WO2021054196A1 - Adhesive and antenna device - Google Patents

Adhesive and antenna device Download PDF

Info

Publication number
WO2021054196A1
WO2021054196A1 PCT/JP2020/033934 JP2020033934W WO2021054196A1 WO 2021054196 A1 WO2021054196 A1 WO 2021054196A1 JP 2020033934 W JP2020033934 W JP 2020033934W WO 2021054196 A1 WO2021054196 A1 WO 2021054196A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
adhesive
metal
metal portion
particles
Prior art date
Application number
PCT/JP2020/033934
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 淳
松下 清人
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020556979A priority Critical patent/JPWO2021054196A1/ja
Publication of WO2021054196A1 publication Critical patent/WO2021054196A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits

Definitions

  • the present invention relates to an adhesive for adhering two substrates.
  • the present invention also relates to an antenna device using the above adhesive.
  • Various adhesives are used to bond the two adherends. Further, in order to make the thickness of the adhesive layer formed by the adhesive uniform and to control the distance (gap) between the two adherends, a spacer such as a gap material may be added to the adhesive.
  • the conventional antenna device may not be able to sufficiently exhibit its performance.
  • the conventional antenna device is disclosed in, for example, Patent Document 1 below.
  • Patent Document 1 discloses an antenna device including an antenna and a multilayer high-frequency substrate.
  • the antenna has a power feeding conductor on the back surface.
  • the multilayer high-frequency substrate is configured by laminating a plurality of strip lines having lands on the surface thereof.
  • the land is electrically connected to the strip conductor via a through hole.
  • the lands of the strip lines to be laminated are joined by an anisotropic conductive adhesive.
  • the power feeding conductor of the antenna and the land on the surface of the multilayer high frequency substrate are joined by an anisotropic conductive adhesive.
  • Conventional antenna devices do not require a high level of communication speed and communication quality, and there are cases where an air cavity (space) is not provided inside the antenna.
  • the air cavity (space) is formed, for example, by maintaining a uniform and constant distance (gap) between the high-frequency substrate and the substrate constituting the antenna.
  • it is required to control the interval (gap) of the air cavity (space) with high accuracy.
  • the antenna device when an antenna device is obtained by adhering two substrates so as to form an air cavity (space) in the antenna using an adhesive, the antenna device may be repeatedly heated. Repeated heating of the antenna device may reduce the adhesive strength between the two substrates. If the adhesive strength between the two substrates is low, peeling or the like may occur between the substrates due to vibration or impact from the outside due to dropping or the like. If peeling or the like occurs between the substrates, it may not be possible to control the gap between the air cavities (spaces) with high accuracy, and it may be difficult to improve the communication speed and communication quality of the antenna.
  • a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface
  • the first metal portion and the second metal portion are bonded to a metal portion of the above material, wherein the rate of change in the number of peelings between substrates calculated by the following evaluation test 1 is 20% or less.
  • Evaluation test 1 A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared.
  • the adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side.
  • the metal portion and the second metal portion are arranged so as to face each other.
  • the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body.
  • the number of times until the substrates are peeled off under the conditions conforming to JEDEC JESD22-B111 is measured and used as the number of times of peeling before heating.
  • the obtained laminate was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminate after the reflow treatment was used to make a substrate under the conditions conforming to JEDEC JESD22-B111.
  • the number of times until the gap is peeled off is measured and used as the number of times of peeling after heating. From the number of peels before and after heating, the rate of change in the number of peels is calculated by the following formula (1).
  • Rate of change in the number of peels [(Number of peels before heating-Number of peels after heating) / Number of peels before heating] x 100
  • the rate of change in adhesive strength between substrates calculated by the following evaluation test 2 is 10% or less.
  • Evaluation test 2 A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared.
  • the adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side.
  • the metal portion and the second metal portion are arranged so as to face each other.
  • the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body.
  • the adhesive strength between the substrates is measured under the conditions conforming to MIL STD-883G, and the adhesive strength before heating is used.
  • the obtained laminated body was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminated body after the reflow treatment was used as a substrate under the conditions compliant with MIL STD-883G.
  • the adhesive strength between them is measured and used as the adhesive strength after heating. From the adhesive strength before and after heating, the rate of change in the adhesive strength is calculated by the following formula (2).
  • Rate of change in adhesive strength [(Adhesive strength before heating-Adhesive strength after heating) / Adhesive strength before heating] x 100 Formula (2)
  • the first substrate is a glass epoxy substrate or a ceramic substrate
  • the second substrate is a glass epoxy substrate, a ceramic substrate or a silicon substrate.
  • the first metal part is either made of copper or nickel / gold plated and the second metal part is made of copper. It is formed or formed by nickel / gold plating.
  • the adhesive comprises metal particles.
  • the metal particles have a base material particles and a metal layer arranged on the surface of the base material particles.
  • the metal layer is arranged on the surface of the second metal layer and the second metal layer arranged on the surface of the base particle. It has one metal layer, and the first metal layer is a solder layer.
  • a first substrate having a first metal portion on the surface
  • a second substrate having a second metal portion on the surface
  • the first substrate and the second substrate The material of the adhesive portion is the above-mentioned adhesive, and the first metal portion and the second metal portion are adhered to each other by the adhesive portion.
  • An antenna device is provided in which an air cavity is formed by the first substrate, the second substrate, and the adhesive portion.
  • the first substrate is a glass epoxy substrate or a ceramic substrate
  • the second substrate is a glass epoxy substrate, a ceramic substrate or a silicon substrate.
  • the first metal part is made of copper or nickel / gold plated
  • the second metal part is made of copper. It is formed or formed by nickel / gold plating.
  • the adhesive according to the present invention comprises a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface, the first metal portion and the second metal portion. It is an adhesive for adhering to a metal part.
  • the rate of change in the number of peelings between the substrates calculated by the evaluation test 1 is 20% or less. Since the adhesive according to the present invention has the above-mentioned structure, the adhesive strength between the substrates can be maintained even when the adhesive is repeatedly heated, and the gap of the air cavity can be controlled with high accuracy. ..
  • FIG. 1 is a cross-sectional view showing a first example of metal particles that can be used in an adhesive according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a second example of metal particles that can be used in the adhesive according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an example of an antenna device using the adhesive according to the present invention.
  • FIG. 4 is an enlarged cross-sectional view showing the bonded portion between the metal particles and the metal portion in the antenna device shown in FIG.
  • the adhesive according to the present invention comprises a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface, the first metal portion and the second metal portion. It is an adhesive for adhering to a metal part.
  • the rate of change in the number of peelings between substrates calculated by the following evaluation test 1 is 20% or less.
  • Evaluation test 1 A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared.
  • the adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side.
  • the metal portion and the second metal portion are arranged so as to face each other.
  • the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body.
  • the number of times until the substrates are peeled off under the conditions conforming to JEDEC JESD22-B111 is measured and used as the number of times of peeling before heating.
  • the number of peelings before heating means the number of peelings before the laminate is heated.
  • the obtained laminate was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminate after the reflow treatment was used to make a substrate under the conditions conforming to JEDEC JESD22-B111.
  • the number of times until the gap is peeled off is measured and used as the number of times of peeling after heating. That is, the number of peels after heating means the number of peels after the laminate is heated four times. From the number of peels before and after heating, the rate of change in the number of peels is calculated by the following formula (1).
  • Rate of change in the number of peels [(Number of peels before heating-Number of peels after heating) / Number of peels before heating] x 100
  • the adhesive is preferably arranged so that the gap between the substrates of the laminate (laminate before the reflow treatment) is 60 ⁇ m or more, and the adhesive is 850 ⁇ m or less. Is preferably arranged.
  • the adhesive according to the present invention has the above-mentioned structure, the adhesive strength between the substrates can be maintained even when the adhesive is repeatedly heated, and the gap of the air cavity can be controlled with high accuracy. ..
  • the antenna device When an antenna device is obtained by adhering two substrates so as to form an air cavity (space) in the antenna using an adhesive, the antenna device may be repeatedly heated.
  • the adhesive strength between two substrates may decrease due to repeated heating of the antenna device. If the adhesive strength between the two substrates is low, peeling or the like may occur between the substrates due to vibration or impact from the outside due to dropping or the like. If peeling or the like occurs between the substrates, it may not be possible to control the gap between the air cavities (spaces) with high accuracy, and it may be difficult to improve the communication speed and communication quality of the antenna.
  • the adhesive according to the present invention has the above-mentioned structure, the adhesive strength between the substrates can be maintained even when the adhesive is repeatedly heated, and the space between the air cavities (spaces) can be maintained. (Gap) can be controlled with high precision. As a result, the communication speed and communication quality of the antenna can be further improved.
  • the adhesive according to the present invention comprises a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface, the first metal portion and the second metal portion. It is an adhesive for adhering to a metal part.
  • the adhesive according to the present invention is an adhesive for adhering two substrates.
  • the adhesive according to the present invention is preferably an adhesive for adhering metal portions on two substrates.
  • the rate of change in the number of peelings between the substrates calculated by the evaluation test 1 is 20% or less.
  • the rate of change in the number of peelings between the substrates calculated by the evaluation test 1 is preferably 15% or less, more preferably 10% or less.
  • the rate of change in the number of peelings between the substrates calculated by the evaluation test 1 is not more than the above upper limit, the adhesive strength between the substrates can be maintained even when repeatedly heated, and the gap between the air cavities can be made highly accurate. Can be controlled to.
  • the number of peelings before heating is preferably 50 times or more, more preferably 100 times or more.
  • the number of peelings before heating is equal to or greater than the above lower limit, the adhesive strength between the substrates can be maintained even when the substrates are repeatedly heated, and the gap between the air cavities can be controlled with high accuracy.
  • the rate of change in adhesive strength between substrates calculated by the following evaluation test 2 is preferably 10% or less, more preferably 3% or less.
  • the rate of change in the adhesive strength between the substrates calculated by the following evaluation test 2 is not more than the above upper limit, the adhesive strength between the substrates can be maintained even when repeatedly heated, and the gap between the air cavities is increased. It can be controlled with precision.
  • Evaluation test 2 A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared.
  • the adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side.
  • the metal portion and the second metal portion are arranged so as to face each other.
  • the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body.
  • the adhesive strength between the substrates is measured under the conditions conforming to MIL STD-883G, and the adhesive strength before heating is used.
  • the obtained laminated body was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminated body after the reflow treatment was used as a substrate under the conditions compliant with MIL STD-883G.
  • the adhesive strength between them is measured and used as the adhesive strength after heating. From the adhesive strength before and after heating, the rate of change in the adhesive strength is calculated by the following formula (2).
  • Rate of change in adhesive strength [(Adhesive strength before heating-Adhesive strength after heating) / Adhesive strength before heating] x 100 Formula (2)
  • the adhesive is preferably arranged so that the gap between the substrates of the laminate (laminate before the reflow treatment) is 60 ⁇ m or more, and the adhesive is 850 ⁇ m or less. Is preferably arranged.
  • the adhesive strength before heating is preferably 1.5 kgf or more, more preferably 2.0 kgf or more.
  • the adhesive strength before heating is at least the above lower limit, the adhesive strength between the substrates can be maintained even when the substrates are repeatedly heated, and the gap of the air cavity can be controlled with high accuracy.
  • the first substrate is preferably a glass epoxy substrate or a ceramic substrate.
  • the second substrate is preferably a glass epoxy substrate, a ceramic substrate, or a silicon substrate.
  • the first metal portion is preferably formed of copper or nickel / gold plating.
  • the second metal portion is preferably formed of copper or nickel / gold plating.
  • the evaluation test 1 and the evaluation test 2 are performed to calculate the rate of change in the number of peelings and the rate of change in the adhesive strength.
  • the adhesive When the adhesive is actually used, it does not have to be treated under the conditions specified in the evaluation test 1 and the evaluation test 2.
  • the reflow treatment may not be performed under the reflow conditions specified in JEDEC J-STD-020.
  • the adhesive preferably contains metal particles from the viewpoint of maintaining the adhesive strength between the substrates even when repeatedly heated and controlling the gap of the air cavity with high accuracy.
  • the adhesive may or may not contain components other than the metal particles.
  • the adhesive may contain only the metal particles from the viewpoint of further maintaining the adhesive strength between the substrates even when repeatedly heated and controlling the gap of the air cavity with higher accuracy. It is preferably a particle group of a plurality of metal particles.
  • the above adhesive can bond two adherends, for example.
  • the adherend is preferably a substrate, and more preferably a substrate having a metal portion on the surface.
  • the adhesive is preferably used to bond the two substrates together.
  • the adhesive is preferably used to bond two metal parts to each other. Further, the adhesive is preferably used to control the gap between the two substrates.
  • the adhesive is preferably used to control the gap between the two substrates.
  • the above adhesive may be used for conductive connection or may not be used for conductive connection.
  • the adhesive is preferably used in an antenna device.
  • the adhesive is preferably used to form an air cavity.
  • the adhesive is preferably used in the antenna device to form an air cavity.
  • the adhesive is preferably used in the antenna device to keep the distance (gap) between the high-frequency substrate and the substrate constituting the antenna uniform and constant.
  • the adhesive is preferably used in an antenna device to form an air cavity and improve the communication speed, communication quality, and the like of the antenna.
  • the adhesive according to the present invention preferably contains metal particles.
  • the metal particles mean particles containing metal.
  • the metal particles may have components other than metal.
  • the metal particles preferably have a role of regulating the distance (gap) between two substrates, for example. It is preferable that the metal particles are not solder particles formed only by solder.
  • the metal particles preferably have a base material particles and a metal layer arranged on the surface of the base material particles.
  • the metal layer may have a single layer structure or a multi-layer structure having two or more layers.
  • the metal particles preferably have solder on the outer surface portion of the metal layer. It is preferable that the base material particles are not solder particles formed only by solder. When the metal particles are solder particles formed by solder in both the central portion and the outer surface portion of the metal layer, when the metal particles are repeatedly heated, the solder gets wet and spreads due to the heating, so that air is used. It can be difficult to control the cavity gap. When the metal particles are metal particles having a base material particles not formed by solder and a metal layer (solder layer) arranged on the surface of the base material particles, even if they are repeatedly heated, they may be heated repeatedly. Since it is possible to suppress excessive wetting and spreading of the solder due to heating, it is possible to control the gap of the air cavity with high accuracy. Therefore, it is preferable that the metal particles are not solder particles formed by solder. It is preferable that neither the central portion nor the outer surface portion of the metal layer of the metal particles is solder particles formed of solder.
  • the average particle size of the metal particles is not particularly limited.
  • the average particle size of the metal particles can be appropriately selected according to the gap of the target air cavity.
  • the average particle size of the metal particles may be, for example, 80 ⁇ m or more, or 900 ⁇ m or less.
  • the average particle size of the metal particles is preferably a number average particle size.
  • the average particle size of the metal particles can be determined by, for example, observing 50 arbitrary metal particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each metal particle, or measuring the particle size distribution by laser diffraction. Required by doing. In observation with an electron microscope or an optical microscope, the particle size of each metal particle is determined as the particle size in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 metal particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the laser diffraction type particle size distribution measurement, the particle size of each metal particle is obtained as the particle size in the equivalent sphere diameter.
  • the coefficient of variation (CV value) of the particle size of the metal particles is preferably 10% or less, more preferably 5% or less.
  • the coefficient of variation of the particle size of the metal particles is not more than the above upper limit, the gap of the air cavity can be controlled with higher accuracy.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle size of metal particles Dn: Mean value of particle size of metal particles
  • the shape of the metal particles is not particularly limited.
  • the shape of the metal particles may be spherical, non-spherical, flat or the like.
  • FIG. 1 is a cross-sectional view showing a first example of metal particles that can be used in an adhesive according to an embodiment of the present invention.
  • the metal particle 1 shown in FIG. 1 has a base particle 2 and a metal layer 3 arranged on the surface of the base particle 2.
  • the metal layer 3 covers the surface of the base particle 2.
  • the metal particles 1 are coated particles in which the surface of the base particles 2 is coated with the metal layer 3.
  • the metal layer 3 has a second metal layer 3A and a solder layer 3B (first metal layer).
  • the metal particles 1 include a second metal layer 3A between the base particles 2 and the solder layer 3B. Therefore, the metal particles 1 include the base material particles 2, the second metal layer 3A arranged on the surface of the base material particles 2, and the solder layer 3B arranged on the outer surface of the second metal layer 3A.
  • the metal layer 3 may have a multi-layer structure of two or more layers, or may have a multi-layer structure.
  • FIG. 2 is a cross-sectional view showing a second example of metal particles that can be used in the adhesive according to the embodiment of the present invention.
  • the metal layer 3 of the metal particles 1 in FIG. 1 has a two-layer structure.
  • the metal particles 1A shown in FIG. 2 have a solder layer 4 as a single metal layer.
  • the metal particles 1A include a base particle 2 and a solder layer 4 arranged on the surface of the base particle 2.
  • Base particle examples of the base material particles include resin particles, inorganic particles excluding metal-containing particles, organic-inorganic hybrid particles, and metal-containing particles.
  • the base material particles are preferably base particle particles excluding metal-containing particles, and more preferably inorganic particles excluding resin particles and metal-containing particles, or organic-inorganic hybrid particles.
  • the base particle may be a core-shell particle having a core and a shell arranged on the surface of the core.
  • the core may be an organic core, and the shell may be an inorganic shell.
  • the material for the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, and phenolformaldehyde.
  • polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene
  • acrylic resins such as polymethylmethacrylate and polymethylacrylate
  • polycarbonate, polyamide, and phenolformaldehyde such as polycarbonate, polyamide, and phenolformaldehyde.
  • Resin melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, Examples thereof include polypropyleneimide, polyether ether ketone, polyether sulfone, divinylbenzene polymer, and divinylbenzene-based copolymer.
  • the divinylbenzene-based copolymer and the like examples include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles must be a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferable.
  • the polymerizable monomer having an ethylenically unsaturated group is a non-crosslinkable monomer.
  • examples thereof include crosslinkable monomers.
  • non-crosslinkable monomer examples include styrene-based monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; and methyl ( Meta) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) Alkyl (meth) acrylate compounds such as meta) acrylate and isobornyl (meth) acrylate; such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (
  • Oxygen atom-containing (meth) acrylate compound nitrile-containing monomer such as (meth) acrylonitrile; vinyl ether compound such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, etc. Acid vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogens such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene. Examples include containing monomers.
  • crosslinkable monomer examples include tetramethylolmethanetetra (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanedi (meth) acrylate, trimethylolpropanetri (meth) acrylate, and dipentaerythritol hexa.
  • Examples thereof include phthalates, diallylacrylamides, diallyl ethers, and silane-containing monomers such as ⁇ - (meth) acryloxipropyltrimethoxysilane, trimethoxysilylstyrene, and vinyltrimethoxysilane.
  • (meth) acrylate refers to acrylate and methacrylate.
  • (meth) acrylic refers to acrylic and methacrylic.
  • (meth) acryloyl refers to acryloyl and methacryloyl.
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method.
  • this method include a method of suspension polymerization in the presence of a radical polymerization initiator, a method of swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles, and the like.
  • the base material particles are inorganic particles other than metal-containing particles or organic-inorganic hybrid particles
  • examples of the inorganic substances for forming the base material particles include silica, alumina, barium titanate, zirconia, and carbon black. Be done.
  • the inorganic substance is preferably not a metal.
  • the particles formed of the silica are not particularly limited, but for example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is performed if necessary. Examples include particles obtained by doing so.
  • examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core. It is preferable that the core is an organic core. It is preferable that the shell is an inorganic shell. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the base particle is preferably an organic-inorganic hybrid particle having an organic core and an inorganic shell arranged on the surface of the organic core. ..
  • Examples of the material of the organic core include the material of the resin particles described above.
  • the material of the inorganic shell examples include the above-mentioned inorganic substances as the material of the base particle.
  • the material of the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of silane alkoxide.
  • the base material particles are metal-containing particles
  • examples of the metal that is the material of the metal-containing particles include silver, copper, nickel, silicon, gold, and titanium.
  • the particle size of the base particle is not particularly limited.
  • the particle size of the base material particles can be appropriately selected according to the gap of the target air cavity.
  • the particle size of the base particles may be, for example, 80 ⁇ m or more, or 900 ⁇ m or less.
  • the particle size of the base material particles indicates the diameter when the base material particles are spherical, and indicates the equivalent sphere diameter when the base material particles are not spherical.
  • the particle size of the base particle is preferably a number average particle size.
  • the particle size of the base particle is determined by using a particle size distribution measuring device or the like.
  • the particle size of the base particles is preferably determined by observing 50 arbitrary base particles with an electron microscope or an optical microscope and calculating an average value. In observation with an electron microscope or an optical microscope, the particle size of each substrate particle is determined as the particle size in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 substrate particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the laser diffraction type particle size distribution measurement, the particle size of each base particle is determined as the particle size in the equivalent sphere diameter.
  • the metal particles preferably have a base material particles and a metal layer arranged on the surface of the base material particles.
  • the metal layer may have a single layer structure or a multi-layer structure having two or more layers.
  • the metal particles include a base material particle, a second metal layer arranged on the surface of the base material particle, and the second metal layer. It is preferable to have a solder layer (first metal layer) arranged on the surface of the above.
  • the metal particles preferably have solder on the outer surface portion of the metal layer.
  • the metal layer contains metal.
  • the metal constituting the metal layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, as the metal, tin-doped indium oxide (ITO) and solder may be used. Only one kind of the above metal may be used, or two or more kinds may be used in combination. From the viewpoint of controlling the gap of the air cavity with higher accuracy and further increasing the adhesive strength between the substrates, the metal contained in the outermost metal layer is preferably solder.
  • the melting point of the base particles is preferably higher than the melting point of the metal layer.
  • the melting point of the base particles preferably exceeds 160 ° C., more preferably exceeds 300 ° C., further preferably exceeds 400 ° C., and particularly preferably exceeds 450 ° C.
  • the melting point of the base particles may be less than 400 ° C.
  • the melting point of the base particles may be 160 ° C. or lower.
  • the softening point of the base particles is preferably 260 ° C. or higher. The softening point of the base particles may be less than 260 ° C.
  • the metal particles may have a single layer of solder.
  • the metal particles may have a plurality of metal layers (second metal layer and solder layer (first metal layer)). That is, in the above metal particles, two or more metal layers may be laminated. When the metal layer is two or more layers, it is preferable that the metal particles have solder on the outer surface portion of the metal layer.
  • the solder is preferably a metal having a melting point of 450 ° C. or lower (low melting point metal).
  • the solder layer is preferably a metal layer having a melting point of 450 ° C. or lower (low melting point metal layer).
  • the low melting point metal layer is a layer containing a low melting point metal.
  • the solder in the metal particles is preferably a metal having a melting point of 450 ° C. or lower (low melting point metal).
  • the low melting point metal means a metal having a melting point of 450 ° C. or lower.
  • the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 220 ° C. or lower.
  • the melting point of the low melting point metal can be determined by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • Examples of the differential scanning calorimetry (DSC) device include "EXSTAR DSC7020" manufactured by SII.
  • the solder in the metal particles preferably contains tin.
  • the tin content in 100% by weight of the metal contained in the solder in the metal particles is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight or more. Is.
  • the adhesive strength between the substrates can be further increased.
  • the tin content is determined by using a high-frequency inductively coupled plasma emission spectroscopic analyzer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). Can be measured.
  • ICP-AES high-frequency inductively coupled plasma emission spectroscopic analyzer
  • EDX-800HS fluorescent X-ray analyzer
  • the solder When an adhesive containing metal particles having the solder on the outer surface of the metal layer is used to bond the metal parts formed on the two substrates, the solder is melted and joined to the metal part. Can be made to. For example, since the solder and the metal portion are likely to come into surface contact rather than point contact, the adhesive strength between the substrates can be further increased, and the contact area between the metal particles and the metal portion can be sufficiently increased. ..
  • the low melting point metal constituting the solder in the solder layer and the metal particles is not particularly limited.
  • the low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include tin-silver alloy, tin-copper alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-zinc alloy, tin-indium alloy and the like.
  • the low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, or tin-indium alloy because it is excellent in wettability to metal parts.
  • the material constituting the solder in the solder layer and the metal particles is preferably a filler material having a liquidus line of 450 ° C. or lower based on JIS Z3001: welding terminology.
  • Examples of the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like.
  • the solder in the metal particles is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, It may contain metals such as bismuth, manganese, chromium, molybdenum and palladium.
  • the solder in the metal particles preferably contains nickel, copper, or antimony.
  • the content of these metals for increasing the adhesive strength is preferably 0.001 weight in 100% by weight of the solder in the metal particles. % Or more, preferably 1% by weight or less.
  • the metal particles preferably have a base material particles, a second metal layer arranged on the surface of the base material particles, and a solder layer arranged on the surface of the second metal layer.
  • the melting point of the second metal layer is preferably higher than the melting point of the solder layer.
  • the melting point of the second metal layer preferably exceeds 220 ° C., more preferably exceeds 300 ° C., further preferably exceeds 400 ° C., further preferably exceeds 450 ° C., and particularly preferably exceeds 500 ° C. Most preferably, it exceeds 600 ° C. Since the solder layer has a low melting point, it is preferable that the solder layer melts when forming an air cavity. It is preferable that the second metal layer does not melt when forming the air cavity.
  • the metal particles are preferably used by melting the solder, preferably by melting the solder layer, and are used by melting the solder layer and not melting the second metal layer. Is preferable. Since the melting point of the second metal layer is higher than the melting point of the solder layer, it is possible to melt only the solder layer without melting the second metal layer when forming the air cavity. ..
  • the absolute value of the difference between the melting point of the solder layer and the melting point of the second metal layer exceeds 0 ° C., preferably 5 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 30 ° C. or higher, particularly preferably. Is 50 ° C. or higher, most preferably 100 ° C. or higher.
  • the second metal layer contains metal.
  • the metal constituting the second metal layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. Only one kind of the above metal may be used, or two or more kinds may be used in combination.
  • ITO tin-doped indium oxide
  • the second metal layer is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer, a gold layer or a copper layer, and even more preferably a copper layer.
  • the metal particles preferably have a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably have a nickel layer, a gold layer or a copper layer, and further preferably have a copper layer.
  • the thickness of the metal layer is preferably 3.5 ⁇ m or more, more preferably 8 ⁇ m or more, preferably 80 ⁇ m or less, more preferably 65 ⁇ m or less, still more preferably 50 ⁇ m or less.
  • the thickness of the metal layer is at least the above lower limit and at least the above upper limit, the adhesive strength between the substrates can be further increased.
  • the thickness of the second metal layer is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 20 ⁇ m or less.
  • the adhesive strength between the substrates can be further increased.
  • the thickness of the solder layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less.
  • the thickness of the solder layer is at least the above lower limit and at least the above upper limit, the adhesive strength between the substrates can be further increased.
  • the thickness of the metal layer, the thickness of the second metal layer, and the thickness of the solder layer can be measured by observing the cross section of the metal particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the method of forming the metal layer on the surface of the base material particles is not particularly limited.
  • Examples of the method for forming the metal layer include electroless plating, electroplating, physical collision, mechanochemical reaction, physical vapor deposition or physical adsorption, and metal powder or metal powder. Examples thereof include a method of coating the surface of the substrate particles with a paste containing the binder and the binder.
  • the method for forming the metal layer is preferably electroless plating, electroplating, or a method by physical collision.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the above-mentioned physical collision method, for example, a seater composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
  • the antenna device includes a first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, the first substrate, and the second substrate. It is provided with an adhesive portion for adhering the above.
  • the material of the adhesive portion is the above-mentioned adhesive.
  • the first metal portion and the second metal portion are adhered to each other by the adhesive portion.
  • an air cavity is formed by the first substrate, the second substrate, and the adhesive portion.
  • the first substrate is preferably a glass epoxy substrate or a ceramic substrate.
  • the second substrate is preferably a glass epoxy substrate, a ceramic substrate, or a silicon substrate.
  • the substrate may be a high-frequency substrate, a substrate constituting an antenna, or the like.
  • the first metal portion is preferably formed of copper or nickel / gold plating.
  • the second metal portion is preferably formed of copper or nickel / gold plating.
  • the first metal portion and the second metal portion may be formed of copper or may be formed of nickel / gold plating.
  • FIG. 3 is a cross-sectional view showing an example of an antenna device using the adhesive according to the present invention.
  • the antenna device 11 shown in FIG. 3 includes an adhesive portion that adheres the first substrate 12, the second substrate 13, and the first substrate 12 and the second substrate 13.
  • the material of the adhesive portion is the above-mentioned adhesive.
  • the material of the adhesive portion is metal particles 1.
  • the adhesive portion is preferably formed of the metal particles.
  • the first substrate 12 has a plurality of first metal portions 12a on the surface (upper surface).
  • the second substrate 13 has a plurality of second metal portions 13a on the surface (lower surface).
  • the first metal portion 12a and the second metal portion 13a are bonded by one or a plurality of metal particles 1 (adhesive portion).
  • the air cavity 14 is formed by the first substrate 12, the second substrate 13, and the metal particles 1 (adhesive portion).
  • the metal particles 1 (adhesive portion) keep the distance (gap) between the first substrate 12 and the second substrate 13 constant.
  • the gap of the air cavity 14 is controlled by the metal particles 1 (adhesive portion).
  • the gap in the antenna device may be set according to the frequency band targeted by the antenna device.
  • the manufacturing method of the antenna device is not particularly limited.
  • a method for manufacturing an antenna device a method in which the above-mentioned adhesive is placed between the first metal portion and the second metal portion to obtain a laminate, and then the laminate is heated and pressurized. And so on.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 Pa to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 ° C. to 250 ° C. From the viewpoint of controlling the gap of the air cavity with higher accuracy, it is preferable not to pressurize during the manufacture of the antenna device. By not applying pressure during the manufacture of the antenna device, the solder layer of the molten metal particles does not excessively wet and spread to the first metal portion and the second metal portion, so that the gap of the air cavity is opened. It can be controlled with even higher precision.
  • FIG. 4 is an enlarged cross-sectional view showing the bonded portion between the metal particles and the metal portion in the antenna device shown in FIG.
  • the melted solder layer portion 3Ba becomes the first metal portion 12a and the second metal portion 12a. Sufficient contact with the metal portion 13a.
  • the metal particles 1 in which the outermost layer is a solder layer the metal particles 1 and the first metal portion 12a and the first metal portion 12a are compared with the case where the outermost layer is a metal particle such as nickel, gold or copper.
  • the contact area with the second metal portion 13a can be increased, and the gap of the air cavity can be controlled with higher accuracy.
  • the central portion and the outer surface portion of the metal layer are repeatedly heated as compared with the case where the solder particles formed by the solder are used. Even if this is done, it is possible to suppress excessive wetting and spreading of the solder due to heating, and it is possible to control the gap of the air cavity with even higher precision.
  • Metal particle 1 50 parts by weight of divinylbenzene and 50 parts by weight of tetramethylolmethane tetraacrylate were copolymerized to prepare base particles (average particle size 240 ⁇ m, CV value 1.85%) as resin particles.
  • the obtained base material particles were electroless nickel-plated, and a base nickel plating layer having a thickness of 0.3 ⁇ m was formed on the surface of the base material particles.
  • the base material particles on which the underlying nickel plating layer was formed were electrolytically copper-plated to form a copper layer having a thickness of 10 ⁇ m. Further, electroplating was performed to form a solder layer containing tin having a thickness of 25 ⁇ m.
  • Metal particles 2 Base particles (average particle diameter 260 ⁇ m, CV value 1.92%) which are resin particles were prepared in the same manner as the metal particles 1. The obtained base material particles were electroless nickel-plated, and a base nickel plating layer having a thickness of 0.3 ⁇ m was formed on the surface of the base material particles. Next, the base material particles on which the underlying nickel plating layer was formed were electrolytically copper-plated to form a copper layer having a thickness of 5 ⁇ m. Further, electroplating was performed to form a solder layer containing tin having a thickness of 20 ⁇ m.
  • Is formed in the metal particles 2 (average particle diameter 310 ⁇ m, CV value 2.76%).
  • Base particles (average particle diameter 210 ⁇ m, CV value 1.68%) which are resin particles were prepared in the same manner as the metal particles 1.
  • the obtained base material particles were electroless nickel-plated, and a base nickel plating layer having a thickness of 0.3 ⁇ m was formed on the surface of the base material particles.
  • the base material particles on which the underlying nickel plating layer was formed were electrolytically copper-plated to form a copper layer having a thickness of 10 ⁇ m. Further, electroplating was performed to form a solder layer containing tin having a thickness of 40 ⁇ m.
  • Is formed in the metal particles 3 (average particle diameter 310 ⁇ m, CV value 3.21%).
  • the particles were X1 (average particle diameter 300 ⁇ m).
  • the average particle size of the metal particles was measured by the method described above using a digital microscope (“VHX-5000” manufactured by KEYENCE CORPORATION).
  • Example 1 The obtained metal particles 1 themselves were used as an adhesive without using any adhesive components other than the metal particles 1.
  • a glass epoxy substrate having 20 metal portions (first metal portions) made of copper was prepared.
  • a glass epoxy substrate having 20 metal portions (second metal portions) made of copper was prepared.
  • the metal part is a metal part for forming an antenna circuit.
  • Flux (“WS-9160-M7” manufactured by Cookson Electronics Co., Ltd.) was applied onto the surface of the first metal portion of the first substrate.
  • the metal particles 1 were placed on the surface of the applied flux, and reflow treatment (heating temperature 250 ° C. and heating time 30 seconds) was performed to bond the metal particles 1 and the first metal portion.
  • solder paste (“M705-GRN360-K2-V” manufactured by Senju Metal Industry Co., Ltd.) was applied onto the surface of the second metal portion of the second substrate.
  • the adhesive structure of the first substrate, the metal particles 1, and the second substrate coated with the solder paste are arranged so that the first metal portion and the second metal portion face each other.
  • Reflow treatment (heating temperature 250 ° C. and heating time 30 seconds) was performed. In this way, the antenna device A in which the first metal portion and the second metal portion are adhered to each other via the adhesive portion formed by the metal particles 1 is produced.
  • the antenna device is the same as the manufacturing method of the antenna device A, except that a glass epoxy board having 20 metal parts (second metal parts) formed by nickel / gold plating is used as the second board. B was prepared.
  • Example 2 Antenna devices A, B, and C were produced in the same manner as in Example 1 except that the metal particles 2 were used instead of the metal particles 1 as the adhesive.
  • Example 3 Antenna devices A, B, and C were produced in the same manner as in Example 1 except that the metal particles 3 were used instead of the metal particles 1 as the adhesive.
  • Rate of change in the number of peelings between substrates (evaluation test 1) (1-1)
  • the obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed of copper on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed of copper on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate, and the second substrate, the rate of change in the number of peelings between the substrates was calculated by the method described above.
  • the obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed of copper on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed by nickel / gold plating on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate, and the second substrate, the rate of change in the number of peelings between the substrates was calculated by the method described above.
  • the obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed by nickel / gold plating on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed by nickel / gold plating on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate, and the second substrate, the rate of change in the number of peelings between the substrates was calculated by the method described above.
  • Rate of change in adhesive strength between substrates (evaluation test 2) (2-1)
  • the obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed of copper on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed of copper on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate and the second substrate, the rate of change in the adhesive strength between the substrates was calculated by the method described above.
  • the obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed of copper on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed by nickel / gold plating on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate and the second substrate, the rate of change in the adhesive strength between the substrates was calculated by the method described above.
  • the obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed by nickel / gold plating on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed by nickel / gold plating on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate and the second substrate, the rate of change in the adhesive strength between the substrates was calculated by the method described above.
  • Gap controllability With respect to the obtained five antenna devices A, the thickness of the air cavity was measured using a stereomicroscope (“SMZ-10” manufactured by Nikon Corporation), and the air cavity in the five antenna devices A was measured. The average thickness of each was calculated. From the difference between the maximum value of the average thickness and the minimum value of the average thickness, the gap controllability was determined according to the following criteria. The same evaluation was performed on the obtained antenna devices B and C.

