JP2017022099A - Conductive material and connection structure - Google Patents

Conductive material and connection structure Download PDF

Info

Publication number
JP2017022099A
JP2017022099A JP2016128792A JP2016128792A JP2017022099A JP 2017022099 A JP2017022099 A JP 2017022099A JP 2016128792 A JP2016128792 A JP 2016128792A JP 2016128792 A JP2016128792 A JP 2016128792A JP 2017022099 A JP2017022099 A JP 2017022099A
Authority
JP
Japan
Prior art keywords
solder
conductive
electrode
particles
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016128792A
Other languages
Japanese (ja)
Inventor
石澤 英亮
Hideaki Ishizawa
英亮 石澤
敬三 西岡
Keizo Nishioka
敬三 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2017022099A publication Critical patent/JP2017022099A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11332Manufacturing methods by local deposition of the material of the bump connector in solid form using a powder

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive material capable of efficiently arranging a solder in a conductive particle on an electrode and enhancing conduction reliability between electrodes.SOLUTION: The conductive material contains a plurality of conductive particles and a binder, where the conductive particle has a solder in an outer surface part of a conductor part and a coated part of a polymer with weight average molecular weight of 3000 to 100000 on the outer surface of the conductive part.SELECTED DRAWING: Figure 1

Description

本発明は、はんだを有する導電性粒子を含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体に関する。   The present invention relates to a conductive material including conductive particles having solder. The present invention also relates to a connection structure using the conductive material.

異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー中に導電性粒子が分散されている。   Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder.

上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。   In order to obtain various connection structures, the anisotropic conductive material is, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)) or a connection between a semiconductor chip and a flexible printed circuit board (COF ( Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.

上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。   For example, when electrically connecting the electrode of the flexible printed circuit board and the electrode of the glass epoxy substrate by the anisotropic conductive material, an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do. Next, a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.

上記異方性導電材料の一例として、下記の特許文献1には、導電性粒子と、該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電材料が記載されている。上記導電性粒子としては、具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)、銀(Ag)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、ガリウム(Ga)、銀(Ag)及びタリウム(Tl)等の金属や、これらの金属の合金が挙げられている。   As an example of the anisotropic conductive material, Patent Document 1 described below describes an anisotropic conductive material including conductive particles and a resin component that cannot be cured at the melting point of the conductive particles. Specifically, the conductive particles include tin (Sn), indium (In), bismuth (Bi), silver (Ag), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd ), Gallium (Ga), silver (Ag), thallium (Tl), and the like, and alloys of these metals.

特許文献1では、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、異方性導電樹脂を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを経て、電極間を電気的に接続することが記載されている。また、特許文献1には、特許文献1の図8に示された温度プロファイルで実装を行うことが記載されている。特許文献1では、異方性導電樹脂が加熱される温度にて硬化が完了しない樹脂成分内で、導電性粒子が溶融する。   In Patent Document 1, a resin heating step for heating the anisotropic conductive resin to a temperature higher than the melting point of the conductive particles and at which the curing of the resin component is not completed, and a resin component curing step for curing the resin component The electrical connection between the electrodes is described. Patent Document 1 describes that mounting is performed with the temperature profile shown in FIG. In Patent Document 1, the conductive particles melt in a resin component that is not completely cured at a temperature at which the anisotropic conductive resin is heated.

下記の特許文献2には、熱硬化性樹脂を含む樹脂層と、はんだ粉と、硬化剤とを含み、上記はんだ粉と上記硬化剤とが上記樹脂層中に存在する接着テープが開示されている。この接着テープは、フィルム状であり、ペースト状ではない。   Patent Document 2 below discloses an adhesive tape that includes a resin layer containing a thermosetting resin, solder powder, and a curing agent, and the solder powder and the curing agent are present in the resin layer. Yes. This adhesive tape is in the form of a film, not a paste.

また、特許文献2では、上記接着テープを用いた接着方法が開示されている。具体的には、第一基板、接着テープ、第二基板、接着テープ、及び第三基板を下からこの順に積層して、積層体を得る。このとき、第一基板の表面に設けられた第一電極と、第二基板の表面に設けられた第二電極とを対向させる。また、第二基板の表面に設けられた第二電極と第三基板の表面に設けられた第三電極とを対向させる。そして、積層体を所定の温度で加熱して接着する。これにより、接続構造体を得る。   Patent Document 2 discloses an adhesion method using the adhesive tape. Specifically, a first substrate, an adhesive tape, a second substrate, an adhesive tape, and a third substrate are laminated in this order from the bottom to obtain a laminate. At this time, the first electrode provided on the surface of the first substrate is opposed to the second electrode provided on the surface of the second substrate. Moreover, the 2nd electrode provided in the surface of the 2nd board | substrate and the 3rd electrode provided in the surface of the 3rd board | substrate are made to oppose. Then, the laminate is heated and bonded at a predetermined temperature. Thereby, a connection structure is obtained.

また、下記の特許文献3には、複数の電極端子を有する配線基板と対向させて、複数の接続端子を有する半導体チップを配設し、上記配線基板の上記電極端子と、上記半導体チップの上記接続端子とを電気的に接続するフリップチップ実装方法が開示されている。このフリップチップ実装方法は、(1)上記配線基板の上記電極端子を有する表面上に、はんだ粉及び対流添加剤を含有する樹脂を供給する工程と、(2)上記樹脂表面に、上記半導体チップを当接させる工程と、(3)上記配線基板を、上記はんだ粉が溶融する温度に加熱する工程と、(4)上記加熱工程後、上記樹脂を硬化させる工程とを含む。上記配線基板の加熱工程(3)において、上記電極端子と上記接続端子とを電気的に接続する接続体を形成し、また、上記樹脂の硬化工程(4)において、上記半導体チップを上記配線基板に固定する。   Further, in Patent Document 3 below, a semiconductor chip having a plurality of connection terminals is disposed so as to face a wiring board having a plurality of electrode terminals, and the electrode terminals of the wiring board and the above-mentioned semiconductor chip A flip chip mounting method for electrically connecting a connection terminal is disclosed. The flip chip mounting method includes (1) a step of supplying a resin containing solder powder and a convection additive onto the surface of the wiring board having the electrode terminals, and (2) the semiconductor chip on the resin surface. (3) a step of heating the wiring substrate to a temperature at which the solder powder melts, and (4) a step of curing the resin after the heating step. In the heating step (3) of the wiring board, a connection body for electrically connecting the electrode terminal and the connection terminal is formed, and in the resin curing step (4), the semiconductor chip is connected to the wiring board. To fix.

特開2004−260131号公報JP 2004-260131 A WO2008/023452A1WO2008 / 023452A1 特開2006−114865号公報JP 2006-114865 A

従来のはんだ粉や、はんだ層を表面に有する導電性粒子を含む異方性導電ペーストでは、はんだ粉又は導電性粒子が電極(ライン)上に効率的に配置されないことがある。従来のはんだ粉又は導電性粒子では、はんだ粉又は導電性粒子の電極上への移動速度が遅いことがある。   In the case of conventional anisotropic conductive paste containing solder powder or conductive particles having a solder layer on the surface, the solder powder or conductive particles may not be efficiently disposed on the electrodes (lines). In the conventional solder powder or conductive particles, the moving speed of the solder powder or conductive particles onto the electrode may be slow.

また、特許文献1に記載の異方性導電材料を用いて、特許文献1に記載の方法で電極間を電気的に接続すると、はんだを含む導電性粒子が電極(ライン)上に効率的に配置されないことがある。また、特許文献1の実施例では、はんだの融点以上の温度で、はんだを十分に移動させるために、一定温度に保持しており、接続構造体の製造効率が低くなる。特許文献1の図8に示された温度プロファイルで実装を行うと、接続構造体の製造効率が低くなる。   Further, when the electrodes are electrically connected by the method described in Patent Document 1 using the anisotropic conductive material described in Patent Document 1, conductive particles including solder are efficiently formed on the electrodes (lines). May not be placed. Moreover, in the Example of patent document 1, in order to move a solder fully at the temperature more than melting | fusing point of solder, it is hold | maintained at fixed temperature, and the manufacturing efficiency of a connection structure becomes low. When mounting is performed with the temperature profile shown in FIG. 8 of Patent Document 1, the manufacturing efficiency of the connection structure is lowered.

特許文献2では、異方性導電材料に用いる導電性粒子については、具体的な記載がない。特許文献3の実施例では、樹脂粒子の表面上に銅層が形成されており、該銅層の表面にはんだ層が形成されている導電性粒子が用いられている。この導電性粒子の中心部分は、樹脂粒子により構成されている。また、特許文献2,3に記載の異方性導電材料を用いると、導電性粒子が電極(ライン)上に効率的に配置されにくく、接続されるべき上下の電極間の位置ずれが生じたりすることがある。   In Patent Document 2, there is no specific description of the conductive particles used for the anisotropic conductive material. In the Example of patent document 3, the copper layer is formed on the surface of the resin particle, and the electroconductive particle in which the solder layer is formed on the surface of this copper layer is used. The central part of the conductive particles is composed of resin particles. In addition, when the anisotropic conductive material described in Patent Documents 2 and 3 is used, the conductive particles are difficult to be efficiently arranged on the electrodes (lines), and positional displacement between the upper and lower electrodes to be connected may occur. There are things to do.

本発明の目的は、導電性粒子におけるはんだを電極上に効率的に配置することができ電極間の導通信頼性を高めることができる導電材料を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体を提供することである。   An object of the present invention is to provide a conductive material that can efficiently dispose solder in conductive particles on electrodes and can improve conduction reliability between the electrodes. Another object of the present invention is to provide a connection structure using the conductive material.

本発明の広い局面によれば、複数の導電性粒子と、バインダーとを含み、前記導電性粒子は、導電部の外表面部分に、はんだを有し、かつ、前記導電部の外表面上に、重量平均分子量が3000以上、100000以下であるポリマーの被覆部を有する、導電材料が提供される。   According to a wide aspect of the present invention, the conductive particles include a plurality of conductive particles and a binder, the conductive particles have solder on the outer surface portion of the conductive portion, and on the outer surface of the conductive portion. A conductive material having a polymer coating having a weight average molecular weight of 3000 or more and 100000 or less is provided.

本発明に係る導電材料のある特定の局面では、前記導電性粒子は、はんだ粒子と、前記はんだ粒子の外表面上に、前記ポリマーの被覆部とを有する。   On the specific situation with the electrically-conductive material which concerns on this invention, the said electroconductive particle has a solder particle and the coating | coated part of the said polymer on the outer surface of the said solder particle.

本発明に係る導電材料のある特定の局面では、前記ポリマーはカルボキシル基を有する。   In a specific aspect of the conductive material according to the present invention, the polymer has a carboxyl group.

本発明に係る導電材料のある特定の局面では、前記ポリマーはポリエステルである。   In a specific aspect of the conductive material according to the present invention, the polymer is a polyester.

本発明に係る導電材料のある特定の局面では、前記ポリマーの軟化点が、前記はんだの融点よりも低い。   On the specific situation with the electrically-conductive material which concerns on this invention, the softening point of the said polymer is lower than melting | fusing point of the said solder.

本発明に係る導電材料のある特定の局面では、前記バインダーはフラックスを含み、前記ポリマーの軟化点は、前記フラックスの活性温度よりも低い。   On the specific situation with the electrically-conductive material which concerns on this invention, the said binder contains a flux and the softening point of the said polymer is lower than the activation temperature of the said flux.

本発明に係る導電材料のある特定の局面では、前記ポリマーが、前記はんだの水酸基と反応可能な官能基によって、前記はんだの水酸基と結合している。   On the specific situation with the electrically-conductive material which concerns on this invention, the said polymer is couple | bonded with the hydroxyl group of the said solder by the functional group which can react with the hydroxyl group of the said solder.

本発明に係る導電材料のある特定の局面では、前記被覆部の厚みが0.01μm以上、5μm以下である。   On the specific situation with the electrically-conductive material which concerns on this invention, the thickness of the said coating | coated part is 0.01 micrometer or more and 5 micrometers or less.

本発明に係る導電材料のある特定の局面では、前記導電性粒子の平均粒子径が1μm以上、60μm以下である。   On the specific situation with the electrically-conductive material which concerns on this invention, the average particle diameter of the said electroconductive particle is 1 micrometer or more and 60 micrometers or less.

本発明に係る導電材料のある特定の局面では、導電材料100重量%中、前記導電性粒子の含有量が10重量%以上、80重量%以下である。   On the specific situation with the electrically-conductive material which concerns on this invention, content of the said electroconductive particle is 10 to 80 weight% in 100 weight% of electrically-conductive materials.

本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。   According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the A connecting portion connecting a second connection target member, wherein the material of the connecting portion is the conductive material described above, and the first electrode and the second electrode are formed by the conductive particles. A connection structure is provided that is electrically connected.

本発明に係る導電材料は、複数の導電性粒子と、バインダーとを含み、上記導電性粒子は、導電部の外表面部分に、はんだを有し、かつ、上記導電部の外表面上に、重量平均分子量が3000以上、100000以下であるポリマーの被覆部を有するので、導電性粒子におけるはんだを電極上に効率的に配置することができ、電極間の導通信頼性を高めることができる。   The conductive material according to the present invention includes a plurality of conductive particles and a binder, the conductive particles have solder on the outer surface portion of the conductive portion, and on the outer surface of the conductive portion, Since it has the coating part of the polymer whose weight average molecular weight is 3000 or more and 100000 or less, the solder in electroconductive particle can be efficiently arrange | positioned on an electrode and the conduction | electrical_connection reliability between electrodes can be improved.

図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention. 図2(a)〜(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using a conductive material according to an embodiment of the present invention. 図3は、接続構造体の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modification of the connection structure. 図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material. 図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used for the conductive material. 図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used for the conductive material.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

(導電材料)
本発明に係る導電材料は、複数の導電性粒子と、バインダーとを含む。上記導電性粒子は、導電部を有する。上記導電性粒子は、導電部の外表面部分に、はんだを有する。はんだは、導電部に含まれ、導電部の一部又は全部である。上記導電性粒子は、上記導電部の外表面上に、重量平均分子量が3000以上、100000以下であるポリマーにより形成された被覆部を有する。上記導電性粒子は、上記導電部の外表面上に、上記ポリマーの被覆部を有する。導電部及びはんだの外表面の一部又は全部が、上記ポリマーにより形成された被覆部により覆われている。
(Conductive material)
The conductive material according to the present invention includes a plurality of conductive particles and a binder. The conductive particles have a conductive part. The conductive particles have solder on the outer surface portion of the conductive portion. Solder is contained in the conductive part and is a part or all of the conductive part. The conductive particles have a coating part formed of a polymer having a weight average molecular weight of 3000 or more and 100,000 or less on the outer surface of the conductive part. The conductive particles have the polymer coating on the outer surface of the conductive part. Part or all of the conductive portion and the outer surface of the solder are covered with a covering portion formed of the polymer.

