WO2020251043A1 - Conductive particles, conductive material, and connection structure - Google Patents

Conductive particles, conductive material, and connection structure Download PDF

Info

Publication number
WO2020251043A1
WO2020251043A1 PCT/JP2020/023304 JP2020023304W WO2020251043A1 WO 2020251043 A1 WO2020251043 A1 WO 2020251043A1 JP 2020023304 W JP2020023304 W JP 2020023304W WO 2020251043 A1 WO2020251043 A1 WO 2020251043A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
solder
conductive portion
particle
Prior art date
Application number
PCT/JP2020/023304
Other languages
French (fr)
Japanese (ja)
Inventor
良 栗浦
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202080042463.8A priority Critical patent/CN113950778A/en
Priority to KR1020217040219A priority patent/KR20220016863A/en
Priority to JP2020558067A priority patent/JPWO2020251043A1/ja
Publication of WO2020251043A1 publication Critical patent/WO2020251043A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present invention relates to conductive particles in which a conductive portion is arranged on the surface of the base particles.
  • the present invention also relates to a conductive material and a connecting structure using the above conductive particles.
  • Patent Document 1 the other ends of a plurality of pins (20) whose one end is connected to the first member (10) are aligned by using the aligning member (50), and the second member (
  • the connection structure of the electronic component connected to 30) is disclosed.
  • the alignment member (50) is rotated with reference to the axial direction (A) after aligning the pins (20) at the outer peripheral portion in the axial direction (A). It separates from the pin (20) and is removed from the pin (20).
  • solder paste or the like may be used for electrical connection between the substrate and the electronic component.
  • solder paste agglomeration of solder particles may occur.
  • the base particles are provided with a base particle and a conductive portion arranged on the surface of the base particle, and the conductive portion contains or contains a component capable of metal diffusion at 400 ° C. or lower.
  • the conductive portion can be melt-deformed at 400 ° C. or lower, the conductive portion has a solder portion, and the area of the portion having the solder portion is 99% or less in 100% of the total surface area of the base material particles.
  • Conductive particles are provided.
  • the solder portion is a solder grain.
  • the material of the solder particles contains a tin-containing alloy, is pure tin, or is in a state different from the tin-containing alloy and different from pure tin. Contains tin in the state.
  • the material of the solder particles is pure tin.
  • the height of the solder particles is 10 nm or more and 10 ⁇ m or less.
  • the aspect ratio of the solder particles is 0.05 or more and 5 or less.
  • the conductive particles have a metal colloidal precipitate or a metal film on the outer surface of the solder particles.
  • the area of the metal colloidal precipitate or the portion where the metal film is present is 5% or more and 100% or less in the total surface area of the solder particles.
  • the metal species of the metal colloidal precipitate or the metal species of the metal film may be nickel, cobalt, lead, gold, zinc, palladium, copper, silver, bismuth, or It is indium.
  • the particle size is 0.5 ⁇ m or more and 500 ⁇ m or less.
  • a conductive material containing conductive particles and a binder, wherein the conductive particles are the above-mentioned conductive particles.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder.
  • the conductive particles are the above-mentioned conductive particles, and the first electrode and the second electrode are electrically connected by the conductive particles.
  • the conductive particles according to the present invention include base particles and conductive portions arranged on the surface of the base particles.
  • the conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower.
  • the conductive portion has a solder portion.
  • the area of the portion where the solder portion is located is 99% or less of the total surface area of the base particles of 100%. Since the conductive particles according to the present invention have the above-mentioned configuration, it is possible to effectively suppress the occurrence of aggregation between the conductive particles.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing conductive particles according to a fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the conductive particles according to the fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the conductive particles according to the sixth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing the conductive particles according to the seventh embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention.
  • FIG. 3 is
  • FIG. 8 is a cross-sectional view showing the conductive particles according to the eighth embodiment of the present invention.
  • FIG. 9 is a front sectional view schematically showing a connection structure using conductive particles according to a third embodiment of the present invention.
  • FIG. 10 is a front sectional view schematically showing an enlarged connection portion between the conductive particles and the electrodes in the connection structure shown in FIG.
  • the conductive particles according to the present invention include base particles and conductive portions arranged on the surface of the base particles.
  • the conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower.
  • the conductive portion may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion may be melt-deformable at 400 ° C. or lower.
  • the conductive portion may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion may be melt-deformable at 400 ° C. or lower.
  • the conductive portion may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion may be melt-deformable at 400 ° C.
  • the conductive portion has a solder portion.
  • the area of the portion where the solder portion is located is 99% or less of the total surface area of the base particles of 100%.
  • metal diffusion means that metal atoms diffuse in a conductive portion or a connecting portion due to heat, pressure, deformation, or the like.
  • the melt deformation means a state in which a part or all of the components are melted and easily deformed by an external pressure.
  • the conductive particles according to the present invention have the above-mentioned configuration, it is possible to effectively suppress the occurrence of aggregation between the conductive particles.
  • solder paste or the like may be used for electrical connection between the substrate and the electronic component.
  • solder paste agglomeration of solder particles may occur.
  • the conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower.
  • the conductive portion has a solder portion.
  • the solder portion is preferably solder grains.
  • the conductive portion can form a metal bond with a joint portion such as an electrode, and the solder portion (solder grain) can form a metal bond with a joint portion such as an electrode. Can be formed.
  • the conductive particles according to the present invention since the solder portion (solder particles) can form a metal bond with a joint portion such as an electrode, it is not necessary to melt the entire conductive portion at the time of joining. .. As a result, in the present invention, the reliability of conduction between the electrodes can be improved even when the thickness of the conductive portion is relatively thin. Further, in the present invention, since it is not necessary to increase the thickness of the conductive portion, it is possible to effectively suppress the aggregation of the conductive particles.
  • the temperature at which the components of the conductive portion can diffuse with metal and the melt deformation temperature of the conductive portion can be achieved by selecting the material of the conductive portion. For example, by forming the solder portion using solder or a solder alloy as the material of the conductive portion, the temperature at which the components of the conductive portion can diffuse the metal and the melt deformation temperature of the conductive portion are set to 400 ° C. or lower. Is easy.
  • the conductive portion has a solder portion.
  • the conductive portion may be a solder portion.
  • the metal diffusion state of the conductive portion is evaluated as follows.
  • a conductive paste is applied onto the transparent glass substrate to form a conductive paste layer.
  • the semiconductor chips are laminated on the conductive paste layer so that the electrodes face each other.
  • the pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 0.5 MPa is applied to cure the conductive paste layer at 250 ° C. To obtain a connection structure.
  • connection structure may be embedded in the resin and the connection structure embedded in the resin may be mechanically polished.
  • the contact portion between the conductive particles and the copper electrode and the gold electrode is subjected to line analysis or element mapping by an energy dispersive X-ray analyzer (EDX). Observe the diffusion state of the metal.
  • EDX energy dispersive X-ray analyzer
  • the contact ratio between the outer circumference of the conductive particles and the copper electrode and the gold electrode can be calculated, and the quantification can be performed by this.
  • the melt deformation temperature of the conductive part is evaluated as follows.
  • the melt deformation temperature of the conductive portion can be measured using a differential scanning calorimeter (“DSC-6300” manufactured by Yamato Scientific Co., Ltd.). In the above measurement, 15 g of conductive particles were used, and the temperature rise range was 30 ° C. to 500 ° C. , Nitrogen purge amount 5 ml / min. Perform under the measurement conditions of.
  • DSC-6300 differential scanning calorimeter
  • the conductive portion is melted at the melting temperature obtained by the above measurement.
  • the conductive portion may be melt-deformed by melting a part of the conductive portion such as the solder portion (solder grain).
  • the area of the portion where the solder portion is located is 99% or less of the total surface area of the base particle of 100%.
  • the area of the portion where the solder portion is located is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less, particularly preferably. Is 70% or less.
  • the area of the portion where the solder portion is located is preferably 5% or more, more preferably 30% or more, and further preferably 60% or more in the total surface area of the base particles of 100%.
  • the coverage coverage of the solder portion
  • the covering ratio covering ratio of the solder portion
  • the area of the portion where the solder portion is located (coverage ratio of the solder portion) in the total surface area of the base particle is 100% by performing element mapping by SEM-EDX analysis of the cross section of the conductive particle and image analysis. Can be calculated.
  • the particle size of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 20 ⁇ m or less, most preferably. It is 10 ⁇ m or less.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode can be sufficiently increased, and the conductive portion aggregated when the conductive portion is formed. It becomes difficult for the sex particles to be formed, and it becomes difficult for the conductive portion to peel off from the surface of the base particle.
  • the particle size of the conductive particles is preferably an average particle size, and preferably a number average particle size.
  • the average value of the particle size of each conductive particle is calculated, or a particle size distribution measuring device is used. Obtained using.
  • the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter.
  • the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere.
  • the particle size of each conductive particle is obtained as the particle size in the equivalent diameter of a sphere.
  • the average particle size of the conductive particles is preferably calculated using a particle size distribution measuring device.
  • the coefficient of variation (CV value) of the particle size of the conductive particles is preferably 10% or less, more preferably 5% or less.
  • the coefficient of variation of the particle size of the conductive particles is not more than the above upper limit, the contact area between the conductive particles and the electrode can be sufficiently increased.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle size of conductive particles Dn: Mean value of particle size of conductive particles
  • the shape of the conductive particles is not particularly limited.
  • the shape of the conductive particles may be spherical, non-spherical, flat or the like.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive particle 1 shown in FIG. 1 includes a base particle 2 and a conductive portion 3 arranged on the surface of the base particle 2.
  • the conductive portion 3 is in contact with the surface of the base particle 2.
  • the conductive particles 1 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 3.
  • the conductive portion 3 includes a first conductive portion 3A arranged on the surface of the base particle 2 and a second conductive portion (solder portion) 3B arranged on the surface of the first conductive portion 3A.
  • the first conductive portion 3A is arranged on the surface of the base particle 2.
  • the first conductive portion 3A is arranged between the base particle 2 and the second conductive portion (solder portion) 3B.
  • the first conductive portion 3A is in contact with the base particle 2.
  • the second conductive portion (solder portion) 3B is in contact with the first conductive portion 3A.
  • the first conductive portion 3A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 3B is arranged on the surface of the first conductive portion 3A.
  • the base material particles may or may not be completely coated by the first conductive portion.
  • the base particle may have a portion not covered by the first conductive portion.
  • the first conductive portion and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion.
  • the second conductive portion (solder portion) is formed of solder.
  • the second conductive portion (solder portion) is preferably solder grains, which will be described later.
  • the first conductive portion is arranged on the surface of the base material particles, and the solder particles are arranged on the surface of the first conductive portion.
  • the conductive portion 3 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 3 is melt-deformable at 400 ° C. or lower.
  • the conductive portion 3 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 3 may be melt-deformable at 400 ° C. or lower.
  • the conductive portion 3 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 3 may be melt-deformable at 400 ° C. or lower.
  • the second conductive portion 3B (solder portion) is a component capable of metal diffusion at 400 ° C. or lower.
  • the second conductive portion 3B (solder portion) can be melt-deformed at 400 ° C. or lower.
  • the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower.
  • the first conductive portion and the second conductive portion (solder portion) may be components capable of diffusing metal at 400 ° C. or lower, and the first conductive portion and the second conductive portion may be present.
  • the conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
  • FIG. 2 is a cross-sectional view showing the conductive particles according to the second embodiment of the present invention.
  • the conductive particle 11 shown in FIG. 2 includes a base particle 2 and a conductive portion 12 arranged on the surface of the base particle 2.
  • the conductive portion 12 is in contact with the surface of the base particle 2.
  • the conductive particles 11 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 12.
  • the conductive particle 11 is composed of the conductive portion 12A of the first a and the conductive portion 12B of the first b.
  • a first conductive portion having a two-layer structure is formed.
  • the conductive portion 12 is composed of a first conductive portion 12A arranged on the surface of the base particle 2, a first conductive portion 12B arranged on the surface of the first conductive portion 12A, and a first b. It has a second conductive portion (solder portion) 12C arranged on the surface of the conductive portion 12B.
  • the conductive portion 12A of the first a is arranged on the surface of the base particle 2.
  • the conductive portion 12B of the first b is arranged on the surface of the conductive portion 12A of the first a.
  • the conductive portion 12A of the first a and the conductive portion 12B of the first b are arranged between the base particle 2 and the second conductive portion (solder portion) 12C.
  • the conductive portion 12A of the first a is in contact with the base particle 2.
  • the second conductive portion (solder portion) 12C is in contact with the first conductive portion 12B. Therefore, the conductive portion 12A of the first a is arranged on the surface of the base particle 2, the conductive portion 12B of the first b is arranged on the surface of the conductive portion 12A of the first a, and the conductive portion 12B of the first b is arranged.
  • a second conductive portion (solder portion) 12C is arranged on the surface of the above.
  • the base material particles may or may not be completely covered by the conductive portion of the first a and the conductive portion of the first b.
  • the base material particles may have a portion not covered by the conductive portion of the first a and the conductive portion of the first b.
  • the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion.
  • the second conductive portion (solder portion) is formed of solder.
  • the second conductive portion (solder portion) is preferably solder grains, which will be described later.
  • the conductive portion of the first 1a is arranged on the surface of the base material particles
  • the conductive portion of the first b is arranged on the surface of the conductive portion of the first a. It is preferable that the solder particles are arranged on the surface of the conductive portion of 1b.
  • the conductive portion 12 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 12 is melt-deformable at 400 ° C. or lower.
  • the conductive portion 12 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 12 may be melt-deformable at 400 ° C. or lower.
  • the conductive portion 12 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 12 may be melt-deformable at 400 ° C. or lower.
  • the second conductive portion 12C (solder portion) is a component capable of diffusing metal at 400 ° C. or lower.
  • the second conductive portion 12C (solder portion) can be melt-deformed at 400 ° C. or lower.
  • the conductive portion of the first a or the conductive portion of the first b may be a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion of the first a or the conductive portion of the first b is 400. It may be melt-deformed at ° C or lower.
  • the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be components capable of metal diffusion at 400 ° C. or lower, and the conductive particles of the first a.
  • the conductive portion, the conductive portion of the first b, and the second conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
  • FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.
  • the conductive particle 21 shown in FIG. 3 includes a base particle 2 and a conductive portion 22 arranged on the surface of the base particle 2.
  • the conductive portion 22 is in contact with the surface of the base particle 2.
  • the conductive particles 21 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 22.
  • the conductive particles 1 and the conductive particles 21 differ only in the shape of the second conductive portion (solder portion). That is, in the conductive particle 1, the shape of the second conductive portion (solder portion) 3B is a part of a sphere, whereas in the conductive particle 21, the second conductive portion (solder portion) 22B The shape of is needle-shaped and is a rotating paraboloid.
  • the conductive portion 22 includes a first conductive portion 22A arranged on the surface of the base particle 2, and a second conductive portion (solder portion) 22B arranged on the surface of the first conductive portion 22A.
  • the first conductive portion 22A is arranged on the surface of the base particle 2.
  • the first conductive portion 22A is arranged between the base particle 2 and the second conductive portion (solder portion) 22B.
  • the first conductive portion 22A is in contact with the base particle 2.
  • the second conductive portion (solder portion) 22B is in contact with the first conductive portion 22A.
  • the first conductive portion 22A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 22B is arranged on the surface of the first conductive portion 22A.
  • the base material particles may or may not be completely coated by the first conductive portion.
  • the base particle may have a portion not covered by the first conductive portion.
  • the first conductive portion and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion.
  • the second conductive portion (solder portion) is formed of solder.
  • the second conductive portion (solder portion) is preferably solder grains, which will be described later.
  • the conductive portion 22 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 22 is melt-deformable at 400 ° C. or lower.
  • the conductive portion 22 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 22 may be melt-deformable at 400 ° C. or lower.
  • the conductive portion 22 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 22 may be melt-deformable at 400 ° C. or lower.
  • the second conductive portion 22B (solder portion) is a component capable of diffusing metal at 400 ° C. or lower.
  • the second conductive portion 22B (solder portion) can be melt-deformed at 400 ° C. or lower.
  • the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower.
  • the first conductive portion and the second conductive portion (solder portion) may be components capable of diffusing metal at 400 ° C. or lower, and the first conductive portion and the second conductive portion may be present.
  • the conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
  • FIG. 4 is a cross-sectional view showing conductive particles according to a fourth embodiment of the present invention.
  • the conductive particle 31 shown in FIG. 4 includes a base particle 2 and a conductive portion 32 arranged on the surface of the base particle 2.
  • the conductive portion 32 is in contact with the surface of the base particle 2.
  • the conductive particles 31 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 32.
  • the conductive portion 22 is formed by the first conductive portion 22A and the second conductive portion (solder portion) 22B, whereas in the conductive particles 31, the conductive portion 32 is the second. It is formed by the conductive portion 32A of 1, the second conductive portion (solder portion) 32B, and the third conductive portion 32C.
  • the conductive portion 32 includes a first conductive portion 32A arranged on the surface of the base particle 2, and a second conductive portion (solder portion) 32B arranged on the surface of the first conductive portion 32A. It has a first conductive portion 32A and a third conductive portion 32C arranged on the surface of the second conductive portion (solder portion) 32B.
  • the first conductive portion 32A is arranged on the surface of the base particle 2.
  • the third conductive portion 32C is arranged on the surfaces of the first conductive portion 32A and the second conductive portion (solder portion) 32B.
  • a first conductive portion 32A and a second conductive portion (solder portion) 32B are arranged between the base particle 2 and the third conductive portion 32C.
  • the first conductive portion 32A is in contact with the base particle 2.
  • the second conductive portion (solder portion) 32B is in contact with the first conductive portion 32A.
  • the third conductive portion 32C is in contact with the first conductive portion 32A and the second conductive portion (solder portion) 32B. Therefore, the first conductive portion 32A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 32B is arranged on the surface of the first conductive portion 32A.
  • a third conductive portion 32C is arranged on the surfaces of the conductive portion 32A and the second conductive portion (solder portion) 32B.
  • the base material particles may or may not be completely coated by the first conductive portion.
  • the base particle may have a portion not covered by the first conductive portion.
  • the base particles may or may not be completely coated by the third conductive portion.
  • the base material particles may have a portion not covered by the third conductive portion.
  • the first conductive portion, the second conductive portion (solder portion), and the third conductive portion may be formed as different conductive portions or may be formed as the same conductive portion.
  • the second conductive portion (solder portion) is formed of solder.
  • the second conductive portion (solder portion) is preferably solder grains, which will be described later.
  • the first conductive portion is arranged on the surface of the base material particles, the solder particles are arranged on the surface of the first conductive portion, and the first conductive portion is arranged. It is preferable that the third conductive portion is arranged on the surface of the portion and the solder particles.
  • the conductive portion 32 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 32 is melt-deformable at 400 ° C. or lower.
  • the conductive portion 32 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 32 may be melt-deformable at 400 ° C. or lower.
  • the conductive portion 32 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 32 may be melt-deformable at 400 ° C. or lower.
  • the second conductive portion 32B (solder portion) is a component capable of diffusing metal at 400 ° C. or lower.
  • the second conductive portion 32B (solder portion) can be melt-deformed at 400 ° C. or lower.
  • the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower.
  • the third conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, and the third conductive portion may be melt-deformable at 400 ° C. or lower.
  • the first conductive portion, the second conductive portion (solder portion), and the third conductive portion may be components capable of metal diffusion at 400 ° C. or lower, and the first conductive portion may be used.
  • the conductive portion, the second conductive portion (solder portion), and the third conductive portion may be melt-deformed at 400 ° C. or lower.
  • FIG. 5 is a cross-sectional view showing the conductive particles according to the fifth embodiment of the present invention.
  • the conductive particle 41 shown in FIG. 5 includes a base particle 2, a conductive portion 42 arranged on the surface of the base particle 2, and a metal colloidal precipitate 43 arranged on the surface of the conductive portion 42. ..
  • the conductive portion 42 is in contact with the surface of the base particle 2.
  • the conductive particles 41 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 42.
  • the conductive particles 1 and the conductive particles 41 differ only in the presence or absence of the metal colloidal precipitate 43. That is, in the conductive particle 1, the metal colloidal precipitate is not arranged on the surface of the conductive portion 3, whereas in the conductive particle 41, the metal colloidal precipitate 43 is arranged on the surface of the conductive portion 42. ing.
  • the conductive portion 42 includes a first conductive portion 42A arranged on the surface of the base particle 2 and a second conductive portion (solder portion) 42B arranged on the surface of the first conductive portion 42A.
  • the first conductive portion 42A is arranged on the surface of the base particle 2.
  • the first conductive portion 42A is arranged between the base particle 2 and the second conductive portion (solder portion) 42B.
  • the first conductive portion 42A is in contact with the base particle 2.
  • the second conductive portion (solder portion) 42B is in contact with the first conductive portion 42A.
  • the first conductive portion 42A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 42B is arranged on the surface of the first conductive portion 42A.
  • the base material particles may or may not be completely coated by the first conductive portion.
  • the base particle may have a portion not covered by the first conductive portion.
  • the first conductive portion and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion.
  • the second conductive portion (solder portion) is formed of solder.
  • the second conductive portion (solder portion) is preferably solder grains, which will be described later.
  • the first conductive portion is arranged on the surface of the base material particles, and the solder particles are arranged on the surface of the first conductive portion.
  • the metal colloidal precipitate 43 is arranged on the surface of the conductive portion 42.
  • the metal colloidal precipitate may be arranged only on the surface of the first conductive portion, may be arranged only on the surface of the second conductive portion (solder portion), and may be arranged only on the surface of the first conductive portion. It may be arranged on the surface of the conductive portion of the above and the second conductive portion (solder portion).
  • the metal colloidal precipitate is preferably arranged only on the surface of the second conductive portion (solder portion), and preferably is arranged only on the surface of the solder particles. In the conductive particles, the conductive portion may or may not be completely covered with the metal colloidal precipitate. The conductive portion may have a portion not covered with the metal colloidal precipitate.
  • the conductive portion 42 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 42 is melt-deformable at 400 ° C. or lower.
  • the conductive portion 42 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 42 may be melt-deformable at 400 ° C. or lower.
  • the conductive portion 42 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 42 may be melt-deformable at 400 ° C. or lower.
  • the second conductive portion 42B (solder portion) is a component capable of diffusing metal at 400 ° C. or lower.
  • the second conductive portion 42B (solder portion) can be melt-deformed at 400 ° C. or lower.
  • the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower.
  • the first conductive portion and the second conductive portion (solder portion) may be components capable of diffusing metal at 400 ° C. or lower, and the first conductive portion and the second conductive portion may be present.
  • the conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
  • FIG. 6 is a cross-sectional view showing the conductive particles according to the sixth embodiment of the present invention.
  • the conductive particle 51 shown in FIG. 6 includes a base particle 2, a conductive portion 52 arranged on the surface of the base particle 2, and a metal colloidal precipitate 53 arranged on the surface of the conductive portion 52. .. In the sixth embodiment, the conductive portion 52 is in contact with the surface of the base particle 2.
  • the conductive particles 51 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 52.
  • the conductive particles 11 and the conductive particles 51 differ only in the presence or absence of the metal colloidal precipitate 53. That is, in the conductive particles 11, the metal colloidal precipitates are not arranged on the surface of the conductive portion 12, whereas in the conductive particles 51, the metal colloidal precipitates 53 are arranged on the surface of the conductive portion 52. ing.
  • the conductive portion 52 is a first conductive portion 52A arranged on the surface of the base particle 2, a first conductive portion 52B arranged on the surface of the first conductive portion 52A, and a first b. It has a second conductive portion (solder portion) 52C arranged on the surface of the conductive portion 52B.
  • the conductive portion 52A of the first a is arranged on the surface of the base particle 2.
  • the conductive portion 52B of the first b is arranged on the surface of the conductive portion 52A of the first a.
  • the first conductive portion 52A and the first conductive portion 52B are arranged between the base particle 2 and the second conductive portion (solder portion) 52C.
  • the conductive portion 52A of the first a is in contact with the base particle 2.
  • the second conductive portion (solder portion) 52C is in contact with the first conductive portion 52B. Therefore, the conductive portion 52A of the first a is arranged on the surface of the base particle 2, the conductive portion 52B of the first b is arranged on the surface of the conductive portion 52A of the first a, and the conductive portion 52B of the first b is arranged.
  • a second conductive portion (solder portion) 52C is arranged on the surface of the above.
  • the base material particles may or may not be completely covered by the conductive portion of the first a and the conductive portion of the first b.
  • the base material particles may have a portion not covered by the conductive portion of the first a and the conductive portion of the first b.
  • the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion.
  • the second conductive portion (solder portion) is formed of solder.
  • the second conductive portion (solder portion) is preferably solder grains, which will be described later.
  • the conductive portion of the first 1a is arranged on the surface of the base material particles
  • the conductive portion of the first b is arranged on the surface of the conductive portion of the first a. It is preferable that the solder particles are arranged on the surface of the conductive portion of 1b.
  • a metal colloidal precipitate 53 is arranged on the surface of the conductive portion 52.
  • the metal colloidal precipitate may be arranged only on the surface of the conductive portion of the first b, or may be arranged only on the surface of the second conductive portion (solder portion), and may be arranged only on the surface of the conductive portion of the first b. It may be arranged on the surface of the conductive portion of the above and the second conductive portion (solder portion).
  • the metal colloidal precipitate is preferably arranged only on the surface of the second conductive portion (solder portion), and preferably is arranged only on the surface of the solder particles. In the conductive particles, the conductive portion may or may not be completely covered with the metal colloidal precipitate. The conductive portion may have a portion not covered with the metal colloidal precipitate.
  • the conductive portion 52 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 52 is melt-deformable at 400 ° C. or lower.
  • the conductive portion 52 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 52 may be melt-deformable at 400 ° C. or lower.
  • the conductive portion 52 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 52 may be melt-deformable at 400 ° C. or lower.
  • the second conductive portion 52C (solder portion) is a component capable of metal diffusion at 400 ° C. or lower.
  • the second conductive portion 52C (solder portion) can be melt-deformed at 400 ° C. or lower.
  • the conductive portion of the first a or the conductive portion of the first b may be a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion of the first a or the conductive portion of the first b is 400. It may be melt-deformed at ° C or lower.
  • the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be components capable of metal diffusion at 400 ° C. or lower, and the conductive particles of the first a.
  • the conductive portion, the conductive portion of the first b, and the second conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
  • FIG. 7 is a cross-sectional view showing the conductive particles according to the seventh embodiment of the present invention.
  • the conductive particle 61 shown in FIG. 7 includes a base particle 2, a conductive portion 62 arranged on the surface of the base particle 2, and a metal film 63 arranged on the surface of the conductive portion 62.
  • the conductive portion 62 is in contact with the surface of the base particle 2.
  • the conductive particles 61 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 62.
  • the conductive particles 1 and the conductive particles 61 differ only in the presence or absence of the metal film 63. That is, in the conductive particles 1, the metal film is not arranged on the surface of the conductive portion 3, whereas in the conductive particles 61, the metal film 63 is arranged on the surface of the conductive portion 62.
  • the conductive portion 62 includes a first conductive portion 62A arranged on the surface of the base particle 2 and a second conductive portion (solder portion) 62B arranged on the surface of the first conductive portion 62A.
  • the first conductive portion 62A is arranged on the surface of the base particle 2.
  • the first conductive portion 62A is arranged between the base particle 2 and the second conductive portion (solder portion) 62B.
  • the first conductive portion 62A is in contact with the base particle 2.
  • the second conductive portion (solder portion) 62B is in contact with the first conductive portion 62A.
  • the first conductive portion 62A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 62B is arranged on the surface of the first conductive portion 62A.
  • the base material particles may or may not be completely coated by the first conductive portion.
  • the base particle may have a portion not covered by the first conductive portion.
  • the first conductive portion and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion.
  • the second conductive portion (solder portion) is formed of solder.
  • the second conductive portion (solder portion) is preferably solder grains, which will be described later.
  • the first conductive portion is arranged on the surface of the base material particles, and the solder particles are arranged on the surface of the first conductive portion.
  • a metal film 63 is arranged on the surface of the conductive portion 62.
  • the metal film may be arranged only on the surface of the first conductive portion, may be arranged only on the surface of the second conductive portion (solder portion), and may be arranged only on the surface of the first conductive portion. It may be arranged on the surface of the portion and the second conductive portion (solder portion).
  • the metal film is preferably arranged only on the surface of the second conductive portion (solder portion), and is preferably arranged only on the surface of the solder grains.
  • the conductive portion may or may not be completely covered with the metal film.
  • the conductive portion may have a portion that is not covered with the metal film.
  • the conductive portion 62 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 62 is melt-deformable at 400 ° C. or lower.
  • the conductive portion 62 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 62 may be melt-deformable at 400 ° C. or lower.
  • the conductive portion 62 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 62 may be melt-deformable at 400 ° C. or lower.
  • the second conductive portion 62B (solder portion) is a component capable of diffusing metal at 400 ° C. or lower.
  • the second conductive portion 62B (solder portion) can be melt-deformed at 400 ° C. or lower.
  • the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower.
  • the first conductive portion and the second conductive portion (solder portion) may be components capable of diffusing metal at 400 ° C. or lower, and the first conductive portion and the second conductive portion may be present.
  • the conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
  • FIG. 8 is a cross-sectional view showing the conductive particles according to the eighth embodiment of the present invention.
  • the conductive particle 71 shown in FIG. 8 includes a base particle 2, a conductive portion 72 arranged on the surface of the base particle 2, and a metal film 73 arranged on the surface of the conductive portion 72.
  • the conductive portion 72 is in contact with the surface of the base particle 2.
  • the conductive particles 71 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 72.
  • the metal film 73 differs between the conductive particles 11 and the conductive particles 71. That is, in the conductive particles 11, the metal film is not arranged on the surface of the conductive portion 12, whereas in the conductive particles 71, the metal film 73 is arranged on the surface of the conductive portion 72.
  • the conductive portion 72 is a first conductive portion 72A arranged on the surface of the base particle 2, a first conductive portion 72B arranged on the surface of the first conductive portion 72A, and a first b. It has a second conductive portion (solder portion) 72C arranged on the surface of the conductive portion 72B.
  • the conductive portion 72A of the first a is arranged on the surface of the base particle 2.
  • the conductive portion 72B of the first b is arranged on the surface of the conductive portion 72A of the first a.
  • the conductive portion 72A of the first a and the conductive portion 72B of the first b are arranged between the base particle 2 and the second conductive portion (solder portion) 72C.
  • the conductive portion 72A of the first a is in contact with the base particle 2.
  • the second conductive portion (solder portion) 72C is in contact with the first conductive portion 72B. Therefore, the conductive portion 72A of the first a is arranged on the surface of the base particle 2, the conductive portion 72B of the first b is arranged on the surface of the conductive portion 72A of the first a, and the conductive portion 72B of the first b is arranged.
  • a second conductive portion (solder portion) 72C is arranged on the surface of the above.
  • the base material particles may or may not be completely covered by the conductive portion of the first a and the conductive portion of the first b.
  • the base material particles may have a portion not covered by the conductive portion of the first a and the conductive portion of the first b.
  • the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion.
  • the second conductive portion (solder portion) is formed of solder.
  • the second conductive portion (solder portion) is preferably solder grains, which will be described later.
  • the conductive portion of the first 1a is arranged on the surface of the base material particles
  • the conductive portion of the first b is arranged on the surface of the conductive portion of the first a. It is preferable that the solder particles are arranged on the surface of the conductive portion of 1b.
  • a metal film 73 is arranged on the surface of the conductive portion 72.
  • the metal film may be arranged only on the surface of the conductive portion of the first b, may be arranged only on the surface of the second conductive portion (solder portion), or may be arranged only on the surface of the conductive portion of the first b. It may be arranged on the surface of the portion and the second conductive portion (solder portion).
  • the metal film is preferably arranged only on the surface of the second conductive portion (solder portion), and is preferably arranged only on the surface of the solder grains.
  • the conductive portion may or may not be completely covered with the metal film.
  • the conductive portion may have a portion that is not covered with the metal film.
  • the conductive portion 72 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 72 is melt-deformable at 400 ° C. or lower.
  • the conductive portion 72 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 72 may be melt-deformable at 400 ° C. or lower.
  • the conductive portion 72 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 72 may be melt-deformable at 400 ° C. or lower.
  • the second conductive portion 72C (solder portion) is a component capable of diffusing metal at 400 ° C. or lower.
  • the second conductive portion 72C (solder portion) can be melt-deformed at 400 ° C. or lower.
  • the conductive portion of the first a or the conductive portion of the first b may be a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion of the first a or the conductive portion of the first b is 400. It may be melt-deformed at ° C or lower.
  • the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be components capable of metal diffusion at 400 ° C. or lower, and the conductive particles of the first a.
  • the conductive portion, the conductive portion of the first b, and the second conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
  • (meth) acrylic means one or both of “acrylic” and “methacryl”
  • (meth) acryloxy means one or both of “acryloxy” and “methacryloxy”.
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”.
  • the material of the base particle is not particularly limited.
  • the material of the base particle may be an organic material or an inorganic material.
  • Examples of the base particle formed from the organic material alone include resin particles and the like.
  • Examples of the base particle formed only from the above-mentioned inorganic material include inorganic particles excluding metal.
  • Examples of the base particle formed by both the organic material and the inorganic material include organic-inorganic hybrid particles. From the viewpoint of further improving the compression characteristics of the base particles, the base particles are preferably resin particles or organic-inorganic hybrid particles, and more preferably resin particles.
  • organic material examples include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, phenolformaldehyde resin and melamine.
  • polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene
  • acrylic resins such as polymethylmethacrylate and polymethylacrylate
  • polycarbonate polyamide, phenolformaldehyde resin and melamine.
  • Formaldehyde resin benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, Examples thereof include polyester ether ketone, polyether sulfone, divinylbenzene polymer, and divinylbenzene copolymer.
  • the divinylbenzene copolymer and the like examples include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer. Since the compression characteristics of the base material particles can be easily controlled within a suitable range, the material of the base material particles is a polymer obtained by polymerizing one or more kinds of polymerizable monomers having an ethylenically unsaturated group. Is preferable.
  • the base material particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group
  • the polymerizable monomer having an ethylenically unsaturated group is crosslinked with a non-crosslinkable monomer.
  • examples include sex monomers.
  • non-crosslinkable monomer examples include styrene monomers such as styrene, ⁇ -methylstyrene and chlorostyrene; vinyl ether compounds such as methylvinyl ether, ethylvinyl ether and propylvinyl ether; vinyl acetate, vinyl butyrate, etc.
  • Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; as (meth) acrylic compounds, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and other alkyl ( Meta) acrylate compound; oxygen atom-containing (meth) acrylate compound such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate; (meth)
  • Nitrile-containing monomer Halogen-containing (meth) acrylate compound such as trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate; olefins such as diisobutylene, isobutylene, linearene, ethylene and propylene as ⁇ -olefin compounds Compound;
  • Examples of the conjugated diene compound include isoprene and butadiene.
  • crosslinkable monomer examples include vinyl monomers such as divinylbenzene, 1,4-dibinyloxybutane, and divinylsulfone as vinyl compounds; and tetramethylolmethanetetra (meth) acrylate as (meth) acrylic compounds.
  • examples of the inorganic material include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda-lime glass and alumina silicate glass.
  • the base particle may be an organic-inorganic hybrid particle.
  • the base material particles may be core-shell particles.
  • examples of the inorganic material as the material of the base material particles include silica, alumina, barium titanate, zirconia, and carbon black. It is preferable that the inorganic substance is not a metal.
  • the base particles formed of the above silica are not particularly limited, but after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is performed if necessary. Examples thereof include substrate particles obtained by carrying out the process.
  • Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core. It is preferable that the core is an organic core. It is preferable that the shell is an inorganic shell.
  • the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell arranged on the surface of the organic core.
  • Examples of the organic core material include the above-mentioned organic material and the like.
  • the material for the inorganic shell examples include the above-mentioned inorganic substances as the material for the base particle.
  • the material of the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of silane alkoxide.
  • the particle size of the base particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 20 ⁇ m or less, most preferably. It is 10 ⁇ m or less.
  • the particle size of the base material particles is not less than the above lower limit and not more than the above upper limit, it can be more preferably used to obtain conductive particles.
  • the contact area between the conductive particles and the electrode can be sufficiently increased, and the conductive portion aggregated when the conductive portion is formed. It becomes difficult for the sex particles to be formed, and it becomes difficult for the conductive portion to peel off from the surface of the base particle.
  • the particle size of the base particle is 1 ⁇ m or more and 50 ⁇ m or less.
  • the particle size of the base material particles is within the range of 1 ⁇ m or more and 50 ⁇ m or less, it becomes difficult to agglomerate when forming a conductive portion on the surface of the base material particles, and it becomes difficult to form agglomerated conductive particles.
  • the particle size of the base material particles is within the range of 1 ⁇ m or more and 50 ⁇ m or less, it can be more preferably used to obtain conductive particles.
  • the particle diameter of the base material particles indicates the diameter when the base material particles are spherical, and when the base material particles are not spherical, the diameter when it is assumed to be a true sphere corresponding to the volume thereof. means.
  • the particle size of the base particle indicates a number average particle size.
  • 50 arbitrary base particles are observed with an electron microscope or an optical microscope, the average value of the particle size of each base particle is calculated, or a particle size distribution measuring device is used. Desired.
  • the particle size of each base particle is determined as the particle size in the equivalent circle diameter.
  • the average particle diameter of any 50 base particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere.
  • the particle size of each base particle is determined as the particle size in the equivalent sphere diameter.
  • the average particle size of the base particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the base material particles in the conductive particles, for example, the measurement can be performed as follows.
  • the conductive particles according to the present invention include base particles and conductive portions arranged on the surface of the base particles.
  • the conductive portion preferably contains a metal.
  • the conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower.
  • the temperature at which the metal can diffuse is preferably 350 ° C. or lower, more preferably 300 ° C. or lower, further preferably 250 ° C. or lower, and particularly preferably 200 ° C. or lower.
  • the temperature at which the metal can diffuse can be controlled by the type of metal.
  • the conductive portion can be melt-deformed at 400 ° C. or lower.
  • the conductive portion is preferably melt-deformable at 350 ° C. or lower, more preferably melt-deformable at 300 ° C. or lower, further preferably melt-deformable at 250 ° C. or lower, and 200 ° C. or lower. It is particularly preferable that it can be melt-deformed.
  • the melt deformation temperature of the conductive portion is within the above preferable range, the melt deformation temperature can be lowered, the energy consumption during heating can be suppressed, and the thermal deterioration of the member to be connected or the like can be suppressed. be able to.
  • the melt deformation temperature of the conductive portion can be controlled by the type of metal of the conductive portion.
  • the conductive portion may have a portion exceeding 200 ° C., may have a portion exceeding 250 ° C., may have a portion exceeding 300 ° C., and may have a portion exceeding 350 ° C. It may have a portion exceeding 400 ° C.
  • the metal constituting the conductive portion is not particularly limited.
  • Metals constituting the conductive portion include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, germanium, cadmium, etc. Examples thereof include silicon, tungsten, molybdenum and alloys thereof. Examples of the metal constituting the conductive portion include tin-doped indium oxide (ITO) and solder. Only one kind of metal constituting the conductive portion may be used, or two or more kinds may be used in combination.
  • ITO tin-doped indium oxide
  • the metal constituting the conductive portion is selected so that the conductive portion contains a component capable of diffusing the metal at 400 ° C. or lower, and the conductive portion can be melt-deformed at 400 ° C. or lower.
  • the conductive portion preferably contains solder, and preferably has a solder portion.
  • the solder portion is formed of solder.
  • the conductive portion preferably has a solder portion formed of solder.
  • the conductive portion preferably contains an alloy containing nickel, gold, palladium, silver, copper, tin or tin, and nickel, gold, palladium, tin or tin. It is more preferable to contain an alloy containing.
  • the silver content in 100% by weight of the conductive portion containing silver is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, and more preferably 90% by weight or less. is there.
  • the silver content may be 80% by weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight. It may be as follows. When the silver content is at least the above lower limit and at least the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively.
  • the copper content in 100% by weight of the conductive portion containing copper is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, and more preferably 90% by weight or less. is there.
  • the copper content may be 80% by weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight. It may be as follows. When the copper content is at least the above lower limit and at least the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively.
  • the content of tin or an alloy containing tin is preferably 20% by weight or more, more preferably 50% by weight or more, and particularly preferably 90% by weight or more in 100% by weight of the conductive portion containing tin or an alloy containing tin. ..
  • the content of the tin or the alloy containing the tin is at least the above lower limit, the occurrence of agglomeration of the conductive particles can be suppressed more effectively.
  • the solder is preferably a metal having a melting point of 450 ° C. or lower (low melting point metal).
  • the low melting point metal refers to a metal having a melting point of 450 ° C. or lower.
  • the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower.
  • the solder contains tin.
  • the tin content in 100% by weight of the metal contained in the solder is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight or more. When the tin content in the solder is at least the above lower limit, the continuity reliability becomes even higher.
  • the contents of the nickel, copper, and tin are determined by a high-frequency inductively coupled plasma emission spectroscopic analyzer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-” manufactured by Shimadzu Corporation). It can be measured using 800HS ”) or the like.
  • ICP-AES high-frequency inductively coupled plasma emission spectroscopic analyzer
  • EDX- fluorescent X-ray analyzer
  • the solder melts and joins to the electrodes, and the solder conducts between the electrodes.
  • the solder and the electrode are likely to make surface contact rather than point contact, so that the connection resistance is low.
  • peeling between the solder and the electrode is more difficult to occur, and the conduction reliability is further improved.
  • the low melting point metal constituting the above solder is not particularly limited.
  • the low melting point metal is preferably tin or an alloy containing tin.
  • the alloy include tin-silver alloy, tin-copper alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-zinc alloy, tin-indium alloy and the like.
  • the low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-indium alloy, and tin-bismuth alloy or tin, because it has excellent wettability to the electrode.
  • -It is more preferable that it is an indium alloy.
  • the solder is preferably a filler material having a liquidus line of 450 ° C. or lower based on JIS Z3001: welding terminology.
  • the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like.
  • the solder is preferably a tin-indium type (117 ° C. eutectic) or a tin-bismuth type (139 ° C. eutectic), which has a low melting point and is lead-free. That is, the solder preferably does not contain lead, and preferably contains tin and indium, or tin and bismuth.
  • the above solder uses metals such as nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese, chromium, molybdenum and palladium. It may be included. Further, from the viewpoint of further increasing the bonding strength, the solder preferably contains nickel, copper, antimony, aluminum or zinc. From the viewpoint of further increasing the bonding strength, the content of these metals for increasing the bonding strength is preferably 0.0001% by weight or more, preferably 1% by weight or less, based on 100% by weight of the solder.
  • the conductive portion may be formed by one layer.
  • the conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers. From the viewpoint of further effectively enhancing the conduction reliability, the conductive portion preferably has a laminated structure of two or more layers.
  • the method of forming the conductive portion on the surface of the base material particles is not particularly limited.
  • Examples of the method for forming the conductive portion include the following methods. Method by electroless plating. Electroplating method. Method by physical collision. Method by mechanochemical reaction. Method by physical vapor deposition or physical adsorption. A method of coating the surface of base particles with a metal powder or a paste containing a metal powder and a binder.
  • the method for forming the conductive portion is preferably a method by electroless plating, electroplating or physical collision.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, as the method by the above physical collision, a sheeter composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
  • the thickness of the conductive portion is preferably 10 nm or more, more preferably 500 nm or more, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 1 ⁇ m or less, and particularly preferably 800 nm or less.
  • the thickness of the conductive portion means the thickness of the entire conductive portion when the conductive portion has a laminated structure of two or more layers.
  • the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively. Further, when the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained and it is possible to prevent the conductive particles from becoming hard.
  • the thickness of the conductive portion of the outermost layer is preferably 10 nm or more, more preferably 500 nm or more, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and further. It is preferably 1 ⁇ m or less, particularly preferably 800 nm or less.
