WO2021053825A1 - 端末 - Google Patents

端末 Download PDF

Info

Publication number
WO2021053825A1
WO2021053825A1 PCT/JP2019/037079 JP2019037079W WO2021053825A1 WO 2021053825 A1 WO2021053825 A1 WO 2021053825A1 JP 2019037079 W JP2019037079 W JP 2019037079W WO 2021053825 A1 WO2021053825 A1 WO 2021053825A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
communication node
reception quality
terminal
csi
Prior art date
Application number
PCT/JP2019/037079
Other languages
English (en)
French (fr)
Inventor
英奈 橋本
和晃 武田
昭博 川名
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201980100329.6A priority Critical patent/CN114391266A/zh
Priority to US17/761,899 priority patent/US20220377589A1/en
Priority to PCT/JP2019/037079 priority patent/WO2021053825A1/ja
Priority to EP19945874.6A priority patent/EP4033801A4/en
Priority to JP2021546165A priority patent/JP7558958B2/ja
Publication of WO2021053825A1 publication Critical patent/WO2021053825A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals

Definitions

  • the present invention relates to a terminal that executes wireless communication, particularly a terminal that transmits the reception quality of a reference signal.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G New Radio
  • the terminal When the terminal receives the reference signal for measurement (for example, the channel state information reference signal (CSI-RS)), the terminal measures the reception quality such as the received power (RSRP) of the reference signal.
  • the reference signal for measurement for example, the channel state information reference signal (CSI-RS)
  • the terminal measures the reception quality such as the received power (RSRP) of the reference signal.
  • RSRP received power
  • L3RSRP reception quality of the reference signal processed at layer 3 of the terminal
  • the communication node for example, a radio base station
  • the communication node can acquire the trace information by transmitting the L3RSRP reported from the terminal to the trace collection entity (hereinafter, TCE).
  • TCE trace collection entity
  • the received power (RSRP) of the reference signal is processed not only in layer 3 but also in layer 1.
  • the reporting cycle of the received power (hereinafter, L1RSRP) of the reference signal processed by layer 1 in the terminal is shorter than the reporting cycle of L3RSRP.
  • the communication node sends the L1 RSRP reported from the terminal to the TCE.
  • an object of the present invention is to provide a terminal capable of providing highly accurate trace information while avoiding an increase in network processing load.
  • the terminal (200) has a receiving unit (203) that receives a reference signal within a specified measurement period, and the reception quality of the reference signal measured within the measurement period in layer 1.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the terminal 200.
  • FIG. 3 is a functional block configuration diagram of the communication nodes 100a and 100b.
  • FIG. 4 is a diagram illustrating an example of beam sweeping using a wide beam in beam control.
  • FIG. 5 is a diagram illustrating an example of beam sweeping using a narrow beam in beam control.
  • FIG. 6 is a diagram illustrating an example of beam sweeping using a narrow beam in beam control.
  • FIG. 7 is a diagram showing a transmission sequence (operation example 1) in providing trace information.
  • FIG. 8 is a diagram illustrating an example of the average reception quality of the reference signal in layer 1 in the operation example 1.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the terminal 200.
  • FIG. 3 is a functional block configuration diagram of the communication nodes 100a and 100b.
  • FIG. 4 is a diagram illustrating
  • FIG. 9 is a diagram illustrating an example of the average reception quality of the reference signal in layer 1 in the operation example 1.
  • FIG. 10 is a diagram showing a transmission sequence (operation example 2) in providing trace information.
  • FIG. 11 is a diagram illustrating an example of the average reception quality of the reference signal in layer 1 in the operation example 2.
  • FIG. 12 is a diagram showing a transmission sequence (operation example 3) in providing trace information.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the communication nodes 100a and 100b and the terminal 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G (NR).
  • the wireless communication system 10 includes a core network (5G-CN) 20, communication nodes 100a, 100b, a terminal 200, and a trace collection entity (TCE) 300.
  • the terminal is also called User Equipment (UE).
  • TCE is also called a data server.
  • the specific configuration of the wireless communication system 10 including the number of communication nodes and terminals is not limited to the example shown in FIG.
