WO2018221587A1 - Electroconductive material and connection structure - Google Patents

Electroconductive material and connection structure Download PDF

Info

Publication number
WO2018221587A1
WO2018221587A1 PCT/JP2018/020764 JP2018020764W WO2018221587A1 WO 2018221587 A1 WO2018221587 A1 WO 2018221587A1 JP 2018020764 W JP2018020764 W JP 2018020764W WO 2018221587 A1 WO2018221587 A1 WO 2018221587A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
solder
conductive
electrode
particles
Prior art date
Application number
PCT/JP2018/020764
Other languages
French (fr)
Japanese (ja)
Inventor
士輝 宋
将大 伊藤
周治郎 定永
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018529182A priority Critical patent/JP7352353B2/en
Priority to KR1020197024590A priority patent/KR20200015445A/en
Priority to CN201880031102.6A priority patent/CN110622258A/en
Publication of WO2018221587A1 publication Critical patent/WO2018221587A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present invention relates to a conductive material including conductive particles having solder on an outer surface portion of a conductive portion.
  • the present invention also relates to a connection structure using the conductive material.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder.
  • the anisotropic conductive material is used for obtaining various connection structures.
  • Examples of the connection using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor.
  • Examples include connection between a chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
  • an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do.
  • a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
  • Patent Document 1 discloses an anisotropic conductive material including conductive particles and a resin component that cannot be cured at the melting point of the conductive particles.
  • the conductive particles tin (Sn), indium (In), bismuth (Bi), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), gallium (Ga) ), Silver (Ag), thallium (Tl) and other metals, and alloys of these metals.
  • Patent Document 1 a resin heating step for heating the anisotropic conductive material to a temperature higher than the melting point of the conductive particles and at which the curing of the resin component is not completed, and a resin component curing step for curing the resin component The electrical connection between the electrodes is described.
  • Patent Document 1 describes that mounting is performed with the temperature profile shown in FIG.
  • conductive particles melt in a resin component that is not completely cured at a temperature at which the anisotropic conductive material is heated.
  • Patent Document 2 discloses a solder paste (conductive material) containing a flux and an alloy powder containing tin as a main component.
  • the flux is a flux in which an activator is added and dispersed in a solvent.
  • the solvent is a polyhydric alcohol having 2 to 4 hydroxyl groups.
  • the activator is a saccharide having 4 to 6 hydroxyl groups.
  • the average particle diameter of the active agent is 100 ⁇ m or less.
  • Patent Document 3 discloses a solder composition (conductive material) containing a lead-free SnZn-based alloy and a soldering flux.
  • the soldering flux contains an epoxy resin and an organic carboxylic acid.
  • the organic carboxylic acid is solidly dispersed in the solder composition at room temperature (25 ° C.).
  • Examples of a method for efficiently aggregating solder on the electrode include a method for increasing the blending amount of the flux in the conductive material.
  • the flux and the thermosetting compound in the conductive material may react to reduce the storage stability of the conductive material.
  • the heat resistance of the cured product of the conductive material may be reduced.
  • An object of the present invention is to effectively increase the storage stability of a conductive material, to effectively increase the cohesiveness of solder during conductive connection, and to effectively increase the heat resistance of a cured product. It is to provide a conductive material that can be used. Another object of the present invention is to provide a connection structure using the conductive material.
  • the conductive part includes a plurality of conductive particles having solder on the outer surface portion thereof, a thermosetting compound, and a flux, and includes any one of the following first configuration and second configuration. Or a conductive material comprising one or more.
  • First configuration There is no flux having a particle size that is twice or more the average particle size of the flux, or a particle size that is twice or more the average particle size of the flux in 100% of the total number of the fluxes Are present in a number of less than 10%.
  • the composition obtained by removing the conductive particles from the conductive material is a colloid, and the flux is present as a colloid particle.
  • the conductive material according to the present invention there is no flux having a particle diameter of 1.5 times or more of the average particle diameter of the flux, or the total number of the flux is 100%. Flux having a particle size of 1.5 times the average particle size is present in a number of less than 20%.
  • the average particle diameter of the flux is 1 ⁇ m or less.
  • the content of the flux is 1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the thermosetting compound.
  • the content of the flux is 0.05% by weight or more and 20% by weight or less in 100% by weight of the conductive material.
  • the conductive material is a conductive paste.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member A connecting portion connecting the second connection target member, wherein the material of the connecting portion is the conductive material described above, and the first electrode and the second electrode are the connecting portion.
  • a connection structure is provided that is electrically connected by a solder portion therein.
  • the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode.
  • the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion where the first electrode and the second electrode face each other.
  • the conductive material according to the present invention includes a plurality of conductive particles having solder on the outer surface portion of the conductive portion, a thermosetting compound, and a flux, and is one of the first configuration and the second configuration. Provide one or more.
  • the storage stability of the conductive material can be effectively increased, and the cohesiveness of the solder at the time of conductive connection can be effectively increased. Furthermore, the heat resistance of the cured product can be effectively increased.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.
  • 2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using a conductive material according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a modification of the connection structure.
  • FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.
  • FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used for the conductive material.
  • FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used for the conductive material.
  • the conductive material according to the present invention includes a plurality of conductive particles having solder on the outer surface portion of the conductive portion, a thermosetting compound, and a flux.
  • the conductive material according to the present invention includes one or more of the following first configuration and second configuration.
  • the conductive material according to the present invention may have only the following first configuration, may have only the following second configuration, and has the following first configuration and the following second configuration. Both configurations may be provided.
  • First configuration There is no flux having a particle diameter of twice or more of the average particle diameter of the flux, or a particle diameter of twice or more of the average particle diameter of the flux in 100% of the total number of the fluxes. Present in a number less than 10%
  • the composition obtained by removing the conductive particles from the conductive material is a colloid, and the flux is present as a colloidal particle.
  • the conductive material according to the present invention may include, as the first configuration, a configuration in which a flux having a particle size that is twice or more the average particle size of the flux does not exist (configuration 1a).
  • the conductive material according to the present invention is configured such that, out of 100% of the total number of the fluxes, a flux having a particle size that is twice or more the average particle size of the flux exists in a number of less than 10% (configuration 1b) ) May be provided.
  • the conductive material according to the present invention may include only the configuration of the first 1a, may include only the configuration of the first 1b, may include only the second configuration, or may include the first 1a.
  • the above configuration and the second configuration may be included, and the above configuration 1b and the above second configuration may be included.
  • the storage stability of the conductive material can be increased, the cohesiveness of the solder at the time of conductive connection can be effectively increased, and further, the heat resistance of the cured product Can be effectively increased.
  • a plurality of conductive particles can be efficiently disposed on the electrodes (lines) and should be connected. Solder can be efficiently aggregated between the upper and lower electrodes. Moreover, it is difficult for some of the plurality of conductive particles to be disposed in a region (space) where no electrode is formed, and the amount of conductive particles disposed in a region where no electrode is formed can be considerably reduced. . Therefore, the conduction reliability between the electrodes can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.
  • the flux is mainly blended in the conductive material in order to remove oxides present on the surface of the solder and the surface of the electrodes in the conductive particles and to prevent the formation of the oxides.
  • the flux is relatively difficult to aggregate and the particle size of the flux is relatively small.
  • the flux is relatively well dispersed. For this reason, in the present invention, even if the content of the flux in the conductive material is relatively small, the oxide present on the surface of the solder and the surface of the electrode in the conductive particles can be removed. The formation of objects can be prevented.
  • the flux content in the conductive material can be made relatively small.
  • the content of the flux in the conductive material does not need to be large, and can be relatively small, so that the reaction between the thermosetting compound and the flux in the conductive material is effectively suppressed. Can do. As a result, the storage stability of the conductive material can be effectively increased.
  • the melting point (activation temperature) of the flux in the conductive material is often lower than the Tg of the thermosetting compound in the conductive material, and the higher the flux content in the conductive material, the more the cured material of the conductive material. Heat resistance tends to decrease.
  • the content of the flux in the conductive material does not need to be increased and can be decreased relatively, so that the heat resistance of the cured product of the conductive material can be effectively enhanced.
  • the storage stability of the conductive material, the cohesiveness of the solder during conductive connection, and the heat resistance of the cured product are increased. All requirements can be satisfied.
  • the present invention it is possible to prevent displacement between the electrodes.
  • the second connection target member is superimposed on the first connection target member having the conductive material disposed on the upper surface.
  • the deviation can be corrected.
  • the electrode of the first connection target member and the electrode of the second connection target member can be connected (self-alignment effect).
  • the conductive material is preferably liquid at 25 ° C., and preferably a conductive paste.
  • the viscosity ( ⁇ 25) at 25 ° C. of the conductive material is preferably 20 Pa ⁇ s or more, more preferably 30 Pa ⁇ s or more, preferably 500 Pa ⁇ s or less. More preferably, it is 300 Pa ⁇ s or less.
  • the said viscosity ((eta) 25) can be suitably adjusted with the kind and compounding quantity of a compounding component.
  • the viscosity ( ⁇ 25) can be measured under conditions of 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the conductive material can be used as a conductive paste and a conductive film.
  • the conductive paste is preferably an anisotropic conductive paste, and the conductive film is preferably an anisotropic conductive film. From the viewpoint of further increasing the cohesiveness of the solder, the conductive material is preferably a conductive paste.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • (meth) acryl means one or both of “acryl” and “methacryl”
  • (meth) acrylate means one or both of “acrylate” and “methacrylate”.
  • the conductive particles electrically connect the electrodes of the connection target member.
  • the conductive particles have solder on the outer surface portion of the conductive portion.
  • the conductive particles may be solder particles formed by solder.
  • the solder particles have solder on the outer surface portion of the conductive portion.
  • both the center part and the outer surface part of an electroconductive part are formed with the solder.
  • the solder particles are particles in which both the central portion and the conductive outer surface are solder.
  • the said electroconductive particle may have a base material particle and the electroconductive part arrange
  • the conductive particles have solder on the outer surface portion of the conductive portion.
  • the substrate particles may be solder particles formed by solder.
  • the conductive particles may be solder particles in which both the base particle and the outer surface portion of the conductive portion are solder.
  • the conductive particles are preferably solder particles formed by solder.
  • FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.
  • the conductive particles 21 shown in FIG. 4 are solder particles.
  • the conductive particles 21 are entirely formed of solder.
  • the conductive particles 21 do not have base particles in the core, and are not core-shell particles.
  • both the center part and the outer surface part of an electroconductive part are formed with the solder.
  • FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used as a conductive material.
  • the electroconductive particle 31 shown in FIG. 5 is equipped with the base material particle 32 and the electroconductive part 33 arrange
  • the conductive portion 33 covers the surface of the base particle 32.
  • the conductive particles 31 are coated particles in which the surface of the base particle 32 is covered with the conductive portion 33.
  • the conductive portion 33 has a second conductive portion 33A and a solder portion 33B (first conductive portion).
  • the conductive particle 31 includes a second conductive portion 33A between the base particle 32 and the solder portion 33B. Therefore, the conductive particles 31 are composed of the base particle 32, the second conductive portion 33A disposed on the surface of the base particle 32, and the solder portion 33B disposed on the outer surface of the second conductive portion 33A.
  • FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used as a conductive material.
  • the conductive part 33 of the conductive particles 31 in FIG. 5 has a two-layer structure.
  • the conductive particle 41 shown in FIG. 6 has a solder part 42 as a single-layer conductive part.
  • the conductive particles 41 include base particles 32 and solder portions 42 disposed on the surfaces of the base particles 32.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base particle may be a core-shell particle including a core and a shell disposed on the surface of the core.
  • the core may be an organic core, and the shell may be an inorganic shell.
  • the base material particles are more preferably resin particles or organic-inorganic hybrid particles, and may be resin particles or organic-inorganic hybrid particles. By using these preferable base particles, the effects of the present invention are more effectively exhibited, and conductive particles more suitable for electrical connection between electrodes can be obtained.
  • the conductive particles When connecting the electrodes using the conductive particles, the conductive particles are compressed by placing the conductive particles between the electrodes and then pressing them.
  • the substrate particles are resin particles or organic-inorganic hybrid particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction
  • the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polyalkylene terephthalate and polycarbonate.
  • Polyamide Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene oxide, polyacetal, Polyimide, polyamideimide, polyetheretherketone, polyester Terusuruhon, and polymers such as obtained by a variety of polymerizable monomer having an ethylenically unsaturated group is polymerized with one or more thereof.
  • Resin particles having an arbitrary compression characteristic suitable for a conductive material can be designed and synthesized, and the hardness of the resin particles can be easily controlled within a suitable range.
  • the polymer is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of.
  • the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, as the polymerizable monomer having an ethylenically unsaturated group, a non-crosslinkable monomer and And a crosslinkable monomer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylate compounds such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc.
  • Oxygen atom-containing (meth) acrylate compounds such as (meth) acrylonitrile; vinyl acetate compounds such as vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate; ethylene, propylene, isoprene, butadiene, etc. Unsaturated hydrocarbons; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene.
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) sia Silane-
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles
  • examples of the inorganic material used as the material of the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is preferably not a metal.
  • the particles formed by the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary.
  • grains obtained by performing are mentioned.
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is preferably an organic core.
  • the shell is preferably an inorganic shell.
  • the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core. .
  • the material for the organic core includes the material for the resin particles described above.
  • the inorganic materials mentioned as the material for the base material particles described above can be used.
  • the material of the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is preferably formed of a silane alkoxide.
  • the substrate particles are metal particles
  • examples of the metal that is a material of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the substrate particles are preferably not metal particles.
  • the particle diameter of the substrate particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 3 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the particle diameter of the substrate particles is equal to or greater than the lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes is further increased and the conductive particles are connected via the conductive particles. Further, the connection resistance between the electrodes can be further effectively reduced. Further, when forming the conductive portion on the surface of the base particle, it becomes difficult to aggregate and it becomes difficult to form the aggregated conductive particles.
  • the particle diameter of the substrate particles is not more than the above upper limit, the conductive particles are easily compressed, and the connection resistance between the electrodes connected through the conductive particles can be further effectively reduced. it can.
  • the particle diameter of the substrate particles is particularly preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • the particle diameter of the substrate particles is in the range of 5 ⁇ m or more and 40 ⁇ m or less, the distance between the electrodes can be further reduced, and even if the thickness of the conductive part is increased, small conductive particles can be obtained. Can do.
  • the particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
  • the particle diameter of the base material particles indicates a number average particle diameter.
  • the particle diameter of the substrate particles is determined using a particle size distribution measuring device or the like.
  • the particle diameter of the substrate particles is preferably determined by observing 50 arbitrary substrate particles with an electron microscope or an optical microscope and calculating an average value. In the case of measuring the particle diameter of the substrate particles in the conductive particles, for example, it can be measured as follows.
  • An embedded resin for inspecting conductive particles is prepared by adding to and dispersing in “Technobit 4000” manufactured by Kulzer so that the content of the conductive particles is 30% by weight.
  • a cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the conductive particles dispersed in the embedding resin for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-SEM field emission scanning electron microscope
  • the image magnification is set to 25000 times, 50 conductive particles are randomly selected, and the base particles of each conductive particle are observed. To do.
  • the particle diameter of the base particle in each conductive particle is measured, and arithmetically averaged to obtain the particle diameter of the base particle.
  • the method for forming the conductive part on the surface of the base particle and the method for forming the solder part on the surface of the base particle or the surface of the second conductive part are not particularly limited.
  • Examples of the method for forming the conductive portion and the solder portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, And a method of coating the surface of the substrate particles with a paste containing metal powder or metal powder and a binder.
  • the method for forming the conductive portion and the solder portion is preferably a method using electroless plating, electroplating, or physical collision.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kogakusha Co., Ltd.) or the like is used.
  • the melting point of the base material particles is preferably higher than the melting points of the conductive part and the solder part.
  • the melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C.
  • the melting point of the substrate particles may be less than 400 ° C.
  • the melting point of the substrate particles may be 160 ° C. or less.
  • the softening point of the substrate particles is preferably 260 ° C. or higher.
  • the softening point of the substrate particles may be less than 260 ° C.
  • the conductive particles may have a single layer solder portion.
  • the conductive particles may have a plurality of layers of conductive parts (solder part, second conductive part). That is, in the conductive particles, two or more conductive portions may be stacked. When the conductive part has two or more layers, the conductive particles preferably have solder on the outer surface portion of the conductive part.
  • the solder is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower.
  • the solder part is preferably a metal layer (low melting point metal layer) having a melting point of 450 ° C. or lower.
  • the low melting point metal layer is a layer containing a low melting point metal.
  • the solder in the conductive particles is preferably metal particles having a melting point of 450 ° C. or lower (low melting point metal particles).
  • the low melting point metal particles are particles containing a low melting point metal.
  • the low melting point metal is a metal having a melting point of 450 ° C. or lower.
  • the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower.
  • the solder in the said electroconductive particle contains a tin.
  • the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably. Is 70% by weight or more, particularly preferably 90% by weight or more.
  • the tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). Can be measured.
  • ICP-AES high-frequency inductively coupled plasma emission spectrometer
  • EDX-800HS fluorescent X-ray analyzer
  • the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered.
  • the use of conductive particles having solder on the outer surface of the conductive portion increases the bonding strength between the solder and the electrode, and as a result, the solder and the electrode are more unlikely to peel off, and the conduction reliability is effective. To be high.
  • the solder part and the low melting point metal constituting the solder are not particularly limited.
  • the low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy.
  • the low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, or tin-indium alloy because of its excellent wettability to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
  • the material constituting the solder is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: Welding terms.
  • the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like.
  • the solder in the conductive particle is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium. , Cobalt, bismuth, manganese, chromium, molybdenum, palladium, and other metals may be included.
  • the solder in the conductive particles preferably contains nickel, copper, antimony, aluminum, or zinc.
  • the content of these metals for increasing the bonding strength is preferably 0% in 100% by weight of the solder in the conductive particles. 0.0001% by weight or more, preferably 1% by weight or less.
  • the melting point of the second conductive part is preferably higher than the melting point of the solder part.
  • the melting point of the second conductive part is preferably more than 160 ° C, more preferably more than 300 ° C, still more preferably more than 400 ° C, still more preferably more than 450 ° C, particularly preferably more than 500 ° C, Most preferably above 600 ° C. Since the solder part has a low melting point, it melts during conductive connection. It is preferable that the second conductive portion does not melt during conductive connection.
  • the conductive particles are preferably used by melting solder, preferably used by melting the solder part, and used without melting the solder part and melting the second conductive part. It is preferred that Since the melting point of the second conductive part is higher than the melting point of the solder part, it is possible to melt only the solder part without melting the second conductive part during conductive connection.
  • the absolute value of the difference between the melting point of the solder part and the melting point of the second conductive part exceeds 0 ° C, preferably 5 ° C or more, more preferably 10 ° C or more, still more preferably 30 ° C or more, particularly preferably Is 50 ° C. or higher, most preferably 100 ° C. or higher.
  • the second conductive part preferably contains a metal.
  • the metal which comprises the said 2nd electroconductive part is not specifically limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
  • the second conductive portion is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer, a gold layer or a copper layer, and further preferably a copper layer.
  • the conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer, a gold layer, or a copper layer, and more preferably have a copper layer.
  • the thickness of the solder part is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 0.3 ⁇ m or less.
  • the thickness of the solder part is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles are not deformed too much, and the conductive particles are sufficiently deformed when connecting the electrodes. To do.
  • the particle diameter of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 3 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably. 40 ⁇ m or less.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and there are many solders in the conductive particles between the electrodes. It is easy to arrange and the conduction reliability is further enhanced.
  • the particle diameter of the conductive particles is preferably an average particle diameter, and more preferably a number average particle diameter.
  • the average particle diameter of the conductive particles is obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or performing laser diffraction particle size distribution measurement.
  • the CV value of the particle diameter of the conductive particles is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 30% or less.
  • the CV value of the particle diameter is not less than the above lower limit and not more than the above upper limit, the solder can be more efficiently arranged on the electrode.
  • the CV value of the particle diameter of the conductive particles may be less than 5%.
  • the CV value (coefficient of variation) of the particle diameter of the conductive particles can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of conductive particles Dn: Average value of particle diameter of conductive particles
  • the shape of the conductive particles is not particularly limited.
  • the conductive particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, and most preferably. Is 30% by weight or more, preferably 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less.
  • the content of the conductive particles in 100% by weight of the conductive material may be less than 80% by weight.
  • the solder in the conductive particles can be arranged more efficiently on the electrodes, and more solder in the conductive particles is provided between the electrodes. It is easy to arrange and the conduction reliability is further enhanced. From the viewpoint of further improving the conduction reliability, the content of the conductive particles is preferably large.
  • the conductive material according to the present invention includes a thermosetting compound.
  • the thermosetting compound is a compound that can be cured by heating.
  • examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • an epoxy compound or an episulfide compound is preferable, and an epoxy compound is more preferable.
  • the conductive material preferably contains an epoxy compound.
  • the said thermosetting compound only 1 type may be used and 2 or more types may be used together.
  • the epoxy compound is preferably an aromatic epoxy compound such as a resorcinol type epoxy compound, a naphthalene type epoxy compound, a biphenyl type epoxy compound, a benzophenone type epoxy compound, or a phenol novolac type epoxy compound.
  • the melting temperature of the epoxy compound is preferably not higher than the melting point of the solder.
  • the melting temperature of the epoxy compound is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 40 ° C. or lower.
  • the content of the thermosetting compound in 100% by weight of the conductive material is preferably 5% by weight or more, more preferably 8% by weight or more, still more preferably 10% by weight or more, and preferably 60% by weight or less. More preferably, it is 55 weight% or less, More preferably, it is 50 weight% or less, Most preferably, it is 40 weight% or less.
  • the content of the thermosetting compound is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be more efficiently arranged on the electrodes, and the displacement between the electrodes can be further suppressed, The conduction reliability can be further improved.
  • the conductive material preferably contains a thermosetting agent.
  • the conductive material preferably contains a thermosetting agent together with the thermosetting compound.
  • the thermosetting agent thermosets the thermosetting compound.
  • examples of the thermosetting agent include an imidazole curing agent, a phenol curing agent, a thiol curing agent, an amine curing agent, an acid anhydride curing agent, a thermal cation curing agent, and a thermal radical generator.