Abstract

The present invention provides an adhesive which is capable of maintaining the bonding strength between substrates even if heated repeatedly, while being capable of controlling the gap of an air cavity with high accuracy. An adhesive according to the present invention is used for the purpose of bonding a first metal part, which is on the surface of a first substrate, and a second metal part, which is on the surface of a second substrate, to each other; and with respect to this adhesive, the change ratio of the number of separation between the substrates as calculated by the evaluation test 1 described below is 20% or less. Evaluation test 1: The adhesive is arranged on the first metal part of the first substrate, and the second substrate, which has the second metal part on the surface, is arranged on a surface of the adhesive, said surface being on the reverse side from the first substrate, so that the metal parts face each other. Subsequently, the first substrate and the second substrate are bonded to each other by means of a reflow process, thereby obtaining a multilayer body. The thus-obtained multilayer body is subjected to the reflow process four times. The change ratio of the number of separation is calculated from the numbers of separation before and after heating.

Description

接着剤及びアンテナ装置Adhesive and antenna device
 本発明は、2つの基板を接着するための接着剤に関する。また、本発明は、上記接着剤を用いたアンテナ装置に関する。 The present invention relates to an adhesive for adhering two substrates. The present invention also relates to an antenna device using the above adhesive.
 2つの被着体を接着するために、様々な接着剤が用いられている。また、該接着剤により形成される接着層の厚みを均一にし、2つの被着体の間隔(ギャップ)を制御するために、接着剤にギャップ材等のスペーサが配合されることがある。 Various adhesives are used to bond the two adherends. Further, in order to make the thickness of the adhesive layer formed by the adhesive uniform and to control the distance (gap) between the two adherends, a spacer such as a gap material may be added to the adhesive.
 近年、スマートフォン、タブレット端末等の急速な普及に伴い、トラフィックの急増が課題となっている。このため、3GPP(Third Generation Partnership Project)によるLTE(Long Term Evolution)、LTE-A(LTE-Advanced)のような通信システムの後継システムや、新しい無線通信システムとして、第5世代移動通信システム(5G)の検討が進められている。 In recent years, with the rapid spread of smartphones, tablet terminals, etc., a rapid increase in traffic has become an issue. For this reason, the successor system of communication systems such as LTE (Long Term Evolution) and LTE-A (LTE-Advanced) by 3GPP (Third Generation Partnership Project), and the 5th generation mobile communication system (5G) as a new wireless communication system. ) Is under consideration.
 例えば、第5世代移動通信システム(5G)では、より広い帯域を用いて高速伝送を実現するために、LTE、LTE-Aと比較して、高い搬送周波数を用いて通信することが検討されている。しかしながら、高い搬送周波数で通信する場合に、従来のアンテナ装置では、十分に性能を発揮することができない可能性がある。従来のアンテナ装置は、例えば、下記の特許文献1に開示されている。 For example, in the 5th generation mobile communication system (5G), in order to realize high-speed transmission using a wider band, it is considered to communicate using a higher carrier frequency as compared with LTE and LTE-A. There is. However, when communicating at a high carrier frequency, the conventional antenna device may not be able to sufficiently exhibit its performance. The conventional antenna device is disclosed in, for example, Patent Document 1 below.
 下記の特許文献1には、アンテナと多層高周波基板とを備えるアンテナ装置が開示されている。上記アンテナは、裏面に給電用導体を有する。上記多層高周波基板は、表面に、ランドを備える複数のストリップ線路を積層して構成されている。上記ランドは、スルーホールを介して、ストリップ導体と電気的に接続される。上記多層高周波基板では、積層する上記ストリップ線路のランドの間は、異方導電性接着剤により接合される。上記アンテナ装置では、上記アンテナの給電用導体と上記多層高周波基板の表面のランドとは異方導電性接着剤により接合される。 Patent Document 1 below discloses an antenna device including an antenna and a multilayer high-frequency substrate. The antenna has a power feeding conductor on the back surface. The multilayer high-frequency substrate is configured by laminating a plurality of strip lines having lands on the surface thereof. The land is electrically connected to the strip conductor via a through hole. In the multilayer high frequency substrate, the lands of the strip lines to be laminated are joined by an anisotropic conductive adhesive. In the antenna device, the power feeding conductor of the antenna and the land on the surface of the multilayer high frequency substrate are joined by an anisotropic conductive adhesive.
特開2015-185550号公報Japanese Unexamined Patent Publication No. 2015-185550
 第5世代移動通信システム(5G)に向けた基地局及び端末のアンテナにおいては、通信速度の向上及び通信品質の向上等が要求される。通信速度の向上及び通信品質の向上等を達成するために、アンテナ内にエアキャビティ(空間)を設けることが検討されている。アンテナ内にエアキャビティ(空間)を設けることで、帯域幅を向上させたり、電磁波ノイズを低減したりすることができる。結果として、アンテナの通信速度及び通信品質等を向上させることができる。 For the antennas of base stations and terminals for the 5th generation mobile communication system (5G), improvement of communication speed and improvement of communication quality are required. In order to improve the communication speed and the communication quality, it is considered to provide an air cavity (space) in the antenna. By providing an air cavity (space) in the antenna, it is possible to improve the bandwidth and reduce electromagnetic noise. As a result, the communication speed and communication quality of the antenna can be improved.
 従来のアンテナ装置では、高いレベルの通信速度及び通信品質が要求されておらず、アンテナ内にエアキャビティ(空間)が設けられていないことがある。上記エアキャビティ(空間)は、例えば、高周波基板と、アンテナを構成する基板との間隔(ギャップ)を均一かつ一定に保持することにより形成される。アンテナの通信速度及び通信品質等を向上させるためには、上記エアキャビティ(空間)の間隔(ギャップ)を高精度に制御することが要求される。 Conventional antenna devices do not require a high level of communication speed and communication quality, and there are cases where an air cavity (space) is not provided inside the antenna. The air cavity (space) is formed, for example, by maintaining a uniform and constant distance (gap) between the high-frequency substrate and the substrate constituting the antenna. In order to improve the communication speed and communication quality of the antenna, it is required to control the interval (gap) of the air cavity (space) with high accuracy.
 また、接着剤を用いて、アンテナ内にエアキャビティ(空間)を形成するように、2つの基板を接着してアンテナ装置を得たときに、該アンテナ装置は繰り返し加熱されることがある。アンテナ装置が繰り返し加熱されることで、2つの基板間の接着強度が低下することがある。2つの基板間の接着強度が低い場合には、落下等による外部からの振動や衝撃により、基板間に剥離等が発生することがある。基板間に剥離等が発生すると、上記エアキャビティ(空間)の間隔(ギャップ)を高精度に制御することができず、アンテナの通信速度及び通信品質等を向上させることが困難なことがある。 Further, when an antenna device is obtained by adhering two substrates so as to form an air cavity (space) in the antenna using an adhesive, the antenna device may be repeatedly heated. Repeated heating of the antenna device may reduce the adhesive strength between the two substrates. If the adhesive strength between the two substrates is low, peeling or the like may occur between the substrates due to vibration or impact from the outside due to dropping or the like. If peeling or the like occurs between the substrates, it may not be possible to control the gap between the air cavities (spaces) with high accuracy, and it may be difficult to improve the communication speed and communication quality of the antenna.
 本発明の目的は、繰り返し加熱された場合でも、基板間における接着強度を維持することができ、エアキャビティのギャップを高精度に制御することができる接着剤を提供することである。また、本発明の目的は、上記接着剤を用いたアンテナ装置を提供することである。 An object of the present invention is to provide an adhesive capable of maintaining the adhesive strength between substrates even when repeatedly heated and controlling the gap of the air cavity with high accuracy. Another object of the present invention is to provide an antenna device using the above adhesive.
 本発明の広い局面によれば、第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板とにおいて、前記第1の金属部と前記第2の金属部とを接着するための接着剤であり、下記評価試験1により算出される基板間における剥離回数の変化率が、20%以下である、接着剤が提供される。 According to a broad aspect of the present invention, in a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface, the first metal portion and the second metal portion. An adhesive for adhering to a metal portion of the above material, wherein the rate of change in the number of peelings between substrates calculated by the following evaluation test 1 is 20% or less.
 評価試験1:
 第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板と、接着剤とを用意する。前記第1の基板における前記第1の金属部上に前記接着剤を配置し、前記接着剤の前記第1の基板側とは反対の表面上に、前記第2の基板を、前記第1の金属部と前記第2の金属部とが対向するように配置する。その後、JEDEC J-STD-020で規定されるリフロー条件でリフロー処理を行うことにより前記第1の基板と前記第2の基板とを接着して、積層体を得る。得られた積層体を用いて、JEDEC JESD22-B111に準拠した条件で基板間が剥離するまでの回数を測定し、加熱前の剥離回数とする。その後、得られた積層体をJEDEC J-STD-020で規定されるリフロー条件で、4回のリフロー処理を行い、リフロー処理後における積層体を用いて、JEDEC JESD22-B111に準拠した条件で基板間が剥離するまでの回数を測定し、加熱後の剥離回数とする。加熱前後の剥離回数から、下記式(1)により剥離回数の変化率を算出する。
Evaluation test 1:
A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared. The adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side. The metal portion and the second metal portion are arranged so as to face each other. Then, the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body. Using the obtained laminate, the number of times until the substrates are peeled off under the conditions conforming to JEDEC JESD22-B111 is measured and used as the number of times of peeling before heating. After that, the obtained laminate was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminate after the reflow treatment was used to make a substrate under the conditions conforming to JEDEC JESD22-B111. The number of times until the gap is peeled off is measured and used as the number of times of peeling after heating. From the number of peels before and after heating, the rate of change in the number of peels is calculated by the following formula (1).
 剥離回数の変化率=[(加熱前の剥離回数-加熱後の剥離回数)/加熱前の剥離回数]×100   式(1) Rate of change in the number of peels = [(Number of peels before heating-Number of peels after heating) / Number of peels before heating] x 100 Formula (1)
 本発明に係る接着剤のある特定の局面では、下記評価試験2により算出される基板間における接着強度の変化率が、10%以下である。 In a specific aspect of the adhesive according to the present invention, the rate of change in adhesive strength between substrates calculated by the following evaluation test 2 is 10% or less.
 評価試験2:
 第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板と、接着剤とを用意する。前記第1の基板における前記第1の金属部上に前記接着剤を配置し、前記接着剤の前記第1の基板側とは反対の表面上に、前記第2の基板を、前記第1の金属部と前記第2の金属部とが対向するように配置する。その後、JEDEC J-STD-020で規定されるリフロー条件でリフロー処理を行うことにより前記第1の基板と前記第2の基板とを接着して、積層体を得る。得られた積層体を用いて、MIL STD-883Gに準拠した条件で基板間の接着強度を測定し、加熱前の接着強度とする。その後、得られた積層体をJEDEC J-STD-020で規定されるリフロー条件で、4回のリフロー処理を行い、リフロー処理後における積層体を用いて、MIL STD-883Gに準拠した条件で基板間の接着強度を測定し、加熱後の接着強度とする。加熱前後の接着強度から、下記式(2)により接着強度の変化率を算出する。
Evaluation test 2:
A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared. The adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side. The metal portion and the second metal portion are arranged so as to face each other. Then, the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body. Using the obtained laminate, the adhesive strength between the substrates is measured under the conditions conforming to MIL STD-883G, and the adhesive strength before heating is used. After that, the obtained laminated body was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminated body after the reflow treatment was used as a substrate under the conditions compliant with MIL STD-883G. The adhesive strength between them is measured and used as the adhesive strength after heating. From the adhesive strength before and after heating, the rate of change in the adhesive strength is calculated by the following formula (2).
 接着強度の変化率=[(加熱前の接着強度-加熱後の接着強度)/加熱前の接着強度]×100   式(2) Rate of change in adhesive strength = [(Adhesive strength before heating-Adhesive strength after heating) / Adhesive strength before heating] x 100 Formula (2)
 本発明に係る接着剤のある特定の局面では、前記第1の基板が、ガラスエポキシ基板又はセラミック基板であり、前記第2の基板が、ガラスエポキシ基板、セラミック基板又はシリコン基板である。 In a specific aspect of the adhesive according to the present invention, the first substrate is a glass epoxy substrate or a ceramic substrate, and the second substrate is a glass epoxy substrate, a ceramic substrate or a silicon substrate.
 本発明に係る接着剤のある特定の局面では、前記第1の金属部が、銅により形成されているか、又は、ニッケル/金めっきにより形成されており、前記第2の金属部が、銅により形成されているか、又は、ニッケル/金めっきにより形成されている。 In certain aspects of the adhesive according to the invention, the first metal part is either made of copper or nickel / gold plated and the second metal part is made of copper. It is formed or formed by nickel / gold plating.
 本発明に係る接着剤のある特定の局面では、前記接着剤が、金属粒子を含む。 In certain aspects of the adhesive according to the present invention, the adhesive comprises metal particles.
 本発明に係る接着剤のある特定の局面では、前記金属粒子が、基材粒子と、前記基材粒子の表面上に配置された金属層とを有する。 In a specific aspect of the adhesive according to the present invention, the metal particles have a base material particles and a metal layer arranged on the surface of the base material particles.
 本発明に係る接着剤のある特定の局面では、前記金属層が、前記基材粒子の表面上に配置された第2の金属層と、前記第2の金属層の表面上に配置された第1の金属層とを有し、前記第1の金属層が、はんだ層である。 In certain aspects of the adhesive according to the present invention, the metal layer is arranged on the surface of the second metal layer and the second metal layer arranged on the surface of the base particle. It has one metal layer, and the first metal layer is a solder layer.
 本発明の広い局面によれば、第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板と、前記第1の基板と前記第2の基板とを接着している接着剤部とを備え、前記接着剤部の材料が、上述した接着剤であり、前記第1の金属部と前記第2の金属部とが、前記接着剤部により接着されており、前記第1の基板と前記第2の基板と前記接着剤部とにより、エアキャビティが形成されている、アンテナ装置が提供される。 According to a broad aspect of the present invention, a first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, the first substrate and the second substrate. The material of the adhesive portion is the above-mentioned adhesive, and the first metal portion and the second metal portion are adhered to each other by the adhesive portion. An antenna device is provided in which an air cavity is formed by the first substrate, the second substrate, and the adhesive portion.
 本発明に係るアンテナ装置のある特定の局面では、前記第1の基板が、ガラスエポキシ基板又はセラミック基板であり、前記第2の基板が、ガラスエポキシ基板、セラミック基板又はシリコン基板である。 In a specific aspect of the antenna device according to the present invention, the first substrate is a glass epoxy substrate or a ceramic substrate, and the second substrate is a glass epoxy substrate, a ceramic substrate or a silicon substrate.
 本発明に係るアンテナ装置のある特定の局面では、前記第1の金属部が、銅により形成されているか、又は、ニッケル/金めっきにより形成されており、前記第2の金属部が、銅により形成されているか、又は、ニッケル/金めっきにより形成されている。 In certain aspects of the antenna device according to the present invention, the first metal part is made of copper or nickel / gold plated, and the second metal part is made of copper. It is formed or formed by nickel / gold plating.
 本発明に係る接着剤は、第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板とにおいて、上記第1の金属部と上記第2の金属部とを接着するための接着剤である。本発明に係る接着剤では、上記評価試験1により算出される基板間における剥離回数の変化率が、20%以下である。本発明に係る接着剤では、上記の構成が備えられているので、繰り返し加熱された場合でも、基板間における接着強度を維持することができ、エアキャビティのギャップを高精度に制御することができる。 The adhesive according to the present invention comprises a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface, the first metal portion and the second metal portion. It is an adhesive for adhering to a metal part. In the adhesive according to the present invention, the rate of change in the number of peelings between the substrates calculated by the evaluation test 1 is 20% or less. Since the adhesive according to the present invention has the above-mentioned structure, the adhesive strength between the substrates can be maintained even when the adhesive is repeatedly heated, and the gap of the air cavity can be controlled with high accuracy. ..
図1は、本発明の一実施形態に係る接着剤に使用可能な金属粒子の第1の例を示す断面図である。FIG. 1 is a cross-sectional view showing a first example of metal particles that can be used in an adhesive according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る接着剤に使用可能な金属粒子の第2の例を示す断面図である。FIG. 2 is a cross-sectional view showing a second example of metal particles that can be used in the adhesive according to the embodiment of the present invention. 図3は、本発明に係る接着剤を用いたアンテナ装置の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of an antenna device using the adhesive according to the present invention. 図4は、図3に示すアンテナ装置における金属粒子と金属部との接着部分を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing the bonded portion between the metal particles and the metal portion in the antenna device shown in FIG.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 (接着剤)
 本発明に係る接着剤は、第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板とにおいて、上記第1の金属部と上記第2の金属部とを接着するための接着剤である。本発明に係る接着剤では、下記評価試験1により算出される基板間における剥離回数の変化率が、20%以下である。
(adhesive)
The adhesive according to the present invention comprises a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface, the first metal portion and the second metal portion. It is an adhesive for adhering to a metal part. In the adhesive according to the present invention, the rate of change in the number of peelings between substrates calculated by the following evaluation test 1 is 20% or less.
 評価試験1:
 第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板と、接着剤とを用意する。上記第1の基板における上記第1の金属部上に上記接着剤を配置し、上記接着剤の上記第1の基板側とは反対の表面上に、上記第2の基板を、上記第1の金属部と上記第2の金属部とが対向するように配置する。その後、JEDEC J-STD-020で規定されるリフロー条件でリフロー処理を行うことにより上記第1の基板と上記第2の基板とを接着して、積層体を得る。得られた積層体を用いて、JEDEC JESD22-B111に準拠した条件で基板間が剥離するまでの回数を測定し、加熱前の剥離回数とする。すなわち、加熱前の剥離回数とは、積層体が加熱される前の剥離回数を意味する。その後、得られた積層体をJEDEC J-STD-020で規定されるリフロー条件で、4回のリフロー処理を行い、リフロー処理後における積層体を用いて、JEDEC JESD22-B111に準拠した条件で基板間が剥離するまでの回数を測定し、加熱後の剥離回数とする。すなわち、加熱後の剥離回数とは、積層体が4回加熱された後の剥離回数を意味する。加熱前後の剥離回数から、下記式(1)により剥離回数の変化率を算出する。
Evaluation test 1:
A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared. The adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side. The metal portion and the second metal portion are arranged so as to face each other. Then, the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body. Using the obtained laminate, the number of times until the substrates are peeled off under the conditions conforming to JEDEC JESD22-B111 is measured and used as the number of times of peeling before heating. That is, the number of peelings before heating means the number of peelings before the laminate is heated. After that, the obtained laminate was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminate after the reflow treatment was used to make a substrate under the conditions conforming to JEDEC JESD22-B111. The number of times until the gap is peeled off is measured and used as the number of times of peeling after heating. That is, the number of peels after heating means the number of peels after the laminate is heated four times. From the number of peels before and after heating, the rate of change in the number of peels is calculated by the following formula (1).
 剥離回数の変化率=[(加熱前の剥離回数-加熱後の剥離回数)/加熱前の剥離回数]×100   式(1) Rate of change in the number of peels = [(Number of peels before heating-Number of peels after heating) / Number of peels before heating] x 100 Formula (1)
 上記評価試験1では、上記積層体(リフロー処理前の積層体)の基板間のギャップが、60μm以上となるように上記接着剤が配置されることが好ましく、850μm以下となるように上記接着剤が配置されることが好ましい。 In the evaluation test 1, the adhesive is preferably arranged so that the gap between the substrates of the laminate (laminate before the reflow treatment) is 60 μm or more, and the adhesive is 850 μm or less. Is preferably arranged.
 本発明に係る接着剤では、上記の構成が備えられているので、繰り返し加熱された場合でも、基板間における接着強度を維持することができ、エアキャビティのギャップを高精度に制御することができる。 Since the adhesive according to the present invention has the above-mentioned structure, the adhesive strength between the substrates can be maintained even when the adhesive is repeatedly heated, and the gap of the air cavity can be controlled with high accuracy. ..
 接着剤を用いて、アンテナ内にエアキャビティ(空間)を形成するように、2つの基板を接着してアンテナ装置を得たときに、該アンテナ装置は繰り返し加熱されることがある。従来の接着剤を用いて得られるアンテナ装置では、アンテナ装置が繰り返し加熱されることで、2つの基板間の接着強度が低下することがある。2つの基板間の接着強度が低い場合には、落下等による外部からの振動や衝撃により、基板間に剥離等が発生することがある。基板間に剥離等が発生すると、上記エアキャビティ(空間)の間隔(ギャップ)を高精度に制御することができず、アンテナの通信速度及び通信品質等を向上させることが困難なことがある。 When an antenna device is obtained by adhering two substrates so as to form an air cavity (space) in the antenna using an adhesive, the antenna device may be repeatedly heated. In an antenna device obtained by using a conventional adhesive, the adhesive strength between two substrates may decrease due to repeated heating of the antenna device. If the adhesive strength between the two substrates is low, peeling or the like may occur between the substrates due to vibration or impact from the outside due to dropping or the like. If peeling or the like occurs between the substrates, it may not be possible to control the gap between the air cavities (spaces) with high accuracy, and it may be difficult to improve the communication speed and communication quality of the antenna.
