WO2021054074A1 - 制御装置、システム、制御方法およびプログラム - Google Patents

制御装置、システム、制御方法およびプログラム Download PDF

Info

Publication number
WO2021054074A1
WO2021054074A1 PCT/JP2020/032376 JP2020032376W WO2021054074A1 WO 2021054074 A1 WO2021054074 A1 WO 2021054074A1 JP 2020032376 W JP2020032376 W JP 2020032376W WO 2021054074 A1 WO2021054074 A1 WO 2021054074A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
bus
power
converters
converter
Prior art date
Application number
PCT/JP2020/032376
Other languages
English (en)
French (fr)
Inventor
丸山 宏二
藤田 悟
剛 長野
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2021546568A priority Critical patent/JP7259976B2/ja
Priority to CN202080023071.7A priority patent/CN113615028A/zh
Publication of WO2021054074A1 publication Critical patent/WO2021054074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to control devices, systems, control methods and programs.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-171359
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2016-158434
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2016-220480
  • the control device is a plurality of DC / DC converters provided between a DC bus maintained at a reference voltage by exchanging power with and from an inverter and a plurality of DC power supplies for supplying DC power to the DC bus.
  • a first control unit that controls at least one of the above may be provided.
  • the control device may include a voltage measuring unit that measures the voltage of the DC bus.
  • the first control unit may reduce the output power of only a part of the plurality of DC / DC converters when the voltage of the DC bus exceeds a threshold voltage higher than the reference voltage.
  • the first control unit may control any one of the corresponding DC / DC converters among the plurality of DC / DC converters.
  • the control device may further include a changing unit that changes the threshold voltage over time.
  • the first control unit may reduce the output power of the corresponding DC / DC converter when the duration of the DC bus voltage exceeding the threshold voltage exceeds the upper limit time.
  • the control device may further include a change unit that changes the upper limit time over time.
  • the system may include an inverter that maintains the DC bus at a reference voltage by transferring power to and from the DC bus.
  • the system may include a plurality of DC / DC converters provided between the DC bus and a plurality of DC power sources for supplying DC power to the DC bus.
  • the system may include a plurality of control devices of the first aspect, each controlling any one of the plurality of DC / DC converters corresponding to the DC / DC converter.
  • the plurality of control devices may reduce the output power of each DC / DC converter by giving a time difference between the plurality of DC / DC converters.
  • the system may further include another control device having a second control unit that controls the inverter.
  • the second control unit may reduce the output power output from the inverter in response to receiving the output limit command signal.
  • the first control unit may control each of the plurality of DC / DC converters.
  • the first control unit may reduce the output power of each DC / DC converter by giving a time difference between the plurality of DC / DC converters.
  • the first control unit may gradually increase the number of DC / DC converters that reduce the output power among the plurality of DC / DC converters.
  • the first control unit When the DC bus voltage exceeds the threshold voltage, the first control unit reduces the output power of each DC / DC converter in the order corresponding to the maximum output power of each DC power supply connected to each DC / DC converter. It's okay.
  • the control device may further include a storage unit that stores different unique threshold voltages equal to or higher than the threshold voltage in association with each of the plurality of DC / DC converters.
  • the first control unit may reduce the output power of the DC / DC converter corresponding to the intrinsic threshold voltage.
  • the control device may further include a storage unit that stores different specific upper limit times in association with each of the plurality of DC / DC converters.
  • the first control unit may reduce the output power of the DC / DC converter corresponding to the specific upper limit time when the duration of the DC bus voltage exceeding the threshold voltage exceeds any specific upper limit time.
  • the first control unit may reduce the output power of each DC / DC converter in a random order when the voltage of the DC bus exceeds the threshold voltage.
  • the system may include an inverter that maintains the DC bus at a reference voltage by transferring power to and from the DC bus.
  • the system may include a plurality of DC / DC converters each provided between the DC bus and a plurality of DC power sources that supply DC output to the DC bus.
  • the system may include a control device of a first aspect that controls each of the plurality of DC / DC converters.
  • the control device may further include a second control unit that controls the inverter.
  • the second control unit may reduce the output power output from the inverter in response to receiving the output limit command signal.
  • the second control unit may determine the amount of current to be passed through the inverter based on the target output power included in the command signal and the voltage of the DC bus.
  • the inverter may have a plurality of DC / DC converter circuits connected in parallel to the DC bus for each output phase.
  • the inverters may have a plurality of single-phase inverter circuits that are connected in series to each other on the output side for each output phase and are supplied with power from their respective DC / DC converters.
  • Each of the plurality of DC / DC converters may be detachably connected to at least one of the DC power supply and the DC bus.
  • At least a part of the plurality of DC power sources may be a photovoltaic power generation device.
  • the first control unit that controls the DC / DC converter connected to the solar power generation device can further control the solar power generation device, and when the DC bus voltage is equal to or less than the threshold voltage, and the DC / DC MPPT control may be performed so that the maximum power is supplied from the solar power generation device in at least one case where the output power of the converter is not reduced.
  • the first control unit may control the output power to a target value determined from the voltage of the DC bus.
  • the first control unit sets the target values of the reference output power of the DC / DC converter and the DC power supply connected to the DC / DC converter. Depending on whether it is at least one of the reference output powers or more, the control for reducing the output powers may be released.
  • a control method is provided.
  • the control method is a plurality of DC / DC converters provided between a DC bus maintained at a reference voltage by exchanging power with and from an inverter and a plurality of DC power supplies for supplying DC power to the DC bus.
  • a control step may be provided to control at least one of the above.
  • the control method may include a voltage measurement step of measuring the voltage of the DC bus. In the control stage, when the voltage of the DC bus exceeds a threshold voltage higher than the reference voltage, the output power of only a part of the DC / DC converters among the plurality of DC / DC converters may be reduced.
  • the program is provided.
  • the program is a plurality of DCs / DCs provided in the computer between a DC bus maintained at a reference voltage by exchanging power with and from an inverter and a plurality of DC power supplies for supplying DC power to the DC bus.
  • a first control unit that controls at least one of the DC converters may be realized.
  • the program may allow the computer to implement a voltage measuring unit that measures the voltage of the DC bus.
  • the first control unit may reduce the output power of only a part of the plurality of DC / DC converters when the voltage of the DC bus exceeds a threshold voltage higher than the reference voltage.
  • the electric power system 1 which concerns on this embodiment is shown.
  • the DC / DC converter 3 is shown.
  • Another DC / DC converter 3 is shown.
  • Cell 25 is shown.
  • the operation of the three-phase inverter 2 is shown.
  • the operation of the control device 5 is shown.
  • the electric power system 1A which concerns on the 1st modification is shown.
  • the control device 7 is shown.
  • the operation of the control device 7 is shown.
  • the operation of the control device 5A is shown.
  • the state transition diagram of the electric power system 1A is shown.
  • the electric power system 1A which concerns on the 2nd modification is shown.
  • the operation of the control device 5B is shown.
  • An example of a computer 2200 in which a plurality of aspects of the present invention may be embodied in whole or in part is shown.
  • FIG. 1 shows an electric power system 1 according to the present embodiment.
  • the power system 1 includes a three-phase inverter 2 and a plurality of DC / DC converters 3 connected to a DC bus 10, a DC power supply 4 connected to the DC / DC converter 3, and a plurality of control devices 5.
  • a load (not shown) may be further connected to the DC bus 10.
  • a capacitor (not shown) may be provided between the DC / DC converter 3, the three-phase inverter 2A, and at least one of the loads, and the DC bus 10.
  • the three-phase inverter 2 is an example of an inverter, and performs power conversion between DC power and AC power (three-phase AC power in this embodiment).
  • the three-phase inverter 2 maintains the DC bus 10 at a reference voltage by exchanging and receiving electric power with and from the DC bus 10.
  • the three-phase inverter 2 may be a PCS (Power Condition in System), and the DC power supplied from the DC bus 10 is DC / AC converted and output from the AC wiring 15, and the AC is supplied from the AC wiring 15.
  • the power may be AC / DC converted and supplied to the DC bus 10.
  • the three-phase inverter 2 may maintain the DC bus 10 at the reference voltage by changing the control conditions for such power conversion.
  • a 3.3 k ⁇ or 6.6 k ⁇ power system may be connected to the AC wiring 15.
  • the three-phase inverter 2 may have a voltage measuring unit 20, a second control unit 21, and a single-phase inverter 22 for each output phase of U-phase, V-phase, and W-phase.
  • the voltage measuring unit 20 measures the voltage of the DC bus 10.
  • the voltage measuring unit 20 may supply the measured voltage to the second control unit 21.
  • the second control unit 21 controls each single-phase inverter 22 by the control signal Ctrl_DC / AC.
  • the second control unit 21 may change the control conditions of each single-phase inverter 22 based on the voltage measured by the voltage measurement unit 20, and maintain the voltage of the DC bus 10 at the reference voltage.
  • Each single-phase inverter 22 may be a so-called SST (Solid-State Transformer) type inverter.
  • the single-phase inverter 22 may have three DC / DC converter circuits 23 and three single-phase inverter circuits 24.
  • the number of DC / DC converter circuits 23 and the number of single-phase inverter circuits 24 may be two, four or more, the same number, or different numbers.
  • the three DC / DC converter circuits 23 are connected in parallel to the DC bus 10, and the DC voltage from the DC bus 10 is converted into DC / DC, respectively, to form the single-phase inverter circuit 24.
  • Supply Each of the three single-phase inverter circuits 24 is connected to a DC / DC converter 3 on the input side to receive power from the DC / DC converter 3, and is connected in series with each other on the output side.
  • the single-phase inverter 22 adds up the output voltages from the three single-phase inverter circuits 24 and outputs them.
  • the DC / DC converter circuit 23 and the single-phase inverter circuit 24 may have a one-to-one correspondence, and the corresponding pairs of the DC / DC converter circuit 23 and the single-phase inverter circuit 24 have a one-to-one correspondence.
  • Cell 25 may be made.
  • the U-phase, V-phase, and W-phase single-phase inverters 22 are connected to each other by a star connection (also referred to as Y connection) method, but may be connected by a delta connection (also referred to as delta connection) method.
  • the three-phase inverter 2 and the DC bus 10 may be housed in a single housing to form a PCS (Power Conditioning System) device 11.
  • PCS Power Conditioning System
  • Such a PCS device 11 may be formed in a rack mount type that can be installed so as to accommodate a plurality of DC / DC converters 3.
  • the plurality of DC / DC converters 3 are provided between the DC bus 10 and the plurality of DC power supplies 4, respectively, and DC / DC conversion of the DC power from the DC power supply 4 is performed and supplied to the DC bus 10.
  • the power system 1 is provided with three DC / DC converters 3 (also referred to as DC / DC converters 3a to 3c), but the number of DC / DC converters 3 may be two. It may be four or more.
  • Each DC / DC converter 3 may be detachably connected to at least one of the DC power supply 4 and the DC bus 10.
  • Each DC / DC converter 3 may be connected to the DC bus 10 by being housed in the rack-mounted PCS device 11.
  • the plurality of DC power supplies 4 supply DC power to the DC bus 10.
  • the power system 1 is provided with three DC power supplies 4 (also referred to as DC power supplies 4a to 4c) in the same number as the DC / DC converter 3, and each DC power supply 4 corresponds to a single DC / DC.
  • DC power is supplied to the DC bus 10 via the converter 3.
  • Each DC power source 4 may be a distributed power source, and at least a part of the plurality of DC power sources 4 is a household solar power generation device that outputs a power of several kW or a commercial photovoltaic power generation device that outputs a power of several MW. Good.
  • the DC power supplies 4a and 4b are photovoltaic power generation devices
  • the DC power supply 4c is a storage battery.
  • Control device 5 The plurality of control devices 5 control a plurality of DC / DC converters 3.
  • Each control device 5 has a voltage measuring unit 50, a first control unit 51, and a changing unit 52.
  • the voltage measuring unit 50 measures the voltage of the DC bus 10.
  • the voltage measuring unit 50 may supply the measured voltage to the first control unit 51.
  • the first control unit 51 is a DC / DC converter 3 of at least one of a plurality of DC / DC converters 3 according to the control signal Ctrl_DC / DC, and one of the corresponding DC / DC converters 3 as an example in the present embodiment. To control. When the voltage of the DC bus 10 exceeds the threshold voltage, the first control unit 51 reduces the output power of only a part of the DC / DC converters 3 among the plurality of DC / DC converters 3. For example, the first control unit 51 may reduce the output power of the corresponding DC / DC converter 3.
  • the threshold voltage is a voltage higher than the reference voltage maintained by the three-phase inverter 2 and may be a voltage lower than the absolute maximum rated voltage.
  • the voltage of the DC bus 10 is from the DC power supplies 4a and 4b as a solar power generation device rather than the load connected to the DC bus 10 and the capacity of the DC power supply 4c as a storage battery when a problem occurs in the power system 1. It can be higher than the reference voltage when the amount of power supply is large.
  • the threshold voltage may differ among the plurality of control devices 5.
  • the plurality of control devices 5 when the voltage of the DC bus 10 exceeds the threshold voltage of each control device 5, the plurality of control devices 5 have a time difference between the plurality of DC / DC converters 3 and the DC / DC converters 3 have a time difference. The output power will be reduced. Further, when the voltage of the DC bus 10 exceeds the threshold voltage of each control device 5, the plurality of control devices 5 stepwise determine the number of DC / DC converters among the plurality of DC / DC converters 3 that reduce the output power. Will increase to. When the voltage of the DC bus 10 exceeds the absolute maximum rated voltage, the first control unit 51 may stop the DC / DC converter 3.
  • the changing unit 52 changes the threshold voltage in the first control unit 51 over time. As a result, the order of the threshold voltages changes with time among the plurality of control devices 5. Further, even if the default threshold voltage is the same among the plurality of control devices 5, the threshold voltage will be different among the plurality of control devices 5.
  • the changing unit 52 may maintain the threshold voltage higher than the reference voltage.
  • the changing unit 52 may change the threshold voltage randomly or periodically.
  • the output power of some of the DC / DC converters 3 among the plurality of DC / DC converters 3 is reduced. Therefore, even if a problem occurs in the power system 1, or the amount of power supplied from the DC power supplies 4a and 4b as the solar power generation device exceeds the load of the DC bus 10 and the capacity of the DC power supply 4c as the storage battery. It is possible to suppress the voltage of the DC bus 10 to be equal to or lower than the threshold voltage to prevent overvoltage and prevent damage to the equipment.
  • the voltage of the DC bus 10 is maintained at the reference voltage by exchanging power with and from the three-phase inverter 2, and when the threshold voltage is exceeded, the output power of some DC / DC converters 3 is reduced. Since it is suppressed to the threshold voltage or less, the voltage of the DC bus 10 is controlled by the control of the three-phase inverter 2 and DC /, unlike the case where the voltage of the DC bus 10 is controlled to the threshold voltage or less by controlling only the three-phase inverter 2. It can be distributed to the control of the DC converter 3 to facilitate the control.
  • the control of the voltage of the DC bus 10 can be distributed between the control of the three-phase inverter 2 and the control of the DC / DC converter 3, the number of DC / DC converters 3 and DC power supply 4 in the power system 1 can be increased.
  • the degree of freedom can be increased, and the number of DC / DC converters 3 and DC power supplies 4 can be increased or decreased without changing the control configuration of the three-phase inverter 2.
  • the voltage of the DC bus 10 exceeds the threshold voltage, the output power of only a part of the DC / DC converters 3 is reduced, so that the operation of the power system 1 as a whole can be continued.
  • each first control unit 51 controls any one of the corresponding DC / DC converters 3, the corresponding DCs are provided regardless of how many other DC / DC converters 3 are provided in the power system 1.
  • the / DC converter 3 can be controlled. Therefore, the number of DC / DC converters 3 can be arbitrarily increased or decreased.
  • the threshold voltage of the first control unit 51 changes with time by the change unit 52 of each control device 5, the default threshold voltage is equal among the plurality of control devices 5 provided in the power system 1. Even if there is, the threshold voltage can be made different from that of the other control device 5. Therefore, since a plurality of DC / DC converters 3 can be controlled based on individual threshold voltages, the output power of all the DC / DC converters 3 is reduced when the voltage of the DC bus 10 rises. This can be prevented and the operation of the power system 1 as a whole can be surely continued. Further, since the order of the threshold voltage can be changed over time among the plurality of control devices 5, the output power can be reduced when the voltage of the DC bus 10 repeatedly exceeds the threshold voltage. It is possible to prevent the DC / DC converter 3 from being biased.
  • the plurality of control devices 5 reduce the output power of each DC / DC converter 3 by giving a time difference between the plurality of DC / DC converters 3, so that the DC is DC.
  • the voltage of the bus 10 rises, it is possible to prevent the output power of all the DC / DC converters 3 from being reduced, and to reliably continue the operation of the power system 1 as a whole.
  • the DC / DC converter 3 is stopped when the amount of power generated by the photovoltaic power generation increases and the voltage of the DC bus 10 exceeds the threshold voltage. can do.
  • each DC / DC converter 3 is detachably connected to at least one of the DC power supply 4 and the DC bus 10, the number of DC power supplies 4 connected to the DC bus 10 can be easily increased or decreased. ..
  • the three-phase inverter 2 is provided with a plurality of DC / DC converter circuits 23 connected in parallel to the DC bus 10 and a single-phase inverter circuit 24 connected in series with each other on the output side, it is single.
  • the output power can be increased as compared with the case where only the single-phase inverter circuit 24 of the above is provided.
  • FIG. 2 shows a DC / DC converter 3.
  • the DC / DC converters 3a and 3b connected to the DC power supplies 4a and 4b, which are photovoltaic power generation devices, may be step-up choppers that boost the voltage supplied from the DC power supplies 4a and 4b.
  • the DC / DC converter 3 includes a first positive terminal 31a and a first negative terminal 31b connected to the DC power supply 4, a second positive terminal 32a and a second negative terminal 32b connected to the DC bus 10. , A diode 33 and a switching element 34 connected in series between the second positive terminal 32a and the second negative terminal 32b, and a smoothing provided between the second positive terminal 32a and the second negative terminal 32b.
  • a capacitor 36 and an inductor 37 provided between the first positive terminal 31a and the diode 33 and the switching element 34 are provided.
  • the first negative terminal 31b may be connected to the second negative terminal 32b.
  • FIG. 3 shows another DC / DC converter 3.
  • the DC / DC converter 3 connected to the DC power supply 4c, which is a storage battery, boosts the voltage supplied from the DC power supply 4c and supplies it to the DC bus 10, and lowers the voltage supplied from the DC bus 10 to the DC power supply. It may be a bidirectional DC / DC converter supplied to 4c.
  • the DC / DC converter 3 may have a configuration in which the diode 33 in the DC / DC converter 3 shown in FIG. 2 is replaced with a switching element 35.
  • FIG. 4 shows cell 25.
  • the cell 25 includes an AC output terminal 252,252 connected in series between the positive terminal 251a and the negative terminal 251b connected to the DC bus 10 and another cell 25, and a DC / DC converter circuit 23. , A single-phase inverter circuit 24.
  • the DC / DC converter circuit 23 may be an isolated converter, and in this embodiment, it is a full-bridge type bidirectional DC / DC converter as an example.
  • the DC / DC converter circuit 23 includes a transformer 230, a smoothing capacitor 231 and a full bridge circuit 232 provided between the positive terminal 251a and the negative terminal 251b on the primary side of the transformer 230, and a secondary side of the transformer 230. It has a full bridge circuit 234 provided between the positive side wiring 233a and the negative side wiring 233b.
  • the full bridge circuit 232 may have switching elements 2321 and 322 and switching elements 2323 and 2324 connected in series between the positive terminal 251a and the negative terminal 251b, and the full bridge circuit 234 has the positive wiring 233a.
  • the transformer 230 may have switching elements 2341 and 342 connected in series between the negative side wiring 233b and switching elements 2343 and 2344.
  • the primary coil 2301 of the transformer 230 is connected to the midpoint of the switching elements 2321 and 322 and the midpoint of the switching elements 2323 and 2324, and the secondary coil 2302 is connected to the midpoint of the switching elements 2341 and 342 and the switching elements 2343 and 2344. It may be connected to the midpoint.
  • the transformer 230 may operate at a high frequency of several tens of kHz (for example, 10 kHz to 90 kHz), and may be smaller than a transformer for commercial power of 50 kHz or 60 kHz.
  • the single-phase inverter circuit 24 has a smoothing capacitor 240 provided in parallel between the positive side wiring 233a and the negative side wiring 233b, and a full bridge circuit 241.
  • the full bridge circuit 241 may have switching elements 2411 and 2412 and switching elements 2413 and 2414 connected in series between the positive side wiring 233a and the negative side wiring 233b.
  • the midpoints of the switching elements 2411 and 2412 and the midpoints of the switching elements 2413 and 2414 may be connected to the AC output terminals 252 and 252.
