WO2021054586A1 - 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법 - Google Patents

플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법 Download PDF

Info

Publication number
WO2021054586A1
WO2021054586A1 PCT/KR2020/008867 KR2020008867W WO2021054586A1 WO 2021054586 A1 WO2021054586 A1 WO 2021054586A1 KR 2020008867 W KR2020008867 W KR 2020008867W WO 2021054586 A1 WO2021054586 A1 WO 2021054586A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
flash tank
power generation
pressure reducing
liquid
Prior art date
Application number
PCT/KR2020/008867
Other languages
English (en)
French (fr)
Inventor
이동현
최재준
위덕재
김성은
오문세
김경민
이종준
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2021054586A1 publication Critical patent/WO2021054586A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/003Arrangements for measuring or testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers

Definitions

  • the present invention relates to a heating-linked power generation cycle system using a flash tank and a control method thereof.
  • a typical organic Rankine cycle includes a pump that discharges a working fluid, an evaporator that receives heat from a heat medium to evaporate the working fluid discharged from the pump, an expander in which gas evaporated by the evaporator is introduced and expands, and the rotational force of the expander. And a condenser for condensing the working fluid discharged from the generator and a generator for generating electricity through the generator.
  • an expander inlet valve is provided at the front end of the expander, and an expander outlet valve is provided at the rear end.
  • district heating systems are systems in which a business that supplies collective energy supplies collective energy to a large number of individual users through pipes for heating and hot water supply, and is different from individual heating systems in which users individually have heating facilities. There is.
  • district heating means that various buildings such as houses, shopping centers, offices, schools, hospitals, factories, etc. within a city or a certain area do not have individual heating facilities, and a large-scale heat production facility, that is, a combined heat and power plant, is built to provide heating and hot water supply. It is one of the collective energy supply methods as a system that produces medium-temperature water (80-120°C) required for the facility and supplies it to each customer through a heat transfer pipe.
  • medium-temperature water 80-120°C
  • a heat exchanger In heating and hot water supply using district heating, a heat exchanger is used to transfer heat from the high-temperature primary side (high-temperature heat source water, heat source ⁇ user machine room) to the low-temperature secondary side (user machine room ⁇ household).
  • the organic Rankine cycle is driven by using the low-temperature heat from the secondary side as cooling water, the remaining energy used for power generation among the energy supplied to the organic Rankine cycle is used for heating and hot water supply, so there is an advantage of achieving a total efficiency of 95% or more.
  • the heat insulation regulations for buildings are reinforced, the temperature required by customers is lowered, whereas a large-scale facility change is required to change the supply temperature, so the temperature difference that can be utilized is increasing.
  • the present invention was conceived to solve the conventional problems as described above, and according to an embodiment of the present invention, the gas-liquid separator of the organic Rankine cycle is replaced with the first pressure reducing valve and the flash tank, and between the pump and the heat exchanger It is an object of the present invention to provide a power generation cycle system and a control method thereof using a flash tank capable of adjusting the amount of heat delivered to the user and the strategic production amount according to the load change by installing a second pressure reducing valve.
  • An object thereof is to provide a power generation cycle system using a flash tank capable of continuously operating and a control method thereof.
  • heat exchanger for supplying heat is replaced with the Rankine Cycle power generation system, electricity can be produced at the same time as the heat supply, but stable operation of the power generation facility is difficult when the heat demand fluctuates, and the heat supply time is shortened when rapid heat demand occurs at no load or under a low load.
  • heat is always supplied to the customer at a low load (liquid working fluid circulation mode), and when the load is increased, it is switched to a flash cycle to reduce power generation and heat supply.
  • An object thereof is to provide a power generation cycle system using a flash tank and a control method thereof, which is possible at the same time and can increase power production by switching to Rankine Cycle mode under high load.
  • the pump inlet is controlled so that the working fluid can be vaporized in the heat exchanger. 2
  • a flash tank that reduces the opening of the pressure reducing valve, opens the first pressure reducing valve in the flash tank inlet, shuts off the shut-off valve of the liquid flow line, so that all the working fluid is vaporized and supplied to the turbine, thereby increasing the amount of power generation. Its purpose is to provide a power generation cycle system and a control method thereof.
  • An object thereof is to provide a power generation cycle system using a flash tank and a control method thereof that can maintain a liquid state by supplying it to a liquid flow line through a bypass valve.
  • the control unit controls the bypass valve to supply a part of the working fluid at the rear end of the pump to the liquid flow line so that vaporization of the working fluid does not occur in the liquid flow line.
  • Flash which can control the temperature of the liquid working fluid to be kept lower than the saturation temperature by controlling the amount of working fluid supplied to the liquid flow line through the bypass valve based on the value measured by the measuring unit. Its purpose is to provide a power generation cycle system using a tank and a control method thereof.
  • the organic Rankine Cycle power generation system market has grown rapidly since the 2000s, according to an embodiment of the present invention, it can be applied to all demanders where central heating or district heating is supplied, and as the insulation standards of buildings are strengthened, the future heat demand will be increased.
  • the heat supplier can increase the amount of heat sold, and the user can generate electricity at a rate for heat, so that the power generation cycle system using a flash tank and its control method can be applied as a reasonable profit model. It has its purpose to provide.
  • a pump for discharging the working fluid a heat exchanger for heating the working fluid discharged from the pump by receiving heat from a heat source; a flash tank for separating gas and liquid from the working fluid discharged from the heat exchanger; and in the flash tank
  • a power generation cycle system having an expander for expanding the vaporized working fluid, and a condenser for heating a cooling medium by the liquid separated from the flash tank and the working fluid discharged from the expander, wherein the liquid separated from the flash tank is transferred to the condenser.
  • a liquid flow line flowing into the side A first pressure reducing valve that adjusts the pressure of the flash tank; And a control unit for controlling the first pressure reducing valve to control the amount of vaporization of the working fluid in the flash tank.
  • a generator for generating electricity through the rotational force of the expander.
  • a temperature sensor provided at one side of the inlet end of the cooling medium of the condenser to measure the temperature of the cooling medium flowing into the condenser.
  • control unit may control the amount of vaporization of the working fluid in the flash tank by adjusting the opening degree of the first pressure reducing valve based on the temperature value measured by the temperature sensor.
  • it may be characterized in that it further comprises an inlet valve provided on the inlet side of the expander, an expander outlet valve provided on the outlet side of the expander, and a shut-off valve provided on one side of the liquid flow line.
  • control unit may be characterized in that controlling the opening degree of the second pressure reducing valve so that the working fluid in the heat exchanger can be vaporized.
  • control unit completely opens the first pressure reducing valve and the second pressure reducing valve, opens the shutoff valve, closes the expander inlet valve and the expander outlet valve, and drives the pump to drive the flash tank. It may be characterized in that the working fluid in the inside is not vaporized so that all the liquid working fluid flows into the condenser through the liquid flow line.
  • control unit when the temperature value measured by the temperature sensor falls below the first set temperature value, the control unit reduces the opening degree of the first pressure reducing valve to vaporize a part of the working fluid in the flash tank, and the expander inlet valve and the expander It may be characterized in that the control to generate electricity by opening the outlet valve to flow the vaporized working fluid into the expander.
  • the control unit opens the first pressure reducing valve, closes the shutoff valve, and decreases the opening degree of the second pressure reducing valve.
  • the working fluid may be vaporized, and the working fluid vaporized in the heat exchanger may be introduced into the expander and controlled to generate electricity.
  • controller may control the pump based on the temperature value measured by the temperature sensor to control the flow rate of the working fluid.
  • the heat source may be district heating source water
  • the cooling medium may be feed water
  • the feed water flowing into the condenser may be heated to be supplied as hot water
  • a bypass line connecting between the rear end of the pump and the liquid flow line; And a bypass valve provided on one side of the bypass line, wherein the control unit controls the bypass valve to operate the rear end of the pump so that vaporization of the working fluid does not occur in the liquid flow line in the liquid mode. It may be characterized in that a part of the fluid is supplied to the liquid flow line.
  • a measurement unit provided at one side of the liquid flow line to measure the temperature or pressure of the working fluid, wherein the control unit further includes the liquid flow line through the bypass valve based on the value measured by the measurement unit. It may be characterized by controlling the temperature of the liquid working fluid to be maintained lower than the saturation temperature by adjusting the amount of the working fluid supplied to the saturation temperature.
  • a second object of the present invention is to allow the control unit to open the first pressure reducing valve, open the shutoff valve provided on one side of the liquid flow line, and drive the pump in the control method of the power generation cycle system according to the aforementioned first object.
  • the control unit reduces the opening degree of the first pressure reducing valve to vaporize a part of the working fluid in the flash tank, It can be achieved as a control method of a power generation cycle system using a flash tank, characterized in
  • control unit controls the pump based on the temperature value measured by the temperature sensor to adjust the flow rate of the working fluid.
  • the controller opens the first pressure reducing valve. And, closing the shut-off valve, reducing the opening degree of the second pressure reducing valve to vaporize the working fluid in the heat exchanger, the fifth step of controlling the working fluid vaporized in the heat exchanger to flow into the expander to generate electricity. It may be characterized in that it further includes.
  • bypass line connecting between the rear end of the pump and the liquid flow line
  • bypass valve provided on one side of the bypass line, wherein the control unit is in a liquid phase mode, and vaporization of the working fluid occurs in the liquid flow line.
  • the bypass valve is controlled to supply a part of the working fluid at the rear end of the pump to the liquid flow line.
  • a measuring unit provided at one side of the liquid flow line measures the temperature or pressure of the working fluid
  • the control unit measures the working fluid supplied to the liquid flow line through the bypass valve based on the value measured by the measuring unit. It may be characterized by controlling the temperature of the liquid working fluid to be maintained lower than the saturation temperature by adjusting the amount of.
  • the gas-liquid separator of the organic Rankine cycle is replaced with a first pressure reducing valve and a flash tank, and a second pressure reducing valve is provided between the pump and the heat exchanger.
  • a liquid working fluid is controlled by controlling the internal pressure with a single system. It has the effect of being able to operate continuously by switching to circulation mode, flash cycle mode, and Rankine cycle mode.