本発明では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導電性粒子におけるはんだが、上下の対向した電極間に集まりやすく、導電性粒子におけるはんだを電極(ライン)上に効率的に配置することができる。また、導電性粒子におけるはんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。本発明では、対向する電極間に位置していない導電性粒子を、対向する電極間に効率的に移動させることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。さらに、電極間の位置ずれを防ぐことができる。本発明では、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。このような効果を得るために、特定の導電性粒子を用いることは、大きく寄与する。   In the present invention, since the above-described configuration is provided, when the electrodes are electrically connected, the solder in the conductive particles easily collects between the upper and lower electrodes, and the solder in the conductive particles is removed from the electrode ( Line). In addition, a part of the solder in the conductive particles is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced. In this invention, the electroconductive particle which is not located between the opposing electrodes can be efficiently moved between the opposing electrodes. Therefore, the conduction reliability between the electrodes can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability. Furthermore, it is possible to prevent positional deviation between the electrodes. In the present invention, when the second connection target member is superimposed on the first connection target member having the conductive material disposed on the upper surface, the electrode of the first connection target member and the electrode of the second connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment of the first connection target member and the second connection target member are overlaid, the shift is corrected and the electrode of the first connection target member and the second connection target The electrode of the member can be connected (self-alignment effect). In order to obtain such an effect, using specific conductive particles greatly contributes.

導電性粒子の被覆部は、重量平均分子量が特定の範囲を満足するポリマーにより形成されており、導電性粒子における導電部の外表面の電荷が制御されている。さらに、上記導電材料に熱が付与されると、上記ポリマーの重量平均分子量が上記上限以下であるので、被覆部が脱離しやすくなり、導電部の外表面部分のはんだが露出し、はんだの移動が促進される。   The covering portion of the conductive particles is formed of a polymer having a weight average molecular weight satisfying a specific range, and the charge on the outer surface of the conductive portion in the conductive particles is controlled. Further, when heat is applied to the conductive material, the weight average molecular weight of the polymer is less than or equal to the upper limit, so that the covering portion is easily detached, the solder on the outer surface portion of the conductive portion is exposed, and the solder moves. Is promoted.

上記導電性粒子は、はんだ粒子であってもよい。上記はんだ粒子は、はんだにより形成されている。上記はんだ粒子は、はんだを導電部の外表面部分に有する。上記はんだ粒子は、中心部分及び導電性の外表面とのいずれもがはんだにより形成されている。上記はんだ粒子は、上記はんだ粒子の中心部分及び導電性の外表面のいずれもがはんだである粒子である。上記導電性粒子は、基材粒子と、該基材粒子の表面上に配置された導電部とを有していてもよい。この場合に、上記導電性粒子は、導電部の外表面部分に、はんだを有する。   The conductive particles may be solder particles. The solder particles are formed of solder. The solder particles have solder on the outer surface portion of the conductive portion. As for the said solder particle, both a center part and an electroconductive outer surface are formed with the solder. The solder particles are particles in which both the central portion of the solder particles and the conductive outer surface are solder. The said electroconductive particle may have a base material particle and the electroconductive part arrange | positioned on the surface of this base material particle. In this case, the conductive particles have solder on the outer surface portion of the conductive portion.

なお、上記はんだ粒子を備える導電性粒子を用いた場合と比べて、はんだにより形成されていない基材粒子と基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まりにくくなり、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。従って、上記導電性粒子は、はんだにより形成されたはんだ粒子を有することが好ましい。   Compared to the case where the conductive particles including the solder particles are used, the case where the conductive particles including the base particles not formed by the solder and the solder portion arranged on the surface of the base particles are used. The conductive particles are less likely to collect on the electrodes, and the conductive particles that have moved onto the electrodes tend to move out of the electrodes because of the low solderability between the conductive particles. There is a tendency that the effect of suppressing misalignment also becomes low. Therefore, it is preferable that the conductive particles have solder particles formed by solder.

はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記ポリマーの重量平均分子量は好ましくは3000以上、より好ましくは100000以下である。   The weight average molecular weight of the polymer is preferably 3000 or more, more preferably 100,000 or less from the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes.

上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。   The weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記ポリマーの軟化点は、上記はんだの融点よりも低いことが好ましい。はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記ポリマーの軟化点と、上記はんだの融点との差の絶対値は好ましくは10℃以上、より好ましくは20℃以上、好ましくは80℃以下、より好ましくは70℃以下である。   From the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes, the softening point of the polymer is preferably lower than the melting point of the solder. The absolute value of the difference between the softening point of the polymer and the melting point of the solder is preferably 10 ° C. or more from the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes. Preferably it is 20 degreeC or more, Preferably it is 80 degrees C or less, More preferably, it is 70 degrees C or less.

導通信頼性をより一層高める観点からは、上記導電材料及び上記バインダーは、フラックスを含むことが好ましい。はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記ポリマーの軟化点は、上記フラックスの活性温度よりも低いことが好ましい。はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記ポリマーの軟化点と上記フラックスの活性温度との差の絶対値は好ましくは5℃以上、より好ましくは15℃以上、好ましくは70℃以下、より好ましくは60℃以下である。   From the viewpoint of further improving the conduction reliability, the conductive material and the binder preferably include a flux. From the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes, the softening point of the polymer is preferably lower than the activation temperature of the flux. The absolute value of the difference between the softening point of the polymer and the activation temperature of the flux is preferably 5 ° C. or more from the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes. Preferably it is 15 degreeC or more, Preferably it is 70 degrees C or less, More preferably, it is 60 degrees C or less.

上記ポリマーの軟化点は、好ましくは10℃以上、より好ましくは30℃以上、好ましくは180℃以下、より好ましくは160℃以下である。   The softening point of the polymer is preferably 10 ° C or higher, more preferably 30 ° C or higher, preferably 180 ° C or lower, more preferably 160 ° C or lower.

上記軟化点は、DSCにて測定された吸熱温度を意味する。   The softening point means an endothermic temperature measured by DSC.

はんだを電極上により一層効率的に配置するために、上記導電材料の25℃での粘度(η25)は好ましくは10Pa・s以上、より好ましくは50Pa・s以上、更に好ましくは100Pa・s以上であり、好ましくは800Pa・s以下、より好ましくは600Pa・s以下、更に好ましくは500Pa・s以下である。   In order to arrange the solder more efficiently on the electrode, the viscosity (η25) at 25 ° C. of the conductive material is preferably 10 Pa · s or more, more preferably 50 Pa · s or more, and further preferably 100 Pa · s or more. Yes, preferably 800 Pa · s or less, more preferably 600 Pa · s or less, and even more preferably 500 Pa · s or less.

上記粘度(η25)は、配合成分の種類及び配合量に適宜調整可能である。また、フィラーの使用により、粘度を比較的高くすることができる。   The said viscosity ((eta) 25) can be suitably adjusted with the kind and compounding quantity of a compounding component. Further, the use of a filler can make the viscosity relatively high.

上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定可能である。   The viscosity (η25) can be measured using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) and the like at 25 ° C. and 5 rpm.

上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電ペーストは、異方性導電ペーストであることが好ましく、上記導電フィルムは異方性導電フィルムであることが好ましい。導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記導電材料は、異方性導電ペーストであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。   The conductive material can be used as a conductive paste and a conductive film. The conductive paste is preferably an anisotropic conductive paste, and the conductive film is preferably an anisotropic conductive film. From the viewpoint of more efficiently disposing the solder in the conductive particles on the electrode, the conductive material is preferably an anisotropic conductive paste. The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.

上記導電材料及び上記バインダーは、熱可塑性成分又は熱硬化性成分を含むことが好ましい。上記導電材料及び上記バインダーは、熱可塑性成分を含んでいてもよく、熱硬化性成分を含んでいてもよい。上記導電材料及び上記バインダーは、熱硬化性成分を含むことが好ましい。上記導電材料及び上記バインダーは、熱硬化性化合物と熱硬化剤とを含むことが好ましい。上記バインダーは、25℃で液状成分であるか、又は導電接続時に液状になる成分であることが好ましい。   The conductive material and the binder preferably contain a thermoplastic component or a thermosetting component. The conductive material and the binder may contain a thermoplastic component or a thermosetting component. The conductive material and the binder preferably include a thermosetting component. The conductive material and the binder preferably include a thermosetting compound and a thermosetting agent. The binder is preferably a liquid component at 25 ° C. or a component that becomes liquid at the time of conductive connection.

以下、上記導電材料に含まれる各成分を説明する。   Hereinafter, each component contained in the conductive material will be described.

(導電性粒子)
上記導電性粒子は、接続対象部材の電極間を電気的に接続する。上記導電性粒子は、導電部の外表面部分にはんだを有する。
(Conductive particles)
The conductive particles electrically connect the electrodes of the connection target member. The conductive particles have solder on the outer surface portion of the conductive portion.

図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。   FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.

図4に示す導電性粒子21は、はんだ粒子22と、はんだ粒子22の外表面上に配置された被覆部23とを有する。はんだ粒子22と被覆部23とは接している。はんだ粒子22は、全体がはんだにより形成されている。はんだ粒子22は、基材粒子をコアに有さず、コアシェル粒子ではない。はんだ粒子22は、中心部分及び外表面のいずれも、はんだにより形成されている。   The conductive particles 21 shown in FIG. 4 have solder particles 22 and a covering portion 23 disposed on the outer surface of the solder particles 22. The solder particles 22 and the covering portion 23 are in contact with each other. The solder particles 22 are entirely formed of solder. The solder particles 22 do not have base material particles in the core, and are not core-shell particles. The solder particles 22 are formed of solder at both the central portion and the outer surface.

図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。   FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used for the conductive material.

図5に示す導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された導電部33と、導電部33の外表面上に配置された被覆部34を備える。導電部33と被覆部34とは接している。導電部33は、基材粒子32の表面を被覆している。被覆部34は、導電部33の表面を被覆している。導電性粒子31は、基材粒子32の表面が導電部33により被覆されており、更に導電部33の表面が被覆部34により被覆された被覆粒子である。   The conductive particle 31 shown in FIG. 5 includes a base particle 32, a conductive part 33 disposed on the surface of the base particle 32, and a covering part 34 disposed on the outer surface of the conductive part 33. The conductive portion 33 and the covering portion 34 are in contact with each other. The conductive portion 33 covers the surface of the base particle 32. The covering portion 34 covers the surface of the conductive portion 33. The conductive particle 31 is a coated particle in which the surface of the base particle 32 is covered with the conductive portion 33 and the surface of the conductive portion 33 is further covered with the covering portion 34.

導電部33は、第2の導電部33Aと、第2の導電部33Aの表面上に配置されたはんだ部33B(第1の導電部)とを有する。導電性粒子31は、基材粒子32と、はんだ部33Bとの間に、第2の導電部33Aを備える。従って、導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された第2の導電部33Aと、第2の導電部33Aの表面上に配置されたはんだ部33Bとを備える。このように、導電部33は、多層構造を有していてもよく、2層以上の積層構造を有していてもよい。   The conductive portion 33 includes a second conductive portion 33A and a solder portion 33B (first conductive portion) disposed on the surface of the second conductive portion 33A. The conductive particle 31 includes a second conductive portion 33A between the base particle 32 and the solder portion 33B. Therefore, the conductive particles 31 include the base particle 32, the second conductive portion 33A disposed on the surface of the base particle 32, and the solder portion 33B disposed on the surface of the second conductive portion 33A. Is provided. As described above, the conductive portion 33 may have a multilayer structure or may have a stacked structure of two or more layers.

図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。   FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used for the conductive material.

上記のように、導電性粒子31における導電部33は2層構造を有する。図6に示す導電性粒子41は、単層の導電部として、はんだ部42を有する。導電性粒子41は、基材粒子32と、基材粒子32の表面上に配置されたはんだ部42と、はんだ部42の外表面上に被覆部43とを備える。はんだ部42と被覆部43とは接している。   As described above, the conductive portion 33 in the conductive particle 31 has a two-layer structure. The conductive particle 41 shown in FIG. 6 has a solder part 42 as a single-layer conductive part. The conductive particle 41 includes a base particle 32, a solder portion 42 disposed on the surface of the base particle 32, and a covering portion 43 on the outer surface of the solder portion 42. The solder part 42 and the covering part 43 are in contact with each other.

上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。上記基材粒子は、銅粒子であってもよい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを有していてもよく、コアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。   Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The substrate particles are preferably substrate particles excluding metal, and are preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The substrate particles may be copper particles. The base particle may have a core and a shell disposed on the surface of the core, or may be a core-shell particle. The core may be an organic core, and the shell may be an inorganic shell.

上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン−スチレン共重合体及びジビニルベンゼン−(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。   Various organic materials are suitably used as the resin for forming the resin particles. Examples of the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate , Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide , Polyacetal, polyimide, polyamideimide, polyether ether Tons, polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer, and the like. Examples of the divinylbenzene copolymer include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.

上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。   When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer and And a crosslinkable monomer.

上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。   Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylate compounds such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc. Elemental-containing (meth) acrylate compounds; nitrile-containing monomers such as (meth) acrylonitrile; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether; acids such as vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate Vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene Etc.

上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。   Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanide Silane-containing monomers such as salts, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, etc. Is mentioned.

上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。   The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.

上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。   In the case where the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal, examples of the inorganic material for forming the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black. The inorganic substance is preferably not a metal. The particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.

上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。   The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. The core is preferably an organic core. The shell is preferably an inorganic shell. From the viewpoint of effectively reducing the connection resistance between the electrodes, the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.

上記有機コアを形成するための材料としては、上述した樹脂粒子を形成するための樹脂等が挙げられる。   Examples of the material for forming the organic core include the resin for forming the resin particles described above.

