WO2022085879A1 - 일원화 ghp 배열회수용 열교환 장치 - Google Patents

일원화 ghp 배열회수용 열교환 장치 Download PDF

Info

Publication number
WO2022085879A1
WO2022085879A1 PCT/KR2021/004850 KR2021004850W WO2022085879A1 WO 2022085879 A1 WO2022085879 A1 WO 2022085879A1 KR 2021004850 W KR2021004850 W KR 2021004850W WO 2022085879 A1 WO2022085879 A1 WO 2022085879A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
inner housing
cooling water
coolant
water pipe
Prior art date
Application number
PCT/KR2021/004850
Other languages
English (en)
French (fr)
Inventor
정종태
오영삼
우경택
채정민
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Publication of WO2022085879A1 publication Critical patent/WO2022085879A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a heat exchange device for a unified GHP heat recovery, and more specifically, through a unified heat exchange configuration, lowering the exhaust gas temperature of a gas engine and simultaneously refrigeration and freezing regardless of the season through heat exchange with cooling water It relates to a heat exchange device for unifying GHP heat recovery that makes it possible to use , heating, cooling, and high-temperature water.
  • a heat exchange device using waste heat from an engine uses heat from exhaust gas and cooling water among the heat discharged by driving the engine as a heat source. It is heat-exchanged and used to form the refrigerant at a high temperature to increase the efficiency of the heating and cooling system.
  • the present invention lowers the exhaust gas temperature of a gas engine through an uncomplicated and unified heat exchange configuration and at the same time heat exchange with cooling water regardless of the season, refrigeration, freezing, air conditioning, high temperature It is intended to provide an integrated heat exchanger for GHP heat recovery that enables the use of all water and, in particular, enables more efficient use and management of engine heat.
  • the unified GHP heat exchange device for heat recovery is provided in an outer housing that is connected to an engine so that exhaust gas and coolant are introduced and discharged, and is provided inside the outer housing, and the coolant is introduced through the outer housing.
  • the coolant is introduced through the outer housing.
  • the exhaust gas flowing through one side of the outer housing is configured to flow through in the longitudinal direction, so that heat exchange between the cooling water and the exhaust gas is formed. It can be characterized as
  • one side of the outer housing includes a cooling water inlet through which the cooling water is introduced, an outer cooling water outlet through which the cooling water introduced through the cooling water inlet is discharged to the outside through the inner housing, and the exhaust gas through which the exhaust gas flows.
  • An inlet and an exhaust gas outlet through which exhaust gas introduced through the exhaust gas inlet is discharged to the outside through the inner housing may be provided.
  • the inner housing includes a first partition wall provided in a cross-sectional direction from one end of the inner housing and having one or more holes formed therein, and a second partition wall having one or more holes formed in the other end of the inner housing in the cross-sectional direction. , respectively connecting the holes provided in the first and second partition walls, connected to at least one cooling water pipe and the outer cooling water outlet formed so that the cooling water flows therethrough in a longitudinal direction, and passing through the at least one cooling water pipe, respectively It may be characterized in that it includes an inner coolant outlet through which one coolant is discharged to the outside.
  • the cooling water pipe may be characterized in that the thread is formed on the side in the longitudinal direction.
  • a hot water inlet and a hot water outlet are further provided on one side of the outer housing, and the hot water inlet and the hot water outlet are connected to the inner side of the inner housing and located adjacent to the side of the one or more cooling water pipes It may be characterized in that a hot water pipe is provided.
  • the hot water pipe may be characterized in that it is curved a plurality of times along the longitudinal direction of the cooling water pipe inside the inner housing.
  • the hot water pipe may have a shape surrounding the outside of the cooling water pipe from the inside of the inner housing.
  • the coolant introduced through the cooling water inlet flows along the inner wall between the outer housing and the inner housing It may be characterized in that it is concentrated while flowing and collides with the cone shape and then gathers in a direction toward the one or more cooling water pipes.
  • a support rod may be provided, and the flow of exhaust gas introduced through the exhaust gas inlet may be stagnated while being interfered with by the one or more baffle plates, and a time for the exhaust gas to stay in the inner housing may be increased.
  • the one or more baffle plates are provided with cut-out areas for exhaust gas to pass therethrough. may be characterized in that they are displaced to face each other in opposite directions.
  • hot water supplied to a separate hot water line is heated with exhaust gas heat, thereby producing hot water regardless of cooling and heating operations.
  • the heat exchange time between the exhaust gas and the cooling water can be increased through the baffle structure, and the contact area between the cooling water pipe and the exhaust gas can be increased by forming a thread on the side of the cooling water pipe. It has the advantage of making heat exchange effective.
  • FIG. 1 is a view showing the overall shape of a heat exchange device 100 for unifying GHP heat recovery according to an embodiment of the present invention.
  • FIG. 2 is a view showing the outer housing 110 shown in FIG. 1 in more detail.
  • FIG. 3 is a view showing the inner housing 120 shown in FIG. 1 in more detail.
  • FIG. 4 is a view illustrating the inner housing 120 shown in FIG. 3 from various angles.