  • the thickness of the conductive portion of the outermost layer is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the occurrence of aggregation of the conductive particles.
  • the thickness of the conductive portion can be measured by observing the cross section of the conductive particles, for example, using a transmission electron microscope (TEM).
  • the thickness of the conductive portion is preferably the thickness of the portion where the thickness of the conductive portion is maximized in any conductive particles.
  • the thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 10 arbitrary conductive particles.
  • solder grain In the conductive particles, the conductive portion has a solder portion.
  • the conductive portion has a solder portion formed of solder.
  • the solder portion is preferably solder particles.
  • the conductive portion it is preferable that the conductive portion has solder particles.
  • the second conductive portion (solder portion) 32B inside is preferably solder grains.
  • the second conductive portion (solder portion) 42B in FIG. 5 the second conductive portion (solder portion) 52C in FIG. 6, the second conductive portion (solder portion) 62B in FIG. 7, and FIG.
  • the second conductive portion (solder portion) 72C inside is preferably solder grains.
  • the above solder grains are different from the protrusions described later.
  • the solder grains can form a metal bond with a joint portion such as an electrode.
  • the solder grains are used for joining with electrodes and the like. Since the conductive portion has the solder particles, the solder particles can easily form a metal bond with the joint portion such as an electrode, so that it is not necessary to melt the entire conductive portion at the time of joining. As a result, the reliability of conduction between the electrodes can be improved even when the thickness of the conductive portion is relatively thin. Further, since it is not necessary to increase the thickness of the conductive portion, it is possible to effectively suppress the aggregation of the conductive particles.
  • the solder particles are relatively small, the outer surface of the solder particles is relatively difficult to be oxidized, and the influence of the oxide film can be suppressed. Therefore, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
  • the conductive particles have a solder layer coated with solder instead of the solder particles, the outer surface of the solder layer is relatively easily oxidized, and it is difficult to suppress the influence of the oxide film. .. For this reason, the solder layer cannot easily form a metal bond with a joint portion such as an electrode, and measures such as thickening the solder layer are required to suppress the occurrence of agglomeration of conductive particles. Becomes difficult.
  • the shape of the solder grains is not particularly limited.
  • the shape of the solder grains is preferably a needle shape or a part of a sphere.
  • the needle-like shape is preferably a pyramid, a cone, or a rotating paraboloid, more preferably a cone or a rotating paraboloid, and even more preferably a cone.
  • the shape of the solder grains may be a pyramid shape, a conical shape, or a rotating paraboloid shape.
  • the material of the above solder grains is not particularly limited.
  • the solder grains are preferably made of metal.
  • the material of the solder grains preferably contains tin in an alloy containing tin, is pure tin, or contains tin in a state different from the alloy containing tin and in a state different from pure tin.
  • the material of the solder grains may contain an alloy containing tin or may be pure tin.
  • the material of the solder grains may be an alloy containing tin or pure tin.
  • the material of the solder particles may contain tin in a state different from that of the alloy containing tin and in a state different from that of pure tin.
  • the material of the solder particles is more preferably pure tin.
  • the fact that the material of the solder particles is pure tin means that the tin content is 90% by weight or more in 100% by weight of the material of the solder particles.
  • the tin content in 100% by weight of the solder grain material may be less than 90% by weight, 80% by weight or less, 75% by weight or less, 70% by weight or less. It may be.
  • the tin content in 100% by weight of the solder grains containing tin is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 90% by weight or more, and preferably 99.5% by weight or less. More preferably, it is 99% by weight or less.
  • the tin content is at least the above lower limit and at least the above upper limit, it is possible to more effectively suppress the occurrence of aggregation of the conductive particles.
  • the solder particles can more easily form a metal bond with a joint portion such as an electrode.
  • the height of the solder grains is preferably 10 nm or more, more preferably 250 nm or more, further preferably 350 nm or more, particularly preferably 500 nm or more, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the height of the solder particles is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the occurrence of aggregation of the conductive particles.
  • the height of the solder particles is equal to or higher than the lower limit and lower than the upper limit, the solder grains can more easily form a metal bond with a joint portion such as an electrode, which is superior to physical contact. The conduction characteristics can be obtained, and the bonding strength can be further increased.
  • the height of the solder particles is based on the assumption that there are no solder particles (solder portion) on the line (broken line L1 shown in FIG. 1) connecting the center of the conductive particles and the tip of the solder particles (solder portion).
  • the distance from the outer surface of the first conductive portion to the tip of the solder grain (solder portion) is shown. That is, in FIG. 1, the distance from the intersection L2 between the broken line L1 and the outer surface of the first conductive portion to the tip of the solder grain (solder portion) is shown.
  • the height of the solder particles is preferably the average of the heights of the solder particles in one conductive particle.
  • the height of the solder particles is preferably an average value of the heights of the solder particles at five locations in the conductive particles.
  • the height of the solder grains can be measured as follows, for example.
  • the aspect ratio of the solder grains is preferably 0.05 or more, more preferably 0.47 or more, still more preferably 0.5 or more, preferably 5 or less, and more preferably 3 or less.
  • the aspect ratio of the solder particles is not less than the above lower limit and not more than the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively.
  • the aspect ratio of the solder grains is equal to or higher than the lower limit and lower than the upper limit, the solder grains can more easily form a metal bond with a joint portion such as an electrode, and the solder grains and the electrode or the like can be formed. A sufficient area with the joint can be secured.
  • the aspect ratio of the solder grains is the ratio of the height of the solder grains to the width of the solder grains (height of the solder grains / width of the solder grains), and is calculated from the height of the solder grains and the width of the solder grains. ..
  • the height of the solder particles is such that there is no solder particles (solder portion) on the line (broken line L1 shown in FIG. 1) connecting the center of the conductive particles and the tip of the solder particles (solder portion). The distance from the outer surface of the first conductive portion to the tip of the solder particles (solder portion) in the assumed case is shown.
  • the width of the solder particles is the distance obtained by connecting two points on the outer circumference of the solder particles (solder portion) with a straight line in a direction orthogonal to the line connecting the center of the conductive particles and the tip of the solder particles (solder portion). Indicates the maximum value.
  • the width of the solder particles is preferably the average of the widths of the solder particles in one conductive particle.
  • the width of the solder particles is preferably an average value of the widths of the solder particles at five locations in the conductive particles.
  • the width of the solder grains can be measured as follows, for example.
  • the width of the solder grains is preferably 250 nm or more, more preferably 500 nm or more, further preferably 650 nm or more, preferably 3000 nm or less, more preferably 1700 nm or less, still more preferably 1500 nm or less.
  • the width of the solder particles is not less than the above lower limit and not more than the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively.
  • the width of the solder grains is equal to or more than the lower limit and equal to or lower than the upper limit, the solder grains can more easily form a metal bond with a joint portion such as an electrode, which is superior to physical contact. Conductivity characteristics can be obtained, and the bonding strength can be further increased.
  • the method for forming the above solder grains is not particularly limited.
  • Examples of the method for forming the solder particles include a method by electroless plating and a method by electroplating.
  • the shape formed is not only film-like but also granular as plating.
  • the conductive particles preferably have a metal colloidal precipitate or a metal film on the outer surface of the solder particles.
  • the conductive particles may have a metal colloidal precipitate on the outer surface of the solder particles, or may have a metal film.
  • the melting points or metal diffusion temperatures of the solder particles (the solder portion) and the conductive portion can be changed to a temperature more suitable for the joint portion such as an electrode. be able to. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
  • the area of the metal colloidal precipitate or the portion where the metal film is present is preferably 5% or more, more preferably 40% or more in the total area of 100% of the solder grains. It is preferably 100% or less, more preferably 95% or less.
  • coverage coverage of metal colloidal precipitate or metal film
  • the melting point or metal diffusion temperature of the solder particles (solder portion) and the conductive portion is changed. It is possible to make the temperature more suitable for the joint portion such as an electrode. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
  • the area of the metal colloidal precipitate or the portion where the metal film is present (the coverage of the metal colloidal precipitate or the metal film) in 100% of the total surface area of the solder grains is the cross section of the solder grains in the conductive particles SEM-EDX. It can be calculated by analyzing, performing element mapping, and performing image analysis.
  • the metal species of the metal colloid precipitate or the metal film of the metal film is preferably nickel, cobalt, lead, gold, zinc, palladium, copper, silver, bismuth, or indium, and is preferably copper, silver, bismuth, or It is more preferably indium.
  • the melting points or metal diffusion temperatures of the solder grains (the solder portion) and the conductive portion can be changed. The temperature can be made more suitable for the joint portion such as an electrode. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
  • the metal colloid for obtaining the metal colloid deposit is preferably nickel colloid, cobalt colloid, lead colloid, gold colloid, zinc colloid, palladium colloid, copper colloid, silver colloid, bismuth colloid, or indium colloid.
  • the metal colloid for obtaining the metal colloidal precipitate is more preferably a copper colloid, a silver colloid, a bismuth colloid, or an indium colloid.
  • the metal film is preferably a nickel thin film, a cobalt thin film, a lead thin film, a gold thin film, a zinc thin film, a palladium thin film, a copper thin film, a silver thin film, a bismuth thin film, or an indium thin film.
  • the metal film is more preferably a copper thin film, a silver thin film, a bismuth thin film, or an indium thin film.
  • the melting point or the metal diffusion temperature of the solder grains (the solder portion) and the conductive portion can be changed, and the joint portion such as an electrode can be used. It can be a suitable temperature. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
  • the metal colloidal precipitate is preferably metal fine particles.
  • the particle size of the metal fine particles is preferably 1 nm or more, more preferably 10 nm or more, preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the thickness of the metal film is preferably 1 nm or more, more preferably 10 nm or more, preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the particle size of the metal colloidal precipitate or the thickness of the metal film can be measured, for example, as follows.
  • the method of arranging the metal colloidal precipitate or the metal film on the outer surface of the solder particles is not particularly limited.
  • a method of arranging the metal colloidal precipitate or the metal film on the outer surface of the solder grains a method by electroless plating, a method by electroplating, a method by physical collision, and a method by physical vapor deposition or physical adsorption And so on.
  • the conductive particles preferably have protrusions on the outer surface of the conductive portion.
  • the conductive particles preferably have protrusions on the conductive surface. It is preferable that the number of the protrusions is plurality.
  • An oxide film is often formed on the surface of the electrode that comes into contact with the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively removed by the protrusions by crimping the conductive particles and the electrode. Therefore, the electrode and the conductive portion are more reliably contacted with each other, the contact area between the conductive particles and the electrode can be sufficiently increased, and the connection resistance can be further effectively lowered.
  • the protrusions of the conductive particles can more effectively remove the binder between the conductive particles and the electrode. Therefore, the contact area between the conductive particles and the electrodes can be sufficiently increased, and the connection resistance can be lowered even more effectively.
  • the protrusions are different from the solder particles described above.
  • the protrusions are used to remove conductive particles and an oxide film existing on the surface of the electrode, and to remove a binder between the conductive particles and the electrode.
  • a method of forming a conductive portion by electroless plating after adhering a core substance to the surface of the base material particles As a method of forming the above-mentioned protrusions, a method of forming a conductive portion by electroless plating after adhering a core substance to the surface of the base material particles, and a method of forming a conductive portion by electroless plating on the surface of the base material particles. After that, a method of adhering a core substance and further forming a conductive portion by electroless plating can be mentioned. Further, the core material may not be used to form the protrusions.
  • a method of adding a core substance in the middle of forming a conductive portion on the surface of the base material particles can be mentioned. Further, in order to form protrusions, a conductive portion is formed on the substrate particles by electroless plating without using the above-mentioned core substance, and then plating is deposited in a protrusion shape on the surface of the conductive portion, and further electroless plating is performed. You may use the method of forming the conductive part by
  • the core substance is added to the dispersion liquid of the base particle, and the core substance is accumulated and adhered to the surface of the base particle by van der Waals force.
  • Examples thereof include a method in which a core substance is added to a container containing the base material particles, and the core substance is attached to the surface of the base material particles by a mechanical action such as rotation of the container.
  • the method of adhering the core substance to the surface of the base material particles is a method of accumulating and adhering the core substance to the surface of the base material particles in the dispersion liquid. preferable.
  • Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance.
  • Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene and the like.
  • Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of more effectively removing the oxide film, the core material is preferably hard. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the core material is preferably a metal.
  • the above metals are not particularly limited.
  • the metals include metals such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys.
  • examples thereof include alloys composed of two or more kinds of metals such as tin-copper alloy, tin-silver alloy, tin-lead-silver alloy and tungsten carbide.
  • the metal is preferably nickel, copper, silver or gold.
  • the metal may be the same as or different from the metal constituting the conductive portion (conductive layer).
  • the shape of the core substance is not particularly limited.
  • the shape of the core material is preferably lumpy.
  • Examples of the core material include particulate lumps, agglomerates in which a plurality of fine particles are agglomerated, and amorphous lumps.
  • the particle size of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the particle size of the core substance is not less than the above lower limit and not more than the upper limit, the connection resistance between the electrodes can be further effectively reduced.
  • the particle size of the core material is preferably an average particle size, and more preferably a number average particle size.
  • the particle size of the core material can be obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope, calculating the average value of the particle size of each core material, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each core substance is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 core materials in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each core substance is obtained as the particle size in the equivalent diameter of a sphere.
  • the average particle size of the core material is preferably calculated using a particle size distribution measuring device.
  • the number of the protrusions per the conductive particles is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of protrusions is not particularly limited.
  • the upper limit of the number of protrusions can be appropriately selected in consideration of the particle size of the conductive particles and the like. When the number of the protrusions is at least the above lower limit, the connection resistance between the electrodes can be further effectively reduced.
  • the number of protrusions can be calculated by observing arbitrary conductive particles with an electron microscope or an optical microscope.
  • the number of protrusions is preferably determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average value of the number of protrusions in each conductive particle.
  • the height of the protrusion is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the connection resistance between the electrodes can be further effectively reduced.
  • the height of the protrusions can be calculated by observing the protrusions on any conductive particle with an electron microscope or an optical microscope.
  • the height of the protrusions is preferably calculated by calculating the average value of the heights of all the protrusions per conductive particle as the height of the protrusions of one conductive particle.
  • the height of the protrusions is preferably obtained by calculating the average value of the heights of the protrusions of each of the conductive particles for 50 arbitrary conductive particles.
  • the conductive particles preferably include an insulating substance arranged on the outer surface of the conductive portion.
  • an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between the electrodes adjacent to each other in the lateral direction rather than between the upper and lower electrodes.
  • the insulating substance is preferably insulating particles because the insulating substance can be more easily removed during crimping between the electrodes.
  • Examples of the material of the insulating substance include the above-mentioned organic material, the above-mentioned inorganic material, and the above-mentioned inorganic substance as the material of the base particle.
  • the material of the insulating substance is preferably the organic material described above.
  • insulating substance examples include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, thermosetting resins and water-soluble materials. Examples include resin.
  • As the material of the insulating substance only one kind may be used, or two or more kinds may be used in combination.
  • Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate.
  • Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers.
  • thermosetting resin examples include epoxy resin, phenol resin, melamine resin and the like.
  • crosslinked product of the thermoplastic resin examples include the introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like.
  • a chain transfer agent may be used to adjust the degree of polymerization. Examples of the chain transfer agent include thiols and carbon tetrachloride.
  • Examples of the method of arranging the insulating substance on the surface of the conductive portion include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping and vacuum deposition method. From the viewpoint of further effectively enhancing the insulation reliability and the conduction reliability when the electrodes are electrically connected, the method of arranging the insulating substance on the surface of the conductive portion is a physical method. It is preferable to have.
  • the outer surface of the conductive portion and the outer surface of the insulating substance may each be coated with a compound having a reactive functional group.
  • the outer surface of the conductive portion and the outer surface of the insulating substance may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating substance via a polymer electrolyte such as polyethyleneimine.
  • the particle size of the insulating particle can be appropriately selected depending on the particle size of the conductive particle, the application of the conductive particle, and the like.
  • the particle size of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 300 nm or more, particularly preferably 500 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, still more preferably 1500 nm or less. , Especially preferably 1000 nm or less.
  • the particle size of the insulating particles is at least the above lower limit, it becomes difficult for the conductive portions of the plurality of conductive particles to come into contact with each other when the conductive particles are dispersed in the binder.
  • the particle size of the insulating particles is not more than the above upper limit, it is not necessary to increase the pressure too much in order to eliminate the insulating particles between the electrodes and the conductive particles when connecting the electrodes, and the temperature is high. There is no need to heat it.
  • the particle size of the insulating particles is preferably an average particle size, and preferably a number average particle size.
  • the particle size of the insulating particles can be obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each insulating particle, or using a particle size distribution measuring device. Be done. In observation with an electron microscope or an optical microscope, the particle size of each insulating particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 insulating particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere.
  • the particle size of each insulating particle is obtained as the particle size in the equivalent diameter of a sphere.
  • the average particle size of the insulating particles is preferably calculated using a particle size distribution measuring device.
  • it can be measured as follows.
  • Conductive particles are added to "Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin body for conducting conductive particle inspection.
  • a cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the dispersed conductive particles in the embedded resin body for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-SEM field emission scanning electron microscope
  • 50 conductive particles are randomly selected, and the insulating particles of each conductive particle are observed.
  • the particle size of the insulating particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the insulating particles.
  • the conductive material according to the present invention includes conductive particles and a binder.
  • the conductive particles are the conductive particles described above.
  • the conductive particles are preferably dispersed in a binder and used, and preferably dispersed in a binder and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a conductive material for circuit connection. Since the above-mentioned conductive particles are used in the above-mentioned conductive material, the connection resistance between the electrodes can be further effectively lowered, and the occurrence of aggregation between the conductive particles can be further effectively suppressed. be able to. Since the above-mentioned conductive particles are used in the above-mentioned conductive material, the conduction reliability can be further effectively enhanced when the electrodes are electrically connected, and the insulation reliability can be further enhanced. Can be effectively enhanced.
  • the above binder is not particularly limited.
  • a known insulating resin or solvent can be used.
  • the binder preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • binder examples include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, elastomers, solvents and the like. Only one kind of the binder may be used, or two or more kinds may be used in combination.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like.
  • examples of the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins.
  • examples of the curable resin include epoxy resin, urethane resin, polyimide resin, and unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene-styrene.
  • examples include a hydrogenated additive of a block copolymer.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • Examples of the solvent include water and organic solvents.
  • Organic solvents are preferred because they can be easily removed.
  • Examples of the organic solvent include alcohol compounds such as ethanol, ketone compounds such as acetone, methyl ethyl ketone and cyclohexanone, aromatic hydrocarbon compounds such as toluene, xylene and tetramethylbenzene, cellosolve, methyl cellosolve, butyl cellosolve, carbitol and methylcarbitol.
  • Butyl carbitol propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether and other glycol ether compounds, ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol.
  • Ester compounds such as acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate and propylene carbonate, aliphatic hydrocarbon compounds such as octane and decane, and petroleum solvents such as petroleum ether and naphtha. Can be mentioned.
  • the conductive material includes, for example, a filler, a bulking agent, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • a filler for example, a filler, a bulking agent, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer.
  • UV absorbers, lubricants, antistatic agents, flame retardants and other various additives may be included.
  • the method for dispersing the conductive particles in the binder can be a conventionally known dispersion method and is not particularly limited.
  • Examples of the method for dispersing the conductive particles in the binder include the following methods. A method in which the conductive particles are added to the binder and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder, and kneaded and dispersed by a planetary mixer or the like. A method in which the binder is diluted with water or an organic solvent, the conductive particles are added, and the particles are kneaded and dispersed with a planetary mixer or the like.
  • the viscosity ( ⁇ 25) of the conductive material at 25 ° C. is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, and more preferably 300 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be appropriately adjusted depending on the type and amount of the compounding components.
  • the viscosity ( ⁇ 25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the conductive material according to the present invention can be used as a conductive paste, a conductive film, or the like.
  • the conductive material according to the present invention is a conductive film
  • a film containing no conductive particles may be laminated on the conductive film containing the conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, and preferably 70% by weight or more. It is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes can be further effectively enhanced. be able to.
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes is further effective. Can be enhanced to.
  • the conductive material may contain a flux. By using the flux, the continuity reliability can be further effectively improved when the electrodes are electrically connected.
  • the above flux is not particularly limited.
  • As the flux a flux generally used for solder bonding or the like can be used.
  • the flux includes zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, a hydrazine, an amine compound, an organic acid and the like.
  • Examples include pine fat. Only one type of the above flux may be used, or two or more types may be used in combination.
  • Examples of the molten salt include ammonium chloride and the like.
  • Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid and glutaric acid.
  • Examples of the above-mentioned pine resin include activated pine resin and non-activated pine resin.
  • the flux is preferably an organic acid having two or more carboxyl groups or pine resin.
  • the flux may be an organic acid having two or more carboxyl groups, or may be pine resin. By using an organic acid or pine resin having two or more carboxyl groups, the conduction reliability between the electrodes is further improved.
  • organic acid having two or more carboxyl groups examples include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.
  • Examples of the amine compound include cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, imidazole, benzimidazole, phenylimidazole, carboxybenzoimidazole, benzotriazole, and carboxybenzotriazole.
  • the above pine resin is a rosin containing abietic acid as the main component.
  • the rosins include abietic acid and acrylic-modified rosins.
  • the flux is preferably rosins, more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further increased.
  • the active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, still more preferably 160 ° C. or higher. ° C. or lower, more preferably 150 ° C. or lower, even more preferably 140 ° C. or lower.
  • the active temperature (melting point) of the flux is preferably 80 ° C. or higher and 190 ° C. or lower.
  • the active temperature (melting point) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
  • the active temperature (melting point) of the flux is 80 ° C. or higher and 190 ° C. or lower.
  • the flux include succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), and pimeric acid (melting point 104 ° C.).
  • °C Dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.
  • the boiling point of the flux is preferably 200 ° C. or lower.
  • the flux may be dispersed in the conductive material or may be adhered to the surface of the conductive particles. From the viewpoint of further effectively enhancing the conduction reliability when the electrodes are electrically connected, the flux is preferably adhered to the surface of the conductive particles.
  • the flux is preferably a salt of an acid compound and a base compound.
  • the acid compound is preferably an organic compound having a carboxyl group.
  • the acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, citric acid, malic acid and cyclic aliphatic carboxylic acid, which are aliphatic carboxylic acids.
  • examples thereof include cyclohexylcarboxylic acid, 1,4-cyclohexyldicarboxylic acid, isophthalic acid which is an aromatic carboxylic acid, terephthalic acid, trimellitic acid, ethylenediamine tetraacetic acid and the like.
  • the acid compound is preferably glutaric acid, cyclohexylcarboxylic acid, or adipic acid.
  • the above basic compound is preferably an organic compound having an amino group.
  • the basic compound include diethanolamine, triethanolamine, methyldiethanolamine, ethyldiethanolamine, cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, 2-methylbenzylamine, 3-methylbenzylamine, and 4-tert-butylbenzylamine. , N-Methylbenzylamine, N-ethylbenzylamine, N-phenylbenzylamine, N-tert-butylbenzylamine, N-isopropylbenzylamine, N, N-dimethylbenzylamine, imidazole compounds, and triazole compounds. .. From the viewpoint of further effectively enhancing the conduction reliability, the basic compound is preferably benzylamine.
  • the content of the flux in 100% by weight of the conductive material is preferably 0.5% by weight or more, preferably 30% by weight or less, and more preferably 25% by weight or less.
  • the content of the flux is at least the above lower limit and at least the above upper limit, it becomes more difficult to form an oxide film on the surface of the electrode, and further, the oxide film formed on the surface of the electrode is removed more effectively. it can.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It includes a connecting portion that connects to the second connection target member.
  • the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder.
  • the conductive particles are the above-mentioned conductive particles.
  • the first electrode and the second electrode are electrically connected by the conductive particles.
  • FIG. 9 is a front sectional view schematically showing a connection structure using conductive particles according to a fourth embodiment of the present invention.
  • connection structure 81 shown in FIG. 9 connects the first connection target member 82, the second connection target member 83, and the first connection target member 82 and the second connection target member 83.
  • a unit 84 is provided.
  • the connecting portion 84 is formed of a conductive material containing the conductive particles 21. In FIG. 9, the conductive particles 21 are shown schematicly for convenience of illustration.
  • the first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface).
  • the second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface).
  • the first electrode 82a and the second electrode 83a are electrically connected by one or more conductive particles 21. Therefore, the first connection target member 82 and the second connection target member 83 are electrically connected by the conductive particles 21.
  • the method for manufacturing the connection structure is not particularly limited.
  • the conductive material is arranged between the first connection target member and the second connection target member, and after obtaining a laminate, the laminate is heated. And a method of pressurizing and the like.
  • the conductive portion (solder portion) of the conductive particles 21 is melted, and the electrodes are electrically connected by the conductive particles 21.
  • the binder contains a thermosetting compound
  • the thermosetting compound is thermosetting
  • the thermosetting cured product connects the first connection target member and the second connection target member.
  • a connection is formed.
  • the pressurizing pressure is 9.8 ⁇ 10 4 Pa to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is 120 ° C to 220 ° C.
  • FIG. 10 is a front sectional view schematically showing an enlarged connection portion between the conductive particles and the electrodes in the connection structure shown in FIG.
  • the second conductive portion (solder portion) 22B of the conductive particles 21 is melted by heating and pressurizing the laminated body, and then the second conductive portion is melted.
  • the portion (solder portion) portion 22Ba is in sufficient contact with the first electrode 82a and the second electrode 83a. That is, by using the conductive particles 21 whose surface layer is the solder portion, the conductive particles 21 are compared with the case where the surface layer of the conductive layer is a metal such as nickel, gold or copper.
  • the contact area between the first electrode 82a and the second electrode 83a is increased. Therefore, the continuity reliability of the connection structure 81 is increased.
  • the first connection target member and the second connection target member are not particularly limited.
  • Specific examples of the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards.
  • the first connection target member and the second connection target member are preferably electronic components.
  • the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes.
  • the electrodes are preferably gold electrodes, nickel electrodes, tin electrodes, silver electrodes or copper electrodes.
  • the electrodes are preferably aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes or tungsten electrodes.
  • the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
  • Example 1 Preparation of Conductive Particle 1: Divinylbenzene copolymer resin particles (“Micropearl SP-220, particle diameter 20 ⁇ m” manufactured by Sekisui Chemical Co., Ltd.) were prepared as the base particles (S1).
  • Divinylbenzene copolymer resin particles (“Micropearl SP-220, particle diameter 20 ⁇ m” manufactured by Sekisui Chemical Co., Ltd.) were prepared as the base particles (S1).
  • the base material particles (S1) 10 parts by weight of the base material particles (S1) are dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of the palladium catalyst solution by an ultrasonic disperser, and then the base material particles (S1) are taken out by filtering the solution. It was. Next, the base particle (S1) was added to 100 parts by weight of a 1 wt% dimethylamine borane solution to activate the surface of the substrate particle (S1). The surface-activated substrate particles (S1) were thoroughly washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a suspension (A1).
  • the suspension (A1) was placed in a solution containing 25 g / L of nickel sulfate, 15 ppm of thallium nitrate and 10 ppm of bismuth nitrate to obtain a particle mixture (B1).
  • a nickel plating solution (C1) (pH 5.5) containing 100 g / L of nickel sulfate, 40 g / L of sodium hypophosphite, 15 g / L of sodium citrate, 25 ppm of thallium nitrate, and 10 ppm of bismuth nitrate was prepared.
  • an electroless tin plating solution for forming solder grains a mixed solution containing 15 g / L of tin sulfate, 45 g / L of ethylenediaminetetraacetic acid, and 1.5 g / L of phosphinic acid was adjusted to pH 8.5 with sodium hydroxide.
  • a tin plating solution (D1) was prepared.
  • a reducing solution (E1) in which a solution containing 5 g / L of sodium borohydride was adjusted to pH 10.0 with sodium hydroxide was prepared.
  • the nickel plating solution (C1) was gradually added dropwise to the particle mixture (B1) at 50 ° C. in which the particles were dispersed, and electroless nickel plating was performed. Electroless nickel plating was performed with a dropping rate of the nickel plating solution (C1) of 12.5 mL / min and a dropping time of 30 minutes (Ni plating step). In this way, a particle mixed solution (F1) containing particles having a nickel-phosphorus alloy conductive portion as a first conductive portion on the surface of the base particle S1 was obtained.
  • the particles were taken out by filtering the particle mixture (F1) and washed with water to obtain particles in which the nickel-phosphorus alloy conductive portion was arranged on the surface of the base particle S1. After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (G1).
  • the tin plating solution (D1) was gradually added to the particle mixture (G1) at 60 ° C. in which the particles were dispersed.
  • the reducing liquid (E1) was added dropwise to perform electroless tin plating.
  • the dropping rate of the reducing solution (E1) was 0.5 mL / min, the dropping time was 40 minutes, and then stirring was performed for 10 minutes to perform electroless tin plating.
  • the particles are taken out by filtration, washed with water, and dried to obtain a nickel-phosphorus alloy conductive portion and a tin conductive portion (solder particles) (the entire conductive portion in a portion without solder particles) on the surface of the base particle S1.
  • the conductive particles 1 having a thickness of 0.1 ⁇ m and a height of solder grains: 0.6 ⁇ m) were obtained.
  • Example 2 Preparation of conductive particles 2: The suspension (A1) of Example 1 was prepared.
  • the suspension (A1) is placed in a solution containing 2 g / L of potassium gold cyanide, 10 g / L of sodium citrate, 0.5 g / L of ethylenediaminetetraacetic acid, and 5 g / L of sodium hydroxide. (B2) was obtained.
  • the electroless gold plating solution includes potassium gold cyanide 10 g / L, sodium citrate 20 g / L, tallium nitrate 5 ppm, ethylenediamine tetraacetic acid 3.0 g / L, sodium hydroxide 20 g / L, and dimethylamine borane 10 g / L.
  • a gold plating solution (C2) (pH 8.0) containing L was prepared.
  • the tin solution for forming solder grains the tin plating solution (D1) and the reducing solution (E1) of Example 1 were prepared.
  • the gold plating solution (C2) was gradually added dropwise to the particle mixture (B2) at 60 ° C. in which the particles were dispersed, and electroless gold plating was performed. Electroless gold plating was performed with a dropping rate of the gold plating solution (C2) of 2 mL / min and a dropping time of 45 minutes. In this way, a particle mixed solution (D2) containing particles in which a gold metal portion is arranged as a first conductive portion on the surface of the base particle S1 was obtained.
  • the particles were taken out by filtering the particle mixture (D2) and washed with water to obtain particles in which the gold conductive portion was arranged on the surface of the base particle S1. After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (E2).
  • the tin plating solution (D1) and the reducing solution (E1) are used in the same manner as in Example 1 to form solder particles, and a particle mixture containing the particles in which the solder particles are formed on the gold conductive portion. (F2) was obtained.
  • the particles were taken out by filtering the particle mixture (F2) and washed with water to obtain particles in which the gold conductive portion was arranged on the surface of the base particle S1 and the solder particles were formed. .. After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (G2).
  • the gold plating solution (C2) was gradually added dropwise to the particle mixture (G2) at 60 ° C. in which the particles were dispersed, and electroless gold plating was performed. Electroless gold plating was performed with a dropping rate of the gold plating solution (C2) of 1 mL / min and a dropping time of 1 minute. Then, the particles are taken out by filtration, washed with water, and dried to form a gold conductive portion (thickness of the entire conductive portion: 0.1 ⁇ m) and solder particles (height of solder particles: height: 0.1 ⁇ m) on the surface of the base particle S1. Conductive particles 2 having a gold thin film (thickness of metal film: 0.01 ⁇ m) on top of 0.6 ⁇ m) were obtained.
  • Example 3 Preparation of Conductive Particles 3: In the same manner as in Example 1, conductive particles having a nickel-phosphorus alloy conductive portion and solder particles as base particles were obtained. The obtained conductive particles were added to 500 parts by weight of distilled water and dispersed to obtain a suspension (A3).
  • a silver plating solution (B3) prepared by adjusting a mixed solution of silver nitrate 30 g / L, succinate imide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia was prepared. ..
  • suspension (A3) at 60 ° C. was mixed with the silver plating solution (B3) and dispersed to obtain a particle mixture (C3).
  • the silver plating solution (B3) was gradually added dropwise to the particle mixture (C3) at 60 ° C. in which the particles were dispersed, and electroless silver plating was performed. Electroless plating was performed with a dropping rate of the silver plating solution (B3) of 10 mL / min and a dropping time of 10 minutes. Then, the particles are taken out by filtration, washed with water, and dried to form a nickel-phosphorus alloy conductive portion (thickness of the entire conductive portion: 0.1 ⁇ m) and solder particles (solder particles of the solder particles) on the surface of the base material particles S1. Conductive particles 3 having a silver thin film (thickness of metal film: 0.01 ⁇ m) on top of (height: 0.6 ⁇ m) were obtained.
  • Example 4 Preparation of Conductive Particles 4: The suspension (A3) of Example 3 was prepared.
  • a silver solution (B4) was prepared in which a mixed solution containing 1 g / L of silver nitrate, 30 g / L of ethylenediaminetetraacetic acid, and 20 ppm of polyethylene glycol (molecular weight 6000) was adjusted to pH 11 with sodium hydroxide as a silver solution.
  • a solution containing 10 g / L of sodium borohydride and 40 g / L of sodium hydroxide was prepared as a reducing solution (D4) for forming a metal colloidal precipitate.
  • suspension (A3) was mixed with the silver solution (B4) and dispersed to obtain a particle mixture (C4).
  • Example 5 Preparation of Conductive Particles 5: The suspension (A3) of Example 3 was prepared.
  • an indium solution (B5) was prepared in which a mixed solution containing 5 g / L of indium chloride, 40 g / L of ethylenediaminetetraacetic acid, and 0.01 g / L of polyvinylpyrrolidone was adjusted to pH 10 with sodium hydroxide.
  • the reducing liquid (D4) for forming a colloidal precipitate of Example 4 was prepared.
  • the suspension (A3) was mixed with the indium solution (B5) and dispersed to obtain a particle mixture (C5).
  • Example 6 Preparation of Conductive Particles 6: The suspension (A3) of Example 3 was prepared.
  • the reducing liquid (D4) for forming a metal colloidal precipitate of Example 4 was prepared.
  • the suspension (A3) was mixed with the copper solution (B6) and dispersed to obtain a particle mixture (C6).
  • Example 7 Preparation of Conductive Particles 7: As a non-electrolytic tin plating solution for forming solder grains, a mixed solution containing 15 g / L of tin sulfate, 45 g / L of ethylenediamine tetraacetic acid, 1.5 g / L of phosphinic acid, and 10 g / L of trehalose dihydrate was added to sodium hydroxide. A tin plating solution (B7) adjusted to pH 9.0 was prepared.
  • Conductive particles 7 were obtained in the same manner as in Example 1 except that the electroless tin plating solution for forming solder grains (D1) was changed to the electroless tin plating solution for forming solder grains (B7). Thickness of the entire conductive part in the portion without solder grains: 0.2 ⁇ m, height of solder grains: 0.9 ⁇ m).
  • Preparation of conductive particles 8 (1) Preparation of Silicone Oligomer 1 part by weight of 1,3-divinyltetramethyldisiloxane and 20 parts by weight of 0.5% by weight p-toluenesulfonic acid aqueous solution were placed in a 100 ml separable flask placed in a warm bath. I put it in. After stirring at 40 ° C. for 1 hour, 0.05 parts by weight of sodium hydrogen carbonate was added.
  • aqueous solution B was prepared by mixing with 80 parts by weight of a 5% by weight aqueous solution of "Gosenol GH-20" manufactured by Synthetic Chemical Co., Ltd. The solution A was placed in a separable flask placed in a warm bath, and then the aqueous solution B was added.
  • emulsification was carried out by using a Shirasu Porous Glass (SPG) membrane (pore average diameter of about 1 ⁇ m). Then, the temperature was raised to 85 ° C., and polymerization was carried out for 9 hours. The entire amount of the polymerized particles was washed with water by centrifugation and freeze-dried. After drying, the particles are pulverized with a ball mill until the agglomerates of the particles have the desired ratio (average secondary particle diameter / average primary particle diameter) to obtain silicone particles (base particle S2) having a particle diameter of 3.0 ⁇ m. Obtained.
  • SPG Shirasu Porous Glass
  • Conductive particles 8 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S2.
  • Example 9 Preparation of Conductive Particles 9: Silicone particles with a particle size of 3.0 ⁇ m (group) in the same manner as in Example 8 except that acrylic silicone oil at both ends (“X-22-2445” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the silicone oligomer. Material particles S3) were obtained.
  • Conductive particles 9 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S3.
  • Example 10 Preparation of Conductive Particles 10: A base particle S4 having a particle diameter of 3.0 ⁇ m, which differs from the base particle S1 only in particle diameter, was prepared.
  • Conductive particles 10 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S4.
  • Conductive particles 11 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S5.
  • Conductive particles 12 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S6.
  • Example 13 Preparation of Conductive Particles 13: The suspension (A1) of Example 1 was prepared.
  • a nickel plating solution (C1) electroless nickel plating was performed in the same manner as in Example 1, and a nickel-phosphorus alloy was used as a first conductive portion on the surface of the base particle containing the metallic nickel core material.
  • a particle mixture (F13) containing particles having a conductive portion was obtained.
  • the particles are taken out by filtering the particle mixed solution (F13) and washed with water, so that the nickel-phosphorus alloy conductive portion containing the metallic nickel core substance is arranged on the surface of the base particle S1.
  • the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (G13).
  • Example 2 the tin plating solution (D1) and the reducing solution (E1) were used to form solder particles, and the solder particles were formed on the nickel-phosphorus alloy conductive portion. A particle mixture (H13) containing the above was obtained.
  • the particles are taken out by filtration, washed with water, and dried to obtain a nickel-phosphorus alloy conductive portion containing a core substance on the surface of the base particle S1 (thickness of the entire conductive portion in the portion without the core substance: 0).
  • Conductive particles 13 having .1 ⁇ m) and solder particles (solder particle height: 0.6 ⁇ m) were obtained.
  • Conductive particles 14 were obtained in the same manner as in Example 13 except that the metallic nickel particle slurry was changed to the titanium oxide particle slurry.
  • Example 15 Preparation of Conductive Particles 15: An alumina particle slurry (average particle diameter 150 nm) was prepared.
  • Conductive particles 15 were obtained in the same manner as in Example 13 except that the metal nickel particle slurry was changed to the alumina particle slurry.
  • Example 16 Preparation of Conductive Particles 16: A 1000 mL separable flask equipped with a 4-port separable cover, a stirring blade, a three-way cock, a cooling tube and a temperature probe was prepared. In the separable flask, 100 mmol of methyl methacrylate, 1 mmol of N, N, N-trimethyl-N-2-methacryloyloxyethylammonium chloride, and 1 mmol of 2,2'-azobis (2-amidinopropane) dihydrochloride are placed. The monomer composition containing the mixture was weighed in ion-exchanged water so that the solid content was 5% by weight.
  • the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, the reaction was freeze-dried to obtain insulating particles having an ammonium group on the surface, having an average particle diameter of 220 nm and a CV value of 10%.
  • Insulating particles were dispersed in ion-exchanged water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion of insulating particles.
  • Example 2 10 g of the conductive particles obtained in Example 1 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtering with a mesh filter of 30 ⁇ m, the mixture was further washed with methanol and dried to obtain conductive particles 16 to which insulating particles were attached.
  • Example 17 Preparation of Conductive Particles 17: In the same manner as in Example 1 except that the dropping time of the reducing liquid (E1) was changed to 20 minutes, the nickel-phosphorus alloy conductive portion and the tin conductive portion (solder particles) (solder) were placed on the surface of the base particle S1. Conductive particles 17 having the thickness of the entire conductive portion in the portion without particles: 0.1 ⁇ m and the height of the solder particles: 0.3 ⁇ m) were obtained.
  • the electroless tin plating solution includes tin chloride 20 g / L, nitrilotriacetic acid 50 g / L, thiourea 2 g / L, thioalic acid 1 g / L, ethylenediaminetetraacetic acid 7.5 g / L, and titanium trichloride 15 g / L.
  • a tin plating solution (d1) was prepared by adjusting the pH of the mixed solution containing the above to 7.0 with sulfuric acid.
  • the tin plating solution (d1) was gradually added dropwise to the particle mixture (G1) at 70 ° C. in which the particles were dispersed, and electroless tin plating was performed. Electroless tin plating was performed with a dropping rate of the tin plating solution (d1) of 30 mL / min and a dropping time of 20 minutes. Then, the particles are taken out by filtration, washed with water, and dried to provide a nickel-phosphorus alloy conductive portion and a tin conductive portion (thickness of the entire conductive portion: 0.3 ⁇ m) on the surface of the base particle S1. Sex particles A were obtained.
  • Electroless tin plating was performed in the same manner as in Comparative Example 1, and a nickel-phosphorus alloy conductive portion and a tin conductive portion containing a core material on the surface of the base particle S1 (thickness of the entire conductive portion in the portion without the core material: 0). Conductive particles B having a thickness of .3 ⁇ m) were obtained.
  • a transparent glass substrate having a copper electrode pattern having an L / S of 200 ⁇ m / 200 ⁇ m on the upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern having an L / S of 200 ⁇ m / 200 ⁇ m on the lower surface was prepared.
  • An anisotropic conductive paste immediately after production was applied onto the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chips were laminated on the anisotropic conductive paste layer so that the electrodes face each other.
  • the pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 0.5 MPa is applied to the anisotropic conductive paste.
  • the layer was cured at 250 ° C. to give a connection structure.
  • connection structure the metal diffusion state of the conductive part was determined by observing the cross section of the connection structure.
  • EDX energy dispersive X-ray analyzer
  • connection part In the connection part, the conductive part in the conductive particles is metal diffused with the copper electrode pattern and the gold electrode pattern.
  • B In the connection part, the conductive part in the conductive particles is the copper electrode pattern, the gold electrode pattern and the metal. Not spread
  • connection structure obtained in the evaluation of (1) above was prepared.
  • the prepared connection structure was placed in "Technobit 4000” manufactured by Kulzer and cured to prepare an embedded resin body for inspection of the connection structure.
  • a cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the connection structure in the embedded resin body for inspection.
  • the melt-deformed state of the conductive portion was determined according to the following criteria.
  • connection structure obtained in the evaluation of (1) above was prepared.
  • the prepared connection structure was placed in "Technobit 4000” manufactured by Kulzer and cured to prepare an embedded resin body for inspection of the connection structure.
  • a cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the connection structure in the embedded resin body for inspection.
  • the bonding state of the conductive portion was confirmed by observing the cross section of the obtained connection structure using a scanning electron microscope (FE-SEM).
  • the bonding state of the conductive portion was determined according to the following criteria.
  • connection part In the connection part, 5 or more of 10 conductive particles are melt-deformed and then solidified and bonded to the electrode.
  • B 1 out of 10 conductive particles in the connection part. In the above 5 or less particles, the conductive part is melt-deformed and then solidified and bonded to the electrode.
  • C Among the 10 conductive particles, there are no particles in which the conductive part is melt-deformed, only metal diffusion. Bonded to the electrode D: None of the 10 conductive particles are bonded in the connection
  • Particle Diameter of Conductive Particles The particle diameter of the obtained conductive particles was calculated using a particle size distribution measuring device (“Multisizer 4” manufactured by Beckman Coulter). Specifically, it was obtained by measuring the particle diameters of about 100,000 conductive particles and calculating the average value.
  • Thickness of Conductive Part The obtained conductive particles were added to "Technobit 4000” manufactured by Kulzer and dispersed so as to have a content of 30% by weight to prepare an embedded resin body for inspection. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-TEM field emission transmission electron microscope
  • Small agglutination means agglutination in which 4 or less particles are connected by a plating film
  • large agglutination means agglutination in which 5 or more particles are connected by a plating film.
  • FE-SEM field emission scanning electron microscope
  • the aspect ratio of solder grains is the ratio of the height of the solder grains to the width of the solder grains (height of the solder grains / width of the solder grains), and the height of the solder grains and the width of the solder grains. It was calculated from the width of.
  • the width of the solder grains was measured as follows.
  • An embedded resin body for conducting conductive particle inspection was prepared by adding and dispersing the obtained conductive particles to "Technobit 4000" manufactured by Kulzer so that the content was 30% by weight.
  • a cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.
  • FE-SEM field emission scanning electron microscope
  • Conductive particles 2 ... Base particles 3 ... Conductive parts 3A ... First conductive parts 3B ... Second conductive parts (solder parts) 11 ... Conductive particles 12 ... Conductive part 12A ... Conductive part of the first a 12B ... Conductive part of the first b 12C ... Second conductive part (solder part) 21 ... Conductive particles 22 ... Conductive part 22A ... First conductive part 22B ... Second conductive part (solder part) 22Ba ... Melted second conductive part (solder part) 31 ... Conductive particles 32 ... Conductive part 32A ... First conductive part 32B ... Second conductive part (solder part) 32C ... Third conductive part 41 ... Conductive particles 42 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Provided are conductive particles that can effectively suppress occurrence of aggregation thereamongst. The conductive particles according to the present invention are each provided with a base material particle, and a conductive part disposed on the surface of the base material particle, wherein: the conductive part includes a component that enables metal diffusion at 400ºC or lower, or can be melted and deformed at 400ºC or lower; the conductive part includes solder parts; and the area proportion of a portion having the solder parts is 99% or less with respect to a total surface area proportion of 100% of the base material particle.