  • the voltage of the smoothing capacitor 240 is made constant between the connected cells 25. Need to keep.
  • the voltage of the DC bus 10 is maintained at the reference voltage by the three-phase inverter 2 as described above and the voltage of the DC bus 10 exceeds the threshold voltage, a part of the voltage system 1 is used. Since the DC bus 10 is controlled to be equal to or lower than the threshold voltage by the control of the DC / DC converter 3, the voltage of the smoothing capacitor 240 can be reliably maintained constant.
  • FIG. 5 shows the operation of the three-phase inverter 2.
  • the three-phase inverter 2 maintains the voltage of the DC bus 10 at the reference voltage by performing the processes of steps S11 to S15.
  • the control of each single-phase inverter 22 may be continued by the second control unit 21 of the three-phase inverter 2.
  • step S11 the voltage measuring unit 20 measures the voltage of the DC bus 10. As long as the voltage of the DC bus 10 is measured, the voltage measuring unit 20 may measure the voltage between the input terminals of the DC / DC converter circuit 23 in the single-phase inverter 22.
  • step S13 the second control unit 21 determines whether or not the measured voltage is the reference voltage.
  • the reference voltage may be a single voltage value or a range of voltage values indicated by an upper limit value and a lower limit value.
  • step S13; Yes the process proceeds to step S11, and when it is determined that the measured voltage is not the reference voltage (step S13; No), the process is performed.
  • step S15 the process proceeds to step S15.
  • step S15 the second control unit 21 attempts to maintain the voltage of the DC bus 10 at the reference voltage by changing the control conditions of each single-phase inverter 22.
  • the second control unit 21 increases the output of each single-phase inverter 22 when the measured voltage is higher than the reference voltage, and decreases the output of each single-phase inverter 22 when the measured voltage is lower than the reference voltage.
  • the control conditions may be changed.
  • the three-phase inverter 2 may shift the processing to step S11.
  • FIG. 6 shows the operation of the control device 5.
  • the control device 5 maintains the voltage of the DC bus 10 below the threshold voltage by performing the processes of steps S21 to S25.
  • the control of the corresponding DC / DC converter 3 may be continued by the first control unit 51 of the control device 5.
  • the control device 5 of the DC / DC converters 3a and 3b connected to the DC power supplies 4a and 4b as the photovoltaic power generation device is supplied with the maximum power from the DC power supplies 4a and 4b.
  • MPPT Maximum Power Point Tracking
  • control may be performed with and from.
  • the DC / DC converters 3a and 3b may convert the DC power from the DC power supplies 4a and 4b into DC / DC and supply the DC power to the DC bus 10.
  • control device 5 of the DC / DC converter 3c connected to the DC power supply 4c as the storage battery has a surplus in the amount of power supplied from the DC power supplies 4a and 4b as the solar power generation device in response to the voltage fluctuation of the DC bus 10.
  • the DC power supply 4c may be charged, and when a shortage is generated, the DC power supply 4c may be discharged.
  • the three-phase inverter 2 may perform the processes of steps S11 to S15 while the control device 5 performs the processes of steps S21 to S25. However, the three-phase inverter 2 may be stopped.
  • step S21 the voltage measuring unit 50 measures the voltage of the DC bus 10. As long as the voltage of the DC bus 10 is measured, the voltage measuring unit 50 may measure the voltage between the output terminals of the DC / DC converter 3.
  • step S23 the first control unit 51 determines whether or not the measured voltage is equal to or less than the threshold voltage.
  • the threshold voltage may be a single voltage value.
  • step S25 the first control unit 51 reduces the output power of the corresponding DC / DC converter 3. Reducing the output power may mean making the output power zero, or making the power smaller than the current output power.
  • the threshold voltage differs among the plurality of control devices 5. Therefore, the process of step S25 is performed only in a part of the control devices 5 among the plurality of control devices 5, and as a result, the output power is reduced only in a part of the DC / DC converters 3.
  • the power system 1 is provided with a plurality of control devices 5, and each of them independently performs the processes of steps S21 to S25. Therefore, when the threshold voltage is randomly changed by the changing unit 52, the output power of each DC / DC converter 3 may be reduced in a random order as the voltage of the DC bus 10 rises.
  • the operation of the control device 5 may be completed in step S25.
  • the process may shift to step S21 after step S25.
  • the first control unit 51 in the process of step S25 controls the corresponding DC / DC converter 3.
  • the output power of the may be further reduced.
  • the first control unit 51 may reduce the output power of the DC / DC converter 3 by a predetermined power for each process of step S25.
  • the first control unit 51 may maintain the output power of the DC / DC converter 3 at zero in the process of step S25.
  • the first control unit 51 uses the output power of the DC / DC converter 3 as a negative power (from the DC bus 10 to the DC / DC converter).
  • the DC power supply 4c may be charged with the power flow (power flow in which power is supplied to 3).
  • the first control unit 51 may restore the output power of the DC / DC converter 3.
  • the threshold voltage for reducing the output power and the threshold voltage for returning the output power may be the same voltage or different voltages so as to have a hysteresis characteristic.
  • control device 5 has been described as a device separate from the corresponding DC / DC converter 3, but the control device 5 and the corresponding DC / DC converter 3 may be provided integrally. Good.
  • the DC power supply 4 and the DC / DC converter 3 have been described as having the same number, they do not have to be the same number.
  • the DC power supply 4 may be less than the DC / DC converter 3, and each DC power supply 4 may be connected to a plurality of corresponding DC / DC converters, or the DC power supply 4 may be more than the DC / DC converter 3. Therefore, a plurality of corresponding DC power supplies 4 may be connected to each DC / DC converter 3.
  • control device 5 has the change unit 52, it is not necessary to have the change unit 52 when the threshold voltage of the fixed value is different between the plurality of control devices 5.
  • the first control unit 51 has been described as reducing the output power of the DC / DC converter 3 corresponding to the first control unit 51 when the voltage of the DC bus 10 exceeds the threshold voltage
  • the DC bus 10 has been described.
  • the output power of the DC / DC converter 3 corresponding to the first control unit 51 may be reduced when the duration of the voltage exceeding the threshold voltage exceeds the upper limit time.
  • the control device 5 may be further provided with a changing unit that changes the upper limit time with time.
  • the upper limit time can be made different from that of the other control device 5 provided in the power system 1, so that the plurality of DC / DC converters 3 can be controlled based on the individual upper limit time. Therefore, when the voltage of the DC bus 10 rises, it is possible to prevent the output power of all the DC / DC converters 3 from being reduced, and the operation of the power system 1 as a whole can be reliably continued.
  • FIG. 7 shows the power system 1A according to the first modification.
  • the power system 1A may include a three-phase inverter 2A, a control device 5A, and a control device 7.
  • the three-phase inverter 2A is externally connected to the control device 7.
  • the three-phase inverter 2A is controlled by the control signal Ctrl_DC / AC supplied from the control device 7.
  • the control device 5A has a first control unit 51A.
  • the first control unit 51A controls the DC / DC converter 3a connected to the DC power supply 4a as a photovoltaic power generation device.
  • the first control unit 51A may further control the DC power supply 4a.
  • the first control unit 51A may perform MPPT control so that the maximum power is supplied from the DC power supply 4a when the voltage of the DC bus 10 is equal to or less than the threshold voltage.
  • the voltage of the DC bus 10 exceeds the threshold voltage, and a part of the DC / DC converters 3 among the plurality of DC / DC converters 3 (corresponding DC / DC converter 3a in this modification). ),
  • the output power may be controlled to a target value determined from the voltage of the DC bus 10. The details of the target value will be described later.
  • the control device 7 has a voltage measuring unit 70 and a second control unit 71.
  • the voltage measuring unit 70 measures the voltage of the DC bus 10.
  • the voltage measuring unit 70 may supply the measured voltage to the second control unit 71.
  • the second control unit 71 controls at least one single-phase inverter 22 by the control signal Ctrl_DC / AC.
  • the second control unit 71 may control each single-phase inverter 22.
  • the second control unit 71 may change the control conditions of each single-phase inverter 22 based on the voltage measured by the voltage measurement unit 70, and maintain the voltage of the DC bus 10 at the reference voltage. Further, the second control unit 71 may reduce the output power output from the single-phase inverter 22 in response to receiving the output limit command signal.
  • the output limit command signal may be continuously supplied from the operator or an external device when the output power from the three-phase inverter 2A is larger than the output limit power.
  • the output limit power may be the rated power of the three-phase inverter 2A, or may be the upper limit of the power output from the three-phase inverter 2A to the AC wiring 15.
  • the output limit command signal may be supplied to the second control unit 71 when the power consumption due to the load connected to the DC bus 10 increases.
  • the DC power supply 4a as a solar power generation device is MPPT controlled, so that it is necessary to reduce the output power of the DC / DC converter 3a. If not, the output power of the solar power generator, and thus the output power of the DC / DC converter 3a, can be maximized.
  • the output power of the DC / DC converter 3 is reduced, the output power of the DC / DC converter 3 is reduced based on the target value determined from the voltage of the DC bus 10, so that the DC bus 10 is used.
  • the voltage can be reliably maintained at the reference voltage.
  • the single-phase inverter 22 since the output power output from the single-phase inverter 22 is reduced in response to the second control unit 71 receiving the output limit command signal, the single-phase inverter 22 is commanded to limit the output. It is possible to prevent the output power from the inverter from being maintained. Further, by reducing the output power from the single-phase inverter 22, it is possible to prevent the voltage drop of the DC bus 10 by that amount. Further, by keeping the output power of the DC / DC converter 3 large by MPPT control or the like in accordance with this, the voltage of the DC bus 10 can be increased, and then the output power of the DC / DC converter 3 is reduced. Therefore, the voltage of the DC bus 10 can be maintained. Therefore, the voltage of the DC bus 10 can be reliably maintained at the reference voltage without communication between the control device 7 and the control device 5A.
  • FIG. 8 shows the control device 7.
  • the second control unit 71 of the control device 7 includes a voltage control unit 710, an output limit current calculation unit 711, an adjustment unit 712, and a switching unit 713.
  • the voltage control unit 710 controls each single-phase inverter 22 in the same manner as the second control unit 21 in the above-described embodiment.
  • the voltage control unit 710 may change the control conditions of each single-phase inverter 22 based on the voltage measured by the voltage measurement unit 70, and maintain the voltage of the DC bus 10 at the reference voltage.
  • the voltage control unit 710 may supply the control signal Ctrl_DC / AC to each single-phase inverter 22 via the switching unit 713.
  • the output limiting current calculation unit 711 determines the current to be passed through each single-phase inverter 22 when limiting the output power of the single-phase inverter 22.
  • the output limit current calculation unit 711 commands the amount of current to be passed to the single-phase inverter 22 based on the target output power included in the command signal and the voltage of the DC bus 10 in response to receiving the output limit command signal. The value may be determined.
  • the output limit current calculation unit 711 calculates the command value of the current amount (I) by dividing the target output power (W) by the voltage measured by the voltage measurement unit 70, that is, the voltage (V) of the DC bus 10. Good.
  • the output limit current calculation unit 711 may supply the command value of the calculated current amount to the adjustment unit 712.
  • the adjusting unit 712 corrects the command value of the amount of current supplied from the output limiting current calculation unit 711 according to the shortage of the voltage of the DC bus 10 (measured voltage by the voltage measuring unit 70 in this modification) with respect to the reference voltage. Then, each single-phase inverter 22 is controlled.
  • the adjusting unit 712 generates a control signal Ctrl _DC / AC so that a current corresponding to the corrected command value flows through the single-phase inverter 22, and transmits the control signal Ctrl _DC / AC to each single phase via the switching unit 713. It may be supplied to the inverter 22.
  • the switching unit 713 supplies the control signal Ctrl _DC / AC output from either the voltage control unit 710 or the adjustment unit 712 to each single-phase inverter 22.
  • the switching unit 713 supplies the control signal Ctrl_DC / AC from the adjusting unit 712 to each single-phase inverter 22 when the command signal for output limitation is received, and the voltage control unit when the command signal is not received.
  • the control signal Ctrl_DC / AC from 710 may be supplied to each single-phase inverter 22.
  • the amount of current flowing through the single-phase inverter 22 is determined based on the target output power included in the output limit command signal and the voltage of the DC bus 10, so that the target is surely targeted.
  • the output power can be output from the single-phase inverter 22.
  • FIG. 9 shows the operation of the control device 7.
  • the control device 7 controls the output voltage of the single-phase inverter 22 and the voltage of the DC bus 10 by performing the processes of steps S51 to S67. At the start of this operation, the control device 7 may continue to control each single-phase inverter 22.
  • step S51 the voltage measuring unit 70 measures the voltage of the DC bus 10 in the same manner as in step S11 described above.
  • step S53 the switching unit 713 determines whether or not the output restriction command signal has been received.
  • the output limit command signal may be supplied to the control device 7 when the output power from the three-phase inverter 2A is larger than the output limit power. If it is determined in step S53 that the output restriction command signal is not received (step S53; No), the process shifts to step S55. When it is determined in step S53 that the output restriction command signal has been received (step S53; Yes), the process shifts to step S61.
  • step S55 the switching unit 713 selects the voltage control unit 710 as the output source of the control signal Ctrl_DC / AC. Alternatively, in step S55, the switching unit 713 may enable the voltage control unit 710 and disable the adjusting unit 712.
  • step S57 the voltage control unit 710 determines whether or not the measured voltage is the reference voltage in the same manner as in step S13 described above.
  • step S57; Yes the process shifts to step S51, and when it is determined that the measured voltage is not the reference voltage (step S57; No), step S59 Processing shifts to.
  • step S59 the voltage control unit 710 attempts to maintain the voltage of the DC bus 10 at the reference voltage by changing the control conditions of each single-phase inverter 22 in the same manner as in step S15 described above. After the process of step S59, the process may shift to step S51.
  • step S61 the switching unit 713 selects the adjusting unit 712 as the output source of the control signal Ctrl_DC / AC. Alternatively, in step S61, the switching unit 713 may disable the voltage control unit 710 and enable the adjustment unit 712.
  • step S63 the output limit current calculation unit 711 determines the command value of the amount of current flowing through the single-phase inverter 22 based on the target output power included in the command signal and the measured voltage of the DC bus 10.
  • the amount of current flowing through the single-phase inverter 22 may be the amount of direct current flowing from the DC bus 10 to the single-phase inverter 22, or the amount of alternating current output from the single-phase inverter 22 (effective value as an example). ..
  • the adjusting unit 712 corrects the command value of the current amount according to the shortage of the measured voltage with respect to the reference voltage. For example, the adjusting unit 712 may make the command value of the amount of current smaller than the original value as the insufficient voltage increases. As a result, the output from the single-phase inverter 22 becomes smaller than in the case where the designated value of the current amount is not reduced, and the voltage drop of the DC bus 10 is suppressed.
  • the adjusting unit 712 may perform PI control on the command value of the amount of current. As a result, the command value of the amount of current is corrected so that the current flowing through the single-phase inverter 22 does not vibrate. When there is no insufficient voltage, that is, when the measured voltage is equal to or higher than the reference voltage, the adjusting unit 712 does not have to correct the command value of the current amount.
  • step S67 the adjusting unit 712 changes the control conditions of each single-phase inverter 22 based on the corrected command value, thereby limiting the current flowing through each single-phase inverter 22 to the corrected command value, and each single-phase inverter 22. Limit the output from the phase inverter 22. As a result, the power output from the single-phase inverter 22 and the three-phase inverter 2A is reduced, the voltage drop of the DC bus 10 is alleviated, and the voltage of the DC bus 10 is increased according to the power supply from the DC / DC converter 3. Rise. The output power from the three-phase inverter 2A may be smaller than the output limit power. After the process of step S67, the process may shift to step S51.
  • FIG. 10 shows the operation of the control device 5A.
  • the control device 5A controls the output power of the DC / DC converter 3 and the voltage of the DC bus 10 by performing the processes of steps S71 to S87.
  • the control of the corresponding DC / DC converter 3a may be continued by the first control unit 51A of the control device 5A.
  • the control device 7 may perform the processes of steps S51 to S67 while the control device 5A performs the processes of steps S71 to S87. However, the control device 7 may be stopped.
  • step S71 the voltage measuring unit 50 measures the voltage of the DC bus 10 in the same manner as in step S21 described above.
  • step S73 the first control unit 51A determines whether or not the measured voltage is equal to or less than the threshold voltage in the same manner as in step S23 described above. When it is determined that the measured voltage is equal to or lower than the threshold voltage (step S73; Yes), the process shifts to step S75, and when it is determined that the measured voltage exceeds the threshold voltage (step S75; No), the step The process shifts to S81.
  • step S75 the first control unit 51A performs MPPT control so that the maximum power is supplied from the DC power source 4a, which is a photovoltaic power generation device, to the DC / DC converter 3a, and eventually to the DC bus 10. As a result, the voltage of the DC bus 10 rises.
  • the process may shift to step S71.
  • the state of the control device 5A when the processing of steps S71 to S75 is performed is also referred to as the MPPT state.
  • step S81 the first control unit 51A controls the output power of the DC / DC converter 3a to a target value determined from the measured voltage of the DC bus 10.
  • the target value may be determined from the measured voltage of the DC bus 10 and the reference voltage used by the second control unit 71.
  • the target value may be determined to be smaller than the target value determined in the previous step S81 when the measured voltage is larger than the reference voltage, and when the measured voltage is smaller than the reference voltage, the target value may be determined.
  • the value may be determined to be larger than the target value determined in the previous step S81.
  • the fluctuation range of the target value each time the process of step S81 is performed may be proportional to the magnitude of the difference between the measured voltage and the reference voltage, or may be constant regardless of the magnitude of the difference.
  • the target value when the process of step S81 is first performed may be a power smaller than the output power when the MPPT control is performed.
  • the output power of the DC / DC converter 3a is reduced compared to the output power of the process in step S75.
  • each target value when the process of step S81 is repeatedly performed may be a power smaller than the output power when MPPT control is performed.
  • the target value may be the same as in the previous step S81. Further, when the amount of solar radiation temporarily decreases and the amount of power generated by the DC power source 4a, that is, the photovoltaic power generation device decreases, the output power of the DC / DC converter 3a may fall below the target value.
  • the target value may be calculated by the first control unit 51A. Instead of this, the target value may be supplied to the first control unit 51A from the outside of the control device 5A.
  • the target value does not necessarily have to be determined from the reference voltage used by the second control unit 71 and the measured voltage of the DC bus 10.
  • the target value may be determined from the threshold voltage used by the first control unit 51A in the process of step S73 and the measured voltage, or may be measured with another voltage different from the reference voltage and the threshold voltage. It may be determined from the voltage.
  • step S83 the voltage measuring unit 50 measures the voltage of the DC bus 10 in the same manner as in step S21 described above.
  • step S85 the first control unit 51A determines whether or not the target value is equal to or greater than the reference output power of the DC / DC converter 3a.
  • the reference output power of the DC / DC converter 3a is a rated output power that allows the DC / DC converter 3a to be used stably in the design as an example in this modification, but the DC / DC converter 3a can temporarily output the power. It may be the maximum output power. If it is determined in step S85 that the target value is not equal to or greater than the reference output power (step S85; No), the process shifts to step S87. If it is determined in step S85 that the target value is equal to or greater than the reference output power (step S85; Yes), the process shifts to step S71. As a result, the control for reducing the output power of the DC / DC converter 3a is released by the process of step S81.
  • step S87 the first control unit 51A determines whether or not the target value is equal to or greater than the reference output power of the DC power supply 4a connected to the DC / DC converter 3a.
  • the reference output power of the DC power supply 4a is, as an example in this modification, a rated output power that allows the DC power supply 4a to be used stably in design, but may be the maximum output power that the DC power supply 4a can temporarily output.
  • the processing may shift to step S81. If it is determined in step S87 that the target value is not equal to or greater than the reference output power (step S87; No), the process shifts to step S81.
  • step S87 When it is determined in step S87 that the target value is equal to or greater than the reference output power (step S87; Yes), the process shifts to step S71. As a result, the control for reducing the output power of the DC / DC converter 3a is released by the process of step S81.
  • steps S85 and S87 only one of the processes of steps S85 and S87 may be performed.