上記無機シェルを形成するための材料としては、上述した基材粒子を形成するための無機物が挙げられる。上記無機シェルを形成するための材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼結させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。   Examples of the material for forming the inorganic shell include inorganic substances for forming the above-described base material particles. The material for forming the inorganic shell is preferably silica. The inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell by a sol-gel method and then sintering the shell. The metal alkoxide is preferably a silane alkoxide. The inorganic shell is preferably formed of a silane alkoxide.

上記コアの粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、更に好ましくは30μm以下、特に好ましくは15μm以下、最も好ましくは10μm以下である。上記コアの粒子径が上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。例えば、上記コアの粒子径が上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。   The particle diameter of the core is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 100 μm or less, more preferably 60 μm or less, still more preferably 30 μm or less, particularly preferably 15 μm or less, and most preferably 10 μm or less. It is. When the particle diameter of the core is not less than the above lower limit and not more than the above upper limit, conductive particles more suitable for electrical connection between electrodes can be obtained, and the base particles can be suitably used for the use of conductive particles. Become. For example, when the particle diameter of the core is not less than the lower limit and not more than the upper limit, when the electrodes are connected using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, and Aggregated conductive particles are hardly formed when the conductive layer is formed. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.

上記コアの粒子径は、上記コアが真球状である場合には直径を意味し、上記コアが真球状以外の形状である場合には、最大径を意味する。また、コアの粒子径は、コアを任意の粒子径測定装置により測定した平均粒子径を意味する。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析などの原理を用いた粒度分布測定機が利用できる。   The particle diameter of the core means the diameter when the core is a true sphere, and the maximum diameter when the core is a shape other than the true sphere. Moreover, the particle diameter of a core means the average particle diameter which measured the core with arbitrary particle diameter measuring apparatuses. For example, a particle size distribution measuring machine using principles such as laser light scattering, electrical resistance value change, and image analysis after imaging can be used.

上記シェルの厚みは、好ましくは100nm以上、より好ましくは200nm以上であり、好ましくは5μm以下、より好ましくは3μm以下である。上記シェルの厚みが上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。上記シェルの厚みは、基材粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記シェルの厚みを制御可能である。   The thickness of the shell is preferably 100 nm or more, more preferably 200 nm or more, preferably 5 μm or less, more preferably 3 μm or less. When the thickness of the shell is not less than the above lower limit and not more than the above upper limit, conductive particles more suitable for electrical connection between the electrodes can be obtained, and the base particles can be suitably used for the use of conductive particles. . The thickness of the shell is an average thickness per base particle. The thickness of the shell can be controlled by controlling the sol-gel method.

上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。上記基材粒子が金属粒子である場合に、該金属粒子は銅粒子であることが好ましい。但し、上記基材粒子は金属粒子ではないことが好ましい。   When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium. When the base material particles are metal particles, the metal particles are preferably copper particles. However, the substrate particles are preferably not metal particles.

上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは1.5μm以上、特に好ましくは2μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、より一層好ましくは30μm以下、さらに好ましくは20μm以下、さらに一層好ましくは10μm以下、特に好ましくは5μm以下、最も好ましくは3μm以下である。上記基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性をより一層高めることができ、導電性粒子を介して接続された電極間の接続抵抗をより一層低くすることができる。上記基材粒子の粒子径が上記上限以下であると、導電性粒子が十分に圧縮されやすく、電極間の接続抵抗をより一層低くすることができ、さらに電極間の間隔をより小さくすることができる。   The particle diameter of the substrate particles is preferably 0.1 μm or more, more preferably 1 μm or more, further preferably 1.5 μm or more, particularly preferably 2 μm or more, preferably 100 μm or less, more preferably 60 μm or less, more More preferably, it is 30 μm or less, more preferably 20 μm or less, still more preferably 10 μm or less, particularly preferably 5 μm or less, and most preferably 3 μm or less. When the particle diameter of the base material particles is equal to or larger than the lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes can be further improved and the connection is made through the conductive particles. The connection resistance between the formed electrodes can be further reduced. When the particle diameter of the substrate particles is not more than the above upper limit, the conductive particles are easily compressed, the connection resistance between the electrodes can be further reduced, and the interval between the electrodes can be further reduced. it can.

上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。   The particle diameter of the base particle indicates a diameter when the base particle is a true sphere, and indicates a maximum diameter when the base particle is not a true sphere.

上記基材粒子の粒子径は、2μm以上、5μm以下であることが特に好ましい。上記基材粒子の粒子径が2μm以上、5μm以下の範囲内であると、電極間の間隔をより小さくすることができ、かつ導電層の厚みを厚くしても、小さい導電性粒子を得ることができる。   The particle diameter of the substrate particles is particularly preferably 2 μm or more and 5 μm or less. When the particle diameter of the substrate particles is in the range of 2 μm or more and 5 μm or less, the distance between the electrodes can be further reduced, and even if the thickness of the conductive layer is increased, small conductive particles can be obtained. Can do.

上記基材粒子の表面上に導電部を形成する方法、並びに上記基材粒子の表面上又は上記第2の導電部の表面上にはんだ部を形成する方法は特に限定されない。上記導電部及び上記はんだ部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。なかでも、無電解めっき、電気めっき又は物理的な衝突による方法が好適である。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。   The method for forming the conductive part on the surface of the base particle and the method for forming the solder part on the surface of the base particle or the surface of the second conductive part are not particularly limited. Examples of the method for forming the conductive portion and the solder portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, And a method of coating the surface of the substrate particles with a paste containing metal powder or metal powder and a binder. Among these, a method using electroless plating, electroplating, or physical collision is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kogakusha Co., Ltd.) or the like is used.

上記基材粒子の融点は、上記導電部及び上記はんだ部の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。   The melting point of the substrate particles is preferably higher than the melting points of the conductive part and the solder part. The melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C. The melting point of the substrate particles may be less than 400 ° C. The melting point of the substrate particles may be 160 ° C. or less. The softening point of the substrate particles is preferably 260 ° C. or higher. The softening point of the substrate particles may be less than 260 ° C.

上記導電性粒子は、単層のはんだ部を有していてもよい。上記導電性粒子は、複数の層の導電部(はんだ部,第2の導電部)を有していてもよい。すなわち、上記導電性粒子では、導電部を2層以上積層してもよい。上記導電部が2層以上の場合、上記導電性粒子は、導電部の外表面部分にはんだを有することが好ましい。   The conductive particles may have a single layer solder portion. The conductive particles may have a plurality of layers of conductive parts (solder part, second conductive part). That is, in the conductive particles, two or more conductive portions may be stacked. When the conductive part has two or more layers, the conductive particles preferably have solder on the outer surface portion of the conductive part.

上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ部は、融点が450℃以下である金属層(低融点金属層)であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記導電性粒子におけるはんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記導電性粒子におけるはんだは錫を含むことが好ましい。上記はんだ部に含まれる金属100重量%中及び上記導電性粒子におけるはんだに含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記導電性粒子におけるはんだに含まれる錫の含有量が上記下限以上であると、導電性粒子と電極との導通信頼性がより一層高くなる。   The solder is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower. The solder part is preferably a metal layer (low melting point metal layer) having a melting point of 450 ° C. or lower. The low melting point metal layer is a layer containing a low melting point metal. The solder in the conductive particles is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower. The low melting point metal is a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower. The solder in the conductive particles preferably contains tin. In 100% by weight of the metal contained in the solder part and 100% by weight of the metal contained in the solder in the conductive particles, the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably. It is 70% by weight or more, particularly preferably 90% by weight or more. When the content of tin contained in the solder in the conductive particles is not less than the above lower limit, the conduction reliability between the conductive particles and the electrode is further enhanced.

なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)、又は蛍光X線分析装置(島津製作所社製「EDX−800HS」)等を用いて測定可能である。   The tin content is determined using a high frequency inductively coupled plasma optical emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.

上記はんだを導電性の表面に有する導電性粒子を用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだを導電性の表面に有する導電性粒子の使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性及び導通信頼性が効果的に高くなる。   By using the conductive particles having the solder on the conductive surface, the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered. In addition, the use of conductive particles having solder on the conductive surface increases the bonding strength between the solder and the electrode. As a result, peeling between the solder and the electrode is further less likely to occur, and conduction reliability and conduction reliability are improved. Effectively high.

上記はんだ部及び上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫−銀合金、錫−銅合金、錫−銀−銅合金、錫−ビスマス合金、錫−亜鉛合金、錫−インジウム合金等が挙げられる。なかでも、電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫−銀合金、錫−銀−銅合金、錫−ビスマス合金、錫−インジウム合金であることが好ましい。錫−ビスマス合金、錫−インジウム合金であることがより好ましい。   The low melting point metal constituting the solder part and the solder particles is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy. Especially, since it is excellent in the wettability with respect to an electrode, it is preferable that the said low melting metal is a tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, and a tin-indium alloy. More preferred are a tin-bismuth alloy and a tin-indium alloy.

上記はんだ(はんだ部)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウムなどを含む金属組成が挙げられる。なかでも低融点で鉛フリーである錫−インジウム系(117℃共晶)、又は錫−ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。   The material constituting the solder (solder part) is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: Welding terms. Examples of the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. Among them, a tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic) which is low-melting and lead-free is preferable. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium or a solder containing tin and bismuth.

上記はんだと電極との接合強度をより一層高めるために、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだと電極との接合強度をさらに一層高める観点からは、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部又は導電性粒子におけるはんだと電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、上記導電性粒子におけるはんだ100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。   In order to further increase the bonding strength between the solder and the electrode, the solder in the conductive particles is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese. Further, it may contain a metal such as chromium, molybdenum and palladium. Moreover, from the viewpoint of further increasing the bonding strength between the solder and the electrode, the solder in the conductive particles preferably contains nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the solder and the electrode in the solder portion or the conductive particles, the content of these metals for increasing the bonding strength is preferably 0% in 100% by weight of the solder in the conductive particles. 0.0001% by weight or more, preferably 1% by weight or less.

上記第2の導電部の融点は、上記はんだ部の融点よりも高いことが好ましい。上記第2の導電部の融点は好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、更に一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ部は融点が低いために導電接続時に溶融する。上記第2の導電部は導電接続時に溶融しないことが好ましい。上記導電性粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ部を溶融させて用いられることが好ましく、上記はんだ部を溶融させてかつ上記第2の導電部を溶融させずに用いられることが好ましい。上記第2の導電部の融点が上記はんだ部の融点をよりも高いことによって、導電接続時に、上記第2の導電部を溶融させずに、上記はんだ部のみを溶融させることができる。   The melting point of the second conductive part is preferably higher than the melting point of the solder part. The melting point of the second conductive part is preferably more than 160 ° C, more preferably more than 300 ° C, still more preferably more than 400 ° C, still more preferably more than 450 ° C, particularly preferably more than 500 ° C, most preferably Preferably it exceeds 600 degreeC. Since the solder part has a low melting point, it melts during conductive connection. It is preferable that the second conductive portion does not melt during conductive connection. The conductive particles are preferably used by melting solder, preferably used by melting the solder part, and used without melting the solder part and melting the second conductive part. It is preferred that Since the melting point of the second conductive part is higher than the melting point of the solder part, it is possible to melt only the solder part without melting the second conductive part during conductive connection.

上記はんだ部の融点と上記第2の導電部との融点との差の絶対値は、0℃を超え、好ましくは5℃以上、より好ましくは10℃以上、更に好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。   The absolute value of the difference between the melting point of the solder part and the melting point of the second conductive part exceeds 0 ° C, preferably 5 ° C or more, more preferably 10 ° C or more, still more preferably 30 ° C or more, particularly preferably Is 50 ° C. or higher, most preferably 100 ° C. or higher.

上記第2の導電部は、金属を含むことが好ましい。上記第2の導電部を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。   The second conductive part preferably contains a metal. The metal which comprises the said 2nd electroconductive part is not specifically limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.

上記第2の導電部は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層又は金層であることがより好ましく、銅層であることが更に好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層又は金層を有することがより好ましく、銅層を有することが更に好ましい。これらの好ましい導電部を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電部の表面には、はんだ部をより一層容易に形成できる。   The second conductive portion is preferably a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer. The conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer or a gold layer, and still more preferably have a copper layer. By using the conductive particles having these preferable conductive parts for the connection between the electrodes, the connection resistance between the electrodes is further reduced. Moreover, a solder part can be more easily formed on the surface of these preferable conductive parts.

上記はんだ部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。はんだ部の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を充分に変形する。   The thickness of the solder part is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, and still more preferably 0.3 μm or less. When the thickness of the solder part is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles are not too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. .

上記被覆部は、重量平均分子量が3000以上、100000以下であるポリマーにより形成されている。上記ポリマーとしては、ポリエステル、(メタ)アクリルポリマー、ポリエーテル、及びフェノキシ樹脂等が挙げられる。上記ポリマーは、1種のみが用いられてもよく、2種以上が併用されてもよい。はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記ポリマーは、ポリエステルであることが好ましい。   The said coating | coated part is formed with the polymer whose weight average molecular weight is 3000 or more and 100,000 or less. Examples of the polymer include polyester, (meth) acrylic polymer, polyether, and phenoxy resin. As for the said polymer, only 1 type may be used and 2 or more types may be used together. From the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes, the polymer is preferably a polyester.

はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記ポリマーは、カルボキシル基を有することが好ましい。カルボキシル基を有するポリマーは、フラックス効果を有し、電極間の接続抵抗の低減に寄与する。   From the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes, the polymer preferably has a carboxyl group. The polymer having a carboxyl group has a flux effect and contributes to a reduction in connection resistance between the electrodes.

はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑える観点からは、上記ポリマーが上記はんだの水酸基と反応可能な官能基を有することが好ましく、上記導電性粒子において、上記ポリマーが、上記はんだの水酸基と反応可能な官能によって、上記はんだの水酸基と結合していることが好ましい。なお、上記ポリマーと上記はんだとの間で、共有結合が形成されていなくてもよい。上記ポリマーの上記官能基としては、カルボキシル基、イソシアネート基、リン酸基、亜リン酸基、アミノ基及び水酸基等が挙げられる。上記ポリマーの上記官能基は、カルボキシル基であることが好ましい。   From the viewpoint of more efficiently arranging the solder on the electrodes and further suppressing the displacement between the electrodes, the polymer preferably has a functional group capable of reacting with the hydroxyl group of the solder. In the conductive particles, The polymer is preferably bonded to the solder hydroxyl group by a function capable of reacting with the solder hydroxyl group. Note that no covalent bond may be formed between the polymer and the solder. Examples of the functional group of the polymer include a carboxyl group, an isocyanate group, a phosphoric acid group, a phosphorous acid group, an amino group, and a hydroxyl group. The functional group of the polymer is preferably a carboxyl group.