Description

導電性粒子、導電材料及び接続構造体Conductive particles, conductive materials and connecting structures
 本発明は、基材粒子の表面上に導電部が配置されている導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to conductive particles in which a conductive portion is arranged on the surface of the base particles. The present invention also relates to a conductive material and a connecting structure using the above conductive particles.
 コネクタ(第1の部材)とプリント配線板(第2の部材)とがピンにより電気的に接続された電子部品が広く知られている。上記電子部品では、上記ピンは上記プリント配線板に形成されたスルーホール等に挿入されたり、配線板上の電極部に直接配置されたりして、はんだ付けにより上記プリント配線板に接続されている。 Electronic components in which a connector (first member) and a printed wiring board (second member) are electrically connected by pins are widely known. In the electronic component, the pin is inserted into a through hole or the like formed in the printed wiring board, or is directly arranged on the electrode portion on the wiring board, and is connected to the printed wiring board by soldering. ..
 下記の特許文献1には、一端側が第1の部材(10)に接続された複数本のピン(20)の他端側を、整列部材(50)を用いて整列させるとともに第2の部材(30)に接続する電子部品の接続構造が開示されている。上記電子部品の接続構造では、上記整列部材(50)は、軸方向(A)の外周部にて上記ピン(20)を整列させた後、上記軸方向(A)を基準に回転して上記ピン(20)から離脱し、上記ピン(20)から取り除かれる。 In Patent Document 1 below, the other ends of a plurality of pins (20) whose one end is connected to the first member (10) are aligned by using the aligning member (50), and the second member ( The connection structure of the electronic component connected to 30) is disclosed. In the connection structure of the electronic components, the alignment member (50) is rotated with reference to the axial direction (A) after aligning the pins (20) at the outer peripheral portion in the axial direction (A). It separates from the pin (20) and is removed from the pin (20).
特開2000-294997号公報Japanese Unexamined Patent Publication No. 2000-294997
 近年、電子デバイスの薄型化及び小型化が進行している。このため、基板と電子部品との接続において、従来のピンによる接続では、狭ピッチ化に対応することが困難である。そこで、基板と電子部品との電気的な接続に、はんだペースト等が用いられることがある。 In recent years, electronic devices have been made thinner and smaller. Therefore, in the connection between the substrate and the electronic component, it is difficult to cope with the narrowing of the pitch by the conventional pin connection. Therefore, solder paste or the like may be used for electrical connection between the substrate and the electronic component.
 しかしながら、従来のはんだペーストでは、はんだ粒子同士の凝集が発生することがある。 However, with conventional solder paste, agglomeration of solder particles may occur.
 本発明の目的は、導電性粒子同士の凝集の発生を効果的に抑制することができる導電性粒子を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is to provide conductive particles capable of effectively suppressing the occurrence of aggregation between conductive particles. Another object of the present invention is to provide a conductive material and a connecting structure using the above conductive particles.
 本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置された導電部とを備え、前記導電部が400℃以下で金属拡散し得る成分を含むか、又は、前記導電部が400℃以下で溶融変形可能であり、前記導電部が、はんだ部を有し、前記基材粒子の全表面積100%中、前記はんだ部がある部分の面積が99%以下である、導電性粒子が提供される。 According to a broad aspect of the present invention, the base particles are provided with a base particle and a conductive portion arranged on the surface of the base particle, and the conductive portion contains or contains a component capable of metal diffusion at 400 ° C. or lower. The conductive portion can be melt-deformed at 400 ° C. or lower, the conductive portion has a solder portion, and the area of the portion having the solder portion is 99% or less in 100% of the total surface area of the base material particles. , Conductive particles are provided.
 本発明に係る導電性粒子のある特定の局面では、前記はんだ部が、はんだ粒である。 In a specific aspect of the conductive particles according to the present invention, the solder portion is a solder grain.
 本発明に係る導電性粒子のある特定の局面では、前記はんだ粒の材料が、錫を含む合金を含むか、純錫であるか、又は錫を含む合金とは異なる状態かつ純錫とは異なる状態で錫を含む。 In certain aspects of the conductive particles according to the present invention, the material of the solder particles contains a tin-containing alloy, is pure tin, or is in a state different from the tin-containing alloy and different from pure tin. Contains tin in the state.
 本発明に係る導電性粒子のある特定の局面では、前記はんだ粒の材料が、純錫である。 In a specific aspect of the conductive particles according to the present invention, the material of the solder particles is pure tin.
 本発明に係る導電性粒子のある特定の局面では、前記はんだ粒の高さが、10nm以上10μm以下である。 In a specific aspect of the conductive particles according to the present invention, the height of the solder particles is 10 nm or more and 10 μm or less.
 本発明に係る導電性粒子のある特定の局面では、前記はんだ粒のアスペクト比が、0.05以上5以下である。 In a specific aspect of the conductive particles according to the present invention, the aspect ratio of the solder particles is 0.05 or more and 5 or less.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記はんだ粒の外表面上に、金属コロイド析出物又は金属膜を有する。 In certain aspects of the conductive particles according to the present invention, the conductive particles have a metal colloidal precipitate or a metal film on the outer surface of the solder particles.
 本発明に係る導電性粒子のある特定の局面では、前記はんだ粒の全表面積100%中、前記金属コロイド析出物又は前記金属膜がある部分の面積が5%以上100%以下である。 In a specific aspect of the conductive particles according to the present invention, the area of the metal colloidal precipitate or the portion where the metal film is present is 5% or more and 100% or less in the total surface area of the solder particles.
 本発明に係る導電性粒子のある特定の局面では、前記金属コロイド析出物の金属種又は前記金属膜の金属種が、ニッケル、コバルト、鉛、金、亜鉛、パラジウム、銅、銀、ビスマス、又はインジウムである。 In certain aspects of the conductive particles according to the present invention, the metal species of the metal colloidal precipitate or the metal species of the metal film may be nickel, cobalt, lead, gold, zinc, palladium, copper, silver, bismuth, or It is indium.
 本発明に係る導電性粒子のある特定の局面では、粒子径が、0.5μm以上500μm以下である。 In a specific aspect of the conductive particles according to the present invention, the particle size is 0.5 μm or more and 500 μm or less.
 本発明の広い局面によれば、導電性粒子と、バインダーとを含み、前記導電性粒子が、上述した導電性粒子である、導電材料が提供される。 According to a broad aspect of the present invention, there is provided a conductive material containing conductive particles and a binder, wherein the conductive particles are the above-mentioned conductive particles.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダーとを含む導電材料により形成されており、前記導電性粒子が、上述した導電性粒子であり、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a broad aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder. Provided is a connection structure in which the conductive particles are the above-mentioned conductive particles, and the first electrode and the second electrode are electrically connected by the conductive particles.
 本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える。本発明に係る導電性粒子では、上記導電部が400℃以下で金属拡散し得る成分を含むか、又は、上記導電部が400℃以下で溶融変形可能である。本発明に係る導電性粒子では、上記導電部が、はんだ部を有する。本発明に係る導電性粒子では、上記基材粒子の全表面積100%中、上記はんだ部がある部分の面積が99%以下である。本発明に係る導電性粒子では、上記の構成が備えられているので、導電性粒子同士の凝集の発生を効果的に抑制することができる。 The conductive particles according to the present invention include base particles and conductive portions arranged on the surface of the base particles. In the conductive particles according to the present invention, the conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower. In the conductive particles according to the present invention, the conductive portion has a solder portion. In the conductive particles according to the present invention, the area of the portion where the solder portion is located is 99% or less of the total surface area of the base particles of 100%. Since the conductive particles according to the present invention have the above-mentioned configuration, it is possible to effectively suppress the occurrence of aggregation between the conductive particles.
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る導電性粒子を示す断面図である。FIG. 4 is a cross-sectional view showing conductive particles according to a fourth embodiment of the present invention. 図5は、本発明の第5の実施形態に係る導電性粒子を示す断面図である。FIG. 5 is a cross-sectional view showing the conductive particles according to the fifth embodiment of the present invention. 図6は、本発明の第6の実施形態に係る導電性粒子を示す断面図である。FIG. 6 is a cross-sectional view showing the conductive particles according to the sixth embodiment of the present invention. 図7は、本発明の第7の実施形態に係る導電性粒子を示す断面図である。FIG. 7 is a cross-sectional view showing the conductive particles according to the seventh embodiment of the present invention. 図8は、本発明の第8の実施形態に係る導電性粒子を示す断面図である。FIG. 8 is a cross-sectional view showing the conductive particles according to the eighth embodiment of the present invention. 図9は、本発明の第3の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。FIG. 9 is a front sectional view schematically showing a connection structure using conductive particles according to a third embodiment of the present invention. 図10は、図9に示す接続構造体における導電性粒子と電極との接続部分を拡大して模式的に示す正面断面図である。FIG. 10 is a front sectional view schematically showing an enlarged connection portion between the conductive particles and the electrodes in the connection structure shown in FIG.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 (導電性粒子)
 本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える。本発明に係る導電性粒子では、上記導電部が400℃以下で金属拡散し得る成分を含むか、又は、上記導電部が400℃以下で溶融変形可能である。本発明に係る導電性粒子では、上記導電部が400℃以下で金属拡散し得る成分を含んでいてもよく、上記導電部が400℃以下で溶融変形可能であってもよい。本発明に係る導電性粒子では、上記導電部が400℃以下で金属拡散し得る成分を含み、かつ、上記導電部が400℃以下で溶融変形可能であってもよい。本発明に係る導電性粒子では、上記導電部が、はんだ部を有する。本発明に係る導電性粒子では、上記基材粒子の全表面積100%中、上記はんだ部がある部分の面積が99%以下である。
(Conductive particles)
The conductive particles according to the present invention include base particles and conductive portions arranged on the surface of the base particles. In the conductive particles according to the present invention, the conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower. In the conductive particles according to the present invention, the conductive portion may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion may be melt-deformable at 400 ° C. or lower. In the conductive particles according to the present invention, the conductive portion may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion may be melt-deformable at 400 ° C. or lower. In the conductive particles according to the present invention, the conductive portion has a solder portion. In the conductive particles according to the present invention, the area of the portion where the solder portion is located is 99% or less of the total surface area of the base particles of 100%.
 なお、本発明において金属拡散とは、熱、圧力、及び変形等により金属原子が導電部や接続部において拡散することをいう。 In the present invention, metal diffusion means that metal atoms diffuse in a conductive portion or a connecting portion due to heat, pressure, deformation, or the like.
 なお、本発明において溶融変形とは、その成分の一部又は全部が溶融することにより、外部の圧力により容易に変形しやすくなる状態のことをいう。 In the present invention, the melt deformation means a state in which a part or all of the components are melted and easily deformed by an external pressure.
 本発明に係る導電性粒子では、上記の構成が備えられているので、導電性粒子同士の凝集の発生を効果的に抑制することができる。 Since the conductive particles according to the present invention have the above-mentioned configuration, it is possible to effectively suppress the occurrence of aggregation between the conductive particles.
 近年、電子デバイスの薄型化及び小型化が進行している。このため、基板と電子部品との接続において、従来のピンによる接続では、狭ピッチ化に対応することが困難である。そこで、基板と電子部品との電気的な接続にはんだペースト等が用いられることがある。 In recent years, electronic devices have been made thinner and smaller. Therefore, in the connection between the substrate and the electronic component, it is difficult to cope with the narrowing of the pitch by the conventional pin connection. Therefore, solder paste or the like may be used for electrical connection between the substrate and the electronic component.
 しかしながら、従来のはんだペーストでは、はんだ粒子同士の凝集が発生することがある。 However, with conventional solder paste, agglomeration of solder particles may occur.
 本発明者らは、特定の導電性粒子を用いることで、導電性粒子同士の凝集を抑制できることを見出した。本発明では、上記導電部が、400℃以下で金属拡散し得る成分を含むか、又は、前記導電部が400℃以下で溶融変形可能である。本発明に係る導電性粒子では、上記導電部は、はんだ部を有する。上記はんだ部は、はんだ粒であることが好ましい。本発明に係る導電性粒子では、上記導電部が電極等の接合部分との間で金属結合を形成することができ、上記はんだ部(はんだ粒)が電極等の接合部分との間で金属結合を形成することができる。このため、従来の物理接触よりも飛躍的に優れた導通特性を得ることができる。また、本発明に係る導電性粒子では、上記はんだ部(はんだ粒)が電極等の接合部分との間で金属結合を形成することができるので、接合時に、導電部全体を溶融させる必要がない。結果として、本発明では、導電部の厚みが比較的薄い場合でも、電極間の導通信頼性を高めることができる。また、本発明では、導電部の厚みを厚くする必要がないことから、導電性粒子同士の凝集を効果的に抑制することができる。 The present inventors have found that the aggregation of conductive particles can be suppressed by using specific conductive particles. In the present invention, the conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower. In the conductive particles according to the present invention, the conductive portion has a solder portion. The solder portion is preferably solder grains. In the conductive particles according to the present invention, the conductive portion can form a metal bond with a joint portion such as an electrode, and the solder portion (solder grain) can form a metal bond with a joint portion such as an electrode. Can be formed. Therefore, it is possible to obtain a conduction characteristic that is dramatically superior to that of the conventional physical contact. Further, in the conductive particles according to the present invention, since the solder portion (solder particles) can form a metal bond with a joint portion such as an electrode, it is not necessary to melt the entire conductive portion at the time of joining. .. As a result, in the present invention, the reliability of conduction between the electrodes can be improved even when the thickness of the conductive portion is relatively thin. Further, in the present invention, since it is not necessary to increase the thickness of the conductive portion, it is possible to effectively suppress the aggregation of the conductive particles.
 本発明では、上記のような効果を得るために、特定の導電性粒子を用いることは大きく寄与する。 In the present invention, the use of specific conductive particles in order to obtain the above effects greatly contributes.
 上記導電部の成分が金属拡散しうる温度及び上記導電部の上記溶融変形温度は、上記導電部の材料を選択することで、達成することができる。例えば、導電部の材料として、はんだやはんだ合金を用いて、はんだ部を形成することで、上記導電部の成分が金属拡散しうる温度及び上記導電部の溶融変形温度を400℃以下にすることが容易である。上記導電性粒子では、上記導電部は、はんだ部を有する。上記導電部は、はんだ部であってもよい。 The temperature at which the components of the conductive portion can diffuse with metal and the melt deformation temperature of the conductive portion can be achieved by selecting the material of the conductive portion. For example, by forming the solder portion using solder or a solder alloy as the material of the conductive portion, the temperature at which the components of the conductive portion can diffuse the metal and the melt deformation temperature of the conductive portion are set to 400 ° C. or lower. Is easy. In the conductive particles, the conductive portion has a solder portion. The conductive portion may be a solder portion.
 上記導電部の金属拡散状態は、以下のようにして評価される。 The metal diffusion state of the conductive portion is evaluated as follows.
 導電性粒子の含有量が10重量%である導電ペーストを用意する。 Prepare a conductive paste having a conductive particle content of 10% by weight.
 銅電極を上面に有する透明ガラス基板を用意する。また、金電極を下面に有する半導体チップを用意する。 Prepare a transparent glass substrate with a copper electrode on the upper surface. In addition, a semiconductor chip having a gold electrode on the lower surface is prepared.
 上記透明ガラス基板上に、導電ペーストを塗工し、導電ペースト層を形成する。次に、導電ペースト層上に上記半導体チップを、電極同士が対向するように積層する。その後、導電ペースト層の温度が250℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、0.5MPaの圧力をかけて導電ペースト層を250℃で硬化させて、接続構造体を得る。 A conductive paste is applied onto the transparent glass substrate to form a conductive paste layer. Next, the semiconductor chips are laminated on the conductive paste layer so that the electrodes face each other. After that, while adjusting the temperature of the head so that the temperature of the conductive paste layer becomes 250 ° C., the pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 0.5 MPa is applied to cure the conductive paste layer at 250 ° C. To obtain a connection structure.
 接続構造体の中心付近を通るように機械研磨し、イオンミリング装置を用いて、導電性粒子の断面を切り出す。なお、接続構造体の機械研磨を容易にするために、接続構造体を樹脂中に埋め込み、樹脂中に埋め込まれた接続構造体を機械研磨してもよい。 Mechanically polish so that it passes near the center of the connecting structure, and cut out a cross section of the conductive particles using an ion milling device. In addition, in order to facilitate mechanical polishing of the connection structure, the connection structure may be embedded in the resin and the connection structure embedded in the resin may be mechanically polished.
 次いで、透過型電子顕微鏡FE-TEMを用いて、エネルギー分散型X線分析装置(EDX)により、導電性粒子と銅電極及び金電極との接触部分を線分析、又は、元素マッピングすることにより、金属の拡散状態を観察する。 Then, using a transmission electron microscope FE-TEM, the contact portion between the conductive particles and the copper electrode and the gold electrode is subjected to line analysis or element mapping by an energy dispersive X-ray analyzer (EDX). Observe the diffusion state of the metal.
 上記金属の拡散状態を観察することにより、導電性粒子の外周が銅電極及び金電極に対して金属拡散していることを確認することができる。 By observing the diffusion state of the metal, it can be confirmed that the outer periphery of the conductive particles is diffused with respect to the copper electrode and the gold electrode.
 また、上記金属の拡散状態のマッピングにより、導電性粒子の外周と銅電極及び金電極との接触割合を算出することができ、これにより定量を行うこともできる。 Further, by mapping the diffusion state of the metal, the contact ratio between the outer circumference of the conductive particles and the copper electrode and the gold electrode can be calculated, and the quantification can be performed by this.
 上記導電部の溶融変形温度は、以下のようにして評価される。 The melt deformation temperature of the conductive part is evaluated as follows.
 上記導電部の溶融変形温度は、示差走査熱量計(ヤマト科学社製「DSC-6300」)を用いて測定できる。上記測定は、導電性粒子15gを用いて、昇温範囲30℃~500℃、昇温速度5℃/min.、窒素パージ量5ml/min.の測定条件で行う。 The melt deformation temperature of the conductive portion can be measured using a differential scanning calorimeter (“DSC-6300” manufactured by Yamato Scientific Co., Ltd.). In the above measurement, 15 g of conductive particles were used, and the temperature rise range was 30 ° C. to 500 ° C. , Nitrogen purge amount 5 ml / min. Perform under the measurement conditions of.
 次に、上記の測定で得られた溶融温度で上記導電部が溶融していることを確認する。導電性粒子1gを容器に入れ、電気炉に入れる。電気炉にて上記測定で得られた溶融温度と同じ温度を設定し、窒素雰囲気で10分間加熱する。その後、加熱した導電性粒子を電気炉から取出し、走査型電子顕微鏡を用いて導電部の溶融状態(又は溶融後の固化状態)を確認する。なお、はんだ部(はんだ粒)等の導電部の一部の領域を溶融させることで、導電部を溶融変形させてもよい。 Next, it is confirmed that the conductive portion is melted at the melting temperature obtained by the above measurement. Put 1 g of conductive particles in a container and put in an electric furnace. Set the same temperature as the melting temperature obtained in the above measurement in an electric furnace, and heat in a nitrogen atmosphere for 10 minutes. After that, the heated conductive particles are taken out from the electric furnace, and the molten state (or the solidified state after melting) of the conductive portion is confirmed using a scanning electron microscope. The conductive portion may be melt-deformed by melting a part of the conductive portion such as the solder portion (solder grain).
 本発明に係る導電性粒子では、上記基材粒子の全表面積100%中、上記はんだ部がある部分の面積(はんだ部の被覆率)が99%以下である。上記基材粒子の全表面積100%中、上記はんだ部がある部分の面積(はんだ部の被覆率)は、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは85%以下、特に好ましくは70%以下である。上記基材粒子の全表面積100%中、上記はんだ部がある部分の面積(はんだ部の被覆率)は、好ましくは5%以上、より好ましくは30%以上、さらに好ましくは60%以上である。上記被覆率(はんだ部の被覆率)が、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。上記被覆率(はんだ部の被覆率)が、上記下限以上であると、上記はんだ部と電極等の接合部分との間でより一層容易に金属結合を形成することができる。 In the conductive particles according to the present invention, the area of the portion where the solder portion is located (the coverage of the solder portion) is 99% or less of the total surface area of the base particle of 100%. Of the total surface area of the base particles of 100%, the area of the portion where the solder portion is located (the coverage of the solder portion) is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less, particularly preferably. Is 70% or less. The area of the portion where the solder portion is located (covering ratio of the solder portion) is preferably 5% or more, more preferably 30% or more, and further preferably 60% or more in the total surface area of the base particles of 100%. When the coverage (coverage of the solder portion) is equal to or higher than the lower limit and lower than the upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively. When the covering ratio (covering ratio of the solder portion) is equal to or higher than the above lower limit, a metal bond can be more easily formed between the solder portion and the joint portion such as an electrode.
 上記基材粒子の全表面積100%中、上記はんだ部がある部分の面積(はんだ部の被覆率)は、導電性粒子の断面をSEM-EDX分析して元素マッピングを行い、画像解析することで算出することができる。 The area of the portion where the solder portion is located (coverage ratio of the solder portion) in the total surface area of the base particle is 100% by performing element mapping by SEM-EDX analysis of the cross section of the conductive particle and image analysis. Can be calculated.
 上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは500μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、導電性粒子と電極との接触面積を十分に大きくすることができ、また、導電部を形成する際に凝集した導電性粒子が形成され難くなり、導電部が基材粒子の表面から剥離し難くなる。 The particle size of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 500 μm or less, more preferably 100 μm or less, still more preferably 50 μm or less, particularly preferably 20 μm or less, most preferably. It is 10 μm or less. When the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode can be sufficiently increased, and the conductive portion aggregated when the conductive portion is formed. It becomes difficult for the sex particles to be formed, and it becomes difficult for the conductive portion to peel off from the surface of the base particle.
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。上記導電性粒子の粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。 The particle size of the conductive particles is preferably an average particle size, and preferably a number average particle size. For the particle size of the conductive particles, for example, 50 arbitrary conductive particles are observed with an electron microscope or an optical microscope, the average value of the particle size of each conductive particle is calculated, or a particle size distribution measuring device is used. Obtained using. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each conductive particle is obtained as the particle size in the equivalent diameter of a sphere. The average particle size of the conductive particles is preferably calculated using a particle size distribution measuring device.
 上記導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記導電性粒子の粒子径の変動係数が、上記上限以下であると、導電性粒子と電極との接触面積を十分に大きくすることができる。 The coefficient of variation (CV value) of the particle size of the conductive particles is preferably 10% or less, more preferably 5% or less. When the coefficient of variation of the particle size of the conductive particles is not more than the above upper limit, the contact area between the conductive particles and the electrode can be sufficiently increased.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の粒子径の標準偏差
 Dn:導電性粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle size of conductive particles Dn: Mean value of particle size of conductive particles
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。 The shape of the conductive particles is not particularly limited. The shape of the conductive particles may be spherical, non-spherical, flat or the like.
 以下、図面を参照しつつ、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
 図1に示す導電性粒子1は、基材粒子2と、基材粒子2の表面上に配置された導電部3とを備える。第1の実施形態では、導電部3は、基材粒子2の表面に接している。導電性粒子1は、基材粒子2の表面が導電部3により被覆された被覆粒子である。 The conductive particle 1 shown in FIG. 1 includes a base particle 2 and a conductive portion 3 arranged on the surface of the base particle 2. In the first embodiment, the conductive portion 3 is in contact with the surface of the base particle 2. The conductive particles 1 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 3.
 導電部3は全体で、基材粒子2の表面上に配置された第1の導電部3Aと、第1の導電部3Aの表面上に配置された第2の導電部(はんだ部)3Bとを有する。第1の導電部3Aは、基材粒子2の表面上に配置されている。基材粒子2と第2の導電部(はんだ部)3Bとの間に、第1の導電部3Aが配置されている。第1の導電部3Aは、基材粒子2に接している。第2の導電部(はんだ部)3Bは、第1の導電部3Aに接している。従って、基材粒子2の表面上に第1の導電部3Aが配置されており、第1の導電部3Aの表面上に第2の導電部(はんだ部)3Bが配置されている。上記導電性粒子では、上記基材粒子は、上記第1の導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第1の導電部により被覆されていない部分を有していてもよい。上記第1の導電部と上記第2の導電部(はんだ部)とは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。上記第2の導電部(はんだ部)は、はんだにより形成されている。上記第2の導電部(はんだ部)は、後述するはんだ粒であることが好ましい。上記導電性粒子では、上記基材粒子の表面上に上記第1の導電部が配置されており、上記第1の導電部の表面上に上記はんだ粒が配置されていることが好ましい。 As a whole, the conductive portion 3 includes a first conductive portion 3A arranged on the surface of the base particle 2 and a second conductive portion (solder portion) 3B arranged on the surface of the first conductive portion 3A. Has. The first conductive portion 3A is arranged on the surface of the base particle 2. The first conductive portion 3A is arranged between the base particle 2 and the second conductive portion (solder portion) 3B. The first conductive portion 3A is in contact with the base particle 2. The second conductive portion (solder portion) 3B is in contact with the first conductive portion 3A. Therefore, the first conductive portion 3A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 3B is arranged on the surface of the first conductive portion 3A. In the conductive particles, the base material particles may or may not be completely coated by the first conductive portion. The base particle may have a portion not covered by the first conductive portion. The first conductive portion and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion. The second conductive portion (solder portion) is formed of solder. The second conductive portion (solder portion) is preferably solder grains, which will be described later. In the conductive particles, it is preferable that the first conductive portion is arranged on the surface of the base material particles, and the solder particles are arranged on the surface of the first conductive portion.
 導電性粒子1では、導電部3は400℃以下で金属拡散し得る成分を含むか、又は、導電部3は400℃以下で溶融変形可能である。導電部3は400℃以下で金属拡散し得る成分を含んでいてもよく、導電部3は400℃以下で溶融変形可能であってもよい。導電部3は400℃以下で金属拡散し得る成分を含み、かつ、導電部3は400℃以下で溶融変形可能であってもよい。導電性粒子1では、第2の導電部3B(はんだ部)が400℃以下で金属拡散し得る成分である。導電性粒子1では、第2の導電部3B(はんだ部)が400℃以下で溶融変形可能である。上記導電性粒子では、上記第1の導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第1の導電部及び上記第2の導電部(はんだ部)が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部及び上記第2の導電部(はんだ部)が400℃以下で溶融変形可能であってもよい。 In the conductive particles 1, the conductive portion 3 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 3 is melt-deformable at 400 ° C. or lower. The conductive portion 3 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 3 may be melt-deformable at 400 ° C. or lower. The conductive portion 3 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 3 may be melt-deformable at 400 ° C. or lower. In the conductive particles 1, the second conductive portion 3B (solder portion) is a component capable of metal diffusion at 400 ° C. or lower. In the conductive particles 1, the second conductive portion 3B (solder portion) can be melt-deformed at 400 ° C. or lower. In the conductive particles, the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower. In the conductive particles, the first conductive portion and the second conductive portion (solder portion) may be components capable of diffusing metal at 400 ° C. or lower, and the first conductive portion and the second conductive portion may be present. The conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 FIG. 2 is a cross-sectional view showing the conductive particles according to the second embodiment of the present invention.
 図2に示す導電性粒子11は、基材粒子2と、基材粒子2の表面上に配置された導電部12とを備える。第2の実施形態では、導電部12は、基材粒子2の表面に接している。導電性粒子11は、基材粒子2の表面が導電部12により被覆された被覆粒子である。 The conductive particle 11 shown in FIG. 2 includes a base particle 2 and a conductive portion 12 arranged on the surface of the base particle 2. In the second embodiment, the conductive portion 12 is in contact with the surface of the base particle 2. The conductive particles 11 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 12.
 導電性粒子1と導電性粒子11とでは、第1の導電部のみが異なっている。即ち、導電性粒子1では、1層構造の第1の導電部3Aが形成されているのに対して、導電性粒子11では、第1aの導電部12A及び第1bの導電部12Bから構成される2層構造の第1の導電部が形成されている。 Only the first conductive portion is different between the conductive particle 1 and the conductive particle 11. That is, while the conductive particle 1 is formed with the first conductive portion 3A having a one-layer structure, the conductive particle 11 is composed of the conductive portion 12A of the first a and the conductive portion 12B of the first b. A first conductive portion having a two-layer structure is formed.
 導電部12は全体で、基材粒子2の表面上に配置された第1aの導電部12Aと、第1aの導電部12Aの表面上に配置された第1bの導電部12Bと、第1bの導電部12Bの表面上に配置された第2の導電部(はんだ部)12Cとを有する。第1aの導電部12Aは、基材粒子2の表面上に配置されている。第1bの導電部12Bは、第1aの導電部12Aの表面上に配置されている。基材粒子2と第2の導電部(はんだ部)12Cとの間に、第1aの導電部12A及び第1bの導電部12Bが配置されている。第1aの導電部12Aは、基材粒子2に接している。第2の導電部(はんだ部)12Cは、第1bの導電部12Bに接している。従って、基材粒子2の表面上に第1aの導電部12Aが配置されており、第1aの導電部12Aの表面上に第1bの導電部12Bが配置されており、第1bの導電部12Bの表面上に第2の導電部(はんだ部)12Cが配置されている。上記導電性粒子では、上記基材粒子は、上記第1aの導電部及び上記第1bの導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第1aの導電部及び上記第1bの導電部により被覆されていない部分を有していてもよい。上記第1aの導電部と上記第1bの導電部と上記第2の導電部(はんだ部)とは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。上記第2の導電部(はんだ部)は、はんだにより形成されている。上記第2の導電部(はんだ部)は、後述するはんだ粒であることが好ましい。上記導電性粒子では、上記基材粒子の表面上に上記第1aの導電部が配置されており、上記第1aの導電部の表面上に上記第1bの導電部が配置されており、上記第1bの導電部の表面上に上記はんだ粒が配置されていることが好ましい。 As a whole, the conductive portion 12 is composed of a first conductive portion 12A arranged on the surface of the base particle 2, a first conductive portion 12B arranged on the surface of the first conductive portion 12A, and a first b. It has a second conductive portion (solder portion) 12C arranged on the surface of the conductive portion 12B. The conductive portion 12A of the first a is arranged on the surface of the base particle 2. The conductive portion 12B of the first b is arranged on the surface of the conductive portion 12A of the first a. The conductive portion 12A of the first a and the conductive portion 12B of the first b are arranged between the base particle 2 and the second conductive portion (solder portion) 12C. The conductive portion 12A of the first a is in contact with the base particle 2. The second conductive portion (solder portion) 12C is in contact with the first conductive portion 12B. Therefore, the conductive portion 12A of the first a is arranged on the surface of the base particle 2, the conductive portion 12B of the first b is arranged on the surface of the conductive portion 12A of the first a, and the conductive portion 12B of the first b is arranged. A second conductive portion (solder portion) 12C is arranged on the surface of the above. In the conductive particles, the base material particles may or may not be completely covered by the conductive portion of the first a and the conductive portion of the first b. The base material particles may have a portion not covered by the conductive portion of the first a and the conductive portion of the first b. The conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion. The second conductive portion (solder portion) is formed of solder. The second conductive portion (solder portion) is preferably solder grains, which will be described later. In the conductive particles, the conductive portion of the first 1a is arranged on the surface of the base material particles, and the conductive portion of the first b is arranged on the surface of the conductive portion of the first a. It is preferable that the solder particles are arranged on the surface of the conductive portion of 1b.
 導電性粒子11では、導電部12は400℃以下で金属拡散し得る成分を含むか、又は、導電部12は400℃以下で溶融変形可能である。導電部12は400℃以下で金属拡散し得る成分を含んでいてもよく、導電部12は400℃以下で溶融変形可能であってもよい。導電部12は400℃以下で金属拡散し得る成分を含み、かつ、導電部12は400℃以下で溶融変形可能であってもよい。導電性粒子11では、第2の導電部12C(はんだ部)が400℃以下で金属拡散し得る成分である。導電性粒子11では、第2の導電部12C(はんだ部)が400℃以下で溶融変形可能である。上記導電性粒子では、上記第1aの導電部又は上記第1bの導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1aの導電部又は上記第1bの導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第1aの導電部、上記第1bの導電部及び上記第2の導電部(はんだ部)が400℃以下で金属拡散し得る成分であってもよく、上記第1aの導電部、上記第1bの導電部及び上記第2の導電部(はんだ部)が400℃以下で溶融変形可能であってもよい。 In the conductive particles 11, the conductive portion 12 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 12 is melt-deformable at 400 ° C. or lower. The conductive portion 12 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 12 may be melt-deformable at 400 ° C. or lower. The conductive portion 12 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 12 may be melt-deformable at 400 ° C. or lower. In the conductive particles 11, the second conductive portion 12C (solder portion) is a component capable of diffusing metal at 400 ° C. or lower. In the conductive particles 11, the second conductive portion 12C (solder portion) can be melt-deformed at 400 ° C. or lower. In the conductive particles, the conductive portion of the first a or the conductive portion of the first b may be a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion of the first a or the conductive portion of the first b is 400. It may be melt-deformed at ° C or lower. In the conductive particles, the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be components capable of metal diffusion at 400 ° C. or lower, and the conductive particles of the first a. The conductive portion, the conductive portion of the first b, and the second conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.
 図3に示す導電性粒子21は、基材粒子2と、基材粒子2の表面上に配置された導電部22とを備える。第3の実施形態では、導電部22は、基材粒子2の表面に接している。導電性粒子21は、基材粒子2の表面が導電部22により被覆された被覆粒子である。 The conductive particle 21 shown in FIG. 3 includes a base particle 2 and a conductive portion 22 arranged on the surface of the base particle 2. In the third embodiment, the conductive portion 22 is in contact with the surface of the base particle 2. The conductive particles 21 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 22.
 導電性粒子1と導電性粒子21とでは、第2の導電部(はんだ部)の形状のみが異なっている。即ち、導電性粒子1では、第2の導電部(はんだ部)3Bの形状は球体の一部の形状であるのに対して、導電性粒子21では、第2の導電部(はんだ部)22Bの形状は針状であり、回転放物面状である。 The conductive particles 1 and the conductive particles 21 differ only in the shape of the second conductive portion (solder portion). That is, in the conductive particle 1, the shape of the second conductive portion (solder portion) 3B is a part of a sphere, whereas in the conductive particle 21, the second conductive portion (solder portion) 22B The shape of is needle-shaped and is a rotating paraboloid.
 導電部22は全体で、基材粒子2の表面上に配置された第1の導電部22Aと、第1の導電部22Aの表面上に配置された第2の導電部(はんだ部)22Bとを有する。第1の導電部22Aは、基材粒子2の表面上に配置されている。基材粒子2と第2の導電部(はんだ部)22Bとの間に、第1の導電部22Aが配置されている。第1の導電部22Aは、基材粒子2に接している。第2の導電部(はんだ部)22Bは、第1の導電部22Aに接している。従って、基材粒子2の表面上に第1の導電部22Aが配置されており、第1の導電部22Aの表面上に第2の導電部(はんだ部)22Bが配置されている。上記導電性粒子では、上記基材粒子は、上記第1の導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第1の導電部により被覆されていない部分を有していてもよい。上記第1の導電部と上記第2の導電部(はんだ部)とは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。上記第2の導電部(はんだ部)は、はんだにより形成されている。上記第2の導電部(はんだ部)は、後述するはんだ粒であることが好ましい。 As a whole, the conductive portion 22 includes a first conductive portion 22A arranged on the surface of the base particle 2, and a second conductive portion (solder portion) 22B arranged on the surface of the first conductive portion 22A. Has. The first conductive portion 22A is arranged on the surface of the base particle 2. The first conductive portion 22A is arranged between the base particle 2 and the second conductive portion (solder portion) 22B. The first conductive portion 22A is in contact with the base particle 2. The second conductive portion (solder portion) 22B is in contact with the first conductive portion 22A. Therefore, the first conductive portion 22A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 22B is arranged on the surface of the first conductive portion 22A. In the conductive particles, the base material particles may or may not be completely coated by the first conductive portion. The base particle may have a portion not covered by the first conductive portion. The first conductive portion and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion. The second conductive portion (solder portion) is formed of solder. The second conductive portion (solder portion) is preferably solder grains, which will be described later.
 導電性粒子21では、導電部22は400℃以下で金属拡散し得る成分を含むか、又は、導電部22は400℃以下で溶融変形可能である。導電部22は400℃以下で金属拡散し得る成分を含んでいてもよく、導電部22は400℃以下で溶融変形可能であってもよい。導電部22は400℃以下で金属拡散し得る成分を含み、かつ、導電部22は400℃以下で溶融変形可能であってもよい。導電性粒子21では、第2の導電部22B(はんだ部)が400℃以下で金属拡散し得る成分である。導電性粒子21では、第2の導電部22B(はんだ部)が400℃以下で溶融変形可能である。上記導電性粒子では、上記第1の導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第1の導電部及び上記第2の導電部(はんだ部)が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部及び上記第2の導電部(はんだ部)が400℃以下で溶融変形可能であってもよい。 In the conductive particles 21, the conductive portion 22 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 22 is melt-deformable at 400 ° C. or lower. The conductive portion 22 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 22 may be melt-deformable at 400 ° C. or lower. The conductive portion 22 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 22 may be melt-deformable at 400 ° C. or lower. In the conductive particles 21, the second conductive portion 22B (solder portion) is a component capable of diffusing metal at 400 ° C. or lower. In the conductive particles 21, the second conductive portion 22B (solder portion) can be melt-deformed at 400 ° C. or lower. In the conductive particles, the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower. In the conductive particles, the first conductive portion and the second conductive portion (solder portion) may be components capable of diffusing metal at 400 ° C. or lower, and the first conductive portion and the second conductive portion may be present. The conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
 図4は、本発明の第4の実施形態に係る導電性粒子を示す断面図である。 FIG. 4 is a cross-sectional view showing conductive particles according to a fourth embodiment of the present invention.
 図4に示す導電性粒子31は、基材粒子2と、基材粒子2の表面上に配置された導電部32とを備える。第4の実施形態では、導電部32は、基材粒子2の表面に接している。導電性粒子31は、基材粒子2の表面が導電部32により被覆された被覆粒子である。 The conductive particle 31 shown in FIG. 4 includes a base particle 2 and a conductive portion 32 arranged on the surface of the base particle 2. In the fourth embodiment, the conductive portion 32 is in contact with the surface of the base particle 2. The conductive particles 31 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 32.
 導電性粒子21と導電性粒子31とでは、導電部のみが異なっている。即ち、導電性粒子21では、導電部22は第1の導電部22A及び第2の導電部(はんだ部)22Bにより形成されているのに対して、導電性粒子31では、導電部32は第1の導電部32A、第2の導電部(はんだ部)32B及び第3の導電部32Cにより形成されている。 Only the conductive portion is different between the conductive particles 21 and the conductive particles 31. That is, in the conductive particles 21, the conductive portion 22 is formed by the first conductive portion 22A and the second conductive portion (solder portion) 22B, whereas in the conductive particles 31, the conductive portion 32 is the second. It is formed by the conductive portion 32A of 1, the second conductive portion (solder portion) 32B, and the third conductive portion 32C.
