is a schematic view of a top view connection structure when a cylindrical block is placed in the basic circular semi-through hole on the basic building block of the present invention.
  • FIG. 14 is a schematic diagram of a top view connection structure when the cylindrical block has been inserted into the basic circular semi-through hole on the basic building block of the present invention.
  • 15 is a schematic diagram of a connection structure in which two storage blocks are connected to two basic blocks respectively, and one parameter block is connected to one basic block according to the present invention.
  • Fig. 17 is a schematic diagram of a connection structure when the positioning protrusion of the storage block of the present invention has been inserted and connected in the groove on the upper surface of the basic block.
  • Embodiment 1 a tangible programming instruction building block capable of switching instructions, as shown in Figures 1 to 4, includes a number of basic building block groups and a number of storage building block groups, and each basic building block group 31 includes a number of independent foundations Building block 1, each storage block group 30 includes several mutually independent storage blocks 12;
  • a basic module 6 is independently installed in each basic building block 1, and a main program is installed independently in each basic building block, and two corresponding to any two basic building blocks in the same basic building block group
  • the two main programs installed in the basic module are the same, and the two main programs installed in the two basic modules corresponding to any two basic building blocks that are not in the same basic building block group are different;
  • a storage module 15 is independently provided in each storage block 12, and instructions are separately stored in each storage module, and two storage blocks corresponding to any two storage blocks in the same storage block group are stored separately.
  • the two instructions stored in the module are the same, and the two instructions stored in the two storage modules corresponding to any two storage blocks that are not in the same storage block group are different;
  • each storage block On the outer surface of each storage block is silk-printed a display identifier 32 corresponding to the instruction stored in the storage module in the corresponding storage block;
  • Each basic building block is provided with four communication modules 4 respectively connected to the corresponding basic modules;
  • Each storage block is provided with a communication module 13 connected to the corresponding storage module wire 14;
  • the communication module on any storage block can be connected to any communication module on any basic building block one by one, so that the corresponding basic module can be connected with the corresponding storage module; After the storage module is connected, the main program in the basic module can read the instructions in the connected storage module and run the read instructions.
  • the tangible programming instruction building block A includes a replaceable storage building block and a replaceable basic building block.
  • the storage building block is equipped with a storage module and a communication module connected to the storage module;
  • the basic building block is equipped with a basic module and Four communication modules connected to the base module respectively.
  • the tangible programming instruction building block B also includes a replaceable storage building block and a replaceable basic building block.
  • a storage module and a communication module connected to the storage module are also provided on the storage building block; and a basic building block is also provided.
  • the basic module of this embodiment 1 is a single-chip microcomputer. After the two communication modules are docked and connected, the two communication modules use a serial interface for serial communication.
  • the hardware device that carries the main program is set in the basic building block
  • the hardware device that carries the instruction is set in the storage building block.
  • the basic building block where the basic module carrying the corresponding main program is located and the storage building block where the storage module carrying the corresponding instruction is located are connected together through the communication module to form a tangible programming building block containing the instruction and the main program.
  • the instructions in the storage module will be read and run by the main program in the basic module, and the running results will be uploaded to the host module of the corresponding object, and then the host module will control the corresponding object through Bluetooth or WIFI to execute the instruction.
  • the two objects can use the same storage block in the staggered time period; in the same way, when the main program to be run by the two objects is the same, the two objects can also be used.
  • object A and object B can use instruction A
  • object B can use instruction A
  • object A can use instruction A
  • Instruction A if both object A and object B can use main program A, when object A does not use main program A, object B can use main program A.
  • object B can use main program A.
  • object A can use main program A.
  • the number of basic modules required in the first embodiment can be far less than the number of basic modules required in the prior art.
  • the number of storage modules required can also be far less than the number of storage modules required in the prior art.
  • the reduction in the number of building blocks reduces the cost and facilitates the promotion of tangible programming instruction building blocks.
  • This embodiment 1 can realize the tangible programming instruction building block for instruction switching; the tangible programming instruction building block is to separate the hardware device that carries the main program and the hardware device that carries the instruction.
  • the hardware device that needs to carry the corresponding main program is located
  • the basic building block and the storage building block where the hardware device that needs to carry the corresponding instruction is located is detachably docked and connected together to obtain the required instruction.
  • Embodiment 2 referring to Figs. 5-15, the difference between embodiment 2 and embodiment 1 is as follows:
  • the basic module is the basic module;
  • the communication module includes the round tube 24, the wire protection tube 22, the tension spring 33, the magnet tube 25, the interface sliding tube 26, the serial interface 28, the magnetic metal ring 27 and the wire 21; the length of the wire protection tube Less than the length of the round pipe;
  • the outer pipe wall of the wire protection pipe is tightly connected to the inner pipe wall of the round pipe;
  • the outer wall of the magnetic metal ring is tightly connected to the inner pipe wall at the outer port of the round pipe Upper;
  • the magnet tube is slidably arranged in the round tube between the protective wire tube and the magnetic metal ring;
  • the inner tube wall of the magnet tube is sleeved and fixedly connected to the middle of the outer tube wall of the interface sliding tube, and the inner end of the interface sliding tube is the outer tube
  • the wall is slidably arranged at the outer end of the lumen 23 of the protective wire, and the outer end of the interface sliding pipe is slidably arranged in the inner ring of the magnetic metal ring; the two ends
  • each basic building block is respectively provided with communication modules connected to their corresponding basic modules; and one side surface of each storage building block is also provided with respective communication modules.
  • the communication module connected to the corresponding storage module.
  • the tangible programming instruction building block also includes an ejector rod; the upper surface of the basic building block is provided with a cylindrical basic circular semi-through hole 9; the bottom surface of the basic circular semi-through hole is provided with the lower surface of the basic building block Through the ejector through hole 10; the diameter of the ejector through hole is larger than the diameter of the ejector rod;
  • the center of the four side surfaces of the basic building block is provided with side wall grooves 3; the depth of the side wall grooves is greater than or equal to the length of the circular tube; the four communication modules are respectively fixedly arranged in the side wall grooves;