 これに対して、本発明に係る接着剤では、上記の構成が備えられているので、繰り返し加熱された場合でも、基板間における接着強度を維持することができ、上記エアキャビティ(空間)の間隔(ギャップ)を高精度に制御することができる。結果として、アンテナの通信速度及び通信品質等をより一層向上させることができる。 On the other hand, since the adhesive according to the present invention has the above-mentioned structure, the adhesive strength between the substrates can be maintained even when the adhesive is repeatedly heated, and the space between the air cavities (spaces) can be maintained. (Gap) can be controlled with high precision. As a result, the communication speed and communication quality of the antenna can be further improved.
 本発明に係る接着剤は、第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板とにおいて、上記第1の金属部と上記第2の金属部とを接着するための接着剤である。本発明に係る接着剤は、2つの基板を接着するための接着剤である。本発明に係る接着剤は、2つの基板における金属部同士を接着するための接着剤であることが好ましい。 The adhesive according to the present invention comprises a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface, the first metal portion and the second metal portion. It is an adhesive for adhering to a metal part. The adhesive according to the present invention is an adhesive for adhering two substrates. The adhesive according to the present invention is preferably an adhesive for adhering metal portions on two substrates.
 本発明に係る接着剤では、上記評価試験1により算出される基板間における剥離回数の変化率は、20%以下である。上記評価試験1により算出される基板間における剥離回数の変化率は、好ましくは15%以下、より好ましくは10%以下である。上記評価試験1により算出される基板間における剥離回数の変化率が上記上限以下であると、繰り返し加熱された場合でも、基板間における接着強度を維持することができ、エアキャビティのギャップを高精度に制御することができる。 In the adhesive according to the present invention, the rate of change in the number of peelings between the substrates calculated by the evaluation test 1 is 20% or less. The rate of change in the number of peelings between the substrates calculated by the evaluation test 1 is preferably 15% or less, more preferably 10% or less. When the rate of change in the number of peelings between the substrates calculated by the evaluation test 1 is not more than the above upper limit, the adhesive strength between the substrates can be maintained even when repeatedly heated, and the gap between the air cavities can be made highly accurate. Can be controlled to.
 上記評価試験1において、上記加熱前の剥離回数は、好ましくは50回以上、より好ましくは100回以上である。上記加熱前の剥離回数が上記下限以上であると、繰り返し加熱された場合でも、基板間における接着強度を維持することができ、エアキャビティのギャップを高精度に制御することができる。 In the evaluation test 1, the number of peelings before heating is preferably 50 times or more, more preferably 100 times or more. When the number of peelings before heating is equal to or greater than the above lower limit, the adhesive strength between the substrates can be maintained even when the substrates are repeatedly heated, and the gap between the air cavities can be controlled with high accuracy.
 上記接着剤では、下記評価試験2により算出される基板間における接着強度の変化率は、好ましくは10%以下、より好ましくは3%以下である。下記評価試験2により算出される基板間における接着強度の変化率が、上記上限以下であると、繰り返し加熱された場合でも、基板間における接着強度を維持することができ、エアキャビティのギャップを高精度に制御することができる。 With the above adhesive, the rate of change in adhesive strength between substrates calculated by the following evaluation test 2 is preferably 10% or less, more preferably 3% or less. When the rate of change in the adhesive strength between the substrates calculated by the following evaluation test 2 is not more than the above upper limit, the adhesive strength between the substrates can be maintained even when repeatedly heated, and the gap between the air cavities is increased. It can be controlled with precision.
 評価試験2:
 第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板と、接着剤とを用意する。上記第1の基板における上記第1の金属部上に上記接着剤を配置し、上記接着剤の上記第1の基板側とは反対の表面上に、上記第2の基板を、上記第1の金属部と上記第2の金属部とが対向するように配置する。その後、JEDEC J-STD-020で規定されるリフロー条件でリフロー処理を行うことにより上記第1の基板と上記第2の基板とを接着して、積層体を得る。得られた積層体を用いて、MIL STD-883Gに準拠した条件で基板間の接着強度を測定し、加熱前の接着強度とする。その後、得られた積層体をJEDEC J-STD-020で規定されるリフロー条件で、4回のリフロー処理を行い、リフロー処理後における積層体を用いて、MIL STD-883Gに準拠した条件で基板間の接着強度を測定し、加熱後の接着強度とする。加熱前後の接着強度から、下記式(2)により接着強度の変化率を算出する。
Evaluation test 2:
A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared. The adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side. The metal portion and the second metal portion are arranged so as to face each other. Then, the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body. Using the obtained laminate, the adhesive strength between the substrates is measured under the conditions conforming to MIL STD-883G, and the adhesive strength before heating is used. After that, the obtained laminated body was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminated body after the reflow treatment was used as a substrate under the conditions compliant with MIL STD-883G. The adhesive strength between them is measured and used as the adhesive strength after heating. From the adhesive strength before and after heating, the rate of change in the adhesive strength is calculated by the following formula (2).
 接着強度の変化率=[(加熱前の接着強度-加熱後の接着強度)/加熱前の接着強度]×100   式(2) Rate of change in adhesive strength = [(Adhesive strength before heating-Adhesive strength after heating) / Adhesive strength before heating] x 100 Formula (2)
 上記評価試験2では、上記積層体(リフロー処理前の積層体)の基板間のギャップが、60μm以上となるように上記接着剤が配置されることが好ましく、850μm以下となるように上記接着剤が配置されることが好ましい。 In the evaluation test 2, the adhesive is preferably arranged so that the gap between the substrates of the laminate (laminate before the reflow treatment) is 60 μm or more, and the adhesive is 850 μm or less. Is preferably arranged.
 上記評価試験2において、上記加熱前の接着強度は、好ましくは1.5kgf以上、より好ましくは2.0kgf以上である。上記加熱前の接着強度が上記下限以上であると、繰り返し加熱された場合でも、基板間における接着強度を維持することができ、エアキャビティのギャップを高精度に制御することができる。 In the evaluation test 2, the adhesive strength before heating is preferably 1.5 kgf or more, more preferably 2.0 kgf or more. When the adhesive strength before heating is at least the above lower limit, the adhesive strength between the substrates can be maintained even when the substrates are repeatedly heated, and the gap of the air cavity can be controlled with high accuracy.
 上記評価試験1及び上記評価試験2において、上記第1の基板は、ガラスエポキシ基板又はセラミック基板であることが好ましい。上記評価試験1及び上記評価試験2において、上記第2の基板は、ガラスエポキシ基板、セラミック基板又はシリコン基板であることが好ましい。 In the evaluation test 1 and the evaluation test 2, the first substrate is preferably a glass epoxy substrate or a ceramic substrate. In the evaluation test 1 and the evaluation test 2, the second substrate is preferably a glass epoxy substrate, a ceramic substrate, or a silicon substrate.
 上記評価試験1及び上記評価試験2において、上記第1の金属部は、銅により形成されているか、又は、ニッケル/金めっきにより形成されていることが好ましい。上記評価試験1及び上記評価試験2において、上記第2の金属部は、銅により形成されているか、又は、ニッケル/金めっきにより形成されていることが好ましい。 In the evaluation test 1 and the evaluation test 2, the first metal portion is preferably formed of copper or nickel / gold plating. In the evaluation test 1 and the evaluation test 2, the second metal portion is preferably formed of copper or nickel / gold plating.
 上記評価試験1、及び上記評価試験2は、上記剥離回数の変化率、及び上記接着強度の変化率を算出するために行われる。上記接着剤の実際の使用時には、上記評価試験1、及び上記評価試験2で規定されている条件で処理されなくてもよい。例えば、上記接着剤の実際の使用時には、JEDEC J-STD-020で規定されるリフロー条件でリフロー処理が行われなくてもよい。 The evaluation test 1 and the evaluation test 2 are performed to calculate the rate of change in the number of peelings and the rate of change in the adhesive strength. When the adhesive is actually used, it does not have to be treated under the conditions specified in the evaluation test 1 and the evaluation test 2. For example, when the above adhesive is actually used, the reflow treatment may not be performed under the reflow conditions specified in JEDEC J-STD-020.
 繰り返し加熱された場合でも、基板間における接着強度を維持することができ、エアキャビティのギャップを高精度に制御する観点からは、上記接着剤は、金属粒子を含むことが好ましい。上記接着剤は、上記金属粒子以外の成分を含んでいてもよく、含んでいなくてもよい。繰り返し加熱された場合でも、基板間における接着強度をより一層維持することができ、エアキャビティのギャップをより一層高精度に制御する観点からは、上記接着剤は、上記金属粒子のみを含むことが好ましく、複数の金属粒子の粒子群であることが好ましい。 The adhesive preferably contains metal particles from the viewpoint of maintaining the adhesive strength between the substrates even when repeatedly heated and controlling the gap of the air cavity with high accuracy. The adhesive may or may not contain components other than the metal particles. The adhesive may contain only the metal particles from the viewpoint of further maintaining the adhesive strength between the substrates even when repeatedly heated and controlling the gap of the air cavity with higher accuracy. It is preferably a particle group of a plurality of metal particles.
 上記接着剤は、例えば、2つの被着体を接着可能である。上記被着体は、基板であることが好ましく、金属部を表面に有する基板であることがより好ましい。上記接着剤は、2つの基板を接着するために用いられることが好ましい。上記接着剤は、2つの金属部同士を接着するために用いられることが好ましい。さらに、上記接着剤は、2つの基板のギャップを制御するために用いられることが好ましい。上記接着剤は、2つの基板間におけるギャップを制御するために用いられることが好ましい。 The above adhesive can bond two adherends, for example. The adherend is preferably a substrate, and more preferably a substrate having a metal portion on the surface. The adhesive is preferably used to bond the two substrates together. The adhesive is preferably used to bond two metal parts to each other. Further, the adhesive is preferably used to control the gap between the two substrates. The adhesive is preferably used to control the gap between the two substrates.
 上記接着剤は、導電接続に用いられてもよく、導電接続に用いられなくてもよい。上記接着剤は、アンテナ装置に用いられることが好ましい。上記接着剤は、エアキャビティを形成するために用いられることが好ましい。上記接着剤は、アンテナ装置において、エアキャビティを形成するために用いられることが好ましい。上記接着剤は、アンテナ装置において、高周波基板と、アンテナを構成する基板との間隔(ギャップ)を均一かつ一定に保持するために用いられることが好ましい。上記接着剤は、アンテナ装置において、エアキャビティを形成し、アンテナの通信速度及び通信品質等を向上させるために用いられることが好ましい。 The above adhesive may be used for conductive connection or may not be used for conductive connection. The adhesive is preferably used in an antenna device. The adhesive is preferably used to form an air cavity. The adhesive is preferably used in the antenna device to form an air cavity. The adhesive is preferably used in the antenna device to keep the distance (gap) between the high-frequency substrate and the substrate constituting the antenna uniform and constant. The adhesive is preferably used in an antenna device to form an air cavity and improve the communication speed, communication quality, and the like of the antenna.
 (金属粒子)
 本発明に係る接着剤は、金属粒子を含むことが好ましい。上記金属粒子は、金属を含む粒子を意味する。上記金属粒子は、金属以外の構成成分を有していてもよい。上記金属粒子は、例えば、2つの基板の間隔(ギャップ)を規制する役割を有することが好ましい。上記金属粒子は、はんだのみにより形成されたはんだ粒子ではないことが好ましい。上記金属粒子は、基材粒子と、上記基材粒子の表面上に配置された金属層とを有することが好ましい。上記金属層は、単層構造であってもよく、2層以上の複層構造であってもよい。
(Metal particles)
The adhesive according to the present invention preferably contains metal particles. The metal particles mean particles containing metal. The metal particles may have components other than metal. The metal particles preferably have a role of regulating the distance (gap) between two substrates, for example. It is preferable that the metal particles are not solder particles formed only by solder. The metal particles preferably have a base material particles and a metal layer arranged on the surface of the base material particles. The metal layer may have a single layer structure or a multi-layer structure having two or more layers.
 上記金属粒子は、上記金属層の外表面部分にはんだを有することが好ましい。上記基材粒子は、はんだのみにより形成されたはんだ粒子ではないことが好ましい。なお、上記金属粒子が、中心部分及び金属層の外表面部分のいずれもがはんだにより形成されたはんだ粒子である場合には、繰り返し加熱された際に、加熱によりはんだが濡れ拡がるために、エアキャビティのギャップを制御することが困難なことがある。上記金属粒子が、はんだにより形成されていない基材粒子と、該基材粒子の表面上に配置された金属層(はんだ層)とを有する金属粒子である場合には、繰り返し加熱されても、加熱によるはんだの過度な濡れ拡がりを抑制することができるので、エアキャビティのギャップを高精度に制御することができる。したがって、上記金属粒子は、はんだにより形成されたはんだ粒子ではないことが好ましい。上記金属粒子は、中心部分及び金属層の外表面部分のいずれもがはんだにより形成されたはんだ粒子ではないことが好ましい。 The metal particles preferably have solder on the outer surface portion of the metal layer. It is preferable that the base material particles are not solder particles formed only by solder. When the metal particles are solder particles formed by solder in both the central portion and the outer surface portion of the metal layer, when the metal particles are repeatedly heated, the solder gets wet and spreads due to the heating, so that air is used. It can be difficult to control the cavity gap. When the metal particles are metal particles having a base material particles not formed by solder and a metal layer (solder layer) arranged on the surface of the base material particles, even if they are repeatedly heated, they may be heated repeatedly. Since it is possible to suppress excessive wetting and spreading of the solder due to heating, it is possible to control the gap of the air cavity with high accuracy. Therefore, it is preferable that the metal particles are not solder particles formed by solder. It is preferable that neither the central portion nor the outer surface portion of the metal layer of the metal particles is solder particles formed of solder.
 上記金属粒子の平均粒子径は、特に限定されない。上記金属粒子の平均粒子径は、目的とするエアキャビティのギャップに合わせて適宜選択することができる。上記金属粒子の平均粒子径は、例えば、80μm以上であってもよく、900μm以下であってもよい。 The average particle size of the metal particles is not particularly limited. The average particle size of the metal particles can be appropriately selected according to the gap of the target air cavity. The average particle size of the metal particles may be, for example, 80 μm or more, or 900 μm or less.
 上記金属粒子の平均粒子径は、数平均粒子径であることが好ましい。上記金属粒子の平均粒子径は、例えば、任意の金属粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各金属粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの金属粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の金属粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの金属粒子の粒子径は、球相当径での粒子径として求められる。 The average particle size of the metal particles is preferably a number average particle size. The average particle size of the metal particles can be determined by, for example, observing 50 arbitrary metal particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each metal particle, or measuring the particle size distribution by laser diffraction. Required by doing. In observation with an electron microscope or an optical microscope, the particle size of each metal particle is determined as the particle size in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 metal particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the laser diffraction type particle size distribution measurement, the particle size of each metal particle is obtained as the particle size in the equivalent sphere diameter.
 上記金属粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記金属粒子の粒子径の変動係数が上記上限以下であると、エアキャビティのギャップをより一層高精度に制御することができる。 The coefficient of variation (CV value) of the particle size of the metal particles is preferably 10% or less, more preferably 5% or less. When the coefficient of variation of the particle size of the metal particles is not more than the above upper limit, the gap of the air cavity can be controlled with higher accuracy.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:金属粒子の粒子径の標準偏差
 Dn:金属粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle size of metal particles Dn: Mean value of particle size of metal particles
 上記金属粒子の形状は特に限定されない。上記金属粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。 The shape of the metal particles is not particularly limited. The shape of the metal particles may be spherical, non-spherical, flat or the like.
 次に、図面を参照しつつ、金属粒子の具体例を説明する。 Next, a specific example of metal particles will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る接着剤に使用可能な金属粒子の第1の例を示す断面図である。 FIG. 1 is a cross-sectional view showing a first example of metal particles that can be used in an adhesive according to an embodiment of the present invention.
 図1に示す金属粒子1は、基材粒子2と、基材粒子2の表面上に配置された金属層3とを有する。金属層3は、基材粒子2の表面を被覆している。金属粒子1は、基材粒子2の表面が金属層3により被覆された被覆粒子である。 The metal particle 1 shown in FIG. 1 has a base particle 2 and a metal layer 3 arranged on the surface of the base particle 2. The metal layer 3 covers the surface of the base particle 2. The metal particles 1 are coated particles in which the surface of the base particles 2 is coated with the metal layer 3.
 金属層3は、第2の金属層3Aと、はんだ層3B(第1の金属層)とを有する。金属粒子1は、基材粒子2とはんだ層3Bとの間に、第2の金属層3Aを備える。したがって、金属粒子1は、基材粒子2と、基材粒子2の表面上に配置された第2の金属層3Aと、第2の金属層3Aの外表面上に配置されたはんだ層3Bとを備える。このように、金属層3は、2層以上の複層構造を有していてもよく、多層構造を有していてもよい。 The metal layer 3 has a second metal layer 3A and a solder layer 3B (first metal layer). The metal particles 1 include a second metal layer 3A between the base particles 2 and the solder layer 3B. Therefore, the metal particles 1 include the base material particles 2, the second metal layer 3A arranged on the surface of the base material particles 2, and the solder layer 3B arranged on the outer surface of the second metal layer 3A. To be equipped. As described above, the metal layer 3 may have a multi-layer structure of two or more layers, or may have a multi-layer structure.
 図2は、本発明の一実施形態に係る接着剤に使用可能な金属粒子の第2の例を示す断面図である。 FIG. 2 is a cross-sectional view showing a second example of metal particles that can be used in the adhesive according to the embodiment of the present invention.
 図1における金属粒子1の金属層3は、2層構造を有する。図2に示す金属粒子1Aは、単層の金属層として、はんだ層4を有する。金属粒子1Aは、基材粒子2と、基材粒子2の表面上に配置されたはんだ層4とを備える。 The metal layer 3 of the metal particles 1 in FIG. 1 has a two-layer structure. The metal particles 1A shown in FIG. 2 have a solder layer 4 as a single metal layer. The metal particles 1A include a base particle 2 and a solder layer 4 arranged on the surface of the base particle 2.
 以下、金属粒子の他の詳細について説明する。 The other details of the metal particles will be described below.
 基材粒子:
 上記基材粒子としては、樹脂粒子、金属含有粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属含有粒子等が挙げられる。上記基材粒子は、金属含有粒子を除く基材粒子であることが好ましく、樹脂粒子、金属含有粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
Base particle:
Examples of the base material particles include resin particles, inorganic particles excluding metal-containing particles, organic-inorganic hybrid particles, and metal-containing particles. The base material particles are preferably base particle particles excluding metal-containing particles, and more preferably inorganic particles excluding resin particles and metal-containing particles, or organic-inorganic hybrid particles. The base particle may be a core-shell particle having a core and a shell arranged on the surface of the core. The core may be an organic core, and the shell may be an inorganic shell.
 上記樹脂粒子の材料として、種々の有機物が好適に用いられる。上記樹脂粒子の材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、及びポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Various organic substances are preferably used as the material for the resin particles. Examples of the material of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, and phenolformaldehyde. Resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, Examples thereof include polypropyleneimide, polyether ether ketone, polyether sulfone, divinylbenzene polymer, and divinylbenzene-based copolymer. Examples of the divinylbenzene-based copolymer and the like include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles must be a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferable.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group is a non-crosslinkable monomer. Examples thereof include crosslinkable monomers.
 上記非架橋性の単量体としては、スチレン、及びα-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、及び無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、及びグリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、及びプロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、及びステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、及びブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、及びクロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene-based monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; and methyl ( Meta) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) Alkyl (meth) acrylate compounds such as meta) acrylate and isobornyl (meth) acrylate; such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acrylate. Oxygen atom-containing (meth) acrylate compound; nitrile-containing monomer such as (meth) acrylonitrile; vinyl ether compound such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, etc. Acid vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogens such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene. Examples include containing monomers.