 導電部32は全体で、基材粒子2の表面上に配置された第1の導電部32Aと、第1の導電部32Aの表面上に配置された第2の導電部(はんだ部)32Bと、第1の導電部32A及び第2の導電部(はんだ部)32Bの表面上に配置された第3の導電部32Cとを有する。第1の導電部32Aは、基材粒子2の表面上に配置されている。第3の導電部32Cは、第1の導電部32A及び第2の導電部(はんだ部)32Bの表面上に配置されている。基材粒子2と第3の導電部32Cとの間に、第1の導電部32A及び第2の導電部(はんだ部)32Bが配置されている。第1の導電部32Aは、基材粒子2に接している。第2の導電部(はんだ部)32Bは、第1の導電部32Aに接している。第3の導電部32Cは、第1の導電部32A及び第2の導電部(はんだ部)32Bに接している。従って、基材粒子2の表面上に第1の導電部32Aが配置されており、第1の導電部32Aの表面上に第2の導電部(はんだ部)32Bが配置されており、第1の導電部32A及び第2の導電部(はんだ部)32Bの表面上に第3の導電部32Cが配置されている。上記導電性粒子では、上記基材粒子は、上記第1の導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第1の導電部により被覆されていない部分を有していてもよい。上記導電性粒子では、上記基材粒子は、上記第3の導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第3の導電部により被覆されていない部分を有していてもよい。上記第1の導電部と上記第2の導電部(はんだ部)と上記第3の導電部とは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。上記第2の導電部(はんだ部)は、はんだにより形成されている。上記第2の導電部(はんだ部)は、後述するはんだ粒であることが好ましい。上記導電性粒子では、上記基材粒子の表面上に上記第1の導電部が配置されており、上記第1の導電部の表面上に上記はんだ粒が配置されており、上記第1の導電部及び上記はんだ粒の表面上に上記第3の導電部が配置されていることが好ましい。 As a whole, the conductive portion 32 includes a first conductive portion 32A arranged on the surface of the base particle 2, and a second conductive portion (solder portion) 32B arranged on the surface of the first conductive portion 32A. It has a first conductive portion 32A and a third conductive portion 32C arranged on the surface of the second conductive portion (solder portion) 32B. The first conductive portion 32A is arranged on the surface of the base particle 2. The third conductive portion 32C is arranged on the surfaces of the first conductive portion 32A and the second conductive portion (solder portion) 32B. A first conductive portion 32A and a second conductive portion (solder portion) 32B are arranged between the base particle 2 and the third conductive portion 32C. The first conductive portion 32A is in contact with the base particle 2. The second conductive portion (solder portion) 32B is in contact with the first conductive portion 32A. The third conductive portion 32C is in contact with the first conductive portion 32A and the second conductive portion (solder portion) 32B. Therefore, the first conductive portion 32A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 32B is arranged on the surface of the first conductive portion 32A. A third conductive portion 32C is arranged on the surfaces of the conductive portion 32A and the second conductive portion (solder portion) 32B. In the conductive particles, the base material particles may or may not be completely coated by the first conductive portion. The base particle may have a portion not covered by the first conductive portion. In the conductive particles, the base particles may or may not be completely coated by the third conductive portion. The base material particles may have a portion not covered by the third conductive portion. The first conductive portion, the second conductive portion (solder portion), and the third conductive portion may be formed as different conductive portions or may be formed as the same conductive portion. The second conductive portion (solder portion) is formed of solder. The second conductive portion (solder portion) is preferably solder grains, which will be described later. In the conductive particles, the first conductive portion is arranged on the surface of the base material particles, the solder particles are arranged on the surface of the first conductive portion, and the first conductive portion is arranged. It is preferable that the third conductive portion is arranged on the surface of the portion and the solder particles.
 導電性粒子31では、導電部32は400℃以下で金属拡散し得る成分を含むか、又は、導電部32は400℃以下で溶融変形可能である。導電部32は400℃以下で金属拡散し得る成分を含んでいてもよく、導電部32は400℃以下で溶融変形可能であってもよい。導電部32は400℃以下で金属拡散し得る成分を含み、かつ、導電部32は400℃以下で溶融変形可能であってもよい。導電性粒子31では、第2の導電部32B(はんだ部)が400℃以下で金属拡散し得る成分である。導電性粒子31では、第2の導電部32B(はんだ部)が400℃以下で溶融変形可能である。上記導電性粒子では、上記第1の導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第3の導電部が400℃以下で金属拡散し得る成分であってもよく、上記第3の導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第1の導電部、上記第2の導電部(はんだ部)及び上記第3の導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部、上記第2の導電部(はんだ部)及び上記第3の導電部が400℃以下で溶融変形可能であってもよい。 In the conductive particles 31, the conductive portion 32 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 32 is melt-deformable at 400 ° C. or lower. The conductive portion 32 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 32 may be melt-deformable at 400 ° C. or lower. The conductive portion 32 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 32 may be melt-deformable at 400 ° C. or lower. In the conductive particles 31, the second conductive portion 32B (solder portion) is a component capable of diffusing metal at 400 ° C. or lower. In the conductive particles 31, the second conductive portion 32B (solder portion) can be melt-deformed at 400 ° C. or lower. In the conductive particles, the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower. In the conductive particles, the third conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, and the third conductive portion may be melt-deformable at 400 ° C. or lower. In the conductive particles, the first conductive portion, the second conductive portion (solder portion), and the third conductive portion may be components capable of metal diffusion at 400 ° C. or lower, and the first conductive portion may be used. The conductive portion, the second conductive portion (solder portion), and the third conductive portion may be melt-deformed at 400 ° C. or lower.
 図5は、本発明の第5の実施形態に係る導電性粒子を示す断面図である。 FIG. 5 is a cross-sectional view showing the conductive particles according to the fifth embodiment of the present invention.
 図5に示す導電性粒子41は、基材粒子2と、基材粒子2の表面上に配置された導電部42と、導電部42の表面上に配置された金属コロイド析出物43とを備える。第5の実施形態では、導電部42は、基材粒子2の表面に接している。導電性粒子41は、基材粒子2の表面が導電部42により被覆された被覆粒子である。 The conductive particle 41 shown in FIG. 5 includes a base particle 2, a conductive portion 42 arranged on the surface of the base particle 2, and a metal colloidal precipitate 43 arranged on the surface of the conductive portion 42. .. In the fifth embodiment, the conductive portion 42 is in contact with the surface of the base particle 2. The conductive particles 41 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 42.
 導電性粒子1と導電性粒子41とでは、金属コロイド析出物43の有無のみが異なる。即ち、導電性粒子1では、導電部3の表面上に金属コロイド析出物が配置されていないのに対して、導電性粒子41では、導電部42の表面上に金属コロイド析出物43が配置されている。 The conductive particles 1 and the conductive particles 41 differ only in the presence or absence of the metal colloidal precipitate 43. That is, in the conductive particle 1, the metal colloidal precipitate is not arranged on the surface of the conductive portion 3, whereas in the conductive particle 41, the metal colloidal precipitate 43 is arranged on the surface of the conductive portion 42. ing.
 導電部42は全体で、基材粒子2の表面上に配置された第1の導電部42Aと、第1の導電部42Aの表面上に配置された第2の導電部(はんだ部)42Bとを有する。第1の導電部42Aは、基材粒子2の表面上に配置されている。基材粒子2と第2の導電部(はんだ部)42Bとの間に、第1の導電部42Aが配置されている。第1の導電部42Aは、基材粒子2に接している。第2の導電部(はんだ部)42Bは、第1の導電部42Aに接している。従って、基材粒子2の表面上に第1の導電部42Aが配置されており、第1の導電部42Aの表面上に第2の導電部(はんだ部)42Bが配置されている。上記導電性粒子では、上記基材粒子は、上記第1の導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第1の導電部により被覆されていない部分を有していてもよい。上記第1の導電部と上記第2の導電部(はんだ部)とは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。上記第2の導電部(はんだ部)は、はんだにより形成されている。上記第2の導電部(はんだ部)は、後述するはんだ粒であることが好ましい。上記導電性粒子では、上記基材粒子の表面上に上記第1の導電部が配置されており、上記第1の導電部の表面上に上記はんだ粒が配置されていることが好ましい。 As a whole, the conductive portion 42 includes a first conductive portion 42A arranged on the surface of the base particle 2 and a second conductive portion (solder portion) 42B arranged on the surface of the first conductive portion 42A. Has. The first conductive portion 42A is arranged on the surface of the base particle 2. The first conductive portion 42A is arranged between the base particle 2 and the second conductive portion (solder portion) 42B. The first conductive portion 42A is in contact with the base particle 2. The second conductive portion (solder portion) 42B is in contact with the first conductive portion 42A. Therefore, the first conductive portion 42A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 42B is arranged on the surface of the first conductive portion 42A. In the conductive particles, the base material particles may or may not be completely coated by the first conductive portion. The base particle may have a portion not covered by the first conductive portion. The first conductive portion and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion. The second conductive portion (solder portion) is formed of solder. The second conductive portion (solder portion) is preferably solder grains, which will be described later. In the conductive particles, it is preferable that the first conductive portion is arranged on the surface of the base material particles, and the solder particles are arranged on the surface of the first conductive portion.
 導電部42の表面上に、金属コロイド析出物43が配置されている。上記金属コロイド析出物は、上記第1の導電部の表面上にのみ配置されていてもよく、上記第2の導電部(はんだ部)の表面上にのみ配置されていてもよく、上記第1の導電部及び上記第2の導電部(はんだ部)の表面上に配置されていてもよい。上記金属コロイド析出物は、上記第2の導電部(はんだ部)の表面上にのみ配置されていることが好ましく、上記はんだ粒の表面上にのみ配置されていることが好ましい。上記導電性粒子では、上記導電部は、上記金属コロイド析出物により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記導電部は、上記金属コロイド析出物により被覆されていない部分を有していてもよい。 The metal colloidal precipitate 43 is arranged on the surface of the conductive portion 42. The metal colloidal precipitate may be arranged only on the surface of the first conductive portion, may be arranged only on the surface of the second conductive portion (solder portion), and may be arranged only on the surface of the first conductive portion. It may be arranged on the surface of the conductive portion of the above and the second conductive portion (solder portion). The metal colloidal precipitate is preferably arranged only on the surface of the second conductive portion (solder portion), and preferably is arranged only on the surface of the solder particles. In the conductive particles, the conductive portion may or may not be completely covered with the metal colloidal precipitate. The conductive portion may have a portion not covered with the metal colloidal precipitate.
 導電性粒子41では、導電部42は400℃以下で金属拡散し得る成分を含むか、又は、導電部42は400℃以下で溶融変形可能である。導電部42は400℃以下で金属拡散し得る成分を含んでいてもよく、導電部42は400℃以下で溶融変形可能であってもよい。導電部42は400℃以下で金属拡散し得る成分を含み、かつ、導電部42は400℃以下で溶融変形可能であってもよい。導電性粒子41では、第2の導電部42B(はんだ部)が400℃以下で金属拡散し得る成分である。導電性粒子41では、第2の導電部42B(はんだ部)が400℃以下で溶融変形可能である。上記導電性粒子では、上記第1の導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第1の導電部及び上記第2の導電部(はんだ部)が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部及び上記第2の導電部(はんだ部)が400℃以下で溶融変形可能であってもよい。 In the conductive particles 41, the conductive portion 42 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 42 is melt-deformable at 400 ° C. or lower. The conductive portion 42 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 42 may be melt-deformable at 400 ° C. or lower. The conductive portion 42 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 42 may be melt-deformable at 400 ° C. or lower. In the conductive particles 41, the second conductive portion 42B (solder portion) is a component capable of diffusing metal at 400 ° C. or lower. In the conductive particles 41, the second conductive portion 42B (solder portion) can be melt-deformed at 400 ° C. or lower. In the conductive particles, the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower. In the conductive particles, the first conductive portion and the second conductive portion (solder portion) may be components capable of diffusing metal at 400 ° C. or lower, and the first conductive portion and the second conductive portion may be present. The conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
 図6は、本発明の第6の実施形態に係る導電性粒子を示す断面図である。 FIG. 6 is a cross-sectional view showing the conductive particles according to the sixth embodiment of the present invention.
 図6に示す導電性粒子51は、基材粒子2と、基材粒子2の表面上に配置された導電部52と、導電部52の表面上に配置された金属コロイド析出物53とを備える。第6の実施形態では、導電部52は、基材粒子2の表面に接している。導電性粒子51は、基材粒子2の表面が導電部52により被覆された被覆粒子である。 The conductive particle 51 shown in FIG. 6 includes a base particle 2, a conductive portion 52 arranged on the surface of the base particle 2, and a metal colloidal precipitate 53 arranged on the surface of the conductive portion 52. .. In the sixth embodiment, the conductive portion 52 is in contact with the surface of the base particle 2. The conductive particles 51 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 52.
 導電性粒子11と導電性粒子51とでは、金属コロイド析出物53の有無のみが異なる。即ち、導電性粒子11では、導電部12の表面上に金属コロイド析出物が配置されていないのに対して、導電性粒子51では、導電部52の表面上に金属コロイド析出物53が配置されている。 The conductive particles 11 and the conductive particles 51 differ only in the presence or absence of the metal colloidal precipitate 53. That is, in the conductive particles 11, the metal colloidal precipitates are not arranged on the surface of the conductive portion 12, whereas in the conductive particles 51, the metal colloidal precipitates 53 are arranged on the surface of the conductive portion 52. ing.
 導電部52は全体で、基材粒子2の表面上に配置された第1aの導電部52Aと、第1aの導電部52Aの表面上に配置された第1bの導電部52Bと、第1bの導電部52Bの表面上に配置された第2の導電部(はんだ部)52Cとを有する。第1aの導電部52Aは、基材粒子2の表面上に配置されている。第1bの導電部52Bは、第1aの導電部52Aの表面上に配置されている。基材粒子2と第2の導電部(はんだ部)52Cとの間に、第1aの導電部52A及び第1bの導電部52Bが配置されている。第1aの導電部52Aは、基材粒子2に接している。第2の導電部(はんだ部)52Cは、第1bの導電部52Bに接している。従って、基材粒子2の表面上に第1aの導電部52Aが配置されており、第1aの導電部52Aの表面上に第1bの導電部52Bが配置されており、第1bの導電部52Bの表面上に第2の導電部(はんだ部)52Cが配置されている。上記導電性粒子では、上記基材粒子は、上記第1aの導電部及び上記第1bの導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第1aの導電部及び上記第1bの導電部により被覆されていない部分を有していてもよい。上記第1aの導電部と上記第1bの導電部と上記第2の導電部(はんだ部)とは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。上記第2の導電部(はんだ部)は、はんだにより形成されている。上記第2の導電部(はんだ部)は、後述するはんだ粒であることが好ましい。上記導電性粒子では、上記基材粒子の表面上に上記第1aの導電部が配置されており、上記第1aの導電部の表面上に上記第1bの導電部が配置されており、上記第1bの導電部の表面上に上記はんだ粒が配置されていることが好ましい。 As a whole, the conductive portion 52 is a first conductive portion 52A arranged on the surface of the base particle 2, a first conductive portion 52B arranged on the surface of the first conductive portion 52A, and a first b. It has a second conductive portion (solder portion) 52C arranged on the surface of the conductive portion 52B. The conductive portion 52A of the first a is arranged on the surface of the base particle 2. The conductive portion 52B of the first b is arranged on the surface of the conductive portion 52A of the first a. The first conductive portion 52A and the first conductive portion 52B are arranged between the base particle 2 and the second conductive portion (solder portion) 52C. The conductive portion 52A of the first a is in contact with the base particle 2. The second conductive portion (solder portion) 52C is in contact with the first conductive portion 52B. Therefore, the conductive portion 52A of the first a is arranged on the surface of the base particle 2, the conductive portion 52B of the first b is arranged on the surface of the conductive portion 52A of the first a, and the conductive portion 52B of the first b is arranged. A second conductive portion (solder portion) 52C is arranged on the surface of the above. In the conductive particles, the base material particles may or may not be completely covered by the conductive portion of the first a and the conductive portion of the first b. The base material particles may have a portion not covered by the conductive portion of the first a and the conductive portion of the first b. The conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion. The second conductive portion (solder portion) is formed of solder. The second conductive portion (solder portion) is preferably solder grains, which will be described later. In the conductive particles, the conductive portion of the first 1a is arranged on the surface of the base material particles, and the conductive portion of the first b is arranged on the surface of the conductive portion of the first a. It is preferable that the solder particles are arranged on the surface of the conductive portion of 1b.
 導電部52の表面上に、金属コロイド析出物53が配置されている。上記金属コロイド析出物は、上記第1bの導電部の表面上にのみ配置されていてもよく、上記第2の導電部(はんだ部)の表面上にのみ配置されていてもよく、上記第1bの導電部及び上記第2の導電部(はんだ部)の表面上に配置されていてもよい。上記金属コロイド析出物は、上記第2の導電部(はんだ部)の表面上にのみ配置されていることが好ましく、上記はんだ粒の表面上にのみ配置されていることが好ましい。上記導電性粒子では、上記導電部は、上記金属コロイド析出物により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記導電部は、上記金属コロイド析出物により被覆されていない部分を有していてもよい。 A metal colloidal precipitate 53 is arranged on the surface of the conductive portion 52. The metal colloidal precipitate may be arranged only on the surface of the conductive portion of the first b, or may be arranged only on the surface of the second conductive portion (solder portion), and may be arranged only on the surface of the conductive portion of the first b. It may be arranged on the surface of the conductive portion of the above and the second conductive portion (solder portion). The metal colloidal precipitate is preferably arranged only on the surface of the second conductive portion (solder portion), and preferably is arranged only on the surface of the solder particles. In the conductive particles, the conductive portion may or may not be completely covered with the metal colloidal precipitate. The conductive portion may have a portion not covered with the metal colloidal precipitate.
 導電性粒子51では、導電部52は400℃以下で金属拡散し得る成分を含むか、又は、導電部52は400℃以下で溶融変形可能である。導電部52は400℃以下で金属拡散し得る成分を含んでいてもよく、導電部52は400℃以下で溶融変形可能であってもよい。導電部52は400℃以下で金属拡散し得る成分を含み、かつ、導電部52は400℃以下で溶融変形可能であってもよい。導電性粒子51では、第2の導電部52C(はんだ部)が400℃以下で金属拡散し得る成分である。導電性粒子51では、第2の導電部52C(はんだ部)が400℃以下で溶融変形可能である。上記導電性粒子では、上記第1aの導電部又は上記第1bの導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1aの導電部又は上記第1bの導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第1aの導電部、上記第1bの導電部及び上記第2の導電部(はんだ部)が400℃以下で金属拡散し得る成分であってもよく、上記第1aの導電部、上記第1bの導電部及び上記第2の導電部(はんだ部)が400℃以下で溶融変形可能であってもよい。 In the conductive particles 51, the conductive portion 52 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 52 is melt-deformable at 400 ° C. or lower. The conductive portion 52 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 52 may be melt-deformable at 400 ° C. or lower. The conductive portion 52 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 52 may be melt-deformable at 400 ° C. or lower. In the conductive particles 51, the second conductive portion 52C (solder portion) is a component capable of metal diffusion at 400 ° C. or lower. In the conductive particles 51, the second conductive portion 52C (solder portion) can be melt-deformed at 400 ° C. or lower. In the conductive particles, the conductive portion of the first a or the conductive portion of the first b may be a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion of the first a or the conductive portion of the first b is 400. It may be melt-deformed at ° C or lower. In the conductive particles, the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be components capable of metal diffusion at 400 ° C. or lower, and the conductive particles of the first a. The conductive portion, the conductive portion of the first b, and the second conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
 図7は、本発明の第7の実施形態に係る導電性粒子を示す断面図である。 FIG. 7 is a cross-sectional view showing the conductive particles according to the seventh embodiment of the present invention.
 図7に示す導電性粒子61は、基材粒子2と、基材粒子2の表面上に配置された導電部62と、導電部62の表面上に配置された金属膜63とを備える。第7の実施形態では、導電部62は、基材粒子2の表面に接している。導電性粒子61は、基材粒子2の表面が導電部62により被覆された被覆粒子である。 The conductive particle 61 shown in FIG. 7 includes a base particle 2, a conductive portion 62 arranged on the surface of the base particle 2, and a metal film 63 arranged on the surface of the conductive portion 62. In the seventh embodiment, the conductive portion 62 is in contact with the surface of the base particle 2. The conductive particles 61 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 62.
 導電性粒子1と導電性粒子61とでは、金属膜63の有無のみが異なる。即ち、導電性粒子1では、導電部3の表面上に金属膜が配置されていないのに対して、導電性粒子61では、導電部62の表面上に金属膜63が配置されている。 The conductive particles 1 and the conductive particles 61 differ only in the presence or absence of the metal film 63. That is, in the conductive particles 1, the metal film is not arranged on the surface of the conductive portion 3, whereas in the conductive particles 61, the metal film 63 is arranged on the surface of the conductive portion 62.
 導電部62は全体で、基材粒子2の表面上に配置された第1の導電部62Aと、第1の導電部62Aの表面上に配置された第2の導電部(はんだ部)62Bとを有する。第1の導電部62Aは、基材粒子2の表面上に配置されている。基材粒子2と第2の導電部(はんだ部)62Bとの間に、第1の導電部62Aが配置されている。第1の導電部62Aは、基材粒子2に接している。第2の導電部(はんだ部)62Bは、第1の導電部62Aに接している。従って、基材粒子2の表面上に第1の導電部62Aが配置されており、第1の導電部62Aの表面上に第2の導電部(はんだ部)62Bが配置されている。上記導電性粒子では、上記基材粒子は、上記第1の導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第1の導電部により被覆されていない部分を有していてもよい。上記第1の導電部と上記第2の導電部(はんだ部)とは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。上記第2の導電部(はんだ部)は、はんだにより形成されている。上記第2の導電部(はんだ部)は、後述するはんだ粒であることが好ましい。上記導電性粒子では、上記基材粒子の表面上に上記第1の導電部が配置されており、上記第1の導電部の表面上に上記はんだ粒が配置されていることが好ましい。 As a whole, the conductive portion 62 includes a first conductive portion 62A arranged on the surface of the base particle 2 and a second conductive portion (solder portion) 62B arranged on the surface of the first conductive portion 62A. Has. The first conductive portion 62A is arranged on the surface of the base particle 2. The first conductive portion 62A is arranged between the base particle 2 and the second conductive portion (solder portion) 62B. The first conductive portion 62A is in contact with the base particle 2. The second conductive portion (solder portion) 62B is in contact with the first conductive portion 62A. Therefore, the first conductive portion 62A is arranged on the surface of the base particle 2, and the second conductive portion (solder portion) 62B is arranged on the surface of the first conductive portion 62A. In the conductive particles, the base material particles may or may not be completely coated by the first conductive portion. The base particle may have a portion not covered by the first conductive portion. The first conductive portion and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion. The second conductive portion (solder portion) is formed of solder. The second conductive portion (solder portion) is preferably solder grains, which will be described later. In the conductive particles, it is preferable that the first conductive portion is arranged on the surface of the base material particles, and the solder particles are arranged on the surface of the first conductive portion.
 導電部62の表面上に、金属膜63が配置されている。上記金属膜は、上記第1の導電部の表面上にのみ配置されていてもよく、上記第2の導電部(はんだ部)の表面上にのみ配置されていてもよく、上記第1の導電部及び上記第2の導電部(はんだ部)の表面上に配置されていてもよい。上記金属膜は、上記第2の導電部(はんだ部)の表面上にのみ配置されていることが好ましく、上記はんだ粒の表面上にのみ配置されていることが好ましい。上記導電性粒子では、上記導電部は、上記金属膜により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記導電部は、上記金属膜により被覆されていない部分を有していてもよい。 A metal film 63 is arranged on the surface of the conductive portion 62. The metal film may be arranged only on the surface of the first conductive portion, may be arranged only on the surface of the second conductive portion (solder portion), and may be arranged only on the surface of the first conductive portion. It may be arranged on the surface of the portion and the second conductive portion (solder portion). The metal film is preferably arranged only on the surface of the second conductive portion (solder portion), and is preferably arranged only on the surface of the solder grains. In the conductive particles, the conductive portion may or may not be completely covered with the metal film. The conductive portion may have a portion that is not covered with the metal film.
 導電性粒子61では、導電部62は400℃以下で金属拡散し得る成分を含むか、又は、導電部62は400℃以下で溶融変形可能である。導電部62は400℃以下で金属拡散し得る成分を含んでいてもよく、導電部62は400℃以下で溶融変形可能であってもよい。導電部62は400℃以下で金属拡散し得る成分を含み、かつ、導電部62は400℃以下で溶融変形可能であってもよい。導電性粒子61では、第2の導電部62B(はんだ部)が400℃以下で金属拡散し得る成分である。導電性粒子61では、第2の導電部62B(はんだ部)が400℃以下で溶融変形可能である。上記導電性粒子では、上記第1の導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第1の導電部及び上記第2の導電部(はんだ部)が400℃以下で金属拡散し得る成分であってもよく、上記第1の導電部及び上記第2の導電部(はんだ部)が400℃以下で溶融変形可能であってもよい。 In the conductive particles 61, the conductive portion 62 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 62 is melt-deformable at 400 ° C. or lower. The conductive portion 62 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 62 may be melt-deformable at 400 ° C. or lower. The conductive portion 62 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 62 may be melt-deformable at 400 ° C. or lower. In the conductive particles 61, the second conductive portion 62B (solder portion) is a component capable of diffusing metal at 400 ° C. or lower. In the conductive particles 61, the second conductive portion 62B (solder portion) can be melt-deformed at 400 ° C. or lower. In the conductive particles, the first conductive portion may be a component capable of diffusing metal at 400 ° C. or lower, or the first conductive portion may be melt-deformable at 400 ° C. or lower. In the conductive particles, the first conductive portion and the second conductive portion (solder portion) may be components capable of diffusing metal at 400 ° C. or lower, and the first conductive portion and the second conductive portion may be present. The conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
 図8は、本発明の第8の実施形態に係る導電性粒子を示す断面図である。 FIG. 8 is a cross-sectional view showing the conductive particles according to the eighth embodiment of the present invention.
 図8に示す導電性粒子71は、基材粒子2と、基材粒子2の表面上に配置された導電部72と、導電部72の表面上に配置された金属膜73とを備える。第8の実施形態では、導電部72は、基材粒子2の表面に接している。導電性粒子71は、基材粒子2の表面が導電部72により被覆された被覆粒子である。 The conductive particle 71 shown in FIG. 8 includes a base particle 2, a conductive portion 72 arranged on the surface of the base particle 2, and a metal film 73 arranged on the surface of the conductive portion 72. In the eighth embodiment, the conductive portion 72 is in contact with the surface of the base particle 2. The conductive particles 71 are coated particles in which the surface of the base particle 2 is coated with the conductive portion 72.
 導電性粒子11と導電性粒子71とでは、金属膜73の有無のみが異なる。即ち、導電性粒子11では、導電部12の表面上に金属膜が配置されていないのに対して、導電性粒子71では、導電部72の表面上に金属膜73が配置されている。 Only the presence or absence of the metal film 73 differs between the conductive particles 11 and the conductive particles 71. That is, in the conductive particles 11, the metal film is not arranged on the surface of the conductive portion 12, whereas in the conductive particles 71, the metal film 73 is arranged on the surface of the conductive portion 72.
 導電部72は全体で、基材粒子2の表面上に配置された第1aの導電部72Aと、第1aの導電部72Aの表面上に配置された第1bの導電部72Bと、第1bの導電部72Bの表面上に配置された第2の導電部(はんだ部)72Cとを有する。第1aの導電部72Aは、基材粒子2の表面上に配置されている。第1bの導電部72Bは、第1aの導電部72Aの表面上に配置されている。基材粒子2と第2の導電部(はんだ部)72Cとの間に、第1aの導電部72A及び第1bの導電部72Bが配置されている。第1aの導電部72Aは、基材粒子2に接している。第2の導電部(はんだ部)72Cは、第1bの導電部72Bに接している。従って、基材粒子2の表面上に第1aの導電部72Aが配置されており、第1aの導電部72Aの表面上に第1bの導電部72Bが配置されており、第1bの導電部72Bの表面上に第2の導電部(はんだ部)72Cが配置されている。上記導電性粒子では、上記基材粒子は、上記第1aの導電部及び上記第1bの導電部により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記基材粒子は、上記第1aの導電部及び上記第1bの導電部により被覆されていない部分を有していてもよい。上記第1aの導電部と上記第1bの導電部と上記第2の導電部(はんだ部)とは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。上記第2の導電部(はんだ部)は、はんだにより形成されている。上記第2の導電部(はんだ部)は、後述するはんだ粒であることが好ましい。上記導電性粒子では、上記基材粒子の表面上に上記第1aの導電部が配置されており、上記第1aの導電部の表面上に上記第1bの導電部が配置されており、上記第1bの導電部の表面上に上記はんだ粒が配置されていることが好ましい。 As a whole, the conductive portion 72 is a first conductive portion 72A arranged on the surface of the base particle 2, a first conductive portion 72B arranged on the surface of the first conductive portion 72A, and a first b. It has a second conductive portion (solder portion) 72C arranged on the surface of the conductive portion 72B. The conductive portion 72A of the first a is arranged on the surface of the base particle 2. The conductive portion 72B of the first b is arranged on the surface of the conductive portion 72A of the first a. The conductive portion 72A of the first a and the conductive portion 72B of the first b are arranged between the base particle 2 and the second conductive portion (solder portion) 72C. The conductive portion 72A of the first a is in contact with the base particle 2. The second conductive portion (solder portion) 72C is in contact with the first conductive portion 72B. Therefore, the conductive portion 72A of the first a is arranged on the surface of the base particle 2, the conductive portion 72B of the first b is arranged on the surface of the conductive portion 72A of the first a, and the conductive portion 72B of the first b is arranged. A second conductive portion (solder portion) 72C is arranged on the surface of the above. In the conductive particles, the base material particles may or may not be completely covered by the conductive portion of the first a and the conductive portion of the first b. The base material particles may have a portion not covered by the conductive portion of the first a and the conductive portion of the first b. The conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be formed as different conductive portions or may be formed as the same conductive portion. The second conductive portion (solder portion) is formed of solder. The second conductive portion (solder portion) is preferably solder grains, which will be described later. In the conductive particles, the conductive portion of the first 1a is arranged on the surface of the base material particles, and the conductive portion of the first b is arranged on the surface of the conductive portion of the first a. It is preferable that the solder particles are arranged on the surface of the conductive portion of 1b.
 導電部72の表面上に、金属膜73が配置されている。上記金属膜は、上記第1bの導電部の表面上にのみ配置されていてもよく、上記第2の導電部(はんだ部)の表面上にのみ配置されていてもよく、上記第1bの導電部及び上記第2の導電部(はんだ部)の表面上に配置されていてもよい。上記金属膜は、上記第2の導電部(はんだ部)の表面上にのみ配置されていることが好ましく、上記はんだ粒の表面上にのみ配置されていることが好ましい。上記導電性粒子では、上記導電部は、上記金属膜により完全に被覆されていてもよく、完全に被覆されていなくてもよい。上記導電部は、上記金属膜により被覆されていない部分を有していてもよい。 A metal film 73 is arranged on the surface of the conductive portion 72. The metal film may be arranged only on the surface of the conductive portion of the first b, may be arranged only on the surface of the second conductive portion (solder portion), or may be arranged only on the surface of the conductive portion of the first b. It may be arranged on the surface of the portion and the second conductive portion (solder portion). The metal film is preferably arranged only on the surface of the second conductive portion (solder portion), and is preferably arranged only on the surface of the solder grains. In the conductive particles, the conductive portion may or may not be completely covered with the metal film. The conductive portion may have a portion that is not covered with the metal film.
 導電性粒子71では、導電部72は400℃以下で金属拡散し得る成分を含むか、又は、導電部72は400℃以下で溶融変形可能である。導電部72は400℃以下で金属拡散し得る成分を含んでいてもよく、導電部72は400℃以下で溶融変形可能であってもよい。導電部72は400℃以下で金属拡散し得る成分を含み、かつ、導電部72は400℃以下で溶融変形可能であってもよい。導電性粒子71では、第2の導電部72C(はんだ部)が400℃以下で金属拡散し得る成分である。導電性粒子71では、第2の導電部72C(はんだ部)が400℃以下で溶融変形可能である。上記導電性粒子では、上記第1aの導電部又は上記第1bの導電部が400℃以下で金属拡散し得る成分であってもよく、上記第1aの導電部又は上記第1bの導電部が400℃以下で溶融変形可能であってもよい。上記導電性粒子では、上記第1aの導電部、上記第1bの導電部及び上記第2の導電部(はんだ部)が400℃以下で金属拡散し得る成分であってもよく、上記第1aの導電部、上記第1bの導電部及び上記第2の導電部(はんだ部)が400℃以下で溶融変形可能であってもよい。 In the conductive particles 71, the conductive portion 72 contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion 72 is melt-deformable at 400 ° C. or lower. The conductive portion 72 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 72 may be melt-deformable at 400 ° C. or lower. The conductive portion 72 may contain a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion 72 may be melt-deformable at 400 ° C. or lower. In the conductive particles 71, the second conductive portion 72C (solder portion) is a component capable of diffusing metal at 400 ° C. or lower. In the conductive particles 71, the second conductive portion 72C (solder portion) can be melt-deformed at 400 ° C. or lower. In the conductive particles, the conductive portion of the first a or the conductive portion of the first b may be a component capable of diffusing metal at 400 ° C. or lower, and the conductive portion of the first a or the conductive portion of the first b is 400. It may be melt-deformed at ° C or lower. In the conductive particles, the conductive portion of the first a, the conductive portion of the first b, and the second conductive portion (solder portion) may be components capable of metal diffusion at 400 ° C. or lower, and the conductive particles of the first a. The conductive portion, the conductive portion of the first b, and the second conductive portion (solder portion) may be melt-deformed at 400 ° C. or lower.
 以下、導電性粒子の他の詳細について説明する。なお、以下の説明において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリロキシ」は「アクリロキシ」と「メタクリロキシ」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。 The other details of the conductive particles will be described below. In the following description, "(meth) acrylic" means one or both of "acrylic" and "methacryl", and "(meth) acryloxy" means one or both of "acryloxy" and "methacryloxy". Meaning, "(meth) acrylate" means one or both of "acrylate" and "methacrylate".
 (基材粒子)
 上記基材粒子の材料は特に限定されない。上記基材粒子の材料は、有機材料であってもよく、無機材料であってもよい。上記有機材料のみより形成された基材粒子としては、樹脂粒子等が挙げられる。上記無機材料のみにより形成された基材粒子としては、金属を除く無機粒子等が挙げられる。上記有機材料と上記無機材料との双方により形成された基材粒子としては、有機無機ハイブリッド粒子等が挙げられる。基材粒子の圧縮特性をより一層良好にする観点からは、上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることが好ましく、樹脂粒子であることがより好ましい。
(Base particle)
The material of the base particle is not particularly limited. The material of the base particle may be an organic material or an inorganic material. Examples of the base particle formed from the organic material alone include resin particles and the like. Examples of the base particle formed only from the above-mentioned inorganic material include inorganic particles excluding metal. Examples of the base particle formed by both the organic material and the inorganic material include organic-inorganic hybrid particles. From the viewpoint of further improving the compression characteristics of the base particles, the base particles are preferably resin particles or organic-inorganic hybrid particles, and more preferably resin particles.
 上記有機材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン共重合体等が挙げられる。上記ジビニルベンゼン共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記基材粒子の圧縮特性を好適な範囲に容易に制御できるので、上記基材粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Examples of the organic material include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, phenolformaldehyde resin and melamine. Formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, Examples thereof include polyester ether ketone, polyether sulfone, divinylbenzene polymer, and divinylbenzene copolymer. Examples of the divinylbenzene copolymer and the like include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer. Since the compression characteristics of the base material particles can be easily controlled within a suitable range, the material of the base material particles is a polymer obtained by polymerizing one or more kinds of polymerizable monomers having an ethylenically unsaturated group. Is preferable.
 上記基材粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the base material particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group is crosslinked with a non-crosslinkable monomer. Examples include sex monomers.
 上記非架橋性の単量体としては、ビニル化合物として、スチレン、α-メチルスチレン、クロルスチレン等のスチレン単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;塩化ビニル、フッ化ビニル等のハロゲン含有単量体;(メタ)アクリル化合物として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート化合物;α-オレフィン化合物として、ジイソブチレン、イソブチレン、リニアレン、エチレン、プロピレン等のオレフィン化合物;共役ジエン化合物として、イソプレン、ブタジエン等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene, α-methylstyrene and chlorostyrene; vinyl ether compounds such as methylvinyl ether, ethylvinyl ether and propylvinyl ether; vinyl acetate, vinyl butyrate, etc. Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; as (meth) acrylic compounds, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and other alkyl ( Meta) acrylate compound; oxygen atom-containing (meth) acrylate compound such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate; (meth) acrylonitrile, etc. Nitrile-containing monomer; Halogen-containing (meth) acrylate compound such as trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate; olefins such as diisobutylene, isobutylene, linearene, ethylene and propylene as α-olefin compounds Compound; Examples of the conjugated diene compound include isoprene and butadiene.
 上記架橋性の単量体としては、ビニル化合物として、ジビニルベンゼン、1,4-ジビニロキシブタン、ジビニルスルホン等のビニル単量体;(メタ)アクリル化合物として、テトラメチロールメタンテトラ(メタ)アクリレート、ポリテトラメチレングリコールジアクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;アリル化合物として、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル;シラン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、1,3-ジビニルテトラメチルジシロキサン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のシランアルコキシド化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシシラン、ジメトキシエチルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシエチルビニルシラン、エチルメチルジビニルシラン、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の重合性二重結合含有シランアルコキシド;デカメチルシクロペンタシロキサン等の環状シロキサン;片末端変性シリコーンオイル、両末端シリコーンオイル、側鎖型シリコーンオイル等の変性(反応性)シリコーンオイル;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体等が挙げられる。 Examples of the crosslinkable monomer include vinyl monomers such as divinylbenzene, 1,4-dibinyloxybutane, and divinylsulfone as vinyl compounds; and tetramethylolmethanetetra (meth) acrylate as (meth) acrylic compounds. , Polytetramethylene glycol diacrylate, Tetramethylolmethanetri (meth) acrylate, Tetramethylolmethanedi (meth) acrylate, Trimethylolpropanetri (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, Dipentaerythritol penta (meth) ) Acrylic, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 1,4-butanediol di Polyfunctional (meth) acrylate compounds such as (meth) acrylate; as allyl compounds, triallyl (iso) cyanurate, triallyl trimellitate, diallylphthalate, diallylacrylamide, diallyl ether; as silane compounds, tetramethoxysilane, tetraethoxysilane. , Methyltrimethoxysilane, Methyltriethoxysilane, Ethyltrimethoxysilane, Ethyltriethoxysilane, Isopropyltrimethoxysilane, Isobutyltrimethoxysilane, Cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, trimethoxysilylstyrene, γ- (meth) acryloxipropyltrimethoxysilane, 1,3-divinyltetramethyldi Silane alkoxide compounds such as siloxane, methylphenyldimethoxysilane, diphenyldimethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsisilane, dimethoxyethylvinylsilane, diethoxymethylvinylsilane, diethoxyethylvinylsilane, ethylmethyldivinylsilane , Methylvinyldimethoxysilane, ethylvinyldimethoxysilane, methylvinyldiethoxysilane, ethylvinyldiethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylme Polymeric double bond-containing silane alkoxides such as tildimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Cyclic siloxane such as decamethylcyclopentasiloxane; modified (reactive) silicone oil such as single-ended silicone oil, double-ended silicone oil, side-chain silicone oil; (meth) acrylic acid, maleic acid, maleic anhydride, etc. Examples thereof include the carboxyl group-containing monomer of.
 上記無機材料としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア、カーボンブラック、ケイ酸ガラス、ホウケイ酸ガラス、鉛ガラス、ソーダ石灰ガラス及びアルミナシリケートガラス等が挙げられる。 Examples of the inorganic material include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda-lime glass and alumina silicate glass.
 上記基材粒子は、有機無機ハイブリッド粒子であってもよい。上記基材粒子は、コアシェル粒子であってもよい。上記基材粒子が有機無機ハイブリッド粒子である場合に、上記基材粒子の材料である無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された基材粒子としては特に限定されないが、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる基材粒子が挙げられる。上記有機無機ハイブリッド粒子としては、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 The base particle may be an organic-inorganic hybrid particle. The base material particles may be core-shell particles. When the base material particles are organic-inorganic hybrid particles, examples of the inorganic material as the material of the base material particles include silica, alumina, barium titanate, zirconia, and carbon black. It is preferable that the inorganic substance is not a metal. The base particles formed of the above silica are not particularly limited, but after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, firing is performed if necessary. Examples thereof include substrate particles obtained by carrying out the process. Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell arranged on the surface of the core. It is preferable that the core is an organic core. It is preferable that the shell is an inorganic shell. The base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell arranged on the surface of the organic core.
 上記有機コアの材料としては、上述した有機材料等が挙げられる。 Examples of the organic core material include the above-mentioned organic material and the like.
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 Examples of the material for the inorganic shell include the above-mentioned inorganic substances as the material for the base particle. The material of the inorganic shell is preferably silica. The inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core and then firing the shell-like material. The metal alkoxide is preferably a silane alkoxide. The inorganic shell is preferably formed of silane alkoxide.
 上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは500μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは20μm以下、最も好ましくは10μm以下である。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、導電性粒子を得るためにより一層好適に用いることができる。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、導電性粒子と電極との接触面積を十分に大きくすることができ、また、導電部を形成する際に凝集した導電性粒子が形成され難くなり、導電部が基材粒子の表面から剥離し難くなる。 The particle size of the base particles is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 500 μm or less, more preferably 100 μm or less, still more preferably 50 μm or less, particularly preferably 20 μm or less, most preferably. It is 10 μm or less. When the particle size of the base material particles is not less than the above lower limit and not more than the above upper limit, it can be more preferably used to obtain conductive particles. When the particle size of the base material particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode can be sufficiently increased, and the conductive portion aggregated when the conductive portion is formed. It becomes difficult for the sex particles to be formed, and it becomes difficult for the conductive portion to peel off from the surface of the base particle.
