WO2015083409A1 - Paste material for via hole filling and multilayer substrate - Google Patents

Paste material for via hole filling and multilayer substrate Download PDF

Info

Publication number
WO2015083409A1
WO2015083409A1 PCT/JP2014/074097 JP2014074097W WO2015083409A1 WO 2015083409 A1 WO2015083409 A1 WO 2015083409A1 JP 2014074097 W JP2014074097 W JP 2014074097W WO 2015083409 A1 WO2015083409 A1 WO 2015083409A1
Authority
WO
WIPO (PCT)
Prior art keywords
via hole
resin
paste material
metal component
alloy
Prior art date
Application number
PCT/JP2014/074097
Other languages
French (fr)
Japanese (ja)
Inventor
三島孝太郎
東克明
中野公介
釣賀大介
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015083409A1 publication Critical patent/WO2015083409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0305Solder used for other purposes than connections between PCB or components, e.g. for filling vias or for programmable patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed
    • H05K2201/09527Inverse blind vias, i.e. bottoms outwards in multilayer PCB; Blind vias in centre of PCB having opposed bottoms

Definitions

  • the present invention relates to, for example, a via hole filling paste material used for forming a via hole conductor disposed in a via hole provided in a ceramic multilayer substrate or the like, and a multilayer substrate including a via hole conductor formed using the paste material.
  • via holes are formed for interlayer connections between internal conductors arranged in multiple internal layers, and for interlayer connections between surface conductors and internal conductors formed on the substrate surface.
  • a conductor via hole conductor
  • One of the conductive pastes used to form such via-hole conductors is a conductive paste as described in Patent Document 1.
  • the conductive paste described in Patent Document 1 includes (A) 20 parts by weight or more of an epoxy resin having an epoxy equivalent in the range of 200 to 600 and a hydrolyzable chlorine concentration of less than 200 ppm. (B) at least one low melting point metal with a melting point of 180 ° C. or lower and a melting point of 800 ° C. or higher with respect to 100 parts by weight of the resin component whose total hydrolyzable chlorine concentration is less than 1000 ppm. 200 to 1800 parts by weight of metal powder composed of two or more metals including at least one refractory metal, (C) 3 to 20 parts by weight of a curing agent, and (D) 3 to 15 parts by weight of a flux. Is.
  • Patent Document 1 discloses a multilayer substrate provided with a via-hole conductor formed using this conductive paste.
  • the above-mentioned conductive paste has the characteristics that it has a viscosity suitable for filling via holes and has a long pot life, and the via hole of the multilayer substrate using this conductive paste.
  • a conductor it is said that a multilayer substrate having high moisture resistance, heat cycle performance, and thermal shock resistance can be obtained.
  • the amount of resin contained in the conductive paste increases (the calculated value is about 30 to 70 vol%).
  • the inside of the via-hole conductor is destroyed due to the expansion of the metal, the denseness is impaired, and the conductivity is lowered.
  • the metal filler becomes difficult to flow, a dense intermetallic compound cannot be formed, and the conductivity of the via-hole conductor is lowered.
  • the present invention solves the above problems, and when used for forming a via-hole conductor, it is possible to suppress the expansion of the resin in the step of curing the resin by heating, and it is dense and has good electrical conductivity. It is an object of the present invention to provide a via hole filling paste material capable of forming a via hole conductor having excellent adhesion to the via hole and a multilayer substrate having the via hole conductor formed using the same. .
  • a via hole filling paste material containing a metal filler, a resin, and a solvent A via hole filling paste material containing a metal filler, a resin, and a solvent,
  • the metal filler includes Sn or Sn alloy as the first metal component, and includes Cu or Cu alloy having a melting point higher than that of the first metal component as the second metal component, and the first metal component and the second metal component.
  • the metal component forms an intermetallic compound by being heated to a predetermined temperature
  • the resin occupies 1 to 12 vol% of the solid content in the via hole filling paste material, has a thermal decomposition start temperature of 280 ° C. or higher, and does not cause a crosslinking reaction by heating. .
  • the resin is at least one selected from the group consisting of bisphenol A type epoxy resin, phenoxy resin, novolac type phenol resin, polyamideimide resin, polyimide resin or modified resin thereof. It is preferable that it is included.
  • via-hole filling paste material having the above-described configuration, it is possible to more reliably form a highly reliable via-hole conductor that is dense and has good conductivity and excellent adhesion to the via-hole. It becomes possible.
  • the Sn alloy is made of Cu, Ni, Ag, Au, Sb, Zn, Pb, Bi, In, Ge, Al, Co, Mn, Fe, Cr, Mg, Pd, Si, Sr, Te, and P.
  • An alloy containing at least one selected from the group and Sn is preferable.
  • the via hole filling paste material having the above-described structure By using the via hole filling paste material having the above-described structure, an intermetallic compound is generated more reliably between the first metal component and the second metal component, and more reliably, dense and has good conductivity. In addition, it is possible to form a highly reliable via hole conductor having excellent adhesion to the via hole.
  • the Sn alloy contains 40% by mass or more of Sn.
  • an intermetallic compound is more reliably generated between the first metal component and the second metal component, and has a dense and good conductivity, and It becomes possible to form a highly reliable via hole conductor having excellent adhesion to the via hole.
  • the Cu alloy is preferably at least one selected from the group consisting of a CuAl alloy, a CuCr alloy, a CuNi alloy, and a CuMn alloy.
  • the via hole filling paste material having the above-described configuration, an intermetallic compound is more reliably generated between the first metal component and the second metal component, and the via hole is dense and has good electrical conductivity. It is possible to form a highly reliable via-hole conductor having excellent adhesion to the substrate.
  • the Cu alloy preferably contains Cu in the range of 70 to 95% by mass.
  • an intermetallic compound having a high melting point is more reliably generated between the first metal component and the second metal component, has a dense and good electrical conductivity, and has good adhesion to the via hole.
  • An excellent and highly reliable via-hole conductor can be formed.
  • the ratio of the second metal component in the total amount of the first metal component and the second metal component is 30 vol% or more.
  • the ratio of the second metal component By setting the ratio of the second metal component to 30 vol% or more, it becomes possible to generate an intermetallic compound having a high melting point, and the present invention can be clarified more effectively.
  • the multilayer substrate according to the present invention is characterized in that it includes a via hole conductor formed using the via hole filling paste material of the present invention.
  • the via-hole filling paste material of the present invention is a via-hole filling paste material containing a metal filler, a resin, and a solvent, wherein the metal filler is heated to a predetermined temperature to form an intermetallic compound.
  • the ratio of the metal component (Sn or Sn alloy which is a low melting point metal) and the second metal component (Cu or Cu alloy which is a high melting point metal) to the solid content in the paste material for filling via holes as a resin Is 1 to 12 vol%, the thermal decomposition starting temperature is 280 ° C. or higher, and a material that does not cause a crosslinking reaction by heating is used. Therefore, the via hole filling paste material of the present invention is used for forming a via hole conductor. Therefore, a highly reliable via-hole conductor that is dense and has good electrical conductivity (conductivity) and has excellent adhesion to the via-hole It is possible to formed.
  • the multilayer substrate according to the present invention includes a via-hole conductor formed using the via-hole filling paste material according to the present invention, and the via-hole conductor is dense and has good electrical conductivity, and Therefore, according to the present invention, it is possible to provide a highly reliable multi-layer substrate including a via hole conductor with good characteristics.
  • FIG. 2 It is front sectional drawing which shows the structure of the resin sheet (insulating layer) provided with the conductor wiring layer and the via hole used for preparation of the multilayer board
  • the via hole filling paste material of the present invention is a paste material containing at least a metal filler, a resin, and a solvent.
  • the metal filler constituting the via hole filling paste material of the present invention includes a first metal component (Sn or Sn alloy which is a low melting point metal) that forms an intermetallic compound when heated to a predetermined temperature, and a second metal.
  • a component (Cu or Cu alloy which is a high melting point metal having a higher melting point than the first metal component) is included.
  • the first metal component low melting point metal
  • examples of the Sn alloy include Cu, Ni, Ag, Au, Sb, Zn, Pb, Bi, In, Ge, Al, Co, Mn, Fe, and Cr. It is preferable to use an alloy containing Sn and at least one selected from the group consisting of Mg, Pd, Si, Sr, Te, and P.
  • the Sn alloy as the first metal component contains Sn in an amount of 40% by mass or more.
  • the second metal component (high melting point metal) is a Cu alloy
  • the proportion of Al, Cr, Ni, Mn in the Cu alloy as the second metal component is in the range of 5 to 30% by mass, that is, the proportion of Cu in the Cu alloy is 70 to 95% by mass. It is desirable to be in range.
  • the ratio of the 2nd metal component to the total amount of a 1st metal component and a 2nd metal component is 30 vol% or more.
  • the resin is used in a range of 1 to 12 vol% in the solid content in the via hole filling paste material.
  • solid content means a combination of a metal filler and a resin.
  • the resin those having a thermal decomposition starting temperature of 280 ° C. or higher and not causing a crosslinking reaction by heating are used.
  • “(resin) does not cause a crosslinking reaction due to heating” means that the resin undergoes a crosslinking reaction until thermal decomposition occurs, and the viscosity or solidification is hindered to prevent the metal filler from flowing. It means not occurring.
  • the resin it is desirable to use a resin containing at least one selected from the group consisting of bisphenol A type epoxy resin, phenoxy resin, novolac type phenol resin, polyamideimide resin, polyimide resin or modified resin thereof.
  • the type of solvent used in the via hole filling paste material of the present invention is not particularly limited, but is selected from the group consisting of alcohols, ketones, esters, ethers, aromatics, and hydrocarbons. It is preferable that it contains at least one kind.
  • the amount of resin in the conductive paste (via hole filling paste material) used to form the via hole conductors on the multilayer substrate becomes too large, the resin will expand when the via hole filling paste material is filled in the via holes. This is not preferable because the inside of the via-hole conductor is destroyed, the denseness is impaired and the conductivity is lowered.
  • the resin content in the solid content is regulated within the range of 1 to 12 vol%, thereby suppressing the expansion of the resin and destroying the inside of the via hole conductor to deteriorate the denseness. Therefore, the continuity is prevented from being lowered. As a result, it is possible to form a highly reliable via-hole conductor that is dense and has good electrical conductivity, has excellent adhesion to the via hole, and does not cause dropout from the via hole.
  • the ratio of the resin in the solid content is desirably in the range of 1 to 12 vol%.
  • a resin that does not cause a crosslinking reaction by heating is used, so that a via hole conductor having excellent electrical conductivity can be reliably formed.