  • each side wall groove is respectively provided with a straight hole 2 communicating with the basic circular semi-through hole, and the four straight holes are respectively connected with the corresponding basic circular semi-through hole;
  • An inner sliding tube 18 is slidably arranged in the straight hole.
  • the outer end and outer tube wall of the inner sliding tube is slidably arranged in the inner lumen of the protective wire tube of the communication module;
  • Ring 19 the inner ring of the ring is tightly connected to the outer tube wall of the inner sliding tube;
  • the two ends of an extrusion spring 20 are respectively squeezed and fixedly connected to the inner end surface of the grommet and the outer end surface of the inner ring
  • the inner end of the inner sliding tube is provided with a tight butt connection mechanism 17;
  • the top butt connection mechanism on the inner sliding tube is connected to the serial interface on the corresponding communication module through a wire;
  • a cylindrical block 7 is detachably inserted and fixed in the basic circular semi-through hole, the height of the cylindrical block is less than or equal to the depth of the basic circular semi-through hole, and the diameter of the cylindrical block is equal to the diameter of the basic circular semi-through hole;
  • the basic module 6 corresponding to the basic building block is arranged in the cylindrical block; the vertical side surface of the cylindrical block that is opposite to the abutting connection mechanism on the inner end surface of the inner sliding tube is also provided with a one-to-one clamping block. Docking connection mechanism;
  • Each crimping butting connection mechanism on the cylindrical block is respectively connected to the corresponding basic module 6 through a wire 16; and when the cylindrical block is detachably inserted and fixed in the basic circular semi-through hole, each crest on the cylindrical block
  • the close butt connection mechanisms can all be connected to the close butt connection mechanisms on the inner end surfaces of the four inner sliding pipes in one-to-one compression contact butt connection to realize the information conduction between the corresponding basic module and the corresponding serial interface.
  • the tight butt connection mechanism includes an insulating fixing plate 35 provided with a plurality of holes 36, and a conductive metal post 37 is fixed in each hole on the insulating fixing plate; the tight butt connection mechanism located on the inner end surface of the inner sliding tube Each conductive metal column on the insulating fixing plate is connected to the corresponding basic module through a wire; each conductive metal column of the butt-butting connection mechanism located on the inner end surface of the inner sliding tube is connected to the corresponding serial interface through a wire. connection.
  • each cylindrical block directly above the butt connecting mechanism on the cylindrical block is respectively provided with interface identifications on one-to-one silk screens.
  • the interface identifications include input interface identification, output interface identification, internal interface identification and parameter interface identification , And the input interface identification and output interface identification are arranged right and left, and the internal interface identification and parameter interface identification are arranged up and down.
  • the four vertical surfaces of the basic building block are respectively provided with solid magnetic semi-through holes, and a magnet 8 is fixed in each of the solid magnetic semi-through holes;
  • the solid-magnetic half-through holes are arranged opposite to the solid-block half-through holes, and a magnetic metal block 11 is respectively fixed in each solid-block half-through hole on the storage building block.
  • the outer surface of the parameter building block 29 is also provided with a solid block semi-through hole arranged opposite to the solid magnetic half-through hole on the basic building block, and a magnetic metal is also fixed in each solid block semi-through hole on the parameter building block. Piece.
  • the internal interface is the communication module connected between the basic module and the storage module;
  • the parameter interface is the communication module connected between the basic module and the parameter module on the parameter building block;
  • the output interface on the basic building block is the communication module for the basic module on this basic building block to output signals
  • the input interface on the basic building block is the communication that the basic module on other basic building blocks sends signals to the basic module on this basic building block. Module.
  • the cylindrical block where the basic module is located is set to a structure that is detachably inserted and connected to the basic circular semi-through hole.
  • This structure includes at least three advantages: First, it is convenient to store the communication module and the basic building block on the building block. The connection between any one of the communication modules on the After the communication module on the storage building block is connected to one of the communication modules on the basic building block, the basic module is connected to the storage module by adjusting the corresponding internal interface on the cylindrical block. Thereby, the positions of the output interface, input interface and parameter interface on the basic building blocks are determined, which is convenient for users to use. Second, when the basic module is broken, you only need to replace the cylindrical block instead of replacing the entire basic building block, which reduces the cost. The third is that any two basic building blocks can be used interchangeably with the cylindrical block part, which has good reliability.
  • the magnetic effect of the magnetic metal ring will attract the two magnet tubes outward, so that the magnet tube drives the corresponding interface sliding tube to move out, and then the two serial interfaces are connected. After being connected together, the serial communication connection is realized.
  • the corresponding conductive metal pillars on the cylindrical block and the conductive metal pillars on the inner sliding tube are butt and conductively connected, so that the memory module and the basic module are connected to each other. It is convenient for the basic module to read the instructions on the storage module.
  • Embodiment 2 greatly improves the flexibility and reliability of the basic building blocks.
  • Example 3 referring to Figures 16-17, the difference between Example 2 and Example 1 is as follows:
  • An upper surface groove 39 is provided in the middle of the upper surface of the basic building block 1, and a positioning protrusion 38 matching the upper surface groove is provided in the middle of the lower surface of the storage building block 12;
  • One of the communication modules is set in the middle of the upper groove on the basic building block; the communication module located on the storage block is set in the middle of the positioning protrusion on the corresponding storage block; any storage block is
  • the detachable fixed connection between the storage building block and the corresponding basic building block can be realized by one-to-one clamping and fixing of its own positioning protrusions in the upper surface groove on any basic building block, and on the storage building block.
  • each basic building block and the upper surface of each basic building block are respectively provided with communication modules connected to their corresponding basic modules; on the lower surface of each storage building block are also provided respectively.
  • the communication modules are all serial communication.
  • the basic building block and the storage building block are connected together to form a tangible programming building block. It can also realize the repeated use between basic modules that execute the same program. At the same time, repeated use between storage modules that execute the same instruction can also be realized. With fewer storage modules and fewer basic modules, multiple operations of multiple objects can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Toys (AREA)