 上記基材粒子の粒子径は、1μm以上50μm以下であることが特に好ましい。上記基材粒子の粒子径が、1μm以上50μm以下の範囲内であると、基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。また、上記基材粒子の粒子径が、1μm以上50μm以下の範囲内であると、導電性粒子を得るためにより一層好適に用いることができる。 It is particularly preferable that the particle size of the base particle is 1 μm or more and 50 μm or less. When the particle size of the base material particles is within the range of 1 μm or more and 50 μm or less, it becomes difficult to agglomerate when forming a conductive portion on the surface of the base material particles, and it becomes difficult to form agglomerated conductive particles. Further, when the particle size of the base material particles is within the range of 1 μm or more and 50 μm or less, it can be more preferably used to obtain conductive particles.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、その体積相当の真球と仮定した際の直径を意味する。 The particle diameter of the base material particles indicates the diameter when the base material particles are spherical, and when the base material particles are not spherical, the diameter when it is assumed to be a true sphere corresponding to the volume thereof. means.
 上記基材粒子の粒子径は、数平均粒子径を示す。上記基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各基材粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの基材粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の基材粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの基材粒子の粒子径は、球相当径での粒子径として求められる。上記基材粒子の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。導電性粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the base particle indicates a number average particle size. For the particle size of the base particle, 50 arbitrary base particles are observed with an electron microscope or an optical microscope, the average value of the particle size of each base particle is calculated, or a particle size distribution measuring device is used. Desired. In observation with an electron microscope or an optical microscope, the particle size of each base particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 base particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each base particle is determined as the particle size in the equivalent sphere diameter. The average particle size of the base particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the base material particles in the conductive particles, for example, the measurement can be performed as follows.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。 Add to "Technobit 4000" manufactured by Kulzer so that the content of conductive particles is 30% by weight and disperse to prepare an embedded resin body for conducting conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), 50 conductive particles are randomly selected, and the base particles of each conductive particle are observed. The particle size of the base material particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the base material particles.
 (導電部)
 本発明に係る導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを備える。上記導電部は、金属を含むことが好ましい。
(Conductive part)
The conductive particles according to the present invention include base particles and conductive portions arranged on the surface of the base particles. The conductive portion preferably contains a metal.
 上記導電性粒子では、上記導電部が400℃以下で金属拡散し得る成分を含むか、又は、上記導電部が400℃以下で溶融変形可能である。金属拡散しうる温度を低くすることで、電極等の接合部分との間でより一層容易に金属結合を形成することができる。このため、上記金属拡散しうる温度は、350℃以下が好ましく、300℃以下がより好ましく、250℃以下がさらに好ましく、200℃以下が特に好ましい。上記金属拡散しうる温度は、金属の種類により制御することができる。 In the conductive particles, the conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower. By lowering the temperature at which the metal can diffuse, it is possible to more easily form a metal bond with a joint portion such as an electrode. Therefore, the temperature at which the metal can diffuse is preferably 350 ° C. or lower, more preferably 300 ° C. or lower, further preferably 250 ° C. or lower, and particularly preferably 200 ° C. or lower. The temperature at which the metal can diffuse can be controlled by the type of metal.
 また、上記導電部は、400℃以下で溶融変形可能であることが好ましい。上記導電部は、350℃以下で溶融変形可能であることが好ましく、300℃以下で溶融変形可能であることがより好ましく、250℃以下で溶融変形可能であることがさらに好ましく、200℃以下で溶融変形可能であることが特に好ましい。上記導電部の溶融変形温度が、上記の好ましい範囲であると、溶融変形温度を低くするができ、加熱時のエネルギーの消費量を抑えることができ、さらに接続対象部材等の熱劣化を抑制することができる。上記導電部の溶融変形温度は、上記導電部の金属の種類により制御することができる。上記導電部は、200℃を超える部分を有していてもよく、250℃を超える部分を有していてもよく、300℃を超える部分を有していてもよく、350℃を超える部分を有していてもよく、400℃を超える部分を有していてもよい。 Further, it is preferable that the conductive portion can be melt-deformed at 400 ° C. or lower. The conductive portion is preferably melt-deformable at 350 ° C. or lower, more preferably melt-deformable at 300 ° C. or lower, further preferably melt-deformable at 250 ° C. or lower, and 200 ° C. or lower. It is particularly preferable that it can be melt-deformed. When the melt deformation temperature of the conductive portion is within the above preferable range, the melt deformation temperature can be lowered, the energy consumption during heating can be suppressed, and the thermal deterioration of the member to be connected or the like can be suppressed. be able to. The melt deformation temperature of the conductive portion can be controlled by the type of metal of the conductive portion. The conductive portion may have a portion exceeding 200 ° C., may have a portion exceeding 250 ° C., may have a portion exceeding 300 ° C., and may have a portion exceeding 350 ° C. It may have a portion exceeding 400 ° C.
 上記導電部を構成する金属は特に限定されない。上記導電部を構成する金属としては、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記導電部を構成する金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。上記導電部を構成する金属は1種のみが用いられてもよく、2種以上が併用されてもよい。 The metal constituting the conductive portion is not particularly limited. Metals constituting the conductive portion include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, germanium, cadmium, etc. Examples thereof include silicon, tungsten, molybdenum and alloys thereof. Examples of the metal constituting the conductive portion include tin-doped indium oxide (ITO) and solder. Only one kind of metal constituting the conductive portion may be used, or two or more kinds may be used in combination.
 本発明では、上記導電部が400℃以下で金属拡散し得る成分を含むように、また、上記導電部が400℃以下で溶融変形可能であるように、上記導電部を構成する金属が選択されることが好ましい。上記導電部は、はんだを含むことが好ましく、はんだ部を有することが好ましい。上記はんだ部は、はんだにより形成されている。上記導電部は、はんだにより形成されたはんだ部を有することが好ましい。 In the present invention, the metal constituting the conductive portion is selected so that the conductive portion contains a component capable of diffusing the metal at 400 ° C. or lower, and the conductive portion can be melt-deformed at 400 ° C. or lower. Is preferable. The conductive portion preferably contains solder, and preferably has a solder portion. The solder portion is formed of solder. The conductive portion preferably has a solder portion formed of solder.
 接続抵抗をより一層効果的に低くする観点からは、上記導電部は、ニッケル、金、パラジウム、銀、銅、錫又は錫を含む合金を含むことが好ましく、ニッケル、金、パラジウム、錫又は錫を含む合金を含むことがより好ましい。 From the viewpoint of further effectively lowering the connection resistance, the conductive portion preferably contains an alloy containing nickel, gold, palladium, silver, copper, tin or tin, and nickel, gold, palladium, tin or tin. It is more preferable to contain an alloy containing.
 銀を含む導電部100重量%中、銀の含有量は、好ましくは0.1重量%以上、より好ましくは1重量%以上であり、好ましくは100重量%以下、より好ましくは90重量%以下である。上記銀の含有量は、80重量%以下であってもよく、60重量%以下であってもよく、40重量%以下であってもよく、20重量%以下であってもよく、10重量%以下であってもよい。上記銀の含有量が、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。 The silver content in 100% by weight of the conductive portion containing silver is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, and more preferably 90% by weight or less. is there. The silver content may be 80% by weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight. It may be as follows. When the silver content is at least the above lower limit and at least the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively.
 銅を含む導電部100重量%中、銅の含有量は、好ましくは0.1重量%以上、より好ましくは1重量%以上であり、好ましくは100重量%以下、より好ましくは90重量%以下である。上記銅の含有量は、80重量%以下であってもよく、60重量%以下であってもよく、40重量%以下であってもよく、20重量%以下であってもよく、10重量%以下であってもよい。上記銅の含有量が、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。 The copper content in 100% by weight of the conductive portion containing copper is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 100% by weight or less, and more preferably 90% by weight or less. is there. The copper content may be 80% by weight or less, 60% by weight or less, 40% by weight or less, 20% by weight or less, or 10% by weight. It may be as follows. When the copper content is at least the above lower limit and at least the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively.
 錫又は錫を含む合金を含む導電部100重量%中、錫又は錫を含む合金の含有量は、好ましくは20重量%以上、より好ましくは50重量%以上、特に好ましくは90重量%以上である。上記錫又は上記錫を含む合金の含有量が、上記下限以上であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。 The content of tin or an alloy containing tin is preferably 20% by weight or more, more preferably 50% by weight or more, and particularly preferably 90% by weight or more in 100% by weight of the conductive portion containing tin or an alloy containing tin. .. When the content of the tin or the alloy containing the tin is at least the above lower limit, the occurrence of agglomeration of the conductive particles can be suppressed more effectively.
 上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記はんだは錫を含む。上記はんだに含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだにおける錫の含有量が上記下限以上であると、導通信頼性がより一層高くなる。 The solder is preferably a metal having a melting point of 450 ° C. or lower (low melting point metal). The low melting point metal refers to a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower. Further, the solder contains tin. The tin content in 100% by weight of the metal contained in the solder is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight or more. When the tin content in the solder is at least the above lower limit, the continuity reliability becomes even higher.
 なお、上記ニッケル、上記銅、及び上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定可能である。 The contents of the nickel, copper, and tin are determined by a high-frequency inductively coupled plasma emission spectroscopic analyzer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-” manufactured by Shimadzu Corporation). It can be measured using 800HS ") or the like.
 上記はんだを用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだの使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性がより一層効果的に高くなる。 By using the above solder, the solder melts and joins to the electrodes, and the solder conducts between the electrodes. For example, the solder and the electrode are likely to make surface contact rather than point contact, so that the connection resistance is low. Further, as a result of increasing the joint strength between the solder and the electrode by using the solder, peeling between the solder and the electrode is more difficult to occur, and the conduction reliability is further improved.
 上記はんだを構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましく、錫-ビスマス合金、錫-インジウム合金であることがより好ましい。 The low melting point metal constituting the above solder is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include tin-silver alloy, tin-copper alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-zinc alloy, tin-indium alloy and the like. The low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-indium alloy, and tin-bismuth alloy or tin, because it has excellent wettability to the electrode. -It is more preferable that it is an indium alloy.
 上記はんだは、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。上記はんだは、低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)であることが好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むか、又は錫とビスマスとを含むことが好ましい。 The solder is preferably a filler material having a liquidus line of 450 ° C. or lower based on JIS Z3001: welding terminology. Examples of the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. The solder is preferably a tin-indium type (117 ° C. eutectic) or a tin-bismuth type (139 ° C. eutectic), which has a low melting point and is lead-free. That is, the solder preferably does not contain lead, and preferably contains tin and indium, or tin and bismuth.
 接合強度をより一層高めるために、上記はんだは、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、接合強度をさらに一層高める観点からは、上記はんだは、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことよりが好ましい。接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。 In order to further increase the bonding strength, the above solder uses metals such as nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese, chromium, molybdenum and palladium. It may be included. Further, from the viewpoint of further increasing the bonding strength, the solder preferably contains nickel, copper, antimony, aluminum or zinc. From the viewpoint of further increasing the bonding strength, the content of these metals for increasing the bonding strength is preferably 0.0001% by weight or more, preferably 1% by weight or less, based on 100% by weight of the solder.
 上記導電部は、1つの層により形成されていてもよい。上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。導通信頼性をより一層効果的に高める観点からは、上記導電部は、2層以上の積層構造を有することが好ましい。 The conductive portion may be formed by one layer. The conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers. From the viewpoint of further effectively enhancing the conduction reliability, the conductive portion preferably has a laminated structure of two or more layers.
 上記基材粒子の表面上に導電部を形成する方法は特に限定されない。上記導電部を形成する方法としては、以下の方法等が挙げられる。無電解めっきによる方法。電気めっきによる方法。物理的な衝突による方法。メカノケミカル反応による方法。物理的蒸着又は物理的吸着による方法。金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法。上記導電部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法としては、シーターコンポーザ(徳寿工作所社製)等が用いられる。 The method of forming the conductive portion on the surface of the base material particles is not particularly limited. Examples of the method for forming the conductive portion include the following methods. Method by electroless plating. Electroplating method. Method by physical collision. Method by mechanochemical reaction. Method by physical vapor deposition or physical adsorption. A method of coating the surface of base particles with a metal powder or a paste containing a metal powder and a binder. The method for forming the conductive portion is preferably a method by electroless plating, electroplating or physical collision. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, as the method by the above physical collision, a sheeter composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
 上記導電部の厚みは、好ましくは10nm以上、より好ましくは500nm以上であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは1μm以下、特に好ましくは800nm以下である。上記導電部の厚みは、導電部が2層以上の積層構造を有する場合には導電部全体の厚みを意味する。上記導電部の厚みが、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。また、上記導電部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなることを防止することができる。 The thickness of the conductive portion is preferably 10 nm or more, more preferably 500 nm or more, preferably 10 μm or less, more preferably 5 μm or less, still more preferably 1 μm or less, and particularly preferably 800 nm or less. The thickness of the conductive portion means the thickness of the entire conductive portion when the conductive portion has a laminated structure of two or more layers. When the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively. Further, when the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained and it is possible to prevent the conductive particles from becoming hard.
 上記導電部が2層以上の積層構造を有する場合には、最外層の導電部の厚みは、好ましくは10nm以上、より好ましくは500nm以上であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは1μm以下、特に好ましくは800nm以下である。上記最外層の導電部の厚みが、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。 When the conductive portion has a laminated structure of two or more layers, the thickness of the conductive portion of the outermost layer is preferably 10 nm or more, more preferably 500 nm or more, preferably 10 μm or less, more preferably 5 μm or less, and further. It is preferably 1 μm or less, particularly preferably 800 nm or less. When the thickness of the conductive portion of the outermost layer is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the occurrence of aggregation of the conductive particles.
 上記導電部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。上記導電部の厚みについては、任意の導電性粒子において、導電部の厚みが最大となる部分の厚みであることが好ましい。上記導電部の厚みは、任意の導電性粒子10個について、各導電性粒子の導電部の厚みの平均値を算出することにより求めることが好ましい。 The thickness of the conductive portion can be measured by observing the cross section of the conductive particles, for example, using a transmission electron microscope (TEM). The thickness of the conductive portion is preferably the thickness of the portion where the thickness of the conductive portion is maximized in any conductive particles. The thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 10 arbitrary conductive particles.
 はんだ粒:
 上記導電性粒子では、上記導電部は、はんだ部を有する。上記導電部は、はんだにより形成されたはんだ部を有する。
Solder grain:
In the conductive particles, the conductive portion has a solder portion. The conductive portion has a solder portion formed of solder.
 導電性粒子同士の凝集の発生をより一層効果的に抑制する観点からは、上記はんだ部は、はんだ粒であることが好ましい。上記導電性粒子では、上記導電部が、はんだ粒を有することが好ましい。例えば、図1中の第2の導電部(はんだ部)3B、図2中の第2の導電部(はんだ部)12C、図3中の第2の導電部(はんだ部)22B、及び図4中の第2の導電部(はんだ部)32Bは、はんだ粒であることが好ましい。また、図5中の第2の導電部(はんだ部)42B、図6中の第2の導電部(はんだ部)52C、図7中の第2の導電部(はんだ部)62B、及び図8中の第2の導電部(はんだ部)72Cは、はんだ粒であることが好ましい。 From the viewpoint of more effectively suppressing the occurrence of aggregation of conductive particles, the solder portion is preferably solder particles. In the conductive particles, it is preferable that the conductive portion has solder particles. For example, the second conductive portion (solder portion) 3B in FIG. 1, the second conductive portion (solder portion) 12C in FIG. 2, the second conductive portion (solder portion) 22B in FIG. 3, and FIG. The second conductive portion (solder portion) 32B inside is preferably solder grains. Further, the second conductive portion (solder portion) 42B in FIG. 5, the second conductive portion (solder portion) 52C in FIG. 6, the second conductive portion (solder portion) 62B in FIG. 7, and FIG. The second conductive portion (solder portion) 72C inside is preferably solder grains.
 上記はんだ粒は、後述する突起とは異なる。上記はんだ粒は、電極等の接合部分との間で、金属結合を形成することができる。上記はんだ粒は、電極等と接合するために用いられる。上記導電部が上記はんだ粒を有することで、上記はんだ粒が電極等の接合部分との間で容易に金属結合を形成することができるので、接合時に、導電部全体を溶融させる必要がない。結果として、導電部の厚みが比較的薄い場合でも、電極間の導通信頼性を高めることができる。さらに、導電部の厚みを厚くする必要がないことから、導電性粒子同士の凝集を効果的に抑制することができる。 The above solder grains are different from the protrusions described later. The solder grains can form a metal bond with a joint portion such as an electrode. The solder grains are used for joining with electrodes and the like. Since the conductive portion has the solder particles, the solder particles can easily form a metal bond with the joint portion such as an electrode, so that it is not necessary to melt the entire conductive portion at the time of joining. As a result, the reliability of conduction between the electrodes can be improved even when the thickness of the conductive portion is relatively thin. Further, since it is not necessary to increase the thickness of the conductive portion, it is possible to effectively suppress the aggregation of the conductive particles.
 また、上記はんだ粒は比較的小さいため、上記はんだ粒の外表面は比較的酸化されにくく、酸化被膜の影響を抑制することができる。このため、上記はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができる。一方、上記導電性粒子が上記はんだ粒ではなく、はんだにより被覆されたはんだ層を有する場合には、はんだ層の外表面は比較的酸化されやすく、酸化被膜の影響を抑制することが困難である。このため、はんだ層が電極等の接合部分との間で容易に金属結合を形成することができず、はんだ層を厚くする等の対策が必要となり、導電性粒子同士の凝集の発生を抑制することが困難となる。 Further, since the solder particles are relatively small, the outer surface of the solder particles is relatively difficult to be oxidized, and the influence of the oxide film can be suppressed. Therefore, the solder particles can more easily form a metal bond with a joint portion such as an electrode. On the other hand, when the conductive particles have a solder layer coated with solder instead of the solder particles, the outer surface of the solder layer is relatively easily oxidized, and it is difficult to suppress the influence of the oxide film. .. For this reason, the solder layer cannot easily form a metal bond with a joint portion such as an electrode, and measures such as thickening the solder layer are required to suppress the occurrence of agglomeration of conductive particles. Becomes difficult.
 上記はんだ粒の形状は特に限定されない。上記はんだ粒の形状は、針状又は球体の一部の形状であることが好ましい。針状の形状は、角錐状、円錐状又は回転放物面状であることが好ましく、円錐状又は回転放物面状であることがより好ましく、円錐状であることがさらに好ましい。上記はんだ粒の形状は、角錐状であってもよく、円錐状であってもよく、回転放物面状であってもよい。 The shape of the solder grains is not particularly limited. The shape of the solder grains is preferably a needle shape or a part of a sphere. The needle-like shape is preferably a pyramid, a cone, or a rotating paraboloid, more preferably a cone or a rotating paraboloid, and even more preferably a cone. The shape of the solder grains may be a pyramid shape, a conical shape, or a rotating paraboloid shape.
 上記はんだ粒の材料は特に限定されない。上記はんだ粒は金属により構成されていることが好ましい。上記はんだ粒の材料は、錫を含む合金を含むか、純錫であるか、又は錫を含む合金とは異なる状態かつ純錫とは異なる状態で錫を含むことが好ましい。上記はんだ粒の材料は、錫を含む合金を含むか、又は純錫であってもよい。上記はんだ粒の材料は、錫を含む合金であってもよく、純錫であってもよい。上記はんだ粒の材料は、錫を含む合金とは異なる状態かつ純錫とは異なる状態で錫を含んでいてもよい。導電性粒子同士の凝集の発生をより一層効果的に抑制する観点からは、上記はんだ粒の材料は、純錫であることがより好ましい。なお、上記はんだ粒の材料が純錫であるとは、上記はんだ粒の材料100重量%中、錫の含有量が90重量%以上であることを示す。上記はんだ粒の材料100重量%中、錫の含有量は、90重量%未満であってもよく、80重量%以下であってもよく、75重量%以下であってもよく、70重量%以下であってもよい。 The material of the above solder grains is not particularly limited. The solder grains are preferably made of metal. The material of the solder grains preferably contains tin in an alloy containing tin, is pure tin, or contains tin in a state different from the alloy containing tin and in a state different from pure tin. The material of the solder grains may contain an alloy containing tin or may be pure tin. The material of the solder grains may be an alloy containing tin or pure tin. The material of the solder particles may contain tin in a state different from that of the alloy containing tin and in a state different from that of pure tin. From the viewpoint of more effectively suppressing the occurrence of aggregation of the conductive particles, the material of the solder particles is more preferably pure tin. The fact that the material of the solder particles is pure tin means that the tin content is 90% by weight or more in 100% by weight of the material of the solder particles. The tin content in 100% by weight of the solder grain material may be less than 90% by weight, 80% by weight or less, 75% by weight or less, 70% by weight or less. It may be.
 錫を含むはんだ粒100重量%中、錫の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、さらに好ましくは90重量%以上であり、好ましくは99.5重量%以下、より好ましくは99重量%以下である。上記錫の含有量が、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。上記錫の含有量が、上記下限以上及び上記上限以下であると、はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができる。 The tin content in 100% by weight of the solder grains containing tin is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 90% by weight or more, and preferably 99.5% by weight or less. More preferably, it is 99% by weight or less. When the tin content is at least the above lower limit and at least the above upper limit, it is possible to more effectively suppress the occurrence of aggregation of the conductive particles. When the tin content is not less than the above lower limit and not more than the above upper limit, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
 上記はんだ粒の高さは、好ましくは10nm以上、より好ましくは250nm以上、さらに好ましくは350nm以上、特に好ましくは500nm以上であり、好ましくは10μm以下、より好ましくは5μm以下である。上記はんだ粒の高さが、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。上記はんだ粒の高さが、上記下限以上及び上記上限以下であると、上記はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができ、物理接触よりも優れた導通特性を得ることができ、接合強度をより一層高めることができる。 The height of the solder grains is preferably 10 nm or more, more preferably 250 nm or more, further preferably 350 nm or more, particularly preferably 500 nm or more, preferably 10 μm or less, and more preferably 5 μm or less. When the height of the solder particles is not less than the above lower limit and not more than the above upper limit, it is possible to more effectively suppress the occurrence of aggregation of the conductive particles. When the height of the solder particles is equal to or higher than the lower limit and lower than the upper limit, the solder grains can more easily form a metal bond with a joint portion such as an electrode, which is superior to physical contact. The conduction characteristics can be obtained, and the bonding strength can be further increased.
 上記はんだ粒の高さは、導電性粒子の中心とはんだ粒(はんだ部)の先端とを結ぶ線(図1に示す破線L1)上における、はんだ粒(はんだ部)が無いと想定した場合の第1の導電部の外表面からはんだ粒(はんだ部)の先端までの距離を示す。即ち、図1においては、破線L1と第1の導電部の外表面との交点L2からはんだ粒(はんだ部)の先端までの距離を示す。上記はんだ粒の高さは、1つの導電性粒子におけるはんだ粒の高さの平均であることが好ましい。上記はんだ粒の高さは、導電性粒子における5箇所のはんだ粒の高さの平均値であることが好ましい。 The height of the solder particles is based on the assumption that there are no solder particles (solder portion) on the line (broken line L1 shown in FIG. 1) connecting the center of the conductive particles and the tip of the solder particles (solder portion). The distance from the outer surface of the first conductive portion to the tip of the solder grain (solder portion) is shown. That is, in FIG. 1, the distance from the intersection L2 between the broken line L1 and the outer surface of the first conductive portion to the tip of the solder grain (solder portion) is shown. The height of the solder particles is preferably the average of the heights of the solder particles in one conductive particle. The height of the solder particles is preferably an average value of the heights of the solder particles at five locations in the conductive particles.
 上記はんだ粒の高さは、例えば、以下のようにして測定できる。 The height of the solder grains can be measured as follows, for example.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、導電性粒子を無作為に選択し、導電性粒子におけるはんだ粒を観察する。導電性粒子における5箇所のはんだ粒の高さを計測し、それらを算術平均してはんだ粒の高さとする。 Add to "Technobit 4000" manufactured by Kulzer so that the content of conductive particles is 30% by weight and disperse to prepare an embedded resin body for conducting conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), conductive particles are randomly selected, and the solder particles in the conductive particles are observed. The heights of the solder particles at five points in the conductive particles are measured, and they are arithmetically averaged to obtain the height of the solder particles.
 上記はんだ粒のアスペクト比は、好ましくは0.05以上、より好ましくは0.47以上、さらに好ましくは0.5以上であり、好ましくは5以下、より好ましくは3以下である。上記はんだ粒のアスペクト比が、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。上記はんだ粒のアスペクト比が、上記下限以上及び上記上限以下であると、はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができ、はんだ粒と電極等の接合部分との面積を十分に確保することができる。 The aspect ratio of the solder grains is preferably 0.05 or more, more preferably 0.47 or more, still more preferably 0.5 or more, preferably 5 or less, and more preferably 3 or less. When the aspect ratio of the solder particles is not less than the above lower limit and not more than the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively. When the aspect ratio of the solder grains is equal to or higher than the lower limit and lower than the upper limit, the solder grains can more easily form a metal bond with a joint portion such as an electrode, and the solder grains and the electrode or the like can be formed. A sufficient area with the joint can be secured.
 上記はんだ粒のアスペクト比は、はんだ粒の高さの、はんだ粒の幅に対する比(はんだ粒の高さ/はんだ粒の幅)であり、はんだ粒の高さとはんだ粒の幅とから算出される。はんだ粒の高さは、上述したように、導電性粒子の中心とはんだ粒(はんだ部)の先端とを結ぶ線(図1に示す破線L1)上における、はんだ粒(はんだ部)が無いと想定した場合の第1の導電部の外表面からはんだ粒(はんだ部)の先端までの距離を示す。また、はんだ粒の幅は、導電性粒子の中心とはんだ粒(はんだ部)の先端とを結ぶ線と直交する方向において、はんだ粒(はんだ部)の外周の2点を直線で結んだ距離の最大値を示す。上記はんだ粒の幅は、1つの導電性粒子におけるはんだ粒の幅の平均であることが好ましい。上記はんだ粒の幅は、導電性粒子における5箇所のはんだ粒の幅の平均値であることが好ましい。 The aspect ratio of the solder grains is the ratio of the height of the solder grains to the width of the solder grains (height of the solder grains / width of the solder grains), and is calculated from the height of the solder grains and the width of the solder grains. .. As described above, the height of the solder particles is such that there is no solder particles (solder portion) on the line (broken line L1 shown in FIG. 1) connecting the center of the conductive particles and the tip of the solder particles (solder portion). The distance from the outer surface of the first conductive portion to the tip of the solder particles (solder portion) in the assumed case is shown. The width of the solder particles is the distance obtained by connecting two points on the outer circumference of the solder particles (solder portion) with a straight line in a direction orthogonal to the line connecting the center of the conductive particles and the tip of the solder particles (solder portion). Indicates the maximum value. The width of the solder particles is preferably the average of the widths of the solder particles in one conductive particle. The width of the solder particles is preferably an average value of the widths of the solder particles at five locations in the conductive particles.
 上記はんだ粒の幅は、例えば、以下のようにして測定できる。 The width of the solder grains can be measured as follows, for example.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、導電性粒子を無作為に選択し、導電性粒子におけるはんだ粒を観察する。導電性粒子における5箇所のはんだ粒の幅を計測し、それらを算術平均してはんだ粒の幅とする。 Add to "Technobit 4000" manufactured by Kulzer so that the content of conductive particles is 30% by weight and disperse to prepare an embedded resin body for conducting conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), conductive particles are randomly selected, and the solder particles in the conductive particles are observed. The widths of the solder particles at five points in the conductive particles are measured, and they are arithmetically averaged to obtain the width of the solder particles.
 上記はんだ粒の幅は、好ましくは250nm以上、より好ましくは500nm以上、さらに好ましくは650nm以上であり、好ましくは3000nm以下、より好ましくは1700nm以下、さらに好ましくは1500nm以下である。上記はんだ粒の幅が、上記下限以上及び上記上限以下であると、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。上記はんだ粒の幅が、上記下限以上及び上記上限以下であると、上記はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができ、物理接触よりも優れた導通特性を得ることができ、接合強度をより一層高めることができる。 The width of the solder grains is preferably 250 nm or more, more preferably 500 nm or more, further preferably 650 nm or more, preferably 3000 nm or less, more preferably 1700 nm or less, still more preferably 1500 nm or less. When the width of the solder particles is not less than the above lower limit and not more than the above upper limit, the occurrence of aggregation of the conductive particles can be suppressed more effectively. When the width of the solder grains is equal to or more than the lower limit and equal to or lower than the upper limit, the solder grains can more easily form a metal bond with a joint portion such as an electrode, which is superior to physical contact. Conductivity characteristics can be obtained, and the bonding strength can be further increased.
 上記はんだ粒を形成する方法は特に限定されない。上記はんだ粒を形成する方法としては、無電解めっきによる方法、及び電気めっきによる方法等が挙げられる。なお、本発明においては形成される形状が膜状だけでなく、粒状である場合もめっきであるとみなす。 The method for forming the above solder grains is not particularly limited. Examples of the method for forming the solder particles include a method by electroless plating and a method by electroplating. In the present invention, it is considered that the shape formed is not only film-like but also granular as plating.
 上記導電性粒子では、上記はんだ粒の外表面上に、金属コロイド析出物又は金属膜を有することが好ましい。上記導電性粒子では、上記はんだ粒の外表面上に金属コロイド析出物を有していてもよく、金属膜を有していてもよい。 The conductive particles preferably have a metal colloidal precipitate or a metal film on the outer surface of the solder particles. The conductive particles may have a metal colloidal precipitate on the outer surface of the solder particles, or may have a metal film.
 上記導電性粒子が、上記の好ましい態様を満足すると、上記はんだ粒(上記はんだ部)及び上記導電部の融点又は金属拡散温度を変化させることができ、電極等の接合部分により適した温度にすることができる。結果として、上記はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができる。 When the conductive particles satisfy the above-mentioned preferable aspects, the melting points or metal diffusion temperatures of the solder particles (the solder portion) and the conductive portion can be changed to a temperature more suitable for the joint portion such as an electrode. be able to. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
 上記はんだ粒の全表面積100%中、上記金属コロイド析出物又は上記金属膜がある部分の面積(金属コロイド析出物又は金属膜の被覆率)は、好ましくは5%以上、より好ましくは40%以上であり、好ましくは100%以下、より好ましくは95%以下である。上記被覆率(金属コロイド析出物又は金属膜の被覆率)が、上記下限以上及び上記上限以下であると、上記はんだ粒(上記はんだ部)及び上記導電部の融点又は金属拡散温度を変化させることができ、電極等の接合部分により適した温度にすることができる。結果として、上記はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができる。 The area of the metal colloidal precipitate or the portion where the metal film is present (the coverage of the metal colloidal precipitate or the metal film) is preferably 5% or more, more preferably 40% or more in the total area of 100% of the solder grains. It is preferably 100% or less, more preferably 95% or less. When the coverage (coverage of metal colloidal precipitate or metal film) is equal to or higher than the lower limit and lower than the upper limit, the melting point or metal diffusion temperature of the solder particles (solder portion) and the conductive portion is changed. It is possible to make the temperature more suitable for the joint portion such as an electrode. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
 上記はんだ粒の全表面積100%中、上記金属コロイド析出物又は上記金属膜がある部分の面積(金属コロイド析出物又は金属膜の被覆率)は、導電性粒子におけるはんだ粒の断面をSEM-EDX分析して元素マッピングを行い、画像解析することで算出することができる。 The area of the metal colloidal precipitate or the portion where the metal film is present (the coverage of the metal colloidal precipitate or the metal film) in 100% of the total surface area of the solder grains is the cross section of the solder grains in the conductive particles SEM-EDX. It can be calculated by analyzing, performing element mapping, and performing image analysis.
 上記金属コロイド析出物の金属種又は上記金属膜の金属種は、ニッケル、コバルト、鉛、金、亜鉛、パラジウム、銅、銀、ビスマス、又はインジウムであることが好ましく、銅、銀、ビスマス、又はインジウムであることがより好ましい。上記金属コロイド析出物の金属種又は上記金属膜の金属種が、上記の好ましい態様を満足すると、上記はんだ粒(上記はんだ部)及び上記導電部の融点又は金属拡散温度を変化させることができ、電極等の接合部分により適した温度にすることができる。結果として、上記はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができる。 The metal species of the metal colloid precipitate or the metal film of the metal film is preferably nickel, cobalt, lead, gold, zinc, palladium, copper, silver, bismuth, or indium, and is preferably copper, silver, bismuth, or It is more preferably indium. When the metal species of the metal colloid precipitate or the metal species of the metal film satisfy the above-mentioned preferable aspects, the melting points or metal diffusion temperatures of the solder grains (the solder portion) and the conductive portion can be changed. The temperature can be made more suitable for the joint portion such as an electrode. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
 上記金属コロイド析出物を得るための金属コロイドは、ニッケルコロイド、コバルトコロイド、鉛コロイド、金コロイド、亜鉛コロイド、パラジウムコロイド、銅コロイド、銀コロイド、ビスマスコロイド、又はインジウムコロイドであることが好ましい。上記金属コロイド析出物を得るための金属コロイドは、銅コロイド、銀コロイド、ビスマスコロイド、又はインジウムコロイドであることがより好ましい。上記金属膜は、ニッケル薄膜、コバルト薄膜、鉛薄膜、金薄膜、亜鉛薄膜、パラジウム薄膜、銅薄膜、銀薄膜、ビスマス薄膜、又はインジウム薄膜であることが好ましい。上記金属膜は、銅薄膜、銀薄膜、ビスマス薄膜、又はインジウム薄膜であることがより好ましい。上記金属コロイド析出物又は上記金属膜が、上記の好ましい態様を満足すると、上記はんだ粒(上記はんだ部)及び上記導電部の融点又は金属拡散温度を変化させることができ、電極等の接合部分により適した温度にすることができる。結果として、上記はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができる。 The metal colloid for obtaining the metal colloid deposit is preferably nickel colloid, cobalt colloid, lead colloid, gold colloid, zinc colloid, palladium colloid, copper colloid, silver colloid, bismuth colloid, or indium colloid. The metal colloid for obtaining the metal colloidal precipitate is more preferably a copper colloid, a silver colloid, a bismuth colloid, or an indium colloid. The metal film is preferably a nickel thin film, a cobalt thin film, a lead thin film, a gold thin film, a zinc thin film, a palladium thin film, a copper thin film, a silver thin film, a bismuth thin film, or an indium thin film. The metal film is more preferably a copper thin film, a silver thin film, a bismuth thin film, or an indium thin film. When the metal colloid precipitate or the metal film satisfies the above preferred embodiment, the melting point or the metal diffusion temperature of the solder grains (the solder portion) and the conductive portion can be changed, and the joint portion such as an electrode can be used. It can be a suitable temperature. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
 上記金属コロイド析出物は金属微粒子であることが好ましい。上記金属微粒子の粒子径は、好ましくは1nm以上、より好ましくは10nm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。上記金属膜の厚みは、好ましくは1nm以上、より好ましくは10nm以上であり、好ましくは1μm以下、より好ましくは0.5μm以下である。上記金属微粒子の粒子径又は上記金属膜の厚みが、上記の好ましい態様を満足すると、上記はんだ粒(上記はんだ部)及び上記導電部の融点又は金属拡散温度を変化させることができ、電極等の接合部分により適した温度にすることができる。結果として、上記はんだ粒が電極等の接合部分との間でより一層容易に金属結合を形成することができる。 The metal colloidal precipitate is preferably metal fine particles. The particle size of the metal fine particles is preferably 1 nm or more, more preferably 10 nm or more, preferably 1 μm or less, and more preferably 0.5 μm or less. The thickness of the metal film is preferably 1 nm or more, more preferably 10 nm or more, preferably 1 μm or less, and more preferably 0.5 μm or less. When the particle size of the metal fine particles or the thickness of the metal film satisfies the above-mentioned preferable aspects, the melting points or the metal diffusion temperature of the solder particles (the solder portion) and the conductive portion can be changed, and the electrode or the like can be used. The temperature can be made more suitable for the joint. As a result, the solder particles can more easily form a metal bond with a joint portion such as an electrode.
 上記金属コロイド析出物の粒子径又は上記金属膜の厚みは、例えば、以下のようにして測定できる。 The particle size of the metal colloidal precipitate or the thickness of the metal film can be measured, for example, as follows.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、導電性粒子を無作為に選択し、はんだ粒における金属コロイド析出物又は金属膜を観察する。はんだ粒における5箇所の金属コロイド析出物の粒子径又は金属膜の厚みを計測し、それらを算術平均して金属コロイド析出物の粒子径又は金属膜の厚みとする。 Add to "Technobit 4000" manufactured by Kulzer so that the content of conductive particles is 30% by weight and disperse to prepare an embedded resin body for conducting conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), conductive particles are randomly selected, and a metal colloidal precipitate or a metal film in the solder particles is observed. The particle size or the thickness of the metal film of the metal colloidal precipitates at five points in the solder grains is measured, and they are arithmetically averaged to obtain the particle size or the thickness of the metal film of the metal colloidal precipitate.
 上記はんだ粒の外表面上に金属コロイド析出物又は金属膜を配置する方法は特に限定されない。上記はんだ粒の外表面上に金属コロイド析出物又は金属膜を配置する方法としては、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、及び物理的蒸着又は物理的吸着による方法等が挙げられる。 The method of arranging the metal colloidal precipitate or the metal film on the outer surface of the solder particles is not particularly limited. As a method of arranging the metal colloidal precipitate or the metal film on the outer surface of the solder grains, a method by electroless plating, a method by electroplating, a method by physical collision, and a method by physical vapor deposition or physical adsorption And so on.
 (芯物質)
 上記導電性粒子は、上記導電部の外表面に突起を有することが好ましい。上記導電性粒子は、導電性の表面に突起を有することが好ましい。上記突起は、複数であることが好ましい。導電性粒子と接触する電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する導電性粒子を用いた場合には、導電性粒子と電極とを圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、導電性粒子と電極との接触面積を十分に大きくすることができ、接続抵抗をより一層効果的に低くすることができる。さらに、導電性粒子がバインダーに分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間のバインダーをより一層効果的に排除できる。このため、導電性粒子と電極との接触面積を十分に大きくすることができ、接続抵抗をより一層効果的に低くすることができる。
(Core substance)
The conductive particles preferably have protrusions on the outer surface of the conductive portion. The conductive particles preferably have protrusions on the conductive surface. It is preferable that the number of the protrusions is plurality. An oxide film is often formed on the surface of the electrode that comes into contact with the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively removed by the protrusions by crimping the conductive particles and the electrode. Therefore, the electrode and the conductive portion are more reliably contacted with each other, the contact area between the conductive particles and the electrode can be sufficiently increased, and the connection resistance can be further effectively lowered. Further, when the conductive particles are dispersed in the binder and used as the conductive material, the protrusions of the conductive particles can more effectively remove the binder between the conductive particles and the electrode. Therefore, the contact area between the conductive particles and the electrodes can be sufficiently increased, and the connection resistance can be lowered even more effectively.