  • FIG. 5 is a view illustrating a coolant flow through the coolant pipe 123 shown in FIG. 3 .
  • FIG. 6 is a view illustrating an exhaust gas flow through the inner housing 120 shown in FIG. 3 .
  • FIG. 7 is a view showing the hot water pipe 124 shown in FIG. 3 in more detail.
  • FIG. 8 is a view showing the baffle plate 128 shown in FIG. 3 in more detail.
  • FIG. 9 is a view showing the flow of cooling water and exhaust gas through the unitized GHP heat exchange device 100 for heat recovery.
  • FIG. 1 is a view showing the overall shape of a heat exchanger 100 for unifying GHP heat recovery according to an embodiment of the present invention
  • FIG. 2 is a view showing the outer housing 110 shown in FIG. 1 in more detail
  • 3 is a view showing the inner housing 120 shown in Fig. 1 in more detail
  • Fig. 4 is a view showing the inner housing 120 shown in Fig. 3 at various angles
  • Fig. 5 is 3 is a view illustrating a coolant flow through the coolant pipe 123
  • FIG. 6 is a diagram illustrating an exhaust gas flow through the inner housing 120 shown in FIG. 3 .
  • the unitized heat exchanger 100 for GHP heat recovery is largely configured to include an outer housing 110 and an inner housing 110 .
  • the outer housing 110 As one side of the outer housing 110 is connected to the wet manifold of the gas engine, the high-temperature exhaust gas discharged from the wet manifold flows inward.
  • the outer housing 110 is provided with an outer coolant inlet 111 , an outer coolant outlet 112 , an outer exhaust gas inlet 113 , and an outer exhaust gas outlet 114 .
  • Cooling water discharged from the gas engine flows in through the outer coolant inlet 111. At this time, the coolant flows along the inner wall of the outer housing 110 through the gap between the outer housing 110 and the inner housing 110 and then again It flows in the inner direction of the inner housing 110 .
  • a cone shape 115 protruding inward is provided at the inner end of the outer housing 110 , and the coolant flowing along the inner wall of the outer housing 110 hits the cone shape 115 and then changes the direction. It enters the inside of the inner housing (120).
  • the inner housing 120 is provided in the cross-sectional direction from one end of the first partition wall 121 having one or more holes formed therein, and the second partition wall 122 is provided in the cross-sectional direction from the other end of the inner housing 120 and having one or more holes formed therein. ), each of the holes provided in the first and second partition walls are connected, and connected to one or more coolant pipes 123 and an outer coolant outlet 112 formed so that coolant flows therethrough in the longitudinal direction, and one or more coolant pipes It is configured to include an inner coolant outlet 125 through which the coolant that has passed through 123 is discharged to the outside.
  • the coolant whose direction is changed after being struck by the cone shape 115 of the outer housing 110 passes through the second partition wall 122 of the inner housing 120 and flows through one or more coolant pipes 123 . do.
  • the high-temperature exhaust gas flowing in through the outer exhaust gas inlet 113 of the outer housing 110 flows through the inside of the inner housing 110, and the cooling water pipe 123 is heated by the exhaust gas. the temperature will rise Similarly, the temperature of the exhaust gas is lowered by the cooling water corresponding to a relatively low temperature.
  • a thread is formed on the outside of the one or more cooling water pipes 123 along the longitudinal direction, through which the surface area with the exhaust gas is widened, so that it can be heated more easily.
  • at least 27 cooling water pipes 123 may be provided.
  • first and second partition walls 121 and 122 are formed in the inner housing 110 so that the high-temperature exhaust gas introduced through the outer exhaust gas inlet 113 of the outer housing 110 does not leak from the inner housing 110 . is provided at both ends of the
  • the high-temperature exhaust gas introduced through the outer exhaust gas inlet 113 is directly supplied to the inner housing 120 , and passes through one or more baffle plates 128 provided in the inner housing 110 . Then, it is discharged back to the engine direction through the outer exhaust gas outlet 114 of the outer housing 110 .
  • the coolant that has passed through the one or more coolant pipes 123 of the inner housing 120 is discharged back to the engine through the inner coolant outlet 125 and the outer coolant outlet 112 of the outer housing 110 .
  • the hot water inlet 116 and the hot water outlet 117 connected to the hot water pipe 124 provided inside the inner housing 120 are provided on the outside of the outer housing 110 .
  • the hot water pipe 124 passes through the hot water inlet 116 and leads to the inside of the inner housing 120, and the hot water is heated while in direct contact with the exhaust gas inside the inner housing 120, and the heated hot water is again a hot water pipe. It comes out through the hot water outlet 117 through (124). Looking at such a hot water pipe 124 is as follows.
  • FIG. 7 is a view showing the hot water pipe 124 shown in FIG. 3 in more detail.
  • the hot water pipe 124 has a shape surrounding the cooling water pipe 123 on the inside of the inner housing 120 , and in particular, is curved a plurality of times in the longitudinal direction of the cooling water pipe 123 . Since the hot water pipe 124 has a length of 4m to 6m, it is curved as much as possible in a narrow space of the inner housing 120 to widen a contact area with high temperature exhaust gas.