  • the state of the control device 5A when the processing of steps S81 to S87 is performed is also referred to as the DC output limiting state.
  • the voltage of the DC bus 10 is increased by the processing of steps S51 to S67 by the second control unit 71.
  • the target value of the output power of the DC / DC converter 3a determined from the voltage of the DC bus 10 is the reference output power of the DC / DC converter 3a and the reference output power of the DC power supply 4a connected thereto.
  • the control for reducing the output power is released. Therefore, the control can be appropriately switched when it is no longer necessary to reduce the output power.
  • the control device 5A is in the MPPT state according to the target value of the output power determined from the measured voltage. Therefore, the state transition of the control device 5A can be interlocked with the voltage control of the DC bus 10 by the control device 7 without performing communication between the control device 5A and the control device 7. Further, since the control device 5A is in the MPPT state according to the target value of the output power determined from the measured voltage instead of the measured voltage itself, it is possible to prevent the state of the control device 5A from frequently changing. ..
  • FIG. 11 shows a state transition diagram of the power system 1A.
  • the output limit command signal is supplied, that is, the AC output from the three-phase inverter 2A is output limit.
  • the control device 5A is in the MPPT state and the control device 7 is in the AC output limit state (S1).
  • control device 5A when the control device 5A is MPPT and the control device 7 is in the AC output limit state (S1) and the measured voltage of the DC bus voltage becomes larger than the threshold voltage, the control device 5A limits the DC output. In addition, the control device 7 is in the state of AC output limitation (S2).
  • the control device 5A when the control device 5A is in the DC output limit state and the control device 7 is in the AC output limit state (S2), the target value of the DC output power from the DC / DC converter 3a is equal to or higher than the reference output power. Then, the control device 5A is in the MPPT state, and the control device 7 is in the AC output limit state (S3).
  • the control device 5A when the control device 5A is MPPT and the control device 7 is in the AC output limit state (S3), the output limit command signal is not supplied, that is, the AC output from the three-phase inverter 2A is output limit.
  • the control device 5A When the power is less than or equal to the electric power, the control device 5A is in the MPPT state and the control device 7 is in the DC bus voltage maintenance state (S0).
  • the control device 5A and the control device 7 are DC buses 10.
  • the voltage is not controlled. Therefore, if the power supplied from the DC / DC converter 3a to the DC bus 10 is less than the power supplied from the DC bus 10 to the three-phase inverter 2A in this state, the voltage of the DC bus 10 decreases.
  • the control device 5A cannot increase the power supplied from the DC / DC converter 3a, whereas the control device 7 can reduce the power supplied to the three-phase inverter 2A. Therefore, as an example in this modification, the lower the measured voltage of the DC bus 10 in step S63, the smaller the command value of the amount of current flowing through the single-phase inverter 22 may be. As a result, the voltage drop of the DC bus 10 is prevented.
  • control device 5A performs the processes of steps S71 to 75 and the processes of steps S81 to S87, respectively, but only one of the processes is performed. May be good.
  • the first control unit 51A refers to the DC power supply 4a whose target value is connected to the DC / DC converter 3a.
  • MPPT control is performed when the measured voltage of the DC bus 10 is equal to or lower than the threshold voltage (step S75; Yes) when the output power is equal to or higher than the output power (step S87; Yes) when the measured voltage is the threshold voltage.
  • MPPT control may be performed without determining whether or not the following is true.
  • the first control unit 51A may shift to the process of step S73 after performing MPPT control.
  • control device 5A has been described as controlling the DC / DC converter 3a connected to the DC power supply 4a as a photovoltaic power generation device, it controls the DC / DC converter 3c connected to the DC power supply 4c as a storage battery. You may.
  • the control device 5A connected to the DC / DC converter 3c may set the target value of the output power of the DC / DC converter 3c as positive or negative power in the process of step S81 according to the voltage fluctuation of the DC bus 10.
  • the positive and negative electric power described here may be a positive power flow for supplying electric power from the DC power source 4c as a storage battery to the DC bus 10, and a power flow for supplying electric power from the DC bus 10 to the DC power source 4c as a storage battery. It can be negative. As a result, the DC power supply 4c appropriately charges and discharges according to the voltage of the DC bus 10.
  • FIG. 12 shows the power system 1B according to the second modification.
  • the power system 1B may include a three-phase inverter 2B, and the three-phase inverter 2B may have a control device 5B.
  • the control device 5B may include a storage unit 55 and a first control unit 51B in addition to the voltage measurement unit 20 and the second control unit 21.
  • the storage unit 55 stores different intrinsic threshold voltages equal to or higher than the threshold voltage in association with each of the plurality of DC / DC converters 3.
  • the intrinsic threshold voltage may be a voltage lower than the absolute maximum rated voltage.
  • the first control unit 51B controls each of the plurality of DC / DC converters 3 by the control signal Ctrl_DC / DC.
  • the first control unit 51B may reduce the output power of only a part of the DC / DC converters 3 among the plurality of DC / DC converters 3.
  • the first control unit 51B may reduce the output power of each DC / DC converter 3 by giving a time difference between the plurality of DC / DC converters 3.
  • the first control unit 51B gradually increases the number of DC / DC converters 3 that reduce the output power among the plurality of DC / DC converters 3. Good.
  • the first control unit 51B may reduce the output power of the DC / DC converter 3 corresponding to the intrinsic threshold voltage when the voltage of the DC bus 10 exceeds any of the intrinsic threshold voltages.
  • the first control unit 51B may stop each DC / DC converter 3.
  • the first control unit 51B controls each of the plurality of DC / DC converters 3, the first control unit 51 controls only a part of the plurality of DC / DC converters 3. Unlike the case of the embodiment, control can be performed while adjusting the output power among the plurality of DC / DC converters 3.
  • the voltage of the DC bus 10 exceeds the threshold voltage, the number of DC / DC converters 3 whose output power is reduced is gradually increased among the plurality of DC / DC converters 3, so that the DC bus 10 has a DC bus 10.
  • the voltage can be surely suppressed below the threshold voltage.
  • the output power of each DC / DC converter 3 is reduced by giving a time difference between the plurality of DC / DC converters 3, so that the voltage of the DC bus 10 is increased. It is possible to prevent the output power of all the DC / DC converters 3 from being reduced when the voltage rises, and to reliably continue the operation of the power system 1B as a whole.
  • the DC corresponding to the intrinsic threshold voltage is DC. Since the output power of the / DC converter 3 is reduced, it is possible to prevent the output power of all the DC / DC converters 3 from being reduced when the voltage of the DC bus 10 rises, and the power system 1B as a whole is prevented from being reduced. You can surely continue the operation of.
  • FIG. 13 shows the operation of the control device 5B.
  • the control device 5B maintains the voltage of the DC bus 10 at the reference voltage by performing the processes of steps S31 to S41.
  • the control of each single-phase inverter 22 may be continued by the second control unit 21.
  • the control of the corresponding DC / DC converter 3 may be continued by the first control unit 51B.
  • the first control unit 51B performs MPPT (Maximum Power Point Tracking) control with the DC power supplies 4a and 4b so that the maximum power is supplied from the DC power supplies 4a and 4b as the photovoltaic power generation device. Good.
  • MPPT Maximum Power Point Tracking
  • the first control unit 51B uses the DC power supply 4c as a storage battery when a surplus is generated in the power supply amount from the DC power supplies 4a and 4b as the photovoltaic power generation device in response to the voltage fluctuation of the DC bus 10. Charging may be performed, and if a shortage occurs, the DC power supply 4c may be discharged.
  • step S31 the voltage measuring unit 20 measures the voltage of the DC bus 10.
  • step S33 the second control unit 21 determines whether or not the measured voltage is the reference voltage in the same manner as in step S13 described above. When it is determined that the measured voltage is the reference voltage (step S33; Yes), the process proceeds to step S31, and when it is determined that the measured voltage is not the reference voltage (step S33; No), the process is performed. The process proceeds to step S35.
  • step S35 the second control unit 21 attempts to maintain the voltage of the DC bus 10 at the reference voltage by changing the control conditions of each single-phase inverter 22 in the same manner as in step S15 described above.
  • step S37 the voltage measuring unit 20 measures the voltage of the DC bus 10.
  • step S39 the first control unit 51B determines whether or not the measured voltage exceeds any of the inherent threshold voltages. When it is determined that the measured voltage exceeds any of the intrinsic threshold voltage (step S39; Yes), the process proceeds to step S41, and when it is determined that the measured voltage does not exceed the intrinsic threshold voltage (step S39; Yes). In No), the process proceeds to step S31.
  • Each inherent threshold voltage may be a single voltage value.
  • the intrinsic threshold voltage of the DC / DC converter 3 is set according to the maximum output power of the DC power supply 4 connected to the DC / DC converter 3, and is connected, for example.
  • the intrinsic threshold voltage of the DC / DC converter 3 is set to be larger (or smaller) in descending order of the maximum output power of the DC power supply 4.
  • step S41 the first control unit 51B reduces the output power of the DC / DC converter 3 corresponding to the intrinsic threshold voltage below the measured voltage.
  • the first control unit 51B may set the output power to a power smaller than the current power. As a result, the output power is reduced only in a part of the DC / DC converters 3 among the plurality of DC / DC converters 3.
  • the process may proceed to step S31.
  • the intrinsic threshold voltage of the DC / DC converter 3 is set according to the order of the maximum output power of the connected DC power supply 4. Therefore, when the processes of steps S39 to S41 are repeated, the output power of each DC / DC converter 3 is reduced in the order corresponding to the maximum output power of each DC power supply 4 connected to each DC / DC converter 3. To.
  • the output power of each DC / DC converter 3 is reduced in the order corresponding to the maximum output power of each connected DC power supply 4. Therefore, when the output power of each DC / DC converter 3 is reduced in descending order of the maximum output power of the DC power supply 4, the amount of power supplied from the plurality of DC / DC converters 3 to the DC bus 10 is immediately increased. Since it can be reduced, the voltage of the DC bus can be surely suppressed to the threshold voltage or less to improve the safety.
  • the output power of each DC / DC converter 3 is reduced in ascending order of the maximum output power of the DC power supply 4, the amount of power supplied from the plurality of DC / DC converters 3 to the DC bus 10 is gradually increased. Since it can be reduced, the output power of the power system 1 as a whole can be maintained high.
  • the storage unit 55 stores different specific threshold voltages in association with each of the plurality of DC / DC converters 3, and the first control unit 51B stores the voltage of the DC bus 10.
  • the first control unit 51B stores the voltage of the DC bus 10.
  • different specific upper limit times are stored in the storage unit 55 in association with each of the plurality of DC / DC converters 3, and the first control unit 51B continues that the voltage of the DC bus 10 exceeds the threshold voltage.
  • the output power of the DC / DC converter 3 corresponding to the specific upper limit time may be reduced.
  • the upper limit time can be made different from that of the other control device 5 provided in the power system 1, so that the plurality of DC / DC converters 3 can be controlled based on the individual upper limit time. Therefore, when the voltage of the DC bus 10 rises, it is possible to prevent the output power of all the DC / DC converters 3 from being reduced, and the operation of the power system 1 as a whole can be reliably continued.
  • the specific upper limit time of each DC / DC converter 3 may be set according to, for example, the order according to the maximum output power of the connected DC power source 4.
  • the first control unit 51B has described that when the voltage of the DC bus 10 exceeds the threshold voltage, the output power of each DC / DC converter 3 is reduced in the order corresponding to the maximum output power of the DC power supply 4. ,
  • the output power of each DC / DC converter 3 may be reduced in a random order, or the number of times the output power is reduced by storing the history of reducing the output power for each DC / DC converter 3.
  • the DC / DC converter 3 having a small amount of power may be preferentially reduced. Even in these cases, when the voltage of the DC bus 10 rises, the output power of all the DC / DC converters 3 is prevented from being reduced, and the operation of the power system 1 as a whole is surely continued. be able to.
  • control device 5B has been described as having the second control unit 21 and the storage unit 55, it may not have at least one of them.
  • the second control unit 21 may be provided outside the control device 5B.
  • the control device 5B may reduce the output power of each DC / DC converter 3 in a random order as described above, or the rack mount type PCS device. The output power of each DC / DC converter 3 may be reduced in the order corresponding to the connection position of each DC / DC converter 3 with respect to 11.
  • control device 5B has the second control unit 21, it may have the second control unit 71 in the above-mentioned first modification. In this case, the control device 5B may perform the processes of steps S71 to S87 instead of the processes of steps S31 to S35. Further, although the control device 5B has been described as having the first control unit 51B, the control device 5B may have the first control unit 51A in the above-mentioned first modification. In this case, when it is determined in step S39 that the measured voltage does not exceed any of the intrinsic threshold voltages (step S39; No), the control device 5B is a DC / DC converter corresponding to an intrinsic threshold voltage larger than the measured voltage. MPPT control may be performed on 3a and 3b.
  • step S39 determines in step S39 that the measured voltage exceeds any of the inherent threshold voltages (step S39; Yes)
  • the DC / DC converter 3 corresponding to the intrinsic threshold voltage lower than the measured voltage.
  • steps S81 to S87 may be performed.
  • the power systems 1, 1A and 1B have been described as including the three-phase inverter 2 having the single-phase inverter 22 for each of the U-phase, V-phase and W-phase. It may have only the single-phase inverter 22, only the DC / DC converter circuit 23, or only the single-phase inverter circuit 24. Further, although the three-phase inverter 2 has been described as having a single single-phase inverter 22 for each phase, it may have a plurality of single-phase inverters 22 connected in series or in parallel.
  • the single-phase inverter 22 has been described as being a full-bridge inverter circuit having a full-bridge circuit 241, it may be a half-bridge inverter circuit having a half-bridge circuit.
  • power systems 1, 1A and 1B have been described as being provided with the DC power supply 4, they may be externally connected to the DC power supply 4 without being provided with the DC power supply 4.
  • Dedicated circuits may include digital and / or analog hardware circuits, and may include integrated circuits (ICs) and / or discrete circuits.
  • Programmable circuits are memory elements such as logical AND, logical OR, logical XOR, logical NAND, logical NOR, and other logical operations, flip-flops, registers, field programmable gate arrays (FPGA), programmable logic arrays (PLA), etc. May include reconfigurable hardware circuits, including, etc.
  • the computer-readable medium may include any tangible device capable of storing instructions executed by the appropriate device, so that the computer-readable medium having the instructions stored therein is specified in a flowchart or block diagram. It will be equipped with a product that contains instructions that can be executed to create a means for performing the operation. Examples of computer-readable media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • Computer-readable media include floppy® disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), Electrically erasable programmable read-only memory (EEPROM), static random access memory (SRAM), compact disc read-only memory (CD-ROM), digital versatile disc (DVD), Blu-ray (RTM) disc, memory stick, integrated A circuit card or the like may be included.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • EEPROM Electrically erasable programmable read-only memory
  • SRAM static random access memory
  • CD-ROM compact disc read-only memory
  • DVD digital versatile disc
  • RTM Blu-ray
  • Computer-readable instructions are assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state-setting data, or object-oriented programming such as Smalltalk, JAVA®, C ++, etc. Contains either source code or object code written in any combination of one or more programming languages, including languages and traditional procedural programming languages such as the "C" programming language or similar programming languages. Good.
  • Computer-readable instructions are applied to a general-purpose computer, a special purpose computer, or the processor or programmable circuit of another programmable data processing device, either locally or in a wide area network (WAN) such as the local area network (LAN), the Internet, etc. ) May be executed to create a means for performing the operation specified in the flowchart or block diagram.
  • WAN wide area network
  • LAN local area network
  • Internet etc.
  • processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers and the like.
  • FIG. 14 shows an example of a computer 2200 in which a plurality of aspects of the present invention may be embodied in whole or in part.
  • the program installed on the computer 2200 can cause the computer 2200 to function as an operation associated with the device according to an embodiment of the present invention or as one or more sections of the device, or the operation or the one or more. Sections can be run and / or the computer 2200 can be run a process according to an embodiment of the invention or a stage of such process.
  • Such a program may be run by the CPU 2212 to cause the computer 2200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • the computer 2200 includes a CPU 2212, a RAM 2214, a graphic controller 2216, and a display device 2218, which are connected to each other by a host controller 2210.
  • the computer 2200 also includes input / output units such as a communication interface 2222, a hard disk drive 2224, a DVD-ROM drive 2226, and an IC card drive, which are connected to the host controller 2210 via the input / output controller 2220.
  • input / output units such as a communication interface 2222, a hard disk drive 2224, a DVD-ROM drive 2226, and an IC card drive, which are connected to the host controller 2210 via the input / output controller 2220.
  • the computer also includes legacy input / output units such as the ROM 2230 and keyboard 2242, which are connected to the input / output controller 2220 via an input / output chip 2240.
  • the CPU 2212 operates according to the programs stored in the ROM 2230 and the RAM 2214, thereby controlling each unit.
  • the graphic controller 2216 acquires the image data generated by the CPU 2212 in a frame buffer or the like provided in the RAM 2214 or itself so that the image data is displayed on the display device 2218.
  • the communication interface 2222 communicates with other electronic devices via the network.
  • the hard disk drive 2224 stores programs and data used by the CPU 2212 in the computer 2200.
  • the DVD-ROM drive 2226 reads the program or data from the DVD-ROM 2201 and provides the program or data to the hard disk drive 2224 via the RAM 2214.
  • the IC card drive reads programs and data from the IC card and / or writes programs and data to the IC card.
  • the ROM 2230 stores a boot program or the like executed by the computer 2200 at the time of activation and / or a program depending on the hardware of the computer 2200.
  • the input / output chip 2240 may also connect various input / output units to the input / output controller 2220 via a parallel port, serial port, keyboard port, mouse port, and the like.
  • the program is provided by a computer-readable medium such as a DVD-ROM 2201 or an IC card.
  • the program is read from a computer-readable medium, installed on a hard disk drive 2224, RAM 2214, or ROM 2230, which is also an example of a computer-readable medium, and executed by the CPU 2212.
  • the information processing described in these programs is read by the computer 2200 and provides a link between the program and the various types of hardware resources described above.
  • the device or method may be configured by implementing manipulation or processing of information in accordance with the use of computer 2200.
  • the CPU 2212 executes a communication program loaded in the RAM 2214, and performs communication processing on the communication interface 2222 based on the processing described in the communication program. You may order.
  • the communication interface 2222 reads and reads transmission data stored in a transmission buffer processing area provided in a recording medium such as a RAM 2214, a hard disk drive 2224, a DVD-ROM 2201, or an IC card. The data is transmitted to the network, or the received data received from the network is written to the reception buffer processing area or the like provided on the recording medium.
  • the CPU 2212 causes the RAM 2214 to read all or necessary parts of a file or database stored in an external recording medium such as a hard disk drive 2224, a DVD-ROM drive 2226 (DVD-ROM2201), or an IC card. Various types of processing may be performed on the data on the RAM 2214. The CPU 2212 then writes back the processed data to an external recording medium.
  • an external recording medium such as a hard disk drive 2224, a DVD-ROM drive 2226 (DVD-ROM2201), or an IC card.
  • Various types of processing may be performed on the data on the RAM 2214.
  • the CPU 2212 then writes back the processed data to an external recording medium.
  • the CPU 2212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval described in various parts of the present disclosure with respect to the data read from the RAM 2214. Various types of processing may be performed, including / replacement, etc., and the results are written back to RAM 2214. Further, the CPU 2212 may search for information in a file, a database, or the like in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 2212 specifies the attribute value of the first attribute. Search for an entry that matches the condition from the plurality of entries, read the attribute value of the second attribute stored in the entry, and associate it with the first attribute that satisfies the predetermined condition. The attribute value of the second attribute obtained may be acquired.
  • the program or software module described above may be stored on a computer 2200 or on a computer-readable medium near the computer 2200.
  • a recording medium such as a hard disk or RAM provided within a dedicated communication network or a server system connected to the Internet can be used as a computer-readable medium, thereby providing the program to the computer 2200 over the network. To do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