 上記突起は、上述したはんだ粒とは異なる。上記突起は、導電性粒子や電極の表面に存在する酸化被膜を排除したり、導電性粒子と電極との間のバインダーを排除したりするために用いられる。 The protrusions are different from the solder particles described above. The protrusions are used to remove conductive particles and an oxide film existing on the surface of the electrode, and to remove a binder between the conductive particles and the electrode.
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに基材粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。また、上記突起を形成するために、上記芯物質を用いなくてもよい。 As a method of forming the above-mentioned protrusions, a method of forming a conductive portion by electroless plating after adhering a core substance to the surface of the base material particles, and a method of forming a conductive portion by electroless plating on the surface of the base material particles. After that, a method of adhering a core substance and further forming a conductive portion by electroless plating can be mentioned. Further, the core material may not be used to form the protrusions.
 上記突起を形成する他の方法としては、基材粒子の表面上に導電部を形成する途中段階で、芯物質を添加する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いずに、基材粒子に無電解めっきにより導電部を形成した後、導電部の表面上に突起状にめっきを析出させ、さらに無電解めっきにより導電部を形成する方法等を用いてもよい。 As another method for forming the above-mentioned protrusions, a method of adding a core substance in the middle of forming a conductive portion on the surface of the base material particles can be mentioned. Further, in order to form protrusions, a conductive portion is formed on the substrate particles by electroless plating without using the above-mentioned core substance, and then plating is deposited in a protrusion shape on the surface of the conductive portion, and further electroless plating is performed. You may use the method of forming the conductive part by
 基材粒子の表面に芯物質を付着させる方法としては、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。付着させる芯物質の量を制御する観点からは、基材粒子の表面に芯物質を付着させる方法は、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法であることが好ましい。 As a method of adhering the core substance to the surface of the base particle, the core substance is added to the dispersion liquid of the base particle, and the core substance is accumulated and adhered to the surface of the base particle by van der Waals force. Examples thereof include a method in which a core substance is added to a container containing the base material particles, and the core substance is attached to the surface of the base material particles by a mechanical action such as rotation of the container. From the viewpoint of controlling the amount of the core substance to be attached, the method of adhering the core substance to the surface of the base material particles is a method of accumulating and adhering the core substance to the surface of the base material particles in the dispersion liquid. preferable.
 上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。酸化被膜をより一層効果的に排除する観点からは、上記芯物質は硬い方が好ましい。電極間の接続抵抗をより一層効果的に低くする観点からは、上記芯物質は、金属であることが好ましい。 Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance. Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene and the like. Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of more effectively removing the oxide film, the core material is preferably hard. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the core material is preferably a metal.
 上記金属は特に限定されない。上記金属としては、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。電極間の接続抵抗をより一層効果的に低くする観点からは、上記金属は、ニッケル、銅、銀又は金であることが好ましい。上記金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。 The above metals are not particularly limited. Examples of the metals include metals such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys. Examples thereof include alloys composed of two or more kinds of metals such as tin-copper alloy, tin-silver alloy, tin-lead-silver alloy and tungsten carbide. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the metal is preferably nickel, copper, silver or gold. The metal may be the same as or different from the metal constituting the conductive portion (conductive layer).
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core material is preferably lumpy. Examples of the core material include particulate lumps, agglomerates in which a plurality of fine particles are agglomerated, and amorphous lumps.
 上記芯物質の粒子径は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の粒子径が、上記下限以上及び上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The particle size of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, and more preferably 0.2 μm or less. When the particle size of the core substance is not less than the above lower limit and not more than the upper limit, the connection resistance between the electrodes can be further effectively reduced.
 上記芯物質の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。芯物質の粒子径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、各芯物質の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの芯物質の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の芯物質の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの芯物質の粒子径は、球相当径での粒子径として求められる。上記芯物質の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。 The particle size of the core material is preferably an average particle size, and more preferably a number average particle size. The particle size of the core material can be obtained by observing 50 arbitrary core materials with an electron microscope or an optical microscope, calculating the average value of the particle size of each core material, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each core substance is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 core materials in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each core substance is obtained as the particle size in the equivalent diameter of a sphere. The average particle size of the core material is preferably calculated using a particle size distribution measuring device.
 上記導電性粒子1個当たりの上記突起の数は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。上記突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。上記突起の数が、上記下限以上であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The number of the protrusions per the conductive particles is preferably 3 or more, more preferably 5 or more. The upper limit of the number of protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle size of the conductive particles and the like. When the number of the protrusions is at least the above lower limit, the connection resistance between the electrodes can be further effectively reduced.
 上記突起の数は、任意の導電性粒子を電子顕微鏡又は光学顕微鏡にて観察して算出することができる。上記突起の数は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子における突起の数の平均値を算出することにより求めることが好ましい。 The number of protrusions can be calculated by observing arbitrary conductive particles with an electron microscope or an optical microscope. The number of protrusions is preferably determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average value of the number of protrusions in each conductive particle.
 上記突起の高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上であり、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記突起の高さが、上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The height of the protrusion is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, and more preferably 0.2 μm or less. When the height of the protrusion is equal to or higher than the lower limit and lower than the upper limit, the connection resistance between the electrodes can be further effectively reduced.
 上記突起の高さは、任意の導電性粒子における突起を電子顕微鏡又は光学顕微鏡にて観察して算出することができる。上記突起の高さは、導電性粒子1個当たりのすべての突起の高さの平均値を1個の導電性粒子の突起の高さとして算出することが好ましい。上記突起の高さは、任意の導電性粒子50個について、各導電性粒子の突起の高さの平均値を算出することにより求めることが好ましい。 The height of the protrusions can be calculated by observing the protrusions on any conductive particle with an electron microscope or an optical microscope. The height of the protrusions is preferably calculated by calculating the average value of the heights of all the protrusions per conductive particle as the height of the protrusions of one conductive particle. The height of the protrusions is preferably obtained by calculating the average value of the heights of the protrusions of each of the conductive particles for 50 arbitrary conductive particles.
 (絶縁性物質)
 上記導電性粒子は、上記導電部の外表面上に配置された絶縁性物質を備えることが好ましい。この場合には、上記導電性粒子を電極間の接続に用いると、隣接する電極間の短絡をより一層効果的に防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。さらに、導電部の外表面に突起を有する導電性粒子である場合には、導電性粒子の導電部と電極との間の絶縁性物質をより一層容易に排除できる。
(Insulating substance)
The conductive particles preferably include an insulating substance arranged on the outer surface of the conductive portion. In this case, if the conductive particles are used for the connection between the electrodes, a short circuit between adjacent electrodes can be prevented more effectively. Specifically, when a plurality of conductive particles come into contact with each other, an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between the electrodes adjacent to each other in the lateral direction rather than between the upper and lower electrodes. By pressurizing the conductive particles with the two electrodes at the time of connection between the electrodes, the insulating substance between the conductive portion of the conductive particles and the electrodes can be easily removed. Further, in the case of the conductive particles having protrusions on the outer surface of the conductive portion, the insulating substance between the conductive portion of the conductive portion and the electrode can be more easily removed.
 電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。 The insulating substance is preferably insulating particles because the insulating substance can be more easily removed during crimping between the electrodes.
 上記絶縁性物質の材料としては、上述した有機材料、上述した無機材料、及び上述した基材粒子の材料として挙げた無機物等が挙げられる。上記絶縁性物質の材料は、上述した有機材料であることが好ましい。 Examples of the material of the insulating substance include the above-mentioned organic material, the above-mentioned inorganic material, and the above-mentioned inorganic substance as the material of the base particle. The material of the insulating substance is preferably the organic material described above.
 上記絶縁性物質の他の材料としては、ポリオレフィン化合物、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。上記絶縁性物質の材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Other materials of the insulating substance include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, thermosetting resins and water-soluble materials. Examples include resin. As the material of the insulating substance, only one kind may be used, or two or more kinds may be used in combination.
 上記ポリオレフィン化合物としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリドデシル(メタ)アクリレート及びポリステアリル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記熱可塑性樹脂の架橋物としては、ポリエチレングリコールメタクリレート、アルコキシ化トリメチロールプロパンメタクリレートやアルコキシ化ペンタエリスリトールメタクリレート等の導入が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。また、重合度の調整に、連鎖移動剤を使用してもよい。連鎖移動剤としては、チオールや四塩化炭素等が挙げられる。 Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. Examples of the thermosetting resin include epoxy resin, phenol resin, melamine resin and the like. Examples of the crosslinked product of the thermoplastic resin include the introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like. Further, a chain transfer agent may be used to adjust the degree of polymerization. Examples of the chain transfer agent include thiols and carbon tetrachloride.
 上記導電部の表面上に上記絶縁性物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高める観点からは、上記導電部の表面上に上記絶縁性物質を配置する方法は、物理的方法であることが好ましい。 Examples of the method of arranging the insulating substance on the surface of the conductive portion include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping and vacuum deposition method. From the viewpoint of further effectively enhancing the insulation reliability and the conduction reliability when the electrodes are electrically connected, the method of arranging the insulating substance on the surface of the conductive portion is a physical method. It is preferable to have.
 上記導電部の外表面、及び上記絶縁性物質の外表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。上記導電部の外表面と上記絶縁性物質の外表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。上記導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性物質の外表面の官能基と化学結合していても構わない。 The outer surface of the conductive portion and the outer surface of the insulating substance may each be coated with a compound having a reactive functional group. The outer surface of the conductive portion and the outer surface of the insulating substance may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group into the outer surface of the conductive portion, the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating substance via a polymer electrolyte such as polyethyleneimine.
 上記絶縁性物質が絶縁性粒子である場合、上記絶縁性粒子の粒子径は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁性粒子の粒子径は、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは300nm以上、特に好ましくは500nm以上であり、好ましくは4000nm以下、より好ましくは2000nm以下、さらに好ましくは1500nm以下、特に好ましくは1000nm以下である。絶縁性粒子の粒子径が上記下限以上であると、導電性粒子がバインダー中に分散されたときに、複数の導電性粒子における導電部同士が接触し難くなる。絶縁性粒子の粒子径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 When the insulating substance is an insulating particle, the particle size of the insulating particle can be appropriately selected depending on the particle size of the conductive particle, the application of the conductive particle, and the like. The particle size of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 300 nm or more, particularly preferably 500 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, still more preferably 1500 nm or less. , Especially preferably 1000 nm or less. When the particle size of the insulating particles is at least the above lower limit, it becomes difficult for the conductive portions of the plurality of conductive particles to come into contact with each other when the conductive particles are dispersed in the binder. When the particle size of the insulating particles is not more than the above upper limit, it is not necessary to increase the pressure too much in order to eliminate the insulating particles between the electrodes and the conductive particles when connecting the electrodes, and the temperature is high. There is no need to heat it.
 上記絶縁性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。絶縁性粒子の粒子径は、任意の絶縁性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各絶縁性粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの絶縁性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の絶縁性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの絶縁性粒子の粒子径は、球相当径での粒子径として求められる。上記絶縁性粒子の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。上記導電性粒子において、上記絶縁性粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the insulating particles is preferably an average particle size, and preferably a number average particle size. The particle size of the insulating particles can be obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each insulating particle, or using a particle size distribution measuring device. Be done. In observation with an electron microscope or an optical microscope, the particle size of each insulating particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 insulating particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each insulating particle is obtained as the particle size in the equivalent diameter of a sphere. The average particle size of the insulating particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the insulating particles in the conductive particles, for example, it can be measured as follows.
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。その検査用埋め込み樹脂体中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、50個の導電性粒子を無作為に選択し、各導電性粒子の絶縁性粒子を観察する。各導電性粒子における絶縁性粒子の粒子径を計測し、それらを算術平均して絶縁性粒子の粒子径とする。 Conductive particles are added to "Technobit 4000" manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin body for conducting conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the dispersed conductive particles in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), 50 conductive particles are randomly selected, and the insulating particles of each conductive particle are observed. The particle size of the insulating particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the insulating particles.
 (導電材料)
 本発明に係る導電材料は、導電性粒子と、バインダーとを含む。上記導電性粒子は、上述した導電性粒子である。上記導電性粒子は、バインダー中に分散されて用いられることが好ましく、バインダー中に分散されて導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は回路接続用導電材料であることが好ましい。上記導電材料では、上述した導電性粒子が用いられているので、電極間の接続抵抗をより一層効果的に低くすることができ、導電性粒子同士の凝集の発生をより一層効果的に抑制することができる。上記導電材料では、上述した導電性粒子が用いられているので、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができ、さらに、絶縁信頼性をより一層効果的に高めることができる。
(Conductive material)
The conductive material according to the present invention includes conductive particles and a binder. The conductive particles are the conductive particles described above. The conductive particles are preferably dispersed in a binder and used, and preferably dispersed in a binder and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection between electrodes. The conductive material is preferably a conductive material for circuit connection. Since the above-mentioned conductive particles are used in the above-mentioned conductive material, the connection resistance between the electrodes can be further effectively lowered, and the occurrence of aggregation between the conductive particles can be further effectively suppressed. be able to. Since the above-mentioned conductive particles are used in the above-mentioned conductive material, the conduction reliability can be further effectively enhanced when the electrodes are electrically connected, and the insulation reliability can be further enhanced. Can be effectively enhanced.
 上記バインダーは特に限定されない。上記バインダーとして、公知の絶縁性の樹脂や溶剤を用いることができる。上記バインダーは、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。 The above binder is not particularly limited. As the binder, a known insulating resin or solvent can be used. The binder preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
 上記バインダーとしては、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体、エラストマー及び溶剤等が挙げられる。上記バインダーは1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the binder include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, elastomers, solvents and the like. Only one kind of the binder may be used, or two or more kinds may be used in combination.
 上記ビニル樹脂としては、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like. Examples of the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin, and unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene-styrene. Examples include a hydrogenated additive of a block copolymer. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記溶剤としては、水及び有機溶剤等が挙げられる。容易に除去できることから、有機溶剤が好ましい。上記有機溶剤としては、エタノール等のアルコール化合物、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン化合物、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素化合物、セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル化合物、酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル化合物、オクタン、デカン等の脂肪族炭化水素化合物、並びに石油エーテル、ナフサ等の石油系溶剤等が挙げられる。 Examples of the solvent include water and organic solvents. Organic solvents are preferred because they can be easily removed. Examples of the organic solvent include alcohol compounds such as ethanol, ketone compounds such as acetone, methyl ethyl ketone and cyclohexanone, aromatic hydrocarbon compounds such as toluene, xylene and tetramethylbenzene, cellosolve, methyl cellosolve, butyl cellosolve, carbitol and methylcarbitol. , Butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether and other glycol ether compounds, ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol. Ester compounds such as acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate and propylene carbonate, aliphatic hydrocarbon compounds such as octane and decane, and petroleum solvents such as petroleum ether and naphtha. Can be mentioned.
 上記導電材料は、上記導電性粒子及び上記バインダーの他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder, the conductive material includes, for example, a filler, a bulking agent, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. , UV absorbers, lubricants, antistatic agents, flame retardants and other various additives may be included.
 上記バインダー中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ、特に限定されない。上記バインダー中に上記導電性粒子を分散させる方法としては、以下の方法等が挙げられる。上記バインダー中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダーを水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。 The method for dispersing the conductive particles in the binder can be a conventionally known dispersion method and is not particularly limited. Examples of the method for dispersing the conductive particles in the binder include the following methods. A method in which the conductive particles are added to the binder and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder, and kneaded and dispersed by a planetary mixer or the like. A method in which the binder is diluted with water or an organic solvent, the conductive particles are added, and the particles are kneaded and dispersed with a planetary mixer or the like.
 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が、上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、電極間の接続信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。 The viscosity (η25) of the conductive material at 25 ° C. is preferably 30 Pa · s or more, more preferably 50 Pa · s or more, preferably 400 Pa · s or less, and more preferably 300 Pa · s or less. When the viscosity of the conductive material at 25 ° C. is equal to or higher than the lower limit and lower than the upper limit, the connection resistance between the electrodes can be lowered more effectively, and the connection reliability between the electrodes can be further improved. Can be effectively enhanced. The viscosity (η25) can be appropriately adjusted depending on the type and amount of the compounding components.
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。 The viscosity (η25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。 The conductive material according to the present invention can be used as a conductive paste, a conductive film, or the like. When the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダーの含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダーの含有量が、上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、電極間の接続信頼性をより一層効果的に高めることができる。 The content of the binder in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, and preferably 70% by weight or more. It is 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes can be further effectively enhanced. be able to.
 上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、電極間の接続信頼性をより一層効果的に高めることができる。 The content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, more preferably 40% by weight or less, particularly preferably 20% by weight or less, and most preferably 10% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes is further effective. Can be enhanced to.
 フラックス:
 上記導電材料はフラックスを含んでいてもよい。フラックスを用いることで、電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高めることができる。上記フラックスは特に限定されない。上記フラックスとして、はんだ接合等に一般的に用いられているフラックスを用いることができる。
flux:
The conductive material may contain a flux. By using the flux, the continuity reliability can be further effectively improved when the electrodes are electrically connected. The above flux is not particularly limited. As the flux, a flux generally used for solder bonding or the like can be used.
 上記フラックスとしては、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、アミン化合物、有機酸及び松脂等が挙げられる。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The flux includes zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, a hydrazine, an amine compound, an organic acid and the like. Examples include pine fat. Only one type of the above flux may be used, or two or more types may be used in combination.
 上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、又は松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。 Examples of the molten salt include ammonium chloride and the like. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid and glutaric acid. Examples of the above-mentioned pine resin include activated pine resin and non-activated pine resin. The flux is preferably an organic acid having two or more carboxyl groups or pine resin. The flux may be an organic acid having two or more carboxyl groups, or may be pine resin. By using an organic acid or pine resin having two or more carboxyl groups, the conduction reliability between the electrodes is further improved.
 上記カルボキシル基を2個以上有する有機酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、及びセバシン酸等が挙げられる。 Examples of the organic acid having two or more carboxyl groups include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.
 上記アミン化合物としては、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、イミダゾール、ベンゾイミダゾール、フェニルイミダゾール、カルボキシベンゾイミダゾール、ベンゾトリアゾール、及びカルボキシベンゾトリアゾール等が挙げられる。 Examples of the amine compound include cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, imidazole, benzimidazole, phenylimidazole, carboxybenzoimidazole, benzotriazole, and carboxybenzotriazole.
 上記松脂はアビエチン酸を主成分とするロジン類である。上記ロジン類としては、アビエチン酸、及びアクリル変性ロジン等が挙げられる。フラックスはロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。 The above pine resin is a rosin containing abietic acid as the main component. Examples of the rosins include abietic acid and acrylic-modified rosins. The flux is preferably rosins, more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further increased.
 上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、さらに好ましくは150℃以下、さらに一層好ましくは140℃以下である。上記フラックスの活性温度が、上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、電極間の導通信頼性をより一層効果的に高めることができる。上記フラックスの活性温度(融点)は80℃以上190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上140℃以下であることが特に好ましい。 The active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, still more preferably 160 ° C. or higher. ° C. or lower, more preferably 150 ° C. or lower, even more preferably 140 ° C. or lower. When the active temperature of the flux is not less than the above lower limit and not more than the above upper limit, the flux effect is more effectively exhibited, and the conduction reliability between the electrodes can be further effectively enhanced. The active temperature (melting point) of the flux is preferably 80 ° C. or higher and 190 ° C. or lower. The active temperature (melting point) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
 フラックスの活性温度(融点)が80℃以上190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、及びスベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、並びにリンゴ酸(融点130℃)等が挙げられる。 The active temperature (melting point) of the flux is 80 ° C. or higher and 190 ° C. or lower. Examples of the flux include succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), and pimeric acid (melting point 104 ° C.). ℃), Dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.
 また、上記フラックスの沸点は200℃以下であることが好ましい。 Further, the boiling point of the flux is preferably 200 ° C. or lower.
 上記フラックスは、導電材料中に分散されていてもよく、導電性粒子の表面上に付着していてもよい。電極間を電気的に接続した場合に、導通信頼性をより一層効果的に高める観点からは、上記フラックスは、導電性粒子の表面上に付着していることが好ましい。 The flux may be dispersed in the conductive material or may be adhered to the surface of the conductive particles. From the viewpoint of further effectively enhancing the conduction reliability when the electrodes are electrically connected, the flux is preferably adhered to the surface of the conductive particles.
 導通信頼性をより一層効果的に高める観点からは、上記フラックスは、酸化合物と塩基化合物との塩であることが好ましい。 From the viewpoint of further effectively enhancing the conduction reliability, the flux is preferably a salt of an acid compound and a base compound.
 上記酸化合物は、カルボキシル基を有する有機化合物であることが好ましい。上記酸化合物としては、脂肪族系カルボン酸であるマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4-シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。導通信頼性をより一層効果的に高める観点からは、上記酸化合物は、グルタル酸、シクロヘキシルカルボン酸、又はアジピン酸であることが好ましい。 The acid compound is preferably an organic compound having a carboxyl group. Examples of the acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, citric acid, malic acid and cyclic aliphatic carboxylic acid, which are aliphatic carboxylic acids. Examples thereof include cyclohexylcarboxylic acid, 1,4-cyclohexyldicarboxylic acid, isophthalic acid which is an aromatic carboxylic acid, terephthalic acid, trimellitic acid, ethylenediamine tetraacetic acid and the like. From the viewpoint of further effectively enhancing the conduction reliability, the acid compound is preferably glutaric acid, cyclohexylcarboxylic acid, or adipic acid.
 上記塩基化合物は、アミノ基を有する有機化合物であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2-メチルベンジルアミン、3-メチルベンジルアミン、4-tert-ブチルベンジルアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、N-フェニルベンジルアミン、N-tert-ブチルベンジルアミン、N-イソプロピルベンジルアミン、N,N-ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。導通信頼性をより一層効果的に高める観点からは、上記塩基化合物は、ベンジルアミンであることが好ましい。 The above basic compound is preferably an organic compound having an amino group. Examples of the basic compound include diethanolamine, triethanolamine, methyldiethanolamine, ethyldiethanolamine, cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, 2-methylbenzylamine, 3-methylbenzylamine, and 4-tert-butylbenzylamine. , N-Methylbenzylamine, N-ethylbenzylamine, N-phenylbenzylamine, N-tert-butylbenzylamine, N-isopropylbenzylamine, N, N-dimethylbenzylamine, imidazole compounds, and triazole compounds. .. From the viewpoint of further effectively enhancing the conduction reliability, the basic compound is preferably benzylamine.
 上記導電材料100重量%中、上記フラックスの含有量は、好ましくは0.5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下である。上記フラックスの含有量が、上記下限以上及び上記上限以下であると、電極の表面に酸化被膜がより一層形成され難くなり、さらに、電極の表面に形成された酸化被膜をより一層効果的に除去できる。 The content of the flux in 100% by weight of the conductive material is preferably 0.5% by weight or more, preferably 30% by weight or less, and more preferably 25% by weight or less. When the content of the flux is at least the above lower limit and at least the above upper limit, it becomes more difficult to form an oxide film on the surface of the electrode, and further, the oxide film formed on the surface of the electrode is removed more effectively. it can.
 (接続構造体)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部が、導電性粒子により形成されているか、又は上記導電性粒子とバインダーとを含む導電材料により形成されている。本発明に係る接続構造体では、上記導電性粒子が、上述した導電性粒子である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが上記導電性粒子により電気的に接続されている。
(Connection structure)
The connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It includes a connecting portion that connects to the second connection target member. In the connection structure according to the present invention, the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder. In the connection structure according to the present invention, the conductive particles are the above-mentioned conductive particles. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by the conductive particles.
 図9は、本発明の第4の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。 FIG. 9 is a front sectional view schematically showing a connection structure using conductive particles according to a fourth embodiment of the present invention.
 図9に示す接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1の接続対象部材82と第2の接続対象部材83とを接続している接続部84とを備える。接続部84は、導電性粒子21を含む導電材料により形成されている。なお、図9では、導電性粒子21は、図示の便宜上、略図的に示されている。 The connection structure 81 shown in FIG. 9 connects the first connection target member 82, the second connection target member 83, and the first connection target member 82 and the second connection target member 83. A unit 84 is provided. The connecting portion 84 is formed of a conductive material containing the conductive particles 21. In FIG. 9, the conductive particles 21 are shown schematicly for convenience of illustration.
 第1の接続対象部材82は表面(上面)に、複数の第1の電極82aを有する。第2の接続対象部材83は表面(下面)に、複数の第2の電極83aを有する。第1の電極82aと第2の電極83aとが、1つ又は複数の導電性粒子21により電気的に接続されている。従って、第1の接続対象部材82と第2の接続対象部材83とが導電性粒子21により電気的に接続されている。 The first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface). The second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface). The first electrode 82a and the second electrode 83a are electrically connected by one or more conductive particles 21. Therefore, the first connection target member 82 and the second connection target member 83 are electrically connected by the conductive particles 21.
 上記接続構造体の製造方法は特に限定されない。上記接続構造体の製造方法の一例としては、上記第1の接続対象部材と上記第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。加熱及び加圧により、導電性粒子21の導電部(はんだ部)が溶融して、導電性粒子21により電極間が電気的に接続される。さらに、バインダーが熱硬化性化合物を含む場合には、熱硬化性化合物が熱硬化して、熱硬化した硬化物により上記第1の接続対象部材と上記第2の接続対象部材とを接続する上記接続部が形成される。上記加圧の圧力は9.8×10Pa~4.9×10Paである。上記加熱の温度は120℃~220℃である。 The method for manufacturing the connection structure is not particularly limited. As an example of the method for manufacturing the connection structure, the conductive material is arranged between the first connection target member and the second connection target member, and after obtaining a laminate, the laminate is heated. And a method of pressurizing and the like. By heating and pressurizing, the conductive portion (solder portion) of the conductive particles 21 is melted, and the electrodes are electrically connected by the conductive particles 21. Further, when the binder contains a thermosetting compound, the thermosetting compound is thermosetting, and the thermosetting cured product connects the first connection target member and the second connection target member. A connection is formed. The pressurizing pressure is 9.8 × 10 4 Pa to 4.9 × 10 6 Pa. The heating temperature is 120 ° C to 220 ° C.
 図10は、図9に示す接続構造体における導電性粒子と電極との接続部分を拡大して模式的に示す正面断面図である。 FIG. 10 is a front sectional view schematically showing an enlarged connection portion between the conductive particles and the electrodes in the connection structure shown in FIG.
 図10に示すように、接続構造体81では、上記積層体を加熱及び加圧することにより、導電性粒子21の第2の導電部(はんだ部)22Bが溶融した後、溶融した第2の導電部(はんだ部)部分22Baが第1の電極82aと第2の電極83aとに十分に接触する。即ち、表面層がはんだ部である導電性粒子21を用いることにより、導電層の表面層がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、導電性粒子21と第1の電極82a及び第2の電極83aとの接触面積が大きくなる。このため、接続構造体81の導通信頼性が高くなる。 As shown in FIG. 10, in the connection structure 81, the second conductive portion (solder portion) 22B of the conductive particles 21 is melted by heating and pressurizing the laminated body, and then the second conductive portion is melted. The portion (solder portion) portion 22Ba is in sufficient contact with the first electrode 82a and the second electrode 83a. That is, by using the conductive particles 21 whose surface layer is the solder portion, the conductive particles 21 are compared with the case where the surface layer of the conductive layer is a metal such as nickel, gold or copper. The contact area between the first electrode 82a and the second electrode 83a is increased. Therefore, the continuity reliability of the connection structure 81 is increased.
 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。 The first connection target member and the second connection target member are not particularly limited. Specific examples of the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards. The first connection target member and the second connection target member are preferably electronic components.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes. When the connection target member is a flexible printed substrate, the electrodes are preferably gold electrodes, nickel electrodes, tin electrodes, silver electrodes or copper electrodes. When the connection target member is a glass substrate, the electrodes are preferably aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes or tungsten electrodes. When the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
 (実施例1)
 導電性粒子1の作製:
 基材粒子(S1)として、ジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP-220、粒子径20μm」)を用意した。
(Example 1)
Preparation of Conductive Particle 1:
Divinylbenzene copolymer resin particles (“Micropearl SP-220, particle diameter 20 μm” manufactured by Sekisui Chemical Co., Ltd.) were prepared as the base particles (S1).
 パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、基材粒子(S1)10重量部を超音波分散器により分散させた後、溶液をろ過することにより、基材粒子(S1)を取り出した。次いで、基材粒子(S1)をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子(S1)の表面を活性化させた。表面が活性化された基材粒子(S1)を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(A1)を得た。 10 parts by weight of the base material particles (S1) are dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of the palladium catalyst solution by an ultrasonic disperser, and then the base material particles (S1) are taken out by filtering the solution. It was. Next, the base particle (S1) was added to 100 parts by weight of a 1 wt% dimethylamine borane solution to activate the surface of the substrate particle (S1). The surface-activated substrate particles (S1) were thoroughly washed with water, and then added to 500 parts by weight of distilled water and dispersed to obtain a suspension (A1).
 懸濁液(A1)を、硫酸ニッケル25g/L、硝酸タリウム15ppm及び硝酸ビスマス10ppmを含む溶液中に入れ、粒子混合液(B1)を得た。 The suspension (A1) was placed in a solution containing 25 g / L of nickel sulfate, 15 ppm of thallium nitrate and 10 ppm of bismuth nitrate to obtain a particle mixture (B1).
 また、硫酸ニッケル100g/L、次亜リン酸ナトリウム40g/L、クエン酸ナトリウム15g/L、硝酸タリウム25ppm、及び硝酸ビスマス10ppmを含むニッケルめっき液(C1)(pH5.5)を用意した。 Further, a nickel plating solution (C1) (pH 5.5) containing 100 g / L of nickel sulfate, 40 g / L of sodium hypophosphite, 15 g / L of sodium citrate, 25 ppm of thallium nitrate, and 10 ppm of bismuth nitrate was prepared.
 また、はんだ粒形成用無電解錫めっき液として、硫酸錫15g/L、エチレンジアミン四酢酸45g/L、ホスフィン酸1.5g/Lを含む混合液を、水酸化ナトリウムにてpH8.5に調整した錫めっき液(D1)を用意した。 Further, as an electroless tin plating solution for forming solder grains, a mixed solution containing 15 g / L of tin sulfate, 45 g / L of ethylenediaminetetraacetic acid, and 1.5 g / L of phosphinic acid was adjusted to pH 8.5 with sodium hydroxide. A tin plating solution (D1) was prepared.
 また、還元液として、水素化ホウ素ナトリウム5g/Lを含む溶液を、水酸化ナトリウムにてpH10.0に調整した還元液(E1)を用意した。 Further, as the reducing solution, a reducing solution (E1) in which a solution containing 5 g / L of sodium borohydride was adjusted to pH 10.0 with sodium hydroxide was prepared.
 粒子が分散している50℃の粒子混合液(B1)に、上記ニッケルめっき液(C1)を徐々に滴下し、無電解ニッケルめっきを行った。ニッケルめっき液(C1)の滴下速度は12.5mL/分、滴下時間は30分間で、無電解ニッケルめっきを行った(Niめっき工程)。このようにして、基材粒子S1の表面に第1の導電部としてニッケル-リン合金導電部を備える粒子を含む粒子混合液(F1)を得た。 The nickel plating solution (C1) was gradually added dropwise to the particle mixture (B1) at 50 ° C. in which the particles were dispersed, and electroless nickel plating was performed. Electroless nickel plating was performed with a dropping rate of the nickel plating solution (C1) of 12.5 mL / min and a dropping time of 30 minutes (Ni plating step). In this way, a particle mixed solution (F1) containing particles having a nickel-phosphorus alloy conductive portion as a first conductive portion on the surface of the base particle S1 was obtained.
 その後、粒子混合液(F1)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子S1の表面上にニッケル-リン合金導電部が配置されている粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(G1)を得た。 After that, the particles were taken out by filtering the particle mixture (F1) and washed with water to obtain particles in which the nickel-phosphorus alloy conductive portion was arranged on the surface of the base particle S1. After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (G1).
 次に、粒子が分散している60℃の粒子混合液(G1)に上記錫めっき液(D1)を徐々に入れた。その後、上記還元液(E1)を滴下し、無電解錫めっきを行った。上記還元液(E1)の滴下速度は0.5mL/分、滴下時間は40分間で、その後10分間撹拌し、無電解錫めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子S1の表面上にニッケル-リン合金導電部及び錫導電部(はんだ粒)(はんだ粒が無い部分における導電部全体の厚み:0.1μm、はんだ粒の高さ:0.6μm)を備える導電性粒子1を得た。 Next, the tin plating solution (D1) was gradually added to the particle mixture (G1) at 60 ° C. in which the particles were dispersed. Then, the reducing liquid (E1) was added dropwise to perform electroless tin plating. The dropping rate of the reducing solution (E1) was 0.5 mL / min, the dropping time was 40 minutes, and then stirring was performed for 10 minutes to perform electroless tin plating. Then, the particles are taken out by filtration, washed with water, and dried to obtain a nickel-phosphorus alloy conductive portion and a tin conductive portion (solder particles) (the entire conductive portion in a portion without solder particles) on the surface of the base particle S1. The conductive particles 1 having a thickness of 0.1 μm and a height of solder grains: 0.6 μm) were obtained.
 (実施例2)
 導電性粒子2の作製:
 実施例1の懸濁液(A1)を用意した。
(Example 2)
Preparation of conductive particles 2:
The suspension (A1) of Example 1 was prepared.
 上記懸濁液(A1)を、シアン化金カリウム2g/L、クエン酸ナトリウム10g/L、エチレンジアミン四酢酸0.5g/L、及び水酸化ナトリウム5g/Lを含む溶液中に入れ、粒子混合液(B2)を得た。 The suspension (A1) is placed in a solution containing 2 g / L of potassium gold cyanide, 10 g / L of sodium citrate, 0.5 g / L of ethylenediaminetetraacetic acid, and 5 g / L of sodium hydroxide. (B2) was obtained.