  • heat exchanger for supplying heat is replaced with the Rankine Cycle power generation system, electricity can be produced at the same time as the heat supply, but stable operation of the power generation facility is difficult when the heat demand fluctuates, and the heat supply time is shortened when rapid heat demand occurs at no load or under a low load.
  • heat is always supplied to the customer at a low load (liquid working fluid circulation mode).
  • a power generation cycle system using a flash tank and a control method therefor by adding a flash tank and a first pressure reducing valve to the existing organic Rankine cycle, the internal pressure is controlled by a single system to prevent load fluctuations.
  • the internal pressure is controlled by a single system to prevent load fluctuations.
  • it has the effect of freely switching to the liquid phase working fluid circulation mode (liquid phase mode), the flash cycle mode (mixing mode), and the Rankine cycle mode (the vapor phase mode) to enable continuous operation.
  • heat exchange occurs when the amount of heat use increases, that is, when the return temperature is continuously lowered and the amount of heat use increases to 30% or more of the design load.
  • the opening of the second pressure reducing valve at the inlet of the pump is reduced so that the working fluid can be vaporized from the machine, the first pressure reducing valve in the flash tank inlet is opened, and the shutoff valve of the liquid flow line is blocked, so that all the working fluid is vaporized and supplied to the expander. So that the amount of power generated is increased.
  • the control unit controls the bypass valve to supply a part of the working fluid at the rear end of the pump to the liquid flow line so that vaporization of the working fluid does not occur in the liquid flow line. It is possible to control the temperature of the liquid working fluid to be kept lower than the saturation temperature by controlling the amount of working fluid supplied to the liquid flow line through the bypass valve based on the value measured by the measuring unit. Have.
  • the organic Rankine cycle power generation system market has grown rapidly since the 2000s, according to the power generation cycle system and its control method using a flash tank according to an embodiment of the present invention, it can be applied to all consumers supplied with central heating or district heating. And, in a situation where heat demand is expected to gradually decrease in the future as the insulation standards of buildings are strengthened, heat providers can increase heat sales, and users can generate electricity at a rate for heat, which can be applied as a reasonable profit model. Has an advantage.
  • FIG. 1 is a configuration diagram of a power generation cycle system using a flash tank according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram of a power generation cycle system using a flash tank according to an embodiment of the present invention in a liquid mode
  • FIG. 3 is a configuration diagram of a power generation cycle system using a flash tank according to an embodiment of the present invention in a mixed mode
  • FIG. 4 is a configuration diagram of a power generation cycle system using a flash tank according to an embodiment of the present invention in a wake-up mode
  • FIG. 5 is a block diagram showing a signal flow of a control unit according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a power generation cycle system control method using a flash tank according to an embodiment of the present invention
  • FIG. 7 is a block diagram of a power generation cycle system using a flash tank according to another embodiment of the present invention.
  • bypass valve 100 heating-linked power generation cycle system using a flash tank
  • FIG. 1 shows a configuration diagram of a power generation cycle system 100 using a flash tank 30 according to an embodiment of the present invention.
  • Figure 2 shows a configuration diagram of the power generation cycle system 100 using the flash tank 30 according to an embodiment of the present invention in the liquid mode
  • Figure 3 is in the mixed mode, according to an embodiment of the present invention
  • a configuration diagram of the power generation cycle system 100 using the flash tank 30 is shown
  • FIG. 4 is a configuration of the power generation cycle system 100 using the flash tank 30 according to an embodiment of the present invention in a wake-up mode. It shows the degree.
  • FIG. 5 is a block diagram showing a signal flow of the controller 60 according to an embodiment of the present invention.
  • Figure 6 shows a flow chart of a control method of the power generation cycle system 100 using the flash tank 30 according to an embodiment of the present invention.
  • the power generation cycle system 100 using the flash tank 30 is a pump 10, a heat exchanger 20, a first pressure reducing valve 31, as shown in FIGS. 1 to 4 , Second pressure reducing valve (11), flash tank (30), liquid flow line (32), shut-off valve (33), turbine (40), generator (41), turbine inlet valve (42), turbine outlet valve (43) ), a condenser 50, a temperature sensor 52, a cooling medium line 51, and the like.
  • the gas-liquid separator of the conventional organic Rankine cycle is replaced with the first pressure reducing valve 31 and the flash tank 30, and the second pressure reducing valve ( By installing 11), it is possible to adjust the amount of heat delivered to the user and the amount of strategic production according to the change in load.
  • the internal pressure is controlled by a single system to respond to load fluctuations, and liquid phase operation It is possible to operate continuously by switching to fluid circulation mode (liquid mode), flash cycle mode (mixing mode), and Rankine cycle mode (weather mode).
  • the pump 10 is configured to provide power for discharging and circulating the working fluid.
  • the heat exchanger 20 is configured to receive heat from a heat source and heat the working fluid discharged from the pump 10.
  • this heat source may be the primary side heat of district heating, that is, district heating heat source water.
  • the flash tank 30 is configured to separate gas and liquid from the working fluid discharged from the heat exchanger 20, and the first pressure reducing valve 31 is provided at the inlet side of the flash tank 30, It is configured to regulate the pressure in the tank 30.
  • the expander (turbine 40) expands the working fluid vaporized in the flash tank 30, and the generator 41 is configured to generate electricity through the rotational force of the expander.
  • the condenser 50 is configured to heat the cooling medium by the liquid separated from the flash tank 30 and the working fluid discharged from the generator 41.
  • the cooling medium may be a hot water supply for producing hot water, and may be configured to produce hot water by transferring condensation heat generated in the condenser 50 to the water supply.
  • liquid flow line 32 is configured to introduce the liquid separated from the flash tank 30 to the condenser 50 side, and a shutoff valve 33 is provided on one side of the liquid flow line 32.
  • control unit 60 controls the first pressure reducing valve 31 to adjust the vaporization amount of the working fluid in the flash tank 30.
  • a temperature sensor 52 is provided at one side of the cooling medium inlet end of the condenser 50 to measure the temperature of the cooling medium flowing into the condenser 50.
  • the heat consumption (load) may be determined based on the temperature value of the water exchange measured by the temperature sensor 52.
  • control unit 60 controls the amount of vaporization of the working fluid in the flash tank 30 by adjusting the opening degree of the first pressure reducing valve 31 based on the temperature value measured by the temperature sensor 52.
  • the power generation cycle system 100 using the flash tank 30 according to an embodiment of the present invention is provided with a second pressure reducing valve 11 at one side after the pump 10.
  • control unit 60 may control the opening degree of the second pressure reducing valve 11 so that the working fluid in the heat exchanger 20 can be vaporized.
  • the power generation cycle system 100 using the flash tank 30 according to the embodiment of the present invention is in a liquid mode (liquid working fluid circulation mode), as shown in FIG. 2, the control unit 60 is a first pressure reducing valve ( 31) and the second pressure reducing valve 11 are completely opened, and the shutoff valve 33 is controlled to open (S1).
  • the pressure at the outlet of the pump 10 is maintained higher than the evaporation pressure of the working fluid at the inlet temperature of the heat source, so that the working fluid circulates inside the system 100 without vaporization to generate power. Without doing so, it maintains a state in which heat can be supplied to the customer immediately (S4). Accordingly, through this, heat is supplied to the user at all times to respond to a rapid increase in demand for heating and hot water supply.
  • control unit 60 vaporizes a part of the working fluid in the flash tank 30 by reducing the opening degree of the first pressure reducing valve 31, and vaporizes by opening the turbine inlet valve 42 and the turbine outlet valve 43.
  • the resulting working fluid is introduced into the turbine 40 and controlled to generate electricity (S6, S7).
  • the opening degree of the first pressure reducing valve 31 installed between the outlet of the heat exchanger 20 and the flash tank 30 is reduced. If so, a phase change occurs in the flash tank 30, and the gaseous working fluid expands while passing through the turbine 40 and then flows into the condenser 50, and the liquid working fluid immediately follows the liquid flow line 32. It is supplied to the condenser (50). By adjusting the opening degree of the first pressure reducing valve 31, it is possible to control the rate at which the working fluid is vaporized.
  • the control unit 60 is operated in the gas phase working fluid circulation mode (rankkin cycle mode). As shown in Fig. 4, the first pressure reducing valve 31 is opened, the shutoff valve 33 is closed, and the opening degree of the second pressure reducing valve 11 is reduced (S9), and the working fluid in the heat exchanger 20 To evaporate (S10), the working fluid vaporized in the heat exchanger 20 is controlled to flow into the turbine 40 to generate electricity (S11).
  • the opening of the second pressure reducing valve 11 at the inlet of the pump 10 is reduced so that the working fluid can be vaporized in the heat exchanger 20.
  • the flash tank (30) inlet first pressure reducing valve (31) is opened, and the shutoff valve (33) of the liquid flow line (32) is blocked so that all the working fluid is vaporized and supplied to the turbine (40), thereby increasing the amount of power generation. Let's make it.
  • the required amount of heat can be transferred to the user, and when the load decreases, the user return temperature increases, and the above process is reversed by detecting this through the temperature sensor 52. Will proceed.
  • FIG. 7 shows a configuration diagram of a power generation cycle system 100 using a flash tank according to another embodiment of the present invention.
  • a bypass line 70 connecting between the rear end of the pump 10 and the liquid flow line 32 while including all the configurations of the above-described embodiment as it is, and a bypass line It can be seen that it is configured to further include a bypass valve 71 provided on one side of the pass line 70.
  • the measurement unit 34 is provided on one side of the liquid flow line 32 and is configured to measure the temperature or pressure of the working fluid.
  • a flow control valve 12 is installed on the inlet side of the pump 10.
  • the liquid working fluid that has passed through the flash tank 30 in the liquid working fluid circulation mode is partially vaporized again in the liquid flow line 32. Therefore, it may be configured to maintain a liquid state by supplying a part of the low temperature working fluid to the liquid flow line 32 through the bypass line 70 and the bypass valve 71 at the rear end of the pump 10.
  • control unit 60 controls the bypass valve 71 so that vaporization of the working fluid does not occur in the liquid flow line 32 to liquid a part of the working fluid at the rear end of the pump 10. It is configured to supply to the flow line (32).
  • control unit 60 adjusts the amount of the working fluid supplied to the liquid flow line 32 through the bypass valve 71 based on the value measured by the measuring unit 34 to saturate the temperature of the liquid working fluid. It is controlled to be kept lower than the temperature.
  • the gas-liquid separator of the organic Rankine cycle is replaced by the first pressure reducing valve 31 and the flash tank 30, and the pump 10 and the heat exchanger (20)
  • a second pressure reducing valve (11) By installing a second pressure reducing valve (11) in between, it is possible to adjust the strategic production amount and the amount of heat transferred to the user according to the change in the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

본 발명은 플래쉬탱크를 이용한 난방연계 발전사이클시스템에 관한 것으로, 보다 상세하게는 작동유체를 토출시키는 펌프와, 열원로부터 열을 공급받아 상기 펌프에서 토출된 작동유체를 가열시키는 열교환기와, 상기 열교환기에서 배출된 작동유체에서 기체와 액체를 분리시키는 플래쉬탱크와, 상기 플래쉬탱크에서 기화된 작동유체를 팽창시키는 팽창기와, 상기 플래쉬탱크에서 분리된 액체와 상기 팽창기에서 배출되는 작동유체에 의해 냉각매체를 가열시키는 응축기를 갖는 발전사이클시스템로서, 상기 플래쉬탱크에서 분리된 액체를 상기 응축기 측으로 유입시키는 액체유동라인; 상기 플래쉬탱크의 압력을 조절하는 제1감압밸브; 및 상기 제1감압밸브를 제어하여 상기 플래쉬탱크 내의 작동유체의 기화량을 조절하는 제어부;를 포함하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템에 관한 것이다.

Description

플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법
본 발명은 플래쉬탱크를 이용한 난방연계 발전사이클시스템 및 그 제어방법에 관한 것이다.
통상의 유기랭킨사이클은 작동유체를 토출시키는 펌프와, 열매체로부터 열을 공급받아 펌프에서 토출된 작동유체를 증발시키는 증발기와, 증발기에 의해 증발된 기체가 유입되어 팽창시키는 팽창기와, 이러한 팽창기의 회전력을 통해 전기를 발전시키는 발전기와, 발전기에서 배출되는 작동유체를 응축시키는 응축기를 포함하여 구성된다. 그리고 팽창기의 전단에는 팽창기입구밸브가 구비되며, 후단에는 팽창기출구밸브가 구비된다.
또한, 일반적으로 지역난방시스템은 집단에너지를 공급하는 사업자가 다수의 개별 사용자에게 난방 및 급탕을 위해 배관을 통해 집단에너지를 공급하는 시스템으로, 사용자가 개별적으로 난방설비를 갖추는 개별난방 시스템과는 차이가 있다.
즉, 지역난방은 하나의 도시 또는 일정한 지역 내에 있는 주택, 상가, 사무실, 학교, 병원, 공장 등 각종 건물이 개별적으로 난방설비를 갖추지 않고, 대규모 열생산시설, 즉 열병합발전소를 건설하여 난방 및 급탕에 필요한 중온수(80-120℃)를 생산, 열수송관을 통해 각 수용가에 공급하는 시스템으로 집단에너지 공급방식 중 하나이다.
지역난방을 이용한 난방 및 급탕에서는 고온의 1차측(고온 열원수, 열원 → 사용자 기계실)으로부터 저온의 2차측(사용자 기계실 → 세대)으로 열을 전달하기 위해 열교환기를 사용한다.
이때, 1차측 고온열과 2차측 저온열 사이의 온도차이를 이용하여 전력을 생산하는 것이 가능하다. 예를 들어, 1차측 고온열을 열원으로 유기랭킨사이클을 구동하여 전력을 생산하고, 유기랭킨사이클의 응축열을 2차측 저온열로 사용하여 난방와, 전력생산을 동시에 하는 것이 가능할 수 있다. 2차측의 저온열을 냉각수로 유기랭킨사이클을 구동하게 되면 유기랭킨사이클로 공급된 에너지 중 발전에 사용되고 남은 에너지를 난방 및 급탕에 사용하게 되므로 95%이상의 종합효율 달성이 가능하다는 장점이 있다. 특히, 건물에 대한 단열 규정이 강화될수록 수요처에서 필요로 하는 온도는 낮아지는 반면 공급 온도의 변경을 위해서는 대규모 설비 변경이 필요하므로 활용 가능한 온도차는 증가하고 있다.
그러나 난방 및 급탕은 사용량(부하) 변동이 심하여 일반적인 유기랭킨사이클을 적용하는데 어려움이 있다.
따라서 사용량(부하) 변동에 따라 전력량과 사용자 측으로 전달되는 열량을 조절할 수 있는 시스템의 개발이 요구되었다.
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 실시예에 따르면, 유기랭킨사이클의 기액분리기를 제1감압밸브와 플래쉬탱크로 대체하고, 펌프와 열교환기 사이에 제2감압밸브를 설치하여 부하변동에 따라 전략생산량과 사용자 측으로 전달되는 열량을 조절할 수 있는 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법을 제공하는데 그 목적이 있다.
본 발명의 실시예에 따르면, 기존의 유기랭킨사이클에 플래쉬탱크와 제1감압밸브를 추가하여, 단일시스템으로 내부의 압력을 제어하여 액상작동유체 순환모드, 플래쉬사이클모드, 랭킨사이클 모드로 전환하여 연속적으로 운전이 가능한 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법을 제공하는데 그 목적이 있다.
열을 공급하기 위한 열교환기를 랭킨사이클 발전시스템으로 대체할 경우 열공급과 동시에 전력생산이 가능하나 열수요의 변동성이 클 경우 발전설비의 안정적인 운영이 어려우며, 무부하 또는 저부하에서 급격한 열수요 발생시 열공급시간이 지연되게 되는 문제점을 해결하기 위하여, 본 발명의 실시예에 따르면, 저부하에서 수요처로 상시 필요한 만큼의 열을 공급(액상작동유체 순환모드)하다가, 부하가 증가하면 플래쉬 사이클로 전환하여 발전과 열공급이 동시에 가능하고, 고부하시 랭킨사이클 모드로 전환하여 전력생산량을 높일 수 있는, 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법을 제공하는데 그 목적이 있다.
본 발명의 실시예에 따르면, 열사용량이 증가하여 즉, 예를 들어 환수온도가 지속적으로 낮아져 설계부하의 30% 이상으로 열사용량이 증가하면 열교환기에서 작동유체가 기화될 수 있도록 펌프 입구의 제2감압밸브의 개도를 감소시키며 플래쉬탱크 입구 제1감압밸브를 개방하고, 액체유동라인의 차단밸브를 차단하여 모든 작동유체가 기화되어 터빈으로 공급되도록 하여 발전량을 증가시킬 수 있는, 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법을 제공하는 데 그 목적이 있다.
액상 작동유체 순환모드에서 플래쉬탱크를 지난 액상의 작동유체가 액체유동라인에서 일부 다시 기화가 되는 것을 방지하기 위해, 본 발명의 실시예에 따르면, 펌프 후단에서 저온의 작동유체 일부를 바이패스라인과 바이패스밸브를 통해 액체유동라인으로 공급하여 액체상태를 유지할 수 있는, 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법을 제공하는데 그 목적이 있다.
즉, 본 발명의 실시예에 따르면, 제어부는 액상 작동유체 순환모드에서, 액체유동라인에서 작동유체의 기화가 발생되지 않도록, 바이패스밸브를 제어하여 펌프 후단의 작동유체 일부를 액체유동라인으로 공급시키도록 제어하고, 측정부에서 측정된 값을 기반으로 바이패스밸브를 통해 액체유동라인으로 공급되는 작동유체의 양을 조절하여 액상 작동유체의 온도가 포화온도보다 낮게 유지되도록 제어할 수 있는, 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법을 제공하는데 그 목적이 있다.
유기랭킨사이클 발전시스템 시장이 2000년대 이후 급격히 성장함에 따라, 본 발명의 실시예에 따르면, 중앙난방 또는 지역난방이 공급되는 모든 수요처에 적용이 가능하고, 건출물의 단열 기준이 강화됨에 따라 향후 열수요가 점차 감소할 것으로 예상되는 상황에서, 열공급자는 열판매량을 높일 수 있고, 사용자는 열에 대한 요금으로 전력을 생산할 수 있어 합리적인 수익모델로 적용할 수 있는, 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법을 제공하는데 그 목적이 있다.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
작동유체를 토출시키는 펌프와, 열원로부터 열을 공급받아 상기 펌프에서 토출된 작동유체를 가열시키는 열교환기와, 상기 열교환기에서 배출된 작동유체에서 기체와 액체를 분리시키는 플래쉬탱크와, 상기 플래쉬탱크에서 기화된 작동유체를 팽창시키는 팽창기와, 상기 플래쉬탱크에서 분리된 액체와 상기 팽창기에서 배출되는 작동유체에 의해 냉각매체를 가열시키는 응축기를 갖는 발전사이클시스템로서, 상기 플래쉬탱크에서 분리된 액체를 상기 응축기 측으로 유입시키는 액체유동라인; 상기 플래쉬탱크의 압력을 조절하는 제1감압밸브; 및 상기 제1감압밸브를 제어하여 상기 플래쉬탱크 내의 작동유체의 기화량을 조절하는 제어부;를 포함하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템으로서 달성될 수 있다.
그리고 상기 팽창기의 회전력을 통해 전기를 발전시키는 발전기; 및상기 응축기의 냉각매체 유입단 일측에 구비되어 응축기로 유입되는 냉각매체의 온도를 측정하는 온도센서;를 더 포함하는 것을 특징으로 할 수 있다.
또한, 상기 제어부는 상기 온도센서에서 측정된 온도값을 기반으로 상기 제1감압밸브의 개도를 조절하여 상기 플래쉬탱크 내의 작동유체의 기화량을 제어하는 것을 특징으로 할 수 있다.
그리고 상기 팽창기 입구측에 구비되는 입구밸브와, 상기 팽창기 출구측에 구비되는 팽창기출구밸브와, 상기 액체유동라인 일측에 구비되는 차단밸브를 더 포함하는 것을 특징으로 할 수 있다.
또한 상기 펌프 후단 일측에 구비되는 제2감압밸브를 더 포함하고, 상기 제어부는 제2감압밸브의 개도를 조절하여 상기 열교환기 내의 작동유체가 기화될 수 있도록 제어하는 것을 특징으로 할 수 있다.
그리고 액상모드시, 상기 제어부는 제1감압밸브와 상기 제2감압밸브를 완전히 개방하도록 하고, 상기 차단밸브를 개방하고, 상기 팽창기입구밸브와 상기 팽창기출구밸브를 닫고, 상기 펌프를 구동시켜 플래쉬탱크 내의 작동유체가 기화되지 않도록 하여 모든 액상의 작동유체가 액체유동라인을 통해 응축기 측으로 유입시키도록 제어하는 것을 특징으로 할 수 있다.
또한, 상기 온도센서에서 측정된 온도값이 제1설정온도값 이하가 되면, 제어부는 상기 제1감압밸브의 개도를 감소시켜 상기 플래쉬탱크 내의 작동유체 일부를 기화시키고, 상기 팽창기입구밸브와 상기 팽창기출구밸브를 개방하여 기화된 작동유체를 팽창기로 유입시켜 발전하도록 제어하는 것을 특징으로 할 수 있다.
그리고 상기 온도센서에서 측정된 온도값이 제2설정온도값 이하가 되면, 제어부는 상기 제1감압밸브를 개방하고, 상기 차단밸브를 닫고, 상기 제2감압밸브의 개도를 감소시켜 상기 열교환기 내의 작동유체를 기화하도록 하여, 상기 열교환기에서 기화된 작동유체를 팽창기로 유입시켜 발전하도록 제어하는 것을 특징으로 할 수 있다.
또한 상기 제어부는 상기 온도센서에서 측정된 온도값을 기반으로 상기 펌프를 제어하여 작동유체의 유량을 조절하는 것을 특징으로 할 수 있다.
그리고 상기 열원은 지역난방열원수이고, 상기 냉각매체는 급수이며, 상기 응축기로 유입되는 급수가 가열되어 온수로 공급되는 것을 특징으로 할 수 있다.
또한 상기 펌프 후단 일측과 상기 액체유동라인 사이를 연결하는 바이패스라인; 및 상기 바이패스라인 일측에 구비되는 바이패스밸브;를 더 포함하고, 제어부는 상기 액상모드에서, 상기 액체유동라인에서 작동유체의 기화가 발생되지 않도록, 바이패스 밸브를 제어하여 상기 펌프 후단의 작동유체 일부를 상기 액체유동라인으로 공급시키는 것을 특징으로 할 수 있다.
그리고 상기 액체유동라인 일측에 구비되어 상기 작동유체의 온도 또는 압력을 측정하는 측정부;를 더 포함하고, 상기 제어부는 상기 측정부에서 측정된 값을 기반으로 상기 바이패스 밸브를 통해 상기 액체유동라인으로 공급되는 작동유체의 양을 조절하여 액상 작동유체의 온도가 포화온도보다 낮게 유지되도록 제어하는 것을 특징으로 할 수 있다.
본 발명의 제2목적은 앞서 언급한 제1목적에 따른 발전사이클시스템의 제어방법에 있어서, 제어부가 제1감압밸브를 개방하도록 하고, 액체유동라인 일측에 구비되는 차단밸브를 개방하고 펌프를 구동시키는 제1단계; 작동유체가 펌프를 통해 토출되어 열교환기에서 열원으로부터 열을 공급받아 가열된 후, 플래쉬탱크 내에서 기화되지 않고 액상의 작동유체가 액체유동라인을 통해 응축기로 유입되는 제2단계; 응축기에서 작동유체의 열을 공급받아 냉각매체가 가열되고, 작동유체는 펌프를 통해 순환되는 제3단계; 및 응축기의 냉각매체 유입단에 구비된 온도센서에서 측정된 온도값이 제1설정온도값 이하가 되면, 제어부가 상기 제1감압밸브의 개도를 감소시켜 상기 플래쉬탱크 내의 작동유체 일부를 기화시키고, 기화된 작동유체를 팽창기로 유입시켜 발전하도록 제어하는 제4단계를 포함하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템의 제어방법으로서 달성될 수 있다.
그리고 제어부가 상기 온도센서에서 측정된 온도값을 기반으로 상기 펌프를 제어하여 작동유체의 유량을 조절하는 것을 특징으로 할 수 있다.
또한 상기 펌프 후단 일측에 구비되는 제2감압밸브를 더 포함하고, 상기 제4단계 후에, 상기 온도센서에서 측정된 온도값이 제2설정온도값 이하가 되면, 제어부가 상기 제1감압밸브를 개방하고, 상기 차단밸브를 닫고, 상기 제2감압밸브의 개도를 감소시켜 상기 열교환기 내의 작동유체를 기화하도록 하여, 상기 열교환기에서 기화된 작동유체를 팽창기로 유입시켜 발전하도록 제어하는 제5단계를 더 포함하는 것을 특징으로 할 수 있다.
그리고 상기 펌프 후단 일측과 상기 액체유동라인 사이를 연결하는 바이패스라인와, 상기 바이패스라인 일측에 구비되는 바이패스밸브를 포함하여, 제어부가 액상모드에서, 상기 액체유동라인에서 작동유체의 기화가 발생되지 않도록, 바이패스 밸브를 제어하여 펌프 후단의 작동유체 일부를 상기 액체유동라인으로 공급시키는 것을 특징으로 할 수 있다.
또한 상기 액체유동라인 일측에 구비된 측정부가 상기 작동유체의 온도 또는 압력을 측정하고, 상기 제어부는 상기 측정부에서 측정된 값을 기반으로 상기 바이패스 밸브를 통해 상기 액체유동라인으로 공급되는 작동유체의 양을 조절하여 액상 작동유체의 온도가 포화온도보다 낮게 유지되도록 제어하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 유기랭킨사이클의 기액분리기를 제1감압밸브와 플래쉬탱크로 대체하고, 펌프와 열교환기 사이에 제2감압밸브를 설치하여 부하변동에 따라 전략생산량과 사용자 측으로 전달되는 열량을 조절할 수 있는 효과를 갖는다.
본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 기존의 유기랭킨사이클에 플래쉬탱크와 제1감압밸브를 추가하여, 단일시스템으로 내부의 압력을 제어하여 액상작동유체 순환모드, 플래쉬사이클모드, 랭킨사이클 모드로 전환하여 연속적으로 운전이 가능한 효과를 갖는다.
열을 공급하기 위한 열교환기를 랭킨사이클 발전시스템으로 대체할 경우 열공급과 동시에 전력생산이 가능하나 열수요의 변동성이 클 경우 발전설비의 안정적인 운영이 어려우며, 무부하 또는 저부하에서 급격한 열수요 발생시 열공급시간이 지연되게 되는 문제점을 해결하기 위하여, 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 저부하에서 수요처로 상시 필요한 만큼의 열을 공급(액상작동유체 순환모드)하다가, 부하가 증가하면 플래쉬 사이클로 전환하여 발전과 열공급이 동시에 가능하고, 고부하시 랭킨사이클 모드로 전환하여 전력생산량을 높일 수 있는 효과를 갖는다.
본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 기존의 유기랭킨사이클에 플래쉬탱크와 제1감압밸브를 추가하여, 단일시스템으로 내부의 압력을 제어하여 부하변동에 대응하여, 액상작동유체 순환모드(액상모드), 플래쉬사이클모드(혼합모드), 랭킨사이클 모드(기상모드)로 자유로운 전환하여 연속적으로 운전이 가능한 효과를 갖는다.
본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 열사용량이 증가하여 즉, 예를 들어 환수온도가 지속적으로 낮아져 설계부하의 30% 이상으로 열사용량이 증가하면 열교환기에서 작동유체가 기화될 수 있도록 펌프 입구의 제2감압밸브의 개도를 감소시키며 플래쉬탱크 입구 제1감압밸브를 개방하고, 액체유동라인의 차단밸브를 차단하여 모든 작동유체가 기화되어 팽창기로 공급되도록 하여 발전량을 증가시키도록 한다.
액상 작동유체 순환모드에서 플래쉬탱크를 지난 액상의 작동유체가 액체유동라인에서 일부 다시 기화가 되는 것을 방지하기 위해, 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 펌프 후단에서 저온의 작동유체 일부를 바이패스라인과 바이패스밸브를 통해 액체유동라인으로 공급하여 액체상태를 유지할 수 있는 효과를 갖는다.
즉, 본 발명의 실시예에 따르면, 제어부는 액상 작동유체 순환모드에서, 액체유동라인에서 작동유체의 기화가 발생되지 않도록, 바이패스밸브를 제어하여 펌프 후단의 작동유체 일부를 액체유동라인으로 공급시키도록 제어하고, 측정부에서 측정된 값을 기반으로 바이패스밸브를 통해 액체유동라인으로 공급되는 작동유체의 양을 조절하여 액상 작동유체의 온도가 포화온도보다 낮게 유지되도록 제어할 수 있는 효과를 갖는다.
유기랭킨사이클 발전시스템 시장이 2000년대 이후 급격히 성장함에 따라, 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 중앙난방 또는 지역난방이 공급되는 모든 수요처에 적용이 가능하고, 건출물의 단열 기준이 강화됨에 따라 향후 열수요가 점차 감소할 것으로 예상되는 상황에서, 열공급자는 열판매량을 높일 수 있고, 사용자는 열에 대한 요금으로 전력을 생산할 수 있어 합리적인 수익모델로 적용할 수 있는 장점을 갖는다.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.
도 1은 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템의 구성도,
도 2는 액상모드에서, 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템의 구성도,
도 3은 혼합모드에서, 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템의 구성도,
도 4는 기상모드에서, 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템의 구성도,
도 5는 본 발명의 실시예에 따른 제어부의 신호흐름을 나타낸 블록도,
도 6은 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 제어방법의 흐름도,
도 7은 본 발명의 또 다른 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템의 구성도를 도시한 것이다.
<부호의 설명>
10:펌프 11:제2감압밸브 12:유량조절밸브
20:열교환기 30:플래쉬탱크 31:제1감압밸브
32:액체유동라인 33:차단밸브 34:측정부
40:터빈 41:발전기 42:터빈입구밸브
43:터빈출구밸브 50:응축기 51:냉각매체라인
52:온도센서 60:제어부 70:바이패스라인
71:바이패스밸브 100:플래쉬탱크를 이용한 난방연계 발전사이클시스템
아래의 특정 실시예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는데 있어 별 이유 없이 혼돈이 오는 것을 막기 위해 기술하지 않음을 미리 언급해 둔다.
이하에서는 본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)의 구성, 기능 그리고 제어방법에 대해 설명하도록 한다.
먼저 도 1은 본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)의 구성도를 도시한 것이다. 그리고 도 2는 액상모드에서, 본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)의 구성도를 도시한 것이고, 도 3은 혼합모드에서, 본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)의 구성도를 도시한 것이며, 도 4는 기상모드에서, 본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)의 구성도를 도시한 것이다.
또한, 도 5는 본 발명의 실시예에 따른 제어부(60)의 신호흐름을 나타낸 블록도를 도시한 것이다. 그리고 도 6은 본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100) 제어방법의 흐름도를 도시한 것이다.
본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)은 도 1 내지 도 4에 도시된 바와 같이, 펌프(10), 열교환기(20), 제1감압밸브(31), 제2감압밸브(11), 플래쉬탱크(30), 액체유동라인(32), 차단밸브(33), 터빈(40), 발전기(41), 터빈입구밸브(42), 터빈출구밸브(43), 응축기(50), 온도센서(52), 냉각매체라인(51) 등을 포함하여 구성될 수 있음을 알 수 있다.
본 발명의 실시예에 따르면, 종래 유기랭킨사이클의 기액분리기를 제1감압밸브(31)와 플래쉬탱크(30)로 대체하고, 펌프(10)와 열교환기(20) 사이에 제2감압밸브(11)를 설치하여 부하변동에 따라 전략생산량과 사용자 측으로 전달되는 열량을 조절할 수 있게 된다.
즉, 본 발명의 실시예에 따르면, 기존의 유기랭킨사이클에 플래쉬탱크(30)와 제1감압밸브(31)를 추가하여, 단일시스템으로 내부의 압력을 제어하여 부하변동에 대응하여, 액상작동유체 순환모드(액상모드), 플래쉬사이클모드(혼합모드), 랭킨사이클 모드(기상모드)로 전환하여 연속적으로 운전이 가능하게 된다.
펌프(10)는 작동유체를 토출시켜 순환시키기 위한 동력을 제공하기 위해 구성된다.
열교환기(20)는 열원로부터 열을 공급받아 펌프(10)에서 토출된 작동유체를 가열시키도록 구성된다. 구체적 실시예에서 이러한 열원은 지역 난방의 1차측열 즉 지역난방 열원수일 수 있다.
또한, 플래쉬탱크(30)는 열교환기(20)에서 배출된 작동유체에서 기체와 액체를 분리시킬 수 있도록 구성되며, 제1감압밸브(31)는 플래쉬탱크(30) 입구측에 구비되어, 플래쉬탱크(30) 내의 압력을 조절하도록 구성된다.
그리고 팽창기(터빈(40))은 플래쉬탱크(30)에서 기화된 작동유체를 팽창시키게 되며, 발전기(41)는 팽창기의 회전력을 통해 전기를 발전시키도록 구성된다.
또한, 응축기(50)는 플래쉬탱크(30)에서 분리된 액체와, 발전기(41)에서 배출되는 작동유체에 의해 냉각매체를 가열시키도록 구성된다. 이러한 냉각매체는 구체적 실시예에서는 온수를 생산하기 위한 급탕일 수 있으며, 응축기(50)에서 발생되는 응축열을 급수에 전달하여 온수를 생산하도록 구성될 수 있다.
그리고 액체유동라인(32)은 플래쉬탱크(30)에서 분리된 액체를 응축기(50) 측으로 유입시키도록 구성되며, 이러한 액체유동라인(32) 일측에는 차단밸브(33)가 구비된다.
또한, 제어부(60)는 이러한 제1감압밸브(31)를 제어하여 플래쉬탱크(30) 내의 작동유체의 기화량을 조절한다. 그리고 응축기(50)의 냉각매체 유입단 일측에 온도센서(52)가 구비되어 응축기(50)로 유입되는 냉각매체의 온도를 측정한다. 구체적실시예에서 이러한 냉각매체가 급수인 경우, 이러한 온도센서(52)에서 측정된 환수 온도값을 기반으로 열사용량(부하)을 판단할 수 있다.
따라서 제어부(60)는 이러한 온도센서(52)에서 측정된 온도값을 기반으로 제1감압밸브(31)의 개도를 조절하여 플래쉬탱크(30) 내의 작동유체의 기화량을 제어하게 된다.
또한, 본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)은 펌프(10) 후단 일측에 제2감압밸브(11)가 구비된다.
그리고 제어부(60)는 제2감압밸브(11)의 개도를 조절하여 열교환기(20) 내의 작동유체가 기화될 수 있도록 제어할 수 있다.
이하에서는 앞서 언급한 본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)이 액상모드(액상 작동유체 순환모드), 혼합모드, 기상모드로 작동되는 방법에 대해 설명하도록 한다.
본 발명의 실시예에 따른 플래쉬탱크(30)를 이용한 발전사이클시스템(100)은 액상모드(액상 작동유체 순환모드)에서, 도 2에 도시된 바와 같이, 제어부(60)는 제1감압밸브(31)와 제2감압밸브(11)를 완전히 개방하도록 하고, 차단밸브(33)를 개방하도록 제어한다(S1).
그리고, 터빈입구밸브(42)와 터빈출구밸브(43)를 닫고, 펌프(10)를 구동시켜 플래쉬탱크(30) 내의 작동유체가 기화되지 않도록 하여 모든 액상의 작동유체가 액체유동라인(32)을 통해 응축기(50) 측으로 유입시키도록 제어하게 된다(S2).
따라서 액상 작동유체 순환모드에서는 펌프(10) 출구에서의 압력이 열원의 입구온도에서 작동유체의 증발압력보다 높게 유지하여 작동유체가 시스템(100) 내부에서 기화하지 않은 상태로 순환하도록 하여 전력을 생산하지 않고 수요처에 즉시 열공급이 가능한 상태를 유지한다(S4). 따라서 이를 통해 사용자 측에 상시 열을 공급하여 난방 및 급탕 수요의 급격한 증가에 대응하게 된다.
그리고 온도센서(52)에서 측정된 온도값이 제1설정온도값 이하가 되면, 도 3에 도시된 바와 같이, 혼합모드(플래쉬사이클 모드)로 작동된다.(S5). 즉 사용자 환수의 온도를 지속적으로 계측하여 열사용량이 가동가능한 최소부하 수준으로 증가하면 플래쉬탱크(30) 입구 측 제1감압밸브(31)의 개도를 감소시켜 기화를 유도, 동시에 터빈 입출구 밸브를 개방하여 전력을 생산하기 시작한다.
보다 구체적으로 제어부(60)는 제1감압밸브(31)의 개도를 감소시켜 플래쉬탱크(30) 내의 작동유체 일부를 기화시키고, 터빈입구밸브(42)와 터빈출구밸브(43)를 개방하여 기화된 작동유체를 터빈(40)으로 유입시켜 발전하도록 제어하게 된다(S6, S7).
즉, 열사용량이 증가하여 사용자측 환수 온도가 터빈(40)을 구동할 수 있는 수준으로 감소하면 열교환기(20) 출구와 플래쉬탱크(30) 사이에 설치된 제1감압밸브(31)의 개도를 감소시키면 플래쉬탱크(30)에서 상변화가 발생하고, 기상의 작동유체는 터빈(40)을 지나면서 팽창된 후 응축기(50)로 유입되고, 액상의 작동유체는 액체유동라인(32)을 따라 바로 응축기(50)로 공급되게 된다. 이러한 제1감압밸브(31)의 개도를 조절하여 작동유체가 기화되는 비율을 조절할 수 있다.
그리고 온도센서(52)에서 측정된 온도값이 제2설정온도값 이하가 되면(S8), 제어부(60)는 기상 작동유체 순환모드(랭킨사이클모드)로 작동된다. 도 4에 도시된 바와 같이, 제1감압밸브(31)를 개방하고, 차단밸브(33)를 닫고, 제2감압밸브(11)의 개도를 감소시켜(S9) 열교환기(20) 내의 작동유체를 기화하도록 하여(S10), 열교환기(20)에서 기화된 작동유체를 터빈(40)으로 유입시켜 발전하도록 제어하게 된다(S11).
즉, 환수온도가 지속적으로 낮아져 설계부하의 30% 이상으로 열사용량이 증가하면 열교환기(20)에서 작동유체가 기화될 수 있도록 펌프(10) 입구의 제2감압밸브(11)의 개도를 감소시키며 플래쉬탱크(30) 입구 제1감압밸브(31)를 개방하고, 액체유동라인(32)의 차단밸브(33)를 차단하여 모든 작동유체가 기화되어 터빈(40)으로 공급되도록 하여 발전량을 증가시키도록 한다.
또한, 열부하에 따라 펌프(10)의 회전수를 조절하여 필요한 열량을 사용자측으로 전달할 수 있으며, 부하가 감소하는 경우 사용자 환수온도가 높아지게 되며, 온도센서(52)를 통해 이를 감지하여 상기 과정을 역순으로 진행하게 된다.
도 7은 본 발명의 또 다른 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템(100)의 구성도를 도시한 것이다. 도 7에 도시된 바와 같이, 또 다른 실시예에서는 앞서 언급한 실시예의 구성을 전부 그대로 포함하면서 펌프(10) 후단 일측과 액체유동라인(32) 사이를 연결하는 바이패스라인(70)과, 바이패스라인(70) 일측에 구비되는 바이패스밸브(71)를 더 포함하여 구성됨 알 수 있다.
그리고 측정부(34)는 액체유동라인(32) 일측에 구비되어 작동유체의 온도 또는 압력을 측정하도록 구성된다. 또한, 펌프(10)의 입구 측에 유량조절밸브(12)가 설치된다.
이러한 추가 구성은 액상 작동유체 순환모드에서 플래쉬탱크(30)를 지난 액상의 작동유체가 액체유동라인(32)에서 일부 다시 기화가 되게 된다. 따라서 펌프(10)후단에서 저온의 작동유체 일부를 바이패스라인(70)과 바이패스밸브(71)를 통해 액체유동라인(32)으로 공급하여 액체상태를 유지하도록 구성될 수 있다.
즉, 제어부(60)는 액상 작동유체 순환모드에서, 액체유동라인(32)에서 작동유체의 기화가 발생되지 않도록, 바이패스밸브(71)를 제어하여 펌프(10) 후단의 작동유체 일부를 액체유동라인(32)으로 공급시키도록 구성된다.
또한, 제어부(60)는 측정부(34)에서 측정된 값을 기반으로 바이패스밸브(71)를 통해 액체유동라인(32)으로 공급되는 작동유체의 양을 조절하여 액상 작동유체의 온도가 포화온도보다 낮게 유지되도록 제어하게 된다.
따라서 본 발명에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 유기랭킨사이클의 기액분리기를 제1감압밸브(31)와 플래쉬탱크(30)로 대체하고, 펌프(10)와 열교환기(20) 사이에 제2감압밸브(11)를 설치하여 부하변동에 따라 전략생산량과 사용자 측으로 전달되는 열량을 조절할 수 있게 된다.
즉, 본 발명의 실시예에 따른 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법에 따르면, 기존의 유기랭킨사이클에 플래쉬탱크(30)와 제1감압밸브(31)를 추가하여, 단일시스템으로 내부의 압력을 제어하여 액상작동유체 순환모드(액상모드), 플래쉬사이클모드(혼합모드), 랭킨사이클 모드(기상모드)로 전환하여 연속적으로 운전이 가능하게 된다.
또한, 상기와 같이 설명된 장치 및 방법은 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (17)

  1. 작동유체를 토출시키는 펌프와, 열원로부터 열을 공급받아 상기 펌프에서 토출된 작동유체를 가열시키는 열교환기와, 상기 열교환기에서 배출된 작동유체에서 기체와 액체를 분리시키는 플래쉬탱크와, 상기 플래쉬탱크에서 기화된 작동유체를 팽창시키는 팽창기와, 상기 플래쉬탱크에서 분리된 액체와 상기 팽창기에서 배출되는 작동유체에 의해 냉각매체를 가열시키는 응축기를 갖는 발전사이클시스템로서,
    상기 플래쉬탱크에서 분리된 액체를 상기 응축기 측으로 유입시키는 액체유동라인;
    상기 플래쉬탱크의 압력을 조절하는 제1감압밸브; 및
    상기 제1감압밸브를 제어하여 상기 플래쉬탱크 내의 작동유체의 기화량을 조절하는 제어부;를 포함하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  2. 제 1항에 있어서,
    상기 팽창기의 회전력을 통해 전기를 발전시키는 발전기; 및
    상기 응축기의 냉각매체 유입단 일측에 구비되어 응축기로 유입되는 냉각매체의 온도를 측정하는 온도센서;를 더 포함하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  3. 제 2항에 있어서,
    상기 제어부는 상기 온도센서에서 측정된 온도값을 기반으로 상기 제1감압밸브의 개도를 조절하여 상기 플래쉬탱크 내의 작동유체의 기화량을 제어하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  4. 제 3항에 있어서,
    상기 팽창기 입구측에 구비되는 팽창기입구밸브와, 상기 팽창기 출구측에 구비되는 팽창기출구밸브와, 상기 액체유동라인 일측에 구비되는 차단밸브를 더 포함하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  5. 제 4항에 있어서,
    상기 펌프 후단 일측에 구비되는 제2감압밸브를 더 포함하고,
    상기 제어부는 제2감압밸브의 개도를 조절하여 상기 열교환기 내의 작동유체가 기화될 수 있도록 제어하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  6. 제 5항에 있어서,
    액상모드시,
    상기 제어부는 제1감압밸브와 상기 제2감압밸브를 완전히 개방하도록 하고, 상기 차단밸브를 개방하고, 상기 팽창기입구밸브와 상기 팽창기출구밸브를 닫고, 상기 펌프를 구동시켜 플래쉬탱크 내의 작동유체가 기화되지 않도록 하여 모든 액상의 작동유체가 액체유동라인을 통해 응축기 측으로 유입시키도록 제어하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  7. 제 6항에 있어서,
    상기 온도센서에서 측정된 온도값이 제1설정온도값 이하가 되면, 제어부는 상기 제1감압밸브의 개도를 감소시켜 상기 플래쉬탱크 내의 작동유체 일부를 기화시키고, 상기 팽창기입구밸브와 상기 팽창기출구밸브를 개방하여 기화된 작동유체를 팽창기로 유입시켜 발전하도록 제어하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  8. 제 7항에 있어서,
    상기 온도센서에서 측정된 온도값이 제2설정온도값 이하가 되면, 제어부는 상기 제1감압밸브를 개방하고, 상기 차단밸브를 닫고, 상기 제2감압밸브의 개도를 감소시켜 상기 열교환기 내의 작동유체를 기화하도록 하여, 상기 열교환기에서 기화된 작동유체를 팽창기로 유입시켜 발전하도록 제어하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  9. 제 2항에 있어서,
    상기 제어부는 상기 온도센서에서 측정된 온도값을 기반으로 상기 펌프를 제어하여 작동유체의 유량을 조절하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  10. 제 9항에 있어서,
    상기 열원은 지역난방열원수이고, 상기 냉각매체는 급수이며, 상기 응축기로 유입되는 급수가 가열되어 온수로 공급되는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  11. 제 8항에 있어서,
    상기 펌프 후단 일측과 상기 액체유동라인 사이를 연결하는 바이패스라인; 및
    상기 바이패스라인 일측에 구비되는 바이패스밸브;를 더 포함하고,
    제어부는 상기 액상모드에서, 상기 액체유동라인에서 작동유체의 기화가 발생되지 않도록, 바이패스 밸브를 제어하여 상기 펌프 후단의 작동유체 일부를 상기 액체유동라인으로 공급시키는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  12. 제 11항에 있어서,
    상기 액체유동라인 일측에 구비되어 상기 작동유체의 온도 또는 압력을 측정하는 측정부;를 더 포함하고,
    상기 제어부는 상기 측정부에서 측정된 값을 기반으로 상기 바이패스 밸브를 통해 상기 액체유동라인으로 공급되는 작동유체의 양을 조절하여 액상 작동유체의 온도가 포화온도보다 낮게 유지되도록 제어하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템.
  13. 제 1항에 따른 발전사이클시스템의 제어방법에 있어서,
    제어부가 제1감압밸브를 개방하도록 하고, 액체유동라인 일측에 구비되는 차단밸브를 개방하고 펌프를 구동시키는 제1단계;
    작동유체가 펌프를 통해 토출되어 열교환기에서 열원으로부터 열을 공급받아 가열된 후, 플래쉬탱크 내에서 기화되지 않고 액상의 작동유체가 액체유동라인을 통해 응축기로 유입되는 제2단계;
    응축기에서 작동유체의 열을 공급받아 냉각매체가 가열되고, 작동유체는 펌프를 통해 순환되는 제3단계; 및
    응축기의 냉각매체 유입단에 구비된 온도센서에서 측정된 온도값이 제1설정온도값 이하가 되면, 제어부가 상기 제1감압밸브의 개도를 감소시켜 상기 플래쉬탱크 내의 작동유체 일부를 기화시키고, 기화된 작동유체를 팽창기로 유입시켜 발전하도록 제어하는 제4단계를 포함하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템의 제어방법.
  14. 제 13항에 있어서,
    상기 제어부가 상기 온도센서에서 측정된 온도값을 기반으로 상기 펌프를 제어하여 작동유체의 유량을 조절하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템의 제어방법.
  15. 제 14항에 있어서,
    상기 펌프 후단 일측에 구비되는 제2감압밸브를 더 포함하고,
    상기 제4단계 후에,
    상기 온도센서에서 측정된 온도값이 제2설정온도값 이하가 되면, 제어부가 상기 제1감압밸브를 개방하고, 상기 차단밸브를 닫고,
    상기 제2감압밸브의 개도를 감소시켜 상기 열교환기 내의 작동유체를 기화하도록 하여, 상기 열교환기에서 기화된 작동유체를 팽창기로 유입시켜 발전하도록 제어하는 제5단계를 더 포함하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템의 제어방법.
  16. 제 15항에 있어서,
    상기 펌프 후단 일측과 상기 액체유동라인 사이를 연결하는 바이패스라인와, 상기 바이패스라인 일측에 구비되는 바이패스밸브를 포함하여,
    제어부가 액상모드에서, 상기 액체유동라인에서 작동유체의 기화가 발생되지 않도록, 바이패스 밸브를 제어하여 펌프 후단의 작동유체 일부를 상기 액체유동라인으로 공급시키는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템의 제어방법.
  17. 제 16항에 있어서,
    상기 액체유동라인 일측에 구비된 측정부가 상기 작동유체의 온도 또는 압력을 측정하고, 상기 제어부는 상기 측정부에서 측정된 값을 기반으로 상기 바이패스 밸브를 통해 상기 액체유동라인으로 공급되는 작동유체의 양을 조절하여 액상 작동유체의 온도가 포화온도보다 낮게 유지되도록 제어하는 것을 특징으로 하는 플래쉬탱크를 이용한 발전사이클시스템의 제어방법.
PCT/KR2020/008867 2019-09-18 2020-07-07 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법 WO2021054586A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0114903 2019-09-18
KR1020190114903A KR102210866B1 (ko) 2019-09-18 2019-09-18 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법

Publications (1)

Publication Number Publication Date
WO2021054586A1 true WO2021054586A1 (ko) 2021-03-25

Family

ID=74558452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008867 WO2021054586A1 (ko) 2019-09-18 2020-07-07 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법

Country Status (2)

Country Link
KR (1) KR102210866B1 (ko)
WO (1) WO2021054586A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785178C1 (ru) * 2022-03-14 2022-12-05 Владимир Викторович Михайлов Двухконтурная энергетическая установка

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113914959B (zh) * 2021-12-13 2022-02-15 华能(天津)煤气化发电有限公司 一种机组运行模式自动切换的模块化设置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0065408A2 (en) * 1981-05-12 1982-11-24 The Babcock & Wilcox Company Control systems for boilers
JPS6336004A (ja) * 1986-07-29 1988-02-16 Toshiba Corp 高圧タービン起動による蒸気タービンプラントの起動方法
US20110259010A1 (en) * 2010-04-22 2011-10-27 Ormat Technologies Inc. Organic motive fluid based waste heat recovery system
JP2012057923A (ja) * 2010-09-08 2012-03-22 Shoji Ueda 給湯システム
US20140000668A1 (en) * 2012-06-27 2014-01-02 Daniel Lessard Electric Power Generation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8539750B2 (en) 2010-04-30 2013-09-24 Siemens Energy, Inc. Energy recovery and steam supply for power augmentation in a combined cycle power generation system
US9284857B2 (en) 2012-06-26 2016-03-15 The Regents Of The University Of California Organic flash cycles for efficient power production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0065408A2 (en) * 1981-05-12 1982-11-24 The Babcock & Wilcox Company Control systems for boilers
JPS6336004A (ja) * 1986-07-29 1988-02-16 Toshiba Corp 高圧タービン起動による蒸気タービンプラントの起動方法
US20110259010A1 (en) * 2010-04-22 2011-10-27 Ormat Technologies Inc. Organic motive fluid based waste heat recovery system
JP2012057923A (ja) * 2010-09-08 2012-03-22 Shoji Ueda 給湯システム
US20140000668A1 (en) * 2012-06-27 2014-01-02 Daniel Lessard Electric Power Generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785178C1 (ru) * 2022-03-14 2022-12-05 Владимир Викторович Михайлов Двухконтурная энергетическая установка

Also Published As

Publication number Publication date
KR102210866B1 (ko) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2014189248A1 (ko) 중저온 폐열을 활용한 난방 열원 또는 전기 생산 시스템, 및 그 제어방법
RU2474767C2 (ru) Водонагреватель, способный давать обогревающую воду и горячее водоснабжение одновременно
WO2018097450A1 (ko) 병렬 복열 방식의 초임계 이산화탄소 발전 시스템
WO2014051268A1 (ko) 삼방밸브 또는 믹싱밸브를 이용한 배열회수시스템의 급탕온도 제어구조 및 온수탱크 열교환기를 이용한 배열회수시스템의 급탕온도 제어구조
WO2011149191A2 (ko) 소형 열병합 발전 시스템 및 그 제어방법
CA2447060A1 (en) Cogeneration of power and heat by an integrated fuel cell power system
WO2020196940A1 (ko) 난방효율을 증대하는 저온 지역난방 시스템
WO2021054586A1 (ko) 플래쉬탱크를 이용한 발전사이클시스템 및 그 제어방법
CN206458511U (zh) 一种背压纯凝双模式热力系统及乏汽余热利用系统
JPH07503787A (ja) 室内空間用空調設備
WO2014101662A1 (zh) 即热式热水器
WO2017069457A1 (ko) 초임계 이산화탄소 발전 시스템
WO2017183754A1 (ko) 유기물 랭킨 사이클을 이용한 발전장치
JP4525978B2 (ja) 発電システム
RU2434144C1 (ru) Система теплоснабжения и способ организации ее работы
CN107387259B (zh) 制热系统、制冷系统及冷热电三联供系统
CN107560183A (zh) 900伏电蓄热能装置
WO2014148704A1 (ko) 하이브리드형 공기열 히트펌프 시스템
CN109296477A (zh) 一种多能流综合能源路由站
KR20090081542A (ko) 연료전지 폐열회수 시스템
WO2017138719A1 (ko) 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
WO2017007198A1 (ko) 연료전지 시스템
WO2016143924A1 (ko) 태양열 온수시스템
WO2019245156A1 (ko) 다기능 축열 열전하이브리드 발전장치
KR200370859Y1 (ko) 난방 및 급탕 온수 공급 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864473

Country of ref document: EP

Kind code of ref document: A1