  • the said thermosetting agent only 1 type may be used and 2 or more types may be used together.
  • the thermosetting agent is preferably an imidazole curing agent, a thiol curing agent, or an amine curing agent. Further, from the viewpoint of enhancing the storage stability when the thermosetting compound and the thermosetting agent are mixed, the thermosetting agent is preferably a latent curing agent.
  • the latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent, or a latent amine curing agent.
  • the said thermosetting agent may be coat
  • the imidazole curing agent is not particularly limited.
  • Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6. -[2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adducts Etc.
  • the thiol curing agent is not particularly limited.
  • Examples of the thiol curing agent include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate.
  • the amine curing agent is not particularly limited.
  • examples of the amine curing agent include boron trifluoride-amine complex, hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5. .5] undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, diaminodiphenylsulfone, and the like.
  • the thermal cationic curing agent is not particularly limited.
  • Examples of the thermal cationic curing agent include iodonium-based cationic curing agents, oxonium-based cationic curing agents, and sulfonium-based cationic curing agents.
  • Examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate.
  • Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate.
  • Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.
  • the thermal radical generator is not particularly limited.
  • the thermal radical generator include azo compounds and organic peroxides.
  • the azo compound include azobisisobutyronitrile (AIBN).
  • AIBN azobisisobutyronitrile
  • the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.
  • the reaction initiation temperature of the thermosetting agent is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, further preferably 70 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and still more preferably 190 ° C. Hereinafter, it is particularly preferably 180 ° C. or lower.
  • the reaction start temperature of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the solder is more efficiently disposed on the electrode.
  • the content of the thermosetting agent is not particularly limited.
  • the content of the thermosetting agent with respect to 100 parts by weight of the thermosetting compound is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight or less, more preferably 75 parts by weight or less. It is easy to fully harden a thermosetting compound as content of the said thermosetting agent is more than the said minimum.
  • the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.
  • the conductive material according to the present invention contains a flux.
  • the conductive material according to the present invention may preferably have a configuration (configuration 1a) in which there is no flux having a particle size that is twice or more the average particle size of the flux.
  • the conductive material according to the present invention is preferably configured such that, out of 100% of the total number of the fluxes, a flux having a particle size that is twice or more the average particle size of the flux is present in a number (less than 10%) 1b) may be provided.
  • the conductive material according to the present invention preferably has a configuration (second configuration) in which the composition obtained by removing the conductive particles from the conductive material is a colloid, and the flux exists as colloidal particles.
  • the conductive material has the configuration of the first 1a
  • the average particle diameter of the flux satisfies the above preferable conditions, the storage stability can be further increased, the cohesiveness of the solder can be further increased, and the heat resistance of the cured product is further increased. be able to.
  • a flux having a particle diameter that is twice or more the average particle diameter of the flux is present in a number of 8% or less in the total number of the fluxes of 100%. Is preferred. It is more preferable that a flux having a particle diameter of twice or more the average particle diameter of the flux is present in a number of 6% or less in the total number of the fluxes of 100%.
  • the ratio of the number of fluxes having a particle diameter that is twice or more the average particle diameter of the flux is not more than the above upper limit, the storage stability can be further enhanced, and the cohesiveness of the solder can be further enhanced. In addition, the heat resistance of the cured product can be further enhanced.
  • the flux which has is present in the number of less than 20%. It is preferable that a flux having a particle size of 1.5 times or more of the average particle size of the flux is present in a number of less than 20% in the total number of the fluxes of 100%. It is more preferable that the flux having a particle diameter of 1.5 times or more of the average particle diameter of the flux is present in a number of 10% or less in the total number of the fluxes of 100%.
  • a flux having a particle diameter of 1.5 times or more of the average particle diameter of the flux is present in a number of 5% or less in the total number of the fluxes of 100%.
  • the ratio of the number of fluxes having a particle diameter of 1.5 times or more of the average particle diameter of the flux is less than the above upper limit and below the upper limit, the storage stability can be further improved, and the solder cohesiveness Can be further enhanced, and the heat resistance of the cured product can be further enhanced.
  • the average particle diameter of the flux is: Preferably it is 1 micrometer or less, More preferably, it is less than 1 micrometer, More preferably, it is 0.8 micrometer or less.
  • the lower limit of the average particle diameter of the flux is not particularly limited.
  • the average particle size of the flux may be 0.1 ⁇ m or more.
  • the particle diameter of the flux indicates the diameter when the flux is spherical, and indicates the maximum diameter when the flux is not spherical.
  • the average particle diameter of the flux indicates the number average particle diameter.
  • the particle diameter of the flux is preferably determined by observing 50 arbitrary fluxes with an electron microscope and calculating an average value.
  • the CV value of the particle diameter of the flux (Coefficient of variation) is preferably 40% or less, more preferably 20% or less.
  • the lower limit of the CV value of the particle size of the flux is not particularly limited.
  • the CV value of the particle size of the flux may be 0.01% or more.
  • the CV value (coefficient of variation) of the particle size of the flux can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of the particle diameter of the flux Dn: Average value of the particle diameter of the flux
  • the shape of the flux is not particularly limited.
  • the flux may have a spherical shape or a shape other than a spherical shape such as a flat shape.
  • the composition obtained by removing the conductive particles from the conductive material is a colloid.
  • the composition is The whole is preferably a colloid.
  • the said composition should just contain the part which is a colloid, and the whole composition does not need to be a colloid.
  • the flux exists as colloidal particles.
  • the flux is a colloidal particle.
  • the flux is colloidal particles having the average particle size described above in the composition.
  • the flux is contained in the composition. It is preferable that the flux is dispersed, and the flux is more preferably dispersed uniformly in the composition. In the conductive material, it is preferable that 20% or more of the total number of fluxes are colloidal particles. In the conductive material, a part of the flux may be colloidal particles, and all the fluxes may not be colloidal particles.
  • Examples of the method for confirming that the composition is a colloid include a method of observing the Tyndall phenomenon using the composition or a mixture of the composition and a solvent in which the flux does not dissolve.
  • Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc. As for the said flux, only 1 type may be used and 2 or more types may be used together.
  • Examples of the molten salt include ammonium chloride.
  • Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, malic acid, and glutaric acid.
  • Examples of the pine resin include activated pine resin and non-activated pine resin.
  • the flux is preferably an organic acid having two or more carboxyl groups or pine resin.
  • the flux may be an organic acid having two or more carboxyl groups, or pine resin. Use of an organic acid having two or more carboxyl groups or pine resin further increases the reliability of conduction between the electrodes.
  • the above rosins are rosins whose main component is abietic acid.
  • the flux is preferably a rosin, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
  • the melting point (activation temperature) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, and still more preferably 160 ° C or lower, more preferably 150 ° C or lower, and still more preferably 140 ° C or lower.
  • the melting point (activation temperature) of the flux is preferably 60 ° C. or higher and 190 ° C. or lower.
  • the melting point (activation temperature) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
  • the flux having an active temperature (melting point) of 60 ° C. or higher and 190 ° C. or lower includes succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point 104 ° C), dicarboxylic acids such as suberic acid (melting point 142 ° C), benzoic acid (melting point 122 ° C), and malic acid (melting point 130 ° C).
  • the boiling point of the flux is preferably 200 ° C. or lower.
  • the flux is preferably a flux that releases cations by heating.
  • a flux that releases cations by heating the solder in the conductive particles can be more efficiently placed on the electrode.
  • thermal cation curing agent can be used as the flux that releases cations by heating.
  • the flux is a salt of an acid compound and a base compound.
  • the acid compound preferably has an effect of washing the metal surface, and the base compound preferably has an action of neutralizing the acid compound.
  • the flux is preferably a neutralization reaction product between the acid compound and the base compound. As for the said flux, only 1 type may be used and 2 or more types may be used together.
  • the melting point of the flux is preferably lower than the melting point of the solder in the conductive particles, more preferably 5 ° C. or more. More preferably, it is 10 ° C. or lower.
  • the melting point of the flux may be higher than the melting point of the solder in the conductive particles.
  • the use temperature of the conductive material is equal to or higher than the melting point of the solder in the conductive particles. If the melting point of the flux is equal to or lower than the use temperature of the conductive material, the melting point of the flux is the melting point of the solder in the conductive particles.
  • the above-mentioned flux can sufficiently exhibit the performance as a flux.
  • a conductive material in which the use temperature of the conductive material is 150 ° C. or higher, and includes solder (Sn42Bi58: melting point 139 ° C.) in conductive particles and a flux (melting point 146 ° C.) that is a salt of malic acid and benzylamine.
  • solder Sn42Bi58: melting point 139 ° C.
  • a flux melting point 146 ° C.
  • the flux which is a salt of malic acid and benzylamine sufficiently exhibits a flux action.
  • the melting point of the flux is preferably lower than the reaction start temperature of the thermosetting agent, more preferably 5 ° C. or more, More preferably, it is 10 ° C. or lower.
  • the acid compound is preferably an organic compound having a carboxyl group.
  • the acid compound include aliphatic carboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, citric acid, malic acid, and cyclic aliphatic carboxylic acid.
  • aliphatic carboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, citric acid, malic acid, and cyclic aliphatic carboxylic acid.
  • examples thereof include cyclohexyl carboxylic acid, 1,4-cyclohexyl dicarboxylic acid, aromatic carboxylic acids such as isophthalic acid, terephthalic acid, trimellitic acid, and ethylenediaminetetraacetic acid.
  • the acid compound is preferably glutaric acid
  • the base compound is preferably an organic compound having an amino group.
  • the basic compound include diethanolamine, triethanolamine, methyldiethanolamine, ethyldiethanolamine, cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, 2-methylbenzylamine, 3-methylbenzylamine, 4-tert-butylbenzylamine. N-methylbenzylamine, N-ethylbenzylamine, N-phenylbenzylamine, N-tert-butylbenzylamine, N-isopropylbenzylamine, N, N-dimethylbenzylamine, imidazole compounds, and triazole compounds. .
  • the base compound is preferably benzylamine, 2-methylbenzylamine, or 3-methylbenzylamine.
  • the flux may be dispersed in the conductive material or may be adhered on the surface of the conductive particles. From the viewpoint of further effectively increasing the flux effect, the flux is preferably attached on the surface of the conductive particles.
  • the flux satisfying the configuration of the first 1a, the configuration of the first 1b, and the second configuration can be obtained, for example, by melting a solid flux and then reprecipitating it. It is preferable that the reprecipitation proceeds gently.
  • the method for obtaining the flux is preferably a method in which the solid flux is heated to the melting point or higher to completely melt the flux.
  • the method for obtaining the flux is preferably a method for gradually re-depositing the melted flux.
  • a method of pulverizing a solid flux can be mentioned.
  • the method of pulverizing the solid flux there is a limit in reducing the average particle size of the flux, and it is difficult to obtain a flux having the above-described average particle size.
  • the fluxes aggregate and tend to become a non-uniform flux. It is difficult to uniformly disperse the non-uniform flux (crushed flux) in the conductive material.
  • the inclusion of the flux in the conductive material in order to increase the cohesiveness of the solder. The amount tends to be relatively large.
  • the storage stability of the conductive material decreases, the heat resistance of the cured product of the conductive material decreases, and it becomes difficult to obtain the effects of the present invention.
  • the content of the flux is preferably 1 part by weight or more, more preferably 2 parts by weight or more, preferably 20 parts by weight or less, more preferably 15 parts by weight or less.
  • the content of the flux is preferably 0.05% by weight or more, more preferably 2% by weight or more, preferably 20% by weight or less, more preferably 15% by weight or less. Further, if the content of the flux is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode in the conductive particles, and further, the solder and the electrode in the conductive particles. The oxide film formed on the surface can be removed more effectively.
  • a filler may be added to the conductive material.
  • the filler may be an organic filler or an inorganic filler. By adding the filler, the conductive particles can be uniformly aggregated on all the electrodes of the substrate.
  • the conductive material does not contain the filler or contains the filler at 5% by weight or less.
  • the crystalline thermosetting compound is used, the smaller the filler content, the easier the solder moves on the electrode.
  • the content of the filler is preferably 0% by weight (not contained) or more, preferably 5% by weight or less, more preferably 2% by weight or less, and further preferably 1% by weight or less. It is. When the content of the filler is not less than the above lower limit and not more than the above upper limit, the conductive particles are more efficiently arranged on the electrode.
  • the conductive material may be, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, and a lubricant as necessary.
  • various additives such as an antistatic agent and a flame retardant may be included.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, A connecting portion connecting the second connection target member.
  • the material of the connection portion is the conductive material described above.
  • the connection portion is a cured product of the conductive material described above.
  • the connection portion is formed of the conductive material described above.
  • the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
  • connection structure since a specific conductive material is used, the solder in the conductive particles easily collects between the first electrode and the second electrode, and the solder is efficiently applied to the electrode (line). Can be arranged. In addition, a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.
  • the conductive material is not a conductive film, It is preferable to use a conductive paste.
  • the thickness of the solder part between the electrodes is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the solder wetted area on the surface of the electrode is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, preferably Is 100% or less.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.
  • connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3.
  • Part 4 is formed of the conductive material described above.
  • the conductive material includes conductive particles, a thermosetting compound, and a flux.
  • solder particles are included as the conductive particles.
  • the said thermosetting compound, the said thermosetting agent, and the said flux are called a thermosetting component.
  • the connecting portion 4 includes a solder portion 4A in which a plurality of solder particles are gathered and joined to each other, and a cured product portion 4B in which a thermosetting component is thermally cured.
  • the first connection object member 2 has a plurality of first electrodes 2a on the surface (upper surface).
  • the second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface).
  • the first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A.
  • no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.
  • connection structure 1 a plurality of solder particles gather between the first electrode 2 a and the second electrode 3 a, and after the plurality of solder particles melt, After the electrode surface wets and spreads, it solidifies to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using solder particles, the solder portion 4A, the first electrode 2a, and the solder as compared with the case where the outer surface portion of the conductive portion is made of conductive particles such as nickel, gold or copper are used. The contact area between the portion 4A and the second electrode 3a increases. For this reason, the conduction
  • connection structure 1 shown in FIG. 1 all of the solder portions 4A are located in the facing region between the first and second electrodes 2a and 3a.
  • the connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X.
  • the connection part 4X has the solder part 4XA and the hardened
  • most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area
  • the solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA.
  • the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.
  • connection structure 1 If the amount of solder particles used is reduced, the connection structure 1 can be easily obtained. If the amount of the solder particles used is increased, it becomes easy to obtain the connection structure 1X.
  • the solder portion in the connection portion is disposed at 70% or more, particularly preferably 80% or more, and most preferably 90% or more.
  • connection structure 1 using the conductive material Next, an example of a method for manufacturing the connection structure 1 using the conductive material according to the embodiment of the present invention will be described.
  • the first connection target member 2 having the first electrode 2a on the surface (upper surface) is prepared.
  • a conductive material 11 including a thermosetting component 11B and a plurality of solder particles 11A is disposed on the surface of the first connection target member 2 (first Process).
  • the conductive material 11 includes a thermosetting compound, a thermosetting agent, and a flux as the thermosetting component 11B.
  • the conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided. After the conductive material 11 is disposed, the solder particles 11A are disposed both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.
  • the arrangement method of the conductive material 11 is not particularly limited, and examples thereof include application by a dispenser, screen printing, and discharge by an inkjet device.
  • the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared.
  • the 2nd connection object member 3 is arrange
  • the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.
  • the conductive material 11 is heated to a temperature equal to or higher than the melting point of the solder particles 11A (third step).
  • the conductive material 11 is heated above the curing temperature of the thermosetting component 11B (thermosetting compound).
  • the solder particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect).
  • the thermosetting component 11B is thermoset. As a result, as shown in FIG.
  • connection portion 4 that connects the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11.
  • the connection part 4 is formed of the conductive material 11
  • the solder part 4A is formed by joining a plurality of solder particles 11A
  • the cured part 4B is formed by thermosetting the thermosetting component 11B. If the solder particles 11A are sufficiently moved, the first electrode 2a and the second electrode are moved after the movement of the solder particles 11A not located between the first electrode 2a and the second electrode 3a starts. It is not necessary to keep the temperature constant until the movement of the solder particles 11A is completed.
  • the weight of the second connection target member 3 is added to the conductive material 11. For this reason, the solder particles 11A are more effectively collected between the first electrode 2a and the second electrode 3a when the connection portion 4 is formed.
  • the solder particles 11A tend to collect between the first electrode 2a and the second electrode 3a. The tendency to be inhibited becomes high.
  • the alignment between the electrode of the first connection target member and the electrode of the second connection target member is shifted.
  • the first connection target member and the second connection target member may be overlapped.
  • the displacement can be corrected and the electrode of the first connection target member and the electrode of the second connection target member can be connected (self-alignment effect). This is because the melted solder that is self-aggregating between the electrode of the first connection target member and the electrode of the second connection target member is connected to the electrode of the first connection target member and the second connection target member.
  • the viscosity of the conductive material at the melting point of the solder is preferably 50 Pa ⁇ s or less, more preferably 10 Pa ⁇ s or less, still more preferably 1 Pa ⁇ s or less, preferably 0.1 Pa ⁇ s or more, more preferably 0. 2 Pa ⁇ s or more. If the said viscosity is below the said upper limit, the solder in electroconductive particle can be aggregated efficiently. If the said viscosity is more than the said minimum, the void in a connection part can be suppressed and the protrusion of the electrically-conductive material other than a connection part can be suppressed.
  • the viscosity of the conductive material at the melting point of the solder is measured as follows.
  • the viscosity of the conductive material at the melting point of the above solder is STRESSTECH (manufactured by REOLOGICA), etc., strain control 1 rad, frequency 1 Hz, temperature rising rate 20 ° C./min, measurement temperature range 25 to 200 ° C. When the melting point exceeds 200 ° C., the upper limit of the temperature is taken as the melting point of the solder). From the measurement results, the viscosity at the melting point (° C.) of the solder is evaluated.
  • connection structure 1 shown in FIG. 1 is obtained.
  • the second step and the third step may be performed continuously.
  • the laminated body of the 1st connection object member 2, the electrically-conductive material 11, and the 2nd connection object member 3 which are obtained is moved to a heating part, and the said 3rd connection object is carried out.
  • You may perform a process.
  • the laminate In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.
  • the heating temperature in the third step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
  • a heating method in the third step a method of heating the entire connection structure using a reflow furnace or an oven above the melting point of the solder in the conductive particles and the curing temperature of the thermosetting component, The method of heating only the connection part of a connection structure locally is mentioned.
  • instruments used in the method of locally heating include a hot plate, a heat gun that applies hot air, a soldering iron, and an infrared heater.
  • the metal directly under the connection is made of a metal with high thermal conductivity, and other places where heating is not preferred are made of a material with low thermal conductivity such as a fluororesin.
  • the upper surface of the hot plate is preferably formed.
  • the first and second connection target members are not particularly limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor
  • the first and second connection target members are preferably electronic components.
  • At least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. It is preferable that at least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for a solder not to gather on an electrode.
  • the conductive reliability between the electrodes can be efficiently collected by collecting the solder on the electrodes. Can be increased sufficiently.
  • the conduction reliability between the electrodes by not applying pressure is improved. The improvement effect can be obtained more effectively.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • Thermosetting compound "JER152” manufactured by Mitsubishi Chemical Corporation, epoxy resin
  • thermosetting agent thermosetting accelerator (catalyst): “BF3-MEA” manufactured by Stella Chemifa, boron trifluoride-monoethylamine complex
  • Conductive particles “Sn42Bi58 (DS-10)” manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Flux 1 Preparation method of flux 1: In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at room temperature until uniform. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a refrigerator at 5-10 ° C. and left overnight. The precipitated crystals were collected by filtration, washed with water, and vacuum dried. The dried crystal was heated at 140 ° C. for 15 minutes to be completely melted and gradually reprecipitated at 25 ° C. over 30 minutes to obtain flux 1.
  • Flux 2 Preparation method of flux 2: In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at room temperature until uniform. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a refrigerator at 5-10 ° C. and left overnight. The precipitated crystals were collected by filtration, washed with water, and vacuum dried. The dried crystal was heated at 160 ° C. for 5 minutes to be completely melted and gradually reprecipitated at 25 ° C. over 30 minutes to obtain flux 2.
  • Flux 4 Method for producing flux 4 In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at room temperature until uniform. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a refrigerator at 5-10 ° C. and left overnight. The precipitated crystals were collected by filtration, washed with water, and vacuum dried. The dried crystal was pulverized with a jet mill pulverizer manufactured by Nisshin Engineering Co., Ltd. to obtain flux 4.
  • a glass epoxy substrate (FR-4 substrate) (first connection target member) having a copper electrode pattern (copper electrode thickness 12 ⁇ m) on the upper surface with an L / S of 50 ⁇ m / 50 ⁇ m and an electrode length of 3 mm was prepared.
  • the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of a copper electrode 12 micrometers) of L / S 50 micrometers / 50 micrometers and electrode length 3mm on the lower surface was prepared.
  • the overlapping area of the glass epoxy substrate and the flexible printed board was 1.5 cm ⁇ 3 mm, and the number of connected electrodes was 75 pairs.
  • the conductive material (anisotropic conductive paste) immediately after the production is applied by screen printing using a metal mask so that the thickness is 100 ⁇ m on the electrode of the glass epoxy substrate, A conductive material (anisotropic conductive paste) layer was formed.
  • the flexible printed circuit board was laminated on the upper surface of the conductive material (anisotropic conductive paste) layer so that the electrodes face each other. At this time, no pressure was applied. The weight of the flexible printed circuit board is added to the conductive material (anisotropic conductive paste) layer. From this state, heating was performed so that the temperature of the conductive material (anisotropic conductive paste) layer reached 139 ° C.
  • the conductive material (anisotropic conductive paste) layer is heated to a temperature of 160 ° C. to cure the conductive material (anisotropic conductive paste) layer. Obtained. No pressure was applied during heating.
  • a flexible printed circuit board (second connection target member) having a L / S of 75 ⁇ m / 75 ⁇ m and an electrode length of 3 mm on the lower surface of a copper electrode pattern (copper electrode thickness 12 ⁇ m) was prepared.
  • 2nd connection structure was obtained like manufacture of the 1st connection structure except having used the above-mentioned glass epoxy board and flexible printed circuit board from which L / S differs.
  • Glass epoxy substrate having a copper electrode pattern (copper electrode thickness 12 ⁇ m) with L / S of 100 ⁇ m / 100 ⁇ m and electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared.
  • the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of copper electrode 12 micrometers) of L / S of 100 micrometers / 100 micrometers and electrode length 3mm on the lower surface was prepared.
  • 3rd connection structure was obtained like manufacture of the 1st connection structure except having used the above-mentioned glass epoxy board and flexible printed circuit board from which L / S differs.
  • the ratio of the number of fluxes having a particle diameter more than twice the average particle diameter of the flux in the total number of fluxes of 100%, and the average particle diameter of the flux in the total number of fluxes of 100% was calculated.
  • Viscosity increase rate ( ⁇ 2 / ⁇ 1) is 1.5 or less
  • Viscosity increase rate ( ⁇ 2 / ⁇ 1) exceeds 1.5 and 2.0 or less
  • X Viscosity increase rate ( ⁇ 2 / ⁇ 1) is 2.0 Exceed
  • the obtained conductive material anisotropic conductive paste
  • the glass transition temperature (Tg) of the obtained cured product was measured using a dynamic viscoelasticity measuring apparatus (“Rheogel-E” manufactured by UBM Co., Ltd.) at a temperature rising rate of 10 ° C./min.
  • the heat resistance of the cured product was determined according to the following criteria.
  • Tg of cured product is 100 ° C. or more
  • Tg of cured product is 90 ° C. or more and less than 100 ° C.
  • Tg of cured product is less than 90 ° C.
  • solder placement accuracy on the electrode (solder cohesion)
  • a portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is formed.
  • the ratio X of the area where the solder portion in the connection portion is arranged in the area of 100% of the portion where the first electrode and the second electrode face each other was evaluated.
  • the solder placement accuracy (solder cohesiveness) on the electrode was determined according to the following criteria.
  • Ratio X is 70% or more ⁇ : Ratio X is 60% or more and less than 70% ⁇ : Ratio X is 50% or more and less than 60% X: Ratio X is less than 50%
  • connection resistance is 50 m ⁇ or less ⁇ : The average value of connection resistance exceeds 50 m ⁇ and 70 m ⁇ or less ⁇ : The average value of connection resistance exceeds 70 m ⁇ and 100 m ⁇ or less ⁇ : The average value of connection resistance exceeds 100 m ⁇ , or There is a bad connection