従来の技術では、システムの不具合などによってDC/DCコンバータとインバータとの間に過電圧が発生する虞がある。 インバータとの間での電力の授受により基準電圧に維持される直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータの少なくとも一つを制御する第1制御部と、直流バスの電圧を測定する電圧測定部と、を備え、第1制御部は、基準電圧よりも高い閾値電圧を直流バスの電圧が超える場合に複数のDC/DCコンバータのうち一部のDC/DCコンバータのみの出力電力を低減させる制御装置が提供される。

Description

制御装置、システム、制御方法およびプログラム
 本発明は、制御装置、システム、制御方法およびプログラムに関する。
 従来、太陽光発電装置などの直流電源に接続されたDC/DCコンバータとインバータとの間で電力の授受を行う電力システムにおいては、種々の制御方法が提案されている(例えば、特許文献1参照)。
 特許文献1 特開2014-171359号公報
 特許文献2 特開2016-158434号公報
 特許文献3 特開2016-220480号公報
解決しようとする課題
 しかしながら、従来の技術では、システムの不具合などによってDC/DCコンバータとインバータとの間に過電圧が発生する虞がある。
一般的開示
 上記課題を解決するために、本発明の第1の態様においては、制御装置が提供される。制御装置は、インバータとの間での電力の授受により基準電圧に維持される直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータの少なくとも一つを制御する第1制御部を備えてよい。制御装置は、直流バスの電圧を測定する電圧測定部を備えてよい。第1制御部は、基準電圧よりも高い閾値電圧を直流バスの電圧が超える場合に複数のDC/DCコンバータのうち一部のDC/DCコンバータのみの出力電力を低減させてよい。
 第1制御部は、複数のDC/DCコンバータのうち、対応する何れか一つのDC/DCコンバータを制御してよい。
 制御装置は、閾値電圧を経時的に変化させる変更部をさらに備えてよい。
 第1制御部は、直流バスの電圧が閾値電圧を超えた継続時間が上限時間を超える場合に、対応するDC/DCコンバータの出力電力を低減させてよい。制御装置は、上限時間を経時的に変化させる変更部をさらに備えてよい。
 本発明の第2の態様においては、システムが提供される。システムは、直流バスとの間での電力の授受により当該直流バスを基準電圧に維持するインバータを備えてよい。システムは、直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータを備えてよい。システムは、それぞれ複数のDC/DCコンバータのうち、対応する何れか一つのDC/DCコンバータを制御する、第1の態様の複数の制御装置を備えてよい。
 複数の制御装置は、直流バスの電圧が閾値電圧を超える場合に、複数のDC/DCコンバータの間で時間差をつけて各DC/DCコンバータの出力電力を低減させてよい。
 システムは、インバータを制御する第2制御部を有する他の制御装置をさらに備えてよい。第2制御部は、出力制限の指令信号を受信したことに応じ、インバータから出力される出力電力を低減させてよい。
 第1の態様の制御装置において、第1制御部は、複数のDC/DCコンバータのそれぞれを制御してよい。
 第1制御部は、直流バスの電圧が閾値電圧を超える場合に、複数のDC/DCコンバータの間で時間差をつけて各DC/DCコンバータの出力電力を低減させてよい。
 第1制御部は、直流バスの電圧が閾値電圧を超える場合に、複数のDC/DCコンバータのうち、出力電力を低減するDC/DCコンバータの個数を段階的に増やしてよい。
 第1制御部は、直流バスの電圧が閾値電圧を超える場合に、各DC/DCコンバータに接続された各直流電源の最大出力電力に応じた順序で各DC/DCコンバータの出力電力を低減させてよい。
 制御装置は、複数のDC/DCコンバータのそれぞれに対応付けて、閾値電圧以上の互いに異なる固有閾値電圧を記憶する記憶部をさらに備えてよい。第1制御部は、直流バスの電圧が何れかの固有閾値電圧を超える場合に、当該固有閾値電圧に対応するDC/DCコンバータの出力電力を低減させてよい。
 制御装置は、複数のDC/DCコンバータのそれぞれに対応付けて、互いに異なる固有上限時間を記憶する記憶部をさらに備えてよい。第1制御部は、直流バスの電圧が閾値電圧を超えた継続時間が何れかの固有上限時間を超える場合に、当該固有上限時間に対応するDC/DCコンバータの出力電力を低減させてよい。
 第1制御部は、直流バスの電圧が閾値電圧を超える場合に、ランダムな順序で各DC/DCコンバータの出力電力を低減させてよい。
 本発明の第3の態様においては、システムが提供される。システムは、直流バスとの間での電力の授受により当該直流バスを基準電圧に維持するインバータを備えてよい。システムは、直流バスと、当該直流バスに直流出力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータを備えてよい。システムは、複数のDC/DCコンバータのそれぞれを制御する、第1の態様の制御装置を備えてよい。
 制御装置は、インバータを制御する第2制御部をさらに備えてよい。第2制御部は、出力制限の指令信号を受信したことに応じ、インバータから出力される出力電力を低減させてよい。
 第2または第3の態様のシステムにおいて、第2制御部は、指令信号に含まれる目標出力電力と、直流バスの電圧とに基づいて、インバータに流す電流量を決定してよい。
 インバータは、出力の相ごとに、直流バスに並列に接続された複数のDC/DCコンバータ回路を有してよい。インバータは、出力の相ごとに、出力側において互いに直列に接続され、それぞれが対応するDC/DCコンバータから電力供給を受ける複数の単相インバータ回路を有してよい。
 複数のDC/DCコンバータのそれぞれは、直流電源および直流バスの少なくとも一方に着脱可能に接続されてよい。
 複数の直流電源の少なくとも一部は、太陽光発電装置であってよい。太陽光発電装置に接続されたDC/DCコンバータを制御する第1制御部は、当該太陽光発電装置をさらに制御可能であり、直流バスの電圧が閾値電圧以下の場合、および、前記DC/DCコンバータの出力電力を低減させない場合の少なくとも一方の場合に、前記太陽光発電装置から最大電力が供給されるようにMPPT制御を行ってよい。
 第1制御部は、一部のDC/DCコンバータの出力電力を低減させる場合に、直流バスの電圧から決定される目標値に当該出力電力を制御してよい。
 第1制御部は、一部のDC/DCコンバータの出力電力を低減させている場合に、目標値が当該DC/DCコンバータの基準出力電力と、当該DC/DCコンバータに接続された直流電源の基準出力電力との少なくとも一方の電力以上であることに応じて、当該出力電力を低減させる制御を解除してよい。
 本発明の第4の態様においては、制御方法が提供される。制御方法は、インバータとの間での電力の授受により基準電圧に維持される直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータの少なくとも一つを制御する制御段階を備えてよい。制御方法は、直流バスの電圧を測定する電圧測定段階を備えてよい。制御段階では、基準電圧よりも高い閾値電圧を直流バスの電圧が超える場合に複数のDC/DCコンバータのうち一部のDC/DCコンバータのみの出力電力を低減させてよい。
 本発明の第5の態様においては、プログラムが提供される。プログラムは、コンピュータに、インバータとの間での電力の授受により基準電圧に維持される直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータの少なくとも一つを制御する第1制御部を実現させてよい。プログラムは、コンピュータに、直流バスの電圧を測定する電圧測定部を実現させてよい。第1制御部は、基準電圧よりも高い閾値電圧を直流バスの電圧が超える場合に複数のDC/DCコンバータのうち一部のDC/DCコンバータのみの出力電力を低減させてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る電力システム1を示す。 DC/DCコンバータ3を示す。 他のDC/DCコンバータ3を示す。 セル25を示す。 三相インバータ2の動作を示す。 制御装置5の動作を示す。 第1の変形例に係る電力システム1Aを示す。 制御装置7を示す。 制御装置7の動作を示す。 制御装置5Aの動作を示す。 電力システム1Aの状態遷移図を示す。 第2の変形例に係る電力システム1Aを示す。 制御装置5Bの動作を示す。 本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 [1.電力システム1]
 図1は、本実施形態に係る電力システム1を示す。電力システム1は、それぞれ直流バス10に接続された三相インバータ2および複数のDC/DCコンバータ3と、DC/DCコンバータ3に接続された直流電源4と、複数の制御装置5とを備える。直流バス10には、図示しない負荷がさらに接続されてもよい。DC/DCコンバータ3、三相インバータ2Aおよび負荷のうちの少なくとも一つと、直流バス10との間には、図示しないコンデンサが設けられてよい。
 [1.1.三相インバータ2]
 三相インバータ2は、インバータの一例であり、直流電力と交流電力(本実施形態では三相交流電力)との間の電力変換を行う。三相インバータ2は、直流バス10との間での電力の授受により当該直流バス10を基準電圧に維持する。例えば、三相インバータ2は、PCS(Power Conditionin System)であってよく、直流バス10から供給される直流電力をDC/AC変換して交流配線15から出力し、交流配線15から供給される交流電力をAC/DC変換して直流バス10に供給してよい。三相インバータ2は、このような電力変換の制御条件が変更されることで直流バス10を基準電圧に維持してよい。交流配線15には、一例として3.3k∨や6.6k∨の電力系統が接続されてよい。
 三相インバータ2は、電圧測定部20と、第2制御部21と、U相、V相およびW相の出力相ごとの単相インバータ22とを有してよい。
 電圧測定部20は、直流バス10の電圧を測定する。電圧測定部20は、測定した電圧を第2制御部21に供給してよい。
 第2制御部21は、制御信号Ctrl_DC/ACによって各単相インバータ22を制御する。例えば、第2制御部21は、電圧測定部20による測定電圧に基づいて各単相インバータ22の制御条件を変更し、直流バス10の電圧を基準電圧に維持してよい。
 各単相インバータ22は、いわゆるSST(Solid-State Transformer)方式のインバータであってよい。例えば、単相インバータ22は、3つのDC/DCコンバータ回路23と、3つの単相インバータ回路24とを有してよい。但し、DC/DCコンバータ回路23の個数と、単相インバータ回路24の個数とは2つでもよいし、4つ以上でもよく、互いに同じ数でもよいし、異なる数でもよい。
 本実施形態では一例として、3つのDC/DCコンバータ回路23は、直流バス10に並列に接続されており、それぞれ直流バス10からの直流電圧をDC/DC変換して、単相インバータ回路24に供給する。3つの単相インバータ回路24は、入力側においてそれぞれDC/DCコンバータ3に接続されて当該DC/DCコンバータ3から電力供給を受けるようになっており、出力側において互いに直列に接続されている。これにより、単相インバータ22は3つの単相インバータ回路24からの出力電圧を足し合わせて出力する。
 なお、本実施形態では一例として、DC/DCコンバータ回路23と単相インバータ回路24とは1対1で対応してよく、対応する各対のDC/DCコンバータ回路23および単相インバータ回路24はセル25をなしてよい。U相、V相およびW相の単相インバータ22はスター結線(Y結線とも称する)の方式で互いに接続されるが、デルタ結線(Δ結線とも称する)の方式で接続されてもよい。また、三相インバータ2と直流バス10とは、単一の筐体に収容されてPCS(Power Conditioning System)装置11をなしてよい。このようなPCS装置11は、複数のDC/DCコンバータ3を収納するように設置可能なラックマウント型に形成されてよい。
 [1.2.DC/DCコンバータ3]
 複数のDC/DCコンバータ3は、直流バス10と、複数の直流電源4との間にそれぞれ設けられ、直流電源4からの直流電力をDC/DC変換して直流バス10に供給する。なお、本実施形態では一例として電力システム1には3つのDC/DCコンバータ3(DC/DCコンバータ3a~3cとも称する)が具備されるが、DC/DCコンバータ3の個数は2個でもよいし、4個以上でもよい。各DC/DCコンバータ3は、直流電源4および直流バス10の少なくとも一方に着脱可能に接続されてよい。各DC/DCコンバータ3は、ラックマウント型のPCS装置11に収納されることで直流バス10に接続されてよい。
 [1.3.直流電源4]
 複数の直流電源4は、直流バス10に直流電力を供給する。本実施形態では一例として電力システム1にはDC/DCコンバータ3と同数の3つの直流電源4(直流電源4a~4cとも称する)が具備され、各直流電源4が対応する単一のDC/DCコンバータ3を介して直流バス10に直流電力を供給する。各直流電源4は分散型電源であってよく、複数の直流電源4の少なくとも一部は数kWの電力を出力する家庭用や、数MWの電力を出力する商用の太陽光発電装置であってよい。本実施形態では一例として直流電源4a,4bは太陽光発電装置であり、直流電源4cは蓄電池である。
 [1.4.制御装置5]
 複数の制御装置5は、複数のDC/DCコンバータ3を制御する。各制御装置5は、電圧測定部50と、第1制御部51と、変更部52とを有する。
 電圧測定部50は、直流バス10の電圧を測定する。電圧測定部50は、測定した電圧を第1制御部51に供給してよい。
 第1制御部51は、制御信号Ctrl_DC/DCによって複数のDC/DCコンバータ3のうち少なくとも1つのDC/DCコンバータ3、本実施形態では一例として、対応する何れか一つのDC/DCコンバータ3を制御する。第1制御部51は、直流バス10の電圧が閾値電圧を超える場合に、複数のDC/DCコンバータ3のうち一部のDC/DCコンバータ3のみの出力電力を低減させる。例えば、第1制御部51は、対応するDC/DCコンバータ3の出力電力を低減させてよい。
 閾値電圧は、三相インバータ2によって維持される基準電圧よりも高い電圧であり、絶対最大定格電圧よりも低い電圧であってよい。直流バス10の電圧は、電力システム1に不具合が発生した場合や、直流バス10に接続された負荷や蓄電池としての直流電源4cの容量よりも太陽光発電装置としての直流電源4a,4bからの電力供給量が大きくなった場合に基準電圧よりも高くなり得る。閾値電圧は、複数の制御装置5の間で異なってよい。
 この場合には、直流バス10の電圧が各制御装置5の閾値電圧を超える場合に、複数の制御装置5が複数のDC/DCコンバータ3の間で時間差をつけて各DC/DCコンバータ3の出力電力を低減させることとなる。また、直流バス10の電圧が各制御装置5の閾値電圧を超える場合に、複数の制御装置5が複数のDC/DCコンバータ3のうち、出力電力を低減するDC/DCコンバータの個数を段階的に増えることとなる。なお、直流バス10の電圧が絶対最大定格電圧を超える場合には、第1制御部51はDC/DCコンバータ3を停止してよい。
 変更部52は、第1制御部51における閾値電圧を経時的に変化させる。これにより、複数の制御装置5の間で閾値電圧の順序が経時的に変化することとなる。また、複数の制御装置5の間でデフォルトの閾値電圧が等しい場合であっても、複数の制御装置5の間で閾値電圧が異なることとなる。
 変更部52は、閾値電圧を基準電圧より高く維持してよい。変更部52は、閾値電圧をランダムに変化させてもよいし、周期的に変化させてもよい。
 以上の電力システム1によれば、直流バス10の電圧が閾値電圧を超える場合に複数のDC/DCコンバータ3のうち一部のDC/DCコンバータ3の出力電力が低減される。従って、電力システム1に不具合が発生した場合や、太陽光発電装置としての直流電源4a,4bからの電力供給量が直流バス10の負荷や蓄電池としての直流電源4cの容量を上回った場合でも、直流バス10の電圧を閾値電圧以下に抑えて過電圧を防止し、機器の破損を防止することができる。また、直流バス10の電圧は三相インバータ2との間での電力授受により基準電圧に維持され、閾値電圧を超える場合には一部のDC/DCコンバータ3の出力電力が低減されることで閾値電圧以下に抑えられるので、三相インバータ2のみの制御によって直流バス10の電圧を閾値電圧以下に制御する場合と異なり、直流バス10の電圧の制御を三相インバータ2の制御と、DC/DCコンバータ3の制御とに分散させ、制御を容易化することができる。また、直流バス10の電圧の制御を三相インバータ2の制御と、DC/DCコンバータ3の制御とに分散させることができるため、電力システム1におけるDC/DCコンバータ3や直流電源4の個数の自由度を増やすことができ、三相インバータ2の制御構成を変更することなくDC/DCコンバータ3や直流電源4の個数を増減させることができる。また、直流バス10の電圧が閾値電圧を超える場合に、一部のDC/DCコンバータ3のみの出力電力を低減させるため、電力システム1の全体としての運転を継続することができる。
 また、各第1制御部51が対応する何れか1つのDC/DCコンバータ3を制御するので、電力システム1に他のDC/DCコンバータ3がどれだけ具備されるかに関わらず、対応するDC/DCコンバータ3の制御を行うことができる。従って、DC/DCコンバータ3の個数を任意に増減させることができる。