  • the resin is not cured, so that an intermetallic compounding reaction between metal fillers easily proceeds during heating, and a dense intermetallic compound can be formed.
  • the resin used for the via hole filling paste material has low heat decomposability, thermal decomposition occurs during reflow, gas is generated, the inside of the via hole conductor is destroyed, the denseness is impaired, and the conductivity is lowered. Therefore, in the present invention, a resin having a high thermal decomposition resistance having a thermal decomposition start temperature of 280 ° C. or higher is used.
  • Example 1 the thermal decomposition start temperature of the resin was evaluated by TG (thermogravimetry). Specifically, 10 mg of resin was heated at a rate of temperature increase of 5 ° C./min under the condition of an air flow rate of 200 ml / min, and the temperature at the time when the weight decreased by 0.1 mass% was defined as the thermal decomposition start temperature.
  • a via hole filling paste material was prepared by mixing the first metal component and the second metal component constituting the metal filler, the resin, and the solvent.
  • Sn Sn powder
  • Cu Cu powder
  • the compounding ratio of the first metal component (Sn powder) and the second metal component (Cu powder) is a volume ratio, and the ratio of the first metal component and the second metal component is (first metal component / second metal component). It adjusted so that it might become 70/30.
  • the first metal component (Sn powder) and the second metal component (Cu powder) those having an average particle diameter of 5 ⁇ m were used.
  • the bisphenol A type epoxy resin (thermal decomposition start temperature 320 degreeC) solid at normal temperature was used. As shown in Table 1, the ratio of the resin in the solid content was 1 vol%, 4 vol%, 8 vol%, and 12 vol%. The resin was used in a state of being previously dissolved in a solvent. Diethylene glycol monobutyl ether acetate was used as the solvent.
  • a resin which is made of a thermoplastic resin and has a conductor wiring layer 1 made of Cu foil having a predetermined pattern on one side main surface 3a as shown in FIG. 1, and a via hole 2 is formed at a predetermined position.
  • a sheet (insulating layer) 3 was prepared.
  • Resin sheet 3 having a thickness of 50 ⁇ m was used.
  • the diameter of the via hole 2 was 100 ⁇ m.
  • the number of via holes 2 provided on the resin sheet 3 was 10,000.
  • the via hole 2 of the resin sheet 3 was filled with the via hole filling paste material 4 and heat-treated at 150 ° C. for 30 minutes to remove the solvent.
  • a pair of resin sheets (insulating layers) 3 and 3 are joined to the other side in order to join the fillers 4a obtained by drying the via hole filling paste material 4 filled in the via holes 2.
  • the main surfaces 3b and 3b were laminated so that they face each other, and pressure was applied while heating to a predetermined temperature, and the pair of resin sheets (insulating layers) 3 and 3 were thermocompression bonded.
  • the heating was performed so that the maximum temperature was 280 ° C. and maintained at the maximum temperature for a certain time (about 30 minutes). At this time, a pressure of about 4 MPa was applied from both main surface sides of the laminate 5 in which the resin sheets 3 were laminated.
  • the heat treatment is preferably performed under temperature conditions that reach 232 ° C. or higher for at least a certain time. When the temperature does not reach 232 ° C., Sn (melting point: 232 ° C.) in the first metal component does not enter a molten state, and an intermetallic compound cannot be generated.
  • the first metal component and the second metal component in the filler 4a are intermetallic compound, and the conductor wiring layers 1 and 1 are connected to each other in the via hole 2 by interlayer connection.
  • a multilayer substrate (samples 1 to 4 in Table 1) 10 in which the resin sheets 3 and 3 were joined together was obtained.
  • the multilayer substrate 10 was examined for initial conductivity, and the resistance value between the conductor wiring layers 1 and 1 connected via the via-hole conductor 14 after the reflow process was measured.
  • the reflow treatment was pretreated at MSL level 1 (85 ° C./85% RH, 168 h), and was performed 5 times under the condition that the peak temperature was 260 ° C.
  • As the resistance value a resistance value (average value of 10,000 resistance values) between the conductor wiring layers connected by the via hole conductors was adopted.
  • the measured conductivity was evaluated according to the following evaluation criteria. When the resistance value after reflow was less than 21.0 m ⁇ , the conductivity was determined to be particularly good ( ⁇ ). When the resistance value after reflow was 21.0 m ⁇ or more and less than 31.0 m ⁇ , the conductivity was determined to be good ( ⁇ ). Those having a resistance value after reflow of 31.0 m ⁇ or more were judged to have poor conductivity (x). The results are shown in Table 1.
  • sample numbers were obtained using paste materials for via-hole filling prepared in the same manner as the samples Nos. 1 to 4 except that the amount of resin in the solid content was 0.5 vol% and 15 vol%. Samples (multilayer substrates) as comparative examples 101 and 102 were produced.
  • a normal temperature solid bisphenol A type epoxy resin (thermal decomposition start temperature: 320 ° C.) is used as the resin, and a curing agent (here, 2-ethyl-4-methylimidazole which is an imidazole-based curing agent) is used for the resin.
  • a curing agent here, 2-ethyl-4-methylimidazole which is an imidazole-based curing agent
  • the paste material for via hole filling prepared in the same manner as the samples Nos. 1 to 4 except that the ratio of the solid content of the resin and the curing agent was 4 vol%.
  • a sample (multilayer substrate) as a comparative example of sample number 103 was produced.
  • the amount of the resin in the solid content is 1, 4, 8, 12 vol%, and the requirement of the present invention is that the room temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C. is used as the resin.
  • the samples Nos. 1 to 4 provided samples according to the examples of the present invention, it was confirmed that a via-hole conductor excellent in conductivity was formed.
  • the substrate (resin sheet) is multilayered.
  • the filling formed by drying the paste was dropped. This is because the amount of resin in the solid content is as small as 0.5 vol%, and the adhesion strength between the via hole filling paste material and the inner peripheral surface of the via hole is insufficient.
  • the amount of resin in the solid content is 4 vol%, and a room temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C. is used as the resin.
  • a room temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C.
  • the metal filler (the first metal component and the second metal component is cured after the resin is cured). It is difficult for the metal component) to flow and a dense intermetallic compound cannot be formed. As a result, it is considered that the continuity of the via-hole conductor is insufficient.
  • Example 2 as a resin constituting the via hole filling paste material, (A) normal temperature solid bisphenol A type epoxy resin (thermal decomposition start temperature 280 ° C.) (sample number 5), (B) Phenoxy resin (thermal decomposition start temperature 300 ° C.) (sample number 6), (C) novolac type phenolic resin (pyrolysis start temperature 360 ° C.) (sample number 7), (D) Thermoplastic polyamideimide resin (pyrolysis start temperature 360 ° C.) (sample number 8), (E) Thermoplastic polyimide resin (pyrolysis start temperature 370 ° C.) (Sample No. 9) was used. In Example 2, the amount of resin in the solid content was 4 vol%.
  • diethylene glycol monobutyl ether acetate is used in the case of bisphenol A type epoxy resin (sample number 5), and diethylene glycol monobutyl ether acetate is used in the case of phenoxy resin (sample number 6) and novolac type phenol resin (sample number 7).
  • phenoxy resin examplesample number 6
  • novolac type phenol resin examplesample number 7
  • thermoplastic polyamideimide resin (sample number 8) and thermoplastic polyimide resin (sample number 9)
  • N-methylpyrrolidone was used.
  • the amount of resin in the solid content is 4 vol%
  • Samples Nos. 104 to 106 were prepared using the via-hole filling paste material produced in the same manner as the samples Nos. 5 to 9 described above except that was used. For these samples Nos. 104 to 106 (comparative examples), the continuity evaluation of the via-hole conductors was performed in the same manner as the samples Nos. 5 to 9. The results are also shown in Table 2.
  • the inside of the via-hole conductor is not destroyed by the expansion of the resin, the resin is thermally decomposed, and the denseness of the via-hole conductor is not impaired. Because it is not cured, the formation reaction of the intermetallic compound between the first metal component and the second metal component is likely to proceed during heating, and a dense intermetallic compound is formed.
  • Example 3 Sn is used as the first metal component constituting the via hole filling paste material, and Cu-15Al, Cu-15Cr, Cu-15Ni, Cu-15Mn is used as the second metal component, and the first metal is used.
  • the compounding ratio of the component and the second metal component that is, the first metal component / second metal component (volume ratio) was adjusted to 70/30.
  • the numeral 15 of the “Cu-15Al” indicates a mass% value of the component (in this case, Al). At this time, the ratio of Cu is 85% by mass. The same applies to other materials described in the same manner.
  • the first metal component and the second metal component those having an average particle diameter of 5 ⁇ m were used.
  • resin room temperature solid bisphenol A type epoxy resin (thermal decomposition start temperature 320 ° C.) was used, and the ratio in the solid content was 4 vol% (Table 3). In addition, resin was used in the state previously dissolved in the solvent. Diethylene glycol monobutyl ether acetate was used as the solvent.
  • the amount of the resin in the solid content is 4 vol%
  • a normal temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C. is used as the resin
  • Cu-15Al, Cu— are used as the second metal component. It was confirmed that via hole conductors with excellent electrical conductivity were also formed in samples Nos. 10 to 13 using a via hole filling paste material using any one of 15Cr, Cu-15Ni, and Cu-15Mn. .
  • Example 4 any of Sn-3.5Ag, Sn-0.75Cu, and Sn-58Bi was used as the first metal component, and Cu was used as the second metal component.
  • Samples with sample numbers 14 to 16 shown in Table 4 were produced in the same manner as in Example 1 above using the via hole filling paste material produced in the same manner.
  • the amount of the resin in the solid content is 4 vol%
  • a room temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C. is used as the resin
  • Sn-3.5Ag as the first metal component
  • the present invention is not limited to the above-described embodiments and examples.
  • the number of insulating layers constituting the multilayer substrate, the arrangement of internal conductors and surface conductor layers connected by via-hole conductors, and via-hole filling Various applications and modifications can be made within the scope of the invention with respect to the types of resin and metal filler constituting the paste material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are: a paste material for via hole filling, which is capable of reliably forming a via hole conductor that is dense and has good electrical conductivity and excellent adhesion to a via hole; and a multilayer substrate which is provided with a via hole conductor that is formed using this paste material for via hole filling. A paste material for via hole filling, which contains a metal filler, a resin and a solvent. This paste material for via hole filling is configured to satisfy the following requirements: the metal filler contains Sn or an Sn alloy (a first metal component) and Cu or a Cu alloy (a second metal component) that has a higher melting point than the first metal component; the first metal component and the second metal component form an intermetallic compound by being heated to a predetermined temperature; the resin accounts for 1-12 vol% of the solid content in the paste material for via hole filling; and the resin has a thermal decomposition initiation temperature of 280°C or more, and does not cause a crosslinking reaction by means of heating.