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

Provided is an electroconductive material in which it is possible to effectively increase the storage stability of the electroconductive material, to effectively increase the cohesiveness of solder during electroconductive connection, and furthermore, to effectively increase the heat resistance of a cured product. The electroconductive material according to the present invention contains a plurality of electrically conductive particles having solder on an outer surface portion of an electrically conductive part, a thermosetting compound, and flux, the electroconductive material comprising one or more of a first configuration in which "flux having a particle diameter that is 2 times or more of the average particle diameter of the flux is not present, or flux having a particle diameter that is 2 times or more of the average particle diameter of the flux is present at a number of less than 10% in 100% of the total number of the flux," and a second configuration in which "a composition in which the electrically conductive particles are removed from the electroconductive material is a colloid, and the flux is present as colloidal particles."

Description

導電材料及び接続構造体Conductive material and connection structure
 本発明は、導電部の外表面部分にはんだを有する導電性粒子を含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体に関する。 The present invention relates to a conductive material including conductive particles having solder on an outer surface portion of a conductive portion. The present invention also relates to a connection structure using the conductive material.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder.
 上記異方性導電材料は、各種の接続構造体を得るために使用されている。上記異方性導電材料による接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。 The anisotropic conductive material is used for obtaining various connection structures. Examples of the connection using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor. Examples include connection between a chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
 上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。 For example, when electrically connecting the electrode of the flexible printed circuit board and the electrode of the glass epoxy substrate by the anisotropic conductive material, an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do. Next, a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
 上記異方性導電材料の一例として、下記の特許文献1には、導電性粒子と、該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電材料が開示されている。上記導電性粒子としては、具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、ガリウム(Ga)、銀(Ag)及びタリウム(Tl)等の金属や、これらの金属の合金が挙げられている。 As an example of the anisotropic conductive material, the following Patent Document 1 discloses an anisotropic conductive material including conductive particles and a resin component that cannot be cured at the melting point of the conductive particles. Specifically, as the conductive particles, tin (Sn), indium (In), bismuth (Bi), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), gallium (Ga) ), Silver (Ag), thallium (Tl) and other metals, and alloys of these metals.
 特許文献1では、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、異方性導電材料を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを経て、電極間を電気的に接続することが記載されている。また、特許文献1には、特許文献1の図8に示された温度プロファイルで実装を行うことが記載されている。特許文献1では、異方性導電材料が加熱される温度にて硬化が完了しない樹脂成分内で、導電性粒子が溶融する。 In Patent Document 1, a resin heating step for heating the anisotropic conductive material to a temperature higher than the melting point of the conductive particles and at which the curing of the resin component is not completed, and a resin component curing step for curing the resin component The electrical connection between the electrodes is described. Patent Document 1 describes that mounting is performed with the temperature profile shown in FIG. In Patent Document 1, conductive particles melt in a resin component that is not completely cured at a temperature at which the anisotropic conductive material is heated.
 また、下記の特許文献2には、フラックスと、スズが主成分である合金粉末とを含むはんだペースト(導電材料)が開示されている。上記フラックスは、溶剤中に、活性剤を添加して、分散させたフラックスである。上記溶剤は、水酸基を2~4個有する多価アルコールである。上記活性剤は、水酸基を4~6個有する糖類である。上記活性剤の平均粒子径は、100μm以下である。 Further, Patent Document 2 below discloses a solder paste (conductive material) containing a flux and an alloy powder containing tin as a main component. The flux is a flux in which an activator is added and dispersed in a solvent. The solvent is a polyhydric alcohol having 2 to 4 hydroxyl groups. The activator is a saccharide having 4 to 6 hydroxyl groups. The average particle diameter of the active agent is 100 μm or less.
 また、下記の特許文献3には、鉛フリーSnZn系合金と、はんだ付け用フラックスとを含むはんだ組成物(導電材料)が開示されている。上記はんだ付け用フラックスは、エポキシ樹脂と、有機カルボン酸とを含む。上記有機カルボン酸は、室温(25℃)において上記はんだ組成物中に固体で分散している。 Further, Patent Document 3 below discloses a solder composition (conductive material) containing a lead-free SnZn-based alloy and a soldering flux. The soldering flux contains an epoxy resin and an organic carboxylic acid. The organic carboxylic acid is solidly dispersed in the solder composition at room temperature (25 ° C.).
特開2004-260131号公報JP 2004-260131 A 特開2007-216296号公報JP 2007-216296 A WO2003/002290A1WO2003 / 002290A1
 特許文献1~3に記載のような従来の導電材料では、導電性粒子又ははんだ粒子の電極(ライン)上への移動速度が遅く、接続されるべき上下の電極間にはんだを効率的に凝集させることが困難な場合がある。結果として、電極間の導通信頼性及び絶縁信頼性が低くなり易い。 In the conventional conductive materials described in Patent Documents 1 to 3, the moving speed of the conductive particles or solder particles onto the electrodes (lines) is slow, and the solder is efficiently aggregated between the upper and lower electrodes to be connected. It may be difficult to do. As a result, the conduction reliability and insulation reliability between the electrodes tend to be low.
 電極上にはんだを効率的に凝集させる方法としては、導電材料中のフラックスの配合量を増加させる方法等が挙げられる。 Examples of a method for efficiently aggregating solder on the electrode include a method for increasing the blending amount of the flux in the conductive material.
 しかしながら、導電材料中におけるフラックスの含有量を増加させると、フラックスと導電材料中の熱硬化性化合物とが反応して、導電材料の保存安定性が低下することがある。また、導電材料中におけるフラックスの含有量を増加させると、導電材料の硬化物の耐熱性が低下することがある。 However, when the content of the flux in the conductive material is increased, the flux and the thermosetting compound in the conductive material may react to reduce the storage stability of the conductive material. Moreover, when the content of the flux in the conductive material is increased, the heat resistance of the cured product of the conductive material may be reduced.
 特許文献1~3に記載のような従来の導電材料では、導電材料の保存安定性を高めることと、導電接続時のはんだの凝集性を高めることと、硬化物の耐熱性を高めることとの、これらの全ての要求を満足させることは困難である。 In the conventional conductive materials as described in Patent Documents 1 to 3, the storage stability of the conductive material is increased, the cohesiveness of solder at the time of conductive connection is increased, and the heat resistance of the cured product is increased. It is difficult to satisfy all these requirements.
 本発明の目的は、導電材料の保存安定性を効果的に高めることができ、導電接続時のはんだの凝集性を効果的に高めることができ、さらに、硬化物の耐熱性を効果的に高めることができる導電材料を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体を提供することである。 An object of the present invention is to effectively increase the storage stability of a conductive material, to effectively increase the cohesiveness of solder during conductive connection, and to effectively increase the heat resistance of a cured product. It is to provide a conductive material that can be used. Another object of the present invention is to provide a connection structure using the conductive material.
 本発明の広い局面によれば、導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、フラックスとを含み、以下の第1の構成及び第2の構成のいずれか1以上を備える、導電材料が提供される。 According to a wide aspect of the present invention, the conductive part includes a plurality of conductive particles having solder on the outer surface portion thereof, a thermosetting compound, and a flux, and includes any one of the following first configuration and second configuration. Or a conductive material comprising one or more.
 第1の構成:前記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないか、又は、前記フラックスの全個数100%中、前記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在する。 First configuration: There is no flux having a particle size that is twice or more the average particle size of the flux, or a particle size that is twice or more the average particle size of the flux in 100% of the total number of the fluxes Are present in a number of less than 10%.
 第2の構成:前記導電材料から前記導電性粒子を取り除いた組成物がコロイドであり、前記フラックスがコロイド粒子として存在する。 Second configuration: The composition obtained by removing the conductive particles from the conductive material is a colloid, and the flux is present as a colloid particle.
 本発明に係る導電材料のある特定の局面では、前記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが存在しないか、又は、前記フラックスの全個数100%中、前記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、20%未満の個数で存在する。 In a specific aspect of the conductive material according to the present invention, there is no flux having a particle diameter of 1.5 times or more of the average particle diameter of the flux, or the total number of the flux is 100%. Flux having a particle size of 1.5 times the average particle size is present in a number of less than 20%.
 本発明に係る導電材料のある特定の局面では、前記フラックスの平均粒子径が、1μm以下である。 In a specific aspect of the conductive material according to the present invention, the average particle diameter of the flux is 1 μm or less.
 本発明に係る導電材料のある特定の局面では、前記熱硬化性化合物100重量部に対して、前記フラックスの含有量が、1重量部以上20重量部以下である。 In a specific aspect of the conductive material according to the present invention, the content of the flux is 1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the thermosetting compound.
 本発明に係る導電材料のある特定の局面では、導電材料100重量%中、前記フラックスの含有量が、0.05重量%以上20重量%以下である。 In a specific aspect of the conductive material according to the present invention, the content of the flux is 0.05% by weight or more and 20% by weight or less in 100% by weight of the conductive material.
 本発明に係る導電材料のある特定の局面では、前記導電材料が、導電ペーストである。 In a specific aspect of the conductive material according to the present invention, the conductive material is a conductive paste.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。 According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, A connecting portion connecting the second connection target member, wherein the material of the connecting portion is the conductive material described above, and the first electrode and the second electrode are the connecting portion. A connection structure is provided that is electrically connected by a solder portion therein.
 本発明に係る接続構造体のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている。 In a specific aspect of the connection structure according to the present invention, the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode. When the portion is viewed, the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion where the first electrode and the second electrode face each other.
 本発明に係る導電材料は、導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、フラックスとを含み、上記第1の構成及び上記第2の構成のいずれか1以上を備える。本発明に係る導電材料では、上記の構成が備えられているので、導電材料の保存安定性を効果的に高めることができ、導電接続時のはんだの凝集性を効果的に高めることができ、さらに、硬化物の耐熱性を効果的に高めることができる。 The conductive material according to the present invention includes a plurality of conductive particles having solder on the outer surface portion of the conductive portion, a thermosetting compound, and a flux, and is one of the first configuration and the second configuration. Provide one or more. In the conductive material according to the present invention, since the above-described configuration is provided, the storage stability of the conductive material can be effectively increased, and the cohesiveness of the solder at the time of conductive connection can be effectively increased. Furthermore, the heat resistance of the cured product can be effectively increased.
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention. 図2(a)~(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using a conductive material according to an embodiment of the present invention. 図3は、接続構造体の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modification of the connection structure. 図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material. 図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used for the conductive material. 図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used for the conductive material.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 (導電材料)
 本発明に係る導電材料は、導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、フラックスとを含む。本発明に係る導電材料は、以下の第1の構成及び第2の構成のいずれか1以上を備える。本発明に係る導電材料は、以下の第1の構成のみを備えていてもよく、以下の第2の構成のみを備えていてもよく、以下の第1の構成及び以下の第2の構成の双方の構成を備えていてもよい。
(Conductive material)
The conductive material according to the present invention includes a plurality of conductive particles having solder on the outer surface portion of the conductive portion, a thermosetting compound, and a flux. The conductive material according to the present invention includes one or more of the following first configuration and second configuration. The conductive material according to the present invention may have only the following first configuration, may have only the following second configuration, and has the following first configuration and the following second configuration. Both configurations may be provided.
 第1の構成:上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないか、又は、上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在する First configuration: There is no flux having a particle diameter of twice or more of the average particle diameter of the flux, or a particle diameter of twice or more of the average particle diameter of the flux in 100% of the total number of the fluxes. Present in a number less than 10%
 第2の構成:上記導電材料から上記導電性粒子を取り除いた組成物がコロイドであり、上記フラックスがコロイド粒子として存在する Second configuration: the composition obtained by removing the conductive particles from the conductive material is a colloid, and the flux is present as a colloidal particle.
 本発明に係る導電材料は、上記第1の構成として、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないという構成(第1aの構成)を備えていてもよい。本発明に係る導電材料は、上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在するという構成(第1bの構成)を備えていてもよい。 The conductive material according to the present invention may include, as the first configuration, a configuration in which a flux having a particle size that is twice or more the average particle size of the flux does not exist (configuration 1a). The conductive material according to the present invention is configured such that, out of 100% of the total number of the fluxes, a flux having a particle size that is twice or more the average particle size of the flux exists in a number of less than 10% (configuration 1b) ) May be provided.
 本発明に係る導電材料は、上記第1aの構成のみを備えていてもよく、上記第1bの構成のみを備えていてもよく、上記第2の構成のみを備えていてもよく、上記第1aの構成と上記第2の構成とを備えていてもよく、上記第1bの構成と上記第2の構成とを備えていてもよい。 The conductive material according to the present invention may include only the configuration of the first 1a, may include only the configuration of the first 1b, may include only the second configuration, or may include the first 1a. The above configuration and the second configuration may be included, and the above configuration 1b and the above second configuration may be included.
 本発明では、上記の構成が備えられているので、導電材料の保存安定性を高めることができ、導電接続時のはんだの凝集性を効果的に高めることができ、さらに、硬化物の耐熱性を効果的に高めることができる。 In the present invention, since the above-described configuration is provided, the storage stability of the conductive material can be increased, the cohesiveness of the solder at the time of conductive connection can be effectively increased, and further, the heat resistance of the cured product Can be effectively increased.
 本発明では、上記の構成が備えられているので、電極間を電気的に接続した場合に、複数の導電性粒子を電極(ライン)上に効率的に配置することができ、接続されるべき上下の電極間にはんだを効率的に凝集させることができる。また、複数の導電性粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置される導電性粒子の量をかなり少なくすることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。 In the present invention, since the above-described configuration is provided, when the electrodes are electrically connected, a plurality of conductive particles can be efficiently disposed on the electrodes (lines) and should be connected. Solder can be efficiently aggregated between the upper and lower electrodes. Moreover, it is difficult for some of the plurality of conductive particles to be disposed in a region (space) where no electrode is formed, and the amount of conductive particles disposed in a region where no electrode is formed can be considerably reduced. . Therefore, the conduction reliability between the electrodes can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.
 フラックスは、主として、導電性粒子におけるはんだの表面及び電極の表面等に存在する酸化物を除去したり、該酸化物の形成を防止したりするために導電材料中に配合されている。本発明では、フラックスは比較的凝集し難く、フラックスの粒子径は比較的小さい。さらに、本発明では、フラックスは比較的良好に分散している。このため、本発明では、導電材料中におけるフラックスの含有量が比較的少量であっても、導電性粒子におけるはんだの表面及び電極の表面等に存在する酸化物を除去することができ、該酸化物の形成を防止することができる。本発明では、導電材料中におけるフラックスの含有量が比較的少量であっても、導電接続時のはんだの凝集性を効果的に高めることができる。本発明では、導電材料中におけるフラックスの含有量を比較的少量にすることができる。 The flux is mainly blended in the conductive material in order to remove oxides present on the surface of the solder and the surface of the electrodes in the conductive particles and to prevent the formation of the oxides. In the present invention, the flux is relatively difficult to aggregate and the particle size of the flux is relatively small. Furthermore, in the present invention, the flux is relatively well dispersed. For this reason, in the present invention, even if the content of the flux in the conductive material is relatively small, the oxide present on the surface of the solder and the surface of the electrode in the conductive particles can be removed. The formation of objects can be prevented. In the present invention, even when the flux content in the conductive material is relatively small, the cohesiveness of the solder during the conductive connection can be effectively increased. In the present invention, the flux content in the conductive material can be made relatively small.
 フラックスが同じ含有量での対比において、本発明におけるフラックスの存在状態である場合に、本発明におけるフラックスの存在状態ではない場合と比べて、導電接続時のはんだの凝集性を効果的に高めることができる。 Compared with the case where the flux is present in the present invention in comparison with the same content of flux, the cohesiveness of the solder at the time of conductive connection is effectively increased compared to the case where the flux is not present in the present invention. Can do.
 本発明では、導電材料中におけるフラックスの含有量を多量にしなくてもよく、比較的少量にすることができるので、導電材料中における熱硬化性化合物とフラックスとの反応を効果的に抑制することができる。結果として、導電材料の保存安定性を効果的に高めることができる。 In the present invention, the content of the flux in the conductive material does not need to be large, and can be relatively small, so that the reaction between the thermosetting compound and the flux in the conductive material is effectively suppressed. Can do. As a result, the storage stability of the conductive material can be effectively increased.
 また、導電材料中におけるフラックスの融点(活性温度)は、導電材料中における熱硬化性化合物のTgよりも低い場合が多く、導電材料中におけるフラックスの含有量が多くなるほど、導電材料の硬化物の耐熱性が低下する傾向がある。本発明では、導電材料中におけるフラックスの含有量を多量にしなくてもよく、比較的少量にすることができるので、導電材料の硬化物の耐熱性を効果的に高めることができる。 Further, the melting point (activation temperature) of the flux in the conductive material is often lower than the Tg of the thermosetting compound in the conductive material, and the higher the flux content in the conductive material, the more the cured material of the conductive material. Heat resistance tends to decrease. In the present invention, the content of the flux in the conductive material does not need to be increased and can be decreased relatively, so that the heat resistance of the cured product of the conductive material can be effectively enhanced.
 本発明では、上記の構成を備えているので、導電材料の保存安定性を高めることと、導電接続時のはんだの凝集性を高めることと、硬化物の耐熱性を高めることとの、これらの全ての要求を満足させることができる。 In the present invention, since the above-described configuration is provided, the storage stability of the conductive material, the cohesiveness of the solder during conductive connection, and the heat resistance of the cured product are increased. All requirements can be satisfied.
 さらに、本発明では、電極間の位置ずれを防ぐことができる。導電接続時には、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせる。この際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、本発明では、ずれを補正できる。結果として、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。 Furthermore, in the present invention, it is possible to prevent displacement between the electrodes. At the time of conductive connection, the second connection target member is superimposed on the first connection target member having the conductive material disposed on the upper surface. At this time, even when the first connection target member and the second connection target member are overlapped in a state where the alignment of the electrode of the first connection target member and the electrode of the second connection target member is shifted. In the present invention, the deviation can be corrected. As a result, the electrode of the first connection target member and the electrode of the second connection target member can be connected (self-alignment effect).
 はんだの凝集性をより一層高める観点からは、上記導電材料は、25℃で液状であることが好ましく、導電ペーストであることが好ましい。 From the viewpoint of further improving the cohesiveness of the solder, the conductive material is preferably liquid at 25 ° C., and preferably a conductive paste.
 はんだの凝集性をより一層高める観点からは、上記導電材料の25℃での粘度(η25)は、好ましくは20Pa・s以上、より好ましくは30Pa・s以上であり、好ましくは500Pa・s以下、より好ましくは300Pa・s以下である。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。 From the viewpoint of further increasing the cohesiveness of the solder, the viscosity (η25) at 25 ° C. of the conductive material is preferably 20 Pa · s or more, more preferably 30 Pa · s or more, preferably 500 Pa · s or less. More preferably, it is 300 Pa · s or less. The said viscosity ((eta) 25) can be suitably adjusted with the kind and compounding quantity of a compounding component.
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。 The viscosity (η25) can be measured under conditions of 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電ペーストは異方性導電ペーストであることが好ましく、上記導電フィルムは異方性導電フィルムであることが好ましい。はんだの凝集性をより一層高める観点からは、上記導電材料は、導電ペーストであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。 The conductive material can be used as a conductive paste and a conductive film. The conductive paste is preferably an anisotropic conductive paste, and the conductive film is preferably an anisotropic conductive film. From the viewpoint of further increasing the cohesiveness of the solder, the conductive material is preferably a conductive paste. The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.
 以下、導電材料に含まれる各成分を説明する。なお、本明細書中において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味する。 Hereinafter, each component included in the conductive material will be described. In the present specification, “(meth) acryl” means one or both of “acryl” and “methacryl”, and “(meth) acrylate” means one or both of “acrylate” and “methacrylate”. Means.
 (導電性粒子)
 上記導電性粒子は、接続対象部材の電極間を電気的に接続する。上記導電性粒子は、導電部の外表面部分にはんだを有する。上記導電性粒子は、はんだにより形成されたはんだ粒子であってもよい。上記はんだ粒子は、はんだを導電部の外表面部分に有する。上記はんだ粒子は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び導電性の外表面のいずれもがはんだである粒子である。上記導電性粒子は、基材粒子と、該基材粒子の表面上に配置された導電部とを有していてもよい。この場合に、上記導電性粒子は、導電部の外表面部分に、はんだを有する。
(Conductive particles)