上記導電性粒子の製造方法としては、ポリマーと溶媒とを含む液中に、被覆部を有さない導電性粒子を入れた後、ポリマーの貧溶媒を滴下し導電性粒子の表面に、ポリマーを析出させる方法や、ポリマーと溶媒とを含む液中に、被覆部を有さない導電性粒子を入れた後、ポリマーの貧溶媒を滴下し、導電性粒子の表面に、ポリマーを析出させた後、ポリマーの上記官能基と、導電性粒子の表面の官能基を反応させる方法や、ポリマーと溶媒とを含む液中に、被覆部を有さない導電性粒子を入れた後、撹拌しながら溶媒を乾燥させ、導電性粒子の表面上にポリマーを被覆する方法や、導電性粒子上の官能基と、ポリマーの重合開始剤の官能基を反応させた後、その重合開始剤によりモノマーを重合しポリマーを生成する方法や、導電性粒子上の官能基と、モノマーの官能基を反応させた後、そのモノマーに対して、重合によりモノマーを重付加、重縮合等により、ポリマーを生成する方法等が挙げられる。   As a method for producing the above conductive particles, after putting conductive particles having no coating portion in a liquid containing a polymer and a solvent, a polymer poor solvent is dropped and the polymer is applied to the surface of the conductive particles. After depositing conductive particles that do not have a coating in a liquid containing a polymer and a solvent, or by dropping a polymer poor solvent to deposit the polymer on the surface of the conductive particles , A method of reacting the functional group of the polymer with the functional group on the surface of the conductive particle, or after putting the conductive particle having no coating portion in a liquid containing the polymer and the solvent, the solvent while stirring And then the polymer is coated on the surface of the conductive particles, the functional groups on the conductive particles are reacted with the functional groups of the polymerization initiator of the polymer, and then the monomer is polymerized by the polymerization initiator. On how to produce polymers and on conductive particles And functional group, after reacting the functional groups of the monomers, relative to the monomer, polyaddition monomers by polymerization, by polycondensation or the like, methods or the like to produce a polymer.

導電性粒子上の官能基と、ポリマーの重合開始剤の官能基を反応させる場合に用いる、重合開始剤の官能基としては、カルボキシル基、イソシアネート基、リン酸基、亜リン酸基、アミノ基又は水酸基が好ましく、カルボキシル基が特に好ましい。   The functional group of the polymerization initiator used when the functional group on the conductive particle is reacted with the functional group of the polymerization initiator of the polymer includes a carboxyl group, an isocyanate group, a phosphoric acid group, a phosphorous acid group, and an amino group. Or a hydroxyl group is preferable and a carboxyl group is especially preferable.

上記重合開始剤として、2,2’−Azobis[N−(2−carboxyethyl)−2−methylpropionamidine] n−Hydrate(和光純薬工業社製「VA−057」)、4,4’−Azobis(4−cyanopentanoic Acid)(和光純薬工業社製「V−501」)、2,2’−Azobis[2−methyl−N−(2−hydroxyethyl)propionamide](水酸基、和光純薬工業社製「VA−086」)、2,2’−Azobis(2−amidinopropane) Dihydrochloride(アミノ基、和光純薬工業社製「V−50」)、1−[(1−Cyano−1−methylethyl)azo]formamide(和光純薬工業社製「V−30」)等が挙げられる。   Examples of the polymerization initiator include 2,2′-Azobis [N- (2-carboxyethyl) -2-methylpropionamide] n-hydrate (“VA-057” manufactured by Wako Pure Chemical Industries, Ltd.), 4,4′-Azobis (4 -Cyanopentanoic Acid) ("V-501" manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-Azobis [2-methyl-N- (2-hydroxyethyl) propionamide] (hydroxyl group, "VA-" manufactured by Wako Pure Chemical Industries, Ltd.) 086 "), 2,2'-Azobis (2-amidinopropane) Dihydrochloride (amino group," V-50 "manufactured by Wako Pure Chemical Industries, Ltd.), 1-[(1-Cyano-1-methylethyl) azo] formide Kojun Pharmaceutical Industry Ltd. "V-30"), and the like.

上記被覆部の厚みは、好ましくは0.01μm以上、より好ましくは0.03μm以上であり、好ましくは5μm以下、より好ましくは3μm以下である。被覆部の厚みが上記下限以上及び上記上限以下であると、はんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑えることができる。   The thickness of the covering portion is preferably 0.01 μm or more, more preferably 0.03 μm or more, preferably 5 μm or less, more preferably 3 μm or less. When the thickness of the covering portion is not less than the above lower limit and not more than the above upper limit, the solder can be arranged more efficiently on the electrodes, and the displacement between the electrodes can be further suppressed.

上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは3μm以上、特に好ましくは5μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、より一層好ましくは40μm以下、更に好ましくは30μm以下、更に一層好ましくは20μm以下、特に好ましくは15μm以下、最も好ましくは10μm以下である。上記導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、導電性粒子を電極上により一層効率的に配置することができる。上記導電性粒子の平均粒子径は、3μm以上、30μm以下であることが特に好ましい。   The average particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 3 μm or more, particularly preferably 5 μm or more, preferably 100 μm or less, more preferably 60 μm or less, and much more. It is preferably 40 μm or less, more preferably 30 μm or less, still more preferably 20 μm or less, particularly preferably 15 μm or less, and most preferably 10 μm or less. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be more efficiently arranged on the electrode. The average particle diameter of the conductive particles is particularly preferably 3 μm or more and 30 μm or less.

上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。   The “average particle size” of the conductive particles indicates a number average particle size. The average particle diameter of the conductive particles is obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or performing laser diffraction particle size distribution measurement.

上記導電性粒子の粒子径の変動係数は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記粒子径の変動係数が上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。但し、上記導電性粒子の粒子径の変動係数は、5%未満であってもよい。   The variation coefficient of the particle diameter of the conductive particles is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 30% or less. When the variation coefficient of the particle diameter is not less than the above lower limit and not more than the above upper limit, the solder can be more efficiently disposed on the electrode. However, the coefficient of variation of the particle diameter of the conductive particles may be less than 5%.

上記変動係数(CV値)は下記式で表される。   The coefficient of variation (CV value) is expressed by the following equation.

CV値(%)=(ρ/Dn)×100
ρ:導電性粒子の粒子径の標準偏差
Dn:導電性粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of conductive particles Dn: Average value of particle diameter of conductive particles

上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、扁平状などの球形状以外の形状であってもよい。   The shape of the conductive particles is not particularly limited. The conductive particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.

上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは1重量%以上、より好ましくは2重量%以上、更に好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは50重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極上に導電性粒子をより一層効率的に配置することができ、電極間に導電性粒子を多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記導電性粒子の含有量は多い方が好ましい。   The content of the conductive particles in 100% by weight of the conductive material is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, most preferably. It is 30% by weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, and still more preferably 50% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be arranged more efficiently on the electrodes, and it is easy to arrange many conductive particles between the electrodes. Therefore, the conduction reliability is further enhanced. From the viewpoint of further improving the conduction reliability, the content of the conductive particles is preferably large.

(熱可塑性成分)
上記熱可塑性成分は、熱可塑性化合物であることが好ましい。上記熱可塑性化合物としては、フェノキシ樹脂、ウレタン樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂及びポリアミド樹脂等が挙げられる。上記熱可塑性化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermoplastic component)
The thermoplastic component is preferably a thermoplastic compound. Examples of the thermoplastic compound include phenoxy resin, urethane resin, (meth) acrylic resin, polyester resin, polyimide resin, and polyamide resin. As for the said thermoplastic compound, only 1 type may be used and 2 or more types may be used together.

上記導電材料100重量%中、上記熱可塑性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、更に好ましくは90重量%以下、特に好ましくは80重量%以下である。耐衝撃性をより一層高める観点からは、上記熱可塑性化合物の含有量は多い方が好ましい。   The content of the thermoplastic compound in 100% by weight of the conductive material is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight or less. Preferably it is 98 weight% or less, More preferably, it is 90 weight% or less, Most preferably, it is 80 weight% or less. From the viewpoint of further improving the impact resistance, it is preferable that the content of the thermoplastic compound is large.

(熱硬化性化合物:熱硬化性成分)
上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にし、接続信頼性をより一層高める観点から、エポキシ化合物が好ましい。上記熱硬化性化合物は、1種のみが用いられもよく、2種以上が併用されてもよい。
(Thermosetting compound: thermosetting component)
The thermosetting compound is a compound that can be cured by heating. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. From the viewpoint of further improving the curability and viscosity of the conductive material and further improving the connection reliability, an epoxy compound is preferable. As for the said thermosetting compound, only 1 type may be used and 2 or more types may be used together.

はんだ粒子を電極上に効率的に配置し、電極間の位置ずれを効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点から、上記熱硬化性化合物は、結晶性熱硬化性化合物を含むことが好ましい。上記結晶性熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。   From the viewpoint of efficiently arranging the solder particles on the electrodes, effectively suppressing misalignment between the electrodes, and further improving the conduction reliability and insulation reliability between the electrodes, the thermosetting compound is crystalline. It is preferable that a thermosetting compound is included. As for the said crystalline thermosetting compound, only 1 type may be used and 2 or more types may be used together.

はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記結晶性熱硬化性化合物は、25℃で固体であることが好ましい。   From the viewpoint of arranging solder particles more efficiently on the electrodes, more effectively suppressing displacement between the electrodes, and further improving the conduction reliability and insulation reliability between the electrodes, the above crystalline thermosetting The active compound is preferably solid at 25 ° C.

はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記結晶性熱硬化性化合物の融点は好ましくは80℃以上、より好ましくは85℃以上であり、好ましくは150℃以下、より好ましくは140℃以下である。   From the viewpoint of arranging solder particles more efficiently on the electrodes, more effectively suppressing displacement between the electrodes, and further improving the conduction reliability and insulation reliability between the electrodes, the above crystalline thermosetting The melting point of the functional compound is preferably 80 ° C. or higher, more preferably 85 ° C. or higher, preferably 150 ° C. or lower, more preferably 140 ° C. or lower.

はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記結晶性熱硬化性化合物の分子量は好ましくは300以上、より好ましくは350以上であり、好ましくは500以下、より好ましくは400以下である。   From the viewpoint of arranging solder particles more efficiently on the electrodes, more effectively suppressing displacement between the electrodes, and further improving the conduction reliability and insulation reliability between the electrodes, the above crystalline thermosetting The molecular weight of the functional compound is preferably 300 or more, more preferably 350 or more, preferably 500 or less, more preferably 400 or less.

上記分子量は、上記熱硬化性化合物が重合体ではない場合、及び上記熱硬化性化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記熱硬化性化合物が重合体である場合は、重量平均分子量を意味する。   The molecular weight means a molecular weight that can be calculated from the structural formula when the thermosetting compound is not a polymer and when the structural formula of the thermosetting compound can be specified. Moreover, when the said thermosetting compound is a polymer, a weight average molecular weight is meant.

上記結晶性熱硬化性化合物としては、エポキシ化合物、及び(メタ)アクリル化合物等が挙げられる。   Examples of the crystalline thermosetting compound include epoxy compounds and (meth) acrylic compounds.

上記エポキシ化合物としては、芳香族エポキシ化合物が挙げられる。レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、ベンゾフェノン型エポキシ化合物、イソシアヌル型エポキシ化合物等の結晶性エポキシ化合物が好ましい。特に、2,4−ビス(グリシジルオキシ)ベンゾフェノン、又は4,4’−ビス(グリシジルオキシ)ベンゾフェノン、イソシアヌル型エポキシ化合物が好ましい。イソシアヌル型エポキシ化合物としては、日産化学社製のTEPIC−S、TEPIC−G、TEPIC−HP、TEPIC−L、TEPIC−PAS、TEPIC−VL及びTEPIC−UCが挙げられる。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができ、なおかつ、硬化時の熱により、導電材料の粘度を大きく低下させることができ、はんだ粒子の凝集を効率よく進行させることができる。   An aromatic epoxy compound is mentioned as said epoxy compound. Crystalline epoxy compounds such as resorcinol type epoxy compounds, naphthalene type epoxy compounds, biphenyl type epoxy compounds, benzophenone type epoxy compounds, isocyanuric type epoxy compounds are preferred. In particular, 2,4-bis (glycidyloxy) benzophenone, 4,4'-bis (glycidyloxy) benzophenone, and isocyanuric epoxy compounds are preferable. Examples of the isocyanuric epoxy compounds include TEPIC-S, TEPIC-G, TEPIC-HP, TEPIC-L, TEPIC-PAS, TEPIC-VL, and TEPIC-UC manufactured by Nissan Chemical Co., Ltd. By using the preferable epoxy compound, the first connection target member and the second connection target are high when the connection target member is bonded to each other when the viscosity is high and acceleration is applied by impact such as conveyance. The positional deviation from the member can be suppressed, and the viscosity of the conductive material can be greatly reduced by the heat at the time of curing, and the aggregation of solder particles can be efficiently advanced.

上記(メタ)アクリル化合物は、(メタ)アクリロイル基を有する化合物である。上記(メタ)アクリル化合物としては、エポキシ(メタ)アクリレート化合物が挙げられる。エポキシ化合物に(メタ)アクリル酸等で、(メタ)アクリロイル基を導入した化合物が好ましい。   The (meth) acrylic compound is a compound having a (meth) acryloyl group. Examples of the (meth) acrylic compound include epoxy (meth) acrylate compounds. A compound in which a (meth) acryloyl group is introduced into the epoxy compound with (meth) acrylic acid or the like is preferable.

はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層効果的に抑制し、電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記結晶性熱硬化性化合物は、ベンゾフェノン型エポキシ化合物であることが特に好ましく、2,4−ビス(グリシジルオキシ)ベンゾフェノン、4,4’−ビス(グリシジルオキシ)ベンゾフェノン又はイソシアヌル型エポキシ化合物であることが最も好ましい。   From the viewpoint of arranging solder particles more efficiently on the electrodes, more effectively suppressing displacement between the electrodes, and further improving the conduction reliability and insulation reliability between the electrodes, the above crystalline thermosetting The functional compound is particularly preferably a benzophenone type epoxy compound, and most preferably 2,4-bis (glycidyloxy) benzophenone, 4,4′-bis (glycidyloxy) benzophenone or an isocyanuric type epoxy compound.

上記導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、更に好ましくは90重量%以下、特に好ましくは80重量%以下である。耐衝撃性をより一層高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。   The content of the thermosetting compound in 100% by weight of the conductive material is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight or less. More preferably, it is 98 weight% or less, More preferably, it is 90 weight% or less, Most preferably, it is 80 weight% or less. From the viewpoint of further improving the impact resistance, it is preferable that the content of the thermosetting compound is large.

上記導電材料100重量%中、上記結晶性熱硬化性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、更に好ましくは90重量%以下、特に好ましくは80重量%以下である。   In 100% by weight of the conductive material, the content of the crystalline thermosetting compound is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight. Hereinafter, it is more preferably 98% by weight or less, further preferably 90% by weight or less, and particularly preferably 80% by weight or less.

また、熱硬化性化合物の全体100重量%中、上記結晶性熱硬化性化合物の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは100重量%以下である。   The content of the crystalline thermosetting compound is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably in 100% by weight of the total thermosetting compound. Is 70% by weight or more, preferably 100% by weight or less.

(熱硬化剤:熱硬化性成分)
上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、酸無水物、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting agent: thermosetting component)
The thermosetting agent thermosets the thermosetting compound. Examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents, and other thiol curing agents, acid anhydrides, thermal cation initiators (thermal cation curing agents), and thermal radical generators. It is done. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.

導電材料を低温でより一層速やかに硬化可能であるので、イミダゾール硬化剤、チオール硬化剤又はアミン硬化剤が好ましい。また、加熱により硬化可能な硬化性化合物と上記熱硬化剤とを混合したときに保存安定性が高くなるので、潜在性の硬化剤が好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。   An imidazole curing agent, a thiol curing agent, or an amine curing agent is preferable because the conductive material can be cured more rapidly at a low temperature. Moreover, since a storage stability becomes high when the curable compound curable by heating and the thermosetting agent are mixed, a latent curing agent is preferable. The latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent, or a latent amine curing agent. In addition, the said thermosetting agent may be coat | covered with polymeric substances, such as a polyurethane resin or a polyester resin.

上記イミダゾール硬化剤としては、特に限定されず、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン及び2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物等が挙げられる。   The imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.

上記チオール硬化剤としては、特に限定されず、トリメチロールプロパントリス−3−メルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート及びジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。   The thiol curing agent is not particularly limited, and examples thereof include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. .

上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン、ビス(4−アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。   The amine curing agent is not particularly limited, and hexamethylene diamine, octamethylene diamine, decamethylene diamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5]. Examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.

上記熱カチオン開始剤(熱カチオン硬化剤)としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ−p−トリルスルホニウムヘキサフルオロホスファート等が挙げられる。   Examples of the thermal cation initiator (thermal cation curing agent) include iodonium cation curing agents, oxonium cation curing agents, and sulfonium cation curing agents. Examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate. Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate. Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.

上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ−tert−ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。   The thermal radical generator is not particularly limited, and examples thereof include azo compounds and organic peroxides. Examples of the azo compound include azobisisobutyronitrile (AIBN). Examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.

上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、更に好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が上記下限以上及び上記上限以下であると、はんだが電極上により一層効率的に配置される。上記熱硬化剤の反応開始温度は80℃以上、140℃以下であることが特に好ましい。   The reaction initiation temperature of the thermosetting agent is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, still more preferably 150 ° C. Hereinafter, it is particularly preferably 140 ° C. or lower. When the reaction start temperature of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the solder is more efficiently arranged on the electrode. The reaction initiation temperature of the thermosetting agent is particularly preferably 80 ° C. or higher and 140 ° C. or lower.

はんだを電極上により一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記はんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the reaction initiation temperature of the thermosetting agent is preferably higher than the melting point of the solder, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.

上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。   The reaction start temperature of the thermosetting agent means a temperature at which the exothermic peak of DSC starts to rise.

上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。熱硬化剤の含有量が上記下限以上であると、導電材料を充分に硬化させることが容易である。熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。   The content of the thermosetting agent is not particularly limited. The content of the thermosetting agent with respect to 100 parts by weight of the thermosetting compound is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight or less, more preferably 75 parts by weight or less. When the content of the thermosetting agent is not less than the above lower limit, it is easy to sufficiently cure the conductive material. When the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.

上記結晶性熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。また、上記熱硬化性化合物の全体100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。熱硬化剤の含有量が上記下限以上であると、導電材料を充分に硬化させることが容易である。熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。   The content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, based on 100 parts by weight of the crystalline thermosetting compound. The amount is preferably 100 parts by weight or less, more preferably 75 parts by weight or less. Further, the content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, and preferably 200 parts by weight or less with respect to 100 parts by weight as a whole of the thermosetting compound. More preferably, it is 100 parts by weight or less, and still more preferably 75 parts by weight or less. When the content of the thermosetting agent is not less than the above lower limit, it is easy to sufficiently cure the conductive material. When the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.

(フラックス)
上記導電材料及び上記バインダーは、フラックスを含むことが好ましい。フラックスの使用により、はんだを電極上により一層効果的に配置することができる。また、フラックス効果の発現により、電極間の接続抵抗がより一層低くなる。上記フラックスは特に限定されない。フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。
(flux)
The conductive material and the binder preferably contain a flux. By using flux, the solder can be more effectively placed on the electrode. Moreover, the connection resistance between electrodes becomes still lower by the expression of the flux effect. The flux is not particularly limited. As the flux, a flux generally used for soldering or the like can be used. Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc. As for the said flux, only 1 type may be used and 2 or more types may be used together.

上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。   Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid. Examples of the pine resin include activated pine resin and non-activated pine resin. The flux is preferably an organic acid having two or more carboxyl groups, pine resin. The flux may be an organic acid having two or more carboxyl groups, or pine resin. By using an organic acid having two or more carboxyl groups, pine resin, the conduction reliability between the electrodes is further enhanced.

上記松脂はアビエチン酸を主成分とするロジン類である。フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。   The rosin is a rosin composed mainly of abietic acid. The flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.

上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、更に好ましくは150℃以下、更に一層好ましくは140℃以下である。上記フラックスの活性温度が上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだが電極上により一層効率的に配置される。上記フラックスの活性温度(融点)は80℃以上、190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上、140℃以下であることが特に好ましい。   The active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, still more preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, even more preferably 160. ° C or lower, more preferably 150 ° C or lower, still more preferably 140 ° C or lower. When the activation temperature of the flux is not less than the above lower limit and not more than the above upper limit, the flux effect is more effectively exhibited and the solder is more efficiently arranged on the electrode. The active temperature (melting point) of the flux is preferably 80 ° C. or higher and 190 ° C. or lower. The activation temperature (melting point) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.

フラックスの活性温度(融点)が80℃以上、190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。   The flux having an active temperature (melting point) of 80 ° C. or higher and 190 ° C. or lower includes succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point) 104 ° C.), dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.

また、上記フラックスの沸点は200℃以下であることが好ましい。   The boiling point of the flux is preferably 200 ° C. or lower.

はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記はんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably higher than the melting point of the solder, more preferably 5 ° C or higher, and even more preferably 10 ° C or higher. .

はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably higher than the reaction start temperature of the thermosetting agent, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.

上記フラックスは、導電材料中に分散されていてもよく、導電性粒子の表面上に付着していてもよい。   The said flux may be disperse | distributed in the electrically-conductive material and may adhere on the surface of electroconductive particle.

上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、はんだを電極上により一層効率的に配置することができる。   The flux is preferably a flux that releases cations by heating. By using a flux that releases cations upon heating, the solder can be placed more efficiently on the electrode.

上記加熱によりカチオンを放出するフラックスとしては、上記熱カチオン開始剤(熱カチオン硬化剤)が挙げられる。   Examples of the flux that releases cations by the heating include the thermal cation initiator (thermal cation curing agent).

上記導電材料100重量%中、上記フラックスの含有量は好ましくは0.5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下である。上記導電材料は、フラックスを含んでいなくてもよい。フラックスの含有量が上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。   The content of the flux in 100% by weight of the conductive material is preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less. The conductive material may not contain flux. When the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.

(フィラー)
上記導電材料には、フィラーを添加してもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。フィラーの添加により、はんだの凝集する距離を抑制し、基板の全電極上に対して、導電性粒子を均一に凝集させることができる。
(Filler)
A filler may be added to the conductive material. The filler may be an organic filler or an inorganic filler. By adding the filler, the distance at which the solder aggregates can be suppressed, and the conductive particles can be uniformly aggregated over all the electrodes of the substrate.

上記導電材料100重量%中、上記フィラーの含有量は好ましくは0重量%以上であり、好ましくは5重量%以下、より好ましくは2重量%以下、更に好ましくは1重量%以下である。上記フィラーの含有量が上記下限以上及び上記上限以下であると、はんだが電極上により一層効率的に配置される。   The content of the filler in 100% by weight of the conductive material is preferably 0% by weight or more, preferably 5% by weight or less, more preferably 2% by weight or less, and further preferably 1% by weight or less. When the content of the filler is not less than the above lower limit and not more than the above upper limit, the solder is more efficiently arranged on the electrode.

(他の成分)
上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(Other ingredients)
The conductive material may be, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, and a lubricant as necessary. In addition, various additives such as an antistatic agent and a flame retardant may be included.

(接続構造体及び接続構造体の製造方法)
本発明に係る接続構造体は、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
(Connection structure and method of manufacturing connection structure)
A connection structure according to the present invention includes a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first The connection object member and the connection part which has connected the said 2nd connection object member are provided. In the connection structure according to the present invention, the material of the connection portion is the conductive material described above. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.

本発明に係る接続構造体の製造方法は、上述した導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電材料を配置する工程と、上記導電材料の上記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程と、上記導電性粒子におけるはんだの融点以上に上記導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電材料により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程とを備える。好ましくは、上記熱硬化性化合物の硬化温度以上に上記導電材料を加熱する。   The manufacturing method of the connection structure according to the present invention includes the step of disposing the conductive material on the surface of the first connection target member having at least one first electrode on the surface, using the conductive material described above. The second connection object member having at least one second electrode on the surface opposite to the first connection object member side of the conductive material, the first electrode and the second electrode The first connection target member and the second connection target member are connected by heating the conductive material to a temperature equal to or higher than the melting point of the solder in the conductive particles, and the step of arranging the electrodes to face each other. Forming a connecting portion made of the conductive material, and electrically connecting the first electrode and the second electrode by a solder portion in the connecting portion. Preferably, the conductive material is heated above the curing temperature of the thermosetting compound.

本発明に係る接続構造体及び本発明に係る接続構造体の製造方法では、特定の導電材料を用いているので、導電性粒子におけるはんだが第1の電極と第2の電極との間に集まりやすく、はんだを電極(ライン)上に効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。   In the connection structure according to the present invention and the method for manufacturing the connection structure according to the present invention, since the specific conductive material is used, the solder in the conductive particles gathers between the first electrode and the second electrode. It is easy and the solder can be efficiently arranged on the electrode (line). In addition, a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.

また、導電性粒子におけるはんだを電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。   Further, in order to efficiently arrange the solder in the conductive particles on the electrode and to considerably reduce the amount of solder arranged in the region where the electrode is not formed, the conductive material is not a conductive film, It is preferable to use a conductive paste.

電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは70%以上であり、好ましくは100%以下である。   The thickness of the solder part between the electrodes is preferably 10 μm or more, more preferably 20 μm or more, preferably 100 μm or less, more preferably 80 μm or less. The solder wetted area on the surface of the electrode (area where the solder is in contact with 100% of the exposed area of the electrode) is preferably 50% or more, more preferably 70% or more, and preferably 100% or less.

本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わることが好ましく、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電材料には、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。さらに、はんだ部の厚みをより一層効果的に厚くすることができ、はんだが電極間に多く集まりやすくなり、はんだを電極(ライン)上により一層効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。   In the method for manufacturing a connection structure according to the present invention, in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the second connection is applied to the conductive material. The weight of the target member is preferably added, and in the step of arranging the second connection target member and the step of forming the connection portion, the conductive material exceeds the weight force of the second connection target member. It is preferable that no pressure is applied. In these cases, the uniformity of the amount of solder can be further enhanced in the plurality of solder portions. Furthermore, the thickness of the solder portion can be increased more effectively, so that a large amount of solder is easily collected between the electrodes, and the solder can be arranged more efficiently on the electrodes (lines). Further, a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be further reduced. Therefore, the conduction reliability between the electrodes can be further enhanced. In addition, the electrical connection between the laterally adjacent electrodes that should not be connected can be further prevented, and the insulation reliability can be further improved.

また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることが困難である傾向があり、はんだの凝集が阻害されやすいという問題がある。   Moreover, if a conductive paste is used instead of a conductive film, it becomes easy to adjust the thickness of the connection part and the solder part depending on the amount of the conductive paste applied. On the other hand, in the conductive film, in order to change or adjust the thickness of the connection portion, it is necessary to prepare a conductive film having a different thickness or to prepare a conductive film having a predetermined thickness. There is. Moreover, in the conductive film, it tends to be difficult to sufficiently lower the melt viscosity of the conductive film at the melting temperature of the solder, and there is a problem that the aggregation of the solder is easily inhibited.

以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.

図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、上記導電材料は、導電性粒子と、バインダーとを含む。本実施形態では、バインダーは、熱硬化性化合物と、熱硬化剤とを含む。上記熱硬化性化合物と上記熱硬化剤とを、熱硬化性成分と呼ぶ。   The connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3. Part 4. The connection part 4 is formed of the conductive material described above. In the present embodiment, the conductive material includes conductive particles and a binder. In the present embodiment, the binder includes a thermosetting compound and a thermosetting agent. The thermosetting compound and the thermosetting agent are referred to as thermosetting components.