 また、各制御装置5の変更部52により第1制御部51の閾値電圧が経時的に変化するので、電力システム1に具備される複数の制御装置5の間でデフォルトの閾値電圧が等しい場合であっても、他の制御装置5との間で閾値電圧を異ならせることができる。従って、複数のDC/DCコンバータ3を個別の閾値電圧に基づいて制御することができるため、直流バス10の電圧が上昇する場合に、全てのDC/DCコンバータ3の出力電力が低減されてしまうのを防止し、電力システム1の全体としての運転を確実に継続することができる。また、複数の制御装置5の間で閾値電圧の順序を経時的に変化させることができるため、直流バス10の電圧が閾値電圧を超える状況が繰り返し発生する場合に、出力電力の低減対象となるDC/DCコンバータ3の偏りを防止することができる。
 また、直流バス10の電圧が閾値電圧を超える場合に、複数の制御装置5が複数のDC/DCコンバータ3の間で時間差をつけて各DC/DCコンバータ3の出力電力を低減させるので、直流バス10の電圧が上昇する場合に、全てのDC/DCコンバータ3の出力電力が低減されてしまうのを防止し、電力システム1の全体としての運転を確実に継続することができる。
 また、複数の直流電源4の少なくとも一部は太陽光発電装置であるので、太陽光発電による発電量が増加して直流バス10の電圧が閾値電圧を超える場合に、DC/DCコンバータ3を停止することができる。
 また、各DC/DCコンバータ3が直流電源4および直流バス10の少なくとも一方に着脱可能に接続されるので、直流バス10に対して接続される直流電源4の個数を容易に増減することができる。
 また、三相インバータ2には直流バス10に並列に接続された複数のDC/DCコンバータ回路23と、出力側において互いに直列に接続された単相インバータ回路24とが具備されるので、単一の単相インバータ回路24のみが具備される場合と比較して、出力電力を増大させることができる。
 [2.DC/DCコンバータ3]
 図2は、DC/DCコンバータ3を示す。太陽光発電装置である直流電源4a,4bに接続されるDC/DCコンバータ3a,3bは、直流電源4a,4bから供給される電圧を昇圧する昇圧チョッパであってよい。DC/DCコンバータ3は、直流電源4に接続された第1正側端子31aおよび第1負側端子31bと、直流バス10に接続された第2正側端子32aおよび第2負側端子32bと、第2正側端子32aおよび第2負側端子32bの間に直列に接続されたダイオード33およびスイッチング素子34と、第2正側端子32aおよび第2負側端子32bの間に設けられた平滑コンデンサ36と、第1正側端子31aとダイオード33およびスイッチング素子34の間との間に設けられたインダクタ37とを備える。第1負側端子31bは第2負側端子32bに接続されてよい。
 図3は、他のDC/DCコンバータ3を示す。蓄電池である直流電源4cに接続されるDC/DCコンバータ3は、直流電源4cから供給される電圧を昇圧して直流バス10に供給し、直流バス10から供給される電圧を降圧して直流電源4cに供給する双方向のDC/DCコンバータであってよい。DC/DCコンバータ3は、図2に示したDC/DCコンバータ3におけるダイオード33をスイッチング素子35に置換した構成であってよい。
 [3.単相インバータ22のセル25]
 図4は、セル25を示す。セル25は、直流バス10に接続された正側端子251aおよび負側端子251bと、他のセル25との間で直列に接続される交流出力端子252,252と、DC/DCコンバータ回路23と、単相インバータ回路24とを有する。
 DC/DCコンバータ回路23は、絶縁型のコンバータであってよく、本実施形態では一例としてフルブリッジ方式の双方向DC/DCコンバータである。DC/DCコンバータ回路23は、トランス230と、トランス230の一次側で正側端子251aおよび負側端子251bの間に設けられた平滑コンデンサ231およびフルブリッジ回路232と、トランス230の二次側で正側配線233aおよび負側配線233bの間に設けられたフルブリッジ回路234とを有する。フルブリッジ回路232は正側端子251aおよび負側端子251bの間に直列に接続されたスイッチング素子2321,2322と、スイッチング素子2323,2324とを有してよく、フルブリッジ回路234は正側配線233aおよび負側配線233bの間に直列に接続されたスイッチング素子2341,2342と、スイッチング素子2343,2344とを有してよい。トランス230の一次コイル2301はスイッチング素子2321,2322の中点と、スイッチング素子2323,2324の中点とに接続され、二次コイル2302はスイッチング素子2341,2342の中点と、スイッチング素子2343,2344の中点とに接続されてよい。トランス230は、数10kHz(例えば10kHz~90kHz)の高周波で動作してよく、50kHzや60kHzの商用電力用のトランスよりも小型であってよい。
 単相インバータ回路24は、正側配線233aおよび負側配線233bの間に並列に設けられた平滑コンデンサ240と、フルブリッジ回路241とを有する。フルブリッジ回路241は正側配線233aおよび負側配線233bの間に直列に接続されたスイッチング素子2411,2412と、スイッチング素子2413,2414とを有してよい。スイッチング素子2411,2412の中点、および、スイッチング素子2413,2414の中点は交流出力端子252,252に接続されてよい。
 以上のようなセル25の交流出力端子252,252を他のセル25の交流出力端子252,252と直列に接続する場合には、接続されるセル25の間で平滑コンデンサ240の電圧を一定に保つ必要がある。この点、本実施形態に係る電力システム1では、上述のように三相インバータ2によって直流バス10の電圧が基準電圧に維持され、直流バス10の電圧が閾値電圧を超える場合には一部のDC/DCコンバータ3の制御によって直流バス10が閾値電圧以下に制御されるため、平滑コンデンサ240の電圧を確実に一定に維持することができる。
 [4.動作]
 [4.1.三相インバータ2の動作]
 図5は、三相インバータ2の動作を示す。三相インバータ2は、ステップS11~S15の処理を行うことにより、直流バス10の電圧を基準電圧に維持する。なお、この動作の開始時には三相インバータ2の第2制御部21により各単相インバータ22の制御が継続されていてよい。
 ステップS11において電圧測定部20は、直流バス10の電圧を測定する。直流バス10の電圧が測定される限りにおいて、電圧測定部20は、単相インバータ22におけるDC/DCコンバータ回路23の入力端子間の電圧を測定してもよい。
 ステップS13において第2制御部21は、測定電圧が基準電圧であるか否かを判定する。基準電圧は単一の電圧値であってもよいし、上限値と下限値とで示される電圧値の範囲であってもよい。測定電圧が基準電圧であると判定された場合(ステップS13;Yes)には処理がステップS11に移行し、測定電圧が基準電圧ではないと判定された場合(ステップS13;No)には処理がステップS15に移行する。
 そして、ステップS15において第2制御部21は各単相インバータ22の制御条件を変更することで、直流バス10の電圧を基準電圧に維持するように試みる。例えば、第2制御部21は、測定電圧が基準電圧より高い場合には各単相インバータ22の出力を増やし、測定電圧が基準電圧より低い場合には各単相インバータ22の出力を減らすように制御条件を変更してよい。ステップS15の処理後に三相インバータ2は処理をステップS11に移行してよい。
 [4.2.制御装置5の動作]
 図6は、制御装置5の動作を示す。制御装置5は、ステップS21~S25の処理を行うことにより、直流バス10の電圧を閾値電圧以下に維持する。
 なお、この動作の開始時には制御装置5の第1制御部51により、対応するDC/DCコンバータ3の制御が継続されていてよい。一例として、太陽光発電装置としての直流電源4a,4bに接続されたDC/DCコンバータ3a,3bの制御装置5は、直流電源4a,4bから最大電力が供給されるように直流電源4a,4bとの間でMPPT(Maximum Power Point Tracking)制御を行ってよい。これにより、DC/DCコンバータ3a,3bは直流電源4a,4bからの直流電力をDC/DC変換して直流バス10に供給してよい。また、蓄電池としての直流電源4cに接続されたDC/DCコンバータ3cの制御装置5は、直流バス10の電圧変動に応じ、太陽光発電装置としての直流電源4a,4bからの電力供給量に余剰分が発生した場合には直流電源4cに充電を行わせ、不足分が発生した場合には直流電源4cに放電を行わせてよい。
 また、本実施形態においては一例として、制御装置5がステップS21~S25の処理を行う間に、三相インバータ2はステップS11~S15の処理を行っていてよい。但し、三相インバータ2は停止していてもよい。
 ステップS21において電圧測定部50は、直流バス10の電圧を測定する。直流バス10の電圧が測定される限りにおいて、電圧測定部50は、DC/DCコンバータ3の出力端子間の電圧を測定してもよい。
 ステップS23において第1制御部51は、測定電圧が閾値電圧以下であるか否かを判定する。閾値電圧は単一の電圧値であってよい。測定電圧が閾値電圧以下であると判定された場合(ステップS23;Yes)には処理がステップS21に移行し、測定電圧が閾値電圧を超えると判定された場合(ステップS23;No)には処理がステップS25に移行する。
 ステップS25において第1制御部51は、対応するDC/DCコンバータ3の出力電力を低減させる。出力電力を低減させるとは、出力電力をゼロにすることであってもよいし、現時点の出力電力より小さい電力にすることであってもよい。
 ここで、本実施形態においては一例として、閾値電圧が複数の制御装置5の間で異なる。従って、複数の制御装置5のうち、一部の制御装置5のみでステップS25の処理が行われ、その結果、一部のDC/DCコンバータ3のみで出力電力が低減する。
 また、電力システム1には複数の制御装置5が具備されて、それぞれ独立にステップS21~S25の処理を行っている。そのため、閾値電圧が変更部52によりランダムに変更されている場合には、直流バス10の電圧が上昇するにつれて各DC/DCコンバータ3の出力電力がランダムな順序で低減されてよい。
 本実施形態では一例として、制御装置5の動作はステップS25で完了してよい。これに代えて、処理はステップS25の次にステップS21に移行してもよい。この場合には、改めてステップS23の処理で測定電圧が閾値電圧を超えると判定された場合(ステップS23;No)に、ステップS25の処理において第1制御部51は、対応するDC/DCコンバータ3の出力電力をさらに低減してもよい。一例として、第1制御部51は、ステップS25の処理ごとにDC/DCコンバータ3の出力電力を所定電力ずつ低減してよい。第1制御部51がDC/DCコンバータ3の出力電力を既にゼロにしている場合には、ステップS25の処理において第1制御部51はDC/DCコンバータ3の出力電力をゼロに維持してよい。また、DC/DCコンバータ3に蓄電池としての直流電源4cが接続されている場合には、第1制御部51はDC/DCコンバータ3の出力電力を負の電力(直流バス10からDC/DCコンバータ3に電力が供給されるパワーフロー)にして直流電源4cを充電してもよい。また、ステップS23の処理で測定電圧が閾値電圧以下であると判定された場合(ステップS23;Yes)に、第1制御部51は、DC/DCコンバータ3の出力電力を元に戻してよい。出力電力を低減する場合の閾値電圧と、出力電力を元に戻す場合の閾値電圧とは、同じ電圧であってもよいし、ヒステリシス特性を有するように、互いに異なる電圧であってもよい。
 なお、上記の実施形態では制御装置5を、対応するDC/DCコンバータ3とは別体の装置として説明したが、制御装置5と対応するDC/DCコンバータ3とは一体的に設けられてもよい。
 また、直流電源4とDC/DCコンバータ3を同数として説明したが、同数でなくてもよい。例えば、直流電源4がDC/DCコンバータ3より少数であって、各直流電源4が対応する複数のDC/DCコンバータに接続されてもよいし、直流電源4がDC/DCコンバータ3より多数であって、各DC/DCコンバータ3に対し、対応する複数の直流電源4が接続されてもよい。
 また、制御装置5が変更部52を有することとして説明したが、複数の制御装置5の間で固定値の閾値電圧が異なる場合には、変更部52を有しなくてもよい。
 また、第1制御部51は直流バス10の電圧が閾値電圧を超える場合に、当該第1制御部51に対応するDC/DCコンバータ3の出力電力を低減させることとして説明したが、直流バス10の電圧が閾値電圧を超えた継続時間が上限時間を超える場合に、当該第1制御部51に対応するDC/DCコンバータ3の出力電力を低減させてもよい。この場合には、制御装置5には、上限時間を経時的に変化させる変更部がさらに備えられてよい。これにより、電力システム1に具備される他の制御装置5との間で上限時間を異ならせることができるため、複数のDC/DCコンバータ3を個別の上限時間に基づいて制御することができる。よって、直流バス10の電圧が上昇する場合に、全てのDC/DCコンバータ3の出力電力が低減されてしまうのを防止し、電力システム1の全体としての運転を確実に継続することができる。
 [5.第1の変形例]
 [5.1.電力システム1A]
 図7は、第1の変形例に係る電力システム1Aを示す。電力システム1Aは三相インバータ2A、制御装置5Aおよび制御装置7を備えてよい。
 三相インバータ2Aは、制御装置7に外部接続される。三相インバータ2Aは、制御装置7から供給される制御信号Ctrl_DC/ACによって制御される。
 制御装置5Aは、第1制御部51Aを有する。
 第1制御部51Aは、太陽光発電装置としての直流電源4aに接続されたDC/DCコンバータ3aを制御する。第1制御部51Aは、直流電源4aをさらに制御してよい。第1制御部51Aは、直流バス10の電圧が閾値電圧以下の場合に直流電源4aから最大電力が供給されるようにMPPT制御を行ってよい。
 また、第1制御部51Aは、直流バス10の電圧が閾値電圧を超えて複数のDC/DCコンバータ3のうち一部のDC/DCコンバータ3(本変形例においては対応するDC/DCコンバータ3a)の出力電力を低減させる場合に、直流バス10の電圧から決定される目標値に当該出力電力を制御してよい。なお、目標値については詳細を後述する。
 制御装置7は、電圧測定部70と、第2制御部71とを有する。
 電圧測定部70は、直流バス10の電圧を測定する。電圧測定部70は、測定した電圧を第2制御部71に供給してよい。
 第2制御部71は、制御信号Ctrl_DC/ACによって少なくとも1つの単相インバータ22を制御する。本変形例においては一例として、第2制御部71は、各単相インバータ22を制御してよい。第2制御部71は、電圧測定部70による測定電圧に基づいて各単相インバータ22の制御条件を変更し、直流バス10の電圧を基準電圧に維持してよい。また、第2制御部71は、出力制限の指令信号を受信したことに応じ、単相インバータ22から出力される出力電力を低減させてよい。出力制限の指令信号は、三相インバータ2Aからの出力電力が出力制限電力よりも大きい場合に、オペレータや外部装置から継続して供給されてよい。出力制限電力は、三相インバータ2Aの定格電力であってよく、三相インバータ2Aから交流配線15に出力される電力の上限値であってよい。なお、出力制限の指令信号は、直流バス10に接続された負荷による消費電力が増大した場合に第2制御部71に供給されてもよい。
 以上の電力システム1Aによれば、直流バス10の電圧が閾値電圧以下の場合に太陽光発電装置としての直流電源4aがMPPT制御されるので、DC/DCコンバータ3aの出力電力を低減する必要が無い場合には、太陽光発電装置の出力電力、ひいてはDC/DCコンバータ3aの出力電力を最大化することができる。
 また、DC/DCコンバータ3の出力電力が低減される場合に、直流バス10の電圧から決定される目標値に基づいて当該DC/DCコンバータ3の当該出力電力が低減されるので、直流バス10の電圧を確実に基準電圧に維持することができる。
 また、第2制御部71が出力制限の指令信号を受信したことに応じ、単相インバータ22から出力される出力電力が低減するので、出力制限が指令されているにも関わらず単相インバータ22からの出力電力が維持されてしまうのを防止することができる。また、単相インバータ22からの出力電力を低減させることで、その分だけ直流バス10の電圧低下を防止することができる。また、これに合わせてDC/DCコンバータ3の出力電力をMPPT制御などによって大きく維持することで、直流バス10の電圧を上昇させることができ、その後、DC/DCコンバータ3の出力電力を低減させることで直流バス10の電圧を維持することができる。従って、制御装置7と制御装置5Aとの間で通信することなく直流バス10の電圧を確実に基準電圧に維持することができる。
 [5.2.制御装置7]
 図8は、制御装置7を示す。制御装置7の第2制御部71は、電圧制御部710と、出力制限電流算出部711と、調節部712と、切替部713とを有する。
 電圧制御部710は、上述の実施形態における第2制御部21と同様にして各単相インバータ22を制御する。例えば、電圧制御部710は、電圧測定部70による測定電圧に基づいて各単相インバータ22の制御条件を変更し、直流バス10の電圧を基準電圧に維持してよい。電圧制御部710は、切替部713を介して制御信号Ctrl_DC/ACを各単相インバータ22に供給してよい。
 出力制限電流算出部711は、単相インバータ22の出力電力を制限する場合に各単相インバータ22に流す電流を決定する。出力制限電流算出部711は、出力制限の指令信号を受信したことに応じ、指令信号に含まれる目標出力電力と、直流バス10の電圧とに基づいて、単相インバータ22に流す電流量の指令値を決定してよい。例えば、出力制限電流算出部711は、目標出力電力(W)を電圧測定部70による測定電圧、つまり直流バス10の電圧(V)で除算して電流量(I)の指令値を算出してよい。出力制限電流算出部711は、算出した電流量の指令値を調節部712に供給してよい。