The conductive particles electrically connect the electrodes of the connection target member. The conductive particles have solder on the outer surface portion of the conductive portion. The conductive particles may be solder particles formed by solder. The solder particles have solder on the outer surface portion of the conductive portion. As for the said solder particle, both the center part and the outer surface part of an electroconductive part are formed with the solder. The solder particles are particles in which both the central portion and the conductive outer surface are solder. The said electroconductive particle may have a base material particle and the electroconductive part arrange | positioned on the surface of this base material particle. In this case, the conductive particles have solder on the outer surface portion of the conductive portion.
 上記導電性粒子は、導電部の外表面部分にはんだを有する。上記基材粒子は、はんだにより形成されたはんだ粒子であってもよい。上記導電性粒子は、基材粒子及び導電部の外表面部分のいずれもがはんだであるはんだ粒子であってもよい。 The conductive particles have solder on the outer surface portion of the conductive portion. The substrate particles may be solder particles formed by solder. The conductive particles may be solder particles in which both the base particle and the outer surface portion of the conductive portion are solder.
 なお、上記はんだ粒子を用いた場合と比べて、はんだにより形成されていない基材粒子と、該基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなる。さらに、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。従って、上記導電性粒子は、はんだにより形成されたはんだ粒子であることが好ましい。 In addition, compared with the case where the above solder particles are used, when using conductive particles including base particles not formed by solder and solder portions arranged on the surface of the base particles, It becomes difficult for conductive particles to collect on the electrode. Furthermore, since the solder bonding property between the conductive particles is low, the conductive particles that have moved onto the electrodes tend to move out of the electrodes, and the effect of suppressing displacement between the electrodes also tends to be low. Therefore, the conductive particles are preferably solder particles formed by solder.
 次に図面を参照しつつ、導電性粒子の具体例を説明する。 Next, specific examples of conductive particles will be described with reference to the drawings.
 図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。 FIG. 4 is a cross-sectional view showing a first example of conductive particles that can be used as a conductive material.
 図4に示す導電性粒子21は、はんだ粒子である。導電性粒子21は、全体がはんだにより形成されている。導電性粒子21は、基材粒子をコアに有さず、コアシェル粒子ではない。導電性粒子21は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。 The conductive particles 21 shown in FIG. 4 are solder particles. The conductive particles 21 are entirely formed of solder. The conductive particles 21 do not have base particles in the core, and are not core-shell particles. As for the electroconductive particle 21, both the center part and the outer surface part of an electroconductive part are formed with the solder.
 図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。 FIG. 5 is a cross-sectional view showing a second example of conductive particles that can be used as a conductive material.
 図5に示す導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された導電部33とを備える。導電部33は、基材粒子32の表面を被覆している。導電性粒子31は、基材粒子32の表面が導電部33により被覆された被覆粒子である。 The electroconductive particle 31 shown in FIG. 5 is equipped with the base material particle 32 and the electroconductive part 33 arrange | positioned on the surface of the base material particle 32. FIG. The conductive portion 33 covers the surface of the base particle 32. The conductive particles 31 are coated particles in which the surface of the base particle 32 is covered with the conductive portion 33.
 導電部33は、第2の導電部33Aと、はんだ部33B(第1の導電部)とを有する。導電性粒子31は、基材粒子32と、はんだ部33Bとの間に、第2の導電部33Aを備える。従って、導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された第2の導電部33Aと、第2の導電部33Aの外表面上に配置されたはんだ部33Bとを備える。 The conductive portion 33 has a second conductive portion 33A and a solder portion 33B (first conductive portion). The conductive particle 31 includes a second conductive portion 33A between the base particle 32 and the solder portion 33B. Therefore, the conductive particles 31 are composed of the base particle 32, the second conductive portion 33A disposed on the surface of the base particle 32, and the solder portion 33B disposed on the outer surface of the second conductive portion 33A. With.
 図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。 FIG. 6 is a cross-sectional view showing a third example of conductive particles that can be used as a conductive material.
 図5における導電性粒子31の導電部33は2層構造を有する。図6に示す導電性粒子41は、単層の導電部として、はんだ部42を有する。導電性粒子41は、基材粒子32と、基材粒子32の表面上に配置されたはんだ部42とを備える。 The conductive part 33 of the conductive particles 31 in FIG. 5 has a two-layer structure. The conductive particle 41 shown in FIG. 6 has a solder part 42 as a single-layer conductive part. The conductive particles 41 include base particles 32 and solder portions 42 disposed on the surfaces of the base particles 32.
 以下、導電性粒子の他の詳細について説明する。 Hereinafter, other details of the conductive particles will be described.
 (基材粒子)
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
(Base particle)
Examples of the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. The substrate particles are preferably substrate particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The base particle may be a core-shell particle including a core and a shell disposed on the surface of the core. The core may be an organic core, and the shell may be an inorganic shell.
 上記基材粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることがさらに好ましく、樹脂粒子であってもよく、有機無機ハイブリッド粒子であってもよい。これらの好ましい基材粒子の使用により、本発明の効果がより一層効果的に発揮され、電極間の電気的な接続により一層適した導電性粒子が得られる。 The base material particles are more preferably resin particles or organic-inorganic hybrid particles, and may be resin particles or organic-inorganic hybrid particles. By using these preferable base particles, the effects of the present invention are more effectively exhibited, and conductive particles more suitable for electrical connection between electrodes can be obtained.
 上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。基材粒子が樹脂粒子又は有機無機ハイブリッド粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性がより一層高くなる。 When connecting the electrodes using the conductive particles, the conductive particles are compressed by placing the conductive particles between the electrodes and then pressing them. When the substrate particles are resin particles or organic-inorganic hybrid particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction | electrical_connection reliability between electrodes becomes still higher.
 上記樹脂粒子の材料として、種々の樹脂が好適に用いられる。上記樹脂粒子の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。 Various resins are suitably used as the material for the resin particles. Examples of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polyalkylene terephthalate and polycarbonate. , Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polysulfone, polyphenylene oxide, polyacetal, Polyimide, polyamideimide, polyetheretherketone, polyester Terusuruhon, and polymers such as obtained by a variety of polymerizable monomer having an ethylenically unsaturated group is polymerized with one or more thereof.
 導電材料に適した任意の圧縮特性を有する樹脂粒子を設計及び合成することができ、かつ樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Resin particles having an arbitrary compression characteristic suitable for a conductive material can be designed and synthesized, and the hardness of the resin particles can be easily controlled within a suitable range. The polymer is preferably a polymer obtained by polymerizing one or more polymerizable monomers having a plurality of.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, as the polymerizable monomer having an ethylenically unsaturated group, a non-crosslinkable monomer and And a crosslinkable monomer.
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylate compounds such as meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate, etc. Oxygen atom-containing (meth) acrylate compounds; nitrile-containing monomers such as (meth) acrylonitrile; vinyl acetate compounds such as vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate; ethylene, propylene, isoprene, butadiene, etc. Unsaturated hydrocarbons; halogen-containing monomers such as trifluoromethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene.
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。 Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylate compounds such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) sia Silane-containing monomers such as rate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, etc. Can be mentioned.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method of suspension polymerization in the presence of a radical polymerization initiator, and a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
 上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合に、上記基材粒子の材料である無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上持つケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the substrate particles are inorganic particles or organic-inorganic hybrid particles excluding metal particles, examples of the inorganic material used as the material of the substrate particles include silica, alumina, barium titanate, zirconia, and carbon black. The inorganic substance is preferably not a metal. The particles formed by the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle | grains obtained by performing are mentioned. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗をより一層効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. The core is preferably an organic core. The shell is preferably an inorganic shell. From the viewpoint of further effectively reducing the connection resistance between the electrodes, the base material particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core. .
 上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。 The material for the organic core includes the material for the resin particles described above.
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 As the material of the inorganic shell, the inorganic materials mentioned as the material for the base material particles described above can be used. The material of the inorganic shell is preferably silica. The inorganic shell is preferably formed on the surface of the core by forming a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material. The metal alkoxide is preferably a silane alkoxide. The inorganic shell is preferably formed of a silane alkoxide.
 上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましい。 When the substrate particles are metal particles, examples of the metal that is a material of the metal particles include silver, copper, nickel, silicon, gold, and titanium. However, the substrate particles are preferably not metal particles.
 上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、さらに好ましくは50μm以下である。上記基材粒子の粒子径が、上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗をより一層効果的に低くすることができる。さらに基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。上記基材粒子の粒子径が、上記上限以下であると、導電性粒子が十分に圧縮されやすく、導電性粒子を介して接続された電極間の接続抵抗をより一層効果的に低くすることができる。 The particle diameter of the substrate particles is preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 3 μm or more, preferably 100 μm or less, more preferably 60 μm or less, and even more preferably 50 μm or less. When the particle diameter of the substrate particles is equal to or greater than the lower limit, the contact area between the conductive particles and the electrodes is increased, so that the conduction reliability between the electrodes is further increased and the conductive particles are connected via the conductive particles. Further, the connection resistance between the electrodes can be further effectively reduced. Further, when forming the conductive portion on the surface of the base particle, it becomes difficult to aggregate and it becomes difficult to form the aggregated conductive particles. When the particle diameter of the substrate particles is not more than the above upper limit, the conductive particles are easily compressed, and the connection resistance between the electrodes connected through the conductive particles can be further effectively reduced. it can.
 上記基材粒子の粒子径は、5μm以上40μm以下であることが特に好ましい。上記基材粒子の粒子径が、5μm以上40μm以下の範囲内であると、電極間の間隔をより小さくすることができ、かつ導電部の厚みを厚くしても、小さい導電性粒子を得ることができる。 The particle diameter of the substrate particles is particularly preferably 5 μm or more and 40 μm or less. When the particle diameter of the substrate particles is in the range of 5 μm or more and 40 μm or less, the distance between the electrodes can be further reduced, and even if the thickness of the conductive part is increased, small conductive particles can be obtained. Can do.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。 The particle diameter of the substrate particles indicates a diameter when the substrate particles are spherical, and indicates a maximum diameter when the substrate particles are not spherical.
 上記基材粒子の粒子径は、数平均粒子径を示す。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。導電性粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle diameter of the base material particles indicates a number average particle diameter. The particle diameter of the substrate particles is determined using a particle size distribution measuring device or the like. The particle diameter of the substrate particles is preferably determined by observing 50 arbitrary substrate particles with an electron microscope or an optical microscope and calculating an average value. In the case of measuring the particle diameter of the substrate particles in the conductive particles, for example, it can be measured as follows.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。 An embedded resin for inspecting conductive particles is prepared by adding to and dispersing in “Technobit 4000” manufactured by Kulzer so that the content of the conductive particles is 30% by weight. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass through the vicinity of the center of the conductive particles dispersed in the embedding resin for inspection. Using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 25000 times, 50 conductive particles are randomly selected, and the base particles of each conductive particle are observed. To do. The particle diameter of the base particle in each conductive particle is measured, and arithmetically averaged to obtain the particle diameter of the base particle.
 (導電部)
 上記基材粒子の表面上に導電部を形成する方法、並びに上記基材粒子の表面上又は上記第2の導電部の表面上にはんだ部を形成する方法は特に限定されない。上記導電部及び上記はんだ部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記導電部及び上記はんだ部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。
(Conductive part)
The method for forming the conductive part on the surface of the base particle and the method for forming the solder part on the surface of the base particle or the surface of the second conductive part are not particularly limited. Examples of the method for forming the conductive portion and the solder portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, And a method of coating the surface of the substrate particles with a paste containing metal powder or metal powder and a binder. The method for forming the conductive portion and the solder portion is preferably a method using electroless plating, electroplating, or physical collision. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kogakusha Co., Ltd.) or the like is used.
 上記基材粒子の融点は、上記導電部及び上記はんだ部の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、さらに好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。 The melting point of the base material particles is preferably higher than the melting points of the conductive part and the solder part. The melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C. The melting point of the substrate particles may be less than 400 ° C. The melting point of the substrate particles may be 160 ° C. or less. The softening point of the substrate particles is preferably 260 ° C. or higher. The softening point of the substrate particles may be less than 260 ° C.
 上記導電性粒子は、単層のはんだ部を有していてもよい。上記導電性粒子は、複数の層の導電部(はんだ部,第2の導電部)を有していてもよい。すなわち、上記導電性粒子では、導電部を2層以上積層してもよい。上記導電部が2層以上の場合、上記導電性粒子は、導電部の外表面部分にはんだを有することが好ましい。 The conductive particles may have a single layer solder portion. The conductive particles may have a plurality of layers of conductive parts (solder part, second conductive part). That is, in the conductive particles, two or more conductive portions may be stacked. When the conductive part has two or more layers, the conductive particles preferably have solder on the outer surface portion of the conductive part.
 上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ部は、融点が450℃以下である金属層(低融点金属層)であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記導電性粒子におけるはんだは、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。上記低融点金属とは、融点が450℃以下の金属を示す。上記低融点金属の融点は、好ましくは300℃以下、より好ましくは160℃以下である。また、上記導電性粒子におけるはんだは、錫を含むことが好ましい。上記はんだ部に含まれる金属100重量%中及び上記導電性粒子におけるはんだに含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ部及び上記導電性粒子におけるはんだに含まれる錫の含有量が、上記下限以上であると、導電性粒子と電極との導通信頼性がより一層高くなる。 The solder is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower. The solder part is preferably a metal layer (low melting point metal layer) having a melting point of 450 ° C. or lower. The low melting point metal layer is a layer containing a low melting point metal. The solder in the conductive particles is preferably metal particles having a melting point of 450 ° C. or lower (low melting point metal particles). The low melting point metal particles are particles containing a low melting point metal. The low melting point metal is a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower. Moreover, it is preferable that the solder in the said electroconductive particle contains a tin. In 100% by weight of the metal contained in the solder part and 100% by weight of the metal contained in the solder in the conductive particles, the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably. Is 70% by weight or more, particularly preferably 90% by weight or more. When the content of tin contained in the solder in the solder part and the conductive particles is equal to or higher than the lower limit, the conduction reliability between the conductive particles and the electrode is further enhanced.
 なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定することができる。 The tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). Can be measured.
 上記はんだを導電部の外表面部分に有する導電性粒子を用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだを導電部の外表面部分に有する導電性粒子の使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性が効果的に高くなる。 Using the conductive particles having the solder on the outer surface portion of the conductive portion, the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered. In addition, the use of conductive particles having solder on the outer surface of the conductive portion increases the bonding strength between the solder and the electrode, and as a result, the solder and the electrode are more unlikely to peel off, and the conduction reliability is effective. To be high.
 上記はんだ部及び上記はんだを構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金としては、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。錫-ビスマス合金、錫-インジウム合金であることがより好ましい。 The solder part and the low melting point metal constituting the solder are not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy. The low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, or tin-indium alloy because of its excellent wettability to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
 上記はんだ(はんだ部)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。 The material constituting the solder (solder part) is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: Welding terms. Examples of the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. A tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic), which has a low melting point and is free of lead, is preferred. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium or a solder containing tin and bismuth.
 はんだ部又は導電性粒子におけるはんだと電極との接合強度をより一層高めるために、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだ部又は導電性粒子におけるはんだと電極との接合強度をさらに一層高める観点からは、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部又は導電性粒子におけるはんだと電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、上記導電性粒子におけるはんだ100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。 In order to further increase the bonding strength between the solder and the electrode in the solder part or conductive particle, the solder in the conductive particle is nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium. , Cobalt, bismuth, manganese, chromium, molybdenum, palladium, and other metals may be included. Moreover, from the viewpoint of further increasing the bonding strength between the solder and the electrode in the solder portion or the conductive particles, the solder in the conductive particles preferably contains nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the solder and the electrode in the solder portion or the conductive particles, the content of these metals for increasing the bonding strength is preferably 0% in 100% by weight of the solder in the conductive particles. 0.0001% by weight or more, preferably 1% by weight or less.
 上記第2の導電部の融点は、上記はんだ部の融点よりも高いことが好ましい。上記第2の導電部の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、さらに好ましくは400℃を超え、さらに一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ部は融点が低いために導電接続時に溶融する。上記第2の導電部は導電接続時に溶融しないことが好ましい。上記導電性粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ部を溶融させて用いられることが好ましく、上記はんだ部を溶融させてかつ上記第2の導電部を溶融させずに用いられることが好ましい。上記第2の導電部の融点が上記はんだ部の融点をよりも高いことによって、導電接続時に、上記第2の導電部を溶融させずに、上記はんだ部のみを溶融させることができる。 The melting point of the second conductive part is preferably higher than the melting point of the solder part. The melting point of the second conductive part is preferably more than 160 ° C, more preferably more than 300 ° C, still more preferably more than 400 ° C, still more preferably more than 450 ° C, particularly preferably more than 500 ° C, Most preferably above 600 ° C. Since the solder part has a low melting point, it melts during conductive connection. It is preferable that the second conductive portion does not melt during conductive connection. The conductive particles are preferably used by melting solder, preferably used by melting the solder part, and used without melting the solder part and melting the second conductive part. It is preferred that Since the melting point of the second conductive part is higher than the melting point of the solder part, it is possible to melt only the solder part without melting the second conductive part during conductive connection.
 上記はんだ部の融点と上記第2の導電部との融点との差の絶対値は、0℃を超え、好ましくは5℃以上、より好ましくは10℃以上、さらに好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。 The absolute value of the difference between the melting point of the solder part and the melting point of the second conductive part exceeds 0 ° C, preferably 5 ° C or more, more preferably 10 ° C or more, still more preferably 30 ° C or more, particularly preferably Is 50 ° C. or higher, most preferably 100 ° C. or higher.