接続部4は、複数の導電性粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。   The connection portion 4 includes a solder portion 4A in which a plurality of conductive particles are gathered and joined to each other, and a cured product portion 4B in which a thermosetting component is thermally cured.

第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。   The first connection target member 2 has a plurality of first electrodes 2a on the surface (upper surface). The second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface). The first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A. In the connection portion 4, no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a. In an area different from the solder part 4A (hardened product part 4B part), there is no solder separated from the solder part 4A. If the amount is small, the solder may be present in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.

図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数の導電性粒子が集まり、複数の導電性粒子が溶融した後、導電性粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、導電性粒子を用いることにより、導電性の外表面がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電ペーストは、フラックスを含んでいてもよい。フラックスを用いた場合には、加熱により、一般にフラックスは次第に失活する。   As shown in FIG. 1, in the connection structure 1, after a plurality of conductive particles gather between the first electrode 2a and the second electrode 3a and the plurality of conductive particles melt, the conductive particles The melted material solidifies after the surface of the electrode wets and spreads to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using the conductive particles, the solder portion 4A, the first electrode 2a, and the solder are compared with the case where the conductive outer surface is made of a metal such as nickel, gold or copper. The contact area between the portion 4A and the second electrode 3a increases. For this reason, the conduction | electrical_connection reliability and connection reliability in the connection structure 1 become high. Note that the conductive paste may contain a flux. When the flux is used, the flux is generally deactivated gradually by heating.

なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。   In addition, in the connection structure 1 shown in FIG. 1, all the solder parts 4A are located in the area | region which the 1st, 2nd electrodes 2a and 3a oppose. The connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X. The connection part 4X has the solder part 4XA and the hardened | cured material part 4XB. As in the connection structure 1X, most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area | region which electrode 2a, 3a has opposed. The solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA. In the present embodiment, the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.

導電性粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。導電性粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。   If the usage-amount of electroconductive particle is reduced, it will become easy to obtain the connection structure 1. FIG. If the usage-amount of electroconductive particle is increased, it will become easy to obtain the connection structure 1X.

導通信頼性をより一層高める観点からは、接続構造体1,1Xでは、第1の電極2aと接続部4,4Xと第2の電極3aとの積層方向に第1の電極2aと第2の電極3aとの対向し合う部分をみたときに、第1の電極2aと第2の電極3aとの対向し合う部分の面積100%中の50%以上に、接続部4,4X中のはんだ部4A,4XAが配置されていることが好ましい。   From the viewpoint of further improving the conduction reliability, in the connection structures 1 and 1X, the first electrode 2a and the second electrode 2a are arranged in the stacking direction of the first electrode 2a, the connection portions 4 and 4X, and the second electrode 3a. When the portion facing the electrode 3a is viewed, the solder portion in the connection portions 4 and 4X is at least 50% of the area of 100% of the portion facing the first electrode 2a and the second electrode 3a. 4A and 4XA are preferably arranged.

導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。   From the viewpoint of further improving the conduction reliability, the portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is seen. Sometimes, 50% or more (more preferably 60% or more, still more preferably 70% or more, particularly preferably 80% or more) out of 100% of the area where the first electrode and the second electrode face each other. , Most preferably 90% or more), the solder portion in the connection portion is preferably disposed.

導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の70%以上(より好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上、最も好ましくは99%以上)が配置されていることが好ましい。   From the viewpoint of further improving the conduction reliability, the first electrode and the second electrode are opposed to each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode. When the matching portion is viewed, the portion where the first electrode and the second electrode face each other is 70% or more (more preferably 80% or more, more preferably 90%) of the solder portion in the connection portion. In particular, it is preferable that 95% or more, most preferably 99% or more) is disposed.

次に、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。   Next, an example of a method for manufacturing the connection structure 1 using the conductive material according to the embodiment of the present invention will be described.

先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数の導電性粒子11Aとを含む導電材料11を配置する(第1の工程)。第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、導電性粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。   First, the 1st connection object member 2 which has the 1st electrode 2a on the surface (upper surface) is prepared. Next, as shown in FIG. 2A, a conductive material 11 including a thermosetting component 11B and a plurality of conductive particles 11A is disposed on the surface of the first connection target member 2 (first Process). The conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided. After the arrangement of the conductive material 11, the conductive particles 11A are arranged both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.

導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。   The arrangement method of the conductive material 11 is not particularly limited, and examples thereof include application using a dispenser, screen printing, and ejection using an inkjet apparatus.

また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。   Moreover, the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared. Next, as shown in FIG. 2B, in the conductive material 11 on the surface of the first connection target member 2, on the surface opposite to the first connection target member 2 side of the conductive material 11, The 2nd connection object member 3 is arrange | positioned (2nd process). On the surface of the conductive material 11, the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.

次に、導電性粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(バインダー)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していた導電性粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。本実施形態では、導電フィルムではなく、導電材料を用いているために、更に導電材料が特定の組成を有するために、導電性粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。また、導電性粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4を、導電材料11により形成する。導電材料11により接続部4が形成され、複数の導電性粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。導電性粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していない導電性粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間に導電性粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。   Next, the conductive material 11 is heated above the melting point of the conductive particles 11A (third step). Preferably, the conductive material 11 is heated above the curing temperature of the thermosetting component 11B (binder). At the time of this heating, the conductive particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect). In this embodiment, since the conductive material is used instead of the conductive film, the conductive material 11A has a specific composition, so that the conductive particles 11A are formed between the first electrode 2a and the second electrode 3a. Gather effectively in between. In addition, the conductive particles 11A are melted and joined to each other. Further, the thermosetting component 11B is thermoset. As a result, as shown in FIG. 2C, the connection portion 4 that connects the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11. The connection part 4 is formed of the conductive material 11, the solder part 4A is formed by joining the plurality of conductive particles 11A, and the cured part 4B is formed by thermosetting the thermosetting component 11B. If the conductive particles 11A are sufficiently moved, the first electrode 2a and the second electrode 2a are moved after the movement of the conductive particles 11A that are not positioned between the first electrode 2a and the second electrode 3a starts. The temperature does not have to be kept constant until the movement of the conductive particles 11A between the electrodes 3a is completed.

本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、導電性粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、導電性粒子が第1の電極と第2の電極との間に集まろうとする作用が阻害される傾向が高くなる。   In the present embodiment, it is preferable that no pressure is applied in the second step and the third step. In this case, the weight of the second connection target member 3 is added to the conductive material 11. For this reason, the conductive particles 11A are effectively collected between the first electrode 2a and the second electrode 3a when the connection portion 4 is formed. In addition, if pressure is applied in at least one of the second step and the third step, the action of the conductive particles trying to collect between the first electrode and the second electrode is inhibited. The tendency to be higher.

ただし、第1の電極と第2の電極との間隔を確保できれば、加圧を行ってもよい。電極間の間隔を確保する手段として、例えば、所望の電極間の間隔に相当するスペーサーを添加し、少なくとも1個、好ましくは3個以上のスペーサーが電極間に配置されるようにすればよい。スペーサーとしては、無機粒子、有機粒子が挙げられる。スペーサーは絶縁性粒子であることが好ましい。   However, pressurization may be performed as long as the interval between the first electrode and the second electrode can be secured. As a means for ensuring the gap between the electrodes, for example, a spacer corresponding to the desired gap between the electrodes may be added so that at least one, preferably three or more spacers are arranged between the electrodes. Examples of the spacer include inorganic particles and organic particles. The spacer is preferably an insulating particle.

また、本実施形態では、加圧を行っていないため、導電材料を塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極のアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材との電極を接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集した溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料の導電性粒子以外の成分の粘度が十分低いことが望ましい。   Moreover, in this embodiment, since pressurization is not performed, when the second connection target member is superimposed on the first connection target member to which the conductive material is applied, the electrode of the first connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment of the electrodes of the second connection target member is shifted, the shift is corrected and the first connection target member is corrected. Can be connected to the electrode of the second connection target member (self-alignment effect). This is because the molten solder self-aggregated between the electrode of the first connection target member and the electrode of the second connection target member is the electrode of the first connection target member and the electrode of the second connection target member. As the area where the solder and the other components of the conductive material are in contact with each other is minimized, the energy becomes more stable. Therefore, the force that makes the connection structure with alignment, which is the connection structure with the smallest area, works. Because. At this time, it is desirable that the conductive material is not cured, and that the viscosity of components other than the conductive particles of the conductive material is sufficiently low at that temperature and time.

このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。   In this way, the connection structure 1 shown in FIG. 1 is obtained. The second step and the third step may be performed continuously. Moreover, after performing the said 2nd process, the laminated body of the 1st connection object member 2, the electrically-conductive material 11, and the 2nd connection object member 3 which are obtained is moved to a heating part, and the said 3rd connection object is carried out. You may perform a process. In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.

上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、更に好ましくは200℃以下である。   The heating temperature in the third step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.

なお、上記第3の工程の後に、位置の修正や製造のやり直しを目的として、第1の接続対象部材又は第2の接続対象部材を、接続部から剥離することができる。この剥離を行うための加熱温度は、好ましくは導電性粒子の融点以上、より好ましくは導電性粒子の融点(℃)+10℃以上である。この剥離を行うための加熱温度は、導電性粒子の融点(℃)+100℃以下であってもよい。   In addition, after the said 3rd process, a 1st connection object member or a 2nd connection object member can be peeled from a connection part for the purpose of correction of a position or re-production. The heating temperature for performing this peeling is preferably not lower than the melting point of the conductive particles, more preferably not lower than the melting point (° C.) of the conductive particles + 10 ° C. The heating temperature for performing this peeling may be the melting point (° C.) of the conductive particles + 100 ° C. or less.

上記第3の工程における加熱方法としては、導電性粒子の融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。   As the heating method in the third step, a method of heating the entire connection structure using a reflow furnace or an oven above the melting point of the conductive particles and the curing temperature of the thermosetting component, The method of heating only the connection part of a structure locally is mentioned.

局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。   As a tool used for the method of heating locally, a hot plate, a heat gun for applying hot air, a soldering iron, an infrared heater, and the like can be given.

また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。   In addition, when heating locally with a hot plate, the metal directly under the connection is made of a metal with high thermal conductivity, and other places where heating is not preferred are made of a material with low thermal conductivity such as a fluororesin. The upper surface of the hot plate is preferably formed.

上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。   The said 1st, 2nd connection object member is not specifically limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor | condenser, a diode, and a resin film, a printed circuit board, a flexible printed circuit board, flexible Examples include electronic components such as flat cables, rigid flexible substrates, glass epoxy substrates, and circuit boards such as glass substrates. The first and second connection target members are preferably electronic components.

上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、導電性粒子が電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、導電性粒子を電極上に効率的に集めることで、電極間の導通信頼性を充分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップなどの他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。   It is preferable that at least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. The second connection target member is preferably a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for electroconductive particle to collect on an electrode easily. On the other hand, even if a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board is used by using a conductive paste, the conductive particles are efficiently collected on the electrode, so that conduction between the electrodes Reliability can be sufficiently increased. When using a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board, the reliability of conduction between electrodes by not applying pressure compared to the case of using other connection target members such as a semiconductor chip. The improvement effect can be obtained more effectively.

上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。   Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.

以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited only to the following examples.

熱硬化性化合物1:2,4−ビス(グリシジルオキシ)ベンゾフェノン(結晶性熱硬化性化合物、融点:94℃、分子量362)   Thermosetting compound 1: 2,4-bis (glycidyloxy) benzophenone (crystalline thermosetting compound, melting point: 94 ° C., molecular weight 362)

2,4−ビス(グリシジルオキシ)ベンゾフェノンの合成:
3つ口フラスコに、2,4−ジヒドロキシベンゾフェノン27g、エピクロルヒドリン230g、n−ブタノール70g、及びテトラエチルベンジルアンモニウムクロライド1gを入れ、室温にて撹拌、溶解させた。その後、窒素雰囲気下、撹拌下にて、70℃に昇温し、減圧還流下、水酸化ナトリウム水溶液(濃度48重量%)45gを滴下した。滴下は、4時間かけて行った。その後、70℃にて、ディーンスターク管を用い、水分を除去しながら2時間反応させた。その後、減圧下で、未反応のエピクロルヒドリンを除去した。
Synthesis of 2,4-bis (glycidyloxy) benzophenone:
In a three-necked flask, 27 g of 2,4-dihydroxybenzophenone, 230 g of epichlorohydrin, 70 g of n-butanol and 1 g of tetraethylbenzylammonium chloride were added and stirred and dissolved at room temperature. Thereafter, the temperature was raised to 70 ° C. under stirring in a nitrogen atmosphere, and 45 g of an aqueous sodium hydroxide solution (concentration: 48 wt%) was added dropwise under reduced pressure. The dropping was performed over 4 hours. Then, it was made to react at 70 degreeC for 2 hours, using a Dean-Stark tube, removing a water | moisture content. Thereafter, unreacted epichlorohydrin was removed under reduced pressure.

得られた反応生成物を、MEK(メチルエチルケトン):n−ブタノール=3:1(重量比)の混合溶剤400gに溶解し、水酸化ナトリウム水溶液(濃度10重量%)5gを添加し、80℃で2時間加熱した。   The obtained reaction product was dissolved in 400 g of a mixed solvent of MEK (methyl ethyl ketone): n-butanol = 3: 1 (weight ratio), and 5 g of an aqueous sodium hydroxide solution (concentration: 10% by weight) was added at 80 ° C. Heated for 2 hours.

その後、室温に冷却し、純水により、洗液が中性になるまで洗浄を行った。有機層をろ過しながら分取し、減圧下にて、残水分及び混合溶媒を除去し、反応生成物を得た。   Then, it cooled to room temperature and wash | cleaned with the pure water until the washing | cleaning liquid became neutral. The organic layer was collected by filtration, and the remaining water and the mixed solvent were removed under reduced pressure to obtain a reaction product.

n−ヘキサンを用い、上記反応生成物34gを再結晶により精製し、真空乾燥により残溶剤分を除去した。   Using n-hexane, 34 g of the reaction product was purified by recrystallization, and the residual solvent was removed by vacuum drying.

得られたエポキシ化合物:DSCによる融点は94℃、エポキシ当量は176g/eq.、マススペクトルによる分子量は362、150℃での溶融粘度は5mPa・sであった。   Obtained epoxy compound: melting point by DSC was 94 ° C., epoxy equivalent was 176 g / eq. According to the mass spectrum, the molecular weight was 362, and the melt viscosity at 150 ° C. was 5 mPa · s.