 調節部712は、基準電圧に対する直流バス10の電圧(本変形例では電圧測定部70による測定電圧)の不足分に応じて、出力制限電流算出部711から供給される電流量の指令値を補正して、各単相インバータ22を制御する。調節部712は、補正後の指令値に応じた電流が単相インバータ22に流れるように制御信号Ctrl_DC/ACを生成し、切替部713を介して当該制御信号Ctrl_DC/ACを各単相インバータ22に供給してよい。
 切替部713は、電圧制御部710と、調節部712との何れか一方から出力される制御信号Ctrl_DC/ACを各単相インバータ22に供給する。切替部713は、出力制限の指令信号を受信した場合に、調節部712からの制御信号Ctrl_DC/ACを各単相インバータ22に供給し、指令信号を受信していない場合に、電圧制御部710からの制御信号Ctrl_DC/ACを各単相インバータ22に供給してよい。
 以上の制御装置7によれば、出力制限の指令信号に含まれる目標出力電力と、直流バス10の電圧とに基づいて、単相インバータ22に流される電流量が決定されるので、確実に目標出力電力を単相インバータ22から出力することができる。
 [5.3.動作]
 [5.3(1).制御装置7の動作]
 図9は、制御装置7の動作を示す。制御装置7は、ステップS51~S67の処理を行うことにより、単相インバータ22の出力電圧と、直流バス10の電圧とを制御する。なお、この動作の開始時には制御装置7による各単相インバータ22の制御が継続されていてよい。
 ステップS51において電圧測定部70は、上述のステップS11と同様にして、直流バス10の電圧を測定する。
 ステップS53において切替部713は、出力制限の指令信号を受信したか否かを判定する。出力制限の指令信号は、三相インバータ2Aからの出力電力が出力制限電力よりも大きい場合に制御装置7に供給されてよい。ステップS53において出力制限の指令信号が受信されないと判定した場合(ステップS53;No)にはステップS55に処理が移行する。ステップS53において出力制限の指令信号が受信されたと判定した場合(ステップS53;Yes)にはステップS61に処理が移行する。
 ステップS55において切替部713は、制御信号Ctrl_DC/ACの出力元として電圧制御部710を選択する。これに代えて、ステップS55において切替部713は、電圧制御部710をイネーブルし、調節部712をディセーブルしてもよい。
 ステップS57において電圧制御部710は、上述のステップS13と同様にして、測定電圧が基準電圧であるか否かを判定する。測定電圧が基準電圧であると判定された場合(ステップS57;Yes)にはステップS51に処理が移行し、測定電圧が基準電圧ではないと判定された場合(ステップS57;No)にはステップS59に処理が移行する。
 そして、ステップS59において電圧制御部710は、上述のステップS15と同様にして、各単相インバータ22の制御条件を変更することで、直流バス10の電圧を基準電圧に維持するように試みる。ステップS59の処理後にはステップS51に処理が移行してよい。
 なお、本変形例においては、ステップS55~S59の処理によって直流バス10の電圧が維持されるよう制御されるため、ステップS55~S59の処理を行う場合の制御装置7の状態を直流バス電圧維持の状態とも称する。
 ステップS61において切替部713は、制御信号Ctrl_DC/ACの出力元として調節部712を選択する。これに代えて、ステップS61において切替部713は、電圧制御部710をディセーブルし、調節部712をイネーブルしてもよい。
 ステップS63において出力制限電流算出部711は、指令信号に含まれる目標出力電力と、直流バス10の測定電圧とに基づいて、単相インバータ22に流す電流量の指令値を決定する。なお、単相インバータ22に流す電流量は、直流バス10から単相インバータ22に流れる直流電流の量でもよいし、単相インバータ22から出力される交流電流の量(一例として実効値)でもよい。
 ステップS65において調節部712は、基準電圧に対する測定電圧の不足分に応じて、電流量の指令値を補正する。例えば、調節部712は、不足分の電圧が大きいほど、電流量の指令値を元の値よりも小さくしてよい。これにより、電流量の指定値を小さくしない場合と比較して、単相インバータ22からの出力が小さくなり、直流バス10の電圧の低下が抑えられる。調節部712は、電流量の指令値にPI制御を行ってよい。これにより、単相インバータ22に流れる電流が振動しないように電流量の指令値が補正される。調節部712は、不足分の電圧が無い場合、つまり、測定電圧が基準電圧以上である場合には、電流量の指令値に対して補正を行わなくてよい。
 ステップS67において調節部712は、補正後の指令値に基づいて各単相インバータ22の制御条件を変更することで、各単相インバータ22に流れる電流を補正後の指令値に制限し、各単相インバータ22からの出力を制限する。これにより、単相インバータ22、ひいては三相インバータ2Aから出力される電力が低減されて直流バス10の電圧低下が緩和され、DC/DCコンバータ3からの電力供給に応じて直流バス10の電圧が上昇する。三相インバータ2Aからの出力電力は出力制限電力よりも小さくてよい。ステップS67の処理後にステップS51に処理が移行してよい。
 なお、本変形例においては、ステップS61~S67の処理によって三相インバータ2Aからの交流出力が制限されるため、ステップS61~S67の処理を行う場合の制御装置7の状態を交流出力制限の状態とも称する。
 [5.3(2).制御装置5Aの動作]
 図10は、制御装置5Aの動作を示す。制御装置5Aは、ステップS71~S87の処理を行うことにより、DC/DCコンバータ3の出力電力と、直流バス10の電圧とを制御する。なお、この動作の開始時には制御装置5Aの第1制御部51Aにより、対応するDC/DCコンバータ3aの制御が継続されていてよい。また、本変形例においては一例として、制御装置5AがステップS71~S87の処理を行う間に、制御装置7はステップS51~S67の処理を行っていてよい。但し、制御装置7は停止していてもよい。
 ステップS71において電圧測定部50は、上述のステップS21と同様にして、直流バス10の電圧を測定する。
 ステップS73において第1制御部51Aは、上述のステップS23と同様にして、測定電圧が閾値電圧以下であるか否かを判定する。測定電圧が閾値電圧以下であると判定された場合(ステップS73;Yes)にはステップS75に処理が移行し、測定電圧が閾値電圧を超えると判定された場合(ステップS75;No)にはステップS81に処理が移行する。
 ステップS75において第1制御部51Aは、太陽光発電装置である直流電源4aからDC/DCコンバータ3a、ひいては直流バス10に最大電力が供給されるようにMPPT制御を行う。これにより、直流バス10の電圧が上昇する。ステップS75の処理後にはステップS71に処理が移行してよい。
 なお、本変形例においては、ステップS71~S75の処理によって直流電源4aがMPPT制御されるため、ステップS71~S75の処理を行う場合の制御装置5Aの状態をMPPTの状態とも称する。
 ステップS81において第1制御部51Aは、直流バス10の測定電圧から決定される目標値にDC/DCコンバータ3aの出力電力を制御する。目標値は、直流バス10の測定電圧と、第2制御部71で用いられる基準電圧とから決定されてよい。
 例えば、目標値は、測定電圧が基準電圧よりも大きい場合には、前回のステップS81で決定された目標値よりも小さい値に決定されてよく、測定電圧が基準電圧よりも小さい場合には、前回のステップS81で決定された目標値よりも大きい値に決定されてよい。ステップS81の処理が行われる毎の目標値の変動幅は、測定電圧と基準電圧との差分の大きさに比例してもよいし、差分の大きさによらず一定であってもよい。
 ステップS81の処理が最初に行われるときの目標値、つまり目標値の初期値は、MPPT制御が行われる場合の出力電力よりも小さい電力であってよい。これにより、DC/DCコンバータ3aの出力電力は、ステップS75の処理による出力電力よりも低減される。同様に、ステップS81の処理が繰り返し行われる場合の各目標値は、MPPT制御が行われる場合の出力電力よりも小さい電力であってよい。
 なお、測定電圧が基準電圧と等しい場合には、目標値は前回のステップS81と同じであってよい。また、一時的に日射量が低下して直流電源4a、つまり太陽光発電装置の発電量が低下した場合には、DC/DCコンバータ3aの出力電力は目標値を下回ってもよい。
 目標値は、第1制御部51Aによって算出されてよい。これに代えて、目標値は制御装置5Aの外部から第1制御部51Aに供給されてもよい。目標値は、必ずしも第2制御部71で用いられる基準電圧と、直流バス10の測定電圧とから決定されなくてもよい。例えば、目標値は、ステップS73の処理において第1制御部51Aで用いられる閾値電圧と、測定電圧とから決定されてもよいし、基準電圧および閾値電圧のそれぞれとは異なる他の電圧と、測定電圧とから決定されてもよい。
 ステップS83において電圧測定部50は、上述のステップS21と同様にして、直流バス10の電圧を測定する。
 ステップS85において第1制御部51Aは、目標値がDC/DCコンバータ3aの基準出力電力以上であるか否かを判定する。DC/DCコンバータ3aの基準出力電力は、本変形例では一例として、設計上安定してDC/DCコンバータ3aを使用できる定格出力電力であるが、DC/DCコンバータ3aが一時的に出力し得る最大出力電力でもよい。ステップS85において目標値が基準出力電力以上でないと判定された場合(ステップS85;No)には、ステップS87に処理が移行する。ステップS85において目標値が基準出力電力以上であると判定された場合(ステップS85;Yes)には、ステップS71に処理が移行する。これにより、ステップS81の処理によってDC/DCコンバータ3aの出力電力を低減させる制御が解除される。
 ステップS87において第1制御部51Aは、目標値がDC/DCコンバータ3aに接続された直流電源4aの基準出力電力以上であるか否かを判定する。直流電源4aの基準出力電力は、本変形例では一例として、設計上安定して直流電源4aを使用できる定格出力電力であるが、直流電源4aが一時的に出力し得る最大出力電力でもよい。ステップS87の処理後にはステップS81に処理が移行してよい。ステップS87において目標値が基準出力電力以上でないと判定された場合(ステップS87;No)には、ステップS81に処理が移行する。ステップS87において目標値が基準出力電力以上であると判定された場合(ステップS87;Yes)には、ステップS71に処理が移行する。これにより、ステップS81の処理によってDC/DCコンバータ3aの出力電力を低減させる制御が解除される。
 なお、ステップS85,S87の処理は、何れか一方のみが行われてもよい。
 本変形例においては、ステップS81~S87の処理によってDC/DCコンバータ3aからの出力電力が制限されるため、ステップS81~S87の処理を行う場合の制御装置5Aの状態を直流出力制限の状態とも称する。
 以上の動作によれば、ステップS81の処理でDC/DCコンバータ3aの出力電力を低減させている場合に、第2制御部71によるステップS51~S67の処理によって直流バス10の電圧が高められるなどの結果、直流バス10の電圧から決定されるDC/DCコンバータ3aの出力電力の目標値が当該DC/DCコンバータ3aの基準出力電力と、これに接続された直流電源4aの基準出力電力との少なくとも一方の電力以上になると、出力電力を低減させる制御が解除される。従って、出力電力を低減させる必要が無くなった場合に適切に制御を切り替えることができる。
 また、直流バス10の測定電圧がいったん閾値電圧を超えて制御装置5Aが直流出力制限の状態になると、測定電圧から決定される出力電力の目標値に応じて制御装置5AがMPPTの状態になるので、制御装置5Aと制御装置7との間の通信を行わずに、制御装置5Aの状態遷移を、制御装置7による直流バス10の電圧制御と連動させることができる。また、測定電圧そのものではなく、測定電圧から決定される出力電力の目標値に応じて制御装置5AがMPPTの状態になるので、制御装置5Aの状態が頻繁に遷移するのを防止することができる。
 [5.3(3).電力システム1Aの状態遷移表]
 図11は、電力システム1Aの状態遷移図を示す。
 電力システム1Aは、制御装置5AがMPPT、かつ、制御装置7が直流バス電圧維持の状態(S0)において、出力制限指令の信号が供給される、つまり三相インバータ2Aからの交流出力が出力制限電力を超えると、制御装置5AがMPPT、かつ、制御装置7が交流出力制限の状態(S1)となる。
 また、電力システム1Aは、制御装置5AがMPPT、かつ、制御装置7が交流出力制限の状態(S1)において、直流バス電圧の測定電圧が閾値電圧よりも大きくなると、制御装置5Aが直流出力制限、かつ、制御装置7が交流出力制限の状態(S2)となる。
 また、電力システム1Aは、制御装置5Aが直流出力制限、かつ、制御装置7が交流出力制限の状態(S2)において、DC/DCコンバータ3aからの直流出力電力の目標値が基準出力電力以上になると、制御装置5AがMPPT、かつ、制御装置7が交流出力制限の状態(S3)となる。
 また、電力システム1Aは、制御装置5AがMPPT、かつ、制御装置7が交流出力制限の状態(S3)において、出力制限の指令信号が供給されない、つまり三相インバータ2Aからの交流出力が出力制限電力以下であると、制御装置5AがMPPT、かつ、制御装置7が直流バス電圧維持の状態(S0)となる。
 ここで、以上の状態(S0~S3)のうち、制御装置5AがMPPT、かつ、制御装置7が交流出力制限の状態(S1,S3)においては、制御装置5Aおよび制御装置7が直流バス10の電圧制御を行っていない。従って、この状態においてDC/DCコンバータ3aから直流バス10への供給電力が直流バス10から三相インバータ2Aへの供給電力を下回ると、直流バス10の電圧が減少してしまう。この場合、制御装置5AはDC/DCコンバータ3aからの供給電力を増やすことができないのに対し、制御装置7は三相インバータ2Aへの供給電力を減らし得る。そのため、本変形例においては一例として、制御装置7がステップS63において直流バス10の測定電圧が低いほど、単相インバータ22に流す電流量の指令値を小さくしてよい。これにより、直流バス10の電圧低下が防止される。
 なお、上記の第1の変形例においては、制御装置5AがステップS71~75の処理と、ステップS81~S87の処理とをそれぞれ行うこととして説明したが、何れか一方の処理のみを行うこととしてもよい。
 また、第1制御部51Aは、目標値がDC/DCコンバータ3aの基準出力電力以上である場合(ステップS85;Yes)や、目標値がDC/DCコンバータ3aに接続された直流電源4aの基準出力電力以上である場合(ステップS87;Yes)には、直流バス10の測定電圧が閾値電圧以下である場合(ステップS75;Yes)にMPPT制御を行うこととして説明したが、測定電圧が閾値電圧以下であるか否かの判定を行わずにMPPT制御を行ってもよい。一例として、第1制御部51Aは、ステップS85やステップS87の判定結果がYesの場合には、MPPT制御を行った後にステップS73の処理に移行してもよい。
 また、制御装置5Aは太陽光発電装置としての直流電源4aに接続されたDC/DCコンバータ3aを制御することとして説明したが、蓄電池としての直流電源4cに接続されたDC/DCコンバータ3cを制御してもよい。DC/DCコンバータ3cに接続された制御装置5Aは、直流バス10の電圧変動に応じ、ステップS81の処理においてDC/DCコンバータ3cの出力電力の目標値を正負の電力としてよい。ここで述べる正負の電力は、蓄電池としての直流電源4cから直流バス10に電力を供給するパワーフローが正であってよく、直流バス10から蓄電池としての直流電源4cへ電力を供給するパワーフローが負であってよい。これにより、直流バス10の電圧に応じて直流電源4cが適宜、充放電を行う。
 [6.第2の変形例]
 [6.1.電力システム1B]
 図12は、第2の変形例に係る電力システム1Bを示す。電力システム1Bは三相インバータ2Bを備え、三相インバータ2Bは制御装置5Bを有してよい。制御装置5Bは、電圧測定部20および第2制御部21に加え、記憶部55と、第1制御部51Bとを有してよい。
 記憶部55は、複数のDC/DCコンバータ3のそれぞれに対応付けて、閾値電圧以上の互いに異なる固有閾値電圧を記憶する。固有閾値電圧はそれぞれ絶対最大定格電圧よりも低い電圧であってよい。
 第1制御部51Bは、制御信号Ctrl_DC/DCによって複数のDC/DCコンバータ3のそれぞれを制御する。第1制御部51Bは、直流バス10の電圧が閾値電圧を超える場合に、複数のDC/DCコンバータ3のうちの一部のDC/DCコンバータ3のみの出力電力を低減してよい。第1制御部51Bは、直流バス10の電圧が閾値電圧を超える場合に、複数のDC/DCコンバータ3の間で時間差をつけて各DC/DCコンバータ3の出力電力を低減させてよい。また、第1制御部51Bは、直流バス10の電圧が閾値電圧を超える場合に、複数のDC/DCコンバータ3のうち、出力電力を低減するDC/DCコンバータ3の個数を段階的に増やしてよい。例えば、第1制御部51Bは、直流バス10の電圧が何れかの固有閾値電圧を超える場合に、当該固有閾値電圧に対応するDC/DCコンバータ3の出力電力を低減させてよい。直流バス10の電圧が絶対最大定格電圧を超える場合には、第1制御部51Bは各DC/DCコンバータ3を停止してよい。
 以上の電力システム1Bによれば、第1制御部51Bが複数のDC/DCコンバータ3のそれぞれを制御するので、第1制御部51が複数のDC/DCコンバータ3の一部のみを制御する上記実施形態の場合と異なり、複数のDC/DCコンバータ3の間で出力電力を調整しつつ制御を行うことができる。
 また、直流バス10の電圧が閾値電圧を超える場合に、複数のDC/DCコンバータ3のうち、出力電力が低減されるDC/DCコンバータ3の個数が段階的に増やされるので、直流バス10の電圧を確実に閾値電圧以下に抑えることができる。