 上記第2の導電部は、金属を含むことが好ましい。上記第2の導電部を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。 The second conductive part preferably contains a metal. The metal which comprises the said 2nd electroconductive part is not specifically limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
 上記第2の導電部は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層、金層又は銅層であることがより好ましく、銅層であることがさらに好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層、金層又は銅層を有することがより好ましく、銅層を有することがさらに好ましい。これらの好ましい導電部を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電部の表面には、はんだ部をより一層容易に形成できる。 The second conductive portion is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer, a gold layer or a copper layer, and further preferably a copper layer. The conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer, a gold layer, or a copper layer, and more preferably have a copper layer. By using the conductive particles having these preferable conductive parts for the connection between the electrodes, the connection resistance between the electrodes is further reduced. Moreover, a solder part can be more easily formed on the surface of these preferable conductive parts.
 上記はんだ部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。はんだ部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。 The thickness of the solder part is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, and still more preferably 0.3 μm or less. When the thickness of the solder part is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles are not deformed too much, and the conductive particles are sufficiently deformed when connecting the electrodes. To do.
 上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上であり、好ましくは100μm以下、より好ましくは60μm以下、さらに好ましくは50μm以下、特に好ましくは40μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、電極上に導電性粒子におけるはんだをより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。 The particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 3 μm or more, preferably 100 μm or less, more preferably 60 μm or less, still more preferably 50 μm or less, particularly preferably. 40 μm or less. When the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and there are many solders in the conductive particles between the electrodes. It is easy to arrange and the conduction reliability is further enhanced.
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。導電性粒子の平均粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。 The particle diameter of the conductive particles is preferably an average particle diameter, and more preferably a number average particle diameter. The average particle diameter of the conductive particles is obtained, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or performing laser diffraction particle size distribution measurement.
 上記導電性粒子の粒子径のCV値は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記粒子径のCV値が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。但し、上記導電性粒子の粒子径のCV値は、5%未満であってもよい。 The CV value of the particle diameter of the conductive particles is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 30% or less. When the CV value of the particle diameter is not less than the above lower limit and not more than the above upper limit, the solder can be more efficiently arranged on the electrode. However, the CV value of the particle diameter of the conductive particles may be less than 5%.
 上記導電性粒子の粒子径のCV値(変動係数)は、以下のようにして測定できる。 The CV value (coefficient of variation) of the particle diameter of the conductive particles can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の粒子径の標準偏差
 Dn:導電性粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of conductive particles Dn: Average value of particle diameter of conductive particles
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、扁平状等の球状以外の形状であってもよい。 The shape of the conductive particles is not particularly limited. The conductive particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.
 上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、さらに好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上であり、好ましくは95重量%以下、より好ましくは90重量%以下、さらに好ましくは85重量%以下である。上記導電材料100重量%中、上記導電性粒子の含有量は、80重量%未満であってもよい。上記導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極上に導電性粒子におけるはんだをより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記導電性粒子の含有量は多い方が好ましい。 The content of the conductive particles in 100% by weight of the conductive material is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, and most preferably. Is 30% by weight or more, preferably 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less. The content of the conductive particles in 100% by weight of the conductive material may be less than 80% by weight. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be arranged more efficiently on the electrodes, and more solder in the conductive particles is provided between the electrodes. It is easy to arrange and the conduction reliability is further enhanced. From the viewpoint of further improving the conduction reliability, the content of the conductive particles is preferably large.
 (熱硬化性化合物)
 本発明に係る導電材料は、熱硬化性化合物を含む。上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にし、導通信頼性をより一層高める観点から、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記導電材料は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting compound)
The conductive material according to the present invention includes a thermosetting compound. The thermosetting compound is a compound that can be cured by heating. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. From the viewpoint of further improving the curability and viscosity of the conductive material and further improving the conduction reliability, an epoxy compound or an episulfide compound is preferable, and an epoxy compound is more preferable. The conductive material preferably contains an epoxy compound. As for the said thermosetting compound, only 1 type may be used and 2 or more types may be used together.
 上記エポキシ化合物としては、レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、ベンゾフェノン型エポキシ化合物、フェノールノボラック型エポキシ化合物等の芳香族エポキシ化合物が好ましい。上記エポキシ化合物の溶融温度は、はんだの融点以下であることが好ましい。上記エポキシ化合物の溶融温度は、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは40℃以下である。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができる。さらに、硬化時の熱により、粘度を大きく低下させることができ、導電性粒子におけるはんだの凝集を効率よく進行させることができる。 The epoxy compound is preferably an aromatic epoxy compound such as a resorcinol type epoxy compound, a naphthalene type epoxy compound, a biphenyl type epoxy compound, a benzophenone type epoxy compound, or a phenol novolac type epoxy compound. The melting temperature of the epoxy compound is preferably not higher than the melting point of the solder. The melting temperature of the epoxy compound is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 40 ° C. or lower. By using the preferable epoxy compound, the first connection target member and the second connection target are high when the connection target member is bonded to each other when the viscosity is high and acceleration is applied by impact such as conveyance. The positional deviation with respect to the member can be suppressed. Furthermore, the viscosity can be greatly reduced by the heat during curing, and the aggregation of the solder in the conductive particles can be efficiently advanced.
 上記導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは5重量%以上、より好ましくは8重量%以上、さらに好ましくは10重量%以上であり、好ましくは60重量%以下、より好ましくは55重量%以下、さらに好ましくは50重量%以下、特に好ましくは40重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、導電性粒子におけるはんだを電極上により一層効率的に配置し、電極間の位置ずれをより一層抑制し、電極間の導通信頼性をより一層高めることができる。 The content of the thermosetting compound in 100% by weight of the conductive material is preferably 5% by weight or more, more preferably 8% by weight or more, still more preferably 10% by weight or more, and preferably 60% by weight or less. More preferably, it is 55 weight% or less, More preferably, it is 50 weight% or less, Most preferably, it is 40 weight% or less. When the content of the thermosetting compound is not less than the above lower limit and not more than the above upper limit, the solder in the conductive particles can be more efficiently arranged on the electrodes, and the displacement between the electrodes can be further suppressed, The conduction reliability can be further improved.
 (熱硬化剤)
 上記導電材料は、熱硬化剤を含むことが好ましい。上記導電材料は、上記熱硬化性化合物とともに熱硬化剤を含むことが好ましい。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、フェノール硬化剤、チオール硬化剤、アミン硬化剤、酸無水物硬化剤、熱カチオン硬化剤及び熱ラジカル発生剤等がある。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting agent)
The conductive material preferably contains a thermosetting agent. The conductive material preferably contains a thermosetting agent together with the thermosetting compound. The thermosetting agent thermosets the thermosetting compound. Examples of the thermosetting agent include an imidazole curing agent, a phenol curing agent, a thiol curing agent, an amine curing agent, an acid anhydride curing agent, a thermal cation curing agent, and a thermal radical generator. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.
 導電材料を低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。 From the viewpoint of enabling the conductive material to be cured more rapidly at a low temperature, the thermosetting agent is preferably an imidazole curing agent, a thiol curing agent, or an amine curing agent. Further, from the viewpoint of enhancing the storage stability when the thermosetting compound and the thermosetting agent are mixed, the thermosetting agent is preferably a latent curing agent. The latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent, or a latent amine curing agent. In addition, the said thermosetting agent may be coat | covered with polymeric substances, such as a polyurethane resin or a polyester resin.
 上記イミダゾール硬化剤は、特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。 The imidazole curing agent is not particularly limited. Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6. -[2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adducts Etc.
 上記チオール硬化剤は、特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。 The thiol curing agent is not particularly limited. Examples of the thiol curing agent include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate.
 上記アミン硬化剤は、特に限定されない。上記アミン硬化剤としては、三フッ化ホウ素-アミン錯体、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。 The amine curing agent is not particularly limited. Examples of the amine curing agent include boron trifluoride-amine complex, hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5. .5] undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, diaminodiphenylsulfone, and the like.
 上記熱カチオン硬化剤は、特に限定されない。上記熱カチオン硬化剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。 The thermal cationic curing agent is not particularly limited. Examples of the thermal cationic curing agent include iodonium-based cationic curing agents, oxonium-based cationic curing agents, and sulfonium-based cationic curing agents. Examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate. Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate. Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.
 上記熱ラジカル発生剤は、特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。 The thermal radical generator is not particularly limited. Examples of the thermal radical generator include azo compounds and organic peroxides. Examples of the azo compound include azobisisobutyronitrile (AIBN). Examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.
 上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは190℃以下、特に好ましくは180℃以下である。上記熱硬化剤の反応開始温度が、上記下限以上及び上記上限以下であると、電極上にはんだがより一層効率的に配置される。 The reaction initiation temperature of the thermosetting agent is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, further preferably 70 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and still more preferably 190 ° C. Hereinafter, it is particularly preferably 180 ° C. or lower. When the reaction start temperature of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the solder is more efficiently disposed on the electrode.
 上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。上記熱硬化剤の含有量が、上記下限以上であると、熱硬化性化合物を十分に硬化させることが容易である。上記熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。 The content of the thermosetting agent is not particularly limited. The content of the thermosetting agent with respect to 100 parts by weight of the thermosetting compound is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight or less, more preferably 75 parts by weight or less. It is easy to fully harden a thermosetting compound as content of the said thermosetting agent is more than the said minimum. When the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.
 (フラックス)
 本発明に係る導電材料は、フラックスを含む。本発明に係る導電材料は、好ましくは、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないという構成(第1aの構成)を備えていてもよい。本発明に係る導電材料は、好ましくは、上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在するという構成(第1bの構成)を備えていてもよい。本発明に係る導電材料は、好ましくは、上記導電材料から上記導電性粒子を取り除いた組成物がコロイドであり、上記フラックスがコロイド粒子として存在するという構成(第2の構成)を備える。
(flux)
The conductive material according to the present invention contains a flux. The conductive material according to the present invention may preferably have a configuration (configuration 1a) in which there is no flux having a particle size that is twice or more the average particle size of the flux. The conductive material according to the present invention is preferably configured such that, out of 100% of the total number of the fluxes, a flux having a particle size that is twice or more the average particle size of the flux is present in a number (less than 10%) 1b) may be provided. The conductive material according to the present invention preferably has a configuration (second configuration) in which the composition obtained by removing the conductive particles from the conductive material is a colloid, and the flux exists as colloidal particles.
 上記導電材料が上記第1aの構成を備える場合において、上記フラックスの平均粒子径の1.8倍以上の粒子径を有するフラックスが存在しないことが好ましく、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが存在しないことがより好ましい。上記フラックスの平均粒子径が、上記の好ましい条件を満足すると、保存安定性をより一層高めることができ、はんだの凝集性をより一層高めることができ、さらに、硬化物の耐熱性をより一層高めることができる。 In the case where the conductive material has the configuration of the first 1a, it is preferable that there is no flux having a particle diameter of 1.8 times or more the average particle diameter of the flux, and 1.5 times the average particle diameter of the flux. More preferably, there is no flux having the above particle diameter. When the average particle diameter of the flux satisfies the above preferable conditions, the storage stability can be further increased, the cohesiveness of the solder can be further increased, and the heat resistance of the cured product is further increased. be able to.
 上記導電材料が上記第1bの構成を備える場合において、上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、8%以下の個数で存在することが好ましい。上記フラックスの全個数100%中、上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、6%以下の個数で存在することがより好ましい。上記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスの個数の割合が、上記上限以下であると、保存安定性をより一層高めることができ、はんだの凝集性をより一層高めることができ、さらに、硬化物の耐熱性をより一層高めることができる。 In the case where the conductive material has the configuration of the first 1b, a flux having a particle diameter that is twice or more the average particle diameter of the flux is present in a number of 8% or less in the total number of the fluxes of 100%. Is preferred. It is more preferable that a flux having a particle diameter of twice or more the average particle diameter of the flux is present in a number of 6% or less in the total number of the fluxes of 100%. When the ratio of the number of fluxes having a particle diameter that is twice or more the average particle diameter of the flux is not more than the above upper limit, the storage stability can be further enhanced, and the cohesiveness of the solder can be further enhanced. In addition, the heat resistance of the cured product can be further enhanced.
 上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが存在しないか、又は、上記フラックスの全個数100%中、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、20%未満の個数で存在することが好ましい。上記フラックスの全個数100%中、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、20%未満の個数で存在することが好ましい。上記フラックスの全個数100%中、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、10%以下の個数で存在することがより好ましい。上記フラックスの全個数100%中、上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、5%以下の個数で存在することがさらに好ましい。上記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスの個数の割合が、上記上限未満及び上記上限以下であると、保存安定性をより一層高めることができ、はんだの凝集性をより一層高めることができ、さらに、硬化物の耐熱性をより一層高めることができる。 There is no flux having a particle size of 1.5 times or more of the average particle size of the flux, or the particle size of 1.5 or more times the average particle size of the flux in 100% of the total number of the fluxes. It is preferable that the flux which has is present in the number of less than 20%. It is preferable that a flux having a particle size of 1.5 times or more of the average particle size of the flux is present in a number of less than 20% in the total number of the fluxes of 100%. It is more preferable that the flux having a particle diameter of 1.5 times or more of the average particle diameter of the flux is present in a number of 10% or less in the total number of the fluxes of 100%. It is more preferable that a flux having a particle diameter of 1.5 times or more of the average particle diameter of the flux is present in a number of 5% or less in the total number of the fluxes of 100%. When the ratio of the number of fluxes having a particle diameter of 1.5 times or more of the average particle diameter of the flux is less than the above upper limit and below the upper limit, the storage stability can be further improved, and the solder cohesiveness Can be further enhanced, and the heat resistance of the cured product can be further enhanced.
 保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記フラックスの平均粒子径は、好ましくは1μm以下、より好ましくは1μm未満、さらに好ましくは0.8μm以下である。上記フラックスの平均粒子径の下限は特に限定されない。上記フラックスの平均粒子径は0.1μm以上であってもよい。 From the viewpoint of increasing the storage stability more effectively, from the viewpoint of further effectively increasing the cohesiveness of the solder, and from the viewpoint of further effectively increasing the heat resistance of the cured product, the average particle diameter of the flux is: Preferably it is 1 micrometer or less, More preferably, it is less than 1 micrometer, More preferably, it is 0.8 micrometer or less. The lower limit of the average particle diameter of the flux is not particularly limited. The average particle size of the flux may be 0.1 μm or more.
 上記フラックスの粒子径は、フラックスが真球状である場合には、直径を示し、フラックスが真球状ではない場合には、最大径を示す。 The particle diameter of the flux indicates the diameter when the flux is spherical, and indicates the maximum diameter when the flux is not spherical.
 上記フラックスの平均粒子径は、数平均粒子径を示す。上記フラックスの粒子径は、任意のフラックス50個を電子顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。 The average particle diameter of the flux indicates the number average particle diameter. The particle diameter of the flux is preferably determined by observing 50 arbitrary fluxes with an electron microscope and calculating an average value.
 保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記フラックスの粒子径のCV値(変動係数)は、好ましくは40%以下、より好ましくは20%以下である。上記フラックスの粒子径のCV値の下限は特に限定されない。上記フラックスの粒子径のCV値は、0.01%以上であってもよい。 From the viewpoint of further enhancing the storage stability, the viewpoint of further effectively increasing the cohesiveness of the solder, and the viewpoint of further effectively increasing the heat resistance of the cured product, the CV value of the particle diameter of the flux (Coefficient of variation) is preferably 40% or less, more preferably 20% or less. The lower limit of the CV value of the particle size of the flux is not particularly limited. The CV value of the particle size of the flux may be 0.01% or more.
 上記フラックスの粒子径のCV値(変動係数)は、以下のようにして測定できる。 The CV value (coefficient of variation) of the particle size of the flux can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:フラックスの粒子径の標準偏差
 Dn:フラックスの粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of the particle diameter of the flux Dn: Average value of the particle diameter of the flux
 上記フラックスの形状は特に限定されない。上記フラックスの形状は、球状であってもよく、扁平状等の球状以外の形状であってもよい。 The shape of the flux is not particularly limited. The flux may have a spherical shape or a shape other than a spherical shape such as a flat shape.
 上記導電材料が上記第2の構成を備える場合において、上記導電材料から上記導電性粒子を取り除いた組成物はコロイドである。保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記組成物は、組成物の全体がコロイドであることが好ましい。上記組成物は、コロイドである部分を含んでいればよく、組成物の全体がコロイドでなくてもよい。 When the conductive material has the second configuration, the composition obtained by removing the conductive particles from the conductive material is a colloid. From the viewpoint of further enhancing the storage stability, from the viewpoint of further effectively increasing the cohesiveness of the solder, and from the viewpoint of further effectively increasing the heat resistance of the cured product, the composition is The whole is preferably a colloid. The said composition should just contain the part which is a colloid, and the whole composition does not need to be a colloid.
 上記導電材料が上記第2の構成を備える場合において、上記フラックスはコロイド粒子として存在する。保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記フラックスはコロイド粒子であることが好ましく、上記フラックスは上記組成物中で上述した平均粒子径を有するコロイド粒子であることがより好ましい。保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記フラックスは上記組成物中で分散していることが好ましく、上記フラックスは上記組成物中で均一に分散していることがより好ましい。上記導電材料中では、フラックスの全個数の20%以上がコロイド粒子であることが好ましい。上記導電材料中では、フラックスの一部がコロイド粒子であればよく、すべてのフラックスがコロイド粒子でなくてもよい。 In the case where the conductive material has the second configuration, the flux exists as colloidal particles. From the viewpoint of further enhancing the storage stability, from the viewpoint of further effectively increasing the cohesiveness of the solder, and from the viewpoint of further effectively increasing the heat resistance of the cured product, the flux is a colloidal particle. Preferably, the flux is colloidal particles having the average particle size described above in the composition. From the viewpoint of further enhancing the storage stability, from the viewpoint of more effectively increasing the cohesiveness of the solder, and from the viewpoint of further effectively increasing the heat resistance of the cured product, the flux is contained in the composition. It is preferable that the flux is dispersed, and the flux is more preferably dispersed uniformly in the composition. In the conductive material, it is preferable that 20% or more of the total number of fluxes are colloidal particles. In the conductive material, a part of the flux may be colloidal particles, and all the fluxes may not be colloidal particles.
 上記組成物がコロイドであることを確認する方法としては、上記組成物又は上記組成物と上記フラックスが溶解しない溶媒との混合物を用いて、チンダル現象を観察する方法等が挙げられる。 Examples of the method for confirming that the composition is a colloid include a method of observing the Tyndall phenomenon using the composition or a mixture of the composition and a solvent in which the flux does not dissolve.
 上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc. As for the said flux, only 1 type may be used and 2 or more types may be used together.