Description

ビアホール充填用ペースト材料および多層基板Via hole filling paste material and multilayer substrate
 本発明は、例えば、セラミック多層基板などが備えるビアホール内に配設されるビアホール導体の形成に用いられるビアホール充填用ペースト材料およびそれを用いて形成されたビアホール導体を備える多層基板に関する。 The present invention relates to, for example, a via hole filling paste material used for forming a via hole conductor disposed in a via hole provided in a ceramic multilayer substrate or the like, and a multilayer substrate including a via hole conductor formed using the paste material.
  近年、半導体デバイスなどの電子部品を複数配設したモジュールなどの用途に、配線導体を3次元的に配置した多層基板が広く用いられている。
 そして、多層基板においては、内部の複数の層に配設された内部導体どうしの層間接続や、基板表面に形成された表面導体と内部導体との間の層間接続などのために、ビアホールを形成するとともにビアホール内に導体(ビアホール導体)を配設することが一般的に行われている。
In recent years, multilayer substrates in which wiring conductors are three-dimensionally arranged are widely used for applications such as modules in which a plurality of electronic components such as semiconductor devices are arranged.
In multilayer boards, via holes are formed for interlayer connections between internal conductors arranged in multiple internal layers, and for interlayer connections between surface conductors and internal conductors formed on the substrate surface. In addition, a conductor (via hole conductor) is generally disposed in the via hole.
 そのようなビアホール導体を形成するのに用いられる導電性ペーストのひとつに、特許文献1に記載されているような導電性ペーストがある。 One of the conductive pastes used to form such via-hole conductors is a conductive paste as described in Patent Document 1.
 この特許文献1に記載されている導電性ペーストは、(A)エポキシ当量が200~600の範囲内であり、かつ加水分解性塩素濃度が200ppm未満であるエポキシ樹脂20重量部以上とこのエポキシ樹脂以外の樹脂80重量部未満とからなり、全体の加水分解性塩素濃度が1000ppm未満である樹脂成分100重量部に対し、(B)融点180℃以下の低融点金属少なくとも1種と融点800℃以上の高融点金属少なくとも1種とを含む、2種以上の金属からなる金属粉200~1800重量部、(C)硬化剤3~20重量部、および(D)フラックス3~15重量部を含有するものである。 The conductive paste described in Patent Document 1 includes (A) 20 parts by weight or more of an epoxy resin having an epoxy equivalent in the range of 200 to 600 and a hydrolyzable chlorine concentration of less than 200 ppm. (B) at least one low melting point metal with a melting point of 180 ° C. or lower and a melting point of 800 ° C. or higher with respect to 100 parts by weight of the resin component whose total hydrolyzable chlorine concentration is less than 1000 ppm. 200 to 1800 parts by weight of metal powder composed of two or more metals including at least one refractory metal, (C) 3 to 20 parts by weight of a curing agent, and (D) 3 to 15 parts by weight of a flux. Is.
 また、特許文献1には、この導電性ペーストを用いて形成したビアホール導体を備えた多層基板が開示されている。 Further, Patent Document 1 discloses a multilayer substrate provided with a via-hole conductor formed using this conductive paste.
 そして、引用文献1には、上述の導電性ペーストがビアホール充填用に適した粘度を有し、ポットライフが長いという特徴を備えていること、および、この導電性ペーストを用いて多層基板のビアホール導体を形成した場合、耐湿性、ヒートサイクル性、熱衝撃性の高い多層基板を得ることができるとされている。 In the cited document 1, the above-mentioned conductive paste has the characteristics that it has a viscosity suitable for filling via holes and has a long pot life, and the via hole of the multilayer substrate using this conductive paste. When a conductor is formed, it is said that a multilayer substrate having high moisture resistance, heat cycle performance, and thermal shock resistance can be obtained.
 しかしながら、多層基板のビアホール導体を上述の導電性ペーストを用いて形成した場合、導電性ペーストに含まれる樹脂の量が多くなる(計算値で約30~70vol%となる)ため、リフロー処理時に樹脂の膨張によりビアホール導体内部が破壊され、緻密性が損なわれて導通性が低下するという問題がある。また、加熱して樹脂を硬化させる工程において、金属フィラーが流動しにくくなり、緻密な金属間化合物を形成することができなくなって、ビアホール導体の導通性が低下してしまうという問題がある。 However, when the via-hole conductor of the multilayer substrate is formed using the above-described conductive paste, the amount of resin contained in the conductive paste increases (the calculated value is about 30 to 70 vol%). There is a problem that the inside of the via-hole conductor is destroyed due to the expansion of the metal, the denseness is impaired, and the conductivity is lowered. Further, in the step of curing the resin by heating, there is a problem that the metal filler becomes difficult to flow, a dense intermetallic compound cannot be formed, and the conductivity of the via-hole conductor is lowered.
特開2008-108629号公報JP 2008-108629 A
 本発明は、上記課題を解決するものであり、ビアホール導体の形成に用いた場合に、加熱して樹脂を硬化させる工程において樹脂の膨張を抑制することが可能であり、緻密で良好な導通性を有し、かつ、ビアホールとの密着性に優れたビアホール導体を形成することが可能なビアホール充填用ペースト材料およびそれを用いて形成されたビアホール導体を有する多層基板を提供することを目的とする。 The present invention solves the above problems, and when used for forming a via-hole conductor, it is possible to suppress the expansion of the resin in the step of curing the resin by heating, and it is dense and has good electrical conductivity. It is an object of the present invention to provide a via hole filling paste material capable of forming a via hole conductor having excellent adhesion to the via hole and a multilayer substrate having the via hole conductor formed using the same. .
 上記課題を解決するために、本発明のビアホール充填用ペースト材料は、
 金属フィラ-と、樹脂と、溶剤とを含むビアホール充填用ペースト材料であって、
 前記金属フィラーが、第1金属成分としてSnまたはSn合金を含むとともに、第2金属成分として前記第1金属成分より融点の高いCuまたはCu合金を含み、かつ、前記第1金属成分と前記第2金属成分とが、所定の温度に加熱されることにより金属間化合物を形成するものであり、
 前記樹脂は、ビアホール充填用ペースト材料中の固形分中に占める割合が1~12vol%であり、熱分解開始温度が280℃以上で、加熱による架橋反応を起こさないものであること
 を特徴としている。
In order to solve the above problems, the via hole filling paste material of the present invention,
A via hole filling paste material containing a metal filler, a resin, and a solvent,
The metal filler includes Sn or Sn alloy as the first metal component, and includes Cu or Cu alloy having a melting point higher than that of the first metal component as the second metal component, and the first metal component and the second metal component. The metal component forms an intermetallic compound by being heated to a predetermined temperature,
The resin occupies 1 to 12 vol% of the solid content in the via hole filling paste material, has a thermal decomposition start temperature of 280 ° C. or higher, and does not cause a crosslinking reaction by heating. .
 また、本発明のビアホール充填用ペースト材料においては、前記樹脂がビスフェノールA型エポキシ樹脂、フェノキシ樹脂、ノボラック型フェノール樹脂、ポリアミドイミド樹脂、ポリイミド樹脂またはその変性樹脂からなる群より選ばれる少なくとも1種類を含むものであることが好ましい。 In the via hole filling paste material of the present invention, the resin is at least one selected from the group consisting of bisphenol A type epoxy resin, phenoxy resin, novolac type phenol resin, polyamideimide resin, polyimide resin or modified resin thereof. It is preferable that it is included.
 上記構成を備えたビアホール充填用ペースト材料を用いることにより、さらに確実に、緻密で良好な導通性を有し、かつ、ビアホールとの密着性に優れた信頼性の高いビアホール導体を形成することが可能になる。 By using the via-hole filling paste material having the above-described configuration, it is possible to more reliably form a highly reliable via-hole conductor that is dense and has good conductivity and excellent adhesion to the via-hole. It becomes possible.
 また、前記Sn合金が、Cu、Ni、Ag、Au、Sb、Zn、Pb、Bi、In、Ge、Al、Co、Mn、Fe、Cr、Mg、Pd、Si、Sr、Te、Pからなる群より選ばれる少なくとも1種と、Snとを含む合金であることが好ましい。 The Sn alloy is made of Cu, Ni, Ag, Au, Sb, Zn, Pb, Bi, In, Ge, Al, Co, Mn, Fe, Cr, Mg, Pd, Si, Sr, Te, and P. An alloy containing at least one selected from the group and Sn is preferable.
 上記構成を備えたビアホール充填用ペースト材料を用いることにより、第1金属成分と第2金属成分の間でより確実に金属間化合物が生成し、より確実に、緻密で良好な導通性を有し、かつ、ビアホールとの密着性に優れた信頼性の高いビアホール導体を形成することが可能になる。 By using the via hole filling paste material having the above-described structure, an intermetallic compound is generated more reliably between the first metal component and the second metal component, and more reliably, dense and has good conductivity. In addition, it is possible to form a highly reliable via hole conductor having excellent adhesion to the via hole.
 また、前記Sn合金が、Snを40質量%以上含有することが好ましい。 Moreover, it is preferable that the Sn alloy contains 40% by mass or more of Sn.
 上記構成を備えたビアホール充填用ペースト材料を用いることにより、第1金属成分と第2金属成分との間でさらに確実に金属間化合物が生成し、緻密で良好な導通性を有し、かつ、ビアホールとの密着性に優れた信頼性の高いビアホール導体を形成することが可能になる。 By using the via hole filling paste material having the above-described configuration, an intermetallic compound is more reliably generated between the first metal component and the second metal component, and has a dense and good conductivity, and It becomes possible to form a highly reliable via hole conductor having excellent adhesion to the via hole.
 また、前記Cu合金が、CuAl合金、CuCr合金、CuNi合金、CuMn合金からなる群より選ばれる少なくとも1種であることが好ましい。 The Cu alloy is preferably at least one selected from the group consisting of a CuAl alloy, a CuCr alloy, a CuNi alloy, and a CuMn alloy.
 上記構成を備えたビアホール充填用ペースト材料を用いることにより、第1金属成分と第2金属成分の間でさらに確実に金属間化合物が生成し、緻密で良好な導通性を有し、かつ、ビアホールとの密着性に優れた信頼性の高いビアホール導体を形成することが可能になる。 By using the via hole filling paste material having the above-described configuration, an intermetallic compound is more reliably generated between the first metal component and the second metal component, and the via hole is dense and has good electrical conductivity. It is possible to form a highly reliable via-hole conductor having excellent adhesion to the substrate.