  • One or more support rods 128 are provided to connect the above baffle plates 128 to each other. Looking at the baffle plate 128 and the support rod 129 are as follows.
  • FIG. 8 is a view showing the baffle plate 128 shown in FIG. 3 in more detail.
  • the baffle plate 128 is installed in the cross-sectional direction from the inside of the inner housing 110 .
  • the baffle plate 128 has exhaust gas flowing in the inner direction of the inner housing 110 to the inner housing 110 .
  • a cutout region 128a which is a passage flowing along the inner wall, is formed.
  • the cut-out area 128a of each baffle plate 128 is displaced so that the odd-numbered baffle plate and the even-numbered baffle plate face in opposite directions with respect to the longitudinal direction of the cooling water pipe 123 .
  • the exhaust gas introduced into the inner housing 110 does not flow directly through the outer exhaust gas outlet 114, but first is interfered with by the baffle plate 128 and then flows in a zigzag form. .
  • This has the effect of increasing the time the exhaust gas stays in the inner housing 110 as it induces stagnation of the exhaust gas, which shortens the contact time between the exhaust gas and the cooling water pipe 123 and the hot water pipe 124 . It can be extended to serve as an advantage to further increase heating efficiency.
  • an air vent 118 for discharging gas generated from the coolant to the outside may be formed on one side of the outer housing 110 .
  • the unified heat exchange device 100 for GHP heat recovery largely has a double structure of the outer housing 110 and the inner housing 120, so that heat exchange between the exhaust gas and the coolant can be easily performed.
  • the baffle plate 128 to stop the flow of exhaust gas, the exhaust gas, the cooling water pipe 123, and the hot water pipe Heat exchange efficiency can be maximized through the configuration of increasing the contact time of 124 .
  • FIG. 9 is a view showing the flow of cooling water and exhaust gas through the unitized GHP heat exchange device 100 for heat recovery.
  • the high-temperature exhaust gas flows while being stopped by a plurality of baffle plates in the inner housing, which brings a higher heating effect of the cooling water pipe and the hot water pipe in the inner housing.
  • the coolant introduced through the outer housing is heated while flowing through the heated coolant pipe, and since this heated coolant has a relatively low temperature compared to the heat generation temperature of the engine, it is supplied back to the engine to cool the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은 일원화 된 열교환 구성을 통해, 가스엔진의 배기가스 온도를 낮춤과 동시에 냉각수와의 열교환을 통해 계절에 구애받지 않고 냉장, 냉동, 냉난방, 고온수 이용이 모두 가능하도록 하는 일원화 GHP 배열회수용 열교환 장치에 관한 것이다.

Description

일원화 GHP 배열회수용 열교환 장치
본 발명은 일원화 GHP 배열회수용 열교환 장치에 관한 것으로서, 보다 구체적으로는, 일원화 된 열교환 구성을 통해, 가스엔진의 배기가스 온도를 낮춤과 동시에 냉각수와의 열교환을 통해 계절에 구애받지 않고 냉장, 냉동, 냉난방, 고온수 이용이 모두 가능하도록 하는 일원화 GHP 배열회수용 열교환 장치에 관한 것이다.
일반적으로 엔진의 폐열을 이용한 열교환장치는, 엔진의 구동에 의하여 배출되는 열중 배기가스와 냉각수의 열을 열원으로 사용하고 있으며, 이러한 배기가스 및 냉각수 열은 냉난방 시스템이나 공기조화 시스템 등에서 사용되고 있는 냉매와 열교환되어져 냉매를 고온으로 형성하는데 이용되어 냉난방 시스템의 효율을 높일 수 있도록 하고 있다.
하지만, 이러한 배기가스 및 냉각수 열을 이용한 냉난방 시스템에 있어서 계절 별 냉난방 필요 용량을 맞추면서 냉난방 및 온수까지 생산하기 위해서는 구성 및 설비가 복잡해지는 문제점이 있으며, 이러한 복잡한 구성 및 설비를 관리함에 있어 어려움이 많은 시간 및 비용이 소요되는 등 문제점이 산재되어 있다.
본 발명은 상기의 문제점을 해결하기 위함으로써, 복잡하지 않고 일원화 된 열교환 구성을 통해, 가스엔진의 배기가스 온도를 낮춤과 동시에 냉각수와의 열교환을 통해 계절에 구애받지 않고 냉장, 냉동, 냉난방, 고온수 이용이 모두 가능하도록 하며, 특히 엔진 배열을 보다 효율적으로 이용 및 관리할 수 있도록 하는 일원화 GHP 배열회수용 열교환 장치를 제공하고자 한다.