 また、無電解金めっき液として、シアン化金カリウム10g/L、クエン酸ナトリウム20g/L、硝酸タリウム5ppm、エチレンジアミン四酢酸3.0g/L、水酸化ナトリウム20g/L、及びジメチルアミンボラン10g/Lを含む金めっき液(C2)(pH8.0)を用意した。 The electroless gold plating solution includes potassium gold cyanide 10 g / L, sodium citrate 20 g / L, tallium nitrate 5 ppm, ethylenediamine tetraacetic acid 3.0 g / L, sodium hydroxide 20 g / L, and dimethylamine borane 10 g / L. A gold plating solution (C2) (pH 8.0) containing L was prepared.
 また、はんだ粒形成用錫溶液として、実施例1の錫めっき液(D1)と還元液(E1)を用意した。 Further, as the tin solution for forming solder grains, the tin plating solution (D1) and the reducing solution (E1) of Example 1 were prepared.
 粒子が分散している60℃の粒子混合液(B2)に、上記金めっき液(C2)を徐々に滴下し、無電解金めっきを行った。金めっき液(C2)の滴下速度は2mL/分、滴下時間は45分間で、無電解金めっきを行った。このようにして、基材粒子S1の表面上に第1の導電部として金金属部が配置されている粒子を含む粒子混合液(D2)を得た。 The gold plating solution (C2) was gradually added dropwise to the particle mixture (B2) at 60 ° C. in which the particles were dispersed, and electroless gold plating was performed. Electroless gold plating was performed with a dropping rate of the gold plating solution (C2) of 2 mL / min and a dropping time of 45 minutes. In this way, a particle mixed solution (D2) containing particles in which a gold metal portion is arranged as a first conductive portion on the surface of the base particle S1 was obtained.
 その後、粒子混合液(D2)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子S1の表面上に金導電部が配置されている粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(E2)を得た。 After that, the particles were taken out by filtering the particle mixture (D2) and washed with water to obtain particles in which the gold conductive portion was arranged on the surface of the base particle S1. After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (E2).
 その後、実施例1と同様の方法で上記錫めっき液(D1)と上記還元液(E1)を用い、はんだ粒を形成し、金導電部上にはんだ粒が形成された粒子を含む粒子混合液(F2)を得た。 Then, the tin plating solution (D1) and the reducing solution (E1) are used in the same manner as in Example 1 to form solder particles, and a particle mixture containing the particles in which the solder particles are formed on the gold conductive portion. (F2) was obtained.
 その後、粒子混合液(F2)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子S1の表面上に金導電部が配置され、はんだ粒が形成されている粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(G2)を得た。 Then, the particles were taken out by filtering the particle mixture (F2) and washed with water to obtain particles in which the gold conductive portion was arranged on the surface of the base particle S1 and the solder particles were formed. .. After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (G2).
 次に、粒子が分散している60℃の粒子混合液(G2)に上記金めっき液(C2)を徐々に滴下し、無電解金めっきを行った。金めっき液(C2)の滴下速度は1mL/分、滴下時間は1分間で、無電解金めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子S1の表面上に金導電部(導電部全体の厚み:0.1μm)及びはんだ粒(はんだ粒の高さ:0.6μm)の上に金薄膜(金属膜の厚み:0.01μm)を備える導電性粒子2を得た。 Next, the gold plating solution (C2) was gradually added dropwise to the particle mixture (G2) at 60 ° C. in which the particles were dispersed, and electroless gold plating was performed. Electroless gold plating was performed with a dropping rate of the gold plating solution (C2) of 1 mL / min and a dropping time of 1 minute. Then, the particles are taken out by filtration, washed with water, and dried to form a gold conductive portion (thickness of the entire conductive portion: 0.1 μm) and solder particles (height of solder particles: height: 0.1 μm) on the surface of the base particle S1. Conductive particles 2 having a gold thin film (thickness of metal film: 0.01 μm) on top of 0.6 μm) were obtained.
 (実施例3)
 導電性粒子3の作製:
 実施例1と同様にして、基材粒子にニッケル-リン合金導電部及びはんだ粒を備える導電性粒子を得た。得られた導電性粒子を蒸留水500重量部に加え、分散させることにより、懸濁液(A3)を得た。
(Example 3)
Preparation of Conductive Particles 3:
In the same manner as in Example 1, conductive particles having a nickel-phosphorus alloy conductive portion and solder particles as base particles were obtained. The obtained conductive particles were added to 500 parts by weight of distilled water and dispersed to obtain a suspension (A3).
 また、無電解銀めっき液として、硝酸銀30g/L、コハク酸イミド100g/L、及びホルムアルデヒド20g/Lの混合液を、アンモニア水にてpH8.0に調整した銀めっき液(B3)を用意した。 Further, as an electroless silver plating solution, a silver plating solution (B3) prepared by adjusting a mixed solution of silver nitrate 30 g / L, succinate imide 100 g / L, and formaldehyde 20 g / L to pH 8.0 with aqueous ammonia was prepared. ..
 また、上記60℃の懸濁液(A3)を上記銀めっき液(B3)に混合し分散させることで粒子混合液(C3)を得た。 Further, the suspension (A3) at 60 ° C. was mixed with the silver plating solution (B3) and dispersed to obtain a particle mixture (C3).
 次に、粒子が分散している60℃の粒子混合液(C3)に上記銀めっき液(B3)を徐々に滴下し、無電解銀めっきを行った。銀めっき液(B3)の滴下速度は10mL/分、滴下時間は10分間で、無電解めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子S1の表面上にニッケル-リン合金導電部(導電部全体の厚み:0.1μm)及びはんだ粒(はんだ粒の高さ:0.6μm)の上に銀薄膜(金属膜の厚み:0.01μm)を備える導電性粒子3を得た。 Next, the silver plating solution (B3) was gradually added dropwise to the particle mixture (C3) at 60 ° C. in which the particles were dispersed, and electroless silver plating was performed. Electroless plating was performed with a dropping rate of the silver plating solution (B3) of 10 mL / min and a dropping time of 10 minutes. Then, the particles are taken out by filtration, washed with water, and dried to form a nickel-phosphorus alloy conductive portion (thickness of the entire conductive portion: 0.1 μm) and solder particles (solder particles of the solder particles) on the surface of the base material particles S1. Conductive particles 3 having a silver thin film (thickness of metal film: 0.01 μm) on top of (height: 0.6 μm) were obtained.
 (実施例4)
 導電性粒子4の作製:
 実施例3の懸濁液(A3)を用意した。
(Example 4)
Preparation of Conductive Particles 4:
The suspension (A3) of Example 3 was prepared.
 また、銀溶液として硝酸銀1g/L、エチレンジアミン四酢酸30g/L、ポリエチレングリコール(分子量6000)20ppmを含む混合液を水酸化ナトリウムにてpH11に調整した銀溶液(B4)を用意した。 Further, a silver solution (B4) was prepared in which a mixed solution containing 1 g / L of silver nitrate, 30 g / L of ethylenediaminetetraacetic acid, and 20 ppm of polyethylene glycol (molecular weight 6000) was adjusted to pH 11 with sodium hydroxide as a silver solution.
 また、還元液として、水素化ホウ素ナトリウム10g/L、水酸化ナトリウム40g/Lを含む溶液を金属コロイド析出物形成用還元液(D4)として用意した。 Further, as a reducing solution, a solution containing 10 g / L of sodium borohydride and 40 g / L of sodium hydroxide was prepared as a reducing solution (D4) for forming a metal colloidal precipitate.
 また、上記懸濁液(A3)を上記銀溶液(B4)に混合し分散させることで粒子混合液(C4)を得た。 Further, the suspension (A3) was mixed with the silver solution (B4) and dispersed to obtain a particle mixture (C4).
 次に、粒子が分散している25℃の粒子混合液(C4)に上記金属コロイド析出物形成用還元液(D4)を1重量部加えて、10分間攪拌を行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、導電性粒子の表面上に銀コロイド析出物(金属コロイド析出物の粒子径:0.02μm)を備える導電性粒子4を得た。 Next, 1 part by weight of the reduction solution for forming metal colloidal precipitates (D4) was added to the particle mixture (C4) at 25 ° C. in which the particles were dispersed, and the mixture was stirred for 10 minutes. Then, the particles are taken out by filtration, washed with water, and dried to obtain conductive particles 4 having silver colloidal precipitates (particle size of metal colloidal precipitates: 0.02 μm) on the surface of the conductive particles. It was.
 (実施例5)
 導電性粒子5の作製:
 実施例3の懸濁液(A3)を用意した。
(Example 5)
Preparation of Conductive Particles 5:
The suspension (A3) of Example 3 was prepared.
 また、インジウム溶液として、塩化インジウム5g/L、エチレンジアミン四酢酸40g/L、ポリビニルピロリドン0.01g/Lを含む混合液を、水酸化ナトリウムにてpH10に調整したインジウム溶液(B5)を用意した。 Further, as an indium solution, an indium solution (B5) was prepared in which a mixed solution containing 5 g / L of indium chloride, 40 g / L of ethylenediaminetetraacetic acid, and 0.01 g / L of polyvinylpyrrolidone was adjusted to pH 10 with sodium hydroxide.
 また、還元液として、実施例4のコロイド析出物形成用還元液(D4)を用意した。 Further, as the reducing liquid, the reducing liquid (D4) for forming a colloidal precipitate of Example 4 was prepared.
 上記懸濁液(A3)を上記インジウム溶液(B5)に混合し分散させることで粒子混合液(C5)を得た。 The suspension (A3) was mixed with the indium solution (B5) and dispersed to obtain a particle mixture (C5).
 粒子が分散している50℃の粒子混合液(C5)に上記金属コロイド析出物形成用還元液(D4)を10重量部加えて、60分間攪拌を行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、導電性粒子の表面上にインジウムコロイド析出物(金属コロイド析出物の粒子径:0.01μm)を備える導電性粒子5を得た。 10 parts by weight of the reduction solution for forming metal colloidal precipitates (D4) was added to the particle mixture (C5) at 50 ° C. in which the particles were dispersed, and the mixture was stirred for 60 minutes. Then, the particles are taken out by filtration, washed with water, and dried to obtain conductive particles 5 having indium colloidal precipitates (particle size of metal colloidal precipitates: 0.01 μm) on the surface of the conductive particles. It was.
 (実施例6)
 導電性粒子6の作製:
 実施例3の懸濁液(A3)を用意した。
(Example 6)
Preparation of Conductive Particles 6:
The suspension (A3) of Example 3 was prepared.
 また、銅溶液として硫酸銅五水和物10g/L、エチレンジアミン四酢酸40g/L、ポリビニルピロリドン0.1g/Lを含む混合液を水酸化ナトリウムにてpH9.0に調整した銅溶液(B6)を用意した。 Further, a copper solution (B6) in which a mixed solution containing 10 g / L of copper sulfate pentahydrate, 40 g / L of ethylenediaminetetraacetic acid and 0.1 g / L of polyvinylpyrrolidone as a copper solution was adjusted to pH 9.0 with sodium hydroxide. I prepared.
 また、還元液として、実施例4の金属コロイド析出物形成用還元液(D4)を用意した。 Further, as the reducing liquid, the reducing liquid (D4) for forming a metal colloidal precipitate of Example 4 was prepared.
 上記懸濁液(A3)を上記銅溶液(B6)に混合し分散させることで粒子混合液(C6)を得た。 The suspension (A3) was mixed with the copper solution (B6) and dispersed to obtain a particle mixture (C6).
 粒子が分散している25℃の粒子混合液(C6)に上記金属コロイド析出物形成用還元液(D4)を5重量部加えて、60分間攪拌を行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、導電性粒子の表面上に銅コロイド析出物(金属コロイド析出物の粒子径:0.01μm)を備える導電性粒子6を得た。 5 parts by weight of the reduction solution for forming metal colloidal precipitates (D4) was added to the particle mixture (C6) at 25 ° C. in which the particles were dispersed, and the mixture was stirred for 60 minutes. Then, the particles are taken out by filtration, washed with water, and dried to obtain conductive particles 6 having copper colloidal precipitates (particle size of metal colloidal precipitates: 0.01 μm) on the surface of the conductive particles. It was.
 (実施例7)
 導電性粒子7の作製:
 はんだ粒形成用無電解錫めっき液として、硫酸錫15g/L、エチレンジアミン四酢酸45g/L、ホスフィン酸1.5g/L、トレハロース二水和物10g/Lを含む混合液を、水酸化ナトリウムにてpH9.0に調整した錫めっき液(B7)を用意した。
(Example 7)
Preparation of Conductive Particles 7:
As a non-electrolytic tin plating solution for forming solder grains, a mixed solution containing 15 g / L of tin sulfate, 45 g / L of ethylenediamine tetraacetic acid, 1.5 g / L of phosphinic acid, and 10 g / L of trehalose dihydrate was added to sodium hydroxide. A tin plating solution (B7) adjusted to pH 9.0 was prepared.
 上記はんだ粒形成用無電解錫めっき液(D1)を上記はんだ粒形成用無電解錫めっき液(B7)に変更したこと以外は、実施例1と同様にして、導電性粒子7を得た(はんだ粒が無い部分における導電部全体の厚み:0.2μm、はんだ粒の高さ:0.9μm)。 Conductive particles 7 were obtained in the same manner as in Example 1 except that the electroless tin plating solution for forming solder grains (D1) was changed to the electroless tin plating solution for forming solder grains (B7). Thickness of the entire conductive part in the portion without solder grains: 0.2 μm, height of solder grains: 0.9 μm).
 (実施例8)
 導電性粒子8の作製:
 (1)シリコーンオリゴマーの作製
 温浴槽内に設置した100mlのセパラブルフラスコに、1,3-ジビニルテトラメチルジシロキサン1重量部と、0.5重量%p-トルエンスルホン酸水溶液20重量部とを入れた。40℃で1時間撹拌した後、炭酸水素ナトリウム0.05重量部を添加した。その後、ジメトキシメチルフェニルシラン10重量部、ジメチルジメトキシシラン49重量部、トリメチルメトキシシラン0.6重量部、及びメチルトリメトキシシラン3.6重量部を添加し、1時間撹拌を行った。その後、10重量%水酸化カリウム水溶液1.9重量部を添加して、85℃まで昇温してアスピレーターで減圧しながら、10時間撹拌、反応を行った。反応終了後、常圧に戻し40℃まで冷却して、酢酸0.2重量部を添加し、12時間以上分液漏斗内で静置した。二層分離後の下層を取り出して、エバポレーターにて精製することでシリコーンオリゴマーを得た。
(Example 8)
Preparation of conductive particles 8:
(1) Preparation of Silicone Oligomer 1 part by weight of 1,3-divinyltetramethyldisiloxane and 20 parts by weight of 0.5% by weight p-toluenesulfonic acid aqueous solution were placed in a 100 ml separable flask placed in a warm bath. I put it in. After stirring at 40 ° C. for 1 hour, 0.05 parts by weight of sodium hydrogen carbonate was added. Then, 10 parts by weight of dimethoxymethylphenylsilane, 49 parts by weight of dimethyldimethoxysilane, 0.6 parts by weight of trimethylmethoxysilane, and 3.6 parts by weight of methyltrimethoxysilane were added, and the mixture was stirred for 1 hour. Then, 1.9 parts by weight of a 10 wt% potassium hydroxide aqueous solution was added, the temperature was raised to 85 ° C., and the reaction was carried out with stirring for 10 hours while reducing the pressure with an aspirator. After completion of the reaction, the pressure was returned to normal pressure, the mixture was cooled to 40 ° C., 0.2 part by weight of acetic acid was added, and the mixture was allowed to stand in a separating funnel for 12 hours or more. The lower layer after the two-layer separation was taken out and purified by an evaporator to obtain a silicone oligomer.
 (2)シリコーン粒子材料(有機ポリマーを含む)の作製
 得られたシリコーンオリゴマー30重量部に、tert-ブチル-2-エチルペルオキシヘキサノアート(重合開始剤、日油社製「パーブチルO」)0.5重量部を溶解させた溶解液Aを用意した。また、イオン交換水150重量部に、ラウリル硫酸トリエタノールアミン塩40重量%水溶液(乳化剤)0.8重量部とポリビニルアルコール(重合度:約2000、けん化度:86.5~89モル%、日本合成化学社製「ゴーセノールGH-20」)の5重量%水溶液80重量部とを混合して、水溶液Bを用意した。温浴槽中に設置したセパラブルフラスコに、上記溶解液Aを入れた後、上記水溶液Bを添加した。その後、Shirasu Porous Glass(SPG)膜(細孔平均径約1μm)を用いることで、乳化を行った。その後、85℃に昇温して、9時間重合を行った。重合後の粒子の全量を遠心分離により水洗浄し、凍結乾燥を行った。乾燥後、粒子の凝集体が目的の比(平均2次粒子径/平均1次粒子径)になるまでボールミルにて粉砕して、粒子径が3.0μmのシリコーン粒子(基材粒子S2)を得た。
(2) Preparation of Silicone Particle Material (Including Organic Polymer) In 30 parts by weight of the obtained silicone oligomer, tert-butyl-2-ethylperoxyhexanoate (polymerization initiator, "Perbutyl O" manufactured by Nichiyu Co., Ltd.) 0 A solution A in which 5.5 parts by weight was dissolved was prepared. In addition, in 150 parts by weight of ion-exchanged water, 0.8 parts by weight of a 40% by weight aqueous solution of triethanolamine lauryl sulfate (embroidery) and polyvinyl alcohol (degree of polymerization: about 2000, degree of saponification: 86.5 to 89 mol%, Japan An aqueous solution B was prepared by mixing with 80 parts by weight of a 5% by weight aqueous solution of "Gosenol GH-20" manufactured by Synthetic Chemical Co., Ltd. The solution A was placed in a separable flask placed in a warm bath, and then the aqueous solution B was added. Then, emulsification was carried out by using a Shirasu Porous Glass (SPG) membrane (pore average diameter of about 1 μm). Then, the temperature was raised to 85 ° C., and polymerization was carried out for 9 hours. The entire amount of the polymerized particles was washed with water by centrifugation and freeze-dried. After drying, the particles are pulverized with a ball mill until the agglomerates of the particles have the desired ratio (average secondary particle diameter / average primary particle diameter) to obtain silicone particles (base particle S2) having a particle diameter of 3.0 μm. Obtained.
 上記基材粒子S1を上記基材粒子S2に変更したこと以外は、実施例1と同様にして、導電性粒子8を得た。 Conductive particles 8 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S2.
 (実施例9)
 導電性粒子9の作製:
 シリコーンオリゴマーの代わりに両末端アクリルシリコーンオイル(信越化学工業社製「X-22-2445」)を用いたこと以外は、実施例8と同様にして、粒子径が3.0μmのシリコーン粒子(基材粒子S3)を得た。
(Example 9)
Preparation of Conductive Particles 9:
Silicone particles with a particle size of 3.0 μm (group) in the same manner as in Example 8 except that acrylic silicone oil at both ends (“X-22-2445” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the silicone oligomer. Material particles S3) were obtained.
 上記基材粒子S1を上記基材粒子S3に変更したこと以外は、実施例1と同様にして、導電性粒子9を得た。 Conductive particles 9 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S3.
 (実施例10)
 導電性粒子10の作製:
 基材粒子S1と粒子径のみが異なり、粒子径が3.0μmである基材粒子S4を用意した。
(Example 10)
Preparation of Conductive Particles 10:
A base particle S4 having a particle diameter of 3.0 μm, which differs from the base particle S1 only in particle diameter, was prepared.
 上記基材粒子S1を上記基材粒子S4に変更したこと以外は、実施例1と同様にして、導電性粒子10を得た。 Conductive particles 10 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S4.
 (実施例11)
 導電性粒子11の作製:
 基材粒子S1と粒子径のみが異なり、粒子径が10.0μmである基材粒子S5を用意した。
(Example 11)
Preparation of Conductive Particles 11:
Base particle S5 having a particle diameter of 10.0 μm, which differs only from the base particle S1 in particle size, was prepared.
 上記基材粒子S1を上記基材粒子S5に変更したこと以外は、実施例1と同様にして、導電性粒子11を得た。 Conductive particles 11 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S5.
 (実施例12)
 導電性粒子12の作製:
 基材粒子S1と粒子径のみが異なり、粒子径が35.0μmである基材粒子S6を用意した。
(Example 12)
Preparation of Conductive Particles 12:
Base particle S6 having a particle size of 35.0 μm, which differs only from the base particle S1 in particle size, was prepared.
 上記基材粒子S1を上記基材粒子S6に変更したこと以外は、実施例1と同様にして、導電性粒子12を得た。 Conductive particles 12 were obtained in the same manner as in Example 1 except that the base particle S1 was changed to the base particle S6.
 (実施例13)
 導電性粒子13の作製:
 実施例1の懸濁液(A1)を用意した。
(Example 13)
Preparation of Conductive Particles 13:
The suspension (A1) of Example 1 was prepared.
 金属ニッケルスラリー(平均粒子径150nm)を用意し、1重量部を3分間かけて上記懸濁液(A1)に添加し、芯物質が付着された基材粒子S1を含む粒子混合液(B13)を得た。その後、上記ニッケルめっき液(C1)を用いて、無電解ニッケルめっきを実施例1と同様に行い、金属ニッケル芯材が含有された基材粒子の表面に第1の導電部としてニッケル-リン合金導電部を備える粒子を含む粒子混合液(F13)を得た。 A particle mixture (B13) containing a metal nickel slurry (average particle diameter 150 nm), 1 part by weight added to the suspension (A1) over 3 minutes, and base particle S1 to which a core substance is attached. Got Then, using the above nickel plating solution (C1), electroless nickel plating was performed in the same manner as in Example 1, and a nickel-phosphorus alloy was used as a first conductive portion on the surface of the base particle containing the metallic nickel core material. A particle mixture (F13) containing particles having a conductive portion was obtained.
 その後、粒子混合液(F13)をろ過することにより、粒子を取り出し、水洗することにより、上記基材粒子S1の表面上に金属ニッケル芯物質を含むニッケル-リン合金導電部が配置されている粒子を得た。この粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、粒子混合液(G13)を得た。 After that, the particles are taken out by filtering the particle mixed solution (F13) and washed with water, so that the nickel-phosphorus alloy conductive portion containing the metallic nickel core substance is arranged on the surface of the base particle S1. Got After thoroughly washing the particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a particle mixture (G13).
 その後、実施例1と同様の方法で、上記錫めっき液(D1)と上記還元液(E1)を用いて、はんだ粒を形成し、ニッケル-リン合金導電部上にはんだ粒が形成された粒子を含む粒子混合液(H13)を得た。 Then, in the same manner as in Example 1, the tin plating solution (D1) and the reducing solution (E1) were used to form solder particles, and the solder particles were formed on the nickel-phosphorus alloy conductive portion. A particle mixture (H13) containing the above was obtained.
 その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子S1の表面上に芯物質を含むニッケル-リン合金導電部(芯物質が無い部分における導電部全体の厚み:0.1μm)及びはんだ粒(はんだ粒の高さ:0.6μm)を備える導電性粒子13を得た。 Then, the particles are taken out by filtration, washed with water, and dried to obtain a nickel-phosphorus alloy conductive portion containing a core substance on the surface of the base particle S1 (thickness of the entire conductive portion in the portion without the core substance: 0). Conductive particles 13 having .1 μm) and solder particles (solder particle height: 0.6 μm) were obtained.
 (実施例14)
 導電性粒子14の作製:
 酸化チタン粒子スラリー(平均粒子径150nm)を用意した。
(Example 14)
Preparation of Conductive Particles 14:
A titanium oxide particle slurry (average particle diameter 150 nm) was prepared.
 上記金属ニッケル粒子スラリーを上記酸化チタン粒子スラリーに変更したこと以外は、実施例13と同様にして、導電性粒子14を得た。 Conductive particles 14 were obtained in the same manner as in Example 13 except that the metallic nickel particle slurry was changed to the titanium oxide particle slurry.
 (実施例15)
 導電性粒子15の作製:
 アルミナ粒子スラリー(平均粒子径150nm)を用意した。
(Example 15)
Preparation of Conductive Particles 15:
An alumina particle slurry (average particle diameter 150 nm) was prepared.
 上記金属ニッケル粒子スラリーを上記アルミナ粒子スラリーに変更したこと以外は、実施例13と同様にして、導電性粒子15を得た。 Conductive particles 15 were obtained in the same manner as in Example 13 except that the metal nickel particle slurry was changed to the alumina particle slurry.
 (実施例16)
 導電性粒子16の作製:
 4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコを用意した。上記セパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N-トリメチル-N-2-メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した。その後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
(Example 16)
Preparation of Conductive Particles 16:
A 1000 mL separable flask equipped with a 4-port separable cover, a stirring blade, a three-way cock, a cooling tube and a temperature probe was prepared. In the separable flask, 100 mmol of methyl methacrylate, 1 mmol of N, N, N-trimethyl-N-2-methacryloyloxyethylammonium chloride, and 1 mmol of 2,2'-azobis (2-amidinopropane) dihydrochloride are placed. The monomer composition containing the mixture was weighed in ion-exchanged water so that the solid content was 5% by weight. Then, the mixture was stirred at 200 rpm and polymerized at 70 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, the reaction was freeze-dried to obtain insulating particles having an ammonium group on the surface, having an average particle diameter of 220 nm and a CV value of 10%.
 絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。 Insulating particles were dispersed in ion-exchanged water under ultrasonic irradiation to obtain a 10% by weight aqueous dispersion of insulating particles.
 実施例1で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。30μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子16を得た。 10 g of the conductive particles obtained in Example 1 were dispersed in 500 mL of ion-exchanged water, 4 g of an aqueous dispersion of insulating particles was added, and the mixture was stirred at room temperature for 6 hours. After filtering with a mesh filter of 30 μm, the mixture was further washed with methanol and dried to obtain conductive particles 16 to which insulating particles were attached.
 走査型電子顕微鏡(SEM)により観察したところ、導電性粒子16の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子16の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は30%であった。 When observed with a scanning electron microscope (SEM), only one coating layer made of insulating particles was formed on the surface of the conductive particles 16. When the covering area of the insulating particles (that is, the projected area of the particle diameter of the insulating particles) was calculated with respect to the area of 2.5 μm from the center of the conductive particles 16 by image analysis, the covering ratio was 30%.
 (実施例17)
 導電性粒子17の作製:
 実施例1において、還元液(E1)の滴下時間を20分間に変更したこと以外は同様にして、基材粒子S1の表面上にニッケル-リン合金導電部及び錫導電部(はんだ粒)(はんだ粒が無い部分における導電部全体の厚み:0.1μm、はんだ粒の高さ:0.3μm)を備える導電性粒子17を得た。
(Example 17)
Preparation of Conductive Particles 17:
In the same manner as in Example 1 except that the dropping time of the reducing liquid (E1) was changed to 20 minutes, the nickel-phosphorus alloy conductive portion and the tin conductive portion (solder particles) (solder) were placed on the surface of the base particle S1. Conductive particles 17 having the thickness of the entire conductive portion in the portion without particles: 0.1 μm and the height of the solder particles: 0.3 μm) were obtained.
 (比較例1)
 導電性粒子Aの作製:
 実施例1と同様にして粒子混合液(G1)を得た。
(Comparative Example 1)
Preparation of conductive particles A:
A particle mixture (G1) was obtained in the same manner as in Example 1.
 また、無電解錫めっき液として、塩化錫20g/L、ニトリロ三酢酸50g/L、チオ尿素2g/L、チオリンゴ酸1g/L、エチレンジアミン四酢酸7.5g/L、及び三塩化チタン15g/Lを含む混合液を、硫酸にてpH7.0に調整した錫めっき液(d1)を用意した。 The electroless tin plating solution includes tin chloride 20 g / L, nitrilotriacetic acid 50 g / L, thiourea 2 g / L, thioalic acid 1 g / L, ethylenediaminetetraacetic acid 7.5 g / L, and titanium trichloride 15 g / L. A tin plating solution (d1) was prepared by adjusting the pH of the mixed solution containing the above to 7.0 with sulfuric acid.
 次に、粒子が分散している70℃の粒子混合液(G1)に上記錫めっき液(d1)を徐々に滴下し、無電解錫めっきを行った。錫めっき液(d1)の滴下速度は30mL/分、滴下時間は20分間で、無電解錫めっきを行った。その後、ろ過することにより粒子を取り出し、水洗し、乾燥することにより、基材粒子S1の表面上にニッケル-リン合金導電部及び錫導電部(導電部全体の厚み:0.3μm)を備える導電性粒子Aを得た。 Next, the tin plating solution (d1) was gradually added dropwise to the particle mixture (G1) at 70 ° C. in which the particles were dispersed, and electroless tin plating was performed. Electroless tin plating was performed with a dropping rate of the tin plating solution (d1) of 30 mL / min and a dropping time of 20 minutes. Then, the particles are taken out by filtration, washed with water, and dried to provide a nickel-phosphorus alloy conductive portion and a tin conductive portion (thickness of the entire conductive portion: 0.3 μm) on the surface of the base particle S1. Sex particles A were obtained.
 (比較例2)
 導電性粒子Bの作製:
 実施例13と同様にして粒子混合液(G13)を用意した。
(Comparative Example 2)
Preparation of conductive particles B:
A particle mixture (G13) was prepared in the same manner as in Example 13.
 また、比較例1の無電解錫めっき液(d1)を用意した。 Further, the electroless tin plating solution (d1) of Comparative Example 1 was prepared.
 比較例1と同様にして無電解錫めっきを行い、基材粒子S1の表面上に芯物質を含むニッケル-リン合金導電部及び錫導電部(芯物質が無い部分における導電部全体の厚み:0.3μm)を備える導電性粒子Bを得た。 Electroless tin plating was performed in the same manner as in Comparative Example 1, and a nickel-phosphorus alloy conductive portion and a tin conductive portion containing a core material on the surface of the base particle S1 (thickness of the entire conductive portion in the portion without the core material: 0). Conductive particles B having a thickness of .3 μm) were obtained.
 (比較例3)
 導電性粒子Cの作製:
 実施例1と同様にして、粒子混合液(F1)を得た。
(Comparative Example 3)
Preparation of Conductive Particle C:
A particle mixture (F1) was obtained in the same manner as in Example 1.
 その後、粒子混合液(F1)をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、上記基材粒子S1の表面上にニッケル-リン合金導電部が配置されている粒子(導電部の厚み:0.1μm)を備える導電粒子Cを得た。 Then, by filtering the particle mixture (F1), the particles are taken out, washed with water, and dried, so that the nickel-phosphorus alloy conductive portion is arranged on the surface of the base particle S1 (conductive portion). Conductive particles C having a thickness of 0.1 μm) were obtained.
 (評価)
 (1)導電部の金属拡散状態
 得られた導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、分散させて、異方性導電ペーストを作製した。
(Evaluation)
(1) Metal diffusion state of conductive portion The obtained conductive particles are added to "Struct Bond XN-5A" manufactured by Mitsui Chemicals Co., Ltd. so as to have a content of 10% by weight, dispersed, and anisotropic conductive. A paste was made.
 L/Sが200μm/200μmである銅電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが200μm/200μmである金電極パターンを下面に有する半導体チップを用意した。 A transparent glass substrate having a copper electrode pattern having an L / S of 200 μm / 200 μm on the upper surface was prepared. Further, a semiconductor chip having a gold electrode pattern having an L / S of 200 μm / 200 μm on the lower surface was prepared.
 上記透明ガラス基板上に、作製直後の異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が250℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、0.5MPaの圧力をかけて異方性導電ペースト層を250℃で硬化させて、接続構造体を得た。 An anisotropic conductive paste immediately after production was applied onto the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chips were laminated on the anisotropic conductive paste layer so that the electrodes face each other. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 250 ° C., the pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 0.5 MPa is applied to the anisotropic conductive paste. The layer was cured at 250 ° C. to give a connection structure.
 得られた接続構造体において、接続構造体を断面観察することで、導電部の金属拡散状態を判定した。 In the obtained connection structure, the metal diffusion state of the conductive part was determined by observing the cross section of the connection structure.
 透過型電子顕微鏡FE-TEM(日本電子社製「JEM-2010FEF」)を用いて、エネルギー分散型X線分析装置(EDX)により、導電性粒子と銅電極パターン及び金電極パターンとの接触部分を元素マッピングすることにより、導電部の拡散状態を観察した。導電部の拡散状態を以下の基準で判定した。 Using a transmission electron microscope FE-TEM (“JEM-2010FEF” manufactured by JEOL Ltd.), an energy dispersive X-ray analyzer (EDX) is used to remove the contact portion between the conductive particles and the copper electrode pattern and gold electrode pattern. By element mapping, the diffusion state of the conductive part was observed. The diffusion state of the conductive portion was determined according to the following criteria.
 [導電部の拡散状態の判定基準]
 A:接続部中で、導電性粒子における導電部が銅電極パターン及び金電極パターンと金属拡散している
 B:接続部中で、導電性粒子における導電部が銅電極パターン及び金電極パターンと金属拡散していない
[Criteria for determining the diffusion state of the conductive part]
A: In the connection part, the conductive part in the conductive particles is metal diffused with the copper electrode pattern and the gold electrode pattern. B: In the connection part, the conductive part in the conductive particles is the copper electrode pattern, the gold electrode pattern and the metal. Not spread
 (2)導電部の溶融変形状態
 上記の(1)の評価で得られた接続構造体を用意した。用意した接続構造体を、Kulzer社製「テクノビット4000」に入れて硬化させ、接続構造体検査用埋め込み樹脂体を作製した。その検査用埋め込み樹脂体中の接続構造体の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
(2) Melt deformation state of the conductive part The connection structure obtained in the evaluation of (1) above was prepared. The prepared connection structure was placed in "Technobit 4000" manufactured by Kulzer and cured to prepare an embedded resin body for inspection of the connection structure. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the connection structure in the embedded resin body for inspection.
 そして、走査型電子顕微鏡(FE-SEM)を用いて、得られた接続構造体を断面観察することで、導電性粒子の導電部が溶融変形した後固化しているか否かを確認した。導電部の溶融変形状態を以下の基準で判定した。 Then, by observing the cross section of the obtained connection structure using a scanning electron microscope (FE-SEM), it was confirmed whether or not the conductive portion of the conductive particles was melt-deformed and then solidified. The melt-deformed state of the conductive portion was determined according to the following criteria.
 [導電部の溶融変形状態の判定基準]
 A:導電部が溶融変形した後固化している
 B:導電部が溶融変形していない
[Criteria for determining the melt-deformed state of the conductive part]
A: The conductive part is melted and deformed and then solidified. B: The conductive part is not melted and deformed.
 (3)導電部の接合状態
 上記(1)の評価で得られた接続構造体を用意した。用意した接続構造体を、Kulzer社製「テクノビット4000」に入れて硬化させ、接続構造体検査用埋め込み樹脂体を作製した。その検査用埋め込み樹脂体中の接続構造体の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
(3) Bonding state of conductive part The connection structure obtained in the evaluation of (1) above was prepared. The prepared connection structure was placed in "Technobit 4000" manufactured by Kulzer and cured to prepare an embedded resin body for inspection of the connection structure. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the connection structure in the embedded resin body for inspection.
 そして、走査型電子顕微鏡(FE-SEM)を用いて、得られた接続構造体を断面観察することで、導電部の接合状態を確認した。導電部の接合状態を以下の基準で判定した。 Then, the bonding state of the conductive portion was confirmed by observing the cross section of the obtained connection structure using a scanning electron microscope (FE-SEM). The bonding state of the conductive portion was determined according to the following criteria.
 [導電部の接合状態の判定基準]
 A:接続部中で、導電性粒子10個中5個以上の粒子において導電部が溶融変形した後固化し、電極と接合している
 B:接続部中で、導電性粒子10個中1個以上5個未満の粒子において導電部が溶融変形した後固化し、電極と接合している
 C:接続部中で、導電性粒子10個中導電部が溶融変形した粒子は無く、金属拡散のみで電極と接合している
 D:接続部中で、導電性粒子10個中接合している粒子は無い
[Criteria for determining the bonding state of conductive parts]
A: In the connection part, 5 or more of 10 conductive particles are melt-deformed and then solidified and bonded to the electrode. B: 1 out of 10 conductive particles in the connection part. In the above 5 or less particles, the conductive part is melt-deformed and then solidified and bonded to the electrode. C: Among the 10 conductive particles, there are no particles in which the conductive part is melt-deformed, only metal diffusion. Bonded to the electrode D: None of the 10 conductive particles are bonded in the connection
 (4)基材粒子の全表面積100%中のはんだ部(はんだ粒)がある部分の面積(はんだ部(はんだ粒)の被覆率)
 得られた導電性粒子について、基材粒子の全表面積100%中のはんだ部がある部分の面積(はんだ部の被覆率)を算出した。上記被覆率(はんだ部の被覆率)は、導電性粒子の断面をSEM-EDX分析して元素マッピングを行い、画像解析することで算出した。
(4) Area of the part where the solder part (solder grain) is present in the total surface area of the base particle (100%)
With respect to the obtained conductive particles, the area of the portion where the solder portion is present (the coverage of the solder portion) in 100% of the total surface area of the base material particles was calculated. The coverage (coverage of the solder portion) was calculated by performing SEM-EDX analysis on the cross section of the conductive particles, elemental mapping, and image analysis.
 (5)導電性粒子の粒子径
 得られた導電性粒子の粒子径を、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて算出した。具体的には、約100000個の導電性粒子の粒子径を測定し、平均値を算出することにより求めた。
(5) Particle Diameter of Conductive Particles The particle diameter of the obtained conductive particles was calculated using a particle size distribution measuring device (“Multisizer 4” manufactured by Beckman Coulter). Specifically, it was obtained by measuring the particle diameters of about 100,000 conductive particles and calculating the average value.
 (6)導電部の厚み
 得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂体を作製した。その検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
(6) Thickness of Conductive Part The obtained conductive particles were added to "Technobit 4000" manufactured by Kulzer and dispersed so as to have a content of 30% by weight to prepare an embedded resin body for inspection. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、10個の導電性粒子を無作為に選択し、それぞれの導電性粒子の導電部を観察した。各導電性粒子における導電部の厚みが最大となる部分の厚みを計測し、それらを算術平均して導電部の厚みとした。 Then, using a field emission transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), 10 conductive particles were randomly selected, and the conductive portion of each conductive particle was selected. Observed. The thickness of the portion of each conductive particle having the maximum thickness of the conductive portion was measured, and they were arithmetically averaged to obtain the thickness of the conductive portion.
 (7)導電性粒子の凝集
 得られた導電性粒子を観察し、導電性粒子の凝集が発生しているか否かを確認した。導電性粒子の凝集を下記の条件で判定した。
(7) Aggregation of Conductive Particles The obtained conductive particles were observed to confirm whether or not aggregation of the conductive particles had occurred. Aggregation of conductive particles was determined under the following conditions.
 [導電性粒子の凝集の判定基準]
 ○○:導電性粒子の凝集が発生していない
 ○:導電性粒子の凝集の内、小凝集が僅かに発生している
 △:導電性粒子の凝集の内、大凝集が僅かに発生している
 ×:導電性粒子の凝集が発生している
[Criteria for agglomeration of conductive particles]
○ ○: Agglutination of conductive particles has not occurred ○: A small amount of agglutination of conductive particles has occurred Δ: A small amount of agglutination of conductive particles has occurred Yes ×: Aggregation of conductive particles is occurring
 小凝集とは、4個以下の粒子がめっき被膜によって連結している凝集を表し、大凝集とは5個以上の粒子がめっき被膜によって連結している凝集のことを表す。 Small agglutination means agglutination in which 4 or less particles are connected by a plating film, and large agglutination means agglutination in which 5 or more particles are connected by a plating film.
 (8)はんだ粒の高さ
 得られた導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製した。検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
(8) Height of solder particles Add to "Technobit 4000" manufactured by Kulzer so that the content of the obtained conductive particles is 30% by weight, disperse it, and embed resin for conductive particle inspection. Was produced. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.
 そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、導電性粒子を無作為に選択し、導電性粒子におけるはんだ粒を観察した。導電性粒子における5箇所のはんだ粒の高さを計測し、それらを算術平均してはんだ粒の高さとした。 Then, using a field emission scanning electron microscope (FE-SEM), conductive particles were randomly selected, and the solder particles in the conductive particles were observed. The heights of the solder particles at five points in the conductive particles were measured, and they were arithmetically averaged to obtain the height of the solder particles.
 (9)はんだ粒のアスペクト比
 はんだ粒のアスペクト比は、はんだ粒の高さの、はんだ粒の幅に対する比(はんだ粒の高さ/はんだ粒の幅)であり、はんだ粒の高さとはんだ粒の幅とから算出した。
(9) Aspect ratio of solder grains The aspect ratio of solder grains is the ratio of the height of the solder grains to the width of the solder grains (height of the solder grains / width of the solder grains), and the height of the solder grains and the width of the solder grains. It was calculated from the width of.
 上記はんだ粒の幅は、以下のようにして測定した。 The width of the solder grains was measured as follows.
 得られた導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製した。検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。 An embedded resin body for conducting conductive particle inspection was prepared by adding and dispersing the obtained conductive particles to "Technobit 4000" manufactured by Kulzer so that the content was 30% by weight. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.
 そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、導電性粒子を無作為に選択し、導電性粒子におけるはんだ粒を観察した。導電性粒子における5箇所のはんだ粒の幅を計測し、それらを算術平均してはんだ粒の幅とした。得られたはんだ粒の高さ及びはんだ粒の幅から、はんだ粒のアスペクト比(はんだ粒の高さ/はんだ粒の幅)を算出した。 Then, using a field emission scanning electron microscope (FE-SEM), conductive particles were randomly selected, and the solder particles in the conductive particles were observed. The widths of the solder particles at five points in the conductive particles were measured, and they were arithmetically averaged to obtain the width of the solder particles. The aspect ratio of the solder grains (height of the solder grains / width of the solder grains) was calculated from the height of the obtained solder grains and the width of the solder grains.
 (10)はんだ粒の全表面積100%中の金属コロイド析出物又は金属膜がある部分の面積(金属コロイド析出物又は金属膜の被覆率)
 得られた導電性粒子について、はんだ粒の全表面積100%中の金属コロイド析出物又は金属膜がある部分の面積(金属コロイド析出物又は金属膜の被覆率)を算出した。上記被覆率(金属コロイド析出物又は金属膜の被覆率)は、導電性粒子におけるはんだ粒の断面をSEM-EDX分析して元素マッピングを行い、画像解析することで算出した。
(10) Area of a portion having a metal colloidal precipitate or a metal film in 100% of the total surface area of the solder grains (coverage of the metal colloidal precipitate or the metal film)
With respect to the obtained conductive particles, the area of the portion where the metal colloidal precipitate or the metal film was present (the coverage of the metal colloidal precipitate or the metal film) in 100% of the total surface area of the solder grains was calculated. The coverage (coating of metal colloidal precipitates or metal films) was calculated by SEM-EDX analysis of the cross section of the solder particles in the conductive particles, elemental mapping, and image analysis.
 結果を以下の表1~4に示す。 The results are shown in Tables 1 to 4 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 1…導電性粒子
 2…基材粒子
 3…導電部
 3A…第1の導電部
 3B…第2の導電部(はんだ部)
 11…導電性粒子
 12…導電部
 12A…第1aの導電部
 12B…第1bの導電部
 12C…第2の導電部(はんだ部)
 21…導電性粒子
 22…導電部
 22A…第1の導電部
 22B…第2の導電部(はんだ部)
 22Ba…溶融した第2の導電部(はんだ部)部分
 31…導電性粒子
 32…導電部
 32A…第1の導電部
 32B…第2の導電部(はんだ部)
 32C…第3の導電部
 41…導電性粒子
 42…導電部
 42A…第1の導電部
 42B…第2の導電部(はんだ部)
 43…金属コロイド析出物
 51…導電性粒子
 52…導電部
 52A…第1aの導電部
 52B…第1bの導電部
 52C…第2の導電部(はんだ部)
 53…金属コロイド析出物
 61…導電性粒子
 62…導電部
 62A…第1の導電部
 62B…第2の導電部(はんだ部)
 63…金属膜
 71…導電性粒子
 72…導電部
 72A…第1aの導電部
 72B…第1bの導電部
 72C…第2の導電部(はんだ部)
 73…金属膜
 81…接続構造体
 82…第1の接続対象部材
 82a…第1の電極
 83…第2の接続対象部材
 83a…第2の電極
1 ... Conductive particles 2 ... Base particles 3 ... Conductive parts 3A ... First conductive parts 3B ... Second conductive parts (solder parts)
11 ... Conductive particles 12 ... Conductive part 12A ... Conductive part of the first a 12B ... Conductive part of the first b 12C ... Second conductive part (solder part)
21 ... Conductive particles 22 ... Conductive part 22A ... First conductive part 22B ... Second conductive part (solder part)
22Ba ... Melted second conductive part (solder part) 31 ... Conductive particles 32 ... Conductive part 32A ... First conductive part 32B ... Second conductive part (solder part)
32C ... Third conductive part 41 ... Conductive particles 42 ... Conductive part 42A ... First conductive part 42B ... Second conductive part (solder part)
43 ... Metal colloidal precipitate 51 ... Conductive particles 52 ... Conductive part 52A ... Conductive part of the first a 52B ... Conductive part of the first b 52C ... Second conductive part (solder part)
53 ... Metal colloidal precipitate 61 ... Conductive particles 62 ... Conductive part 62A ... First conductive part 62B ... Second conductive part (solder part)
63 ... Metal film 71 ... Conductive particles 72 ... Conductive part 72A ... Conductive part of the first a 72B ... Conductive part of the first b 72C ... Second conductive part (solder part)
73 ... Metal film 81 ... Connection structure 82 ... First connection target member 82a ... First electrode 83 ... Second connection target member 83a ... Second electrode