  • Each of the communication nodes 100a and 100b is gNB or ng-eNB, and is included in the Next Generation-Radio Access Network (NG-RAN, not shown).
  • NG-RAN is connected to 5G-CN20 according to NR.
  • NG-RAN and 5G-CN20 may be simply expressed as a network.
  • the communication nodes 100a and 100b execute wireless communication according to NR between the communication nodes 100a and 100b and the terminal 200.
  • At least one of the communication nodes 100a and 100b manages the control plane connected to the 5G-CN20.
  • the protocol stack for the control plane includes the physical (PHY) layer, media access control (MAC) layer, wireless link control (RLC) layer, packet data convergence control (PDCP) layer, and wireless resource control (radio resource control). Includes RRC) layer and non-access layer (NAS) layer.
  • Communication nodes 100a and 100b manage the user plane connected to 5G-CN20.
  • the protocol stack for the user plane includes a PHY layer, a MAC layer, an RLC layer, a PDCP layer, and a service data adaptation protocol (SDAP) layer.
  • SDAP service data adaptation protocol
  • Layer 1 includes a PHY layer.
  • Layer 2 includes a MAC layer, an RLC layer, a PDCP layer and an SDAP layer.
  • Layer 3 includes an RRC layer and a NAS layer.
  • the communication nodes 100a and 100b form cells C1 and C2, respectively.
  • Cell C2 is within the coverage of cell C1.
  • cell C1 may be within the coverage of cell C2.
  • the communication node 100b includes a plurality of antenna elements.
  • the communication nodes 100a, 100b and the terminal 200 use Massive MIMO, which generates a beam with higher directivity by controlling radio signals transmitted from a plurality of antenna elements, and a carrier that bundles and uses a plurality of component carriers (CC). It can support aggregation (CA) and dual connectivity (DC) that communicates between the terminal and each of the two NG-RAN Nodes at the same time.
  • CC is also called a carrier.
  • the terminal 200 acquires the average or statistical information of the reception quality of the reference signal measured in layer 1 within the specified measurement period.
  • the terminal 200 transmits the acquired average or statistical information to the communication node 100a or the communication node 100b.
  • the reference signal include a channel state information reference signal (CSI-RS), a synchronization signal / broadcast channel block (SSB), a demodulation reference signal (DM-RS), and a sounding reference signal (SRS).
  • CSI-RS channel state information reference signal
  • SSB synchronization signal / broadcast channel block
  • DM-RS demodulation reference signal
  • SRS sounding reference signal
  • reception quality of reference signal in layer 1 is also referred to as “reception quality of reference signal without processing in layer 3". Further, the “average reception quality of the reference signal in layer 1” is also referred to as “smoothing the reception quality of the reference signal in layer 1".
  • the communication node 100a or the communication node 100b receives the reception quality of the reference signal in layer 1 from the terminal 200, and the reception quality of the reference signal received in layer 1 within the specified reporting period. You may get the average or statistical information of.
  • the TCE300 is connected to the communication node 100a and the communication node 100b via 5G-CN20.
  • the TCE300 stores the average or statistical information of the reception quality of the reference signal transmitted from the communication node 100a or the communication node 100b at layer 1 as trace information.
  • the TCE300 may store the resource information of the reference signal transmitted from the communication node 100a or the communication node 100b as trace information.
  • the wireless communication system 10 may include an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) instead of the NG-RAN.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • each of the communication nodes 100a and 100b is an eNB or an en-gNB and is included in the E-UTRAN.
  • E-UTRAN is connected to the Core Network (EPC) according to LTE.
  • EPC Core Network
  • E-UTRAN and EPC may be simply expressed as a network.
  • FIG. 2 is a functional block configuration diagram of the terminal 200.
  • the terminal 200 includes a transmission unit 201, a reception unit 203, a reception quality measurement unit 205, a layer 1 processing unit 207, a layer 3 processing unit 209, a holding unit 211, and a control unit 213.
  • Transmission unit 201 transmits an uplink signal (UL signal) according to NR.
  • the receiving unit 203 receives the downlink signal (DL signal) according to the NR.