Abstract

可实现指令切换的有形编程指令积木。属于有形编程指令积木的分解优化技术领域,所述积木在相互错开的时间段内,不同对象之间要执行相同的运行动作时,则不同对象之间能用指令相同的同一个存储积木或能用主程序相同的同一个基础积木。包括若干个基础积木组和若干个存储积木组,每个基础积木组都包括若干个相互独立的基础积木,每个存储积木组都包括若干个相互独立的存储积木;在每个基础积木内都分别独立设有一个基础模块,在每个基础模块内都分别独立安装有主程序;在每个存储积木内都分别独立设有一个存储模块,在每个存储模块内都分别独立存储有指令。

Description

可实现指令切换的有形编程指令积木 技术领域
本发明属于有形编程指令积木的分解优化技术领域,具体涉及可实现指令切换的有形编程指令积木。
背景技术
现有的有形编程指令积木一般都是通过磁吸连接的方式将若干个有形编程指令积木按照程序执行指令设计的先后顺序要求串联组织起来,进行运行处理后将指令传递给主机模块,然后由主机模块通过蓝牙或WIFI去控制机器人或智能家居来执行指令。
但问题是,随着系统支持的机器人种类或智能家居种类越来越多,需要的指令种类也就越来越多。比如:
支持了程小奔机器人的有形编程指令积木,就需要让该有形编程指令积木能支持程小奔的所有传感器的编程指令和参数。比如对程小奔机器人的声音判断、对颜色判断、对距离判断和对是否摇晃判断等对象都要有不同的编程指令,也要有不同的参数。
而支持了小米智能家居的有形编程指令积木,就需要让该有形编程指令积木能支持小米智能家居的所有传感器的编程指令和参数。比如对小米智能家居的开灯判断、对关灯判断、对换灯颜色判断和对开闭门判断等对象都要有不同的编程指令,也要有不同的参数。
支持了达奇机器人的有形编程指令积木,就要让该有形编程指令积木能支持达奇机器人的所有传感器的编程指令和参数。比如对达奇机器人的看图判断、对说话声判断、对改变灯形状判断和对转圈判断等对象都要有不同的编程指令,也要有不同的参数。
现有每个有形编程指令积木中的编程指令都分别包括了主程序和指令。指令是指需要让对象去执行哪些运行动作的这部分程序;主程序是指加载并运行这些指令所必需的这部分程序。由于指令不会自己运行,指令必须加载到主程序上才能运行,运行后的指令由主程序传给主机模块,再通过主机模块将指令传递给相应的对象,由相应的对象去执行指令规定的运行动作。
指令对硬件设备的要求一般较低,只需硬件设备具备存储功能即可,因此,承载指令所所需的硬件设备价格便宜。
主程序由于需要加载指令和运行处理指令,所以主程序对硬件设备的要求较高,主程序的硬件设备需要具备运行处理能力才行,因此,承载主程序的硬件设备价格一般较贵。
现有每个有形编程指令积木中都至少包括一个承载主程序的硬件设备和一个承载指令的硬件设备。
如果一个编程指令需要多个有形编程指令积木来承载,那么这个编程指令就需要多个硬件设备来承载主程序。有形编程指令积木的个数越多则需要承载主程序的硬件设备也越多。
用户购买一套有形编程积木如果所需要的有形编程指令积木的个数越多,则用户就需要花更多的钱来购买价格较贵的承载主程序的硬件设备,同时也需要花更多的钱来购买承载指令的硬件设备,从而导致用户采用有形编程积木来训练孩子编程思维的过程中所需的经济成本增加。有形编程指令积木的硬件设备成本增加,不利于用有形编程指令积木来训练孩子编程思维训练教育的推广。
发明内容
本发明是为了解决现在将同一个有形编程指令积木的指令和主程序都设置在同一个有形编程指令积木内,从而使得有形编程指令积木的增加就必然导致承载主程序的硬件设备的增加和承载指令的硬件设备的增加,进而导致购买硬件设备的成本增加,并且任意两个对象对应的有形编程积木之间也不宜交换使用的不足,提供一种可实现指令切换的有形编程指令积木;该有形编程指令积木是将承载主程序的硬件设备和承载指令的硬件设备分开设置,在使用时,将需要承载相应主程序的硬件设备所在的基础积木和需要承载相应指令的硬件设备所在的存储积木可拆式对接连接在一起后就得到需要的指令可切换的有形编程指令积木,并在相互错开的时间段内,不同对象之间要执行相同的运行动作时,则不同对象之间能用指令相同的同一个存储积木或能用主程序相同的同一个基础积木。
以上技术问题是通过下列技术方案解决的:
可实现指令切换的有形编程指令积木,包括若干个基础积木组和若干个存储积木组,每个基础积木组都包括若干个相互独立的基础积木,每个存储积木组都包括若干个相互独立的存储积木;
在每个基础积木内都分别独立设有一个基础模块,在每个基础模块内都分别独立安装有主程序,并且在同一个基础积木组内的任意两个基础积木所对应的两个基础模块内所安装的两个主程序都相同,不在同一个基础积木组内的任意两个基础积木所对应的两个基础模块内所安装的两个主程序都不相同;
在每个存储积木内都分别独立设有一个存储模块,在每个存储模块内都分别独立存储有指令,并且在同一个存储积木组内的任意两个存储积木所对应的两个存储模块内所存储的两个指令都相同,不在同一个存储积木组内的任意两个存储积木所对应的两个存储模块内所存储的两个指令都不相同;
在每个存储积木的外表面上都分别丝印有与对应存储积木内存储模块中存储的指令相对应的展示标识;
在每个基础积木上都分别设有四个分别与各自对应的基础模块相连接的通信模块;
在每个存储积木上都分别设有一个与各自对应的存储模块相连接的通信模块;
任意一个存储积木上的通信模块均能一对一对接接连在任意一个基础积木上的任意一个通信模块上,从而让相应的基础模块与对应的存储模块相连接;在任意一个基础模块与某个存储模块相连接后,该基础模块中的主程序能读取与之相连接的这个存储模块中的指令并能运行所读取到的指令。
本方案中的基础模块为单片微型计算机。
本方案是将承载主程序的硬件设备设置在基础积木内,将承载指令的硬件设备设置在存储积木内。在使用时,将承载有相应主程序的基础模块所在的基础积木和承载有相应指令的存储模块所在的存储积木通过通信模块对接连接在一起,使其形成含有指令和主程序的有形编程积木,该存储模块中的指令就会被基础模块中的主程序读取并运行,并将运行结果上传给对应对象的主机模块,然后由主机模块通过蓝牙或WIFI去控制相应对象来执行指令。