 上記架橋性の単量体としては、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、及び1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、及びビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethanetetra (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanedi (meth) acrylate, trimethylolpropanetri (meth) acrylate, and dipentaerythritol hexa. (Meta) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, Polyfunctional (meth) acrylate compounds such as (poly) tetramethylene glycol di (meth) acrylate and 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanurate, trimethyloltrimethylolate, divinylbenzene, diallyl. Examples thereof include phthalates, diallylacrylamides, diallyl ethers, and silane-containing monomers such as γ- (meth) acryloxipropyltrimethoxysilane, trimethoxysilylstyrene, and vinyltrimethoxysilane.
 「(メタ)アクリレート」の用語は、アクリレートとメタクリレートとを示す。「(メタ)アクリル」の用語は、アクリルとメタクリルとを示す。「(メタ)アクリロイル」の用語は、アクリロイルとメタクリロイルとを示す。 The term "(meth) acrylate" refers to acrylate and methacrylate. The term "(meth) acrylic" refers to acrylic and methacrylic. The term "(meth) acryloyl" refers to acryloyl and methacryloyl.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, a method of swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles, and the like.
 上記基材粒子が金属含有粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the base material particles are inorganic particles other than metal-containing particles or organic-inorganic hybrid particles, examples of the inorganic substances for forming the base material particles include silica, alumina, barium titanate, zirconia, and carbon black. Be done. The inorganic substance is preferably not a metal. The particles formed of the silica are not particularly limited, but for example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is performed if necessary. Examples include particles obtained by doing so. Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗をより一層効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core. It is preferable that the core is an organic core. It is preferable that the shell is an inorganic shell. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the base particle is preferably an organic-inorganic hybrid particle having an organic core and an inorganic shell arranged on the surface of the organic core. ..
 上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。 Examples of the material of the organic core include the material of the resin particles described above.
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 Examples of the material of the inorganic shell include the above-mentioned inorganic substances as the material of the base particle. The material of the inorganic shell is preferably silica. The inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core and then firing the shell-like material. The metal alkoxide is preferably a silane alkoxide. The inorganic shell is preferably formed of silane alkoxide.
 上記基材粒子が金属含有粒子である場合に、該金属含有粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。 When the base material particles are metal-containing particles, examples of the metal that is the material of the metal-containing particles include silver, copper, nickel, silicon, gold, and titanium.
 上記基材粒子の粒子径は、特に限定されない。上記基材粒子の粒子径は、目的とするエアキャビティのギャップに合わせて適宜選択することができる。上記基材粒子の粒子径は、例えば、80μm以上であってもよく、900μm以下であってもよい。 The particle size of the base particle is not particularly limited. The particle size of the base material particles can be appropriately selected according to the gap of the target air cavity. The particle size of the base particles may be, for example, 80 μm or more, or 900 μm or less.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、球相当径を示す。 The particle size of the base material particles indicates the diameter when the base material particles are spherical, and indicates the equivalent sphere diameter when the base material particles are not spherical.
 上記基材粒子の粒子径は、数平均粒子径であることが好ましい。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの基材粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の基材粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの基材粒子の粒子径は、球相当径での粒子径として求められる。 The particle size of the base particle is preferably a number average particle size. The particle size of the base particle is determined by using a particle size distribution measuring device or the like. The particle size of the base particles is preferably determined by observing 50 arbitrary base particles with an electron microscope or an optical microscope and calculating an average value. In observation with an electron microscope or an optical microscope, the particle size of each substrate particle is determined as the particle size in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 substrate particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the laser diffraction type particle size distribution measurement, the particle size of each base particle is determined as the particle size in the equivalent sphere diameter.
 金属層:
 上記金属粒子は、基材粒子と、上記基材粒子の表面上に配置された金属層とを有することが好ましい。上記金属層は、単層構造であってもよく、2層以上の複層構造であってもよい。上記金属層が2層以上の複層構造である場合に、上記金属粒子は、基材粒子と、上記基材粒子の表面上に配置された第2の金属層と、上記第2の金属層の表面上に配置されたはんだ層(第1の金属層)とを有することが好ましい。上記金属粒子は、上記金属層の外表面部分にはんだを有することが好ましい。
Metal layer:
The metal particles preferably have a base material particles and a metal layer arranged on the surface of the base material particles. The metal layer may have a single layer structure or a multi-layer structure having two or more layers. When the metal layer has a multi-layer structure of two or more layers, the metal particles include a base material particle, a second metal layer arranged on the surface of the base material particle, and the second metal layer. It is preferable to have a solder layer (first metal layer) arranged on the surface of the above. The metal particles preferably have solder on the outer surface portion of the metal layer.
 上記金属層は、金属を含む。上記金属層を構成する金属は特に限定されない。上記金属としては、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)及びはんだを用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。エアキャビティのギャップをより一層高精度に制御する観点、及び基板間の接着強度をより一層高める観点からは、最外層の金属層に含まれる上記金属は、はんだであることが好ましい。 The metal layer contains metal. The metal constituting the metal layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, as the metal, tin-doped indium oxide (ITO) and solder may be used. Only one kind of the above metal may be used, or two or more kinds may be used in combination. From the viewpoint of controlling the gap of the air cavity with higher accuracy and further increasing the adhesive strength between the substrates, the metal contained in the outermost metal layer is preferably solder.
 上記基材粒子の融点は、上記金属層の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、さらに好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。 The melting point of the base particles is preferably higher than the melting point of the metal layer. The melting point of the base particles preferably exceeds 160 ° C., more preferably exceeds 300 ° C., further preferably exceeds 400 ° C., and particularly preferably exceeds 450 ° C. The melting point of the base particles may be less than 400 ° C. The melting point of the base particles may be 160 ° C. or lower. The softening point of the base particles is preferably 260 ° C. or higher. The softening point of the base particles may be less than 260 ° C.
 上記金属粒子は、単層のはんだ層を有していてもよい。上記金属粒子は、複数の層の金属層(第2の金属層及びはんだ層(第1の金属層))を有していてもよい。すなわち、上記金属粒子では、金属層が2層以上積層されていてもよい。上記金属層が2層以上の場合、上記金属粒子は、金属層の外表面部分にはんだを有することが好ましい。 The metal particles may have a single layer of solder. The metal particles may have a plurality of metal layers (second metal layer and solder layer (first metal layer)). That is, in the above metal particles, two or more metal layers may be laminated. When the metal layer is two or more layers, it is preferable that the metal particles have solder on the outer surface portion of the metal layer.
 上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ層は、融点が450℃以下である金属層(低融点金属層)であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記金属粒子におけるはんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記低融点金属とは、融点が450℃以下の金属を示す。上記低融点金属の融点は、好ましくは300℃以下、より好ましくは220℃以下である。 The solder is preferably a metal having a melting point of 450 ° C. or lower (low melting point metal). The solder layer is preferably a metal layer having a melting point of 450 ° C. or lower (low melting point metal layer). The low melting point metal layer is a layer containing a low melting point metal. The solder in the metal particles is preferably a metal having a melting point of 450 ° C. or lower (low melting point metal). The low melting point metal means a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 220 ° C. or lower.
 上記低融点金属の融点は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。 The melting point of the low melting point metal can be determined by differential scanning calorimetry (DSC). Examples of the differential scanning calorimetry (DSC) device include "EXSTAR DSC7020" manufactured by SII.
 また、上記金属粒子におけるはんだは、錫を含むことが好ましい。上記金属粒子におけるはんだに含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記金属粒子におけるはんだに含まれる錫の含有量が、上記下限以上であると、基板間の接着強度をより一層高めることができる。 Further, the solder in the metal particles preferably contains tin. The tin content in 100% by weight of the metal contained in the solder in the metal particles is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight or more. Is. When the content of tin contained in the solder in the metal particles is at least the above lower limit, the adhesive strength between the substrates can be further increased.
 なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定することができる。 The tin content is determined by using a high-frequency inductively coupled plasma emission spectroscopic analyzer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu Corporation). Can be measured.
 上記はんだを金属層の外表面部分に有する金属粒子を含む接着剤を、2つの基板上に形成された金属部同士を接着するために用いた場合には、はんだを溶融させて金属部と接合させることができる。例えば、はんだと金属部とが点接触ではなく面接触しやすいため、基板間の接着強度をより一層高めることができ、上記金属粒子と上記金属部との接触面積を十分に大きくすることができる。 When an adhesive containing metal particles having the solder on the outer surface of the metal layer is used to bond the metal parts formed on the two substrates, the solder is melted and joined to the metal part. Can be made to. For example, since the solder and the metal portion are likely to come into surface contact rather than point contact, the adhesive strength between the substrates can be further increased, and the contact area between the metal particles and the metal portion can be sufficiently increased. ..
 上記はんだ層及び上記金属粒子におけるはんだを構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金としては、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。金属部に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、又は錫-インジウム合金であることが好ましい。 The low melting point metal constituting the solder in the solder layer and the metal particles is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include tin-silver alloy, tin-copper alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-zinc alloy, tin-indium alloy and the like. The low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, or tin-indium alloy because it is excellent in wettability to metal parts.
 上記はんだ層及び上記金属粒子におけるはんだを構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。 The material constituting the solder in the solder layer and the metal particles is preferably a filler material having a liquidus line of 450 ° C. or lower based on JIS Z3001: welding terminology. Examples of the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like.
 上記金属粒子におけるはんだと金属部との接合強度をより一層高めるために、上記金属粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、上記金属粒子におけるはんだと金属部との接着強度をより一層高める観点からは、上記金属粒子におけるはんだは、ニッケル、銅、又はアンチモンを含むことが好ましい。上記金属粒子におけるはんだと金属部との接着強度をより一層高める観点からは、接着強度を高めるためのこれらの金属の含有量は、上記金属粒子におけるはんだ100重量%中、好ましくは0.001重量%以上であり、好ましくは1重量%以下である。 In order to further increase the bonding strength between the solder in the metal particles and the metal part, the solder in the metal particles is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, It may contain metals such as bismuth, manganese, chromium, molybdenum and palladium. Further, from the viewpoint of further increasing the adhesive strength between the solder in the metal particles and the metal portion, the solder in the metal particles preferably contains nickel, copper, or antimony. From the viewpoint of further increasing the adhesive strength between the solder and the metal portion in the metal particles, the content of these metals for increasing the adhesive strength is preferably 0.001 weight in 100% by weight of the solder in the metal particles. % Or more, preferably 1% by weight or less.
 上記金属粒子は、基材粒子と、上記基材粒子の表面上に配置された第2の金属層と、上記第2の金属層の表面上に配置されたはんだ層とを有することが好ましい。 The metal particles preferably have a base material particles, a second metal layer arranged on the surface of the base material particles, and a solder layer arranged on the surface of the second metal layer.
 上記第2の金属層の融点は、上記はんだ層の融点よりも高いことが好ましい。上記第2の金属層の融点は、好ましくは220℃を超え、より好ましくは300℃を超え、さらに好ましくは400℃を超え、さらに一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ層は融点が低いために、エアキャビティを形成する際に溶融することが好ましい。上記第2の金属層は、エアキャビティを形成する際に溶融しないことが好ましい。上記金属粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ層を溶融させて用いられることが好ましく、上記はんだ層を溶融させてかつ上記第2の金属層を溶融させずに用いられることが好ましい。上記第2の金属層の融点が上記はんだ層の融点よりも高いことによって、エアキャビティを形成する際に、上記第2の金属層を溶融させずに、上記はんだ層のみを溶融させることができる。 The melting point of the second metal layer is preferably higher than the melting point of the solder layer. The melting point of the second metal layer preferably exceeds 220 ° C., more preferably exceeds 300 ° C., further preferably exceeds 400 ° C., further preferably exceeds 450 ° C., and particularly preferably exceeds 500 ° C. Most preferably, it exceeds 600 ° C. Since the solder layer has a low melting point, it is preferable that the solder layer melts when forming an air cavity. It is preferable that the second metal layer does not melt when forming the air cavity. The metal particles are preferably used by melting the solder, preferably by melting the solder layer, and are used by melting the solder layer and not melting the second metal layer. Is preferable. Since the melting point of the second metal layer is higher than the melting point of the solder layer, it is possible to melt only the solder layer without melting the second metal layer when forming the air cavity. ..
 上記はんだ層の融点と上記第2の金属層との融点との差の絶対値は、0℃を超え、好ましくは5℃以上、より好ましくは10℃以上、さらに好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。 The absolute value of the difference between the melting point of the solder layer and the melting point of the second metal layer exceeds 0 ° C., preferably 5 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 30 ° C. or higher, particularly preferably. Is 50 ° C. or higher, most preferably 100 ° C. or higher.
 上記第2の金属層は、金属を含む。上記第2の金属層を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。 The second metal layer contains metal. The metal constituting the second metal layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. Only one kind of the above metal may be used, or two or more kinds may be used in combination.
 上記第2の金属層は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層、金層又は銅層であることがより好ましく、銅層であることがさらに好ましい。上記金属粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層、金層又は銅層を有することがより好ましく、銅層を有することがさらに好ましい。これらの好ましい金属層を有する金属粒子を含む接着剤を用いて、2つの基板を接着することで、エアキャビティのギャップをより一層高精度に制御することができる。また、これらの好ましい金属層の表面には、はんだ層をより一層容易に形成できる。 The second metal layer is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer, a gold layer or a copper layer, and even more preferably a copper layer. The metal particles preferably have a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably have a nickel layer, a gold layer or a copper layer, and further preferably have a copper layer. By adhering the two substrates using an adhesive containing metal particles having these preferable metal layers, the gap of the air cavity can be controlled with even higher accuracy. Further, a solder layer can be formed more easily on the surface of these preferable metal layers.
 上記金属層の厚みは、好ましくは3.5μm以上、より好ましくは8μm以上であり、好ましくは80μm以下、より好ましくは65μm以下、さらに好ましくは50μm以下である。上記金属層の厚みが上記下限以上及び上記上限以下であると、基板間の接着強度をより一層高めることができる。 The thickness of the metal layer is preferably 3.5 μm or more, more preferably 8 μm or more, preferably 80 μm or less, more preferably 65 μm or less, still more preferably 50 μm or less. When the thickness of the metal layer is at least the above lower limit and at least the above upper limit, the adhesive strength between the substrates can be further increased.
 上記第2の金属層の厚みは、好ましくは0.5μm以上、より好ましくは3μm以上であり、好ましくは30μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下である。上記第2の金属層の厚みが上記下限以上及び上記上限以下であると、基板間の接着強度をより一層高めることができる。 The thickness of the second metal layer is preferably 0.5 μm or more, more preferably 3 μm or more, preferably 30 μm or less, more preferably 25 μm or less, still more preferably 20 μm or less. When the thickness of the second metal layer is at least the above lower limit and at least the above upper limit, the adhesive strength between the substrates can be further increased.
 上記はんだ層(第1の金属層)の厚みは、好ましくは3μm以上、より好ましくは5μm以上であり、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下である。上記はんだ層の厚みが上記下限以上及び上記上限以下であると、基板間の接着強度をより一層高めることができる。 The thickness of the solder layer (first metal layer) is preferably 3 μm or more, more preferably 5 μm or more, preferably 50 μm or less, more preferably 40 μm or less, still more preferably 30 μm or less. When the thickness of the solder layer is at least the above lower limit and at least the above upper limit, the adhesive strength between the substrates can be further increased.
 上記金属層の厚み、上記第2の金属層の厚み及び上記はんだ層の厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、金属粒子の断面を観察することにより測定できる。 The thickness of the metal layer, the thickness of the second metal layer, and the thickness of the solder layer can be measured by observing the cross section of the metal particles using, for example, a transmission electron microscope (TEM).
 上記基材粒子の表面上に金属層を形成する方法は特に限定されない。上記金属層を形成する方法としては、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記金属層を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。 The method of forming the metal layer on the surface of the base material particles is not particularly limited. Examples of the method for forming the metal layer include electroless plating, electroplating, physical collision, mechanochemical reaction, physical vapor deposition or physical adsorption, and metal powder or metal powder. Examples thereof include a method of coating the surface of the substrate particles with a paste containing the binder and the binder. The method for forming the metal layer is preferably electroless plating, electroplating, or a method by physical collision. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the above-mentioned physical collision method, for example, a seater composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
 (アンテナ装置)
 本発明に係るアンテナ装置は、第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板と、上記第1の基板と上記第2の基板とを接着している接着剤部とを備える。本発明に係るアンテナ装置では、上記接着剤部の材料が、上述した接着剤である。本発明に係るアンテナ装置では、上記第1の金属部と上記第2の金属部とが、上記接着剤部により接着されている。本発明に係るアンテナ装置では、上記第1の基板と上記第2の基板と上記接着剤部とにより、エアキャビティが形成されている。
(Antenna device)
The antenna device according to the present invention includes a first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, the first substrate, and the second substrate. It is provided with an adhesive portion for adhering the above. In the antenna device according to the present invention, the material of the adhesive portion is the above-mentioned adhesive. In the antenna device according to the present invention, the first metal portion and the second metal portion are adhered to each other by the adhesive portion. In the antenna device according to the present invention, an air cavity is formed by the first substrate, the second substrate, and the adhesive portion.