 また、前記Cu合金が、Cuを70~95質量%の範囲で含有することが好ましい。 The Cu alloy preferably contains Cu in the range of 70 to 95% by mass.
 上記構成を備えることにより、第1金属成分と第2金属成分の間でさらに確実に融点の高い金属間化合物が生成し、緻密で良好な導通性を有し、かつ、ビアホールとの密着性に優れた信頼性の高いビアホール導体を形成することが可能になる。 By providing the above-described configuration, an intermetallic compound having a high melting point is more reliably generated between the first metal component and the second metal component, has a dense and good electrical conductivity, and has good adhesion to the via hole. An excellent and highly reliable via-hole conductor can be formed.
 また、前記第1金属成分と前記第2金属成分の合計量に占める前記第2金属成分の割合が30vol%以上であることが好ましい。 Moreover, it is preferable that the ratio of the second metal component in the total amount of the first metal component and the second metal component is 30 vol% or more.
 第2金属成分の割合を30vol%以上とすることにより、融点の高い金属間化合物を生じさせることが可能になり、本発明をより実効あらしめることができる。 By setting the ratio of the second metal component to 30 vol% or more, it becomes possible to generate an intermetallic compound having a high melting point, and the present invention can be clarified more effectively.
 また、本発明にかかる多層基板は、上記本発明のビアホール充填用ペースト材料を用いて形成されたビアホール導体を備えていることを特徴としている。 The multilayer substrate according to the present invention is characterized in that it includes a via hole conductor formed using the via hole filling paste material of the present invention.
 本発明のビアホール充填用ペースト材料は、金属フィラ-と、樹脂と、溶剤とを含むビアホール充填用ペースト材料において、金属フィラーが、所定の温度に加熱されることにより金属間化合物を形成する第1金属成分(低融点金属であるSnまたはSn合金)と、第2金属成分(高融点金属であるCuまたはCu合金)を含むとともに、樹脂として、ビアホール充填用ペースト材料中の固形分中に占める割合が1~12vol%であり、熱分解開始温度が280℃以上で、加熱による架橋反応を起こさないものが用いられていることから、本発明のビアホール充填用ペースト材料を、ビアホール導体の形成に用いることにより、緻密で良好な導通性(導電性)を有し、かつ、ビアホールとの密着性に優れた信頼性の高いビアホール導体を形成することが可能になる。 The via-hole filling paste material of the present invention is a via-hole filling paste material containing a metal filler, a resin, and a solvent, wherein the metal filler is heated to a predetermined temperature to form an intermetallic compound. The ratio of the metal component (Sn or Sn alloy which is a low melting point metal) and the second metal component (Cu or Cu alloy which is a high melting point metal) to the solid content in the paste material for filling via holes as a resin Is 1 to 12 vol%, the thermal decomposition starting temperature is 280 ° C. or higher, and a material that does not cause a crosslinking reaction by heating is used. Therefore, the via hole filling paste material of the present invention is used for forming a via hole conductor. Therefore, a highly reliable via-hole conductor that is dense and has good electrical conductivity (conductivity) and has excellent adhesion to the via-hole It is possible to formed.
 また、本発明にかかる多層基板は、本発明のビアホール充填用ペースト材料を用いて形成されたビアホール導体を備えており、かかるビアホール導体は、緻密で良好な導通性を有し、かつ、ビアホールとの密着性に優れた信頼性の高いビアホール導体であることから、本発明によれば、特性の良好なビアホール導体を備えた信頼性の高い多層基板を提供することが可能になる。 The multilayer substrate according to the present invention includes a via-hole conductor formed using the via-hole filling paste material according to the present invention, and the via-hole conductor is dense and has good electrical conductivity, and Therefore, according to the present invention, it is possible to provide a highly reliable multi-layer substrate including a via hole conductor with good characteristics.
本発明の実施例にかかる多層基板(試料)の作製に用いた、導体配線層およびビアホールを備えた樹脂シート(絶縁層)の構成を示す正面断面図である。It is front sectional drawing which shows the structure of the resin sheet (insulating layer) provided with the conductor wiring layer and the via hole used for preparation of the multilayer board | substrate (sample) concerning the Example of this invention. 本発明の実施例にかかるビアホール充填用ペースト材料を用いて、樹脂シート(絶縁層)のビアホール内に、ビアホール導体を形成した状態を示す正面断面図である。It is front sectional drawing which shows the state which formed the via-hole conductor in the via-hole of the resin sheet (insulating layer) using the via-hole filling paste material concerning the Example of this invention. ビアホール導体が形成された図2の樹脂シート(絶縁層)を接合した状態を示す正面断面図である。It is front sectional drawing which shows the state which joined the resin sheet (insulating layer) of FIG. 2 in which the via-hole conductor was formed.
 以下に本発明を実施するための形態を示して、本発明の特徴をさらに詳しく説明する。 Hereinafter, features of the present invention will be described in more detail with reference to embodiments for carrying out the present invention.
 本発明のビアホール充填用ペースト材料は、少なくとも金属フィラ-と、樹脂と、溶剤とを含むペースト材料である。 The via hole filling paste material of the present invention is a paste material containing at least a metal filler, a resin, and a solvent.
 本発明のビアホール充填用ペースト材料を構成する金属フィラーは、所定の温度に加熱されることにより金属間化合物を形成する第1金属成分(低融点金属であるSnまたはSn合金)と、第2金属成分(第1金属成分よりも融点の高い高融点金属であるCuまたはCu合金)を含む。 The metal filler constituting the via hole filling paste material of the present invention includes a first metal component (Sn or Sn alloy which is a low melting point metal) that forms an intermetallic compound when heated to a predetermined temperature, and a second metal. A component (Cu or Cu alloy which is a high melting point metal having a higher melting point than the first metal component) is included.
 第1金属成分(低融点金属)がSn合金である場合、Sn合金としては、Cu、Ni、Ag、Au、Sb、Zn、Pb、Bi、In、Ge、Al、Co、Mn、Fe、Cr、Mg、Pd、Si、Sr、Te、Pからなる群より選ばれる少なくとも1種と、Snとを含む合金を用いることが好ましい。 When the first metal component (low melting point metal) is an Sn alloy, examples of the Sn alloy include Cu, Ni, Ag, Au, Sb, Zn, Pb, Bi, In, Ge, Al, Co, Mn, Fe, and Cr. It is preferable to use an alloy containing Sn and at least one selected from the group consisting of Mg, Pd, Si, Sr, Te, and P.
 その場合、第1金属成分であるSn合金には、Snが40質量%以上含まれていることが望ましい。 In that case, it is desirable that the Sn alloy as the first metal component contains Sn in an amount of 40% by mass or more.
 また、第2金属成分(高融点金属)がCu合金である場合、CuAl合金、CuCr合金、CuNi合金、CuMn合金からなる群より選ばれる少なくとも1種を用いることが望ましい。 Further, when the second metal component (high melting point metal) is a Cu alloy, it is desirable to use at least one selected from the group consisting of a CuAl alloy, a CuCr alloy, a CuNi alloy, and a CuMn alloy.
 その場合、第2金属成分であるCu合金に占めるAl、Cr、Ni、Mnの割合が5~30質量%の範囲にあること、すなわち、Cu合金に占めるCuの割合が70~95質量%の範囲にあることが望ましい。 In that case, the proportion of Al, Cr, Ni, Mn in the Cu alloy as the second metal component is in the range of 5 to 30% by mass, that is, the proportion of Cu in the Cu alloy is 70 to 95% by mass. It is desirable to be in range.
 また、第1金属成分と第2金属成分の合計量に占める第2金属成分の割合は、30vol%以上であることが好ましい。 Moreover, it is preferable that the ratio of the 2nd metal component to the total amount of a 1st metal component and a 2nd metal component is 30 vol% or more.
 また、本発明のビアホール充填用ペースト材料において、樹脂は、ビアホール充填用ペースト材料中の固形分中に占める割合が1~12vol%の範囲で用いられる。ここで、「固形分」とは、金属フィラーと樹脂を合わせたものをいう。 In the via hole filling paste material of the present invention, the resin is used in a range of 1 to 12 vol% in the solid content in the via hole filling paste material. Here, the “solid content” means a combination of a metal filler and a resin.
 さらに、樹脂としては、熱分解開始温度が280℃以上で、加熱による架橋反応を起こさないものが用いられる。
 なお、本発明において、「(樹脂が)加熱による架橋反応を起こさない」とは、熱分解が生じるまで、樹脂が架橋反応を起こして、金属フィラーの流動を妨げるような高粘度化や固化を生じないことを意味する。
Further, as the resin, those having a thermal decomposition starting temperature of 280 ° C. or higher and not causing a crosslinking reaction by heating are used.
In the present invention, “(resin) does not cause a crosslinking reaction due to heating” means that the resin undergoes a crosslinking reaction until thermal decomposition occurs, and the viscosity or solidification is hindered to prevent the metal filler from flowing. It means not occurring.
 樹脂としては、ビスフェノールA型エポキシ樹脂、フェノキシ樹脂、ノボラック型フェノール樹脂、ポリアミドイミド樹脂、ポリイミド樹脂またはその変性樹脂からなる群より選ばれる少なくとも1種類を含むものを用いることが望ましい。 As the resin, it is desirable to use a resin containing at least one selected from the group consisting of bisphenol A type epoxy resin, phenoxy resin, novolac type phenol resin, polyamideimide resin, polyimide resin or modified resin thereof.
 また、本発明のビアホール充填用ペースト材料に用いられる溶剤の種類には特別の制約はないが、アルコール系、ケトン系、エステル系、エーテル系、芳香族系、炭化水素系からなる群より選ばれる少なくとも1種を含むものであることが好ましい。 The type of solvent used in the via hole filling paste material of the present invention is not particularly limited, but is selected from the group consisting of alcohols, ketones, esters, ethers, aromatics, and hydrocarbons. It is preferable that it contains at least one kind.
 多層基板のビアホール導体の形成に用いる導電性ペースト(ビアホール充填用ペースト材料)中の樹脂量が多くなり過ぎると、ビアホール充填用ペースト材料をビアホールに充填した状態でリフロー処理する際に、樹脂の膨張によりビアホール導体内部が破壊され、緻密性が損なわれて導通性が低下するので好ましくない。 If the amount of resin in the conductive paste (via hole filling paste material) used to form the via hole conductors on the multilayer substrate becomes too large, the resin will expand when the via hole filling paste material is filled in the via holes. This is not preferable because the inside of the via-hole conductor is destroyed, the denseness is impaired and the conductivity is lowered.