当两个对象要运行的指令相同时,则两个对象就可以在错开的时间段内用同一个存储积木;同理,当两个对象要运行的主程序相同时,则两个对象也可以在错开的时间段内用同一个基础积木;本方案解决了在相互错开的时间段内,不同对象之间要执行相同的运行动作时,则不同对象之间能用指令相同的同一个存储积木或能用主程序相同的同一个基础积木。当不同对象之间执行相同的运行动作越多,则能节省的基础积木或节省的存储积木就越多,从而购买基础积木或购买存储积木的费用就越少,便于有形编程指令积木的推广。
例如,如果对象A和对象B都能用到指令A,则在对象A不使用指令A时,对象B就可以使用指令A,同理,在对象B不使用指令A时,对象A就可以使用指令A。同理,如果对象A和对象B都能用到主程序A,则在对象A不使用主程序A时,对象B就可以使用主程序A,同理,在对象B不使用主程序A时,对象A就可以使用主程序A。
这样,本方案中的基础模块需要的数量就可以远远小于现有技术中需要的基础模块的数量。存储模块需要的数量也可以远远小于现有技术中需要的存储模块的数量,积木数量的减少就使得成本降低,便于有形编程指令积木的推广。
本方案可实现指令切换的有形编程指令积木;该有形编程指令积木是将承载主程序的硬件设备和承载指令的硬件设备分开设置,在使用时,将需要承载相应主程序的硬件设备所在的基础积木和需要承载相应指令的硬件设备所在的存储积木可拆式对接连接在一起后就得到需要的指令可切换的有形编程指令积木,并在相互错开的时间段内,不同对象之间要执行相同的运行动作时,则不同对象之间能用指令相同的同一个存储积木或能用主程序相同的同一个基础积木。
作为优选,通信模块包括圆管、护线管、拉力弹簧、磁铁管、接口滑动管、串行接口、导磁金属圈和导线;护线管的长度小于圆管的长度;护线管的外管壁被套紧固定连接在圆管的里端内管壁上;导磁金属圈的外圈壁被套紧固定连接在圆管外端口处的内管壁上;磁铁管滑动设置在位于护线管与导磁金属圈之间的圆管内;磁铁管的内管壁套紧固定连接在接口滑动管的外管壁中部,接口 滑动管的里端外管壁滑动设置在护线管的管腔内的外端,接口滑动管的外端外管壁滑动设置在导磁金属圈的内圈内;拉力弹簧的两端分别拉紧固定连接在护线管的外端管口面上和磁铁管的里端管口面上;串行接口设置在接口滑动管的外端管口上,串行接口通过导线与对应的基础模块相连接或者通过导线与对应的存储模块相连接;导磁金属条固定设置在位于外段孔侧的基础积木内,并且导磁金属条的里端面落在中段孔内,导磁金属条的外端面落在基础积木的侧表面上。
作为优选,有形编程指令积木还包括顶出杆;在基础积木的上表面上设有呈圆柱形的基础圆形半通孔;在基础圆形半通孔的底面上设有与基础积木的下表面相连通的顶出通孔;顶出通孔直径大于顶出杆的直径;
在基础积木的四个侧表面中心处都分别设有侧壁凹槽;侧壁凹槽的深度等于圆管的长度;四个通信模块分别固定设置在侧壁凹槽内;
在每个侧壁凹槽的槽底面上分别设有与基础圆形半通孔相连通的直孔,并且四个直孔都分别与对应的基础圆形半通孔相连通;
在直孔内滑动设有内滑动管,内滑动管的外端外管壁滑动设置在通信模块的护线管的里端管腔内;在护线管里端方的圆管内滑动设有套环,套环的内圈套紧固定连接在内滑动管的外管壁上;一根挤压弹簧的两端分别挤压固定连接在护线管里端面上和内圈的外端面上;在内滑动管的里端管口内设有顶紧对接连接机构;内滑动管上的顶紧对接连接机构通过导线与对应通信模块上的串行接口相连接;
在基础圆形半通孔内可拆式插入固定设有圆柱块,圆柱块的高度小于或等于基础圆形半通孔的深度,圆柱块的直径等于基础圆形半通孔的直径;
与基础积木对应的基础模块设置在圆柱块内;在与内滑动管里端面上的顶紧对接连接机构相正对着的圆柱块的竖直侧表面上也分别一对一设有顶紧对接连接机构;
圆柱块上的每个顶紧对接连接机构通过导线分别与对应的基础模块相连接;并且在圆柱块可拆式插入固定在基础圆形半通孔内时该圆柱块上的每个顶紧对接连接机构均能与四个内滑动管里端面上的顶紧对接连接机构一对一压紧接触对接连接实现相应基础模块与对应串行接口之间的信息导通。
通信模块的这种结构使得串口通信的连接更加可靠。这种结构至少包括三点好处:一是方便存储积木上的通信模块与基础积木上的任意一个通信模块之间的连接。当存储积木上的通信模块与基础积木上的其中一个通信模块连接后,通过调节圆柱块上对应的内部接口来让基础模块与存储模块相连接。从而也就确定了基础积木上的输出接口、输入接口和参数接口的位置,便于用户使用。二是当基础模块坏了后,只需更换圆柱块部分即可,不用更换整个基础积木,成本降低。三是任意两个基础积木之间可以相互交换使用圆柱块部分,可靠性好。
作为优选,顶紧对接连接机构包括设有若干孔的绝缘固定板,在绝缘固定板上的每个孔内分别固定设有导电金属柱;位于内滑动管里端面上的顶紧对接连接机构的绝缘固定板上的每个导电金属柱通过导线分别与对应的基础模块相连接;位于内滑动管里端面上的顶紧对接连接机构的每个导电金属柱通过导线分别与对应的串行接口相连接。这种结构使得通信模块之间的连接可靠性高。
作为优选,在位于圆柱块上的每个顶紧对接连接机构正上方的圆柱块的上表面上分别一对一丝印设有接口标识,接口标识包括输入接口标识、输出接口标识、内部接口标识和参数接口标识,并且输入接口标识和输出接口标识左右正对布置,内部接口标识和参数接口标识上下正对布置。这种结构使用方便简单,便于识别。
作为优选,在基础积木的上表面中部设有上表凹槽,在存储积木的下表面中部设有与所述上表凹槽匹配的定位凸起部;位于同一个基础积木上的若干个通信模块中的其中一个通信模块是设置在该基础积木上的上表凹槽的中部;位于存储积木上的通信模块是设置在对应存储积木上的定位凸起部的中部;任意一个存储积木均能通过自己的定位凸起部一对一卡紧固定连接在任意一个基础积木上的上表凹槽内来实现该存储积木与对应基础积木之间的可拆式固定连接,并且在存储积木上的定位凸起部卡紧固定连接在基础积木上的上表凹槽内时该存储积木上的通信模块与对应基础积木上的通信模块对接连接。
在每个基础积木的三个侧表面上和在每个基础积木的上表面上都分别设有与各自对应的基础模块相连接的通信模块;在每个存储积木的下表面上也都分别设有与各自对应的存储模块相连接的通信模块。通信模块均为串口通信。
本发明能够达到如下效果:
本发明孩子在学习编程时无需使用屏幕,采用积木连接方式将要执行的程序写入主控模块中,由主控模块根据写入的程序去控制被控制对象完成相应的指令动作,从而实现无需屏幕就能让孩子学习编程,可靠性高,趣味性好。