본 발명의 일 실시예에 따른 일원화 GHP 배열회수용 열교환 장치는 엔진과 연결되어 배기가스 및 냉각수가 유입 및 배출되도록 형성된 외측 하우징 및 상기 외측 하우징의 내측에 마련되며, 상기 외측 하우징을 통해 유입되는 냉각수가 길이 방향으로 관통하여 흐르도록 구성되고, 또한 상기 외측 하우징의 일측을 통해 유입되는 배기가스가 길이 방향으로 관통하여 흐르도록 구성됨으로써, 냉각수와 배기가스 간의 열 교환이 이루어지도록 구성되는 내측 하우징을 포함하는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 외측 하우징의 일측에는 상기 냉각수가 유입되는 냉각수 유입구, 상기 냉각수 유입구를 통해 유입된 냉각수가 상기 내측 하우징을 통과하여 외부로 배출되는 외측 냉각수 유출구, 상기 배기가스가 유입되는 배기가스 유입구 및 상기 배기가스 유입구를 통해 유입된 배기가스가 상기 내측 하우징을 통과하여 외부로 배출되는 배기가스 유출구가 마련되는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 내측 하우징은 상기 내측 하우징의 일측 말단부에서 단면 방향으로 마련되며 하나 이상의 홀이 형성된 제1 격벽, 상기 내측 하우징의 타측 말단부에서 단면 방향으로 마련되며 하나 이상의 홀이 형성된 제2 격벽, 상기 제1 및 제 격벽에 각각 마련된 상기 홀을 각각 연결하며, 길이 방향을 따라 상기 냉각수가 관통하여 흐르도록 형성된 하나 이상의 냉각수 배관 및 상기 외측 냉각수 유출구와 연결되며, 상기 하나 이상의 냉각수 배관을 각각 통과한 냉각수가 외부로 배출되는 내측 냉각수 유출구를 포함하는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 냉각수 배관은 측면에 길이 방향을 따라 나사산이 형성되는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 외측 하우징의 일측에는 온수 유입구 및 온수 배출구가 더 마련되고, 또한 상기 내측 하우징의 내측에는 상기 온수 유입구 및 상기 온수 배출구와 연결되며 상기 하나 이상의 냉각수 배관의 측면과 인접하게 위치하는 온수 배관이 마련되는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 온수 배관은 상기 내측 하우징의 내측에서 상기 냉각수 배관의 길이 방향을 따라 다수 회 만곡된 것을 특징으로 할 수 있다.
일 실시예에서, 상기 온수 배관은 상기 내측 하우징의 내측에서 상기 냉각수 배관의 외측을 감싸는 형상을 가지는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 외측 하우징의 내측 말단부 중 어느 하나의 말단부는 내측 방향으로 돌출된 고깔 형상으로 형성됨에 따라, 상기 냉각수 유입구를 통해 유입된 냉각수가 상기 외측 하우징과 상기 내측 하우징 사이의 내벽을 따라 흐르다가 상기 고깔 형상에 부딛힌 후 상기 하나 이상의 냉각수 배관을 향하는 방향으로 모이면서 집중되는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 내측 하우징의 내측에는 상기 냉각수 배관의 길이 방향을 따라 상기 내측 하우징의 단면 방향으로 일정 간격으로 하나 이상의 방해판(baffle) 및 상기 하나 이상의 방해판을 서로 연결 및 지지하는 하나 이상의 지지봉이 마련되며, 상기 배기가스 유입구를 통해 유입된 배기가스의 흐름이 상기 하나 이상의 방해판에 의해 간섭되면서 정체되며, 상기 배기가스가 상기 내측 하우징 내에 머무르는 시간이 증가되는 것을 특징으로 할 수 있다.
일 실시예에서, 상기 하나 이상의 방해판에는 배기가스가 통과되기 위한 절개영역이 형성되되, 상기 하나 이상의 방해판 중 홀수번 째 방해판들에 형성된 절개영역과 짝수번 째 방해판들에 형성된 절개영역은 서로 반대 방향을 향하도록 어긋나게 배치되는 것을 특징으로 할 수 있다.
본 발명의 일 측면에 따르면, 엔진의 배기가스 온도를 낮춤과 동시에, 고온수 라인에 열을 공급함으로써 효율적인 가스엔진 구동의 냉동, 냉장, 냉난방 및 고온수 이용의 일원화가 가능한 이점을 가진다.
특히, 본 발명의 일 측면에 따르면 계절에 구애받지 않고 냉장, 냉동, 냉난방, 고온수 이용이 모두 가능하도록 하는 이점을 가진다.
특히, 본 발명의 일 측면에 따르면 별도의 온수 라인으로 공급되는 온수를 배기가스 열로 가열시킴으로써 냉방 및 난방 운전에 관계없이 온수를 생산할 수 있는 이점을 가진다.
특히, 본 발명의 일 측면에 따르면 방해판(baffle) 구조를 통해 배기가스와 냉각수의 열교환 시간을 증가시킬 수 있고, 또한 냉각수 배관 측면에 나사산을 형성함으로써 냉각수 배관과 배기가스 간의 접촉 면적을 늘려 보다 효과적으로 열교환이 이루어지도록 하는 이점을 가진다.
또한 본 발명의 일 측면에 따르면, 효율적인 가스엔진 구동의 냉동, 냉장, 냉난방, 고온수 일원화 고효율 히트펌프에 적용이 가능한 이점을 가진다.
도 1은 본 발명의 일 실시예에 따른 일원화 GHP 배열회수용 열교환 장치(100)의 전체적인 형상을 도시한 도면이다.
도 2는 도 1에 도시된 외측 하우징(110)을 보다 구체적으로 도시한 도면이다.