 上記第1の基板は、ガラスエポキシ基板又はセラミック基板であることが好ましい。上記第2の基板は、ガラスエポキシ基板、セラミック基板又はシリコン基板であることが好ましい。上記基板は、高周波基板やアンテナを構成する基板等であってもよい。上記第1の金属部は、銅により形成されているか、又は、ニッケル/金めっきにより形成されていることが好ましい。上記第2の金属部は、銅により形成されているか、又は、ニッケル/金めっきにより形成されていることが好ましい。上記第1の金属部及び上記第2の金属部は、銅により形成されていてもよく、ニッケル/金めっきにより形成されていてもよい。 The first substrate is preferably a glass epoxy substrate or a ceramic substrate. The second substrate is preferably a glass epoxy substrate, a ceramic substrate, or a silicon substrate. The substrate may be a high-frequency substrate, a substrate constituting an antenna, or the like. The first metal portion is preferably formed of copper or nickel / gold plating. The second metal portion is preferably formed of copper or nickel / gold plating. The first metal portion and the second metal portion may be formed of copper or may be formed of nickel / gold plating.
 図3は、本発明に係る接着剤を用いたアンテナ装置の一例を示す断面図である。 FIG. 3 is a cross-sectional view showing an example of an antenna device using the adhesive according to the present invention.
 図3に示すアンテナ装置11は、第1の基板12と、第2の基板13と、第1の基板12と第2の基板13とを接着している接着剤部とを備える。上記接着剤部の材料は、上述した接着剤である。本実施形態では、上記接着剤部の材料は、金属粒子1である。上記接着剤部は、上記金属粒子により形成されていることが好ましい。 The antenna device 11 shown in FIG. 3 includes an adhesive portion that adheres the first substrate 12, the second substrate 13, and the first substrate 12 and the second substrate 13. The material of the adhesive portion is the above-mentioned adhesive. In the present embodiment, the material of the adhesive portion is metal particles 1. The adhesive portion is preferably formed of the metal particles.
 第1の基板12は、表面(上面)に、複数の第1の金属部12aを有する。第2の基板13は、表面(下面)に、複数の第2の金属部13aを有する。第1の金属部12aと第2の金属部13aとが、1つ又は複数の金属粒子1(接着剤部)により接着されている。アンテナ装置11では、第1の基板12と第2の基板13と金属粒子1(接着剤部)とにより、エアキャビティ14が形成されている。金属粒子1(接着剤部)により、第1の基板12と第2の基板13との間隔(ギャップ)が一定に保持されている。金属粒子1(接着剤部)により、エアキャビティ14のギャップが制御されている。 The first substrate 12 has a plurality of first metal portions 12a on the surface (upper surface). The second substrate 13 has a plurality of second metal portions 13a on the surface (lower surface). The first metal portion 12a and the second metal portion 13a are bonded by one or a plurality of metal particles 1 (adhesive portion). In the antenna device 11, the air cavity 14 is formed by the first substrate 12, the second substrate 13, and the metal particles 1 (adhesive portion). The metal particles 1 (adhesive portion) keep the distance (gap) between the first substrate 12 and the second substrate 13 constant. The gap of the air cavity 14 is controlled by the metal particles 1 (adhesive portion).
 上記アンテナ装置における上記ギャップは、アンテナ装置が対象とする周波数帯域に合わせて設定すればよい。 The gap in the antenna device may be set according to the frequency band targeted by the antenna device.
 上記アンテナ装置の製造方法は特に限定されない。アンテナ装置の製造方法の一例として、上記第1の金属部と上記第2の金属部との間に上述した接着剤を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10Pa~4.9×10Pa程度である。上記加熱の温度は、120℃~250℃程度である。エアキャビティのギャップをより一層高精度に制御する観点からは、上記アンテナ装置の製造時に加圧しないことが好ましい。上記アンテナ装置の製造時に加圧しないことで、溶融した上記金属粒子の上記はんだ層が、上記第1の金属部及び上記第2の金属部に過度に濡れ拡がらないので、エアキャビティのギャップをより一層高精度に制御することができる。 The manufacturing method of the antenna device is not particularly limited. As an example of a method for manufacturing an antenna device, a method in which the above-mentioned adhesive is placed between the first metal portion and the second metal portion to obtain a laminate, and then the laminate is heated and pressurized. And so on. The pressurizing pressure is about 9.8 × 10 4 Pa to 4.9 × 10 6 Pa. The heating temperature is about 120 ° C. to 250 ° C. From the viewpoint of controlling the gap of the air cavity with higher accuracy, it is preferable not to pressurize during the manufacture of the antenna device. By not applying pressure during the manufacture of the antenna device, the solder layer of the molten metal particles does not excessively wet and spread to the first metal portion and the second metal portion, so that the gap of the air cavity is opened. It can be controlled with even higher precision.
 図4は、図3に示すアンテナ装置における金属粒子と金属部との接着部分を拡大して示す断面図である。 FIG. 4 is an enlarged cross-sectional view showing the bonded portion between the metal particles and the metal portion in the antenna device shown in FIG.
 図4に示すように、アンテナ装置11では、上記積層体を加熱することで、金属粒子1のはんだ層3Bが溶融した後、溶融したはんだ層部分3Baが第1の金属部12a及び第2の金属部13aと十分に接触する。最外層がはんだ層である金属粒子1を用いることにより、最外層がニッケル、金又は銅等の金属である金属粒子を用いた場合と比較して、金属粒子1と第1の金属部12a及び第2の金属部13aとの接触面積を大きくすることができ、エアキャビティのギャップをより一層高精度に制御することができる。また、はんだにより形成されたはんだ粒子ではない金属粒子1を用いることにより、中心部分及び金属層の外表面部分のいずれもがはんだにより形成されたはんだ粒子を用いた場合と比較して、繰り返し加熱されても、加熱によるはんだの過度な濡れ拡がりを抑制することができ、エアキャビティのギャップをより一層高精度に制御することができる。 As shown in FIG. 4, in the antenna device 11, after the solder layer 3B of the metal particles 1 is melted by heating the laminated body, the melted solder layer portion 3Ba becomes the first metal portion 12a and the second metal portion 12a. Sufficient contact with the metal portion 13a. By using the metal particles 1 in which the outermost layer is a solder layer, the metal particles 1 and the first metal portion 12a and the first metal portion 12a are compared with the case where the outermost layer is a metal particle such as nickel, gold or copper. The contact area with the second metal portion 13a can be increased, and the gap of the air cavity can be controlled with higher accuracy. Further, by using the metal particles 1 which are not the solder particles formed by the solder, the central portion and the outer surface portion of the metal layer are repeatedly heated as compared with the case where the solder particles formed by the solder are used. Even if this is done, it is possible to suppress excessive wetting and spreading of the solder due to heating, and it is possible to control the gap of the air cavity with even higher precision.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
 (金属粒子1)
 ジビニルベンゼン50重量部と、テトラメチロールメタンテトラアクリレート50重量部とを共重合させ、樹脂粒子である基材粒子(平均粒子径240μm、CV値1.85%)を作製した。得られた基材粒子を無電解ニッケルめっきし、基材粒子の表面上に厚さ0.3μmの下地ニッケルめっき層を形成した。次いで、下地ニッケルめっき層が形成された基材粒子を電解銅めっきし、厚さ10μmの銅層を形成した。更に、電解めっきし、厚さ25μmの錫を含有するはんだ層を形成した。このようにして、基材粒子の表面上に厚み10μmの銅層が形成されており、該銅層の表面に厚み25μmのはんだ層(錫:銀=96.5重量%:3.5重量%)が形成されている金属粒子1(平均粒子径310μm、CV値2.85%)を作製した。
(Metal particle 1)
50 parts by weight of divinylbenzene and 50 parts by weight of tetramethylolmethane tetraacrylate were copolymerized to prepare base particles (average particle size 240 μm, CV value 1.85%) as resin particles. The obtained base material particles were electroless nickel-plated, and a base nickel plating layer having a thickness of 0.3 μm was formed on the surface of the base material particles. Next, the base material particles on which the underlying nickel plating layer was formed were electrolytically copper-plated to form a copper layer having a thickness of 10 μm. Further, electroplating was performed to form a solder layer containing tin having a thickness of 25 μm. In this way, a copper layer having a thickness of 10 μm is formed on the surface of the base particle, and a solder layer having a thickness of 25 μm (tin: silver = 96.5% by weight: 3.5% by weight) is formed on the surface of the copper layer. ) Is formed in the metal particles 1 (average particle diameter 310 μm, CV value 2.85%).
 (金属粒子2)
 金属粒子1と同様にして樹脂粒子である基材粒子(平均粒子径260μm、CV値1.92%)を作製した。得られた基材粒子を無電解ニッケルめっきし、基材粒子の表面上に厚さ0.3μmの下地ニッケルめっき層を形成した。次いで、下地ニッケルめっき層が形成された基材粒子を電解銅めっきし、厚さ5μmの銅層を形成した。更に、電解めっきし、厚さ20μmの錫を含有するはんだ層を形成した。このようにして、基材粒子の表面上に厚み5μmの銅層が形成されており、該銅層の表面に厚み20μmのはんだ層(錫:銀=96.5重量%:3.5重量%)が形成されている金属粒子2(平均粒子径310μm、CV値2.76%)を作製した。
(Metal particles 2)
Base particles (average particle diameter 260 μm, CV value 1.92%) which are resin particles were prepared in the same manner as the metal particles 1. The obtained base material particles were electroless nickel-plated, and a base nickel plating layer having a thickness of 0.3 μm was formed on the surface of the base material particles. Next, the base material particles on which the underlying nickel plating layer was formed were electrolytically copper-plated to form a copper layer having a thickness of 5 μm. Further, electroplating was performed to form a solder layer containing tin having a thickness of 20 μm. In this way, a copper layer having a thickness of 5 μm is formed on the surface of the base particle, and a solder layer having a thickness of 20 μm (tin: silver = 96.5% by weight: 3.5% by weight) is formed on the surface of the copper layer. ) Is formed in the metal particles 2 (average particle diameter 310 μm, CV value 2.76%).
 (金属粒子3)
 金属粒子1と同様にして樹脂粒子である基材粒子(平均粒子径210μm、CV値1.68%)を作製した。得られた基材粒子を無電解ニッケルめっきし、基材粒子の表面上に厚さ0.3μmの下地ニッケルめっき層を形成した。次いで、下地ニッケルめっき層が形成された基材粒子を電解銅めっきし、厚さ10μmの銅層を形成した。更に、電解めっきし、厚さ40μmの錫を含有するはんだ層を形成した。このようにして、基材粒子の表面上に厚み10μmの銅層が形成されており、該銅層の表面に厚み40μmのはんだ層(錫:銀=96.5重量%:3.5重量%)が形成されている金属粒子3(平均粒子径310μm、CV値3.21%)を作製した。
(Metal particles 3)
Base particles (average particle diameter 210 μm, CV value 1.68%) which are resin particles were prepared in the same manner as the metal particles 1. The obtained base material particles were electroless nickel-plated, and a base nickel plating layer having a thickness of 0.3 μm was formed on the surface of the base material particles. Next, the base material particles on which the underlying nickel plating layer was formed were electrolytically copper-plated to form a copper layer having a thickness of 10 μm. Further, electroplating was performed to form a solder layer containing tin having a thickness of 40 μm. In this way, a copper layer having a thickness of 10 μm is formed on the surface of the base particle, and a solder layer having a thickness of 40 μm (tin: silver = 96.5% by weight: 3.5% by weight) is formed on the surface of the copper layer. ) Is formed in the metal particles 3 (average particle diameter 310 μm, CV value 3.21%).
 (金属粒子X1)
 錫、銀及び銅を含有するはんだにより形成されたはんだボール(千住金属工業社製「M705」、錫:銀:銅=96.5重量%:3重量%:0.5重量%)を、金属粒子X1(平均粒子径300μm)とした。
(Metal particles X1)
A solder ball (“M705” manufactured by Senju Metal Industry Co., Ltd., tin: silver: copper = 96.5% by weight: 3% by weight: 0.5% by weight) formed of solder containing tin, silver and copper is used as a metal. The particles were X1 (average particle diameter 300 μm).
 (金属粒子の平均粒子径)
 金属粒子の平均粒子径は、デジタルマイクロスコープ(キーエンス社製「VHX-5000」)を用いて、上述した方法により測定した。
(Average particle size of metal particles)
The average particle size of the metal particles was measured by the method described above using a digital microscope (“VHX-5000” manufactured by KEYENCE CORPORATION).
 (実施例1)
 金属粒子1以外の接着成分を用いずに、得られた金属粒子1自体を接着剤として用いた。
(Example 1)
The obtained metal particles 1 themselves were used as an adhesive without using any adhesive components other than the metal particles 1.
 (アンテナ装置Aの作製)
 第1の基板として、銅により形成された金属部(第1の金属部)を20個有するガラスエポキシ基板を用意した。第2の基板として、銅により形成された金属部(第2の金属部)を20個有するガラスエポキシ基板を用意した。上記金属部はアンテナ回路を形成するための金属部である。上記第1の基板の上記第1の金属部の表面上に、フラックス(クックソンエレクトロニクス社製「WS-9160-M7」)を塗布した。次いで、塗布したフラックスの表面上に金属粒子1を配置し、リフロー処理(加熱温度250℃及び加熱時間30秒間)して金属粒子1と第1の金属部とを接着した。次いで、上記第2の基板の上記第2の金属部の表面上に、はんだペースト(千住金属工業社製「M705-GRN360-K2-V」)を塗布した。上記第1の基板と上記金属粒子1との接着構造体とはんだペーストが塗布された第2の基板とを、上記第1の金属部と上記第2の金属部とが対向するように配置し、リフロー処理(加熱温度250℃及び加熱時間30秒間)を行った。このようにして、第1の金属部と第2の金属部とが金属粒子1により形成された接着部を介して接着されたアンテナ装置Aを作製した。
(Manufacturing of antenna device A)
As the first substrate, a glass epoxy substrate having 20 metal portions (first metal portions) made of copper was prepared. As the second substrate, a glass epoxy substrate having 20 metal portions (second metal portions) made of copper was prepared. The metal part is a metal part for forming an antenna circuit. Flux (“WS-9160-M7” manufactured by Cookson Electronics Co., Ltd.) was applied onto the surface of the first metal portion of the first substrate. Next, the metal particles 1 were placed on the surface of the applied flux, and reflow treatment (heating temperature 250 ° C. and heating time 30 seconds) was performed to bond the metal particles 1 and the first metal portion. Next, a solder paste (“M705-GRN360-K2-V” manufactured by Senju Metal Industry Co., Ltd.) was applied onto the surface of the second metal portion of the second substrate. The adhesive structure of the first substrate, the metal particles 1, and the second substrate coated with the solder paste are arranged so that the first metal portion and the second metal portion face each other. , Reflow treatment (heating temperature 250 ° C. and heating time 30 seconds) was performed. In this way, the antenna device A in which the first metal portion and the second metal portion are adhered to each other via the adhesive portion formed by the metal particles 1 is produced.
 (アンテナ装置Bの作製)
 第2の基板として、ニッケル/金めっきにより形成された金属部(第2の金属部)を20個有するガラスエポキシ基板を用いたこと以外は、アンテナ装置Aの作製方法と同様にして、アンテナ装置Bを作製した。
(Manufacturing of antenna device B)
The antenna device is the same as the manufacturing method of the antenna device A, except that a glass epoxy board having 20 metal parts (second metal parts) formed by nickel / gold plating is used as the second board. B was prepared.
 (アンテナ装置Cの作製)
 第1の基板及び第2の基板として、ニッケル/金めっきにより形成された金属部(第2の金属部)を20個有するガラスエポキシ基板を用いたこと以外は、アンテナ装置Aの作製方法と同様にして、アンテナ装置Cを作製した。
(Manufacturing of antenna device C)
Similar to the manufacturing method of the antenna device A, except that a glass epoxy substrate having 20 metal parts (second metal parts) formed by nickel / gold plating was used as the first substrate and the second substrate. The antenna device C was manufactured.
 (実施例2)
 接着剤として金属粒子1の代わりに金属粒子2を用いたこと以外は、実施例1と同様にして、アンテナ装置A,B,Cを作製した。
(Example 2)
Antenna devices A, B, and C were produced in the same manner as in Example 1 except that the metal particles 2 were used instead of the metal particles 1 as the adhesive.
 (実施例3)
 接着剤として金属粒子1の代わりに金属粒子3を用いたこと以外は、実施例1と同様にして、アンテナ装置A,B,Cを作製した。
(Example 3)
Antenna devices A, B, and C were produced in the same manner as in Example 1 except that the metal particles 3 were used instead of the metal particles 1 as the adhesive.
 (比較例1)
 接着剤として金属粒子1の代わりに金属粒子X1を用いたこと以外は、実施例1と同様にして、アンテナ装置A,B,Cを作製した。
(Comparative Example 1)
Antenna devices A, B, and C were produced in the same manner as in Example 1 except that the metal particles X1 were used instead of the metal particles 1 as the adhesive.
 (評価)
 (1)基板間における剥離回数の変化率(評価試験1)
 (1-1)得られた金属粒子(接着剤)を用意した。また、銅により形成された第1の金属部を表面に有する第1の基板(ガラスエポキシ基板)を用意した。銅により形成された第2の金属部を表面に有する第2の基板(ガラスエポキシ基板)を用意した。用意した金属粒子(接着剤)、第1の基板及び第2の基板を用いて、上述した方法で、基板間における剥離回数の変化率を算出した。
(Evaluation)
(1) Rate of change in the number of peelings between substrates (evaluation test 1)
(1-1) The obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed of copper on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed of copper on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate, and the second substrate, the rate of change in the number of peelings between the substrates was calculated by the method described above.
 (1-2)得られた金属粒子(接着剤)を用意した。また、銅により形成された第1の金属部を表面に有する第1の基板(ガラスエポキシ基板)を用意した。ニッケル/金めっきにより形成された第2の金属部を表面に有する第2の基板(ガラスエポキシ基板)を用意した。用意した金属粒子(接着剤)、第1の基板及び第2の基板を用いて、上述した方法で、基板間における剥離回数の変化率を算出した。 (1-2) The obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed of copper on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed by nickel / gold plating on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate, and the second substrate, the rate of change in the number of peelings between the substrates was calculated by the method described above.
 (1-3)得られた金属粒子(接着剤)を用意した。また、ニッケル/金めっきにより形成された第1の金属部を表面に有する第1の基板(ガラスエポキシ基板)を用意した。ニッケル/金めっきにより形成された第2の金属部を表面に有する第2の基板(ガラスエポキシ基板)を用意した。用意した金属粒子(接着剤)、第1の基板及び第2の基板を用いて、上述した方法で、基板間における剥離回数の変化率を算出した。 (1-3) The obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed by nickel / gold plating on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed by nickel / gold plating on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate, and the second substrate, the rate of change in the number of peelings between the substrates was calculated by the method described above.
 [基板間における剥離回数の変化率の判定基準]
 〇:剥離回数の変化率が20%以下
 ×:剥離回数の変化率が20%を超える
[Criteria for determining the rate of change in the number of peelings between substrates]
〇: The rate of change in the number of peels is 20% or less ×: The rate of change in the number of peels exceeds 20%
 (2)基板間における接着強度の変化率(評価試験2)
 (2-1)得られた金属粒子(接着剤)を用意した。また、銅により形成された第1の金属部を表面に有する第1の基板(ガラスエポキシ基板)を用意した。銅により形成された第2の金属部を表面に有する第2の基板(ガラスエポキシ基板)を用意した。用意した金属粒子(接着剤)、第1の基板及び第2の基板を用いて、上述した方法で、基板間における接着強度の変化率を算出した。
(2) Rate of change in adhesive strength between substrates (evaluation test 2)
(2-1) The obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed of copper on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed of copper on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate and the second substrate, the rate of change in the adhesive strength between the substrates was calculated by the method described above.
 (2-2)得られた金属粒子(接着剤)を用意した。また、銅により形成された第1の金属部を表面に有する第1の基板(ガラスエポキシ基板)を用意した。ニッケル/金めっきにより形成された第2の金属部を表面に有する第2の基板(ガラスエポキシ基板)を用意した。用意した金属粒子(接着剤)、第1の基板及び第2の基板を用いて、上述した方法で、基板間における接着強度の変化率を算出した。 (2-2) The obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed of copper on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed by nickel / gold plating on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate and the second substrate, the rate of change in the adhesive strength between the substrates was calculated by the method described above.
 (2-3)得られた金属粒子(接着剤)を用意した。また、ニッケル/金めっきにより形成された第1の金属部を表面に有する第1の基板(ガラスエポキシ基板)を用意した。ニッケル/金めっきにより形成された第2の金属部を表面に有する第2の基板(ガラスエポキシ基板)を用意した。用意した金属粒子(接着剤)、第1の基板及び第2の基板を用いて、上述した方法で、基板間における接着強度の変化率を算出した。 (2-3) The obtained metal particles (adhesive) were prepared. Further, a first substrate (glass epoxy substrate) having a first metal portion formed by nickel / gold plating on the surface was prepared. A second substrate (glass epoxy substrate) having a second metal portion formed by nickel / gold plating on the surface was prepared. Using the prepared metal particles (adhesive), the first substrate and the second substrate, the rate of change in the adhesive strength between the substrates was calculated by the method described above.
 [基板間における接着強度の変化率の判定基準]
 〇:接着強度の変化率が10%以下
 ×:接着強度の変化率が10%を超える
[Criteria for determining the rate of change in adhesive strength between substrates]
〇: Change rate of adhesive strength is 10% or less ×: Change rate of adhesive strength exceeds 10%
 (3)ギャップ制御性
 得られた5個のアンテナ装置Aについて、実体顕微鏡(ニコン社製「SMZ-10」)を用いて、エアキャビティの厚みを測定し、5個のアンテナ装置Aにおけるエアキャビティの平均厚みをそれぞれ算出した。平均厚みの最大値と平均厚みの最小値との差から、ギャップ制御性を下記の基準で判定した。また、得られたアンテナ装置B,Cについても同様の評価を行った。
(3) Gap controllability With respect to the obtained five antenna devices A, the thickness of the air cavity was measured using a stereomicroscope (“SMZ-10” manufactured by Nikon Corporation), and the air cavity in the five antenna devices A was measured. The average thickness of each was calculated. From the difference between the maximum value of the average thickness and the minimum value of the average thickness, the gap controllability was determined according to the following criteria. The same evaluation was performed on the obtained antenna devices B and C.
 [ギャップ制御性の判定基準]
 ○:エアキャビティの平均厚みの最大値と平均厚みの最小値との差が10μm未満
 ×:エアキャビティの平均厚みの最大値と平均厚みの最小値との差が10μm以上
[Gap controllability criteria]
◯: The difference between the maximum value of the average thickness of the air cavity and the minimum value of the average thickness is less than 10 μm ×: The difference between the maximum value of the average thickness of the air cavity and the minimum value of the average thickness is 10 μm or more.
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1の基板及び第2の基板として、ガラスエポキシ基板の代わりに、セラミック基板又はシリコン基板を用いた場合でも、同様の傾向が見られた。 The same tendency was observed even when a ceramic substrate or a silicon substrate was used instead of the glass epoxy substrate as the first substrate and the second substrate.
 1,1A…金属粒子
 2…基材粒子
 3…金属層
 3A…第2の金属層
 3B…はんだ層(第1の金属層)
 3Ba…溶融したはんだ層部分
 4…はんだ層
 11…アンテナ装置
 12…第1の基板
 12a…第1の金属部
 13…第2の基板
 13a…第2の金属部
 14…エアキャビティ
1,1A ... Metal particles 2 ... Base particles 3 ... Metal layer 3A ... Second metal layer 3B ... Solder layer (first metal layer)
3Ba ... Solder layer part 4 ... Solder layer 11 ... Antenna device 12 ... First substrate 12a ... First metal part 13 ... Second substrate 13a ... Second metal part 14 ... Air cavity