 また、直流バス10の電圧が閾値電圧を超える場合に、複数のDC/DCコンバータ3の間で時間差をつけて各DC/DCコンバータ3の出力電力が低減されるので、直流バス10の電圧が上昇する場合に、全てのDC/DCコンバータ3の出力電力が低減されてしまうのを防止し、電力システム1Bの全体としての運転を確実に継続することができる。
 また、複数のDC/DCコンバータ3のそれぞれに対応付けて、別々の固有閾値電圧が記憶され、直流バス10の電圧が何れかの固有閾値電圧を超える場合に、当該固有閾値電圧に対応するDC/DCコンバータ3の出力電力が低減されるので、直流バス10の電圧が上昇する場合に、全てのDC/DCコンバータ3の出力電力が低減されてしまうのを防止し、電力システム1Bの全体としての運転を確実に継続することができる。
 [6.2.動作]
 図13は、制御装置5Bの動作を示す。制御装置5Bは、ステップS31~S41の処理を行うことにより、直流バス10の電圧を基準電圧に維持する。なお、この動作の開始時には第2制御部21により各単相インバータ22の制御が継続されていてよい。また、第1制御部51Bにより、対応するDC/DCコンバータ3の制御が継続されていてよい。一例として、第1制御部51Bは、太陽光発電装置としての直流電源4a,4bから最大電力が供給されるように直流電源4a,4bとの間でMPPT(Maximum Power Point Tracking)制御を行ってよい。また、第1制御部51Bは、直流バス10の電圧変動に応じ、太陽光発電装置としての直流電源4a,4bからの電力供給量に余剰分が発生した場合には蓄電池としての直流電源4cに充電を行わせ、不足分が発生した場合には直流電源4cに放電を行わせてよい。
 ステップS31において電圧測定部20は、直流バス10の電圧を測定する。
 ステップS33において第2制御部21は、上述のステップS13と同様にして、測定電圧が基準電圧であるか否かを判定する。測定電圧が基準電圧であると判定された場合(ステップS33;Yes)には処理がステップS31に移行し、測定電圧が基準電圧ではないと判定された場合(ステップS33;No)には処理がステップS35に移行する。
 ステップS35において第2制御部21は、上述のステップS15と同様にして、各単相インバータ22の制御条件を変更することで、直流バス10の電圧を基準電圧に維持するように試みる。
 ステップS37において電圧測定部20は、直流バス10の電圧を測定する。
 ステップS39において第1制御部51Bは、測定電圧が何れかの固有閾値電圧を超えるか否かを判定する。測定電圧が何れかの固有閾値電圧を超えると判定された場合(ステップS39;Yes)には処理がステップS41に移行し、測定電圧が固有閾値電圧を超えないと判定された場合(ステップS39;No)には処理がステップS31に移行する。
 各固有閾値電圧は単一の電圧値であってよい。ここで、本実施形態では一例として、DC/DCコンバータ3の固有閾値電圧は、DC/DCコンバータ3に接続された直流電源4の最大出力電力に応じて設定されており、例えば、接続された直流電源4の最大出力電力が大きい順に、DC/DCコンバータ3の固有閾値電圧は大きく(または小さく)設定されている。
 ステップS41において第1制御部51Bは、測定電圧を下回った固有閾値電圧に対応するDC/DCコンバータ3の出力電力を低減させる。例えば、第1制御部51Bは、出力電力を現時点より小さい電力にしてよい。これにより、複数のDC/DCコンバータ3のうち、一部のDC/DCコンバータ3のみで出力電力が低減する。ステップS41の処理が完了したら、処理はステップS31に移行してよい。
 ここで、本実施形態では一例として、接続された直流電源4の最大出力電力の順序に従ってDC/DCコンバータ3の固有閾値電圧が設定されている。従って、ステップS39~S41の処理が繰り返される場合には、各DC/DCコンバータ3に接続された各直流電源4の最大出力電力に応じた順序で各DC/DCコンバータ3の出力電力が低減される。
 以上の動作によれば、直流バス10の電圧が閾値電圧を超える場合に、接続された各直流電源4の最大出力電力に応じた順序で各DC/DCコンバータ3の出力電力が低減される。従って、直流電源4の最大出力電力が大きい順に各DC/DCコンバータ3の出力電力が低減される場合には、複数のDC/DCコンバータ3から直流バス10に供給される電力量を即座に大きく低減することができるため、直流バスの電圧を確実に閾値電圧以下に抑えて安全性を高めることができる。また、直流電源4の最大出力電力が小さい順に各DC/DCコンバータ3の出力電力が低減される場合には、複数のDC/DCコンバータ3から直流バス10に供給される電力量を徐々に大きく低減することができるため、電力システム1の全体としての出力電力を高く維持することができる。
 なお、上記の第2の変形例においては、記憶部55には複数のDC/DCコンバータ3のそれぞれに対応付けて互いに異なる固有閾値電圧が記憶され、第1制御部51Bは直流バス10の電圧が固有閾値電圧を超える場合に、当該固有閾値電圧に対応するDC/DCコンバータ3の出力電力を低減させることとして説明した。これに代えて、複数のDC/DCコンバータ3のそれぞれに対応付けて、互いに異なる固有上限時間が記憶部55に記憶され、第1制御部51Bは直流バス10の電圧が閾値電圧を超えた継続時間が何れかの固有上限時間を超える場合に、当該固有上限時間に対応するDC/DCコンバータ3の出力電力を低減させてもよい。これにより、電力システム1に具備される他の制御装置5との間で上限時間を異ならせることができるため、複数のDC/DCコンバータ3を個別の上限時間に基づいて制御することができる。よって、直流バス10の電圧が上昇する場合に、全てのDC/DCコンバータ3の出力電力が低減されてしまうのを防止し、電力システム1の全体としての運転を確実に継続することができる。各DC/DCコンバータ3の固有上限時間は、例えば接続された直流電源4の最大出力電力に応じた順序に従って設定されてよい。
 また、第1制御部51Bは直流バス10の電圧が閾値電圧を超える場合に、直流電源4の最大出力電力に応じた順序で各DC/DCコンバータ3の出力電力を低減することとして説明したが、ランダムな順序で各DC/DCコンバータ3の出力電力を低減させてもよいし、DC/DCコンバータ3ごとに出力電力を低減させた履歴を記憶しておいて、出力電力が低減された回数が少ないDC/DCコンバータ3を優先して低減の対象としてもよい。これらの場合にも、直流バス10の電圧が上昇する場合に、全てのDC/DCコンバータ3の出力電力が低減されてしまうのを防止し、電力システム1の全体としての運転を確実に継続することができる。
 また、制御装置5Bが第2制御部21および記憶部55を有することとして説明したが、これらの少なくとも一方を有しないこととしてもよい。制御装置5Bが第2制御部21を有しない場合には、第2制御部21は制御装置5Bの外部に設けられてもよい。制御装置5Bが記憶部55を有しない場合には、制御装置5Bは、上述したようにランダムな順序で各DC/DCコンバータ3の出力電力を低減してもよいし、ラックマウント型のPCS装置11に対する各DC/DCコンバータ3の接続位置に応じた順序で各DC/DCコンバータ3の出力電力を低減してもよい。
 また、制御装置5Bが第2制御部21を有することとして説明したが、上記の第1の変形例における第2制御部71を有してもよい。この場合、制御装置5Bは、ステップS31~S35の処理に代えて、ステップS71~S87の処理を行ってよい。また、制御装置5Bが第1制御部51Bを有することとして説明したが、上記の第1の変形例における第1制御部51Aを有してもよい。この場合、制御装置5Bは、ステップS39において測定電圧が何れかの固有閾値電圧を超えないと判定された場合(ステップS39;No)に、測定電圧より大きい固有閾値電圧に対応するDC/DCコンバータ3a,3bに対しMPPT制御を行ってよい。また、制御装置5Bは、ステップS39において測定電圧が何れかの固有閾値電圧を超えると判定された場合(ステップS39;Yes)に、測定電圧を下回った固有閾値電圧に対応するDC/DCコンバータ3に対し、ステップS81~S87の処理を行ってよい。
 [7.その他の変形例]
 なお、上記の実施形態および変形例においては、電力システム1,1A,1Bは、U相、V相およびW相のそれぞれについて単相インバータ22を有する三相インバータ2を備えることとして説明したが、単相インバータ22のみを有してもよいし、DC/DCコンバータ回路23のみを有してもよいし、単相インバータ回路24のみを有してもよい。また、三相インバータ2は各相について単一の単相インバータ22を有することとして説明したが、直列または並列に接続された複数の単相インバータ22を有してもよい。
 また、単相インバータ22がフルブリッジ回路241を有するフルブリッジインバータ回路であることとして説明したが、ハーフブリッジ回路を有するハーフブリッジインバータ回路であってもよい。
 また、電力システム1,1A,1Bは直流電源4を備えることとして説明したが、直流電源4を備えずに、直流電源4に外部接続されてもよい。
 また、本発明の様々な実施形態は、フローチャートおよびブロック図を参照して記載されてよく、ここにおいてブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。特定の段階およびセクションが、専用回路、コンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、および/またはコンピュータ可読媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよく、集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NOR、および他の論理操作、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のようなメモリ要素等を含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードのいずれかを含んでよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供され、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 図14は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ2200の例を示す。コンピュータ2200にインストールされたプログラムは、コンピュータ2200に、本発明の実施形態に係る装置に関連付けられる操作または当該装置の1または複数のセクションとして機能させることができ、または当該操作または当該1または複数のセクションを実行させることができ、および/またはコンピュータ2200に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ2200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定の操作を実行させるべく、CPU2212によって実行されてよい。
 本実施形態によるコンピュータ2200は、CPU2212、RAM2214、グラフィックコントローラ2216、およびディスプレイデバイス2218を含み、それらはホストコントローラ2210によって相互に接続されている。コンピュータ2200はまた、通信インタフェース2222、ハードディスクドライブ2224、DVD-ROMドライブ2226、およびICカードドライブのような入/出力ユニットを含み、それらは入/出力コントローラ2220を介してホストコントローラ2210に接続されている。コンピュータはまた、ROM2230およびキーボード2242のようなレガシの入/出力ユニットを含み、それらは入/出力チップ2240を介して入/出力コントローラ2220に接続されている。
 CPU2212は、ROM2230およびRAM2214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ2216は、RAM2214内に提供されるフレームバッファ等またはそれ自体の中にCPU2212によって生成されたイメージデータを取得し、イメージデータがディスプレイデバイス2218上に表示されるようにする。
 通信インタフェース2222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブ2224は、コンピュータ2200内のCPU2212によって使用されるプログラムおよびデータを格納する。DVD-ROMドライブ2226は、プログラムまたはデータをDVD-ROM2201から読み取り、ハードディスクドライブ2224にRAM2214を介してプログラムまたはデータを提供する。ICカードドライブは、プログラムおよびデータをICカードから読み取り、および/またはプログラムおよびデータをICカードに書き込む。
 ROM2230はその中に、アクティブ化時にコンピュータ2200によって実行されるブートプログラム等、および/またはコンピュータ2200のハードウェアに依存するプログラムを格納する。入/出力チップ2240はまた、様々な入/出力ユニットをパラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入/出力コントローラ2220に接続してよい。
 プログラムが、DVD-ROM2201またはICカードのようなコンピュータ可読媒体によって提供される。プログラムは、コンピュータ可読媒体から読み取られ、コンピュータ可読媒体の例でもあるハードディスクドライブ2224、RAM2214、またはROM2230にインストールされ、CPU2212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ2200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ2200の使用に従い情報の操作または処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ2200および外部デバイス間で実行される場合、CPU2212は、RAM2214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース2222に対し、通信処理を命令してよい。通信インタフェース2222は、CPU2212の制御下、RAM2214、ハードディスクドライブ2224、DVD-ROM2201、またはICカードのような記録媒体内に提供される送信バッファ処理領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信された受信データを記録媒体上に提供される受信バッファ処理領域等に書き込む。
 また、CPU2212は、ハードディスクドライブ2224、DVD-ROMドライブ2226(DVD-ROM2201)、ICカード等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM2214に読み取られるようにし、RAM2214上のデータに対し様々なタイプの処理を実行してよい。CPU2212は次に、処理されたデータを外部記録媒体にライトバックする。
 様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU2212は、RAM2214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプの操作、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM2214に対しライトバックする。また、CPU2212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU2212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 上で説明したプログラムまたはソフトウェアモジュールは、コンピュータ2200上またはコンピュータ2200近傍のコンピュータ可読媒体に格納されてよい。また、専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ2200に提供する。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 1 電力システム、 2 三相インバータ、 3 DC/DCコンバータ、 4 直流電源、 5 制御装置、 10 直流バス、 11 装置、 20 電圧測定部、 21 第2制御部、 22 単相インバータ、 23 DC/DCコンバータ回路、 24 単相インバータ回路、 25 セル、 31 第1正側端子、 32 第2正側端子、 33 ダイオード、 34 スイッチング素子、 35 スイッチング素子、 36 平滑コンデンサ、 37 インダクタ、 50 電圧測定部、 51 第1制御部、 52 変更部、 55 記憶部、 230 トランス、 231 平滑コンデンサ、 232 フルブリッジ回路、 233 正側配線、 234 フルブリッジ回路、 240 平滑コンデンサ、 241 フルブリッジ回路、 251 正側端子、 252 交流出力端子、 2200 コンピュータ、 2201 DVD-ROM、 2210 ホストコントローラ、 2212 CPU、 2214 RAM、 2216 グラフィックコントローラ、 2218 ディスプレイデバイス、 2220 入/出力コントローラ、 2222 通信インタフェース、 2224 ハードディスクドライブ、 2226 DVD-ROMドライブ、 2230 ROM、 2240 入/出力チップ、 2242 キーボード、 2301 一次コイル、 2302 二次コイル、 2321 スイッチング素子、 2322 スイッチング素子、 2323 スイッチング素子、 2324 スイッチング素子、 2341 スイッチング素子、 2342 スイッチング素子、 2343 スイッチング素子、 2344 スイッチング素子、 2411 スイッチング素子、 2412 スイッチング素子、 2413 スイッチング素子、 2414 スイッチング素子