도 3은 도 1에 도시된 내측 하우징(120)을 보다 구체적으로 도시한 도면이다.
도 4는 도 3에 도시된 내측 하우징(120)을 다양한 각도로 도시한 도면이다.
도 5는 도 3에 도시된 냉각수 배관(123)을 통한 냉각수 흐름을 도시한 도면이다.
도 6은 도 3에 도시된 내측 하우징(120)을 통한 배기가스 흐름을 도시한 도면이다.
도 7은 도 3에 도시된 온수 배관(124)을 보다 구체적으로 도시한 도면이다.
도 8은 도 3에 도시된 방해판(128)을 보다 구체적으로 도시한 도면이다.
도 9는 일원화 GHP 배열회수용 열교환 장치(100)을 통한 냉각수 및 배기가스의 흐름을 도시한 도면이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 일원화 GHP 배열회수용 열교환 장치(100)의 전체적인 형상을 도시한 도면이고, 도 2는 도 1에 도시된 외측 하우징(110)을 보다 구체적으로 도시한 도면이며, 도 3은 도 1에 도시된 내측 하우징(120)을 보다 구체적으로 도시한 도면이고, 도 4는 도 3에 도시된 내측 하우징(120)을 다양한 각도로 도시한 도면이며, 도 5는 도 3에 도시된 냉각수 배관(123)을 통한 냉각수 흐름을 도시한 도면이고, 도 6은 도 3에 도시된 내측 하우징(120)을 통한 배기가스 흐름을 도시한 도면이다.
먼저 도 1 내지 도 4를 살펴보면, 본 발명의 일 실시예에 따른 일원화 GHP 배열회수용 열교환 장치(100)는 크게 외측 하우징(110) 및 내측 하우징(110)을 포함하여 구성된다.
외측 하우징(110)은 가스엔진의 습식 메니폴드와 일측이 연결됨에 따라, 습식 메니폴드로부터 배출되는 고온의 배기가스를 내측 방향으로 유입시키게 된다. 이러한 외측 하우징(110)에는 외측 냉각수 유입구(111), 외측 냉각수 유출구(112), 외측 배기가스 유입구(113) 및 외측 배기가스 유출구(114)가 마련된다.
외측 냉각수 유입구(111)를 통해 가스엔진으로부터 배출되는 냉각수가 유입되는데, 이때 냉각수는 외측 하우징(110)과 내측 하우징(110) 사이의 틈을 통해 외측 하우징(110)의 내벽을 따라 유입된 후 다시 내측 하우징(110)의 내측 방향으로 유입된다.
이때, 외측 하우징(110)의 내측 말단부에는 내측 방향으로 돌출된 고깔 형상(115)이 마련되는데, 외측 하우징(110)의 내벽을 따라 유입되는 냉각수가 고깔 형상(115)에 부딛힌 후 방향을 바꿔 내측 하우징(120)의 내부로 들어가게 된다.
내측 하우징(120)은 일측 말단부에서 단면 방향으로 마련되며 하나 이상의 홀이 형성된 제1 격벽(121), 내측 하우징(120)의 타측 말단부에서 단면 방향으로 마련되며 하나 이상의 홀이 형성된 제2 격벽(122), 제1 및 제 2격벽에 각각 마련된 홀을 각각 연결하며, 길이 방향을 따라 냉각수가 관통하여 흐르도록 형성된 하나 이상의 냉각수 배관(123) 및 외측 냉각수 유출구(112)와 연결되며, 하나 이상의 냉각수 배관(123)을 각각 통과한 냉각수가 외부로 배출되는 내측 냉각수 유출구(125)를 포함하여 구성된다.
도 5와 같이, 외측 하우징(110)의 고깔 형상(115)에 의해 부딛힌 후 방향이 바뀐 냉각수는 내측 하우징(120)의 제2 격벽(122)을 거쳐 하나 이상의 냉각수 배관(123)을 통해 흐르게 된다.
이때, 외측 하우징(110)의 외측 배기가스 유입구(113)를 통해 유입되는 고온의 배기가스가 내측 하우징(110)의 내부를 관통하여 흐르게 되고, 배기가스에 의해 냉각수 배관(123)이 가열되면서 냉각수 온도가 상승하게 된다. 마찬가지로, 비교적 저온에 해당하는 냉각수에 의해 배기가스는 온도가 낮아지게 된다.
이때, 하나 이상의 냉각수 배관(123)의 외측에는 길이 방향을 따라 나사산이 형성되며, 이를 통해 배기가스와의 표면적이 넓어져 보다 용이하게 가열될 수 있다. 또한 냉각수 배관(123)은 적어도 27개 이상 마련될 수 있다.
한편, 외측 하우징(110)의 외측 배기가스 유입구(113)를 통해 유입되는 고온의 배기가스가 내측 하우징(110)으로부터 새지 않도록, 제1 및 제2 격벽(121, 122)이 내측 하우징(110)의 양측 말단부에 마련된다.