Claims (10)

  1.  第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板とにおいて、前記第1の金属部と前記第2の金属部とを接着するための接着剤であり、
     下記評価試験1により算出される基板間における剥離回数の変化率が、20%以下である、接着剤。
     評価試験1:
     第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板と、接着剤とを用意する。前記第1の基板における前記第1の金属部上に前記接着剤を配置し、前記接着剤の前記第1の基板側とは反対の表面上に、前記第2の基板を、前記第1の金属部と前記第2の金属部とが対向するように配置する。その後、JEDEC J-STD-020で規定されるリフロー条件でリフロー処理を行うことにより前記第1の基板と前記第2の基板とを接着して、積層体を得る。得られた積層体を用いて、JEDEC JESD22-B111に準拠した条件で基板間が剥離するまでの回数を測定し、加熱前の剥離回数とする。その後、得られた積層体をJEDEC J-STD-020で規定されるリフロー条件で、4回のリフロー処理を行い、リフロー処理後における積層体を用いて、JEDEC JESD22-B111に準拠した条件で基板間が剥離するまでの回数を測定し、加熱後の剥離回数とする。加熱前後の剥離回数から、下記式(1)により剥離回数の変化率を算出する。
     剥離回数の変化率=[(加熱前の剥離回数-加熱後の剥離回数)/加熱前の剥離回数]×100   式(1)
    For adhering the first metal portion and the second metal portion in a first substrate having a first metal portion on the surface and a second substrate having a second metal portion on the surface. It is an adhesive and
    An adhesive having a rate of change in the number of peelings between substrates calculated by the following evaluation test 1 of 20% or less.
    Evaluation test 1:
    A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared. The adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side. The metal portion and the second metal portion are arranged so as to face each other. Then, the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body. Using the obtained laminate, the number of times until the substrates are peeled off under the conditions conforming to JEDEC JESD22-B111 is measured and used as the number of times of peeling before heating. After that, the obtained laminate was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminate after the reflow treatment was used to make a substrate under the conditions conforming to JEDEC JESD22-B111. The number of times until the gap is peeled off is measured and used as the number of times of peeling after heating. From the number of peels before and after heating, the rate of change in the number of peels is calculated by the following formula (1).
    Rate of change in the number of peels = [(Number of peels before heating-Number of peels after heating) / Number of peels before heating] x 100 Equation (1)
  2.  下記評価試験2により算出される基板間における接着強度の変化率が、10%以下である、請求項1に記載の接着剤。
     評価試験2:
     第1の金属部を表面に有する第1の基板と、第2の金属部を表面に有する第2の基板と、接着剤とを用意する。前記第1の基板における前記第1の金属部上に前記接着剤を配置し、前記接着剤の前記第1の基板側とは反対の表面上に、前記第2の基板を、前記第1の金属部と前記第2の金属部とが対向するように配置する。その後、JEDEC J-STD-020で規定されるリフロー条件でリフロー処理を行うことにより前記第1の基板と前記第2の基板とを接着して、積層体を得る。得られた積層体を用いて、MIL STD-883Gに準拠した条件で基板間の接着強度を測定し、加熱前の接着強度とする。その後、得られた積層体をJEDEC J-STD-020で規定されるリフロー条件で、4回のリフロー処理を行い、リフロー処理後における積層体を用いて、MIL STD-883Gに準拠した条件で基板間の接着強度を測定し、加熱後の接着強度とする。加熱前後の接着強度から、下記式(2)により接着強度の変化率を算出する。
     接着強度の変化率=[(加熱前の接着強度-加熱後の接着強度)/加熱前の接着強度]×100   式(2)
    The adhesive according to claim 1, wherein the rate of change in adhesive strength between substrates calculated by the following evaluation test 2 is 10% or less.
    Evaluation test 2:
    A first substrate having a first metal portion on the surface, a second substrate having a second metal portion on the surface, and an adhesive are prepared. The adhesive is placed on the first metal portion of the first substrate, and the second substrate is placed on the surface of the adhesive opposite to the first substrate side. The metal portion and the second metal portion are arranged so as to face each other. Then, the first substrate and the second substrate are adhered to each other by performing a reflow treatment under the reflow conditions specified in JEDEC J-STD-020 to obtain a laminated body. Using the obtained laminate, the adhesive strength between the substrates is measured under the conditions conforming to MIL STD-883G, and the adhesive strength before heating is used. After that, the obtained laminated body was reflowed four times under the reflow conditions specified by JEDEC J-STD-020, and the laminated body after the reflow treatment was used as a substrate under the conditions compliant with MIL STD-883G. The adhesive strength between them is measured and used as the adhesive strength after heating. From the adhesive strength before and after heating, the rate of change in the adhesive strength is calculated by the following formula (2).
    Rate of change in adhesive strength = [(Adhesive strength before heating-Adhesive strength after heating) / Adhesive strength before heating] x 100 formula (2)
  3.  前記第1の基板が、ガラスエポキシ基板又はセラミック基板であり、
     前記第2の基板が、ガラスエポキシ基板、セラミック基板又はシリコン基板である、請求項1又は2に記載の接着剤。
    The first substrate is a glass epoxy substrate or a ceramic substrate.
    The adhesive according to claim 1 or 2, wherein the second substrate is a glass epoxy substrate, a ceramic substrate, or a silicon substrate.
  4.  前記第1の金属部が、銅により形成されているか、又は、ニッケル/金めっきにより形成されており、
     前記第2の金属部が、銅により形成されているか、又は、ニッケル/金めっきにより形成されている、請求項1~3のいずれか1項に記載の接着剤。
    The first metal portion is formed of copper or nickel / gold plating.
    The adhesive according to any one of claims 1 to 3, wherein the second metal portion is formed of copper or nickel / gold plating.
  5.  金属粒子を含む、請求項1~4のいずれか1項に記載の接着剤。 The adhesive according to any one of claims 1 to 4, which contains metal particles.
  6.  前記金属粒子が、基材粒子と、前記基材粒子の表面上に配置された金属層とを有する、請求項5に記載の接着剤。 The adhesive according to claim 5, wherein the metal particles have a base material particles and a metal layer arranged on the surface of the base material particles.
  7.  前記金属層が、前記基材粒子の表面上に配置された第2の金属層と、前記第2の金属層の表面上に配置された第1の金属層とを有し、
     前記第1の金属層が、はんだ層である、請求項6に記載の接着剤。
    The metal layer has a second metal layer arranged on the surface of the base material particles and a first metal layer arranged on the surface of the second metal layer.
    The adhesive according to claim 6, wherein the first metal layer is a solder layer.
  8.  第1の金属部を表面に有する第1の基板と、
     第2の金属部を表面に有する第2の基板と、
     前記第1の基板と前記第2の基板とを接着している接着剤部とを備え、
     前記接着剤部の材料が、請求項1~7のいずれか1項に記載の接着剤であり、
     前記第1の金属部と前記第2の金属部とが、前記接着剤部により接着されており、
     前記第1の基板と前記第2の基板と前記接着剤部とにより、エアキャビティが形成されている、アンテナ装置。
    A first substrate having a first metal portion on its surface,
    A second substrate having a second metal portion on its surface,
    It is provided with an adhesive portion for adhering the first substrate and the second substrate.
    The material of the adhesive portion is the adhesive according to any one of claims 1 to 7.
    The first metal portion and the second metal portion are adhered to each other by the adhesive portion.
    An antenna device in which an air cavity is formed by the first substrate, the second substrate, and the adhesive portion.
  9.  前記第1の基板が、ガラスエポキシ基板又はセラミック基板であり、
     前記第2の基板が、ガラスエポキシ基板、セラミック基板又はシリコン基板である、請求項8に記載のアンテナ装置。
    The first substrate is a glass epoxy substrate or a ceramic substrate.
    The antenna device according to claim 8, wherein the second substrate is a glass epoxy substrate, a ceramic substrate, or a silicon substrate.
  10.  前記第1の金属部が、銅により形成されているか、又は、ニッケル/金めっきにより形成されており、
     前記第2の金属部が、銅により形成されているか、又は、ニッケル/金めっきにより形成されている、請求項8又は9に記載のアンテナ装置。
    The first metal portion is formed of copper or nickel / gold plating.
    The antenna device according to claim 8 or 9, wherein the second metal portion is formed of copper or nickel / gold plating.
PCT/JP2020/033934 2019-09-19 2020-09-08 Adhesive and antenna device WO2021054196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556979A JPWO2021054196A1 (en) 2019-09-19 2020-09-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019169970 2019-09-19
JP2019-169970 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021054196A1 true WO2021054196A1 (en) 2021-03-25