Claims (12)

  1.  基材粒子と、
     前記基材粒子の表面上に配置された導電部とを備え、
     前記導電部が400℃以下で金属拡散し得る成分を含むか、又は、前記導電部が400℃以下で溶融変形可能であり、
     前記導電部が、はんだ部を有し、
     前記基材粒子の全表面積100%中、前記はんだ部がある部分の面積が99%以下である、導電性粒子。
    With base particles
    With a conductive portion arranged on the surface of the base particle,
    The conductive portion contains a component capable of diffusing metal at 400 ° C. or lower, or the conductive portion is melt-deformable at 400 ° C. or lower.
    The conductive portion has a solder portion and
    Conductive particles in which the area of the portion where the solder portion is located is 99% or less of the total surface area of the base particles.
  2.  前記はんだ部が、はんだ粒である、請求項1に記載の導電性粒子。 The conductive particle according to claim 1, wherein the solder portion is a solder grain.
  3.  前記はんだ粒の材料が、錫を含む合金を含むか、純錫であるか、又は錫を含む合金とは異なる状態かつ純錫とは異なる状態で錫を含む、請求項2に記載の導電性粒子。 The conductivity according to claim 2, wherein the material of the solder particles contains tin in a state different from the alloy containing tin, pure tin, or a state different from the alloy containing tin and different from pure tin. particle.
  4.  前記はんだ粒の材料が、純錫である、請求項3に記載の導電性粒子。 The conductive particles according to claim 3, wherein the material of the solder particles is pure tin.
  5.  前記はんだ粒の高さが、10nm以上10μm以下である、請求項2~4のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 2 to 4, wherein the height of the solder particles is 10 nm or more and 10 μm or less.
  6.  前記はんだ粒のアスペクト比が、0.05以上5以下である、請求項2~5のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 2 to 5, wherein the solder grain has an aspect ratio of 0.05 or more and 5 or less.
  7.  前記はんだ粒の外表面上に、金属コロイド析出物又は金属膜を有する、請求項2~6のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 2 to 6, which has a metal colloidal precipitate or a metal film on the outer surface of the solder particles.
  8.  前記はんだ粒の全表面積100%中、前記金属コロイド析出物又は前記金属膜がある部分の面積が5%以上100%以下である、請求項7に記載の導電性粒子。 The conductive particle according to claim 7, wherein the area of the metal colloidal precipitate or the portion where the metal film is present is 5% or more and 100% or less of the total surface area of the solder particles.
  9.  前記金属コロイド析出物の金属種又は前記金属膜の金属種が、ニッケル、コバルト、鉛、金、亜鉛、パラジウム、銅、銀、ビスマス、又はインジウムである、請求項7又は8に記載の導電性粒子。 The conductivity according to claim 7 or 8, wherein the metal species of the metal colloid precipitate or the metal species of the metal film is nickel, cobalt, lead, gold, zinc, palladium, copper, silver, bismuth, or indium. particle.
  10.  粒子径が、0.5μm以上500μm以下である、請求項1~9のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 9, wherein the particle size is 0.5 μm or more and 500 μm or less.
  11.  導電性粒子と、バインダーとを含み、
     前記導電性粒子が、請求項1~10のいずれか1項に記載の導電性粒子である、導電材料。
    Contains conductive particles and a binder,
    A conductive material in which the conductive particles are the conductive particles according to any one of claims 1 to 10.
  12.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダーとを含む導電材料により形成されており、
     前記導電性粒子が、請求項1~10のいずれか1項に記載の導電性粒子であり、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
    A first connection target member having a first electrode on its surface,
    A second connection target member having a second electrode on the surface,
    A connecting portion connecting the first connection target member and the second connection target member is provided.
    The connecting portion is formed of conductive particles, or is formed of a conductive material containing the conductive particles and a binder.
    The conductive particles according to any one of claims 1 to 10, wherein the conductive particles are the conductive particles.
    A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2020/023304 2019-06-13 2020-06-12 Conductive particles, conductive material, and connection structure WO2020251043A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080042463.8A CN113950778A (en) 2019-06-13 2020-06-12 Conductive particle, conductive material, and connection structure
KR1020217040219A KR20220016863A (en) 2019-06-13 2020-06-12 Electroconductive particle, electrically-conductive material, and bonded structure
JP2020558067A JPWO2020251043A1 (en) 2019-06-13 2020-06-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-110156 2019-06-13
JP2019110156 2019-06-13

Publications (1)

Publication Number Publication Date
WO2020251043A1 true WO2020251043A1 (en) 2020-12-17

Family

ID=73780964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023304 WO2020251043A1 (en) 2019-06-13 2020-06-12 Conductive particles, conductive material, and connection structure

Country Status (4)

Country Link
JP (1) JPWO2020251043A1 (en)
KR (1) KR20220016863A (en)
CN (1) CN113950778A (en)
WO (1) WO2020251043A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240010319A (en) * 2022-07-15 2024-01-23 주식회사 아이에스시 Conductive particles for electrical test, connector for electrical test and fabrication method of conductive particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046010A (en) * 2016-09-09 2018-03-22 積水化学工業株式会社 Metal atom-containing grain, connection material, connection structure, and method for producing connection structure
JP2018045906A (en) * 2016-09-15 2018-03-22 積水化学工業株式会社 Conductive material, method for producing conductive material, and connection structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294997A (en) * 1999-04-07 2000-10-20 Denso Corp Structure and method for connecting electronic component
KR101815336B1 (en) * 2010-09-30 2018-01-04 세키스이가가쿠 고교가부시키가이샤 Conductive particles, anisotropic conductive material and connection structure
JP6577867B2 (en) * 2014-09-18 2019-09-18 積水化学工業株式会社 Conductive paste, connection structure, and manufacturing method of connection structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046010A (en) * 2016-09-09 2018-03-22 積水化学工業株式会社 Metal atom-containing grain, connection material, connection structure, and method for producing connection structure
JP2018045906A (en) * 2016-09-15 2018-03-22 積水化学工業株式会社 Conductive material, method for producing conductive material, and connection structure

Also Published As

Publication number Publication date
CN113950778A (en) 2022-01-18
KR20220016863A (en) 2022-02-10
JPWO2020251043A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6034177B2 (en) Conductive particles, conductive materials, and connection structures
JP7280880B2 (en) Conductive particles, conductive materials and connecting structures
JP7284703B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
JP7016611B2 (en) Conductive particles, conductive materials, and connecting structures
WO2014084173A1 (en) Conductive particle with insulating particles, conductive material and connection structure
JP6431411B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
WO2020251043A1 (en) Conductive particles, conductive material, and connection structure
JP7412100B2 (en) Conductive particles with insulating particles, conductive materials and connected structures
JPWO2020175691A1 (en) Conductive particles, conductive materials and connecting structures
JP2021057188A (en) Conductive particle, conductive material, connection structure and method for producing connection structure
JP2022022293A (en) Conductive particle, conductive material, and connection structure
JP2020205258A (en) Conductive particle for connector joining, conductive material for connector joining and connector joint body
TWI789395B (en) Conductive material and connection structure
JP7180981B2 (en) Conductive particles, conductive materials and connecting structures
JP7231793B1 (en) Conductive particles, conductive materials and connecting structures
JP7288487B2 (en) Conductive particles, method for producing conductive particles, conductive material and connection structure
WO2024101449A1 (en) Electroconductive particle, electroconductive material, and connection structure
JP7328856B2 (en) Conductive particles, conductive materials and connecting structures
JP7235611B2 (en) Conductive materials and connecting structures
WO2022239776A1 (en) Conductive particles, conductive material, and connection structure
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
JP7312109B2 (en) Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure
JP7312108B2 (en) Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
WO2022260158A1 (en) Coated particles, resin composition, and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020558067

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822411

Country of ref document: EP

Kind code of ref document: A1