附图说明
图1为本发明有形编程指令积木A和有形编程指令积木B相连接的一种连接结构示意图。
图2为本发明有三个存储积木能够一对一的分别连接在基础积木上的一种演示连接示意图。
图3是本发明硬件成本与指令个数关系示意图。
图4是本发明基础积木组有三个基础积木、存储积木组有两个存储积木摆放在一起的一种示意图。
图5是本发明一个存储积木还没连接在一个基础积木上的一种水面截面连接结构示意图。
图6是本发明基础积木上的基础圆形半通孔内还设有放入圆柱块时的一种水平截面连接结构示意图。
图7是本发明圆柱块处的一种水平截面连接结构示意图。
图8是本发明基础积木上的基础圆形半通孔内已经放入圆柱块时的一种竖直截面连接结构示意图。
图9是本发明内滑动管处的一种连接结构示意图。
图10是本发明通信模块的一种连接结构示意图。
图11是本发明内滑动管连接在通信模块上的一种连接结构示意图。
图12是本发明圆柱块上的顶紧对接连接机构的一种连接结构示意图。
图13是本发明基础积木上的基础圆形半通孔内还设有放入圆柱块时的一种俯视连接结构示意图。
图14是本发明基础积木上的基础圆形半通孔内已经放入圆柱块时的一种俯视连接结构示意图。
图15是本发明两个存储积木分别连接在两个基础积木上、并且一个参数积木连接在一个基础积木上的一种连接结构示意图。
图16是本发明在基础积木的上表面上设有上表凹槽,在存储积木的下表面上设有定位凸起部,并且存储积木的定位凸起部还没插入连接在基础积木的上表凹槽内时的一种连接结构示意图。
图17是本发明存储积木的定位凸起部已经插入连接在基础积木的上表凹槽内时的一种连接结构示意图。
具体实施方式
下面结合附图与实施例对本发明作进一步的说明。
实施例1,可实现指令切换的有形编程指令积木,参见图1-图4所示,包括若干个基础积木组和若干个存储积木组,每个基础积木组31都包括若干个相互独立的基础积木1,每个存储积木组30都包括若干个相互独立的存储积木12;
在每个基础积木1内都分别独立设有一个基础模块6,在每个基础模块内都分别独立安装有主程序,并且在同一个基础积木组内的任意两个基础积木所对应的两个基础模块内所安装的两个主程序都相同,不在同一个基础积木组内的任意两个基础积木所对应的两个基础模块内所安装的两个主程序都不相同;
在每个存储积木12内都分别独立设有一个存储模块15,在每个存储模块内都分别独立存储有指令,并且在同一个存储积木组内的任意两个存储积木所对应的两个存储模块内所存储的两个指令都相同,不在同一个存储积木组内的任意两个存储积木所对应的两个存储模块内所存储的两个指令都不相同;
在每个存储积木的外表面上都分别丝印有与对应存储积木内存储模块中存储的指令相对应的展示标识32;
在每个基础积木上都分别设有四个分别与各自对应的基础模块相连接的通信模块4;
在每个存储积木上都分别设有一个与各自对应的存储模块导线14相连接的通信模块13;
任意一个存储积木上的通信模块均能一对一对接接连在任意一个基础积木上的任意一个通信模块上,从而让相应的基础模块与对应的存储模块相连接; 在任意一个基础模块与某个存储模块相连接后,该基础模块中的主程序能读取与之相连接的这个存储模块中的指令并能运行所读取到的指令。
有形编程指令积木A包括一个可替换的存储积木和一个可替换的基础积木,在存储积木上设有一个存储模块和一个与存储模块相连接的通信模块;在基础积木上设有一个基础模块和分别与基础模块相连接的四个通信模块。
有形编程指令积木B也包括一个可替换的存储积木和一个可替换的基础积木,在存储积木上也设有一个存储模块和一个与存储模块相连接的通信模块;在基础积木上也设有一个基础模块和分别与基础模块相连接的四个通信模块。
本实施例1基础模块为单片微型计算机。两个通信模块之间对接连接后这两个通信模块采用串行接口进行串口通信。
本实施例1是将承载主程序的硬件设备设置在基础积木内,将承载指令的硬件设备设置在存储积木内。在使用时,将承载有相应主程序的基础模块所在的基础积木和承载有相应指令的存储模块所在的存储积木通过通信模块对接连接在一起,使其形成含有指令和主程序的有形编程积木,该存储模块中的指令就会被基础模块中的主程序读取并运行,并将运行结果上传给对应对象的主机模块,然后由主机模块通过蓝牙或WIFI去控制相应对象来执行指令。
当两个对象要运行的指令相同时,则两个对象就可以在错开的时间段内用同一个存储积木;同理,当两个对象要运行的主程序相同时,则两个对象也可以在错开的时间段内用同一个基础积木;本实施例1解决了在相互错开的时间段内,不同对象之间要执行相同的运行动作时,则不同对象之间能用指令相同的同一个存储积木或能用主程序相同的同一个基础积木。当不同对象之间执行相同的运行动作越多,则能节省的基础积木或节省的存储积木就越多,从而购买基础积木或购买存储积木的费用就越少,便于有形编程指令积木的推广。
例如,如果对象A和对象B都能用到指令A,则在对象A不使用指令A时,对象B就可以使用指令A,同理,在对象B不使用指令A时,对象A就可以使用指令A。同理,如果对象A和对象B都能用到主程序A,则在对象A不使用主程序A时,对象B就可以使用主程序A,同理,在对象B不使用主程序A时,对象A就可以使用主程序A。
这样,本实施例1中的基础模块需要的数量就可以远远小于现有技术中需要的基础模块的数量。存储模块需要的数量也可以远远小于现有技术中需要的存储模块的数量,积木数量的减少就使得成本降低,便于有形编程指令积木的推广。
本实施例1可实现指令切换的有形编程指令积木;该有形编程指令积木是将承载主程序的硬件设备和承载指令的硬件设备分开设置,在使用时,将需要承载相应主程序的硬件设备所在的基础积木和需要承载相应指令的硬件设备所在的存储积木可拆式对接连接在一起后就得到需要的指令可切换的有形编程指令积木,并在相互错开的时间段内,不同对象之间要执行相同的运行动作时,则 不同对象之间能用指令相同的同一个存储积木或能用主程序相同的同一个基础积木。
实施例2,参见图5-图15所示,实施例2与实施例1的不同如下:
基础模块为基础模块;通信模块包括圆管24、护线管22、拉力弹簧33、磁铁管25、接口滑动管26、串行接口28、导磁金属圈27和导线21;护线管的长度小于圆管的长度;护线管的外管壁被套紧固定连接在圆管的里端内管壁上;导磁金属圈的外圈壁被套紧固定连接在圆管外端口处的内管壁上;磁铁管滑动设置在位于护线管与导磁金属圈之间的圆管内;磁铁管的内管壁套紧固定连接在接口滑动管的外管壁中部,接口滑动管的里端外管壁滑动设置在护线管的管腔23内的外端,接口滑动管的外端外管壁滑动设置在导磁金属圈的内圈内;拉力弹簧的两端分别拉紧固定连接在护线管的外端管口面上和磁铁管的里端管口面上;串行接口设置在接口滑动管的外端管口上,串行接口通过导线与对应的基础模块相连接或者通过导线与对应的存储模块相连接;导磁金属条固定设置在位于外段孔侧的基础积木内,并且导磁金属条的里端面落在中段孔内,导磁金属条的外端面落在基础积木的侧表面上。
本实施例2中,在每个基础积木的四个侧表面上都分别设有与各自对应的基础模块相连接的通信模块;在每个存储积木的一个侧表面上也都分别设有与各自对应的存储模块相连接的通信模块。
有形编程指令积木还包括顶出杆;在基础积木的上表面上设有呈圆柱形的基础圆形半通孔9;在基础圆形半通孔的底面上设有与基础积木的下表面相连通的顶出通孔10;顶出通孔直径大于顶出杆的直径;
在基础积木的四个侧表面中心处都分别设有侧壁凹槽3;侧壁凹槽的深度大于或等于圆管的长度;四个通信模块分别固定设置在侧壁凹槽内;
在每个侧壁凹槽的槽底面上分别设有与基础圆形半通孔相连通的直孔2,并且四个直孔都分别与对应的基础圆形半通孔相连通;
在直孔内滑动设有内滑动管18,内滑动管的外端外管壁滑动设置在通信模块的护线管的里端管腔内;在护线管里端方的圆管内滑动设有套环19,套环的内圈套紧固定连接在内滑动管的外管壁上;一根挤压弹簧20的两端分别挤压固定连接在护线管里端面上和内圈的外端面上;在内滑动管的里端管口内设有顶紧对接连接机构17;内滑动管上的顶紧对接连接机构通过导线与对应通信模块上的串行接口相连接;
在基础圆形半通孔内可拆式插入固定设有圆柱块7,圆柱块的高度小于或等于基础圆形半通孔的深度,圆柱块的直径等于基础圆形半通孔的直径;
与基础积木对应的基础模块6设置在圆柱块内;在与内滑动管里端面上的顶紧对接连接机构相正对着的圆柱块的竖直侧表面上也分别一对一设有顶紧对接连接机构;
圆柱块上的每个顶紧对接连接机构通过导线16分别与对应的基础模块6相连接;并且在圆柱块可拆式插入固定在基础圆形半通孔内时该圆柱块上的每个 顶紧对接连接机构均能与四个内滑动管里端面上的顶紧对接连接机构一对一压紧接触对接连接实现相应基础模块与对应串行接口之间的信息导通。
顶紧对接连接机构包括设有若干孔36的绝缘固定板35,在绝缘固定板上的每个孔内分别固定设有导电金属柱37;位于内滑动管里端面上的顶紧对接连接机构的绝缘固定板上的每个导电金属柱通过导线分别与对应的基础模块相连接;位于内滑动管里端面上的顶紧对接连接机构的每个导电金属柱通过导线分别与对应的串行接口相连接。
在位于圆柱块上的每个顶紧对接连接机构正上方的圆柱块的上表面上分别一对一丝印设有接口标识,接口标识包括输入接口标识、输出接口标识、内部接口标识和参数接口标识,并且输入接口标识和输出接口标识左右正对布置,内部接口标识和参数接口标识上下正对布置。
在基础积木的四个竖直面上都分别设有固磁半通孔,在每个固磁半通孔内分别固定设有磁铁8;在存储积木的外表面上设有与基础积木上的固磁半通孔相正对布置的固块半通孔,在存储积木上的每个固块半通孔内分别固定设有磁性金属块11。在参数积木29的外表面上也设有与基础积木上的固磁半通孔相正对布置的固块半通孔,在参数积木上的每个固块半通孔内也分别固定设有磁性金属块。
内部接口为基础模块和存储模块之间连接的通信模块;参数接口为基础模块与参数积木上的参数模块相连接的通信模块;
基础积木上的输出接口为这个基础积木上的基础模块向外输出信号的通信模块,基础积木上的输入接口为别的基础积木上的基础模块向这个基础积木上的基础模块输送来信号的通信模块。
实施例2,将基础模块所在的圆柱块设置成与基础圆形半通孔可拆式插入相连接的结构,这种结构至少包括三点好处:一是方便存储积木上的通信模块与基础积木上的任意一个通信模块之间的连接。当存储积木上的通信模块与基础积木上的其中一个通信模块连接后,通过调节圆柱块上对应的内部接口来让基础模块与存储模块相连接。从而也就确定了基础积木上的输出接口、输入接口和参数接口的位置,便于用户使用。二是当基础模块坏了后,只需更换圆柱块部分即可,不用更换整个基础积木,成本降低。三是任意两个基础积木之间可以相互交换使用圆柱块部分,可靠性好。
当两个通信模块两连接时,导磁金属圈的导磁作用,会将两个磁铁管都往外吸,从而使得磁铁管带动对应的接口滑动管也往外移动,进而让两个串行接口对接连接在一起后实现串口通信连接。
当圆柱块插入在基础圆形半通孔内后,圆柱块上的对应导电金属柱和内滑动管上的导电金属柱对接导通连接,从而让存储模块与基础模块之间才线路相连通,便于基础模块读取存储模块上的指令。
实施例2的这种设置,大大提高了基础积木的灵活性和可靠性。
实施例3,参见图16-图17所示,实施例2与实施例1的不同如下:
在基础积木1的上表面中部设有上表凹槽39,在存储积木12的下表面中部设有与所述上表凹槽匹配的定位凸起部38;位于同一个基础积木上的若干个通信模块中的其中一个通信模块是设置在该基础积木上的上表凹槽的中部;位于存储积木上的通信模块是设置在对应存储积木上的定位凸起部的中部;任意一个存储积木均能通过自己的定位凸起部一对一卡紧固定连接在任意一个基础积木上的上表凹槽内来实现该存储积木与对应基础积木之间的可拆式固定连接,并且在存储积木上的定位凸起部卡紧固定连接在基础积木上的上表凹槽内时该存储积木上的通信模块与对应基础积木上的通信模块对接连接。
在每个基础积木的三个侧表面上和在每个基础积木的上表面上都分别设有与各自对应的基础模块相连接的通信模块;在每个存储积木的下表面上也都分别设有与各自对应的存储模块相连接的通信模块。通信模块均为串口通信。
本实施例是将基础积木和存储积木连接在一起后形成一个有形编程积木。也能实现执行相同程序的基础模块之间的重复使用。同时,也能实现执行相同指令的存储模块之间的重复使用。用较少的存储模块和较少的基础模块就能得到多个对象的多个运行动作。
上面结合附图描述了本发明的实施方式,但实现时不受上述实施例限制,本领域普通技术人员可以在所附权利要求的范围内做出各种变化或修改。