따라서, 도 6과 같이, 외측 배기가스 유입구(113)를 통해 유입된 고온의 배기가스는 곧바로 내측 하우징(120)으로 공급되며, 내측 하우징(110) 내에 마련된 하나 이상의 방해판(128)을 통과한 후 외측 하우징(110)의 외측 배기가스 유출구(114)를 통해 다시 엔진 방향으로 배출된다.
또한 내측 하우징(120)의 하나 이상의 냉각수 배관(123)을 통과한 냉각수는 내측 냉각수 유출구(125) 및 외측 하우징(110)의 외측 냉각수 유출구(112)를 통해 다시 엔진 방향으로 배출된다.
또한, 외측 하우징(110)의 외측에는 내측 하우징(120)의 내측에 마련된 온수 배관(124)와 연결되는 온수 유입구(116) 및 온수 배출구(117)가 마련된다.
온수 배관(124)은 온수 유입구(116)를 관통하여 내측 하우징(120)의 내부로 이어지는데, 내측 하우징(120) 내부에서 배기가스와 직접적으로 접하면서 온수가 가열되고, 가열된 온수는 다시 온수 배관(124)을 통해 온수 배출구(117)를 거쳐 나오게 된다. 이러한 온수 배관(124)을 살펴보면 다음과 같다.
도 7은 도 3에 도시된 온수 배관(124)을 보다 구체적으로 도시한 도면이다.
도 7은 내측 하우징(120)에서 내벽을 제거한 상태를 나타낸 도면이다. 온수 배관(124)은 내측 하우징(120)의 내측에서 냉각수 배관(123)을 감싸는 형상을 가지며, 특히 냉각수 배관(123)의 길이 방향을 따라 다수 회 만곡된다. 이러한 온수 배관(124)의 길이는 4m~6m 길이를 가지므로, 내측 하우징(120)의 협소한 공간 내에서 최대한 많이 만곡되어 고온의 배기가스와의 접촉 면적을 넓히게 된다.
다시 도 1 내지 도 4로 돌아와서, 내측 하우징(120)의 내측에는 냉각수 배관(123)의 길이 방향을 따라 내측 하우징(110)의 단면 방향으로 일정 간격으로 하나 이상의 방해판(baffle, 128) 및 하나 이상의 방해판(128)를 서로 연결하는 하나 이상의 지지봉(128)이 마련된다. 방해판(128) 및 지지봉(129)을 살펴보면 다음과 같다.
도 8은 도 3에 도시된 방해판(128)을 보다 구체적으로 도시한 도면이다.
도 8을 살펴보면, 방해판(128)은 내측 하우징(110)의 내측에서 단면 방향으로 설치되는데, 이때 방해판(128)에는 내측 하우징(110)의 내측 방향으로 유입된 배기가스가 내측 하우징(110)의 내벽을 따라 흘러가는 통로인 절개영역(128a)가 형성된다. 이때, 각각의 방해판(128)의 절개영역(128a)은 냉각수 배관(123)의 길이 방향을 기준으로 홀수번 째 방해판과 짝수번 째 방해판들이 서로 반대 방향을 향하도록 어긋나게 배치된다. 따라서, 내측 하우징(110)의 내부로 유입된 배기가스는 외측 배기가스 유출구(114)를 통해 곧바로 흘러가는게 아니라, 우선 방해판(128)에 의해 간섭이 발생된 후 지그재그 형태로 꺾이듯 흘러가게 된다. 이러한 점은 배기가스의 정체를 유도함에 따라 배기가스가 내측 하우징(110) 내에 머무르는 시간을 증가시키는 효과를 가져오게 되고, 이는 배기가스와 냉각수 배관(123) 및 온수 배관(124)의 접촉 시간을 연장시켜 보다 가열 효율을 높이는 이점으로 작용될 수 있다.
한편, 일 실시예에서 외측 하우징(110)의 일측에는 냉각수로부터 발생되는 가스 등이 외부로 배출되기 위한 에어 벤트(118)가 형성될 수 있다.
살펴본 바와 같이, 본원발명의 일원화 GHP 배열회수용 열교환 장치(100)는 크게 외측 하우징(110) 및 내측 하우징(120)의 이중 구조를 가짐으로써, 배기가스와 냉각수 간의 열교환이 용이하게 이루어질 수 있다. 특히 냉각수 배관(123)의 외측에 나사선을 형성하여 배기가스와의 접촉면적을 높이는 형상과, 방해판(128)을 이용하여 배기가스의 흐름을 정체시켜 배기가스와 냉각수 배관(123), 온수 배관(124)의 접촉시간을 늘리는 구성을 통해 열교환 효율이 극대화될 수 있다.
다음으로는, 일원화 GHP 배열회수용 열교환 장치(100)을 통한 냉각수 및 배기가스의 전체적인 흐름을 살펴보기로 한다.
도 9는 일원화 GHP 배열회수용 열교환 장치(100)을 통한 냉각수 및 배기가스의 흐름을 도시한 도면이다.
도 9를 살펴보면, 먼저, 엔진(가스엔진)과 연결된 습식 메니폴드로부터 고온의 배기가스가 내측 하우징으로 유입됨과 동시에 엔진으로부터 배출되는 냉각수가 외측 하우징으로 유입된다.
