WO2021056447A1 - 编码驱动装置、方法及机器人关节 - Google Patents

编码驱动装置、方法及机器人关节 Download PDF

Info

Publication number
WO2021056447A1
WO2021056447A1 PCT/CN2019/108652 CN2019108652W WO2021056447A1 WO 2021056447 A1 WO2021056447 A1 WO 2021056447A1 CN 2019108652 W CN2019108652 W CN 2019108652W WO 2021056447 A1 WO2021056447 A1 WO 2021056447A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
central processing
power
signal
processing module
Prior art date
Application number
PCT/CN2019/108652
Other languages
English (en)
French (fr)
Inventor
庞建国
李�浩
闵令宝
华韬
Original Assignee
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子(中国)有限公司 filed Critical 西门子(中国)有限公司
Priority to CN201980099304.9A priority Critical patent/CN114222649A/zh
Priority to PCT/CN2019/108652 priority patent/WO2021056447A1/zh
Priority to EP19946342.3A priority patent/EP4019201A4/en
Publication of WO2021056447A1 publication Critical patent/WO2021056447A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the invention relates to the industrial field, in particular to an encoding drive device and a robot joint.
  • FIG. 1 shows an exemplary structural block diagram of a typical integrated robot joint.
  • the robot joint is composed of a driver 10, a motor-side encoder 20, a motor 30, a reducer 40, an output-side encoder 50, a motor shaft 60 and all housing components 70.
  • the motor-side encoder 20 As shown in FIG. 1, the robot joint is composed of a driver 10, a motor-side encoder 20, a motor 30, a reducer 40, an output-side encoder 50, a motor shaft 60 and all housing components 70.
  • the embodiments of the present invention provide an encoding driving device and method on the one hand, and a robot joint on the other hand, so that the robot joint is more compact and has higher reliability.
  • the encoding drive device proposed in the embodiment of the present invention includes: a sensing module for detecting the physical signal sent by the moving part of the encoder and outputting the corresponding detection result; the central processing module is used for calculating the corresponding detection result according to the detection result.
  • a control signal for controlling a motor is generated; a power module, which is electrically connected to the central processing module, is used for outputting according to the central processing module
  • the control signal provides the drive signal for the motor and provides the set power protection;
  • the power management module which is electrically connected to the central processing module and the power module, is used to connect AC or DC power and convert it to meet The power input required for the power supply of the central processing module and a power module;
  • the current detection module which is electrically connected to the central processing module and the power module, and is used to extract the motor from the power module And provide the current information to the central processing module.
  • the central processing module is electrically connected to the sensing module.
  • it further includes: an analog conditioning module, which is electrically connected to the sensor module, and is used to convert the detection result of the analog signal output by the sensor module into a signal that meets subsequent processing requirements; and
  • the conversion module is respectively electrically connected with the analog conditioning module and the central processing module, and is used to convert the signal output by the analog conditioning module from an analog signal to a digital signal and then output it to the central processing module.
  • the encoding driving method proposed in the embodiment of the present invention includes: detecting the physical signal sent by the moving part of the encoder through a sensing module, and obtaining the corresponding detection result; calculating the corresponding position information according to the detection result, and obtaining the corresponding position information according to the detection result.
  • the detection result output by the sensing module is analog information; before the corresponding position information is calculated according to the detection result, the method further includes: detecting the detection result of the analog signal output by the sensing module Convert to digital signal.
  • the converting the detection result of the analog signal output by the sensor module into a digital signal includes: using an analog conditioning module to convert the detection result of the analog signal output by the sensor module into a satisfying subsequent processing The required signal; an analog-to-digital conversion module is used to convert the signal output by the analog conditioning module from an analog signal to a digital signal.
  • a robot joint proposed in an embodiment of the present invention includes: an encoder moving part for sending the position information of the motor shaft through a certain physical signal; and an encoder driving device for detecting the encoder moving part sent The corresponding position information is calculated according to the detection result, and the driving signal for driving the motor is output according to the position information and current information currently used by the motor.
  • the encoding driving device includes: a sensing module for detecting the physical signal sent by the moving part of the encoder and outputting the corresponding detection result; the central processing module is used for calculating the corresponding detection result according to the detection result.
  • a control signal for controlling a motor is generated;
  • a power module which is electrically connected to the central processing module, is used for outputting according to the central processing module
  • the control signal provides the drive signal for the motor and provides the set power protection;
  • the power management module which is electrically connected to the central processing module and the power module, is used to connect AC or DC power and convert it to meet The power input required for the power supply of the central processing module and a power module; and the current detection module, which is electrically connected to the central processing module and the power module, and is used to extract the motor from the power module And provide the current information to the central processing module.
  • the central processing module is electrically connected to the sensing module.