Claims (6)

  1. 可实现指令切换的有形编程指令积木,其特征在于,包括若干个基础积木组和若干个存储积木组,每个基础积木组都包括若干个相互独立的基础积木,每个存储积木组都包括若干个相互独立的存储积木;
    在每个基础积木内都分别独立设有一个基础模块,在每个基础模块内都分别独立安装有主程序,并且在同一个基础积木组内的任意两个基础积木所对应的两个基础模块内所安装的两个主程序都相同,不在同一个基础积木组内的任意两个基础积木所对应的两个基础模块内所安装的两个主程序都不相同;
    在每个存储积木内都分别独立设有一个存储模块,在每个存储模块内都分别独立存储有指令,并且在同一个存储积木组内的任意两个存储积木所对应的两个存储模块内所存储的两个指令都相同,不在同一个存储积木组内的任意两个存储积木所对应的两个存储模块内所存储的两个指令都不相同;
    在每个存储积木的外表面上都分别丝印有与对应存储积木内存储模块中存储的指令相对应的展示标识;
    在每个基础积木上都分别设有四个分别与各自对应的基础模块相连接的通信模块;
    在每个存储积木上都分别设有一个与各自对应的存储模块相连接的通信模块;
    任意一个存储积木上的通信模块均能一对一对接接连在任意一个基础积木上的任意一个通信模块上,从而让相应的基础模块与对应的存储模块相连接;在任意一个基础模块与某个存储模块相连接后,该基础模块中的主程序能读取与之相连接的这个存储模块中的指令并能运行所读取到的指令。
  2. 根据权利要求1所述的可实现指令切换的有形编程指令积木,特征在于,通信模块包括圆管、护线管、拉力弹簧、磁铁管、接口滑动管、串行接口、导磁金属圈和导线;护线管的长度小于圆管的长度;护线管的外管壁被套紧固定连接在圆管的里端内管壁上;导磁金属圈的外圈壁被套紧固定连接在圆管外端口处的内管壁上;磁铁管滑动设置在位于护线管与导磁金属圈之间的圆管内;磁铁管的内管壁套紧固定连接在接口滑动管的外管壁中部,接口滑动管的里端外管壁滑动设置在护线管的管腔内的外端,接口滑动管的外端外管壁滑动设置在导磁金属圈的内圈内;拉力弹簧的两端分别拉紧固定连接在护线管的外端管口面上和磁铁管的里端管口面上;串行接口设置在接口滑动管的外端管口上,串行接口通过导线与对应的基础模块相连接或者通过导线与 对应的存储模块相连接;导磁金属条固定设置在位于外段孔侧的基础积木内,并且导磁金属条的里端面落在中段孔内,导磁金属条的外端面落在基础积木的侧表面上。
  3. 根据权利要求2所述的可实现指令切换的有形编程指令积木,特征在于,有形编程指令积木还包括顶出杆;在基础积木的上表面上设有呈圆柱形的基础圆形半通孔;在基础圆形半通孔的底面上设有与基础积木的下表面相连通的顶出通孔;顶出通孔直径大于顶出杆的直径;
    在基础积木的四个侧表面中心处都分别设有侧壁凹槽;侧壁凹槽的深度等于圆管的长度;四个通信模块分别固定设置在侧壁凹槽内;
    在每个侧壁凹槽的槽底面上分别设有与基础圆形半通孔相连通的直孔,并且四个直孔都分别与对应的基础圆形半通孔相连通;
    在直孔内滑动设有内滑动管,内滑动管的外端外管壁滑动设置在通信模块的护线管的里端管腔内;在护线管里端方的圆管内滑动设有套环,套环的内圈套紧固定连接在内滑动管的外管壁上;一根挤压弹簧的两端分别挤压固定连接在护线管里端面上和内圈的外端面上;在内滑动管的里端管口内设有顶紧对接连接机构;内滑动管上的顶紧对接连接机构通过导线与对应通信模块上的串行接口相连接;
    在基础圆形半通孔内可拆式插入固定设有圆柱块,圆柱块的高度小于或等于基础圆形半通孔的深度,圆柱块的直径等于基础圆形半通孔的直径;
    与基础积木对应的基础模块设置在圆柱块内;在与内滑动管里端面上的顶紧对接连接机构相正对着的圆柱块的竖直侧表面上也分别一对一设有顶紧对接连接机构;
    圆柱块上的每个顶紧对接连接机构通过导线分别与对应的基础模块相连接;并且在圆柱块可拆式插入固定在基础圆形半通孔内时该圆柱块上的每个顶紧对接连接机构均能与四个内滑动管里端面上的顶紧对接连接机构一对一压紧接触对接连接实现相应基础模块与对应串行接口之间的信息导通。
  4. 根据权利要求3所述的可实现指令切换的有形编程指令积木,特征在于,顶紧对接连接机构包括设有若干孔的绝缘固定板,在绝缘固定板上的每个孔内分别固定设有导电金属柱;位于内滑动管里端面上的顶紧对接连接机构的绝缘固定板上的每个导电金属柱通过导线分别与对应的基础模块相连接;位于内滑动管里端面上的顶紧对接连接机构的每个导电金属柱通过导线分别与对应的串行接口相连接。
  5. 根据权利要求3或4所述的可实现指令切换的有形编程指令积木,特征在于,在位于圆柱块上的每个顶紧对接连接机构正上方的圆柱块的上表面上分别一对一丝印设有接口标识,接口标识包括输入接口标识、输出接口标识、内部接口标识和参数接口标识,并且输入接口标识和输出接口标识左右正对布置,内部接口标识和参数接口标识上下正对布置。
  6. 根据权利要求1或2所述的可实现指令切换的有形编程指令积木,特征在于,在基础积木的上表面中部设有上表凹槽,在存储积木的下表面中部设有与所述上表凹槽匹配的定位凸起部;位于同一个基础积木上的若干个通信模块中的其中一个通信模块是设置在该基础积木上的上表凹槽的中部;位于存储积木上的通信模块是设置在对应存储积木上的定位凸起部的中部;任意一个存储积木均能通过自己的定位凸起部一对一卡紧固定连接在任意一个基础积木上的上表凹槽内来实现该存储积木与对应基础积木之间的可拆式固定连接,并且在存储积木上的定位凸起部卡紧固定连接在基础积木上的上表凹槽内时该存储积木上的通信模块与对应基础积木上的通信模块对接连接。
PCT/CN2020/070422 2019-09-25 2020-01-06 可实现指令切换的有形编程指令积木 WO2021056927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910914394.4 2019-09-25
CN201910914394.4A CN110538469B (zh) 2019-09-25 2019-09-25 可实现指令切换的有形编程指令积木