Family

ID=74884484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033934 WO2021054196A1 (en) 2019-09-19 2020-09-08 Adhesive and antenna device

Country Status (3)

Country Link
JP (1) JPWO2021054196A1 (en)
TW (1) TW202122187A (en)
WO (1) WO2021054196A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046811A1 (en) * 1997-04-17 1998-10-22 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
WO2010026990A1 (en) * 2008-09-05 2010-03-11 三菱電機株式会社 High-frequency circuit package, and sensor module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046811A1 (en) * 1997-04-17 1998-10-22 Sekisui Chemical Co., Ltd. Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
WO2010026990A1 (en) * 2008-09-05 2010-03-11 三菱電機株式会社 High-frequency circuit package, and sensor module

Also Published As

Publication number Publication date
TW202122187A (en) 2021-06-16
JPWO2021054196A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP5735716B2 (en) Conductive material and connection structure
KR101475100B1 (en) Electroconductive fine particles,anisotropic electroconductive material,and connection structure
JP6034177B2 (en) Conductive particles, conductive materials, and connection structures
JP6114627B2 (en) Conductive material, connection structure, and manufacturing method of connection structure
JP2014017248A (en) Conductive material, production method of conductive material, and connection structure
JP6114883B1 (en) Conductive adhesive and conductive adhesive with conductive substrate
JP6641341B2 (en) Conductive particle material, conductive material, connection structure, and method of manufacturing connection structure
JP6496431B2 (en) Conductive material and connection structure
JP5530571B1 (en) Conductive particles with insulating particles, conductive material, and connection structure
WO2021054196A1 (en) Adhesive and antenna device
WO2021054194A1 (en) Adhesive and antenna device
WO2021054197A1 (en) Adhesive and antenna device
WO2021054195A1 (en) Adhesive for air cavity formation and antenna device
US8506850B2 (en) Conductive fine particles, anisotropic conductive element, and connection structure
JP6600234B2 (en) Conductive material and connection structure
JP2002260446A (en) Conductive fine particle and conductive connecting structure
WO2020251043A1 (en) Conductive particles, conductive material, and connection structure
JP6328996B2 (en) Conductive paste, connection structure, and manufacturing method of connection structure
TWI789395B (en) Conductive material and connection structure
JP6166849B2 (en) Conductive material and connection structure
JP2010069495A (en) Flux-containing capsule, conductive particle with the same and connection structure
JP2015056306A (en) Electrically conductive particle, electrically conductive material, and connection structure
WO2015083409A1 (en) Paste material for via hole filling and multilayer substrate
JP2017022099A (en) Conductive material and connection structure
JP2017022045A (en) Conductive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020556979

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864713

Country of ref document: EP

Kind code of ref document: A1