 上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸、リンゴ酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、又は松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、又は松脂の使用により、電極間の導通信頼性がより一層高くなる。 Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, malic acid, and glutaric acid. Examples of the pine resin include activated pine resin and non-activated pine resin. The flux is preferably an organic acid having two or more carboxyl groups or pine resin. The flux may be an organic acid having two or more carboxyl groups, or pine resin. Use of an organic acid having two or more carboxyl groups or pine resin further increases the reliability of conduction between the electrodes.
 上記松脂はアビエチン酸を主成分とするロジン類である。上記フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。 The above rosins are rosins whose main component is abietic acid. The flux is preferably a rosin, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
 上記フラックスの融点(活性温度)は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、さらに好ましくは150℃以下、さらに一層好ましくは140℃以下である。上記フラックスの融点(活性温度)が、上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、導電性粒子におけるはんだが電極上により一層効率的に配置される。上記フラックスの融点(活性温度)は60℃以上190℃以下であることが好ましい。上記フラックスの融点(活性温度)は80℃以上140℃以下であることが特に好ましい。 The melting point (activation temperature) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, and still more preferably 160 ° C or lower, more preferably 150 ° C or lower, and still more preferably 140 ° C or lower. When the melting point (activation temperature) of the flux is not less than the above lower limit and not more than the above upper limit, the flux effect is more effectively exhibited, and the solder in the conductive particles is more efficiently arranged on the electrode. The melting point (activation temperature) of the flux is preferably 60 ° C. or higher and 190 ° C. or lower. The melting point (activation temperature) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.
 フラックスの活性温度(融点)が60℃以上190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、及びリンゴ酸(融点130℃)等が挙げられる。 The flux having an active temperature (melting point) of 60 ° C. or higher and 190 ° C. or lower includes succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point 104 ° C), dicarboxylic acids such as suberic acid (melting point 142 ° C), benzoic acid (melting point 122 ° C), and malic acid (melting point 130 ° C).
 また、上記フラックスの沸点は200℃以下であることが好ましい。 The boiling point of the flux is preferably 200 ° C. or lower.
 上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、導電性粒子におけるはんだを電極上により一層効率的に配置することができる。 The flux is preferably a flux that releases cations by heating. By using a flux that releases cations by heating, the solder in the conductive particles can be more efficiently placed on the electrode.
 上記加熱によりカチオンを放出するフラックスとしては、上記熱カチオン硬化剤が挙げられる。 The above-mentioned thermal cation curing agent can be used as the flux that releases cations by heating.
 上記フラックスは、酸化合物と塩基化合物との塩であることがさらに好ましい。上記酸化合物は、金属の表面を洗浄する効果を有することが好ましく、上記塩基化合物は、上記酸化合物を中和する作用を有することが好ましい。上記フラックスは、上記酸化合物と上記塩基化合物との中和反応物であることが好ましい。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。 More preferably, the flux is a salt of an acid compound and a base compound. The acid compound preferably has an effect of washing the metal surface, and the base compound preferably has an action of neutralizing the acid compound. The flux is preferably a neutralization reaction product between the acid compound and the base compound. As for the said flux, only 1 type may be used and 2 or more types may be used together.
 電極上に導電性粒子におけるはんだをより一層効率的に配置する観点からは、上記フラックスの融点は、上記導電性粒子におけるはんだの融点よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことがさらに好ましい。但し、上記フラックスの融点は、上記導電性粒子におけるはんだの融点よりも高くてもよい。通常、上記導電材料の使用温度は上記導電性粒子におけるはんだの融点以上であり、上記フラックスの融点が上記導電材料の使用温度以下であれば、上記フラックスの融点が上記導電性粒子におけるはんだの融点よりも高くても、上記フラックスは十分にフラックスとしての性能を発揮することができる。例えば、導電材料の使用温度が150℃以上であり、導電性粒子におけるはんだ(Sn42Bi58:融点139℃)と、リンゴ酸とベンジルアミンとの塩であるフラックス(融点146℃)とを含む導電材料において、上記リンゴ酸とベンジルアミンとの塩であるフラックスは、十分にフラックス作用を示す。 From the viewpoint of more efficiently arranging the solder in the conductive particles on the electrode, the melting point of the flux is preferably lower than the melting point of the solder in the conductive particles, more preferably 5 ° C. or more. More preferably, it is 10 ° C. or lower. However, the melting point of the flux may be higher than the melting point of the solder in the conductive particles. Usually, the use temperature of the conductive material is equal to or higher than the melting point of the solder in the conductive particles. If the melting point of the flux is equal to or lower than the use temperature of the conductive material, the melting point of the flux is the melting point of the solder in the conductive particles. Even if it is higher than the above, the above-mentioned flux can sufficiently exhibit the performance as a flux. For example, in a conductive material in which the use temperature of the conductive material is 150 ° C. or higher, and includes solder (Sn42Bi58: melting point 139 ° C.) in conductive particles and a flux (melting point 146 ° C.) that is a salt of malic acid and benzylamine. The flux which is a salt of malic acid and benzylamine sufficiently exhibits a flux action.
 導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことがさらに好ましい。 From the viewpoint of more efficiently arranging the solder in the conductive particles on the electrode, the melting point of the flux is preferably lower than the reaction start temperature of the thermosetting agent, more preferably 5 ° C. or more, More preferably, it is 10 ° C. or lower.
 上記酸化合物は、カルボキシル基を有する有機化合物であることが好ましい。上記酸化合物としては、脂肪族系カルボン酸であるマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4-シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。上記酸化合物は、グルタル酸、アゼライン酸、又はリンゴ酸であることが好ましい。 The acid compound is preferably an organic compound having a carboxyl group. Examples of the acid compound include aliphatic carboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, citric acid, malic acid, and cyclic aliphatic carboxylic acid. Examples thereof include cyclohexyl carboxylic acid, 1,4-cyclohexyl dicarboxylic acid, aromatic carboxylic acids such as isophthalic acid, terephthalic acid, trimellitic acid, and ethylenediaminetetraacetic acid. The acid compound is preferably glutaric acid, azelaic acid, or malic acid.
 上記塩基化合物は、アミノ基を有する有機化合物であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2-メチルベンジルアミン、3-メチルベンジルアミン、4-tert-ブチルベンジルアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、N-フェニルベンジルアミン、N-tert-ブチルベンジルアミン、N-イソプロピルベンジルアミン、N,N-ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。上記塩基化合物は、ベンジルアミン、2-メチルベンジルアミン、又は3-メチルベンジルアミンであることが好ましい。 The base compound is preferably an organic compound having an amino group. Examples of the basic compound include diethanolamine, triethanolamine, methyldiethanolamine, ethyldiethanolamine, cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, 2-methylbenzylamine, 3-methylbenzylamine, 4-tert-butylbenzylamine. N-methylbenzylamine, N-ethylbenzylamine, N-phenylbenzylamine, N-tert-butylbenzylamine, N-isopropylbenzylamine, N, N-dimethylbenzylamine, imidazole compounds, and triazole compounds. . The base compound is preferably benzylamine, 2-methylbenzylamine, or 3-methylbenzylamine.
 上記フラックスは、導電材料中に分散されていてもよく、導電性粒子の表面上に付着していてもよい。フラックス効果をより一層効果的に高める観点からは、上記フラックスは、導電性粒子の表面上に付着していることが好ましい。 The flux may be dispersed in the conductive material or may be adhered on the surface of the conductive particles. From the viewpoint of further effectively increasing the flux effect, the flux is preferably attached on the surface of the conductive particles.
 上記第1aの構成、上記第1bの構成、及び上記第2の構成を満足するフラックスは、例えば、固形フラックスを溶融させて、その後再析出させることにより得ることができる。再析出を穏やかに進行させることが好ましい。上記フラックスを得る方法は、固形フラックスを融点以上に加熱して、フラックスを完全に溶融させる方法であることが好ましい。上記フラックスを得る方法は、溶融したフラックスを徐々に再析出させる方法であることが好ましい。上記の方法によって、上述した平均粒子径を有する均一なフラックスを簡便に得ることができる。 The flux satisfying the configuration of the first 1a, the configuration of the first 1b, and the second configuration can be obtained, for example, by melting a solid flux and then reprecipitating it. It is preferable that the reprecipitation proceeds gently. The method for obtaining the flux is preferably a method in which the solid flux is heated to the melting point or higher to completely melt the flux. The method for obtaining the flux is preferably a method for gradually re-depositing the melted flux. By the above method, a uniform flux having the above average particle diameter can be easily obtained.
 平均粒子径の比較的小さいフラックスを得る他の方法としては、例えば、固形フラックスを粉砕する方法が挙げられる。しかしながら、固形フラックスを粉砕する方法では、フラックスの平均粒子径を小さくするには限界があり、上述した平均粒子径を有するフラックスを得ることが困難である。さらに、フラックスを粉砕した後にフラックス同士が凝集して、不均一なフラックスとなりやすい。不均一なフラックス(粉砕したフラックス)は、導電材料中で均一に分散させることが困難であり、不均一なフラックスを用いる場合には、はんだの凝集性を高めるために導電材料中のフラックスの含有量が比較的多くなりやすい。結果として、導電材料の保存安定性が低下し、導電材料の硬化物の耐熱性が低下して、本発明の効果を得ることが困難となる。このため、上記フラックスは、固形フラックスを粉砕する方法以外の方法により得ることが好ましく、再析出速度が比較的遅い固形フラックスを溶融させて、その後再析出させることにより得ることが好ましい。 As another method for obtaining a flux having a relatively small average particle diameter, for example, a method of pulverizing a solid flux can be mentioned. However, in the method of pulverizing the solid flux, there is a limit in reducing the average particle size of the flux, and it is difficult to obtain a flux having the above-described average particle size. Further, after the flux is pulverized, the fluxes aggregate and tend to become a non-uniform flux. It is difficult to uniformly disperse the non-uniform flux (crushed flux) in the conductive material. When non-uniform flux is used, the inclusion of the flux in the conductive material in order to increase the cohesiveness of the solder. The amount tends to be relatively large. As a result, the storage stability of the conductive material decreases, the heat resistance of the cured product of the conductive material decreases, and it becomes difficult to obtain the effects of the present invention. For this reason, it is preferable to obtain the said flux by methods other than the method of grind | pulverizing a solid flux, and it is preferable to obtain it by melt | dissolving solid flux with a comparatively slow reprecipitation speed | rate, and reprecipitating after that.
 保存安定性をより一層効果的に高め、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記熱硬化性化合物100重量部に対して、上記フラックスの含有量は、好ましくは1重量部以上、より好ましくは2重量部以上であり、好ましくは20重量部以下、より好ましくは15重量部以下である。 From the viewpoint of further enhancing the storage stability, further effectively increasing the cohesiveness of the solder, and more effectively increasing the heat resistance of the cured product, 100 parts by weight of the thermosetting compound is used. On the other hand, the content of the flux is preferably 1 part by weight or more, more preferably 2 parts by weight or more, preferably 20 parts by weight or less, more preferably 15 parts by weight or less.
 保存安定性をより一層効果的に高める観点、はんだの凝集性をより一層効果的に高める観点、及び硬化物の耐熱性をより一層効果的に高める観点からは、上記導電材料100重量%中、上記フラックスの含有量は、好ましくは0.05重量%以上、より好ましくは2重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。また、上記フラックスの含有量が、上記下限以上及び上記上限以下であると、導電性粒子におけるはんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、導電性粒子におけるはんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。 From the viewpoint of further enhancing the storage stability, from the viewpoint of more effectively increasing the cohesiveness of the solder, and from the viewpoint of further effectively increasing the heat resistance of the cured product, in 100% by weight of the conductive material, The content of the flux is preferably 0.05% by weight or more, more preferably 2% by weight or more, preferably 20% by weight or less, more preferably 15% by weight or less. Further, if the content of the flux is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode in the conductive particles, and further, the solder and the electrode in the conductive particles. The oxide film formed on the surface can be removed more effectively.
 (フィラー)
 上記導電材料には、フィラーを添加してもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。フィラーの添加により、基板の全電極上に対して、導電性粒子を均一に凝集させることができる。
(Filler)
A filler may be added to the conductive material. The filler may be an organic filler or an inorganic filler. By adding the filler, the conductive particles can be uniformly aggregated on all the electrodes of the substrate.
 上記導電材料は、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。結晶性熱硬化性化合物を用いている場合には、フィラーの含有量が少ないほど、電極上にはんだが移動しやすくなる。 It is preferable that the conductive material does not contain the filler or contains the filler at 5% by weight or less. When the crystalline thermosetting compound is used, the smaller the filler content, the easier the solder moves on the electrode.
 上記導電材料100重量%中、上記フィラーの含有量は、好ましくは0重量%(未含有)以上であり、好ましくは5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。上記フィラーの含有量が、上記下限以上及び上記上限以下であると、導電性粒子が電極上により一層効率的に配置される。 In 100% by weight of the conductive material, the content of the filler is preferably 0% by weight (not contained) or more, preferably 5% by weight or less, more preferably 2% by weight or less, and further preferably 1% by weight or less. It is. When the content of the filler is not less than the above lower limit and not more than the above upper limit, the conductive particles are more efficiently arranged on the electrode.
 (他の成分)
 上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(Other ingredients)
The conductive material may be, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, and a lubricant as necessary. In addition, various additives such as an antistatic agent and a flame retardant may be included.
 (接続構造体)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料である。本発明に係る接続構造体では、上記接続部が、上述した導電材料の硬化物である。本発明に係る接続構造体では、上記接続部が、上述した導電材料により形成されている。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
(Connection structure)
The connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, A connecting portion connecting the second connection target member. In the connection structure according to the present invention, the material of the connection portion is the conductive material described above. In the connection structure according to the present invention, the connection portion is a cured product of the conductive material described above. In the connection structure according to the present invention, the connection portion is formed of the conductive material described above. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
 本発明に係る接続構造体では、特定の導電材料を用いているので、導電性粒子におけるはんだが第1の電極と第2の電極との間に集まりやすく、はんだを電極(ライン)上に効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。 In the connection structure according to the present invention, since a specific conductive material is used, the solder in the conductive particles easily collects between the first electrode and the second electrode, and the solder is efficiently applied to the electrode (line). Can be arranged. In addition, a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.
 また、導電性粒子におけるはんだを電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。 Further, in order to efficiently arrange the solder in the conductive particles on the electrode and to considerably reduce the amount of solder arranged in the region where the electrode is not formed, the conductive material is not a conductive film, It is preferable to use a conductive paste.
 電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上であり、好ましくは100%以下である。 The thickness of the solder part between the electrodes is preferably 10 μm or more, more preferably 20 μm or more, preferably 100 μm or less, more preferably 80 μm or less. The solder wetted area on the surface of the electrode (area where the solder is in contact with 100% of the exposed area of the electrode) is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, preferably Is 100% or less.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.
 図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、導電材料は、導電性粒子と、熱硬化性化合物と、フラックスとを含む。本実施形態では、上記導電性粒子として、はんだ粒子を含む。上記熱硬化性化合物と上記熱硬化剤と上記フラックスとを、熱硬化性成分と呼ぶ。 The connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3. Part 4. The connection part 4 is formed of the conductive material described above. In the present embodiment, the conductive material includes conductive particles, a thermosetting compound, and a flux. In the present embodiment, solder particles are included as the conductive particles. The said thermosetting compound, the said thermosetting agent, and the said flux are called a thermosetting component.
 接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。 The connecting portion 4 includes a solder portion 4A in which a plurality of solder particles are gathered and joined to each other, and a cured product portion 4B in which a thermosetting component is thermally cured.
 第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。 The first connection object member 2 has a plurality of first electrodes 2a on the surface (upper surface). The second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface). The first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A. In the connection portion 4, no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a. In an area different from the solder part 4A (hardened product part 4B part), there is no solder separated from the solder part 4A. If the amount is small, the solder may be present in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.
 図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電部の外表面部分がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電材料に含まれるフラックスは、一般に、加熱により次第に失活する。 As shown in FIG. 1, in the connection structure 1, a plurality of solder particles gather between the first electrode 2 a and the second electrode 3 a, and after the plurality of solder particles melt, After the electrode surface wets and spreads, it solidifies to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using solder particles, the solder portion 4A, the first electrode 2a, and the solder as compared with the case where the outer surface portion of the conductive portion is made of conductive particles such as nickel, gold or copper are used. The contact area between the portion 4A and the second electrode 3a increases. For this reason, the conduction | electrical_connection reliability and connection reliability in the connection structure 1 become high. In general, the flux contained in the conductive material is gradually deactivated by heating.
 なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。 In addition, in the connection structure 1 shown in FIG. 1, all of the solder portions 4A are located in the facing region between the first and second electrodes 2a and 3a. The connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X. The connection part 4X has the solder part 4XA and the hardened | cured material part 4XB. As in the connection structure 1X, most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area | region which electrode 2a, 3a has opposed. The solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA. In the present embodiment, the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.
 はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。 If the amount of solder particles used is reduced, the connection structure 1 can be easily obtained. If the amount of the solder particles used is increased, it becomes easy to obtain the connection structure 1X.
 上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみる。この場合に、導通信頼性をより一層高める観点からは、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。 The portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is seen. In this case, from the viewpoint of further improving the conduction reliability, 50% or more (more preferably 60% or more, more preferably) of 100% of the area where the first electrode and the second electrode face each other. Preferably, the solder portion in the connection portion is disposed at 70% or more, particularly preferably 80% or more, and most preferably 90% or more.
 次に、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。 Next, an example of a method for manufacturing the connection structure 1 using the conductive material according to the embodiment of the present invention will be described.
 先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電材料11を配置する(第1の工程)。導電材料11は、熱硬化性成分11Bとして、熱硬化性化合物と熱硬化剤とフラックスとを含む。 First, the first connection target member 2 having the first electrode 2a on the surface (upper surface) is prepared. Next, as shown in FIG. 2A, a conductive material 11 including a thermosetting component 11B and a plurality of solder particles 11A is disposed on the surface of the first connection target member 2 (first Process). The conductive material 11 includes a thermosetting compound, a thermosetting agent, and a flux as the thermosetting component 11B.
 第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。 The conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided. After the conductive material 11 is disposed, the solder particles 11A are disposed both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.
 導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。 The arrangement method of the conductive material 11 is not particularly limited, and examples thereof include application by a dispenser, screen printing, and discharge by an inkjet device.
 また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。 Moreover, the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared. Next, as shown in FIG. 2B, in the conductive material 11 on the surface of the first connection target member 2, on the surface opposite to the first connection target member 2 side of the conductive material 11, The 2nd connection object member 3 is arrange | positioned (2nd process). On the surface of the conductive material 11, the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.
 次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(熱硬化性化合物)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4が、導電材料11により形成される。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。 Next, the conductive material 11 is heated to a temperature equal to or higher than the melting point of the solder particles 11A (third step). Preferably, the conductive material 11 is heated above the curing temperature of the thermosetting component 11B (thermosetting compound). At the time of this heating, the solder particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect). When the conductive paste is used instead of the conductive film, the solder particles 11A are more effectively collected between the first electrode 2a and the second electrode 3a. Also, the solder particles 11A are melted and joined together. Further, the thermosetting component 11B is thermoset. As a result, as shown in FIG. 2C, the connection portion 4 that connects the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11. The connection part 4 is formed of the conductive material 11, the solder part 4A is formed by joining a plurality of solder particles 11A, and the cured part 4B is formed by thermosetting the thermosetting component 11B. If the solder particles 11A are sufficiently moved, the first electrode 2a and the second electrode are moved after the movement of the solder particles 11A not located between the first electrode 2a and the second electrode 3a starts. It is not necessary to keep the temperature constant until the movement of the solder particles 11A is completed.
 本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子11Aが第1の電極2aと第2の電極3aとの間に集まろうとする作用が阻害される傾向が高くなる。 In this embodiment, it is preferable that no pressure is applied in the second step and the third step. In this case, the weight of the second connection target member 3 is added to the conductive material 11. For this reason, the solder particles 11A are more effectively collected between the first electrode 2a and the second electrode 3a when the connection portion 4 is formed. In addition, if pressure is applied in at least one of the second step and the third step, the solder particles 11A tend to collect between the first electrode 2a and the second electrode 3a. The tendency to be inhibited becomes high.
 導電材料を塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされる場合がある。本実施形態では、加圧を行っていないため、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材との電極を接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集している溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるためである。そして、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料の導電性粒子以外の成分の粘度が十分低いことが望ましい。 When the second connection target member is superimposed on the first connection target member to which the conductive material is applied, the alignment between the electrode of the first connection target member and the electrode of the second connection target member is shifted. Thus, the first connection target member and the second connection target member may be overlapped. In this embodiment, since pressurization is not performed, the displacement can be corrected and the electrode of the first connection target member and the electrode of the second connection target member can be connected (self-alignment effect). This is because the melted solder that is self-aggregating between the electrode of the first connection target member and the electrode of the second connection target member is connected to the electrode of the first connection target member and the second connection target member. This is because the area where the solder between the electrode and the other components of the conductive material are in contact with each other is minimized in terms of energy. This is because the force to make the connection structure with alignment, which is the connection structure having the minimum area, works. At this time, it is desirable that the conductive material is not cured, and that the viscosity of components other than the conductive particles of the conductive material is sufficiently low at that temperature and time.
 はんだの融点での導電材料の粘度は、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは1Pa・s以下であり、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上である。上記粘度が、上記上限以下であれば、導電性粒子におけるはんだを効率的に凝集させることができる。上記粘度が、上記下限以上であれば、接続部でのボイドを抑制し、接続部以外への導電材料のはみだしを抑制することができる。 The viscosity of the conductive material at the melting point of the solder is preferably 50 Pa · s or less, more preferably 10 Pa · s or less, still more preferably 1 Pa · s or less, preferably 0.1 Pa · s or more, more preferably 0. 2 Pa · s or more. If the said viscosity is below the said upper limit, the solder in electroconductive particle can be aggregated efficiently. If the said viscosity is more than the said minimum, the void in a connection part can be suppressed and the protrusion of the electrically-conductive material other than a connection part can be suppressed.
 はんだの融点での導電材料の粘度は以下のようにして測定される。 The viscosity of the conductive material at the melting point of the solder is measured as follows.
 上記はんだの融点での導電材料の粘度は、STRESSTECH(REOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25~200℃(但し、はんだの融点が200℃を超える場合には温度上限をはんだの融点とする)の条件で測定可能である。測定結果から、はんだの融点(℃)での粘度が評価される。 The viscosity of the conductive material at the melting point of the above solder is STRESSTECH (manufactured by REOLOGICA), etc., strain control 1 rad, frequency 1 Hz, temperature rising rate 20 ° C./min, measurement temperature range 25 to 200 ° C. When the melting point exceeds 200 ° C., the upper limit of the temperature is taken as the melting point of the solder). From the measurement results, the viscosity at the melting point (° C.) of the solder is evaluated.
 このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。 In this way, the connection structure 1 shown in FIG. 1 is obtained. The second step and the third step may be performed continuously. Moreover, after performing the said 2nd process, the laminated body of the 1st connection object member 2, the electrically-conductive material 11, and the 2nd connection object member 3 which are obtained is moved to a heating part, and the said 3rd connection object is carried out. You may perform a process. In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.
 上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下である。 The heating temperature in the third step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
 上記第3の工程における加熱方法としては、導電性粒子におけるはんだの融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。 As a heating method in the third step, a method of heating the entire connection structure using a reflow furnace or an oven above the melting point of the solder in the conductive particles and the curing temperature of the thermosetting component, The method of heating only the connection part of a connection structure locally is mentioned.
 局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。 Examples of instruments used in the method of locally heating include a hot plate, a heat gun that applies hot air, a soldering iron, and an infrared heater.
 また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。 In addition, when heating locally with a hot plate, the metal directly under the connection is made of a metal with high thermal conductivity, and other places where heating is not preferred are made of a material with low thermal conductivity such as a fluororesin. The upper surface of the hot plate is preferably formed.
 上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。 The first and second connection target members are not particularly limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor | condenser, a diode, and a resin film, a printed circuit board, a flexible printed circuit board, flexible Examples thereof include electronic components such as circuit boards such as flat cables, rigid flexible boards, glass epoxy boards, and glass boards. The first and second connection target members are preferably electronic components.
 上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだを電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。 It is preferable that at least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. It is preferable that at least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for a solder not to gather on an electrode. On the other hand, by using a conductive paste, even if a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board is used, the conductive reliability between the electrodes can be efficiently collected by collecting the solder on the electrodes. Can be increased sufficiently. When using a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board, compared to the case of using other connection target members such as a semiconductor chip, the conduction reliability between the electrodes by not applying pressure is improved. The improvement effect can be obtained more effectively.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 熱硬化性化合物:
 三菱ケミカル社製「jER152」、エポキシ樹脂
Thermosetting compound:
"JER152" manufactured by Mitsubishi Chemical Corporation, epoxy resin
 熱硬化剤(熱硬化促進剤(触媒)):
 ステラケミファ社製「BF3-MEA」、三フッ化ホウ素-モノエチルアミン錯体
Thermosetting agent (thermosetting accelerator (catalyst)):
“BF3-MEA” manufactured by Stella Chemifa, boron trifluoride-monoethylamine complex
 導電性粒子:
 三井金属鉱業社製「Sn42Bi58(DS-10)」
Conductive particles:
“Sn42Bi58 (DS-10)” manufactured by Mitsui Mining & Smelting Co., Ltd.
 フラックス:
 (1)フラックス1
 フラックス1の作製方法:
 ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥した。乾燥した結晶を140℃で15分間加熱して完全に溶融させ、25℃で30分間かけて徐々に再析出させることで、フラックス1を得た。
flux:
(1) Flux 1
Preparation method of flux 1:
In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at room temperature until uniform. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a refrigerator at 5-10 ° C. and left overnight. The precipitated crystals were collected by filtration, washed with water, and vacuum dried. The dried crystal was heated at 140 ° C. for 15 minutes to be completely melted and gradually reprecipitated at 25 ° C. over 30 minutes to obtain flux 1.
 (2)フラックス2
 フラックス2の作製方法:
 ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥した。乾燥した結晶を160℃で5分間加熱して完全に溶融させ、25℃で30分間かけて徐々に再析出させることで、フラックス2を得た。
(2) Flux 2
Preparation method of flux 2:
In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at room temperature until uniform. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a refrigerator at 5-10 ° C. and left overnight. The precipitated crystals were collected by filtration, washed with water, and vacuum dried. The dried crystal was heated at 160 ° C. for 5 minutes to be completely melted and gradually reprecipitated at 25 ° C. over 30 minutes to obtain flux 2.
 (3)フラックス3
 フラックス3の作製方法:
 ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥した。乾燥した結晶を乳鉢にて粉砕することで、フラックス3を得た。
(3) Flux 3
Preparation method of flux 3:
In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at room temperature until uniform. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a refrigerator at 5-10 ° C. and left overnight. The precipitated crystals were collected by filtration, washed with water, and vacuum dried. The dried crystals were pulverized in a mortar to obtain flux 3.
 (4)フラックス4
 フラックス4の作製方法:
 ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥した。乾燥した結晶を日清エンジニアリング社製ジェットミル粉砕機にて粉砕することで、フラックス4を得た。
(4) Flux 4
Method for producing flux 4:
In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at room temperature until uniform. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a refrigerator at 5-10 ° C. and left overnight. The precipitated crystals were collected by filtration, washed with water, and vacuum dried. The dried crystal was pulverized with a jet mill pulverizer manufactured by Nisshin Engineering Co., Ltd. to obtain flux 4.
 (実施例1~2及び比較例1~3)
 (1)導電材料(異方性導電ペースト)の作製
 下記の表1に示す成分を下記の表1に示す配合量で配合して、導電材料(異方性導電ペースト)を得た。
(Examples 1 and 2 and Comparative Examples 1 to 3)
(1) Preparation of conductive material (anisotropic conductive paste) The components shown in Table 1 below were blended in the blending amounts shown in Table 1 to obtain conductive materials (anisotropic conductive paste).
 (2)第1の接続構造体(L/S=50μm/50μm)の作製
 作製直後の導電材料(異方性導電ペースト)を用いて、以下のようにして、第1の接続構造体を作製した。
(2) Production of first connection structure (L / S = 50 μm / 50 μm) Using the conductive material (anisotropic conductive paste) immediately after production, the first connection structure is produced as follows. did.
 L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。 A glass epoxy substrate (FR-4 substrate) (first connection target member) having a copper electrode pattern (copper electrode thickness 12 μm) on the upper surface with an L / S of 50 μm / 50 μm and an electrode length of 3 mm was prepared. Moreover, the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of a copper electrode 12 micrometers) of L / S 50 micrometers / 50 micrometers and electrode length 3mm on the lower surface was prepared.
 上記ガラスエポキシ基板と上記フレキシブルプリント基板との重ね合わせ面積は、1.5cm×3mmとし、接続した電極数は75対とした。 The overlapping area of the glass epoxy substrate and the flexible printed board was 1.5 cm × 3 mm, and the number of connected electrodes was 75 pairs.
 上記ガラスエポキシ基板の上面に、作製直後の導電材料(異方性導電ペースト)を、ガラスエポキシ基板の電極上で厚さ100μmとなるように、メタルマスクを用い、スクリーン印刷にて塗工し、導電材料(異方性導電ペースト)層を形成した。次に、導電材料(異方性導電ペースト)層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。このとき、加圧を行わなかった。導電材料(異方性導電ペースト)層には、上記フレキシブルプリント基板の重量は加わる。その状態から、導電材料(異方性導電ペースト)層の温度が、昇温開始から5秒後に139℃(はんだの融点)となるように加熱した。さらに、昇温開始から15秒後に、導電材料(異方性導電ペースト)層の温度が160℃となるように加熱し、導電材料(異方性導電ペースト)層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。 On the upper surface of the glass epoxy substrate, the conductive material (anisotropic conductive paste) immediately after the production is applied by screen printing using a metal mask so that the thickness is 100 μm on the electrode of the glass epoxy substrate, A conductive material (anisotropic conductive paste) layer was formed. Next, the flexible printed circuit board was laminated on the upper surface of the conductive material (anisotropic conductive paste) layer so that the electrodes face each other. At this time, no pressure was applied. The weight of the flexible printed circuit board is added to the conductive material (anisotropic conductive paste) layer. From this state, heating was performed so that the temperature of the conductive material (anisotropic conductive paste) layer reached 139 ° C. (melting point of solder) 5 seconds after the start of temperature increase. Further, after 15 seconds from the start of temperature increase, the conductive material (anisotropic conductive paste) layer is heated to a temperature of 160 ° C. to cure the conductive material (anisotropic conductive paste) layer. Obtained. No pressure was applied during heating.
 (3)第2の接続構造体(L/S=75μm/75μm)の作製
 L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
(3) Production of second connection structure (L / S = 75 μm / 75 μm) Glass epoxy substrate having a L / S of 75 μm / 75 μm and an electrode length of 3 mm on a copper electrode pattern (copper electrode thickness 12 μm) on the upper surface (FR-4 substrate) (first connection target member) was prepared. In addition, a flexible printed circuit board (second connection target member) having a L / S of 75 μm / 75 μm and an electrode length of 3 mm on the lower surface of a copper electrode pattern (copper electrode thickness 12 μm) was prepared.
 L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第2の接続構造体を得た。 2nd connection structure was obtained like manufacture of the 1st connection structure except having used the above-mentioned glass epoxy board and flexible printed circuit board from which L / S differs.
 (4)第3の接続構造体(L/S=100μm/100μm)の作製
 L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
(4) Production of third connection structure (L / S = 100 μm / 100 μm) Glass epoxy substrate having a copper electrode pattern (copper electrode thickness 12 μm) with L / S of 100 μm / 100 μm and electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared. Moreover, the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of copper electrode 12 micrometers) of L / S of 100 micrometers / 100 micrometers and electrode length 3mm on the lower surface was prepared.
 L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第3の接続構造体を得た。 3rd connection structure was obtained like manufacture of the 1st connection structure except having used the above-mentioned glass epoxy board and flexible printed circuit board from which L / S differs.
 (評価)
 (1)フラックスの存在状態
 得られたフラックスの平均粒子径を、レーザー顕微鏡(オリンパス社製「OLS4100」)を用いて、任意のフラックス50個の粒子径を測定し、その平均値から算出した。
(Evaluation)
(1) Presence state of flux The average particle diameter of the obtained flux was calculated from the average value of the particle diameters of 50 arbitrary fluxes using a laser microscope ("OLS4100" manufactured by Olympus).
 得られたフラックスの平均粒子径から、フラックス全個数100%中、フラックスの平均粒子径の2倍以上の粒子径を有するフラックスの個数の割合、及びフラックス全個数100%中、フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスの個数の割合を算出した。 From the average particle diameter of the obtained flux, the ratio of the number of fluxes having a particle diameter more than twice the average particle diameter of the flux in the total number of fluxes of 100%, and the average particle diameter of the flux in the total number of fluxes of 100% The ratio of the number of fluxes having a particle size of 1.5 times or more of was calculated.
 (2)コロイド
 得られた導電材料(異方性導電ペースト)をろ過することにより、導電材料(異方性導電ペースト)から導電性粒子を取り除いた。導電性粒子を取り除いた組成物を10mLスクリュー管に入れて、スクリュー管の横からレーザーポインターを照射することにより、フラックスによるチンダル現象が観察されるか否かを確認した。コロイドを以下の基準で判定した。なお、熱硬化性化合物及び熱硬化剤は溶解していることを確認した。
(2) Colloid Conductive particles were removed from the conductive material (anisotropic conductive paste) by filtering the obtained conductive material (anisotropic conductive paste). The composition from which the conductive particles were removed was placed in a 10 mL screw tube and irradiated with a laser pointer from the side of the screw tube to confirm whether or not the Tyndall phenomenon due to flux was observed. The colloid was determined according to the following criteria. In addition, it confirmed that the thermosetting compound and the thermosetting agent were melt | dissolving.
 [コロイドの判定基準]
 ○:フラックスによるチンダル現象が観察される
 ×:フラックスによるチンダル現象が観察されない
[Criteria for colloid]
○: Tyndall phenomenon due to flux is observed ×: Tyndall phenomenon due to flux is not observed
 (3)保存安定性
 作製直後の導電材料(異方性導電ペースト)の25℃での粘度(η1)を測定した。また、作製直後の導電材料(異方性導電ペースト)を常温で24時間放置し、放置後の導電材料(異方性導電ペースト)の25℃での粘度(η2)を測定した。上記粘度は、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。粘度の測定値から、粘度上昇率(η2/η1)を算出した。保存安定性を以下の基準で判定した。
(3) Storage stability The viscosity ((eta) 1) in 25 degreeC of the electrically conductive material (anisotropic electrically conductive paste) immediately after preparation was measured. In addition, the conductive material (anisotropic conductive paste) immediately after production was left at room temperature for 24 hours, and the viscosity (η2) at 25 ° C. of the conductive material (anisotropic conductive paste) after being left was measured. The viscosity was measured under the conditions of 25 ° C. and 5 rpm using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.). The viscosity increase rate (η2 / η1) was calculated from the measured viscosity value. Storage stability was determined according to the following criteria.
 [保存安定性の判定基準]
 ○:粘度上昇率(η2/η1)が1.5以下
 △:粘度上昇率(η2/η1)が1.5を超え2.0以下
 ×:粘度上昇率(η2/η1)が2.0を超える
[Criteria for storage stability]
○: Viscosity increase rate (η2 / η1) is 1.5 or less Δ: Viscosity increase rate (η2 / η1) exceeds 1.5 and 2.0 or less X: Viscosity increase rate (η2 / η1) is 2.0 Exceed
 (4)硬化物の耐熱性
 得られた導電材料(異方性導電ペースト)を、150℃で2時間加熱することにより、硬化物を得た。得られた硬化物のガラス転移温度(Tg)を、動的粘弾性測定装置(ユービーエム社製「Rheogel-E」)を用いて、昇温速度10℃/分の条件で測定した。硬化物の耐熱性を以下の基準で判定した。
(4) Heat resistance of cured product The obtained conductive material (anisotropic conductive paste) was heated at 150 ° C. for 2 hours to obtain a cured product. The glass transition temperature (Tg) of the obtained cured product was measured using a dynamic viscoelasticity measuring apparatus (“Rheogel-E” manufactured by UBM Co., Ltd.) at a temperature rising rate of 10 ° C./min. The heat resistance of the cured product was determined according to the following criteria.
 [硬化物の耐熱性の判定基準]
 ○:硬化物のTgが100℃以上
 △:硬化物のTgが90℃以上100℃未満
 ×:硬化物のTgが90℃未満
[Judgment criteria for heat resistance of cured products]
○: Tg of cured product is 100 ° C. or more Δ: Tg of cured product is 90 ° C. or more and less than 100 ° C. ×: Tg of cured product is less than 90 ° C.
 (5)電極上のはんだの配置精度(はんだの凝集性)
 得られた第1、第2及び第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度(はんだの凝集性)を下記の基準で判定した。
(5) Solder placement accuracy on the electrode (solder cohesion)
In the obtained first, second, and third connection structures, a portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is formed. When viewed, the ratio X of the area where the solder portion in the connection portion is arranged in the area of 100% of the portion where the first electrode and the second electrode face each other was evaluated. The solder placement accuracy (solder cohesiveness) on the electrode was determined according to the following criteria.
 [電極上のはんだの配置精度(はんだの凝集性)の判定基準]
 ○○:割合Xが70%以上
 ○:割合Xが60%以上70%未満
 △:割合Xが50%以上60%未満
 ×:割合Xが50%未満
[Criteria for solder placement accuracy (solder cohesiveness) on electrodes]
○○: Ratio X is 70% or more ○: Ratio X is 60% or more and less than 70% Δ: Ratio X is 50% or more and less than 60% X: Ratio X is less than 50%
 (6)上下の電極間の導通信頼性
 得られた第1、第2及び第3の接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により、測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
(6) Conduction reliability between upper and lower electrodes In the obtained first, second and third connection structures (n = 15), the connection resistance per connection point between the upper and lower electrodes is 4 respectively. It was measured by the terminal method. The average value of connection resistance was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conduction reliability was determined according to the following criteria.
 [導通信頼性の判定基準]
 ○○:接続抵抗の平均値が50mΩ以下
 ○:接続抵抗の平均値が50mΩを超え70mΩ以下
 △:接続抵抗の平均値が70mΩを超え100mΩ以下
 ×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
[Judgment criteria for conduction reliability]
○○: The average value of connection resistance is 50 mΩ or less ○: The average value of connection resistance exceeds 50 mΩ and 70 mΩ or less △: The average value of connection resistance exceeds 70 mΩ and 100 mΩ or less ×: The average value of connection resistance exceeds 100 mΩ, or There is a bad connection
 (7)横方向に隣接する電極間の絶縁信頼性
 得られた第1、第2及び第3の接続構造体(n=15個)において、85℃、湿度85%の雰囲気中に100時間放置後、横方向に隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。
(7) Insulation reliability between electrodes adjacent in the lateral direction The obtained first, second and third connection structures (n = 15) were left in an atmosphere of 85 ° C. and 85% humidity for 100 hours. Then, 5V was applied between the electrodes adjacent to the horizontal direction, and the resistance value was measured at 25 locations. Insulation reliability was judged according to the following criteria.
 [絶縁信頼性の判定基準]
 ○○:接続抵抗の平均値が10Ω以上
 ○:接続抵抗の平均値が10Ω以上10Ω未満
 △:接続抵抗の平均値が10Ω以上10Ω未満
 ×:接続抵抗の平均値が10Ω未満
[Criteria for insulation reliability]
○: Average connection resistance is 10 7 Ω or more ○: Average connection resistance is 10 6 Ω or more and less than 10 7 Ω Δ: Average connection resistance is 10 5 Ω or more and less than 10 6 Ω ×: Connection resistance Average value less than 10 5 Ω
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 フレキシブルプリント基板に代えて、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。 The same tendency was observed when a resin film, a flexible flat cable, and a rigid flexible board were used instead of the flexible printed board.
 1,1X…接続構造体
 2…第1の接続対象部材
 2a…第1の電極
 3…第2の接続対象部材
 3a…第2の電極
 4,4X…接続部
 4A,4XA…はんだ部
 4B,4XB…硬化物部
 11…導電材料
 11A…はんだ粒子(導電性粒子)
 11B…熱硬化性成分
 21…導電性粒子(はんだ粒子)
 31…導電性粒子
 32…基材粒子
 33…導電部(はんだを有する導電部)
 33A…第2の導電部
 33B…はんだ部
 41…導電性粒子
 42…はんだ部
DESCRIPTION OF SYMBOLS 1,1X ... Connection structure 2 ... 1st connection object member 2a ... 1st electrode 3 ... 2nd connection object member 3a ... 2nd electrode 4, 4X ... Connection part 4A, 4XA ... Solder part 4B, 4XB ... Cured part 11 ... Conductive material 11A ... Solder particles (conductive particles)
11B ... thermosetting component 21 ... conductive particles (solder particles)
31 ... Conductive particles 32 ... Base particle 33 ... Conductive part (conductive part having solder)
33A ... second conductive part 33B ... solder part 41 ... conductive particles 42 ... solder part

Claims (8)

  1.  導電部の外表面部分にはんだを有する複数の導電性粒子と、熱硬化性化合物と、フラックスとを含み、
     以下の第1の構成及び第2の構成のいずれか1以上を備える、導電材料。
     第1の構成:前記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが存在しないか、又は、前記フラックスの全個数100%中、前記フラックスの平均粒子径の2倍以上の粒子径を有するフラックスが、10%未満の個数で存在する
     第2の構成:前記導電材料から前記導電性粒子を取り除いた組成物がコロイドであり、前記フラックスがコロイド粒子として存在する
    Including a plurality of conductive particles having solder on the outer surface portion of the conductive portion, a thermosetting compound, and a flux;
    A conductive material comprising any one or more of the following first configuration and second configuration.
    First configuration: There is no flux having a particle size that is twice or more the average particle size of the flux, or a particle size that is twice or more the average particle size of the flux in 100% of the total number of the fluxes A second composition: a composition obtained by removing the conductive particles from the conductive material is a colloid, and the flux exists as a colloid particle.
  2.  前記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが存在しないか、又は、前記フラックスの全個数100%中、前記フラックスの平均粒子径の1.5倍以上の粒子径を有するフラックスが、20%未満の個数で存在する、請求項1に記載の導電材料。 There is no flux having a particle diameter of 1.5 times or more of the average particle diameter of the flux, or the particle diameter is 1.5 times or more of the average particle diameter of the flux in 100% of the total number of the fluxes. The conductive material according to claim 1, wherein the flux is present in a number of less than 20%.
  3.  前記フラックスの平均粒子径が、1μm以下である、請求項1又は2に記載の導電材料。 The conductive material according to claim 1 or 2, wherein an average particle size of the flux is 1 µm or less.
  4.  前記熱硬化性化合物100重量部に対して、前記フラックスの含有量が、1重量部以上20重量部以下である、請求項1~3のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 3, wherein a content of the flux is 1 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the thermosetting compound.
  5.  導電材料100重量%中、前記フラックスの含有量が、0.05重量%以上20重量%以下である、請求項1~4のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 4, wherein the content of the flux is from 0.05% by weight to 20% by weight in 100% by weight of the conductive material.
  6.  導電ペーストである、請求項1~5のいずれか1項に記載の導電材料。 The conductive material according to any one of claims 1 to 5, which is a conductive paste.
  7.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~6のいずれか1項に記載の導電材料であり、
     前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
    A first connection object member having a first electrode on its surface;
    A second connection target member having a second electrode on its surface;
    A connecting portion connecting the first connection target member and the second connection target member;
    The material of the connecting portion is the conductive material according to any one of claims 1 to 6,
    A connection structure in which the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
  8.  前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項7に記載の接続構造体。 When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode The connection structure according to claim 7, wherein the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion facing the two electrodes.
PCT/JP2018/020764 2017-06-01 2018-05-30 Electroconductive material and connection structure WO2018221587A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018529182A JP7352353B2 (en) 2017-06-01 2018-05-30 Conductive materials and connected structures
KR1020197024590A KR20200015445A (en) 2017-06-01 2018-05-30 Conductive Material and Connecting Structure
CN201880031102.6A CN110622258A (en) 2017-06-01 2018-05-30 Conductive material and connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017109191 2017-06-01
JP2017-109191 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221587A1 true WO2018221587A1 (en) 2018-12-06

Family

ID=64455131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020764 WO2018221587A1 (en) 2017-06-01 2018-05-30 Electroconductive material and connection structure

Country Status (5)

Country Link
JP (1) JP7352353B2 (en)
KR (1) KR20200015445A (en)
CN (1) CN110622258A (en)
TW (1) TWI789395B (en)
WO (1) WO2018221587A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088308B2 (en) 2019-02-25 2021-08-10 Tdk Corporation Junction structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044733A (en) * 2005-08-10 2007-02-22 Miyazaki Prefecture Soldering flux
JP2010073394A (en) * 2008-09-17 2010-04-02 Sekisui Chem Co Ltd Flux including capsule, conductive particle with flux including capsule, anisotropic conductive material, and connection structure
WO2012102077A1 (en) * 2011-01-27 2012-08-02 日立化成工業株式会社 Conductive adhesive composition, connector, and solar cell module
WO2016031552A1 (en) * 2014-08-29 2016-03-03 古河電気工業株式会社 Electrically conductive adhesive composition
JP2016139757A (en) * 2015-01-29 2016-08-04 日立化成株式会社 Adhesive composition, adhesive sheet for connecting circuit member, and manufacturing method of semiconductor device
WO2017130892A1 (en) * 2016-01-25 2017-08-03 積水化学工業株式会社 Conductive material and connection structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888573B2 (en) 2001-06-29 2007-03-07 富士電機ホールディングス株式会社 Solder composition
JP4019254B2 (en) * 2002-04-24 2007-12-12 信越化学工業株式会社 Conductive resin composition
JP3769688B2 (en) 2003-02-05 2006-04-26 独立行政法人科学技術振興機構 Terminal connection method and semiconductor device mounting method
JP2007216296A (en) 2006-01-17 2007-08-30 Mitsubishi Materials Corp Flux for solder, solder paste using the flux and method for producing substrate mounted with electronic parts
GB201212489D0 (en) * 2012-07-13 2012-08-29 Conpart As Improvements in conductive adhesives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044733A (en) * 2005-08-10 2007-02-22 Miyazaki Prefecture Soldering flux
JP2010073394A (en) * 2008-09-17 2010-04-02 Sekisui Chem Co Ltd Flux including capsule, conductive particle with flux including capsule, anisotropic conductive material, and connection structure
WO2012102077A1 (en) * 2011-01-27 2012-08-02 日立化成工業株式会社 Conductive adhesive composition, connector, and solar cell module
WO2016031552A1 (en) * 2014-08-29 2016-03-03 古河電気工業株式会社 Electrically conductive adhesive composition
JP2016139757A (en) * 2015-01-29 2016-08-04 日立化成株式会社 Adhesive composition, adhesive sheet for connecting circuit member, and manufacturing method of semiconductor device
WO2017130892A1 (en) * 2016-01-25 2017-08-03 積水化学工業株式会社 Conductive material and connection structure

Also Published As

Publication number Publication date
CN110622258A (en) 2019-12-27
TWI789395B (en) 2023-01-11
KR20200015445A (en) 2020-02-12
TW201903787A (en) 2019-01-16
JPWO2018221587A1 (en) 2020-03-26
JP7352353B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP6152043B2 (en) Conductive material and connection structure
JP2014017248A (en) Conductive material, production method of conductive material, and connection structure
WO2018047690A1 (en) Conductive material, connection structure body, and connection structure body production method
JP2013258139A (en) Conductive material, connection structure and method for producing connection structure
JP7280864B2 (en) Conductive materials and connecting structures
JP6600234B2 (en) Conductive material and connection structure
JP2016126878A (en) Conductive paste, connection structure and method for producing connection structure
JP2017224602A (en) Conductive material, connection structure and method for producing connection structure
JP2016004971A (en) Connection structure and manufacturing method for the same
JP2019131634A (en) Curable material, connection structure and method for producing connection structure
JP6974137B2 (en) Conductive material, connection structure and method for manufacturing the connection structure
WO2018221587A1 (en) Electroconductive material and connection structure
JP2019140101A (en) Conductive material, connection structure and method for producing connection structure
WO2017179532A1 (en) Conductive material and connected structure
JP2016126877A (en) Conductive paste, connection structure and method for producing connection structure
WO2017130892A1 (en) Conductive material and connection structure
JP6523105B2 (en) Conductive material, connection structure and method of manufacturing connection structure
JP2014026963A (en) Method for manufacturing connection structure
JP6329014B2 (en) Connection structure and method for manufacturing connection structure
JP2019175844A (en) Conductive material, connection structure and method for producing connection structure
JP6166849B2 (en) Conductive material and connection structure
JP2019212467A (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7377007B2 (en) Conductive material, connected structure, and method for manufacturing connected structure
WO2017033931A1 (en) Conductive material and connection structure
JP2019099610A (en) Production method of connection structure, conductive material and connection structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529182

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809659

Country of ref document: EP

Kind code of ref document: A1