Publications (1)

Publication Number Publication Date
WO2021056927A1 true WO2021056927A1 (zh) 2021-04-01

Family

ID=68714524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070422 WO2021056927A1 (zh) 2019-09-25 2020-01-06 可实现指令切换的有形编程指令积木

Country Status (2)

Country Link
CN (1) CN110538469B (zh)
WO (1) WO2021056927A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110538469B (zh) * 2019-09-25 2024-05-28 杭州高低科技有限公司 可实现指令切换的有形编程指令积木
CN111613116A (zh) * 2020-05-09 2020-09-01 广州大学 基于ArduBlock的实体化积木、编程方法及系统
CN111831331B (zh) * 2020-07-16 2024-04-05 中国科学院计算技术研究所 用于分形智能处理器的分形可重配指令集
CN111831339B (zh) * 2020-07-16 2024-04-02 中国科学院计算技术研究所 用于智能处理器的指令执行方法、装置及电子设备
CN111857824A (zh) * 2020-07-16 2020-10-30 中国科学院计算技术研究所 用于分形智能处理器的控制系统、方法及电子设备
CN111831333B (zh) * 2020-07-16 2024-03-29 中国科学院计算技术研究所 用于智能处理器的指令分解方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106139614A (zh) * 2016-07-22 2016-11-23 苏州乐派特机器人有限公司 一种利用实物化编程操作进行的游戏方法
US20180211550A1 (en) * 2017-01-23 2018-07-26 International Business Machines Corporation Learning with smart blocks
CN108492679A (zh) * 2018-06-27 2018-09-04 中山乐宝电子科技有限公司 基于智能积木的可编程学习装置及方法
CN108766118A (zh) * 2018-08-24 2018-11-06 杭州高低科技有限公司 易于编程教育的有形编程积木
CN110538469A (zh) * 2019-09-25 2019-12-06 杭州高低科技有限公司 可实现指令切换的有形编程指令积木

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898456B (zh) * 2015-04-02 2018-06-19 苏州乐派特机器人有限公司 实物化编程的方法及其在机器人领域的应用
KR20170056286A (ko) * 2015-11-13 2017-05-23 김완우 프로그래밍 학습용 블록완구
US20190251865A1 (en) * 2017-02-16 2019-08-15 Makeblock Co., Ltd. Electronic building block system
CN207233254U (zh) * 2017-07-05 2018-04-13 南京阿凡达机器人科技有限公司 一种积木式编程设备
CN109165979A (zh) * 2018-08-24 2019-01-08 杭州高低科技有限公司 基于有形编程指令积木的编程教育系统及其营销策略方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106139614A (zh) * 2016-07-22 2016-11-23 苏州乐派特机器人有限公司 一种利用实物化编程操作进行的游戏方法
US20180211550A1 (en) * 2017-01-23 2018-07-26 International Business Machines Corporation Learning with smart blocks
CN108492679A (zh) * 2018-06-27 2018-09-04 中山乐宝电子科技有限公司 基于智能积木的可编程学习装置及方法
CN108766118A (zh) * 2018-08-24 2018-11-06 杭州高低科技有限公司 易于编程教育的有形编程积木
CN110538469A (zh) * 2019-09-25 2019-12-06 杭州高低科技有限公司 可实现指令切换的有形编程指令积木

Also Published As

Publication number Publication date
CN110538469A (zh) 2019-12-06
CN110538469B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2021056927A1 (zh) 可实现指令切换的有形编程指令积木
CN103236153A (zh) 红外开关系统、开关控制方法及红外转发器
CN209343598U (zh) 一种多功能经济管理教学演示教具
CN205508226U (zh) 一种磁力积木型电学实验装置
CN210813923U (zh) 一种可实现指令切换的有形编程指令积木
CN206757916U (zh) 一种实验室智能实验平台
CN109615976A (zh) 一种音乐教具用音符模拟训练装置
CN206400861U (zh) 一种国际化实训室
CN205158118U (zh) 墙式模块化智能家居中枢
CN212698095U (zh) 一种用于智慧校园的远程教学装置
CN204990849U (zh) 一种影视编导专业学习展示装置
CN210247108U (zh) 一种适合学习编程的led语音调光灯
CN208063246U (zh) 一种基于互联网的亲子教育教学管理平台
CN207397523U (zh) 一种英语语言口语训练装置
CN208107750U (zh) 一种星云立方体
CN208622286U (zh) 一种数学教学用具
CN203191809U (zh) 无线型中央控制系统
CN207010936U (zh) 物联网音响
CN206470971U (zh) 一种可书写的多功能一体机
CN205247758U (zh) 用于工商管理教学的企业沙盘规划模拟/展示装置
CN207216918U (zh) 一种用于经济管理教学的教具
CN204990779U (zh) 一种经济教学的互动系统
CN209657512U (zh) 一种国贸教学用展示架
CN203311703U (zh) 一体化智能实验箱
CN205384812U (zh) 一种培训沙盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869962

Country of ref document: EP

Kind code of ref document: A1