 このため、本発明のビアホール充填用ペースト材料では、固形分中の樹脂量を1~12vol%の範囲に規定することで、樹脂の膨張を抑制し、ビアホール導体内部が破壊されて緻密性が損なわれ、導通性が低下することを防止するようにしている。その結果、緻密で良好な導通性を有し、かつ、ビアホールとの密着性に優れ、ビアホールからの脱落を引き起こすことのない、信頼性の高いビアホール導体を形成することが可能になる。 For this reason, in the via hole filling paste material of the present invention, the resin content in the solid content is regulated within the range of 1 to 12 vol%, thereby suppressing the expansion of the resin and destroying the inside of the via hole conductor to deteriorate the denseness. Therefore, the continuity is prevented from being lowered. As a result, it is possible to form a highly reliable via-hole conductor that is dense and has good electrical conductivity, has excellent adhesion to the via hole, and does not cause dropout from the via hole.
 なお、固形分中に占める樹脂が1vol%を下回ると、ビアホール充填用ペースト材料とビアホールとの密着強度が弱くなり、基板を多層化する前の段階でビアホールに衝撃が加わった際に、ビアホールに充填されたビアホール充填用ペースト材料(充填物)が脱落してしまうおそれがあり好ましくない。一方、樹脂量が12vol%を超えると、リフロー時に樹脂の膨張によりビアホール導体内部が破壊され、緻密性が損なわれて導通性が低下してしまうため好ましくない。
 したがって、固形分中に占める樹脂の割合は1~12vol%の範囲とすることが望ましい。
If the resin content in the solid content is less than 1 vol%, the adhesion strength between the via hole filling paste material and the via hole becomes weak, and when an impact is applied to the via hole before the substrate is multilayered, The filled via hole filling paste material (filled material) may fall off, which is not preferable. On the other hand, if the amount of the resin exceeds 12 vol%, the inside of the via-hole conductor is destroyed due to the expansion of the resin during reflow, which is not preferable because the denseness is impaired and the conductivity is lowered.
Therefore, the ratio of the resin in the solid content is desirably in the range of 1 to 12 vol%.
 また、本発明のビアホール充填用ペースト材料においては、樹脂として、加熱による架橋反応を起こさないものを用いることにより、優れた導通性を有するビアホール導体を確実に形成することができるようにしている。加熱による架橋反応を起こさない樹脂を用いた場合、樹脂が硬化しないため、加熱時に金属フィラー間の金属間化合物化反応が進行しやすくなり、緻密な金属間化合物を形成することが可能になる。 In the via hole filling paste material of the present invention, a resin that does not cause a crosslinking reaction by heating is used, so that a via hole conductor having excellent electrical conductivity can be reliably formed. When a resin that does not cause a crosslinking reaction due to heating is used, the resin is not cured, so that an intermetallic compounding reaction between metal fillers easily proceeds during heating, and a dense intermetallic compound can be formed.
 なお、ビアホール充填用ペースト材料に用いる樹脂の耐熱分解性が低い場合、リフロー中に熱分解が生じてガスが発生してビアホール導体内部が破壊され、緻密性が損なわれて導通性が低下する。そのため、本発明では、熱分解開始温度が280℃以上の耐熱分解性の高い樹脂を使用するようにしている。 If the resin used for the via hole filling paste material has low heat decomposability, thermal decomposition occurs during reflow, gas is generated, the inside of the via hole conductor is destroyed, the denseness is impaired, and the conductivity is lowered. Therefore, in the present invention, a resin having a high thermal decomposition resistance having a thermal decomposition start temperature of 280 ° C. or higher is used.
 以下に、本発明の実施例を示して本発明をさらに詳しく説明する。
 <樹脂の熱分解開始温度評価>
 まず、本発明のビアホール充填用ペースト材料に用いられる樹脂の熱分解開始温度の評価方法について説明する。
 この実施例1において、樹脂の熱分解開始温度は、TG(熱重量測定)により評価した。具体的には、樹脂10mgを空気流量200ml/minの条件下において5℃/minの昇温速度で加熱し、重量が0.1質量%減少した時点の温度を熱分解開始温度とした。
Hereinafter, the present invention will be described in more detail with reference to examples of the present invention.
<Evaluation of thermal decomposition start temperature of resin>
First, a method for evaluating the thermal decomposition start temperature of the resin used for the via hole filling paste material of the present invention will be described.
In Example 1, the thermal decomposition start temperature of the resin was evaluated by TG (thermogravimetry). Specifically, 10 mg of resin was heated at a rate of temperature increase of 5 ° C./min under the condition of an air flow rate of 200 ml / min, and the temperature at the time when the weight decreased by 0.1 mass% was defined as the thermal decomposition start temperature.
 <ビアホール充填用ペースト材料の作製>
 金属フィラ-を構成する第1金属成分および第2金属成分と、樹脂と、溶剤とを混合することにより、ビアホール充填用ペースト材料を作製した。
 この実施例1では、第1金属成分としてSn(Sn粉末)を用い、第2金属成分としてCu(Cu粉末)を用いた。
<Preparation of paste material for filling via holes>
A via hole filling paste material was prepared by mixing the first metal component and the second metal component constituting the metal filler, the resin, and the solvent.
In Example 1, Sn (Sn powder) was used as the first metal component, and Cu (Cu powder) was used as the second metal component.
 第1金属成分(Sn粉末)と第2金属成分(Cu粉末)の配合比は、体積比率で、第1金属成分と第2金属成分の割合が(第1金属成分/第2金属成分)が70/30となるように調整した。
 なお、第1金属成分(Sn粉末)および第2金属成分(Cu粉末)としては、いずれも平均粒径が5μmのものを使用した。
The compounding ratio of the first metal component (Sn powder) and the second metal component (Cu powder) is a volume ratio, and the ratio of the first metal component and the second metal component is (first metal component / second metal component). It adjusted so that it might become 70/30.
In addition, as the first metal component (Sn powder) and the second metal component (Cu powder), those having an average particle diameter of 5 μm were used.
 また、樹脂としては、常温で固形のビスフェノールA型エポキシ樹脂(熱分解開始温度320℃)を用いた。固形分中の樹脂の割合は,表1に示すように、1vol%、4vol%、8vol%、12vol%とした。
 樹脂は溶剤に予め溶解させた状態で使用した。溶剤としてはジエチレングリコールモノブチルエーテルアセテートを用いた。
Moreover, as resin, the bisphenol A type epoxy resin (thermal decomposition start temperature 320 degreeC) solid at normal temperature was used. As shown in Table 1, the ratio of the resin in the solid content was 1 vol%, 4 vol%, 8 vol%, and 12 vol%.
The resin was used in a state of being previously dissolved in a solvent. Diethylene glycol monobutyl ether acetate was used as the solvent.
 <ビアホール導体の導通性評価>
 ビアホール充填用ペースト材料を用いて形成したビアホール導体の導通性を評価するための試料(表1の試料番号1~4の試料)を、以下に説明する方法で作製した。
<Evaluation of continuity of via-hole conductor>
Samples for evaluating the conductivity of via-hole conductors formed using the via-hole filling paste material (samples 1 to 4 in Table 1) were produced by the method described below.
 まず、熱可塑性樹脂からなり、図1に示すように、一方側主面3aに所定のパターンを有するCu箔からなる導体配線層1を備え、かつ、所定の位置にビアホール2が形成された樹脂シート(絶縁層)3を用意した。 First, a resin which is made of a thermoplastic resin and has a conductor wiring layer 1 made of Cu foil having a predetermined pattern on one side main surface 3a as shown in FIG. 1, and a via hole 2 is formed at a predetermined position. A sheet (insulating layer) 3 was prepared.
 樹脂シート3としては、厚みが50μmのものを用いた。また、ビアホール2の直径は100μmとした。樹脂シート3へのビアホール2の配設個数は10000個とした。 Resin sheet 3 having a thickness of 50 μm was used. The diameter of the via hole 2 was 100 μm. The number of via holes 2 provided on the resin sheet 3 was 10,000.
 そして、樹脂シート3のビアホール2に、図2に示すように、ビアホール充填用ペースト材料4を充填し、150℃、30minの条件で熱処理し、溶剤を除去した。 Then, as shown in FIG. 2, the via hole 2 of the resin sheet 3 was filled with the via hole filling paste material 4 and heat-treated at 150 ° C. for 30 minutes to remove the solvent.
 それから、図3に示すように、ビアホール2に充填されたビアホール充填用ペースト材料4が乾燥されてなる充填物4aどうしを接合するため、一対の樹脂シート(絶縁層)3,3を、他方側主面3b,3bどうしが互いに対向するように積層し、所定の温度に加熱しながら圧力を加えて、一対の樹脂シート(絶縁層)3,3を加熱圧着した。 Then, as shown in FIG. 3, a pair of resin sheets (insulating layers) 3 and 3 are joined to the other side in order to join the fillers 4a obtained by drying the via hole filling paste material 4 filled in the via holes 2. The main surfaces 3b and 3b were laminated so that they face each other, and pressure was applied while heating to a predetermined temperature, and the pair of resin sheets (insulating layers) 3 and 3 were thermocompression bonded.
 加熱は、最高温度を280℃とし、最高温度で一定時間(約30min)維持するように実施した。そして、このとき、樹脂シート3を積層した積層体5の両主面側から約4MPaの圧力を加えた。
 熱処理は、少なくとも一定時間の間、232℃以上に達するような温度条件下で行うことが好ましい。232℃に達しない場合は、第1金属成分中のSn(融点:232℃)が溶融状態とならず、金属間化合物を生成させることができない。
The heating was performed so that the maximum temperature was 280 ° C. and maintained at the maximum temperature for a certain time (about 30 minutes). At this time, a pressure of about 4 MPa was applied from both main surface sides of the laminate 5 in which the resin sheets 3 were laminated.
The heat treatment is preferably performed under temperature conditions that reach 232 ° C. or higher for at least a certain time. When the temperature does not reach 232 ° C., Sn (melting point: 232 ° C.) in the first metal component does not enter a molten state, and an intermetallic compound cannot be generated.