・示差走査熱量測定(DSC)測定装置及び測定条件
装置;日立ハイテクサイエンス社製「X−DSC7000」、サンプル量;3mg、温度条件;10℃/min
-Differential scanning calorimetry (DSC) measuring device and measuring conditions Device: “X-DSC7000” manufactured by Hitachi High-Tech Science Co., sample amount: 3 mg, temperature condition: 10 ° C./min

・150℃における溶融粘度:ASTM D4287に準拠し、エムエスティーエンジニアリング社製のICIコーンプレート粘度計を用いて測定   -Melt viscosity at 150 ° C .: Measured using an ICI cone plate viscometer manufactured by MST Engineering in accordance with ASTM D4287

・エポキシ当量の測定:JIS K7236:2001に準拠して測定   ・ Measurement of epoxy equivalent: Measured according to JIS K7236: 2001

・分子量の測定:マススペクトル GC−MS装置(日本電子社製「JMS K−9」)を用いて測定   Measurement of molecular weight: Mass spectrum Measured using a GC-MS apparatus (“JMS K-9” manufactured by JEOL Ltd.)

熱硬化性化合物2:イソシアヌル型エポキシ化合物 TEPIC−S 日産化学社製(融点95℃、分子量297、エポキシ当量は105g/eq)   Thermosetting compound 2: isocyanuric epoxy compound TEPIC-S manufactured by Nissan Chemical Co., Ltd. (melting point 95 ° C., molecular weight 297, epoxy equivalent is 105 g / eq)

熱硬化性化合物3:エポキシ基含有アクリルポリマー、日油社製「MARPROOF G−0150M」   Thermosetting compound 3: Epoxy group-containing acrylic polymer, “MARPROOF G-0150M” manufactured by NOF Corporation

熱硬化剤1:ペンタエリスリトールテトラキス(3−メルカプトブチレート)、昭和電工社製「カレンズMT PE1」   Thermosetting agent 1: pentaerythritol tetrakis (3-mercaptobutyrate), “Karenz MT PE1” manufactured by Showa Denko KK

潜在性エポキシ熱硬化剤1:T&K TOKA社製「フジキュア7000」   Latent epoxy thermosetting agent 1: “Fujicure 7000” manufactured by T & K TOKA

フラックス1:グルタル酸、和光純薬工業社製、融点(活性温度)95℃   Flux 1: glutaric acid, manufactured by Wako Pure Chemical Industries, Ltd., melting point (activation temperature) 95 ° C.

はんだ粒子1〜5の作製方法:
ポリマー1の合成:
アジピン酸ジエチル100g、1,6−ヘキサンジオール60g、及び触媒としてジブチル錫オキサイド0.2gを3つ口フラスコに入れ、真空条件下、ディーン・スターク・トラップにより脱水しながら、120℃で4時間反応させた。その後、グルタル酸100gを添加し、120℃で4時間反応させた。得られたポリマーを純水で洗浄し、真空乾燥することで、両末端にグルタル酸由来のカルボキシル基を有するポリエステルが得られた。得られたポリマー1の重量平均分子量は3000、軟化点は60℃であった。
Method for producing solder particles 1 to 5:
Synthesis of polymer 1:
100 g of diethyl adipate, 60 g of 1,6-hexanediol and 0.2 g of dibutyltin oxide as a catalyst were placed in a three-necked flask and reacted at 120 ° C. for 4 hours while dehydrating in a Dean-Stark trap under vacuum conditions. I let you. Then, 100 g of glutaric acid was added and reacted at 120 ° C. for 4 hours. The obtained polymer was washed with pure water and vacuum dried to obtain a polyester having carboxyl groups derived from glutaric acid at both ends. The obtained polymer 1 had a weight average molecular weight of 3000 and a softening point of 60 ° C.

ポリマー2の合成:
酢酸エチル100g、アクリル酸5g、エチルアクリレート20g、及びフェニルアクリレート 45gを、3つ口フラスコに入れ、窒素雰囲気、還流下にて、ラジカル重合開始剤0.5gにより、4時間重合を行った。その後、真空乾燥にて、酢酸エチル、残モノマーを除去した。得られたポリマー2の重量平均分子量は10000、軟化点は35℃であった。
Synthesis of polymer 2:
100 g of ethyl acetate, 5 g of acrylic acid, 20 g of ethyl acrylate, and 45 g of phenyl acrylate were placed in a three-necked flask, and polymerization was carried out for 4 hours with 0.5 g of a radical polymerization initiator under reflux in a nitrogen atmosphere. Thereafter, ethyl acetate and residual monomers were removed by vacuum drying. The obtained polymer 2 had a weight average molecular weight of 10,000 and a softening point of 35 ° C.

ポリマー3の合成:
酢酸エチル100g、アクリル酸n−ブチル10g、エチルアクリレート20g、及びフェニルアクリレート45gを、3つ口フラスコに入れ、窒素雰囲気下、還流下にて、ラジカル重合開始剤0.5gを用いて、4時間重合を行った。その後、真空乾燥にて、酢酸エチル、残モノマーを除去した。得られたポリマー3の重量平均分子量は15000、軟化点は30℃であった。
Synthesis of polymer 3:
100 g of ethyl acetate, 10 g of n-butyl acrylate, 20 g of ethyl acrylate, and 45 g of phenyl acrylate are placed in a three-necked flask and are refluxed under a nitrogen atmosphere with 0.5 g of a radical polymerization initiator for 4 hours. Polymerization was performed. Thereafter, ethyl acetate and residual monomers were removed by vacuum drying. The obtained polymer 3 had a weight average molecular weight of 15000 and a softening point of 30 ° C.

ポリマー4の合成:
重合時間を24時間に変更したこと以外は、ポリマー3と同様にして、ポリマー4を合成した。得られたポリマー4の重量平均分子量は60000、軟化点は35℃であった。
Synthesis of polymer 4:
A polymer 4 was synthesized in the same manner as the polymer 3 except that the polymerization time was changed to 24 hours. The obtained polymer 4 had a weight average molecular weight of 60,000 and a softening point of 35 ° C.

ポリマー5の合成:
重合時間を24時間、ラジカル重合開始剤の使用量を2.5gに変更したこと以外は、ポリマー3と同様にして、ポリマー5を合成した。得られたポリマー5の重量平均分子量は100000、軟化点は45℃であった。
Synthesis of polymer 5:
Polymer 5 was synthesized in the same manner as polymer 3, except that the polymerization time was changed to 24 hours and the amount of radical polymerization initiator used was changed to 2.5 g. The obtained polymer 5 had a weight average molecular weight of 100,000 and a softening point of 45 ° C.

はんだ粒子1:
SnBiはんだ粒子(三井金属社製「DS−10」、融点139℃、平均粒子径(メディアン径)12μm)200gと、ポリマー1を20gと、アセトンを100gと、はんだ粒子の表面の水酸基及びポリマーのカルボキシル基の脱水縮合反応触媒であるp−トルエンスルホン酸0.5gとを添加し、60℃で5時間反応させた。その後、ろ紙ではんだ粒子を回収し、アセトンにて未反応のポリマーを除去した。CV値は30%であった。TEMでの断面観察により、被覆層のポリマー1の厚みは、40nmであった。
Solder particles 1:
200 g of SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., melting point 139 ° C., average particle diameter (median diameter) 12 μm), 20 g of polymer 1, 100 g of acetone, hydroxyl groups and polymer on the surface of the solder particles 0.5 g of p-toluenesulfonic acid, which is a dehydration condensation reaction catalyst for carboxyl groups, was added and reacted at 60 ° C. for 5 hours. Thereafter, the solder particles were collected with a filter paper, and the unreacted polymer was removed with acetone. The CV value was 30%. According to cross-sectional observation with TEM, the thickness of polymer 1 of the coating layer was 40 nm.

はんだ粒子2:
SnBiはんだ粒子(三井金属社製「DS−10」、融点139℃、平均粒子径(メディアン径)12μm)200gと、ポリマー2を20gと、アセトンを100gと、はんだ粒子の表面の水酸基及びポリマーのカルボキシル基の脱水縮合反応触媒であるp−トルエンスルホン酸0.5gとを添加し、60℃で5時間反応させた。その後、ろ紙ではんだ粒子を回収し、アセトンにて未反応のポリマーを除去した。CV値は30%であった。TEMでの断面観察により、被覆層のポリマー2の厚みは、80nmであった。
Solder particles 2:
200 g of SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., melting point 139 ° C., average particle diameter (median diameter) 12 μm), 20 g of polymer 2, 100 g of acetone, hydroxyl groups and polymers on the surface of the solder particles 0.5 g of p-toluenesulfonic acid, which is a dehydration condensation reaction catalyst for carboxyl groups, was added and reacted at 60 ° C. for 5 hours. Thereafter, the solder particles were collected with a filter paper, and the unreacted polymer was removed with acetone. The CV value was 30%. According to the cross-sectional observation with TEM, the thickness of the polymer 2 of the coating layer was 80 nm.

はんだ粒子3:
SnBiはんだ粒子(三井金属社製「DS−10」、融点139℃、平均粒子径(メディアン径)12μm)200gと、ポリマー3を20gと、アセトンを100gと、はんだ粒子の表面の水酸基及びポリマーのカルボキシル基の脱水縮合反応触媒であるp−トルエンスルホン酸0.5gとを添加し、60℃で5時間反応させた。その後、ろ紙ではんだ粒子を回収し、アセトンにて未反応のポリマーを除去した。CV値は30%であった。TEMでの断面観察により、被覆層のポリマー3の厚みは、80nmであった。
Solder particles 3:
200 g of SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., melting point 139 ° C., average particle diameter (median diameter) 12 μm), 20 g of polymer 3, 100 g of acetone, hydroxyl groups and polymer on the surface of the solder particles 0.5 g of p-toluenesulfonic acid, which is a dehydration condensation reaction catalyst for carboxyl groups, was added and reacted at 60 ° C. for 5 hours. Thereafter, the solder particles were collected with a filter paper, and the unreacted polymer was removed with acetone. The CV value was 30%. According to cross-sectional observation with TEM, the thickness of the polymer 3 of the coating layer was 80 nm.

はんだ粒子4:
SnBiはんだ粒子(三井金属社製「DS−10」、融点139℃、平均粒子径(メディアン径)12μm)200gと、ポリマー4を20gと、アセトンを100gと、はんだ粒子の表面の水酸基及びポリマーのカルボキシル基の脱水縮合反応触媒であるp−トルエンスルホン酸0.5gとを添加し、60℃で5時間反応させた。その後、ろ紙ではんだ粒子を回収し、アセトンにて未反応のポリマーを除去した。CV値は30%であった。TEMでの断面観察により、被覆層のポリマー4の厚みは、150nmであった。
Solder particles 4:
200 g of SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., melting point 139 ° C., average particle diameter (median diameter) 12 μm), 20 g of polymer 4, 100 g of acetone, hydroxyl groups and polymer on the surface of the solder particles 0.5 g of p-toluenesulfonic acid, which is a dehydration condensation reaction catalyst for carboxyl groups, was added and reacted at 60 ° C. for 5 hours. Thereafter, the solder particles were collected with a filter paper, and the unreacted polymer was removed with acetone. The CV value was 30%. According to the cross-sectional observation with TEM, the thickness of the polymer 4 of the coating layer was 150 nm.

はんだ粒子5:
SnBiはんだ粒子(三井金属社製「DS−10」、融点139℃、平均粒子径(メディアン径)12μm)200gと、ポリマー5を20gと、アセトンを100gと、はんだ粒子の表面の水酸基及びポリマーのカルボキシル基の脱水縮合反応触媒であるp−トルエンスルホン酸0.5gとを添加し、60℃で5時間反応させた。その後、ろ紙ではんだ粒子を回収し、アセトンにて未反応のポリマーを除去した。CV値は30%であった。TEMでの断面観察により、被覆層のポリマー5の厚みは、200nmであった。
Solder particles 5:
200 g of SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., melting point 139 ° C., average particle diameter (median diameter) 12 μm), 20 g of polymer 5, 100 g of acetone, hydroxyl groups and polymer on the surface of the solder particles 0.5 g of p-toluenesulfonic acid, which is a dehydration condensation reaction catalyst for carboxyl groups, was added and reacted at 60 ° C. for 5 hours. Thereafter, the solder particles were collected with a filter paper, and the unreacted polymer was removed with acetone. The CV value was 30%. According to cross-sectional observation with TEM, the thickness of the polymer 5 of the coating layer was 200 nm.

はんだ粒子A:SnBiはんだ粒子(三井金属社製「DS−10」、融点139℃、平均粒子径(メディアン径)12μm)   Solder particles A: SnBi solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., melting point 139 ° C., average particle diameter (median diameter) 12 μm)

(はんだ粒子のCV値)
CV値を、レーザー回折式粒度分布測定装置(堀場製作所社製「LA−920」)にて、測定した。
(CV value of solder particles)
The CV value was measured with a laser diffraction particle size distribution analyzer (“LA-920” manufactured by Horiba, Ltd.).

(実施例1〜10及び比較例1)
下記の表1に示す成分を下記の表1に示す配合量で配合して、異方性導電ペーストを得た。
(Examples 1 to 10 and Comparative Example 1)
The components shown in Table 1 below were blended in the blending amounts shown in Table 1 below to obtain anisotropic conductive paste.

(2)第1の接続構造体(L/S=50μm/50μm)の作製
L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
(2) Production of first connection structure (L / S = 50 μm / 50 μm) Glass epoxy substrate having a copper electrode pattern (copper electrode thickness 12 μm) having an L / S of 50 μm / 50 μm and an electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared. Moreover, the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of a copper electrode 12 micrometers) of L / S 50 micrometers / 50 micrometers and electrode length 3mm on the lower surface was prepared.

ガラスエポキシ基板とフレキシブルプリント基板との重ね合わせ面積は、1.5cm×3mmとし、接続した電極数は75対とした。   The overlapping area of the glass epoxy substrate and the flexible printed circuit board was 1.5 cm × 3 mm, and the number of connected electrodes was 75 pairs.