이때, 고온의 배기가스는 내측 하우징 내 다수의 방해판에 의해 흐름이 정체되어 흘러가게 되고 이는 내측 하우징 내 냉각수 배관 및 온수 배관의 보다 높은 가열 효과를 가져오게 된다.
또한, 외측 하우징을 통해 유입된 냉각수는 가열된 냉각수 배관을 거쳐 흐르면서 가열되고, 이렇게 가열된 냉각수는 엔진의 발열온도 대비 상대적으로 매우 낮은 온도이기 때문에, 다시 엔진으로 공급되면서 엔진을 식혀주게 된다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 엔진과 연결되어 배기가스 및 냉각수가 유입 및 배출되도록 형성된 외측 하우징; 및
    상기 외측 하우징의 내측에 마련되며, 상기 외측 하우징을 통해 유입되는 냉각수가 길이 방향으로 관통하여 흐르도록 구성되고, 또한 상기 외측 하우징의 일측을 통해 유입되는 배기가스가 길이 방향으로 관통하여 흐르도록 구성됨으로써, 냉각수와 배기가스 간의 열 교환이 이루어지도록 구성되는 내측 하우징;을 포함하는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  2. 제1항에 있어서,
    상기 외측 하우징의 일측에는,
    냉각수가 유입되는 냉각수 유입구;
    상기 냉각수 유입구를 통해 유입된 냉각수가 상기 내측 하우징을 통과하여 외부로 배출되는 외측 냉각수 유출구;
    배기가스가 유입되는 배기가스 유입구; 및
    상기 배기가스 유입구를 통해 유입된 배기가스가 상기 내측 하우징을 통과하여 외부로 배출되는 배기가스 유출구;가 마련되는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  3. 제2항에 있어서,
    상기 내측 하우징은,
    상기 내측 하우징의 일측 말단부에서 단면 방향으로 마련되며 하나 이상의 홀이 형성된 제1 격벽;
    상기 내측 하우징의 타측 말단부에서 단면 방향으로 마련되며 하나 이상의 홀이 형성된 제2 격벽;
    상기 제1 및 제 2격벽에 각각 마련된 상기 홀을 각각 연결하며, 길이 방향을 따라 상기 냉각수가 관통하여 흐르도록 형성된 하나 이상의 냉각수 배관; 및
    상기 외측 냉각수 유출구와 연결되며, 상기 하나 이상의 냉각수 배관을 각각 통과한 냉각수가 외부로 배출되는 내측 냉각수 유출구;를 포함하는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  4. 제3항에 있어서,
    상기 냉각수 배관은,
    측면에 길이 방향을 따라 나사산이 형성되는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  5. 제3항에 있어서,
    상기 외측 하우징의 일측에는,
    온수 유입구; 및
    온수 배출구;가 더 마련되고, 또한
    상기 내측 하우징의 내측에는 상기 온수 유입구 및 상기 온수 배출구와 연결되며 상기 하나 이상의 냉각수 배관의 측면과 인접하게 위치하는 온수 배관;이 마련되는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  6. 제5항에 있어서,
    상기 온수 배관은,
    상기 내측 하우징의 내측에서 상기 냉각수 배관의 길이 방향을 따라 다수 회 만곡된 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  7. 제5항에 있어서,
    상기 온수 배관은,
    상기 내측 하우징의 내측에서 상기 냉각수 배관의 외측을 감싸는 형상을 가지는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  8. 제3항에 있어서,
    상기 외측 하우징의 내측 말단부 중 어느 하나의 말단부는 내측 방향으로 돌출된 고깔 형상으로 형성됨에 따라, 상기 냉각수 유입구를 통해 유입된 냉각수가 상기 외측 하우징과 상기 내측 하우징 사이의 내벽을 따라 흐르다가 상기 고깔 형상에 부딛힌 후 상기 하나 이상의 냉각수 배관을 향하는 방향으로 모이면서 집중되는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  9. 제3항에 있어서,
    상기 내측 하우징의 내측에는,
    상기 냉각수 배관의 길이 방향을 따라 상기 내측 하우징의 단면 방향으로 일정 간격으로 하나 이상의 방해판(baffle); 및
    상기 하나 이상의 방해판을 서로 연결 및 지지하는 하나 이상의 지지봉;이 마련되며,
    상기 배기가스 유입구를 통해 유입된 배기가스의 흐름이 상기 하나 이상의 방해판에 의해 간섭되면서 정체되며, 상기 배기가스가 상기 내측 하우징 내에 머무르는 시간이 증가되는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
  10. 제9항에 있어서,
    상기 하나 이상의 방해판에는 배기가스가 통과되기 위한 절개영역;이 형성되되, 상기 하나 이상의 방해판 중 홀수번 째 방해판들에 형성된 절개영역과 짝수번 째 방해판들에 형성된 절개영역은 서로 반대 방향을 향하도록 어긋나게 배치되는 것을 특징으로 하는, 일원화 GHP 배열회수용 열교환 장치.