 上述のように加熱圧着を行うことにより、充填物4a中の第1金属成分と第2金属成分とが金属間化合物化して、ビアホール2内に、導体配線層1,1を層間接続するためのビアホール導体14が形成されると同時に、樹脂シート3,3どうしが接合した多層基板(表1の試料番号1~4の試料)10を得た。 By performing thermocompression bonding as described above, the first metal component and the second metal component in the filler 4a are intermetallic compound, and the conductor wiring layers 1 and 1 are connected to each other in the via hole 2 by interlayer connection. At the same time when the via-hole conductor 14 was formed, a multilayer substrate (samples 1 to 4 in Table 1) 10 in which the resin sheets 3 and 3 were joined together was obtained.
 この多層基板10について、初期導通性を調べるとともに、リフロー処理後のビアホール導体14を介して接続した導体配線層1,1間の抵抗値を測定した。
 リフロー処理は、MSLレベル1(85℃/85%RH,168h)の前処理を行い、ピーク温度が260℃となる条件で計5回行った。
 抵抗値は、各ビアホール導体により接続された各導体配線層間の抵抗値(10000個の抵抗値の平均値)を採用した。
The multilayer substrate 10 was examined for initial conductivity, and the resistance value between the conductor wiring layers 1 and 1 connected via the via-hole conductor 14 after the reflow process was measured.
The reflow treatment was pretreated at MSL level 1 (85 ° C./85% RH, 168 h), and was performed 5 times under the condition that the peak temperature was 260 ° C.
As the resistance value, a resistance value (average value of 10,000 resistance values) between the conductor wiring layers connected by the via hole conductors was adopted.
 測定した導通性は、以下の評価基準にしたがって評価した。
 リフロー後の抵抗値が21.0mΩ未満のものは、導通性が特に良好(◎)と判定した。
 リフロー後の抵抗値が21.0mΩ以上31.0mΩ未満のものは、導通性が良好(○)と判定した。
 リフロー後の抵抗値が31.0mΩ以上のものは、導通性が不良(×)と判定した。
 その結果を表1に示す。
The measured conductivity was evaluated according to the following evaluation criteria.
When the resistance value after reflow was less than 21.0 mΩ, the conductivity was determined to be particularly good (良好).
When the resistance value after reflow was 21.0 mΩ or more and less than 31.0 mΩ, the conductivity was determined to be good (◯).
Those having a resistance value after reflow of 31.0 mΩ or more were judged to have poor conductivity (x).
The results are shown in Table 1.
 また、比較のため、固形分中の樹脂量を0.5vol%、15vol%とした以外は試料番号1~4の試料の場合と同様の方法で作製したビアホール充填用ペースト材料を用いて試料番号101,102の比較例としての試料(多層基板)を作製した。 Also, for comparison, sample numbers were obtained using paste materials for via-hole filling prepared in the same manner as the samples Nos. 1 to 4 except that the amount of resin in the solid content was 0.5 vol% and 15 vol%. Samples (multilayer substrates) as comparative examples 101 and 102 were produced.
 さらに、比較のため、樹脂として、常温固形のビスフェノールA型エポキシ樹脂(熱分解開始温度320℃)を用いるとともに、樹脂に硬化剤(ここではイミダゾール系硬化剤である2-エチル-4-メチルイミダゾール)を添加し、樹脂と硬化剤を合わせた材料の固形分中の割合を4vol%にした以外は試料番号1~4の試料の場合と同様の方法で作製したビアホール充填用ペースト材料を用いて試料番号103の比較例としての試料(多層基板)を作製した。 Furthermore, for comparison, a normal temperature solid bisphenol A type epoxy resin (thermal decomposition start temperature: 320 ° C.) is used as the resin, and a curing agent (here, 2-ethyl-4-methylimidazole which is an imidazole-based curing agent) is used for the resin. ), And using the paste material for via hole filling prepared in the same manner as the samples Nos. 1 to 4 except that the ratio of the solid content of the resin and the curing agent was 4 vol%. A sample (multilayer substrate) as a comparative example of sample number 103 was produced.
 そして、これらの試料番号101~103の試料(比較例)についても、ビアホール導体の導通性評価を行った。
 その結果を表1に併せて示す。なお、比較例の場合も、導通性の評価基準は、上述の表1の試料番号1~4の試料(本発明の実施例にかかる試料)の場合と同じである。
Then, the continuity evaluation of the via-hole conductors was also performed for the samples (comparative examples) of these sample numbers 101 to 103.
The results are also shown in Table 1. In the case of the comparative example, the conductivity evaluation criteria are the same as those of the samples Nos. 1 to 4 (samples according to the examples of the present invention) in Table 1 described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、固形分中の樹脂量を1,4,8,12vol%とし、樹脂として熱分解開始温度320℃の常温固形のビスフェノールA型エポキシ樹脂を用いた、本発明の要件を備えた試料番号1~4の試料(本発明の実施例にかかる試料)の場合、導通性に優れたビアホール導体が形成されることが確認された。 As shown in Table 1, the amount of the resin in the solid content is 1, 4, 8, 12 vol%, and the requirement of the present invention is that the room temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C. is used as the resin. In the case of the samples Nos. 1 to 4 provided (samples according to the examples of the present invention), it was confirmed that a via-hole conductor excellent in conductivity was formed.
 これは、本発明の要件を備えた試料番号1~4の試料の場合、
 (a)樹脂の膨張によりビアホール導体内部が破壊されたり、樹脂が熱分解したりしてビアホール導体の緻密性が損なわれることがないこと、
 (b)樹脂を硬化させないので、加熱時に第1金属成分と第2金属成分の間の金属間化合物の生成反応が進行しやすくなり、緻密な金属間化合物を形成できること
 などによる。
This is the case for samples 1 to 4 with the requirements of the invention:
(A) The inside of the via-hole conductor is not destroyed due to the expansion of the resin, or the resin is thermally decomposed and the denseness of the via-hole conductor is not impaired,
(B) Since the resin is not cured, the formation reaction of the intermetallic compound between the first metal component and the second metal component is likely to proceed during heating, and a dense intermetallic compound can be formed.
 これに対し、本発明の要件を満たさない試料番号101の試料(固形分中の樹脂量が0.5vol%と少ないビアホール充填用ペースト材料を用いた試料)の場合、基板(樹脂シート)を多層化する前の段階でビアホールに衝撃が加わった際に、ペーストを乾燥させて形成した充填物の脱落が生じた。
 これは、固形分中の樹脂量が0.5vol%と少なく、ビアホール充填用ペースト材料とビアホール内周面との密着強度が不十分であったことによるものである。
On the other hand, in the case of the sample of sample number 101 that does not satisfy the requirements of the present invention (sample using a paste material for filling via holes with a low resin content of 0.5 vol%), the substrate (resin sheet) is multilayered. When an impact was applied to the via hole in the stage before conversion, the filling formed by drying the paste was dropped.
This is because the amount of resin in the solid content is as small as 0.5 vol%, and the adhesion strength between the via hole filling paste material and the inner peripheral surface of the via hole is insufficient.
 また、本発明の要件を満たさない試料番号102の試料(固形分中の樹脂量が15vol%と本発明の範囲を超えるビアホール充填用ペースト材料を用いた試料)の場合、ビアホール導体の導通性が不十分になることが確認された。
 これは、固形分中の樹脂量が15vol%と、本発明の範囲の上限値であるしている12vol%を超えており、リフロー時の樹脂の膨張によりビアホール導体内部が破壊されて、ビアホール導体の緻密性が損なわれたことによるものと考えられる。
In addition, in the case of the sample of sample number 102 that does not satisfy the requirements of the present invention (sample using the via hole filling paste material in which the resin content in the solid content exceeds 15 vol% and the range of the present invention), It was confirmed that it would be insufficient.
This is because the amount of resin in the solid content is 15 vol%, which exceeds 12 vol%, which is the upper limit of the range of the present invention. This is thought to be due to the loss of the denseness of the.
 また、本発明の要件を満たさない試料番号103の試料(樹脂として、常温固形のビスフェノールA型エポキシ樹脂が用いられているビアホール充填用ペースト材料を使用した試料)の場合も、樹脂に硬化剤を添加した場合には、ビアホール導体の導通性が不十分になることが確認された。 In addition, in the case of the sample of sample number 103 that does not satisfy the requirements of the present invention (sample using a paste material for filling a via hole in which room temperature solid bisphenol A type epoxy resin is used as a resin), a curing agent is added to the resin. When added, it was confirmed that the conductivity of the via-hole conductor was insufficient.
 すなわち、この試料番号103の試料の場合、固形分中の樹脂量が4vol%であり、樹脂として熱分解開始温度320℃の常温固形のビスフェノールA型エポキシ樹脂が用いられているため、リフロー時の樹脂の膨張によるビアホール導体内部の破壊は発生しない。しかし、試料番号103の試料の場合、樹脂(ビスフェノールA型エポキシ樹脂)に硬化剤が添加されており、加熱により架橋反応が生じるため、樹脂硬化後は、金属フィラー(第1金属成分および第2金属成分)が流動しにくく、緻密な金属間化合物を形成できなくなる。その結果、ビアホール導体の導通性が不十分になったものと考えられる。 That is, in the case of the sample of sample number 103, the amount of resin in the solid content is 4 vol%, and a room temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C. is used as the resin. There is no destruction inside the via-hole conductor due to resin expansion. However, in the case of the sample of sample number 103, since a curing agent is added to the resin (bisphenol A type epoxy resin) and a crosslinking reaction occurs due to heating, the metal filler (the first metal component and the second metal component is cured after the resin is cured). It is difficult for the metal component) to flow and a dense intermetallic compound cannot be formed. As a result, it is considered that the continuity of the via-hole conductor is insufficient.
 この実施例2では、以下に説明するビアホール充填用ペースト材料を用いて上述の実施例1の場合と同様の方法で、表2の試料番号5~9の試料を作製した。 In this Example 2, samples Nos. 5 to 9 in Table 2 were prepared in the same manner as in Example 1 described above using the via hole filling paste material described below.
 この実施例2では、ビアホール充填用ペースト材料を構成する樹脂として、
 (a)常温固形のビスフェノールA型エポキシ樹脂(熱分解開始温度280℃)(試料番号5)、
 (b)フェノキシ樹脂(熱分解開始温度300℃)(試料番号6)、
 (c)ノボラック型フェノール樹脂(熱分解開始温度360℃)(試料番号7)、
 (d)熱可塑性ポリアミドイミド樹脂(熱分解開始温度360℃)(試料番号8)、
 (e)熱可塑性ポリイミド樹脂(熱分解開始温度370℃)(試料番号9)を用いた。
 また、実施例2では、固形分中の樹脂量は4vol%とした。
In Example 2, as a resin constituting the via hole filling paste material,
(A) normal temperature solid bisphenol A type epoxy resin (thermal decomposition start temperature 280 ° C.) (sample number 5),
(B) Phenoxy resin (thermal decomposition start temperature 300 ° C.) (sample number 6),
(C) novolac type phenolic resin (pyrolysis start temperature 360 ° C.) (sample number 7),
(D) Thermoplastic polyamideimide resin (pyrolysis start temperature 360 ° C.) (sample number 8),
(E) Thermoplastic polyimide resin (pyrolysis start temperature 370 ° C.) (Sample No. 9) was used.