Claims (20)

  1.  インバータとの間での電力の授受により基準電圧に維持される直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータの少なくとも一つを制御する第1制御部と、
     前記直流バスの電圧を測定する電圧測定部と、
     を備え、
     前記第1制御部は、前記基準電圧よりも高い閾値電圧を前記直流バスの電圧が超える場合に前記複数のDC/DCコンバータのうち一部のDC/DCコンバータのみの出力電力を低減させる制御装置。
  2.  前記閾値電圧を経時的に変化させる変更部をさらに備え、
     前記第1制御部は、前記複数のDC/DCコンバータのうち、対応する何れか一つのDC/DCコンバータを制御する、
     請求項1に記載の制御装置。
  3.  前記第1制御部は、
     前記複数のDC/DCコンバータのうち、対応する何れか一つのDC/DCコンバータを制御し、前記直流バスの電圧が前記閾値電圧を超えた継続時間が上限時間を超える場合に、対応する前記DC/DCコンバータの出力電力を低減させ、
     当該制御装置は、
     前記上限時間を経時的に変化させる変更部をさらに備える、
     請求項1に記載の制御装置。
  4.  直流バスとの間での電力の授受により当該直流バスを基準電圧に維持するインバータと、
     前記直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータと、
     それぞれ前記複数のDC/DCコンバータのうち、対応する何れか一つのDC/DCコンバータを制御する、請求項1から3のいずれか一項に記載の複数の制御装置と、
     を備えるシステム。
  5.  前記複数の制御装置は、前記直流バスの電圧が前記閾値電圧を超える場合に、前記複数のDC/DCコンバータの間で時間差をつけて各DC/DCコンバータの出力電力を低減させる、
     請求項4に記載のシステム。
  6.  前記インバータを制御する第2制御部を有する他の制御装置をさらに備え、
     前記第2制御部は、出力制限の指令信号を受信したことに応じ、前記インバータから出力される出力電力を低減させる、
     請求項4または5に記載のシステム。
  7.  前記第1制御部は、前記複数のDC/DCコンバータのそれぞれを制御し、前記直流バスの電圧が前記閾値電圧を超える場合に、前記複数のDC/DCコンバータの間で時間差をつけて各DC/DCコンバータの出力電力を低減させる、
     請求項1に記載の制御装置。
  8.  前記第1制御部は、前記複数のDC/DCコンバータのそれぞれを制御し、前記直流バスの電圧が前記閾値電圧を超える場合に、前記複数のDC/DCコンバータのうち、出力電力を低減するDC/DCコンバータの個数を段階的に増やす、
     請求項1または7に記載の制御装置。
  9.  前記第1制御部は、前記直流バスの電圧が前記閾値電圧を超える場合に、各DC/DCコンバータに接続された各直流電源の最大出力電力に応じた順序で各DC/DCコンバータの出力電力を低減させる、
     請求項7または8に記載の制御装置。
  10.  前記複数のDC/DCコンバータのそれぞれに対応付けて、前記閾値電圧以上の互いに異なる固有閾値電圧を記憶する記憶部をさらに備え、
     前記第1制御部は、前記直流バスの電圧が何れかの前記固有閾値電圧を超える場合に、当該固有閾値電圧に対応する前記DC/DCコンバータの出力電力を低減させる、
     請求項7から9のいずれか一項に記載の制御装置。
  11.  前記複数のDC/DCコンバータのそれぞれに対応付けて、互いに異なる固有上限時間を記憶する記憶部をさらに備え、
     前記第1制御部は、前記直流バスの電圧が前記閾値電圧を超えた継続時間が何れかの前記固有上限時間を超える場合に、当該固有上限時間に対応する前記DC/DCコンバータの出力電力を低減させる、
     請求項7または8に記載の制御装置。
  12.  前記第1制御部は、前記直流バスの電圧が前記閾値電圧を超える場合に、ランダムな順序で各DC/DCコンバータの出力電力を低減させる、
     請求項7または8に記載の制御装置。
  13.  直流バスとの間での電力の授受により当該直流バスを基準電圧に維持するインバータと、
     前記直流バスと、当該直流バスに直流出力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータと、
     前記複数のDC/DCコンバータのそれぞれを制御する、請求項7から12のいずれか一項に記載の制御装置と、
     を備えるシステム。
  14.  前記制御装置は、
     前記インバータを制御する第2制御部をさらに有し、
     前記第2制御部は、出力制限の指令信号を受信したことに応じ、前記インバータから出力される出力電力を低減させる、
     請求項13に記載のシステム。
  15.  前記第2制御部は、前記指令信号に含まれる目標出力電力と、前記直流バスの電圧とに基づいて、前記インバータに流す電流量を決定する、請求項6または14に記載のシステム。
  16.  前記複数の直流電源の少なくとも一部は、太陽光発電装置であり、
     前記太陽光発電装置に接続された前記DC/DCコンバータを制御する前記第1制御部は、当該太陽光発電装置をさらに制御可能であり、前記直流バスの電圧が前記閾値電圧以下の場合、および、前記DC/DCコンバータの出力電力を低減させない場合の少なくとも一方の場合に、前記太陽光発電装置から最大電力が供給されるようにMPPT制御を行う、
     請求項4から6、14および15のいずれか一項に記載のシステム。
  17.  前記第1制御部は、前記一部のDC/DCコンバータの出力電力を低減させる場合に、前記直流バスの電圧から決定される目標値に当該出力電力を制御する、請求項4から6、および、14から16のいずれか一項に記載のシステム。
  18.  前記第1制御部は、前記一部のDC/DCコンバータの出力電力を低減させている場合に、前記目標値が当該DC/DCコンバータの基準出力電力と、当該DC/DCコンバータに接続された前記直流電源の基準出力電力との少なくとも一方の電力以上であることに応じて、当該出力電力を低減させる制御を解除する、請求項17に記載のシステム。
  19.  インバータとの間での電力の授受により基準電圧に維持される直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータの少なくとも一つを制御する制御段階と、
     前記直流バスの電圧を測定する電圧測定段階と、
     を備え、
     前記制御段階では、前記基準電圧よりも高い閾値電圧を前記直流バスの電圧が超える場合に前記複数のDC/DCコンバータのうち一部のDC/DCコンバータのみの出力電力を低減させる制御方法。
  20.  コンピュータに、
     インバータとの間での電力の授受により基準電圧に維持される直流バスと、当該直流バスに直流電力を供給する複数の直流電源との間にそれぞれ設けられる複数のDC/DCコンバータの少なくとも一つを制御する第1制御部と、
     前記直流バスの電圧を測定する電圧測定部と
     を実現させ、
     前記第1制御部は、前記基準電圧よりも高い閾値電圧を前記直流バスの電圧が超える場合に前記複数のDC/DCコンバータのうち一部のDC/DCコンバータのみの出力電力を低減させるプログラム。
PCT/JP2020/032376 2019-09-20 2020-08-27 制御装置、システム、制御方法およびプログラム WO2021054074A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021546568A JP7259976B2 (ja) 2019-09-20 2020-08-27 制御装置、システム、制御方法およびプログラム
CN202080023071.7A CN113615028A (zh) 2019-09-20 2020-08-27 控制装置、系统、控制方法以及程序

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019170985 2019-09-20
JP2019-170985 2019-09-20
JP2020-048390 2020-03-18
JP2020048390 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021054074A1 true WO2021054074A1 (ja) 2021-03-25

Family

ID=74883475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032376 WO2021054074A1 (ja) 2019-09-20 2020-08-27 制御装置、システム、制御方法およびプログラム

Country Status (3)

Country Link
JP (1) JP7259976B2 (ja)
CN (1) CN113615028A (ja)
WO (1) WO2021054074A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117811398B (zh) * 2024-02-27 2024-05-17 深圳通业科技股份有限公司 一种高频辅助变流器控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (ja) * 2002-05-22 2003-11-28 My Way Giken Kk 分散電源システム
JP2006129585A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 直流配電システムの制御装置及び変換器制御装置
JP2017175888A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (ja) * 2002-05-22 2003-11-28 My Way Giken Kk 分散電源システム
JP2006129585A (ja) * 2004-10-27 2006-05-18 Hitachi Ltd 直流配電システムの制御装置及び変換器制御装置
JP2017175888A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置

Also Published As

Publication number Publication date
JP7259976B2 (ja) 2023-04-18
CN113615028A (zh) 2021-11-05
JPWO2021054074A1 (ja) 2021-03-25

Similar Documents

Publication Publication Date Title
JP4512145B2 (ja) モータ制御装置
CN106549486B (zh) 用于操作不间断电源的系统和方法
US9130448B2 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
JP6025238B2 (ja) 二段電力コンバータを動作させるための方法およびシステム
US8263276B1 (en) Startup power control in a fuel cell system
US10601226B2 (en) Advanced uninterruptable power module controller and method of operating same
TWI486756B (zh) 移動裝置及其電源管理的方法
EP1770850A1 (en) Systems of parallel operating power electronic converters
US10491010B2 (en) Control apparatus for controlling the charging and discharging of storage batteries through a power converter
Meng et al. Hierarchical control with virtual resistance optimization for efficiency enhancement and State-of-Charge balancing in DC microgrids
JP6166338B2 (ja) エネルギー貯蔵システム
JP7065289B2 (ja) 電力変換システム、変換回路の制御方法及びプログラム
WO2021054074A1 (ja) 制御装置、システム、制御方法およびプログラム
CN106159980B (zh) 发电系统和能量管理方法
WO2020012892A1 (ja) 電力変換システム、変換回路の制御方法及びプログラム
Al Badwawi et al. DC microgrid power coordination based on fuzzy logic control
JP4896044B2 (ja) 電力変換装置
EP3163730A1 (en) Method for operating inverter and inverter
CN108808712B (zh) 一种混合储能系统功率互补控制方法及系统
KR102133558B1 (ko) 팬을 이용한 셀 밸런싱 장치 및 방법
CN104143832A (zh) 用于电压崩溃状况检测和控制的系统和方法
WO2020162166A1 (ja) 電力システムおよび電力変換装置
JP5876748B2 (ja) コンバータ装置
CN106849201B (zh) 一种statcom系统充电控制方法
EP3413455A1 (en) Converters and methods of operation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021546568

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866860

Country of ref document: EP

Kind code of ref document: A1