PCT/KR2021/004850 2020-10-21 2021-04-19 일원화 ghp 배열회수용 열교환 장치 WO2022085879A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200136660A KR102205341B1 (ko) 2020-10-21 2020-10-21 일원화 ghp 배열회수용 열교환 장치
KR10-2020-0136660 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022085879A1 true WO2022085879A1 (ko) 2022-04-28

Family

ID=74304892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004850 WO2022085879A1 (ko) 2020-10-21 2021-04-19 일원화 ghp 배열회수용 열교환 장치

Country Status (2)

Country Link
KR (1) KR102205341B1 (ko)
WO (1) WO2022085879A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959240A (zh) * 2021-10-25 2022-01-21 绍兴晓晓环保防腐工程有限公司 一种节能余热回收系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102205341B1 (ko) * 2020-10-21 2021-01-20 한국가스공사 일원화 ghp 배열회수용 열교환 장치
KR20230070087A (ko) 2021-11-12 2023-05-22 에이피엘하이텍(주) 스크러버와 마이크로-나노버블을 이용한 ghp 배기가스 처리장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101485A (ja) * 1983-11-09 1985-06-05 Matsushita Electric Ind Co Ltd 熱交換器
KR20110122534A (ko) * 2010-05-04 2011-11-10 주식회사 히텍코리아 열 교환 효율이 극대화된 이산화탄소 냉매용 열 교환기
JP2013068377A (ja) * 2011-09-25 2013-04-18 Yutaka Giken Co Ltd 熱交換器
KR20170129997A (ko) * 2016-05-17 2017-11-28 (주)해송엔지니어링 배기가스 폐열회수용 열교환기 및 그 제조방법
KR20190052118A (ko) * 2016-11-25 2019-05-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 열교환 시스템, 가스 터빈의 냉각 시스템 및 냉각 방법 및 가스 터빈 시스템
KR102205341B1 (ko) * 2020-10-21 2021-01-20 한국가스공사 일원화 ghp 배열회수용 열교환 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100094221A (ko) 2009-02-18 2010-08-26 엘에스엠트론 주식회사 엔진의 폐열을 이용한 열교환장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101485A (ja) * 1983-11-09 1985-06-05 Matsushita Electric Ind Co Ltd 熱交換器
KR20110122534A (ko) * 2010-05-04 2011-11-10 주식회사 히텍코리아 열 교환 효율이 극대화된 이산화탄소 냉매용 열 교환기
JP2013068377A (ja) * 2011-09-25 2013-04-18 Yutaka Giken Co Ltd 熱交換器
KR20170129997A (ko) * 2016-05-17 2017-11-28 (주)해송엔지니어링 배기가스 폐열회수용 열교환기 및 그 제조방법
KR20190052118A (ko) * 2016-11-25 2019-05-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 열교환 시스템, 가스 터빈의 냉각 시스템 및 냉각 방법 및 가스 터빈 시스템
KR102205341B1 (ko) * 2020-10-21 2021-01-20 한국가스공사 일원화 ghp 배열회수용 열교환 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959240A (zh) * 2021-10-25 2022-01-21 绍兴晓晓环保防腐工程有限公司 一种节能余热回收系统
CN113959240B (zh) * 2021-10-25 2024-04-19 绍兴晓晓环保防腐工程有限公司 一种节能余热回收系统

Also Published As

Publication number Publication date
KR102205341B1 (ko) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2022085879A1 (ko) 일원화 ghp 배열회수용 열교환 장치
WO2015009028A1 (en) Heat exchanger
WO2016200144A1 (en) Battery pack thermal management system for electric vehicle
WO2015102362A1 (ko) 쿨링모듈 및 차량용 냉방시스템
WO2011007960A2 (en) Refrigerator
WO2014104576A1 (ko) 핀-튜브 방식의 열교환기
WO2017200362A1 (en) Double tube for heat-exchange
WO2013002529A2 (ko) 차량용 공조장치
WO2020022738A1 (en) Integrated liquid air cooled condenser and low temperature radiator
WO2013089357A1 (ko) 차량용 통합형 열교환기
WO2012002698A2 (ko) 열교환기
WO2020139004A1 (ko) 백연저감 냉각탑
WO2020013506A1 (ko) 특히 전기 자동차용 콤팩트 열 교환기 유닛 및 공기 조화 모듈
WO2010128693A1 (ko) 공기조화시스템
WO2015142047A1 (en) Outdoor unit of an air conditioner and method of manufacturing the same
WO2020262949A1 (en) Heat exchanger and refrigerator including the same
WO2021020786A1 (ko) 라디에이터 냉난방 장치
WO2023085846A1 (ko) 냉동컴프레셔용 공냉식 가스냉각기
WO2020180064A1 (ko) 냉수제조장치
WO2010050663A1 (ko) 하이브리드 히트펌프식 냉난방장치
WO2010147288A1 (ko) 열교환기
CN215982881U (zh) 一种空调机组用高效翅片换热器
WO2020246793A1 (ko) 열관리 시스템
WO2010131877A2 (ko) 공기조화기
WO2019143221A1 (ko) 냉난방 겸용 매트 및 냉난방 겸용 매트의 냉난방 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882954

Country of ref document: EP

Kind code of ref document: A1