In Example 2, the amount of resin in the solid content was 4 vol%.
 溶剤としては、ビスフェノールA型エポキシ樹脂(試料番号5)の場合、ジエチレングリコールモノブチルエーテルアセテートを用い、フェノキシ樹脂(試料番号6)、ノボラック型フェノール樹脂(試料番号7)の場合、ジエチレングリコールモノブチルエーテルアセテートを用い、熱可塑性ポリアミドイミド樹脂(試料番号8)、熱可塑性ポリイミド樹脂(試料番号9)の場合、N-メチルピロリドンを用いた。 As the solvent, diethylene glycol monobutyl ether acetate is used in the case of bisphenol A type epoxy resin (sample number 5), and diethylene glycol monobutyl ether acetate is used in the case of phenoxy resin (sample number 6) and novolac type phenol resin (sample number 7). In the case of thermoplastic polyamideimide resin (sample number 8) and thermoplastic polyimide resin (sample number 9), N-methylpyrrolidone was used.
 このようにして作製したビアホール充填用ペースト材料を用いて、上述の実施例1の場合と同様の方法で、表2の試料番号5~9の試料(本発明の要件を備えた試料)を作製した。 Using the via hole filling paste material thus prepared, samples Nos. 5 to 9 (samples having the requirements of the present invention) in Table 2 were prepared in the same manner as in Example 1 described above. did.
 そして、作製した試料5~9の試料について、上記実施例1の場合と同様の方法でビアホール導体の導通性評価を行った。 Then, the continuity evaluation of the via-hole conductors was performed on the produced samples 5 to 9 by the same method as in Example 1 above.
 また、比較のため、固形分中の樹脂量を4vol%とし、
 (f)樹脂としてアクリル樹脂(熱分解開始温度260℃)(試料番号104)、
 (g)セルロース系樹脂(熱分解開始温度220℃)(試料番号105)、
 (h)常温液状のビスフェノールA型エポキシ樹脂(熱分解開始温度220℃)(試料番号106)
 を用いた以外は、上記試料番号5~9の試料の場合と同様に作製したビアホール充填用ペースト材料を用いて試料番号104~106の試料を作製した。
 そして、これらの試料番号104~106の試料(比較例)についても、上記試料番号5~9の試料の場合と同様の方法でビアホール導体の導通性評価を行った。
 その結果を表2に併せて示す。
For comparison, the amount of resin in the solid content is 4 vol%,
(F) Acrylic resin (pyrolysis start temperature 260 ° C.) as a resin (sample number 104),
(G) Cellulosic resin (thermal decomposition start temperature 220 ° C.) (sample number 105),
(H) Room temperature liquid bisphenol A type epoxy resin (thermal decomposition start temperature 220 ° C.) (Sample No. 106)
Samples Nos. 104 to 106 were prepared using the via-hole filling paste material produced in the same manner as the samples Nos. 5 to 9 described above except that was used.
For these samples Nos. 104 to 106 (comparative examples), the continuity evaluation of the via-hole conductors was performed in the same manner as the samples Nos. 5 to 9.
The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、固形分中の樹脂量を4vol%とし、樹脂として熱分解開始温度280℃以上の耐熱分解性に優れた樹脂を用いている試料番号5~9の試料(本発明の要件を備えた試料)の場合、導通性に優れたビアホール導体が形成されることが確認された。 As shown in Table 2, samples with sample numbers 5 to 9 using a resin with a solid content of 4 vol% and a resin having a thermal decomposition start temperature of 280 ° C. or more and excellent in thermal decomposition resistance (of the present invention) In the case of a sample having requirements, it was confirmed that a via-hole conductor having excellent conductivity was formed.
 これは、試料番号5~9の試料の場合、樹脂の膨張によりビアホール導体内部が破壊されたり、樹脂が熱分解したりしてビアホール導体の緻密性が損なわれることがないこと、および、樹脂を硬化させないことから、加熱時に第1金属成分と第2金属成分の間の金属間化合物の生成反応が進行しやすく、緻密な金属間化合物が形成されることなどによるものである。 In the case of the samples of sample numbers 5 to 9, the inside of the via-hole conductor is not destroyed by the expansion of the resin, the resin is thermally decomposed, and the denseness of the via-hole conductor is not impaired. Because it is not cured, the formation reaction of the intermetallic compound between the first metal component and the second metal component is likely to proceed during heating, and a dense intermetallic compound is formed.
 これに対し、本発明の要件を満たさない試料番号104~106の試料(比較例)の場合、導通性に優れたビアホール導体が形成されないことが確認された。
 これは,試料番号104~106の試料の場合、いずれも熱分解開始温度280℃以下の、熱分解しやすい樹脂が用いられていることから、リフロー時に樹脂が熱分解してガスが発生し、緻密で導通性に優れたな金属間化合物を形成することができなかったことによるものと考えられる。
On the other hand, it was confirmed that in the case of the samples of sample numbers 104 to 106 (comparative example) that do not satisfy the requirements of the present invention, a via-hole conductor excellent in conductivity is not formed.
This is because, in the case of samples Nos. 104 to 106, all of the resins having a thermal decomposition starting temperature of 280 ° C. or less are used which are easily thermally decomposed, the resin is thermally decomposed during reflow and gas is generated. This is considered to be because a dense intermetallic compound having excellent conductivity was not formed.
 この実施例3では、以下に説明するビアホール充填用ペースト材料を用いて、上述の実施例1の場合と同様の方法で、表3の試料番号10~13の試料を作製した。 In this Example 3, samples of sample numbers 10 to 13 in Table 3 were prepared by using the via hole filling paste material described below in the same manner as in Example 1 described above.
 この実施例3では、ビアホール充填用ペースト材料を構成する第1金属成分としてSnを用い、第2金属成分としてCu-15Al、Cu-15Cr、Cu-15Ni、Cu-15Mnを用いるとともに、第1金属成分と第2金属成分の配合比、すなわち、第1金属成分/第2金属成分(体積比率)を70/30に調整した。
 ここで、例えば、上記「Cu-15Al」の数字15は当該成分(この場合はAl)の質量%の値を示している。このとき、Cuの割合は85質量%となる。同様に記載された他の材料の場合も同様である。
 また、第1金属成分および第2金属成分としては、いずれも平均粒径が5μmのものを用いた。
In Example 3, Sn is used as the first metal component constituting the via hole filling paste material, and Cu-15Al, Cu-15Cr, Cu-15Ni, Cu-15Mn is used as the second metal component, and the first metal is used. The compounding ratio of the component and the second metal component, that is, the first metal component / second metal component (volume ratio) was adjusted to 70/30.
Here, for example, the numeral 15 of the “Cu-15Al” indicates a mass% value of the component (in this case, Al). At this time, the ratio of Cu is 85% by mass. The same applies to other materials described in the same manner.
Further, as the first metal component and the second metal component, those having an average particle diameter of 5 μm were used.
 樹脂としては、常温固形のビスフェノールA型エポキシ樹脂(熱分解開始温度320℃)を用い、固形分中の割合が4vol%となるようにした(表3)。なお、樹脂は溶剤に予め溶解させた状態で使用した。溶剤はジエチレングリコールモノブチルエーテルアセテートを用いた。 As the resin, room temperature solid bisphenol A type epoxy resin (thermal decomposition start temperature 320 ° C.) was used, and the ratio in the solid content was 4 vol% (Table 3). In addition, resin was used in the state previously dissolved in the solvent. Diethylene glycol monobutyl ether acetate was used as the solvent.
 このようにして作製したビアホール充填用ペースト材料を用いて、表3の試料番号10~13の試料(本発明の要件を備えた試料)を作製した。 Using the via hole filling paste material thus prepared, samples Nos. 10 to 13 in Table 3 (samples having the requirements of the present invention) were prepared.
 そして、作製した試料10~13の試料について、上記実施例1の場合と同様の方法でビアホール導体の導通性評価を行った。その結果を表3に示す。 Then, the continuity evaluation of the via-hole conductors was performed on the produced samples 10 to 13 in the same manner as in Example 1 above. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、固形分中の樹脂量を4vol%とし、樹脂として熱分解開始温度320℃の常温固形のビスフェノールA型エポキシ樹脂を用いるとともに、第2金属成分としてCu-15Al、Cu-15Cr、Cu-15Ni、Cu-15Mnのいずれかを用いたビアホール充填用ペースト材料を使用した試料番号10~13の試料の場合も、導通性に優れたビアホール導体が形成されることが確認された。 As shown in Table 3, the amount of the resin in the solid content is 4 vol%, a normal temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C. is used as the resin, and Cu-15Al, Cu— are used as the second metal component. It was confirmed that via hole conductors with excellent electrical conductivity were also formed in samples Nos. 10 to 13 using a via hole filling paste material using any one of 15Cr, Cu-15Ni, and Cu-15Mn. .
 これは、上述のようなビアホール充填用ペースト材料を用いてビアホール導体を形成した試料番号10~13の試料の場合、樹脂の膨張によりビアホール導体内部が破壊されたり、樹脂が熱分解したりしてビアホール導体の緻密性が損なわれることがないこと、および、樹脂を硬化させないことから、加熱時に第1金属成分と第2金属成分の間の金属間化合物の生成反応が進行しやすく、緻密な金属間化合物を形成できることなどによるものである。 In the case of samples Nos. 10 to 13 in which via hole conductors are formed using the via hole filling paste material as described above, the inside of the via hole conductors may be destroyed due to resin expansion, or the resin may be thermally decomposed. Since the denseness of the via-hole conductor is not impaired and the resin is not cured, the formation reaction of the intermetallic compound between the first metal component and the second metal component easily proceeds during heating, and the dense metal This is because an intermetallic compound can be formed.