  • it further includes: an analog conditioning module, which is electrically connected to the sensor module, and is used to convert the detection result of the analog signal output by the sensor module into a signal that meets subsequent processing requirements; and
  • the conversion module is respectively electrically connected with the analog conditioning module and the central processing module, and is used to convert the signal output by the analog conditioning module from an analog signal to a digital signal and then output it to the central processing module.
  • the functions of the static parts of the original motor-side encoder are merged with the original drive side to form a new coded drive device, so the original static parts and the circuit board on which they are located are omitted.
  • PCB board the axial installation distance between the circuit board and other parts in the robot joint, especially the driver, can be omitted, which reduces the axial height of the entire robot joint and makes the robot joint more compact.
  • the encoder parameter configuration process and connection establishment process on the driver side are also omitted, which simplifies the operation process.
  • Fig. 1 is an exemplary structural block diagram of a typical integrated robot joint in an example.
  • Fig. 2 is a schematic diagram of the structure of a motor-side encoder in an example.
  • Figure 3 is a schematic diagram of the internal structure of the static part of the encoder in an example.
  • Figure 4 is a schematic diagram of the internal structure of the drive in an example.
  • Fig. 5 is an exemplary structure diagram of an encoding driving device in an embodiment of the present invention.
  • Fig. 6 is an exemplary flowchart of an encoding driving method in an embodiment of the present invention.
  • Fig. 7 is an exemplary structural block diagram of a robot joint in an embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of the structure of the encoder 20 on the motor side. As shown in FIG. 2, it includes a moving part 21 and a static part 22. Among them, the moving part 21 is usually a plane or ring fixed on the motor shaft 60, which rotates with the motor shaft and uses a certain physical signal to send the position information of the motor shaft.
  • the static part 22 is not fixed on the motor shaft 60, and the sensor module 221 thereon is used to detect the physical signal sent by the moving part 21 and output the detection result to other modules on the static part 22.
  • the signal output by the sensing module 221 is a digital signal
  • the digital signal can be directly output to a signal processing module 222, and the signal processing module 222 calculates the corresponding position information, and bases the position information on a certain
  • These communication protocols are transmitted to the driver 10 through the first communication module 223, and the driver 10 performs motor control.
  • the static part 22 can be further shown as the dashed part in FIG. 3, and FIG. 3 shows a schematic structural diagram of the static part 22 in an example.
  • the sensing module 221 and the signal processing module 222 further include an analog conditioning module 224 and an analog-to-digital conversion (ADC) module 225, which are used to adjust and convert the analog signal detected by the sensing module 221 to the signal processing module 222. Range and format.
  • ADC analog-to-digital conversion
  • the internal structure of the driver 10 in an application may be as shown in FIG. 4, it includes: a second communication module 11, a control module 12, a power module 13, a power management module 14 and a current detection module 15.
  • the second communication module 11 is configured to receive the position information sent by the motor-side encoder through the first communication module 223 and provide the received position information to the control module 12.
  • the control module 12 is configured to coordinate and control the power module 13, the power management module 14 and the current detection module 15 according to the position information, and output a driving signal for controlling the motor 30 through the power module 14.
  • the control module 12 of the driver 10 in order to realize the signal transmission between the encoder 20 and the driver 10, the control module 12 of the driver 10 also needs to be configured. For example, including encoder parameter configuration, communication protocol and parameter configuration with the encoder, etc. After that, it needs to perform interconnection matching (for example, bandwidth matching) with the encoder 20, and establish a communication connection between the two. After that, the driver 10 can receive the position information of the motor shaft sent by the encoder 20 through the second communication module 11.
  • the signal processing module 222 in the static part 22 of the encoder 20 and the control module 12 in the drive 10 can both be in the field. It is implemented in programmable array (FPGA), digital signal processor (DSP) or electronic chip for special scenes, such as application-specific chip (ASIC). Therefore, the two can be combined into one device for implementation.
  • the first communication module 223 and the second communication module 11 and the physical gap between the two can be omitted, so that the axial distance of the robot joint can be measured. The reduction makes the robot joints more compact.
  • the above-mentioned parameter configuration process and connection establishment process can also be omitted, and the position information of the motor shaft sent by the encoder can be directly received.
  • FIG. 5 is an exemplary structure diagram of an encoding driving device 80 in an embodiment of the present invention.
  • the encoding driving device may include a sensing module 81, a central processing module 82, a power module 83, a power management module 84 and a current detection module 85 as shown in the implementation part.
  • it may further include an analog conditioning module 86 and an analog-to-digital conversion module 87 as shown in the dashed part.
  • the sensing module 81 is used to detect the physical signal sent by the encoder moving part 21 and output the corresponding detection result.
  • the sensing module 81 is electrically connected to the central processing module 82 for directly providing the detection result to the central processing module 82;
  • the sensing module 81 is electrically connected to the analog conditioning module 86 for providing the detection result to the analog conditioning module 86.
  • the central processing module 82 is configured to calculate corresponding position information according to the detection result, and generate a control signal for controlling the motor 30 according to the position information and the current information measured by the current detection module 85.
  • the central processing module 82 can also coordinate and control the power module 83, the power management module 84, and the current detection module 85.
  • the power module 83 is electrically connected to the central processing module 82, and is configured to provide a drive signal for the motor according to the control signal output by the central processing module 82 and provide set power protection.
  • the power management module 84 is electrically connected to the central processing module 82 and the power module 83 respectively, and is used to connect AC or DC power and convert it into a power input that meets the power supply requirements of the central processing module 82 and the power module 83.
  • the current detection module 85 is electrically connected to the central processing module 82 and the power module 83 respectively, and is configured to extract current information used by the motor from the power module 83 and provide the current information to the central processing module 82.
  • the analog conditioning module 86 is used to convert the detection result of the analog signal output by the sensing module 81 into a signal that meets the subsequent processing requirements.
  • the analog-to-digital conversion module 87 is electrically connected to the analog conditioning module 86 and the central processing module 82 respectively, and is used to convert the signal output by the analog conditioning module 86 from an analog signal to a digital signal and then output to the central processing module 82.
  • the code driving device in the embodiment of the present invention has been described in detail above, and the code driving method in the embodiment of the present invention will be described in detail below.
  • the code driving device in the embodiment of the present invention can be used to implement the code driving method in the embodiment of the present invention.
  • details that are not disclosed in the method embodiments of the present invention refer to the corresponding descriptions in the device embodiments of the present invention, which will not be repeated here.
  • Fig. 6 is an exemplary process of an encoding driving method in an embodiment of the present invention. As shown in Figure 6, the method may include the following steps:
  • step S601 a sensor module 81 detects the physical signal sent by the encoder moving part 21, and obtains a corresponding detection result.
  • step S602 corresponding position information is calculated according to the detection result, and a control signal for controlling a motor 30 is generated according to the position information and the current information extracted from a power module 83 by a current detection module 85.
  • step S603 the control information is provided to the power module 83, so that the power module 83 provides a driving signal for the motor and provides a set power protection.
  • the detection result output by the sensing module 81 is analog information, and before step 602, it may further include: converting the detection result of the analog signal output by the sensing module 81 into a digital signal.
  • the analog conditioning module 86 can first be used to convert the detection result of the analog signal output by the sensing module 81 into a signal that meets the subsequent processing requirements, and the analog-to-digital conversion module 87 can be used to convert the signal output by the analog conditioning module 86 from an analog signal to a digital signal. signal.
  • Fig. 7 is a schematic structural diagram of a robot joint in an embodiment of the present invention.
  • the robot joint includes: an encoder driving device 80, an encoder moving part 21, a frameless torque motor 30, a precision reducer 40, an output side encoder 50, a motor shaft 90 and all housing components 100.
  • the part enclosed by the dashed frame C represents the functional part corresponding to the original motor-side encoder.
  • the encoder moving part 21 is used to send the position information of the motor shaft through a certain physical signal.
  • the encoding drive device 80 is used to detect the physical signal sent by the encoder moving part 21, calculate the corresponding position information according to the detection result, and output the drive for driving the motor 30 according to the position information and the current information currently used by the motor. signal.
  • the internal structure of the encoding driving device 80 may be as shown in FIG. 5, including: a sensing module 81, a central processing module 82, a power management module 84, a power module 83 and a current detection module 85.
  • a sensing module 81 a central processing module 82
  • a power management module 84 a power module 83
  • a current detection module 85 a current detection module.
  • an analog conditioning module 86 and an analog-to-digital conversion module 87 may be further included as shown in the dotted line.
  • the motor 30 drives the motor shaft 90 to rotate.
  • the reducer 40 is used for corresponding meshing movement driven by the motor shaft 90.
  • the output side encoder 50 is used to send out position information on the output side.
  • the encoding drive device 80 incorporates the functions of the static part 22 of the original motor-side encoder 20, the original static part 22 and the circuit board (PCB board) on which it is located are omitted, so this circuit
  • the axial installation distance between the plate and other components in the robot joint, especially the driver 10, can be omitted, which reduces the axial height of the entire robot joint and makes the robot joint more compact.
  • a hardware module may include specially designed permanent circuits or logic devices (such as dedicated processors, such as ASICs) to complete specific operations.
  • the hardware module may also include a programmable logic device (such as an FPGA) or a circuit (such as a general-purpose processor or other programmable processors) temporarily configured by software for performing specific operations.
  • a programmable logic device such as an FPGA
  • a circuit such as a general-purpose processor or other programmable processors

Abstract

一种编码驱动装置(80)、方法及机器人关节。其中,编码驱动装置(80)包括:传感模块(81,221),用于检测编码器运动部件(21)发送的物理信号,并输出检测结果;中心处理模块(82),用于根据检测结果计算得到对应的位置信息,根据位置信息以及电机(30)使用的电流信息生成控制电机(30)的控制信号;功率模块(13,83),用于根据中心处理模块(82)输出的控制信号,为电机(30)提供驱动信号,并提供设定的功率保护;电源管理模块(14,84),用于接入交流或直流电,将之转换为满足中心处理模块(82)和一功率模块(13,83)的供电要求的电源输入;和电流检测模块(15,85),用于从功率模块(13,83)中提取电机(30)使用的电流信息,并将电流信息提供给中心处理模块(82)。实施例中的技术方案能够使机器人关节更加紧凑。

Description

编码驱动装置、方法及机器人关节 技术领域
本发明涉及工业领域,特别是一种编码驱动装置及机器人关节。
背景技术
随着机器人和机器人辅助产品在工业、商业和医疗领域的蓬勃发展,出现了新的设计趋势,即采用具有高精度和可靠性的更小、更紧凑的组件。为了实现这一点,一个解决方案是设计一个集成的机器人关节。例如,图1示出了一种典型的集成机器人关节的示例性结构框图。如图1所示,该机器人关节由驱动器10、电机侧编码器20、电机30、减速器40、输出侧编码器50、电机轴60和所有外壳组件70组成。在实际应用中,针对不同的具体应用会存在一些细微的差别。
目前,本领域的技术人员还在致力于提供结构更加紧凑的机器人关节。
发明内容
有鉴于此,本发明实施例中一方面提出了一种编码驱动装置和方法,另一方面提出了一种机器人关节,以使得机器人关节更加紧凑,并且具有更高的可靠性。
本发明实施例中提出的编码驱动装置,包括:传感模块,用于检测编码器运动部件发送的物理信号,并输出对应的检测结果;中心处理模块,用于根据所述检测结果计算得到对应的位置信息,根据所述位置信息以及一电流检测模块测量到的电流信息生成控制一电机的控制信号;功率模块,其与所述中心处理模块电连接,用于根据所述中心处理模块输出的控制信号,为电机提供驱动信号,并提供设定的功率保护;电源管理模块,其分别与所述中心处理模块和所述功率模块电连接,用于接入交流或直流电,将之转换为满足所述中心处理模块和一功率模块的供电要求的电源输入;和所述电流检测模块,其分别与所述中心处理模块和所述功率模块电连接,用于从所述功率模块中提取电机使用的电流信息,并将所述电流信息提供给所述中心处理模块。
在一个实施方式中,所述中心处理模块与所述传感模块电连接。
在一个实施方式中,进一步包括:模拟调理模块,其与所述传感模块电连接,用于 将所述传感模块输出的模拟信号的检测结果转换为满足后续处理要求的信号;和模数转换模块,其分别与所述模拟调理模块和所述中心处理模块电连接,用于将所述模拟调理模块输出的信号由模拟信号转换为数字信号后输出给所述中心处理模块。
本发明实施例中提出的编码驱动方法,包括:通过一传感模块检测编码器运动部件发送的物理信号,并得到对应的检测结果;根据所述检测结果计算得到对应的位置信息,根据所述位置信息以及通过一电流检测模块从一功率模块中提取的电流信息生成控制一电机的控制信号;将所述控制信息提供给所述功率模块,以使得所述功率模块为电机提供驱动信号,并提供设定的功率保护。
在一个实施方式中,所述传感模块输出的检测结果为模拟信息;所述根据所述检测结果计算得到对应的位置信息之前,进一步包括:将所述传感模块输出的模拟信号的检测结果转换为数字信号。
在一个实施方式中,所述将所述传感模块输出的模拟信号的检测结果转换为数字信号包括:利用一模拟调理模块将所述传感模块输出的模拟信号的检测结果转换为满足后续处理要求的信号;利用一模数转换模块将所述模拟调理模块输出的所述信号由模拟信号转换为数字信号。
本发明实施例中提出的一种机器人关节,包括:编码器运动部件,用于将电机轴的位置信息通过一定的物理信号发送出去;和编码驱动装置,用于检测所述编码器运动部件发送的物理信号,根据检测的结果计算得到对应的位置信息,并根据所述位置信息以及电机当前使用的电流信息,输出用于驱动电机的驱动信号。
在一个实施方式中,所述编码驱动装置包括:传感模块,用于检测编码器运动部件发送的物理信号,并输出对应的检测结果;中心处理模块,用于根据所述检测结果计算得到对应的位置信息,根据所述位置信息以及一电流检测模块测量到的电流信息生成控制一电机的控制信号;功率模块,其与所述中心处理模块电连接,用于根据所述中心处理模块输出的控制信号,为电机提供驱动信号,并提供设定的功率保护;电源管理模块,其分别与所述中心处理模块和所述功率模块电连接,用于接入交流或直流电,将之转换为满足所述中心处理模块和一功率模块的供电要求的电源输入;和所述电流检测模块,其分别与所述中心处理模块和所述功率模块电连接,用于从所述功率模块中提取电机使用的电流信息,并将所述电流信息提供给所述中心处理模块。
在一个实施方式中,所述中心处理模块与所述传感模块电连接。
在一个实施方式中,进一步包括:模拟调理模块,其与所述传感模块电连接,用于将所述传感模块输出的模拟信号的检测结果转换为满足后续处理要求的信号;和模数转 换模块,其分别与所述模拟调理模块和所述中心处理模块电连接,用于将所述模拟调理模块输出的信号由模拟信号转换为数字信号后输出给所述中心处理模块。