上記ガラスエポキシ基板の上面に、作製直後の異方性導電ペーストを、ガラスエポキシ基板の電極上で厚さ100μmとなるように、メタルマスクを用い、スクリーン印刷にて塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。このとき、加圧を行わなかった。異方性導電ペースト層には、上記フレキシブルプリント基板の重量は加わる。その後、異方性導電ペースト層の温度が190℃となるように加熱しながら、はんだを溶融させ、かつ異方性導電ペースト層を190℃10秒で硬化させ、第1の接続構造体を得た。   On the upper surface of the glass epoxy substrate, the anisotropic conductive paste immediately after production is applied by screen printing using a metal mask so that the thickness is 100 μm on the electrode of the glass epoxy substrate, and anisotropic conductive A paste layer was formed. Next, the flexible printed circuit board was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. At this time, no pressure was applied. The weight of the flexible printed board is added to the anisotropic conductive paste layer. Thereafter, while heating the anisotropic conductive paste layer to 190 ° C., the solder is melted and the anisotropic conductive paste layer is cured at 190 ° C. for 10 seconds to obtain a first connection structure. It was.

(3)第2の接続構造体(L/S=75μm/75μm)の作製
L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
(3) Production of second connection structure (L / S = 75 μm / 75 μm) Glass epoxy substrate having a L / S of 75 μm / 75 μm and an electrode length of 3 mm on a copper electrode pattern (copper electrode thickness 12 μm) on the upper surface (FR-4 substrate) (first connection target member) was prepared. In addition, a flexible printed circuit board (second connection target member) having a L / S of 75 μm / 75 μm and an electrode length of 3 mm on the lower surface of a copper electrode pattern (copper electrode thickness 12 μm) was prepared.

L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第2の接続構造体を得た。   A second connection structure was obtained in the same manner as the production of the first connection structure except that the glass epoxy substrate and the flexible printed circuit board having different L / S were used.

(4)第3の接続構造体(L/S=100μm/100μm)の作製
L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
(4) Production of third connection structure (L / S = 100 μm / 100 μm) Glass epoxy substrate having a copper electrode pattern (copper electrode thickness 12 μm) with L / S of 100 μm / 100 μm and electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared. Moreover, the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of copper electrode 12 micrometers) of L / S of 100 micrometers / 100 micrometers and electrode length 3mm on the lower surface was prepared.

L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第3の接続構造体を得た。   A third connection structure was obtained in the same manner as the production of the first connection structure except that the glass epoxy substrate and the flexible printed circuit board having different L / S were used.

(評価)
(1)粘度
異方性導電ペーストの25℃での粘度(η25)を、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。
(Evaluation)
(1) Viscosity The viscosity (η25) at 25 ° C. of the anisotropic conductive paste was measured using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 5 rpm.

(2)はんだ部の厚み
得られた第1の接続構造体を断面観察することにより、上下の電極が間に位置しているはんだ部の厚みを評価した。
(2) Thickness of solder part By observing a cross section of the obtained first connection structure, the thickness of the solder part between which the upper and lower electrodes are positioned was evaluated.

(3)電極上のはんだの配置精度1
得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度1を下記の基準で判定した。
(3) Solder placement accuracy on electrode 1
In the obtained first, second, and third connection structures, a portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is provided. When viewed, the ratio X of the area where the solder portion in the connection portion is arranged in the area of 100% of the portion where the first electrode and the second electrode face each other was evaluated. The solder placement accuracy 1 on the electrode was determined according to the following criteria.

[電極上のはんだの配置精度1の判定基準]
○○:割合Xが70%以上
○:割合Xが60%以上、70%未満
△:割合Xが50%以上、60%未満
×:割合Xが50%未満
[Criteria for solder placement accuracy 1 on electrode]
○○: Ratio X is 70% or more ○: Ratio X is 60% or more and less than 70% Δ: Ratio X is 50% or more and less than 60% X: Ratio X is less than 50%

(4)電極上のはんだの配置精度2
得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向と直交する方向に第1の電極と第2の電極との対向し合う部分をみたときに、接続部中のはんだ部100%中、第1の電極と第2の電極との対向し合う部分に配置されている接続部中のはんだ部の割合Yを評価した。電極上のはんだの配置精度2を下記の基準で判定した。
(4) Solder placement accuracy on electrode 2
In the obtained first, second, and third connection structures, the first electrode and the second electrode are opposed to each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode. When looking at the mating part, the ratio Y of the solder part in the connecting part arranged in the part where the first electrode and the second electrode face each other in 100% of the solder part in the connecting part was evaluated. . The solder placement accuracy 2 on the electrode was determined according to the following criteria.

[電極上のはんだの配置精度2の判定基準]
○○:割合Yが99%以上
○:割合Yが90%以上、99%未満
△:割合Yが70%以上、90%未満
×:割合Yが70%未満
[Criteria for solder placement accuracy 2 on electrode]
◯: Ratio Y is 99% or more ○: Ratio Y is 90% or more and less than 99% △: Ratio Y is 70% or more and less than 90% X: Ratio Y is less than 70%

(5)上下の電極間の導通信頼性
得られた第1,第2,第3の接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により、測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
(5) Conduction reliability between upper and lower electrodes In the obtained first, second and third connection structures (n = 15), the connection resistance per connection point between the upper and lower electrodes is 4 respectively. It was measured by the terminal method. The average value of connection resistance was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conduction reliability was determined according to the following criteria.

[導通信頼性の判定基準]
○○:接続抵抗の平均値が50mΩ以下
○:接続抵抗の平均値が50mΩを超え、70mΩ以下
△:接続抵抗の平均値が70mΩを超え、100mΩ以下
×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
[Judgment criteria for conduction reliability]
◯: Average connection resistance is 50 mΩ or less ○: Average connection resistance exceeds 50 mΩ, 70 mΩ or less △: Average connection resistance exceeds 70 mΩ, 100 mΩ or less ×: Average connection resistance exceeds 100 mΩ Or there is a bad connection

(6)横方向に隣接する電極間の絶縁信頼性
得られた第1,第2,第3の接続構造体(n=15個)において、85℃、湿度85%の雰囲気中に100時間放置後、横方向に隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。
(6) Insulation reliability between electrodes adjacent in the lateral direction The obtained first, second and third connection structures (n = 15) were left in an atmosphere of 85 ° C. and 85% humidity for 100 hours. Then, 5V was applied between the electrodes adjacent to the horizontal direction, and the resistance value was measured at 25 locations. Insulation reliability was judged according to the following criteria.

[絶縁信頼性の判定基準]
○○:接続抵抗の平均値が10Ω以上
○:接続抵抗の平均値が10Ω以上、10Ω未満
△:接続抵抗の平均値が10Ω以上、10Ω未満
×:接続抵抗の平均値が10Ω未満
[Criteria for insulation reliability]
◯: Average value of connection resistance is 10 7 Ω or more ○: Average value of connection resistance is 10 6 Ω or more, less than 10 7 Ω △: Average value of connection resistance is 10 5 Ω or more, less than 10 6 Ω ×: Connection The average resistance is less than 10 5 Ω

(7)上下の電極間の位置ずれ
得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極の中心線と第2の電極の中心線とが揃っているか否か、並びに位置ずれの距離を評価した。上下の電極間の位置ずれを下記の基準で判定した。
(7) Position shift between upper and lower electrodes In the obtained first, second, and third connection structures, the first electrode and the second electrode are stacked in the stacking direction of the first electrode, the connection portion, and the second electrode. Whether the center line of the first electrode and the center line of the second electrode were aligned when the portion facing the two electrodes was viewed, and the distance of the positional deviation were evaluated. The positional deviation between the upper and lower electrodes was determined according to the following criteria.

[上下の電極間の位置ずれの判定基準]
○○:位置ずれが15μm未満
○:位置ずれが15μm以上、25μm未満
△:位置ずれが25μm以上、40μm未満
×:位置ずれが40μm以上
[Criteria for misregistration between upper and lower electrodes]
○: Misalignment is less than 15 μm ○: Misalignment is 15 μm or more and less than 25 μm Δ: Misalignment is 25 μm or more and less than 40 μm ×: Misalignment is 40 μm or more

結果を下記の表1に示す。   The results are shown in Table 1 below.

Figure 2017022099
Figure 2017022099

フレキシブルプリント基板にかえて、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。   The same tendency was observed when a resin film, a flexible flat cable, and a rigid flexible board were used instead of the flexible printed board.

1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…導電材料
11A…導電性粒子
11B…熱硬化性成分
21…導電性粒子
22…はんだ粒子
23…被覆部
31…導電性粒子
32…基材粒子
33…導電部
33A…第2の導電部
33B…はんだ部
34…被覆部
41…導電性粒子
42…はんだ部
43…被覆部
DESCRIPTION OF SYMBOLS 1,1X ... Connection structure 2 ... 1st connection object member 2a ... 1st electrode 3 ... 2nd connection object member 3a ... 2nd electrode 4, 4X ... Connection part 4A, 4XA ... Solder part 4B, 4XB ... cured material part 11 ... conductive material 11A ... conductive particle 11B ... thermosetting component 21 ... conductive particle 22 ... solder particle 23 ... covering part 31 ... conductive particle 32 ... base particle 33 ... conductive part 33A ... second Conductive part 33B ... solder part 34 ... covering part 41 ... conductive particles 42 ... solder part 43 ... covering part

Claims (11)

複数の導電性粒子と、バインダーとを含み、
前記導電性粒子は、導電部の外表面部分に、はんだを有し、かつ、前記導電部の外表面上に、重量平均分子量が3000以上、100000以下であるポリマーの被覆部を有する、導電材料。
Including a plurality of conductive particles and a binder,
The conductive particle has solder on the outer surface portion of the conductive portion, and has a polymer coating portion having a weight average molecular weight of 3000 or more and 100,000 or less on the outer surface of the conductive portion. .
前記導電性粒子は、はんだ粒子と、前記はんだ粒子の外表面上に、前記ポリマーの被覆部とを有する、請求項1に記載の導電材料。   The conductive material according to claim 1, wherein the conductive particles include solder particles and a coating portion of the polymer on an outer surface of the solder particles. 前記ポリマーはカルボキシル基を有する、請求項1又は2に記載の導電材料。   The conductive material according to claim 1, wherein the polymer has a carboxyl group. 前記ポリマーはポリエステルである、請求項1〜3のいずれか1項に記載の導電材料。   The conductive material according to claim 1, wherein the polymer is polyester. 前記ポリマーの軟化点が、前記はんだの融点よりも低い、請求項1〜4のいずれか1項に記載の導電材料。   The conductive material according to claim 1, wherein a softening point of the polymer is lower than a melting point of the solder. 前記バインダーはフラックスを含み、
前記ポリマーの軟化点は、前記フラックスの活性温度よりも低い、請求項1〜5のいずれか1項に記載の導電材料。
The binder includes a flux;
The conductive material according to any one of claims 1 to 5, wherein a softening point of the polymer is lower than an activation temperature of the flux.
前記ポリマーが、前記はんだの水酸基と反応可能な官能基によって、前記はんだの水酸基と結合している、請求項1〜6のいずれか1項に記載の導電材料。   The conductive material according to claim 1, wherein the polymer is bonded to the solder hydroxyl group by a functional group capable of reacting with the solder hydroxyl group. 前記被覆部の厚みが0.01μm以上、5μm以下である、請求項1〜7のいずれか1項に記載の導電材料。   The conductive material according to claim 1, wherein the covering portion has a thickness of 0.01 μm or more and 5 μm or less. 前記導電性粒子の平均粒子径が1μm以上、60μm以下である、請求項1〜8のいずれか1項に記載の導電材料。   The conductive material according to claim 1, wherein an average particle diameter of the conductive particles is 1 μm or more and 60 μm or less. 導電材料100重量%中、前記導電性粒子の含有量が10重量%以上、80重量%以下である、請求項1〜9のいずれか1項に記載の導電材料。   The conductive material according to claim 1, wherein a content of the conductive particles is 10% by weight or more and 80% by weight or less in 100% by weight of the conductive material. 第1の電極を表面に有する第1の接続対象部材と、
第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
前記接続部の材料が、請求項1〜10のいずれか1項に記載の導電材料であり、
前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
A first connection object member having a first electrode on its surface;
A second connection target member having a second electrode on its surface;
A connection portion connecting the first connection target member and the second connection target member;
The material of the connection part is the conductive material according to any one of claims 1 to 10,
A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
JP2016128792A 2015-07-14 2016-06-29 Conductive material and connection structure Pending JP2017022099A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015140335 2015-07-14
JP2015140335 2015-07-14

Publications (1)

Publication Number Publication Date
JP2017022099A true JP2017022099A (en) 2017-01-26

Family

ID=57888314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128792A Pending JP2017022099A (en) 2015-07-14 2016-06-29 Conductive material and connection structure

Country Status (1)

Country Link
JP (1) JP2017022099A (en)

Similar Documents

Publication Publication Date Title
JP6577867B2 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP6630284B2 (en) Conductive material and connection structure
JP6152043B2 (en) Conductive material and connection structure
JP7280864B2 (en) Conductive materials and connecting structures
JP6600234B2 (en) Conductive material and connection structure
WO2017179532A1 (en) Conductive material and connected structure
JP2016004971A (en) Connection structure and manufacturing method for the same
JP2016126878A (en) Conductive paste, connection structure and method for producing connection structure
JP6581434B2 (en) Conductive material and connection structure
JP2017195180A (en) Conductive material and connection structure
JP6734141B2 (en) Conductive material and connection structure
JP6329014B2 (en) Connection structure and method for manufacturing connection structure
WO2017130892A1 (en) Conductive material and connection structure
JP6166849B2 (en) Conductive material and connection structure
WO2016190244A1 (en) Electroconductive material and connection structure
JP2018045906A (en) Conductive material, method for producing conductive material, and connection structure
JP2017045607A (en) Conducive material, connection structure, and manufacturing method of connection structure
WO2018221587A1 (en) Electroconductive material and connection structure
JP2019212467A (en) Conductive material, connection structure, and method for manufacturing connection structure
JP2019175844A (en) Conductive material, connection structure and method for producing connection structure
JP2018060786A (en) Conductive material and connection structure
JP2017022099A (en) Conductive material and connection structure
WO2017033933A1 (en) Electroconductive material and connection structure
WO2016035637A1 (en) Method of manufacturing connection structure
JP7377007B2 (en) Conductive material, connected structure, and method for manufacturing connected structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200721