 実施例4では、第1金属成分としてSn-3.5Ag、Sn-0.75Cu、Sn-58Biのいずれかを用い、第2金属成分としてCuを用いた以外は、上記実施例3の場合と同様にして作製したビアホール充填用ペースト材料を用いて、上記実施例1の場合と同様の方法で、表4の試料番号14~16の試料(本発明の要件を備えた試料)を作製した。 In Example 4, any of Sn-3.5Ag, Sn-0.75Cu, and Sn-58Bi was used as the first metal component, and Cu was used as the second metal component. Samples with sample numbers 14 to 16 shown in Table 4 (samples having the requirements of the present invention) were produced in the same manner as in Example 1 above using the via hole filling paste material produced in the same manner.
 そして、作製した試料14~16の試料について、上記実施例1の場合と同様の方法でビアホール導体の導通性評価を行った。その結果を表4に示す。 Then, the continuity evaluation of the via-hole conductors was performed on the fabricated samples 14 to 16 by the same method as in Example 1 above. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、固形分中の樹脂量を4vol%とし、樹脂として熱分解開始温度320℃の常温固形のビスフェノールA型エポキシ樹脂を用いるとともに、第1金属成分としてSn-3.5Ag、Sn-0.75Cu、Sn-58Biのいずれかを用いたビアホール充填用ペースト材料を使用して作製した試料番号14~16の試料の場合も、導通性に優れたビアホール導体が形成されることが確認された。 As shown in Table 4, the amount of the resin in the solid content is 4 vol%, a room temperature solid bisphenol A type epoxy resin having a thermal decomposition start temperature of 320 ° C. is used as the resin, and Sn-3.5Ag as the first metal component, In the case of samples Nos. 14 to 16 prepared using a via hole filling paste material using either Sn-0.75Cu or Sn-58Bi, via hole conductors with excellent electrical conductivity may be formed. confirmed.
 これは、上述のようなビアホール充填用ペースト材料を使用してビアホール導体を形成した場合、樹脂の膨張によりビアホール導体内部が破壊されたり、樹脂が熱分解したりしてビアホール導体の緻密性が損なわれることがないこと、および、樹脂を硬化させないことから、加熱時に第1金属成分と第2金属成分の間の金属間化合物の生成反応が進行しやすく、緻密な金属間化合物を形成できることなどによるものである。 This is because, when the via hole conductor is formed using the via hole filling paste material as described above, the inside of the via hole conductor is destroyed due to the expansion of the resin, or the resin is thermally decomposed to deteriorate the density of the via hole conductor. And the resin is not cured, so that the formation reaction of the intermetallic compound between the first metal component and the second metal component is likely to proceed during heating, and a dense intermetallic compound can be formed. Is.
 なお、本発明は上記実施形態および実施例に限定されるものではなく、多層基板を構成する絶縁層の積層数、ビアホール導体により接続される内部導体や表面導体層の配設態様、ビアホール充填用ペースト材料を構成する樹脂や金属フィラーの種類などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above-described embodiments and examples. The number of insulating layers constituting the multilayer substrate, the arrangement of internal conductors and surface conductor layers connected by via-hole conductors, and via-hole filling Various applications and modifications can be made within the scope of the invention with respect to the types of resin and metal filler constituting the paste material.
 1       導体配線層
 2       ビアホール
 3       樹脂シート(絶縁層)
 3a      樹脂シートの一方側主面
 3b      樹脂シートの他方側主面
 4       ビアホール充填用ペースト材料
 4a      充填物(乾燥後のビアホール充填用ペースト材料)
 5       積層体
 10      多層基板(試料)
 14      ビアホール導体
1 Conductor wiring layer 2 Via hole 3 Resin sheet (insulating layer)
3a One side main surface of resin sheet 3b Other side main surface of resin sheet 4 Via hole filling paste material 4a Filled material (via hole filling paste material after drying)
5 Laminated body 10 Multilayer substrate (sample)
14 Via-hole conductor

Claims (8)

  1.  金属フィラ-と、樹脂と、溶剤とを含むビアホール充填用ペースト材料であって、
     前記金属フィラーが、第1金属成分としてSnまたはSn合金を含むとともに、第2金属成分として前記第1金属成分より融点の高いCuまたはCu合金を含み、かつ、前記第1金属成分と前記第2金属成分とが、所定の温度に加熱されることにより金属間化合物を形成するものであり、
     前記樹脂は、ビアホール充填用ペースト材料中の固形分中に占める割合が1~12vol%であり、熱分解開始温度が280℃以上で、加熱による架橋反応を起こさないものであること
     を特徴とするビアホール充填用ペースト材料。
    A via hole filling paste material containing a metal filler, a resin, and a solvent,
    The metal filler includes Sn or Sn alloy as the first metal component, and includes Cu or Cu alloy having a melting point higher than that of the first metal component as the second metal component, and the first metal component and the second metal component. The metal component forms an intermetallic compound by being heated to a predetermined temperature,
    The resin occupies 1 to 12 vol% of the solid content in the via hole filling paste material, has a thermal decomposition start temperature of 280 ° C. or higher, and does not cause a crosslinking reaction by heating. Via hole filling paste material.
  2.  前記樹脂がビスフェノールA型エポキシ樹脂、フェノキシ樹脂、ノボラック型フェノール樹脂、ポリアミドイミド樹脂、ポリイミド樹脂またはその変性樹脂からなる群より選ばれる少なくとも1種類を含むものであることを特徴とする請求項1記載のビアホール充填用ペースト材料。 2. The via hole according to claim 1, wherein the resin contains at least one selected from the group consisting of a bisphenol A type epoxy resin, a phenoxy resin, a novolac type phenol resin, a polyamideimide resin, a polyimide resin or a modified resin thereof. Paste material for filling.
  3.  前記Sn合金が、Cu、Ni、Ag、Au、Sb、Zn、Pb、Bi、In、Ge、Al、Co、Mn、Fe、Cr、Mg、Pd、Si、Sr、Te、Pからなる群より選ばれる少なくとも1種と、Snとを含む合金であることを特徴とする請求項1または2記載のビアホール充填用ペースト材料。 The Sn alloy is made of Cu, Ni, Ag, Au, Sb, Zn, Pb, Bi, In, Ge, Al, Co, Mn, Fe, Cr, Mg, Pd, Si, Sr, Te, and P. The via hole filling paste material according to claim 1 or 2, wherein the paste material is an alloy containing at least one selected from Sn and Sn.
  4.  前記Sn合金が、Snを40質量%以上含有することを特徴とする請求項1~3のいずれか1項に記載のビアホール充填用ペースト材料。 The via hole filling paste material according to any one of claims 1 to 3, wherein the Sn alloy contains 40 mass% or more of Sn.
  5.  前記Cu合金が、CuAl合金、CuCr合金、CuNi合金、CuMn合金からなる群より選ばれる少なくとも1種であることを特徴とする請求項1~4のいずれか1項に記載のビアホール充填用ペースト材料。 The via hole filling paste material according to any one of claims 1 to 4, wherein the Cu alloy is at least one selected from the group consisting of a CuAl alloy, a CuCr alloy, a CuNi alloy, and a CuMn alloy. .
  6.  前記Cu合金が、Cuを70~95質量%の範囲で含有することを特徴とする請求項1~5のいずれか1項に記載のビアホール充填用ペースト材料。 6. The via hole filling paste material according to claim 1, wherein the Cu alloy contains Cu in a range of 70 to 95% by mass.
  7.  前記第1金属成分と前記第2金属成分の合計量に占める前記第2金属成分の割合が30vol%以上であることを特徴とする請求項1~6のいずれか1項に記載のビアホール充填用ペースト材料。 The via hole filling according to any one of claims 1 to 6, wherein a ratio of the second metal component to a total amount of the first metal component and the second metal component is 30 vol% or more. Paste material.
  8.  請求項1~7のいずれか1項に記載のビアホール充填用ペースト材料を用いて形成されたビアホール導体を備えていることを特徴とする多層基板。 A multilayer board comprising a via hole conductor formed using the via hole filling paste material according to any one of claims 1 to 7.
PCT/JP2014/074097 2013-12-05 2014-09-11 Paste material for via hole filling and multilayer substrate WO2015083409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013251875 2013-12-05
JP2013-251875 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015083409A1 true WO2015083409A1 (en) 2015-06-11

Family

ID=53273187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074097 WO2015083409A1 (en) 2013-12-05 2014-09-11 Paste material for via hole filling and multilayer substrate

Country Status (1)

Country Link
WO (1) WO2015083409A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253507A (en) * 2009-04-24 2010-11-11 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and connecting structure
JP2012182298A (en) * 2011-03-01 2012-09-20 Murata Mfg Co Ltd Electronic component mounting substrate and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253507A (en) * 2009-04-24 2010-11-11 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and connecting structure
JP2012182298A (en) * 2011-03-01 2012-09-20 Murata Mfg Co Ltd Electronic component mounting substrate and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2013132954A1 (en) Bonding method, bond structure, and manufacturing method for same
US9451693B2 (en) Electrically conductive adhesive (ECA) for multilayer device interconnects
TWI335195B (en) Multilayer wiring board
US8604350B2 (en) Multilayer wiring substrate and manufacturing method of multilayer wiring substrate
JP6287682B2 (en) Bonded body and power module substrate
US20130008698A1 (en) Multilayer wiring board, production method of the same, and via paste
JP4949802B2 (en) Conductive paste and multilayer substrate using the same
EP2555602A1 (en) Multilayer wiring board and method for manufacturing multilayer wiring board
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
JP2009065008A (en) Conductive paste composition
TWI419633B (en) A multilayer wiring board, and a multilayer wiring board obtained
JP4268476B2 (en) Conductive paste, wiring board and manufacturing method thereof
JP3634984B2 (en) Wiring board
TW201915186A (en) Lead-free solder alloy, electronic circuit substrate and electronic control device capable of not only suppressing cracks generated at solder joints but also suppressing cracks generated at electrodes of chip resistors
JP2004223559A (en) Metallic powder composition for electrode connection and method for connecting electrode
JP4468080B2 (en) Conductive paste composition for multilayer wiring board
JP2004234900A (en) Conductive paste using conductive particle, and sheet for connection using the paste
WO2015083409A1 (en) Paste material for via hole filling and multilayer substrate
JP2012182390A (en) Rigid flexible substrate and method for manufacturing the same
JP2016087691A (en) Pb-FREE SOLDER AND ELECTRONIC PARTS BUILT-IN MODULE
JP2009059574A (en) Conductive paste, and multilayer wiring board using it
JP2017130623A (en) Paste material for filling, manufacturing method of via-hole conductor using the same, and manufacturing method of multilayer substrate
JPWO2018174066A1 (en) Conductive particles, conductive material and connection structure
JP2013065728A (en) Ceramic electronic component and manufacturing method therefor
JP2013247339A (en) Method for manufacturing electronic component module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP