WO2019245156A1 - 다기능 축열 열전하이브리드 발전장치 - Google Patents

다기능 축열 열전하이브리드 발전장치 Download PDF

Info

Publication number
WO2019245156A1
WO2019245156A1 PCT/KR2019/005208 KR2019005208W WO2019245156A1 WO 2019245156 A1 WO2019245156 A1 WO 2019245156A1 KR 2019005208 W KR2019005208 W KR 2019005208W WO 2019245156 A1 WO2019245156 A1 WO 2019245156A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
storage tank
gas
thermoelectric generator
Prior art date
Application number
PCT/KR2019/005208
Other languages
English (en)
French (fr)
Inventor
박수동
류병기
정재환
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190050111A external-priority patent/KR102295852B1/ko
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2019245156A1 publication Critical patent/WO2019245156A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a multifunctional heat storage thermal charge hybrid apparatus, and supplies a heat source uniformized to a target temperature through a heat exchange in a heat storage tank to a thermoelectric generator, and sells heated water or circulates water used in the thermoelectric generator to a heat exchanger in a heat storage tank.
  • the present invention relates to a multi-functional regenerative thermoelectric hybrid apparatus capable of resupplying a thermoelectric generator and supplying a thermal block heated on a regenerative tank to the outside.
  • thermoelectric generator is an apparatus for generating electrical energy from waste heat through the Seebeck effect of the thermoelectric module.
  • thermoelectric generators have a simple structure in which a usable heat source is directly brought into contact with a power generation unit in which an element is integrated, and a power source is generated by generating a temperature difference with a structurally corresponding cold source on the opposite side of the element.
  • a heat sink is provided.
  • thermoelectric generator generates electric energy by generating a temperature difference between the high temperature part and the low temperature part of the thermoelectric module by the heat of waste heat transferred to the high temperature part of the thermoelectric module.
  • thermoelectric generator The efficiency of the thermoelectric generator is very sensitive to the temperature change of the heat source drawn in during thermoelectric generation, and if the range of temperature change is wide, the quality of the available heat source is very important because it is accompanied by deterioration of the power quality.
  • thermoelectric generator it is difficult to produce a power output that is actually expected because technology development for controlling various heat sources introduced into a thermoelectric generator is not made in consideration of simply utilizing heat.
  • thermoelectric element After the heat source supplied to the high-temperature part of the thermoelectric element is used, the temperature is reduced and discharged is repeated, and a situation in which a method for recycling the heat source that is consumed is needed.
  • the present invention has been made to solve the above problems, it is an object to supply a heat source uniformized to the target temperature through the heat exchange in the heat storage tank to the thermoelectric generator.
  • the purpose is to sell the water heated through the heat exchange in the heat storage tank or to circulate the water used in the thermoelectric generator to the heat exchanger in the heat storage tank to resupply to the thermoelectric generator.
  • the object is to supply a heat block on the heat storage tank, so that the heat block heated by the heat storage material can be sold or utilized to the outside.
  • thermoelectric generator it is an object to maintain the gas or fluid introduced into the thermoelectric generator for a long time while controlling the inlet pressure and discharge pressure of the front and rear ends of the thermoelectric generator.
  • the purpose is to uniformly diffuse the gas of the target temperature supplied from the heat storage tank to the thermoelectric generator side to the entire surface of the thermoelectric generator, and to prevent the heat is lost to the outside during the supply process.
  • the present invention to achieve the above object is a heat source supply for supplying a high temperature gas;
  • a heat storage tank for uniformly maintaining the temperature of the gas supplied from the heat source supply unit by the heat storage material in the internal space;
  • a heat exchanger disposed in the heat storage tank to heat-exchange the low temperature fluid supplied from a supply source and the gas in the heat storage tank to lower the gas in the heat storage tank to a target temperature;
  • a thermoelectric generator for converting thermal energy into electrical energy by using a gas of a target temperature supplied from the heat storage tank as a high-temperature part heat source of the thermoelectric element.
  • the present invention to achieve the above object is a heat source supply for supplying a high temperature gas; A heat storage tank for uniformly maintaining the temperature of the gas supplied from the heat source supply unit by the heat storage material in the internal space; A heat exchanger disposed in the heat storage tank and heat-exchanging the low temperature fluid supplied from a supply source with the gas in the heat storage tank to a target temperature; And a thermoelectric generator for converting thermal energy into electrical energy by using the fluid supplied from the heat exchanger as a heat source of the high temperature part of the thermoelectric element.
  • the heat exchanger is characterized in that for supplying the hot fluid heated by heat-exchanging the low-temperature fluid and the gas in the heat storage tank.
  • thermoelectric generator is characterized in that the recirculated by circulating the utilized fluid to the heat exchanger.
  • thermoelectric generator is mounted on at least one of the front end and the rear end of the thermoelectric generator, and controls the inlet pressure and the discharge pressure of the thermoelectric generator, and induces uniform diffusion of heat by allowing the gas or fluid to flow into the thermoelectric generator. It characterized in that it further comprises a pressure regulating valve.
  • the apparatus may further include a hot air distributor disposed between the heat storage tank and the thermoelectric generator, the space extending in the direction of the thermoelectric generator, for inducing gas diffusion at a target temperature supplied from the heat storage tank.
  • the hot air distributor characterized in that the outer wall is made of a double insulating layer, to prevent the heat is lost to the outside.
  • the hot air distributor the catalyst material is disposed in the section in which the gas flows, the temperature of the gas is increased through the catalytic reaction with the catalyst material is characterized in that the diffusion of the gas is improved.
  • Multifunctional heat storage thermal charge hybrid device by the means for solving the above problems can improve the power generation output by supplying a heat source uniformized to the target temperature through the heat exchange in the heat storage tank to the thermoelectric generator.
  • thermoelectric generator it is possible to reduce the cost by supplying the water discharged by heat exchange with the hot gas supplied to the thermoelectric generator to the dealer or by circulating the water of the lower temperature used in the thermoelectric generator to the heat exchanger in the heat storage tank and resupply it to the thermoelectric generator. .
  • thermoelectric generator it is possible to increase the efficiency of heat consumption of the thermoelectric generator by controlling the gas or fluid introduced into the thermoelectric generator to stay for a long time by a pressure regulating valve installed at the front and rear ends of the thermoelectric generator.
  • thermoelectric generator By placing a hot air distributor between the heat storage tank and the thermoelectric generator to distribute evenly to the entire surface of the thermoelectric generator, by forming a double insulation layer on the outer wall heat is not lost to the outside in the process of supplying the heat of the target temperature to the thermoelectric generator This can be delivered.
  • FIG. 1 is an embodiment of a multi-functional heat storage thermal charge hybrid power generation device according to the present invention.
  • FIG. 2 is another embodiment of a multi-function heat storage thermal charge hybrid power generation device according to the present invention.
  • Figure 3 is an embodiment that includes a thermal block of the multi-generation heat storage thermal charge hybrid device according to the present invention.
  • Figure 4 is another embodiment including a thermal block of the multi-function heat storage thermal charge hybrid device according to the present invention.
  • FIG. 5 is a configuration diagram of a hot air distributor of the multifunctional heat storage thermal charge hybrid power generation device according to the present invention.
  • FIG. 1 is an embodiment of a multi-functional heat storage thermal charge hybrid power generation device according to the present invention.
  • the multifunctional heat storage thermal charge hybrid device includes a heat source supply unit 100, a heat storage tank 200, a heat exchanger 400, a thermoelectric generator 500, and a pressure control valve 600. Is done.
  • the heat source supply unit 100 is a place where the gas A supplied to the high temperature portion of the thermoelectric generator 500 is stored, and the high temperature gas A stored in the heat source supply unit 100 is heat-exchanged in the heat storage tank. It is supplied lowered to the target temperature which can be supplied to the side.
  • the heat storage tank 200 receives the high-temperature gas A from the heat source supply unit 100 and uniformly supplies the gas A at a target temperature lowered by heat exchange to supply the thermoelectric generator 500.
  • the heat storage tank 200 is provided with a heat storage material 201 such as sand, gravel, etc., it is possible to maintain the temperature of the gas (A) by the heat storage material 201.
  • the heat storage material 201 provided in the heat storage tank 200 is made of a material having a high specific heat, and is preferably formed in a heat insulating structure so that the temperature of the gas (A) stored therein can be maintained.
  • the heat storage tank 200 may be provided with a gas inlet pipe connected to the heat source supply unit 100 and a gas supply pipe connected to the thermoelectric generator 500.
  • a double heat insulation layer 710 which is an air layer, is formed on the outer walls of the gas inlet pipe and the gas supply pipe of the heat storage tank 200, thereby preventing heat of the gas from being lost to the outside.
  • Figure 3 is an embodiment that includes a thermal block of the multi-generation heat storage thermal charge hybrid device according to the present invention.
  • the multifunctional heat storage thermal charge hybrid generator may further include a thermal block 300.
  • the heat block 300 may be supplied onto the heat storage tank 200 and heated by the heat storage material 201 inside the heat storage tank 200 to be sold to the outside.
  • the heat block 300 is heated without energy consumption by using heat inside the heat storage tank 200 and may be provided to various places of use.
  • the thermal block 300 may be equipped with a conveyor belt type structure so that the thermal block 300 is heated on the heat storage tank 200 can be supplied to the outside.
  • the heat exchanger 400 is disposed in the heat storage tank 200, and heat-exchanges the low temperature fluid B received from the supply source 401 with the hot gas A in the heat storage tank 200.
  • the heat exchanger 400 may be made of a metal tube, and is formed while rotating in a spring shape inside the heat storage tank 200, it is possible to minimize the installation space and expand the heat transfer area.
  • the heat exchanger 400 receives the low temperature fluid B from the supply source 401 and exchanges heat with the high temperature gas A in the heat storage tank 200 to supply the heated fluid B to the sales source 402.
  • water may be used as the fluid B used to lower the high temperature gas A to the target temperature, and the water heated by the heat exchange is not discarded, but is sold outside of district heating, factories, combined generators, and the like. It can be sold at 402 to obtain an economic effect.
  • the thermoelectric generator 500 converts thermal energy into electrical energy by utilizing the gas A of the target temperature supplied from the heat storage tank 200 as a heat source of the high temperature portion of the thermoelectric element. At this time, the thermoelectric generator 500 may be supplied with the gas (A) of the target temperature by using a blowing fan from the heat storage tank (200).
  • Gas A of the target temperature used in the thermoelectric generator 500 is discharged to the outside.
  • thermoelectric generator 500 is changed in the discharge path according to the purpose of use of the gas (A) supplied, the gas (A) may be utilized in various ways.
  • thermoelectric generator 500 has a different performance index for each temperature section according to the thermoelectric material, and the temperature range of the high temperature section capable of exhibiting optimal performance is limited.
  • the thermoelectric generator 500 of the present invention may be supplied at a target temperature to use the gas A heat exchanged in the heat exchanger 400 in the heat storage tank 200.
  • the temperature of the gas (A) can be adjusted to the target temperature in the heat exchanger (400), there is an advantage of expanding the temperature range in which the gas (A) can be used.
  • the pressure regulating valve 600 is mounted to at least one of the front end and the rear end of the thermoelectric generator 500, and may control the inlet pressure and the discharge pressure of the thermoelectric generator 500.
  • the pressure regulating valve 600 allows the gas A introduced into the thermoelectric generator 500 to stay for a long time, thereby inducing uniform diffusion of heat.
  • FIG. 5 is a configuration diagram of a hot air distributor of the multifunctional heat storage thermal charge hybrid power generation device according to the present invention.
  • the multifunctional heat storage thermal charge hybrid generator may further include a hot air distributor 700.
  • the hot air distributor 700 is disposed between the heat storage tank 200 and the thermoelectric generator 500, and the space is extended in the direction of the thermoelectric generator 500.
  • the expansion structure of the hot air distributor 700 induces the gas diffusion of the target temperature supplied from the heat storage tank 200, and helps to uniformly disperse heat in the entire area of the thermoelectric generator 500.
  • the hot air distributor 700 is the outer wall is made of a double heat insulating layer 710 such as air layer, it is possible to prevent the heat is lost to the outside.
  • the catalyst material 720 is disposed in a section in which the gas A flows, so that the temperature of the gas A increases through a catalytic reaction between the gas A and the catalyst material 720. .
  • the diffusion of the gas A toward the thermoelectric generator 500 may be improved, thereby improving the efficiency of the thermoelectric generator 500.
  • the high temperature gas A is supplied into the heat storage tank 200 through the heat source supply unit 100. At this time, the temperature of the gas A is maintained by the heat storage material 201 inside the heat storage tank 200.
  • the heat exchanger 300 is installed inside the heat storage tank 200, and receives the fluid B from the external supply source 401 into the heat exchanger 300, and then supplies the fluid B back to the external distributor 402.
  • the low temperature fluid B is supplied to the heat exchanger 300, and the fluid B is heated while being heat-exchanged with the high temperature gas A inside the heat storage tank 200.
  • the heated fluid B is sold for use in district heating, factories, combined generators, and the like.
  • the high temperature gas A in the heat storage tank 200 is lowered to a target temperature while being exchanged with the fluid B, and is supplied to the high temperature part of the thermoelectric generator 500.
  • thermoelectric generator 500 a pressure regulating valve 600 is installed at the front and rear ends of the thermoelectric generator 500 to allow the hot gas A to sufficiently remain in the thermoelectric generator to induce uniform diffusion of heat.
  • FIG. 2 is another embodiment of a multi-function heat storage thermal charge hybrid power generation device according to the present invention.
  • the multifunctional heat storage thermal charge hybrid generator includes a heat source supply unit 100, a heat storage tank 200, a heat exchanger 400, a thermoelectric generator 500, and a pressure control valve 600. Is done.
  • the heat source supply unit 100 is a place where the gas A supplied to the high temperature portion of the thermoelectric generator 500 is stored, and the high temperature gas A stored in the heat source supply unit 100 is heat-exchanged in the heat storage tank. It is supplied lowered to the target temperature which can be supplied to the side.
  • the heat storage tank 200 receives the hot gas A from the heat source supply unit 100 and collects the internal gas A to maintain the fluid B temperature at a target temperature heated by heat exchange.
  • the heat storage tank 200 is provided with a heat storage material 201 such as sand, gravel, etc., it is possible to maintain the temperature of the gas (A) by the heat storage material 201.
  • the heat storage material 201 provided in the heat storage tank 200 is made of a material having a high specific heat, and is preferably formed in a heat insulating structure so that the temperature of the gas (A) stored therein can be maintained.
  • a gas inlet pipe connected to the heat source supply unit 100 is formed in the heat storage tank 200, and a high temperature gas (A) flows into the heat storage tank 200 through the heat source supply unit 100, and then into the heat storage material 201. The temperature of the gas A is thereby maintained.
  • Figure 4 is another embodiment including a thermal block of the multi-function heat storage thermal charge hybrid device according to the present invention.
  • the generator of FIG. 2 may further include a thermal block 300 similarly to the generator of FIG. 1.
  • the heat block 300 may be supplied onto the heat storage tank 200 and heated by the heat storage material 201 inside the heat storage tank 200 to be sold to the outside.
  • the heat block 300 is heated without energy consumption by using heat inside the heat storage tank 200 and may be provided to various places of use.
  • the thermal block 300 may be equipped with a conveyor belt type structure so that the thermal block 300 is heated on the heat storage tank 200 can be supplied to the outside.
  • the heat exchanger 400 is disposed in the heat storage tank 200 and heat-exchanges the low temperature fluid B received from the supply source 401 with the hot gas A in the heat storage tank 200.
  • the heat exchanger 400 may be made of a metal tube, and is formed while rotating in a spring shape inside the heat storage tank 200, it is possible to minimize the installation space and expand the heat transfer area.
  • the heat exchanger 400 receives the low temperature fluid B from the supply source 401 and exchanges heat with the high temperature gas A in the heat storage tank 200 to heat the fluid B uniformly heated to a target temperature. 500).
  • the used heated fluid B is used in the thermoelectric generator 500, and the fluid B having a lowered temperature is introduced into the heat exchanger 400 again to be reheated and circulated to be supplied to the thermoelectric generator 500 again. do.
  • the thermoelectric generator 500 converts thermal energy into electrical energy by utilizing the fluid B of the target temperature supplied from the heat storage tank 200 as a heat source of the high temperature part of the thermoelectric element. At this time, the thermoelectric generator 500 may be supplied with the fluid (B) of the target temperature by using a pump from the heat storage tank (200).
  • the fluid B of the target temperature used in the thermoelectric generator 500 is lowered in temperature and is supplied to the heat exchanger 400 inside the heat storage tank 200 and heated again.
  • thermoelectric generator 500 is discharge path is changed according to the purpose of use of the fluid (B) supplied, the utilized fluid (B) can be used in various ways.
  • thermoelectric generator 500 has a different performance index for each temperature section according to the thermoelectric material, and the temperature range of the high temperature section capable of exhibiting optimal performance is limited.
  • the thermoelectric generator 500 of the present invention may be supplied at a target temperature to use the fluid B heat-exchanged in the heat exchanger 400 in the heat storage tank 200.
  • the temperature of the fluid (B) can be adjusted to the target temperature in the heat exchanger (400), there is an advantage of expanding the temperature range in which the fluid (B) can be used.
  • the pressure regulating valve 600 is mounted to at least one of the front end and the rear end of the thermoelectric generator 500, and may control the inlet pressure and the discharge pressure of the thermoelectric generator 500.
  • the pressure regulating valve 600 allows the fluid B introduced into the thermoelectric generator 500 to stay for a long time to induce uniform diffusion of heat.
  • FIG. 4 again, another embodiment including the thermal block of the multi-functional heat storage thermal charge hybrid device according to the present invention will be described.
  • the high temperature gas A is supplied into the heat storage tank 200 through the heat source supply unit 100. At this time, the temperature of the gas A is maintained by the heat storage material 201 inside the heat storage tank 200.
  • the heat exchanger 300 is installed inside the heat storage tank 200, and the fluid B is supplied to the thermoelectric generator 500 by receiving the fluid B from the external source 401 into the heat exchanger 300.
  • the used fluid B is circulated back to the heat exchanger 300.
  • the low temperature fluid B is supplied to the heat exchanger 300, and the fluid B is heated to a target temperature while being heat-exchanged with the hot gas A inside the heat storage tank 200.
  • the fluid B of the heated target temperature is supplied to the high temperature part of the thermoelectric generator 500 and used.
  • the fluid B used in the thermoelectric generator 500 has a circulation structure in which the temperature is lowered and supplied to the heat exchanger 300 again.
  • thermoelectric generator 500 a pressure regulating valve 600 is installed at the front and rear ends of the thermoelectric generator 500 to allow the high temperature fluid B to sufficiently remain in the thermoelectric generator to induce uniform diffusion of heat.
  • the basic technical idea of the present invention is to supply a heat source uniformized to a target temperature to the thermoelectric generator through heat exchange in the heat storage tank, and sell the heated water or circulate water used in the thermoelectric generator to the heat exchanger in the heat storage tank to the thermoelectric generator. It can be seen that it is to provide a multi-functional heat storage thermal hybrid generator device that can be re-supplied, by supplying a heat block heated in the heat storage tank to the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

본 발명은 다기능 축열 열전하이브리드 발전장치에 관한 것으로, 축열조 내 열교환을 통해 목적온도로 균일화된 열원을 열전발전기로 공급하며, 가열된 물을 판매하거나 열전발전기에 사용된 물을 축열조 내 열교환기로 순환시켜 열전발전기로 재공급하고, 축열조 상에서 가열된 열블럭을 외부로 공급하여 활용할 수 있는 다기능 축열 열전하이브리드 발전장치에 관한 것이다.

Description

다기능 축열 열전하이브리드 발전장치
본 발명은 다기능 축열 열전하이브리드 발전장치에 관한 것으로, 축열조 내 열교환을 통해 목적온도로 균일화된 열원을 열전발전기로 공급하며, 가열된 물을 판매하거나 열전발전기에 사용된 물을 축열조 내 열교환기로 순환시켜 열전발전기로 재공급하고, 축열조 상에서 가열된 열블럭을 외부로 공급하여 활용할 수 있는 다기능 축열 열전하이브리드 발전장치에 관한 것이다.
열전발전장치는 열전모듈의 제베크 효과를 통해 폐열로부터 전기에너지를 발생시키는 장치이다.
일반적으로 열전발전장치는 활용 가능한 열원을 직접 소자가 집적된 발전부로 접촉시키고, 소자의 반대면에 구조적으로 대응된 냉원과 온도차를 발생시켜 발전하는 단순한 구조를 가지며 저온부 간의 온도차가 확보되도록 공랭식으로 냉각시키는 방열체가 구비된다.
즉, 열전발전장치는 열전모듈의 고온부로 전달되는 폐열의 열기에 의해 열전모듈의 고온부와 저온부 간에 온도차가 생기면서 전기에너지를 발생하는 것이다.
열전발전장치의 효율은 열전발전시 인입되는 열원의 온도변화에 매우 민감하여 온도변화의 범위가 넓을 경우 전력품질 저하를 동반하므로 활용 가능한 열원의 온도의 안정성이 매우 중요하다.
그러나 종래에는 단순히 열의 활용만을 고려하여 열전발전장치로 인입되는 다양한 열원을 제어하려는 기술개발이 이루어지지 않아 실제 기대되는 발전 출력을 생산할 수 없는 어려움이 있었다.
또한, 열전소자의 고온부로 공급되는 열원이 사용된 후 온도가 저감되어 배출되는 과정이 반복되면서 소모되는 열원을 재활용할 수 있는 방안 모색이 필요한 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 축열조 내 열교환을 통해 목적온도로 균일화된 열원을 열전발전기로 공급하는데 목적이 있다.
또한, 축열조 내에서 열교환을 통해 가열된 물을 판매하거나 열전발전기에 사용된 물을 축열조 내 열교환기로 순환시켜 열전발전기로 재공급하는데 목적이 있다.
또한, 축열조 상에 열블럭을 공급하여, 축열물질에 의해 가열된 열블럭을 외부로 판매하거나 활용할 수 있도록 하는데 목적이 있다.
또한, 열전발전기의 전후단의 인입압력과 배출압력을 제어하면서 열전발전기 내부로 유입된 가스 또는 유체를 오랫동안 머무르도록 하는데 목적이 있다.
또한, 축열조에서 열전발전기 측으로 공급되는 목적온도의 가스를 열전발전기의 전체면으로 균일하게 확산되게 하며, 공급되는 과정에서 열이 외부로 손실되지 않도록 하는데 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명은 고온의 가스를 공급하는 열원공급부; 상기 열원공급부에서 공급받은 가스의 온도를 내부공간의 축열물질에 의해 균일하게 유지하는 축열조; 상기 축열조 내에 배치되고, 공급처에서 공급받은 저온의 유체와 상기 축열조 내 가스를 열교환하여 상기 축열조 내의 가스를 목적온도로 낮추는 열교환기; 상기 축열조에서 공급받은 목적온도의 가스를 열전소자의 고온부 열원으로 활용하여 열에너지를 전기에너지로 변환시키는 열전발전기;를 포함하는 것을 특징으로 한다.
상기와 같은 목적을 달성하기 위하여 본 발명은 고온의 가스를 공급하는 열원공급부; 상기 열원공급부에서 공급받은 가스의 온도를 내부공간의 축열물질에 의해 균일하게 유지하는 축열조; 상기 축열조 내에 배치되고, 공급처에서 공급받은 저온의 유체를 상기 축열조 내 가스와 열교환하여 목적온도로 가열하는 열교환기; 상기 열교환기에서 공급받은 유체를 열전소자의 고온부 열원으로 활용하여 열에너지를 전기에너지로 변환시키는 열전발전기;를 포함하는 것을 특징으로 한다.
또한, 상기 열교환기는 저온의 유체와 상기 축열조 내 가스를 열교환하여 가열된 고온의 유체를 판매처로 공급하는 것을 특징으로 한다.
또한, 상기 열전발전기는 활용된 유체를 상기 열교환기로 순환시켜 재가열하는 것을 특징으로 한다.
또한, 상기 축열조 상에서 가열되는 열블럭을 더 포함하는 것을 특징으로 한다.
또한, 상기 열전발전기의 전단과 후단 중의 적어도 하나에 장착되며, 상기 열전발전기의 인입압력과 배출압력을 제어하고, 상기 열전발전기 내부로 유입된 가스 또는 유체를 머무르도록 하여 열의 균일한 확산을 유도하는 압력조절용 밸브를 더 포함하는 것을 특징으로 한다.
또한, 상기 축열조와 열전발전기 사이에 배치되며, 열전발전기 방향으로 공간이 확장 형성되어, 상기 축열조에서 공급되는 목적온도의 가스 확산을 유도하는 열풍분배기를 더 포함하는 것을 특징으로 한다.
또한, 상기 열풍분배기는, 외벽이 이중 단열층으로 이루어져, 열이 외부로 손실되는 것을 방지하는 것을 특징으로 한다.
또한, 상기 열풍분배기는, 가스가 유입되는 구간에 촉매물질이 배치되며, 상기 촉매물질과 촉매반응을 통해 가스의 온도가 상승되어 가스의 확산이 향상되는 것을 특징으로 한다.
상기 과제의 해결 수단에 의한 본 발명에 따른 다기능 축열 열전하이브리드 발전장치는 축열조 내 열교환을 통해 목적온도로 균일화된 열원을 열전발전기로 공급하여 발전 출력을 향상시킬 수 있다.
또한, 열전발전기로 공급되는 고온의 가스와 열교환되어 배출되는 물을 판매처로 공급하거나, 열전발전기에 사용되어 낮아진 온도의 물을 축열조 내 열교환기로 순환시켜 열전발전기로 재공급하여 비용을 절감할 수 있다.
또한, 축열조 상에 열블럭을 공급하여, 축열물질에 의해 가열된 열블럭을 외부로 판매하거나 활용할 수 있는 이점이 있다.
또한, 열전발전기의 전후단에 설치되는 압력조절용 밸브에 의해 열전발전기 내부로 유입된 가스 또는 유체를 오랫동안 머무르도록 제어하여 열전발전기의 소비열량의 효율을 높일 수 있다.
또한, 축열조와 열전발전기 사이에 열풍분배기를 배치하여 열전발전기의 전체면으로 균일하게 확산되게 하며, 외벽에 이중 단열층을 형성하여 공급되는 과정에서 열이 외부로 손실되지 않아 열전발전기로 목적온도의 열이 전달될 수 있다.
도 1은 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 일실시예이다.
도 2는 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 다른 실시예이다.
도 3은 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 열블럭이 포함된 일실시예이다.
도 4는 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 열블럭이 포함된 다른 실시예이다.
도 5는 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 열풍분배기 구성도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.
아울러, 본 발명을 설명하는데 있어서, 방향을 지시하는 용어들은 당업자가 본 발명을 명확하게 이해할 수 있도록 기재된 것들로서, 상대적인 방향을 지시하는 것이므로, 이로 인해 권리범위가 제한되지는 않는다고 할 것이다.
도 1은 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 일실시예이다.
도 1을 참조하면, 본 발명에 따른 다기능 축열 열전하이브리드 발전장치는 열원공급부(100), 축열조(200), 열교환기(400), 열전발전기(500), 압력조절용 밸브(600)를 포함하는 구성으로 이루어진다.
열원공급부(100)는 열전발전기(500)의 고온부에 공급되는 가스(A)가 저장되는 곳으로, 열원공급부(100)에 저장된 고온의 가스(A)가 축열조 내의 열교환을 통해 열전발전기(500) 측으로 공급가능한 목적온도로 낮추어져 공급된다.
축열조(200)는 열원공급부(100)에서 고온의 가스(A)를 공급받아 열교환에 의해 낮아진 목적온도의 가스(A)를 균일화하여 열전발전기(500)로 공급한다.
여기서 축열조(200)는 내부에 모래, 자갈 등과 같은 축열물질(201)이 구비되며, 이러한 축열물질(201)에 의해 가스(A)의 온도를 유지할 수 있게 된다. 또한, 축열조(200) 내부에 구비되는 축열물질(201)은 비열이 높은 물질로 이루어지며, 내부에 저장되는 가스(A)의 온도가 유지될 수 있도록 단열 구조로 형성되는 것이 바람직하다.
축열조(200)에는 열원공급부(100)와 연결되는 가스유입관과 열전발전기(500)와 연결되는 가스공급관이 갖추어질 수 있다. 또한, 도 5에 도시된 바와 같이, 축열조(200)의 가스유입관과 가스공급관의 외벽에 공기층인 이중 단열층(710)이 형성되어 가스의 열이 외부로 손실되는 것을 방지할 수 있다.
도 3은 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 열블럭이 포함된 일실시예이다.
도 3을 참조하면, 본 발명에 따른 다기능 축열 열전하이브리드 발전장치는 열블럭(300)을 더 포함할 수 있다. 열블럭(300)은 축열조(200) 상으로 공급되며, 축열조(200) 내부의 축열물질(201)에 의해 가열되어 외부로 판매될 수 있다. 이러한 열블럭(300)은 축열조(200) 내부의 열을 이용하여 에너지 소모 없이 가열되며, 활용하고자 하는 다양한 사용처에 제공될 수 있다. 이때, 열블럭(300)은 축열조(200) 상에서 가열된 후 외부로 공급될 수 있도록 컨베이어 벨트식 구조로 갖추어질 수 있다.
다시 도 1을 참조하면, 열교환기(400)는 축열조(200) 내에 배치되고, 공급처(401)에서 전달받은 저온의 유체(B)를 축열조(200) 내의 고온의 가스(A)와 열교환시킨다. 이러한 열교환기(400)는 금속관으로 이루어질 수 있으며, 축열조(200) 내부에 스프링 형상으로 회전하면서 형성되어, 설치공간은 최소화하고 전열면적을 확장시킬 수 있다.
열교환기(400)는 공급처(401)에서 저온의 유체(B)를 공급받아 축열조(200) 내의 고온의 가스(A)와 열교환시켜 가열된 유체(B)를 판매처(402)로 공급한다. 이와 같이, 고온의 가스(A)를 목적온도로 낮추기 위해 사용되는 유체(B)로는 물이 사용될 수 있으며, 열교환에 의해 뜨거워진 물은 버려지지 않고, 지역난방, 공장, 병합발전기 등의 외부 판매처(402)로 판매하여 경제적인 효과를 얻을 수 있다.
열전발전기(500)는 축열조(200)에서 공급받은 목적온도의 가스(A)를 열전소자의 고온부 열원으로 활용하여 열에너지를 전기에너지로 변환시킨다. 이때, 열전발전기(500)는 축열조(200)로부터 송풍팬을 이용하여 목적온도의 가스(A)를 공급받을 수 있다.
열전발전기(500)에서 사용된 목적온도의 가스(A)는 외부로 배출된다.
이와 같은 열전발전기(500)는 공급받는 가스(A)의 사용목적 따라 배출경로가 변경되며, 활용된 가스(A)는 다양하게 활용될 수 있다.
특히, 열전발전기(500)는 열전재료에 따라 온도구간별 성능지수가 다르며, 최적의 성능을 발휘할 수 있는 고온부의 온도범위가 한정되어 있다. 그러나 본 발명의 열전발전기(500)는 축열조(200) 내 열교환기(400)에서 열교환 된 가스(A)를 사용하고자 하는 목적온도로 공급받을 수 있다. 또한, 가스(A)의 온도를 열교환기(400)에서 목적온도로 맞출 수 있기 때문에 가스(A)를 사용할 수 있는 온도범위를 확대할 수 있는 이점이 있다.
압력조절용 밸브(600)는 열전발전기(500)의 전단과 후단 중의 적어도 하나에 장착되며, 열전발전기(500)의 인입압력과 배출압력을 제어할 수 있다. 이러한 압력조절용 밸브(600)에 의해 열전발전기(500) 내부로 유입된 가스(A)를 오랫동안 머무르도록 하여 열의 균일한 확산을 유도할 수 있게 된다.
도 5는 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 열풍분배기 구성도이다.
도 5를 참조하면, 본 발명에 따른 다기능 축열 열전하이브리드 발전장치는 열풍분배기(700)를 더 포함할 수 있다. 열풍분배기(700)는 축열조(200)와 열전발전기(500) 사이에 배치되며, 열전발전기(500) 방향으로 공간이 확장 형성된다. 이러한 열풍분배기(700)의 확장 구조에 의해 축열조(200)에서 공급되는 목적온도의 가스 확산이 유도되며, 열전발전기(500)의 전체 면적에 열이 균일하게 분산되도록 돕는다. 또한, 열풍분배기(700)는 외벽이 공기층과 같은 이중 단열층(710)으로 이루어져, 열이 외부로 손실되는 것을 방지할 수 있게 된다. 그리고 열풍분배기(700)는 가스(A)가 유입되는 구간에 촉매물질(720)이 배치되어, 가스(A)와 촉매물질(720)의 촉매반응을 통해 가스(A)의 온도가 상승하게 된다. 그리고 가스(A)의 온도 상승으로 인해 열전발전기(500) 측으로 가스(A)의 확산이 향상되어 열전발전기(500)의 효율을 향상시킬 수 있게 된다.
다시 도 3을 참조하여, 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 열블럭이 포함된 일실시예를 설명하기로 한다.
열원공급부(100)를 통해 고온의 가스(A)를 축열조(200) 내부로 공급받는다. 이때, 축열조(200) 내부의 축열물질(201)에 의해 가스(A)의 온도가 유지된다.
그리고 축열조(200) 내부에는 열교환기(300)가 설치되며, 외부 공급처(401)에서 열교환기(300) 내부로 유체(B)를 공급받아 다시 외부 판매처(402)로 공급된다.
여기서 저온의 유체(B)가 열교환기(300)로 공급되며, 축열조(200) 내부의 고온의 가스(A)와 열교환 되면서 유체(B)가 가열된다. 이러한 가열된 유체(B)는 지역난방, 공장, 병합발전기 등에 사용될 수 있도록 판매된다.
그리고 축열조(200) 내 고온의 가스(A)가 유체(B)와 열교환 되면서 목적온도로 낮아져 열전발전기(500)의 고온부로 공급된다.
또한, 열전발전기(500)의 전후단에 압력조절용 밸브(600)가 설치되어, 고온의 가스(A)가 열전발전기 내에서 충분히 머무르도록 하여 열의 균일한 확산을 유도한다.
그리고 축열조(200) 상에 열블럭(300)을 공급하여, 축열물질(201)로 가열하고 난 뒤 온실, 도시난방이 없는 곳으로 가열된 열블럭(300)을 빌려주거나 판매할 수 있다.
도 2는 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 다른 실시예이다.
도 2를 참조하면, 본 발명에 따른 다기능 축열 열전하이브리드 발전장치는 열원공급부(100), 축열조(200), 열교환기(400), 열전발전기(500), 압력조절용 밸브(600)를 포함하는 구성으로 이루어진다.
열원공급부(100)는 열전발전기(500)의 고온부에 공급되는 가스(A)가 저장되는 곳으로, 열원공급부(100)에 저장된 고온의 가스(A)가 축열조 내의 열교환을 통해 열전발전기(500) 측으로 공급가능한 목적온도로 낮추어져 공급된다.
축열조(200)는 열원공급부(100)에서 고온의 가스(A)를 공급받아 내부에 집열시켜 열교환에 의해 가열된 목적온도의 유체(B) 온도를 균일하게 유지시킬 수 있다.
여기서 축열조(200)는 내부에 모래, 자갈 등과 같은 축열물질(201)이 구비되며, 이러한 축열물질(201)에 의해 가스(A)의 온도를 유지할 수 있게 된다. 또한, 축열조(200) 내부에 구비되는 축열물질(201)은 비열이 높은 물질로 이루어지며, 내부에 저장되는 가스(A)의 온도가 유지될 수 있도록 단열 구조로 형성되는 것이 바람직하다.
그리고 축열조(200)에는 열원공급부(100)와 연결되는 가스유입관이 형성되어, 열원공급부(100)를 통해 고온의 가스(A)가 축열조(200) 내부로 유입되며, 축열물질(201)에 의해 가스(A)의 온도가 유지된다.
도 4는 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 열블럭이 포함된 다른 실시예이다.
도 4를 참조하면, 도 2의 발전장치도 도 1의 발전장치와 마찬가지로 열블럭(300)을 더 포함할 수 있다. 열블럭(300)은 축열조(200) 상으로 공급되며, 축열조(200) 내부의 축열물질(201)에 의해 가열되어 외부로 판매될 수 있다. 이러한 열블럭(300)은 축열조(200) 내부의 열을 이용하여 에너지 소모 없이 가열되며, 활용하고자 하는 다양한 사용처에 제공될 수 있다. 이때, 열블럭(300)은 축열조(200) 상에서 가열된 후 외부로 공급될 수 있도록 컨베이어 벨트식 구조로 갖추어질 수 있다.
다시 도 2를 참조하면, 열교환기(400)는 축열조(200) 내에 배치되고, 공급처(401)에서 전달받은 저온의 유체(B)를 축열조(200) 내의 고온의 가스(A)와 열교환시킨다. 이러한 열교환기(400)는 금속관으로 이루어질 수 있으며, 축열조(200) 내부에 스프링 형상으로 회전하면서 형성되어, 설치공간은 최소화하고 전열면적을 확장시킬 수 있다.
그리고 열교환기(400)는 공급처(401)에서 저온의 유체(B)를 공급받아 축열조(200) 내의 고온의 가스(A)와 열교환시켜 목적온도로 균일하게 가열된 유체(B)를 열전발전기(500)로 공급한다. 이때, 사용된 가열된 유체(B)는 열전발전기(500)에서 사용된 후, 온도가 낮아진 유체(B)가 다시 열교환기(400)로 유입되어 재가열되며 다시 열전발전기(500)로 공급되도록 순환된다.
열전발전기(500)는 축열조(200)에서 공급받은 목적온도의 유체(B)를 열전소자의 고온부 열원으로 활용하여 열에너지를 전기에너지로 변환시킨다. 이때, 열전발전기(500)는 축열조(200)로부터 펌프를 이용하여 목적온도의 유체(B)를 공급받을 수 있다.
그리고 열전발전기(500)에서 사용된 목적온도의 유체(B)는 온도가 떨어지게 되며 다시 축열조(200) 내부의 열교환기(400)로 공급되어 다시 가열된다.
이와 같은 열전발전기(500)는 공급받는 유체(B)의 사용목적 따라 배출경로가 변경되며, 활용된 유체(B)는 다양하게 사용될 수 있다.
특히, 열전발전기(500)는 열전재료에 따라 온도구간별 성능지수가 다르며, 최적의 성능을 발휘할 수 있는 고온부의 온도범위가 한정되어 있다. 그러나 본 발명의 열전발전기(500)는 축열조(200) 내 열교환기(400)에서 열교환 된 유체(B)를 사용하고자 하는 목적온도로 공급받을 수 있다. 또한, 유체(B)의 온도를 열교환기(400)에서 목적온도로 맞출 수 있기 때문에 유체(B)를 사용할 수 있는 온도범위를 확대할 수 있는 이점이 있다.
압력조절용 밸브(600)는 열전발전기(500)의 전단과 후단 중의 적어도 하나에 장착되며, 열전발전기(500)의 인입압력과 배출압력을 제어할 수 있다. 이러한 압력조절용 밸브(600)에 의해 열전발전기(500) 내부로 유입된 유체(B)를 오랫동안 머무르도록 하여 열의 균일한 확산을 유도할 수 있게 된다.
다시 도 4를 참조하여, 본 발명에 따른 다기능 축열 열전하이브리드 발전장치의 열블럭이 포함된 다른 실시예를 설명하기로 한다.
열원공급부(100)를 통해 고온의 가스(A)를 축열조(200) 내부로 공급받는다. 이때, 축열조(200) 내부의 축열물질(201)에 의해 가스(A)의 온도가 유지된다.
그리고 축열조(200) 내부에는 열교환기(300)가 설치되며, 외부 공급처(401)에서 열교환기(300) 내부로 유체(B)를 공급받아 열전발전기(500)로 유체(B)가 공급되고, 사용된 유체(B)가 다시 열교환기(300)로 순환된다.
여기서 저온의 유체(B)가 열교환기(300)로 공급되며, 축열조(200) 내부의 고온의 가스(A)와 열교환 되면서 유체(B)가 목적온도로 가열된다. 가열된 목적온도의 유체(B)는 열전발전기(500)의 고온부로 공급되어 사용된다. 그리고 열전발전기(500)에서 사용된 유체(B)는 온도가 낮아져 다시 열교환기(300)로 공급되는 순환구조로 이루어진다.
또한, 열전발전기(500)의 전후단에 압력조절용 밸브(600)가 설치되어, 고온의 유체(B)가 열전발전기 내에서 충분히 머무르도록 하여 열의 균일한 확산을 유도한다.
그리고 축열조(200) 상에 열블럭(300)을 공급하여, 축열물질(201)로 가열하고 난 뒤 온실, 도시난방이 없는 곳으로 가열된 열블럭(300)을 빌려주거나 판매할 수 있다.
이상과 같이 본 발명의 기본적인 기술적 사상은 축열조 내 열교환을 통해 목적온도로 균일화된 열원을 열전발전기로 공급하며, 가열된 물을 판매하거나 열전발전기에 사용된 물을 축열조 내 열교환기로 순환시켜 열전발전기로 재공급하고, 축열조 내에서 가열된 열블럭을 외부로 공급하여 활용할 수 있는 다기능 축열 열전하이브리드 발전장치를 제공하는 것임을 알 수 있다.
이러한 본 발명의 기본적인 기술적 사상 범주내에서 당업계의 통상의 지식을 가진 자에 의해 다양한 변형이 가능함은 물론이며, 따라서 본 발명의 범주는 다양한 변형 예들을 포함하도록 작성된 특허청구범위 내에서 해석되어야 할 것이다.

Claims (9)

  1. 고온의 가스를 공급하는 열원공급부;
    상기 열원공급부에서 공급받은 가스의 온도를 내부공간의 축열물질에 의해 균일하게 유지하는 축열조;
    상기 축열조 내에 배치되고, 공급처에서 공급받은 저온의 유체와 상기 축열조 내 가스를 열교환하여 상기 축열조 내의 가스를 목적온도로 낮추는 열교환기;
    상기 축열조에서 공급받은 목적온도의 가스를 열전소자의 고온부 열원으로 활용하여 열에너지를 전기에너지로 변환시키는 열전발전기;를 포함하는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치.
  2. 고온의 가스를 공급하는 열원공급부;
    상기 열원공급부에서 공급받은 가스의 온도를 내부공간의 축열물질에 의해 균일하게 유지하는 축열조;
    상기 축열조 내에 배치되고, 공급처에서 공급받은 저온의 유체를 상기 축열조 내 가스와 열교환하여 목적온도로 가열하는 열교환기;
    상기 열교환기에서 공급받은 유체를 열전소자의 고온부 열원으로 활용하여 열에너지를 전기에너지로 변환시키는 열전발전기;를 포함하는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치.
  3. 제1항에 있어서,
    상기 열교환기는 저온의 유체와 상기 축열조 내 가스를 열교환하여 가열된 고온의 유체를 판매처로 공급하는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치.
  4. 제2항에 있어서,
    상기 열전발전기는 활용된 유체를 상기 열교환기로 순환시켜 재가열하는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치.
  5. 제1항 또는 제2항에 있어서,
    상기 축열조 상에서 가열되는 열블럭;을 더 포함하는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치
  6. 제1항 또는 제2항에 있어서,
    상기 열전발전기의 전단과 후단 중의 적어도 하나에 장착되며, 상기 열전발전기의 인입압력과 배출압력을 제어하고, 상기 열전발전기 내부로 유입된 가스 또는 유체를 머무르도록 하여 열의 균일한 확산을 유도하는 압력조절용 밸브;를 더 포함하는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치.
  7. 제1항에 있어서,
    상기 축열조와 열전발전기 사이에 배치되며, 열전발전기 방향으로 공간이 확장 형성되어, 상기 축열조에서 공급되는 목적온도의 가스 확산을 유도하는 열풍분배기;를 더 포함하는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치.
  8. 제7항에 있어서,
    상기 열풍분배기는,
    외벽이 이중 단열층으로 이루어져, 열이 외부로 손실되는 것을 방지하는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치.
  9. 제7항에 있어서,
    상기 열풍분배기는,
    가스가 유입되는 구간에 촉매물질이 배치되며, 상기 촉매물질과 촉매반응을 통해 가스의 온도가 상승되어 가스의 확산이 향상되는 것을 특징으로 하는 다기능 축열 열전하이브리드 발전장치.
PCT/KR2019/005208 2018-06-21 2019-04-30 다기능 축열 열전하이브리드 발전장치 WO2019245156A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0071483 2018-06-21
KR20180071483 2018-06-21
KR10-2019-0050111 2019-04-29
KR1020190050111A KR102295852B1 (ko) 2018-06-21 2019-04-29 다기능 축열 열전하이브리드 발전장치

Publications (1)

Publication Number Publication Date
WO2019245156A1 true WO2019245156A1 (ko) 2019-12-26

Family

ID=68983004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005208 WO2019245156A1 (ko) 2018-06-21 2019-04-30 다기능 축열 열전하이브리드 발전장치

Country Status (1)

Country Link
WO (1) WO2019245156A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266169A1 (en) * 2021-06-15 2022-12-22 Voltair Power Inc. Thermoelectric battery system and methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043483A1 (en) * 2006-07-26 2010-02-25 Jacobi Robert W Thermal storage unit for air conditioning applications
KR20110000554A (ko) * 2008-02-27 2011-01-03 플라스코에너지 아이피 홀딩스, 에스.엘., 빌바오, 샤프하우젠 브랜치 가공 공급원료/탄화물질 변환 및 가스 재구성을 이용한 가스화 시스템
KR200457407Y1 (ko) * 2009-07-21 2011-12-20 (주)퓨얼셀 파워 연료전지 시스템의 축열조용 열교환기
KR101418002B1 (ko) * 2013-07-01 2014-07-14 한국지역난방공사 열전모듈 열교환기를 이용한 축열조 발전 장치
KR101587256B1 (ko) * 2015-03-17 2016-01-20 (주)거나백 복합수조를 구비한 열병합 발전시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043483A1 (en) * 2006-07-26 2010-02-25 Jacobi Robert W Thermal storage unit for air conditioning applications
KR20110000554A (ko) * 2008-02-27 2011-01-03 플라스코에너지 아이피 홀딩스, 에스.엘., 빌바오, 샤프하우젠 브랜치 가공 공급원료/탄화물질 변환 및 가스 재구성을 이용한 가스화 시스템
KR200457407Y1 (ko) * 2009-07-21 2011-12-20 (주)퓨얼셀 파워 연료전지 시스템의 축열조용 열교환기
KR101418002B1 (ko) * 2013-07-01 2014-07-14 한국지역난방공사 열전모듈 열교환기를 이용한 축열조 발전 장치
KR101587256B1 (ko) * 2015-03-17 2016-01-20 (주)거나백 복합수조를 구비한 열병합 발전시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266169A1 (en) * 2021-06-15 2022-12-22 Voltair Power Inc. Thermoelectric battery system and methods thereof

Similar Documents

Publication Publication Date Title
CN101401252A (zh) 温度控制器
WO2020130518A1 (ko) 열관리 시스템
WO2014051268A1 (ko) 삼방밸브 또는 믹싱밸브를 이용한 배열회수시스템의 급탕온도 제어구조 및 온수탱크 열교환기를 이용한 배열회수시스템의 급탕온도 제어구조
WO2018097450A1 (ko) 병렬 복열 방식의 초임계 이산화탄소 발전 시스템
WO2017065430A1 (ko) 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
WO2017131432A1 (ko) 배터리 모듈 및 그를 구비하는 에너지 저장장치
WO2017026634A1 (ko) 전기자동차의 배터리 열교환 장치
WO2011030976A1 (ko) 열전 냉각 발전 장치
WO2010005165A2 (en) Fuel processor of fuel cell system
WO2019245156A1 (ko) 다기능 축열 열전하이브리드 발전장치
WO2022085879A1 (ko) 일원화 ghp 배열회수용 열교환 장치
WO2014104747A1 (ko) 태양열 발전 시스템에 사용되는 축열조, 이에 사용되는 태양열 발전기 및 이를 포함하는 태양열 발전 시스템
WO2017069457A1 (ko) 초임계 이산화탄소 발전 시스템
US7543631B2 (en) Exhaust gas heat exchanger for cogeneration system
WO2016003088A1 (ko) 액체금속 열교환부를 포함한 열전 발전장치
WO2017222267A1 (ko) 연소 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
WO2011002191A2 (ko) 냉각유체의 폐열을 이용한 열전발전시스템
CN107560183A (zh) 900伏电蓄热能装置
WO2011071247A2 (ko) 연소실이 구비된 열교환기 및 이를 포함하는 연소기기
WO2017010677A1 (ko) 온풍 및 온수 공급이 가능한 세척장치
WO2017007198A1 (ko) 연료전지 시스템
WO2017138719A1 (ko) 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
WO2017138720A1 (ko) 복수의 열원을 활용한 초임계 이산화탄소 발전 시스템
WO2022119028A1 (ko) 태양광열 및 지열을 복합 열원으로 하는 냉난방 시스템
WO2012144766A2 (ko) 연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823158

Country of ref document: EP

Kind code of ref document: A1