从上述方案中可以看出,由于本发明实施例中将原电机侧编码器的静态部件的功能合并到原驱动器侧形成新的编码驱动装置,因此省去了原静态部件及其所在的线路板(PCB板),则此线路板与机器人关节中其它部件尤其是驱动器之间的轴向安装距离均可省略,减少了整个机器人关节的轴向高度,使机器人关节变得更加紧凑。并且也省略了在驱动器侧的编码器参数配置过程以及连接建立过程,简化了操作流程。
附图说明
下面将通过参照附图详细描述本发明的优选实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:
图1为一个例子中一种典型的集成机器人关节的示例性结构框图。
图2为一个例子中一种电机侧编码器的结构示意图。
图3为一个例子中编码器静态部件的内部结构示意图。
图4为一个例子中驱动器的内部结构示意图。
图5为本发明实施例中一种编码驱动装置的示例性结构图。
图6为本发明实施例中一种编码驱动方法的示例性流程图。
图7为本发明实施例中一种机器人关节的示例性结构框图。
其中,附图标记如下:
Figure PCTCN2019108652-appb-000001
Figure PCTCN2019108652-appb-000002
具体实施方式
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据......”是指“至少根据......,但不限于仅根据......”。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
本发明实施例中,为了得到更加紧凑的机器人关节,考虑减小机器人关节的轴向高度。为此,需要对目前的机器人关节的结构进行分析研究。
考虑到为了满足紧凑性要求,目前的编码器都是采用尺寸较小的编码器,其类型可以为光学、磁性、以及电容性等。无论是哪种类型,编码器通常都可分为两个部分。以电机侧的编码器20为例,图2示出了电机侧编码器20的结构示意图。如图2所示,其包括一运动部件21和一静态部件22。其中,运动部件21通常是固定在电机轴60上的平面或环,其随电机轴转动,并利用一定的物理信号发送电机轴的位置信息。静态部件22不固定在电机轴60上,其上的传感模块221用于检测运动部件21发送的物理信号,并将检测结果输出到静态部件22上的其他模块。例如,如果传感模块221输出的信号为数 字信号,则可直接将该数字信号输出到一信号处理模块222,由该信号处理模块222计算出对应的位置信息,并将所述位置信息基于某些通信协议通过第一通信模块223传输到驱动器10,由驱动器10进行电机控制。
当然,若传感模块221输出的信号为模拟信号,则静态部件22上还可进一步如图3中的虚线部分所示,图3中示出了一个例子中静态部件22的结构示意图,在传感模块221和信号处理模块222之间进一步包括模拟调理模块224和模数转换(ADC)模块225,用于将传感模块221检测到的模拟信号调节并转换到所述信号处理模块222所需的范围和格式。
此外,考虑到一个应用中驱动器10的内部结构可如图4所示,包括:第二通信模块11、控制模块12、功率模块13、电源管理模块14和电流检测模块15。其中,第二通信模块11用于接收电机侧编码器通过第一通信模块223发送的位置信息,并将所接收的位置信息提供给控制模块12。控制模块12用于根据所述位置信息对功率模块13、电源管理模块14和电流检测模块15进行协调控制,通过功率模块14输出控制电机30的驱动信号。
其中,为了实现编码器20与驱动器10的信号传输,还需要对驱动器10的控制模块12进行配置。例如,包括编码器参数配置、与编码器通讯的协议及参数配置等。之后还需与编码器20进行互联匹配(例如带宽匹配),并建立二者之间的通信连接。之后,驱动器10才能通过第二通信模块11接收编码器20发送的电机轴的位置信息。
本发明实施例中,通过对上述编码器20的静态部件22以及驱动器10的结构进行分析,认为编码器20的静态部件22中的信号处理模块222以及驱动器10中的控制模块12均可以在现场可编程阵列(FPGA)、数字信号处理器(DSP)或面向专用场景的电子化芯片,如专用芯片(ASIC)等中实现。因此,可将二者合并到一个器件上进行实现,相应地,可省略第一通信模块223和第二通信模块11以及二者之间的物理间隙,从而可实现对机器人关节的轴向距离的缩减,使机器人关节变得更加紧凑。相应地,也可省略上述的参数配置过程以及连接建立过程,便可直接接收编码器发送的电机轴的位置信息。
为了使本发明的技术方案及优点更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以阐述性说明本发明,并不用于限定本发明的保护范围。
图5为本发明实施例中一种编码驱动装置80的示例性结构图。如图5所示,该编码驱动装置可如实现部分所示包括:传感模块81、中心处理模块82、功率模块83、电源管理模块84和电流检测模块85。在其他实施方式中,还可以进一步如虚线部分所示包括模 拟调理模块86和模数转换模块87。
其中,传感模块81用于检测编码器运动部件21发送的物理信号,并输出对应检测结果。在所述检测结果为数字信号时,传感模块81与中心处理模块82电连接,用于将所述检测结果直接提供给中心处理模块82;在所述检测结果为模拟信号时,传感模块81与模拟调理模块86电连接,用于将所述检测结果提供给模拟调理模块86。
中心处理模块82用于根据所述检测结果计算得到对应的位置信息,并根据所述位置信息以及电流检测模块85测量到的电流信息,生成控制电机30的控制信号。此外,中心处理模块82还可对功率模块83、电源管理模块84和电流检测模块85进行协调控制。
功率模块83与所述中心处理模块82电连接,用于根据中心处理模块82输出的所述控制信号为电机提供驱动信号,并提供设定的功率保护。
电源管理模块84分别与所述中心处理模块82和所述功率模块83电连接,用于接入交流或直流电,将之转换为满足中心处理模块82和功率模块83的供电要求的电源输入。
电流检测模块85分别与所述中心处理模块82和所述功率模块83电连接,用于从功率模块83中提取电机使用的电流信息,并将所述电流信息提供给所述中心处理模块82。
模拟调理模块86用于将传感模块81输出的模拟信号的检测结果转换为满足后续处理要求的信号。
模数转换模块87分别与模拟调理模块86和中心处理模块82电连接,用于将模拟调理模块86输出的信号由模拟信号转换为数字信号后输出给中心处理模块82。
以上对本发明实施例中的编码驱动装置进行了详细描述,下面再对本发明实施例中的编码驱动方法进行详细介绍。本发明实施例中的编码驱动装置可用于实现本发明实施例中的编码驱动方法。对于本发明方法实施例中未详细披露的细节可参见本发明装置实施例中的相应描述,此处不再一一赘述。
图6为本发明实施例中一种编码驱动方法的示例性流程。如图6所示,该方法可包括如下步骤:
步骤S601,通过一传感模块81检测编码器运动部件21发送的物理信号,并得到对应的检测结果。
步骤S602,根据所述检测结果计算得到对应的位置信息,根据所述位置信息以及通过一电流检测模块85从一功率模块83中提取的电流信息生成控制一电机30的控制信号。
步骤S603,将所述控制信息提供给所述功率模块83,以使得所述功率模块83为电机提供驱动信号,并提供设定的功率保护。
在一个实施方式中,所述传感模块81输出的检测结果为模拟信息,则步骤602之前, 可进一步包括:将所述传感模块81输出的模拟信号的检测结果转换为数字信号。
例如,可首先利用模拟调理模块86将传感模块81输出的模拟信号的检测结果转换为满足后续处理要求的信号,利用模数转换模块87将模拟调理模块86输出的信号由模拟信号转换为数字信号。
图7为本发明实施例中一种机器人关节的结构示意图。如图7所示,该机器人关节包括:编码驱动装置80、编码器运动部件21、无框转矩电机30、精密减速器40、输出侧编码器50、电机轴90和所有外壳组件100。图7中,虚线框C圈出的部分表示对应原电机侧编码器的功能部分。
其中,编码器运动部件21用于将电机轴的位置信息通过一定的物理信号发送出去。
编码驱动装置80用于检测编码器运动部件21发送的物理信号,根据检测的结果计算得到对应的位置信息,并根据所述位置信息以及电机当前使用的电流信息,输出用于驱动电机30的驱动信号。
具体实现时,编码驱动装置80的内部结构可如图5所示,包括:传感模块81、中心处理模块82、电源管理模块84、功率模块83和电流检测模块85。在其他实施方式中,还可以进一步如虚线部分所示包括模拟调理模块86和模数转换模块87。
在所述驱动信号的驱动下,电机30驱动所述电机轴90旋转。
减速器40用于在所述电机轴90的带动下进行相应啮合运动。
输出侧编码器50用于将输出侧的位置信息发送出去。
本发明实施例中,由于编码驱动装置80将原电机侧编码器20的静态部件22的功能合并了进来,因此省去了原静态部件22及其所在的线路板(PCB板),则此线路板与机器人关节中其它部件尤其是驱动器10之间的轴向安装距离均可省略,减少了整个机器人关节的轴向高度,使机器人关节变得更加紧凑。
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
可以理解,上述各实施方式中的硬件模块可以以机械方式或电子方式实现。例如,一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件(如FPGA)或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机 械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。并且也省略了在驱动器侧的编码器参数配置过程以及连接建立过程,简化了操作流程。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 编码驱动装置,其特征在于,包括:
    传感模块(81),用于检测编码器运动部件(21)发送的物理信号,并输出对应的检测结果;
    中心处理模块(82),用于根据所述检测结果计算得到对应的位置信息,根据所述位置信息以及一电流检测模块(85)测量到的电流信息生成控制一电机(30)的控制信号;
    功率模块(83),其与所述中心处理模块(82)电连接,用于根据所述中心处理模块(82)输出的控制信号,为电机提供驱动信号,并提供设定的功率保护;
    电源管理模块(84),其分别与所述中心处理模块(82)和所述功率模块(83)电连接,用于接入交流或直流电,将之转换为满足所述中心处理模块(82)和一功率模块(83)的供电要求的电源输入;和
    所述电流检测模块(85),其分别与所述中心处理模块(82)和所述功率模块(83)电连接,用于从所述功率模块(83)中提取电机使用的电流信息,并将所述电流信息提供给所述中心处理模块(82)。
  2. 根据权利要求1所述的编码驱动装置,其特征在于,所述中心处理模块(82)与所述传感模块(81)电连接。
  3. 根据权利要求1所述的编码驱动装置,其特征在于,进一步包括:
    模拟调理模块(86),其与所述传感模块(81)电连接,用于将所述传感模块(81)输出的模拟信号的检测结果转换为满足后续处理要求的信号;和
    模数转换模块(87),其分别与所述模拟调理模块(86)和所述中心处理模块(82)电连接,用于将所述模拟调理模块(86)输出的信号由模拟信号转换为数字信号后输出给所述中心处理模块(82)。
  4. 编码驱动方法,其特征在于,包括:
    通过一传感模块(81)检测编码器运动部件(21)发送的物理信号,并得到对应的检测结果;
    根据所述检测结果计算得到对应的位置信息,根据所述位置信息以及通过一电流检测模块(85)从一功率模块(83)中提取的电流信息生成控制一电机(30)的控制信号;
    将所述控制信息提供给所述功率模块(83),以使得所述功率模块(83)为电机提供驱动信号,并提供设定的功率保护。
  5. 根据权利要求4所述的编码驱动方法,其特征在于,所述传感模块(81)输出的 检测结果为模拟信息;所述根据所述检测结果计算得到对应的位置信息之前,进一步包括:
    将所述传感模块(81)输出的模拟信号的检测结果转换为数字信号。
  6. 根据权利要求5所述的编码驱动方法,其特征在于,所述将所述传感模块(81)输出的模拟信号的检测结果转换为数字信号包括:
    利用一模拟调理模块(86)将所述传感模块(81)输出的模拟信号的检测结果转换为满足后续处理要求的信号;
    利用一模数转换模块(87)将所述模拟调理模块(86)输出的所述信号由模拟信号转换为数字信号。
  7. 一种机器人关节,其特征在于,包括:
    编码器运动部件(21),用于将电机轴的位置信息通过一定的物理信号发送出去;和
    编码驱动装置(80),用于检测所述编码器运动部件(21)发送的物理信号,根据检测的结果计算得到对应的位置信息,并根据所述位置信息以及电机当前使用的电流信息,输出用于驱动电机(30)的驱动信号。
  8. 根据权利要求7所述的机器人关节,其特征在于,所述编码驱动装置(80)包括:
    传感模块(81),用于检测编码器运动部件(21)发送的物理信号,并输出对应的检测结果;
    中心处理模块(82),用于根据所述检测结果计算得到对应的位置信息,根据所述位置信息以及一电流检测模块(85)测量到的电流信息生成控制一电机(30)的控制信号;
    功率模块(83),其与所述中心处理模块(82)电连接,用于根据所述中心处理模块(82)输出的控制信号,为电机提供驱动信号,并提供设定的功率保护;
    电源管理模块(84),其分别与所述中心处理模块(82)和所述功率模块(83)电连接,用于接入交流或直流电,将之转换为满足所述中心处理模块(82)和一功率模块(83)的供电要求的电源输入;和
    所述电流检测模块(85),其分别与所述中心处理模块(82)和所述功率模块(83)电连接,用于从所述功率模块(83)中提取电机使用的电流信息,并将所述电流信息提供给所述中心处理模块(82)。
  9. 根据权利要求8所述的机器人关节,其特征在于,所述中心处理模块(82)与所述传感模块(81)电连接。
  10. 根据权利要求8所述的机器人关节,其特征在于,进一步包括:
    模拟调理模块(86),其与所述传感模块(81)电连接,用于将所述传感模块(81)输出的模拟信号的检测结果转换为满足后续处理要求的信号;和
    模数转换模块(87),其分别与所述模拟调理模块(86)和所述中心处理模块(82)电连接,用于将所述模拟调理模块(86)输出的信号由模拟信号转换为数字信号后输出给所述中心处理模块(82)。
PCT/CN2019/108652 2019-09-27 2019-09-27 编码驱动装置、方法及机器人关节 WO2021056447A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980099304.9A CN114222649A (zh) 2019-09-27 2019-09-27 编码驱动装置、方法及机器人关节
PCT/CN2019/108652 WO2021056447A1 (zh) 2019-09-27 2019-09-27 编码驱动装置、方法及机器人关节
EP19946342.3A EP4019201A4 (en) 2019-09-27 2019-09-27 DEVICE AND METHOD FOR CODING DRIVE, AND ROBOT ARTICULATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108652 WO2021056447A1 (zh) 2019-09-27 2019-09-27 编码驱动装置、方法及机器人关节

Publications (1)

Publication Number Publication Date
WO2021056447A1 true WO2021056447A1 (zh) 2021-04-01

Family

ID=75165047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108652 WO2021056447A1 (zh) 2019-09-27 2019-09-27 编码驱动装置、方法及机器人关节

Country Status (3)

Country Link
EP (1) EP4019201A4 (zh)
CN (1) CN114222649A (zh)
WO (1) WO2021056447A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109262614A (zh) * 2018-10-12 2019-01-25 清华大学深圳研究生院 一种机器人关节模组运动控制系统及其方法
US10189159B1 (en) * 2015-04-06 2019-01-29 X Development Llc Methods and systems for detecting states of operation of a robotic device
CN109352661A (zh) * 2018-12-11 2019-02-19 上海辛格林纳新时达电机有限公司 一种机器人关节的控制方法、伺服驱动装置和可存储介质
CN109445416A (zh) * 2018-10-31 2019-03-08 中国科学院合肥物质科学研究院 一种多传感器融合的高集成关节控制系统
CN110071676A (zh) * 2019-06-04 2019-07-30 清华大学 一种柔性机器人关节伺服系统的振动抑制方法和装置
CN209335630U (zh) * 2018-10-08 2019-09-03 广州数控设备有限公司 一种基于工业机器人的无传感弹性碰撞装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382890A (en) * 1993-02-17 1995-01-17 Pitney Bowes Inc. Integrated circuit driver having current limiter for brushless motor
JP5132172B2 (ja) * 2007-03-26 2013-01-30 オンセミコンダクター・トレーディング・リミテッド モータ駆動集積回路
CN101295418A (zh) * 2007-04-26 2008-10-29 华中科技大学 一种基于双msp430的集成电机控制与信息采集电路
CN101571723B (zh) * 2008-04-30 2010-12-08 南京理工大学 高精度驱动与控制一体化电机
CN108880122B (zh) * 2018-07-16 2019-05-14 睿尔曼智能科技(北京)有限公司 一种高集成度高功率密度的智能交流伺服驱动器
CN109302114A (zh) * 2018-08-31 2019-02-01 浙江工业大学 基于fpga实现的永磁同步电机全速范围无位置传感器控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189159B1 (en) * 2015-04-06 2019-01-29 X Development Llc Methods and systems for detecting states of operation of a robotic device
CN209335630U (zh) * 2018-10-08 2019-09-03 广州数控设备有限公司 一种基于工业机器人的无传感弹性碰撞装置
CN109262614A (zh) * 2018-10-12 2019-01-25 清华大学深圳研究生院 一种机器人关节模组运动控制系统及其方法
CN109445416A (zh) * 2018-10-31 2019-03-08 中国科学院合肥物质科学研究院 一种多传感器融合的高集成关节控制系统
CN109352661A (zh) * 2018-12-11 2019-02-19 上海辛格林纳新时达电机有限公司 一种机器人关节的控制方法、伺服驱动装置和可存储介质
CN110071676A (zh) * 2019-06-04 2019-07-30 清华大学 一种柔性机器人关节伺服系统的振动抑制方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4019201A4 *

Also Published As

Publication number Publication date
EP4019201A4 (en) 2023-06-07
EP4019201A1 (en) 2022-06-29
CN114222649A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2020051977A1 (zh) 运动控制系统
CN204481723U (zh) 一种基于stm32单片机的无刷直流电机控制器
CN101718843B (zh) 定子绕组相序及其与编码器对应关系确定方法和装置
US20090083459A1 (en) Universal interface compatibility of a sensor
CN109426353B (zh) 架构于非侵入式数据撷取系统客制化显示画面的系统模块
CN202231660U (zh) 一种自驱式闭环步进电机
US20190079288A1 (en) Head mounted display system and image display method thereof
WO2021056447A1 (zh) 编码驱动装置、方法及机器人关节
US20190314995A1 (en) Robot and method for controlling the same
CN115391422A (zh) 车辆感知信息生成方法、装置、设备、介质和程序产品
CN105472225A (zh) 一种可更换模组的智能相机
JP2010230491A (ja) 電子部品
KR101061930B1 (ko) 다중 모터 제어 시스템 및 방법
Jaziri et al. A remote DC motor control using Embedded Linux and FPGA
CN201107857Y (zh) 多功能集成化的数字图像处理系统
CN202565373U (zh) 一种cb工业相机
WO2021212415A1 (zh) 用于伺服系统的状态监测装置及伺服系统
JP2004171158A (ja) Usb機器
CN111028752A (zh) 一种lvds信号转换成rsds信号的方法
CN110446035A (zh) 一种相机动态拍摄模糊度的测试系统
CN110243864A (zh) 一种电力设备过热故障检测手机
US20120062200A1 (en) Voltage regulation device and system employing the same
CN219349094U (zh) 电机数据检测系统
KR101569923B1 (ko) 컴퓨터 원격제어 내장형 모니터 및 이를 구비하는 반도체 장비
Lages et al. An embedded module for robotized inspection of power lines by using thermographic and visual images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019946342

Country of ref document: EP

Effective date: 20220324