  • the transmitting unit 201 and the receiving unit 203 include a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical downlink shared channel (PDSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Wireless communication is executed between the communication nodes 100a and 100b and the terminal 200 via a physical random access channel (PRACH) or the like.
  • PRACH physical random access channel
  • the transmission unit 201 uses the layer 1 signal to transmit the reception quality of the reference signal in layer 1 to the communication node 100a or the communication node 100b.
  • the transmission unit 201 uses the layer 3 signal to transmit the reception quality of the reference signal in layer 3 to the communication node 100a or the communication node 100b.
  • the transmission unit 201 uses the layer 1 signal to transmit the average or statistical information of the reception quality of the reference signal in layer 1 to the communication node 100a or the communication node 100b.
  • the receiving unit 203 receives the SSB within the specified measurement period.
  • the receiving unit 203 receives the reference signal within the specified measurement period.
  • the reception quality measurement unit 205 measures the reception quality of SSB.
  • the reception quality measurement unit 205 measures the reception quality of the reference signal.
  • the reception quality measuring unit 205 measures the reception power (RSRP) of the reference signal, the reception quality (RSRQ) of the reference signal, the signal-to-interference noise ratio (SINR), and the like as the reception quality.
  • the reception quality of the measurement target is notified from the network by an RRC message.
  • the layer 1 processing unit 207 processes the reception quality of the reference signal measured by the reception quality measurement unit 205 in the layer 1 and acquires the reception quality of the reference signal in the layer 1.
  • the layer 3 processing unit 209 processes the reception quality of the SSB measured by the reception quality measurement unit 205 in the layer 3 and acquires the reception quality of the SSB in the layer 3.
  • the layer 3 processing unit 209 processes the reception quality of the reference signal measured by the reception quality measurement unit 205 in the layer 3 to acquire the reception quality of the reference signal in the layer 3.
  • the holding unit 211 holds the reception quality of the reference signal acquired by the layer 1 processing unit 207 in layer 1.
  • the control unit 213 controls each functional block constituting the terminal 200.
  • the control unit 213 uses the reception quality held by the holding unit 211 to acquire the average or statistical information of the reception quality of the reference signal measured in the specified measurement period in layer 1.
  • the control unit 213 acquires either the average of the reception quality of the reference signal in layer 1 and the statistical information according to the instruction from the network.
  • an arithmetic mean, a geometric mean, a weighted average, etc. can be mentioned as described later.
  • a statistical information of the reception quality in the layer 1 of the reference signal for example, a statistic including a combination of the mean, the variance, and the standard deviation can be mentioned as described later.
  • the weighting coefficient applied to the reception quality measured at a timing close to the transmission timing of the weighted average is measured at a timing far from the transmission timing.
  • the weighting coefficient is set so as to be larger than the weighting coefficient applied to the received quality.
  • the control unit 213 acquires the average reception quality of the reference signals in layer 1 or the statistical information for each reference signal. To do.
  • control unit 213 may determine the average or statistical information indicating the best quality among the average or statistical information of the plurality of reference signals.
  • the control unit 213 instructs the transmission unit 201 to transmit the determined average or statistical information to the communication node 100a or the communication node 100b.
  • FIG. 3 is a functional block configuration diagram of communication nodes 100a and 100b. As shown in FIG. 3, each of the communication nodes 100a and 100b includes a transmission unit 101, a reception unit 103, a beam control unit 105, a processing unit 107, a holding unit 109, and a control unit 111.
  • the transmission unit 101 transmits the SSB and the reference signal to the terminal 200.
  • the communication node 100b performs the transmission.
  • the transmission unit 101 transmits the average or statistical information of the reception quality of the reference signal in layer 1 to the TCE 300 as the trace information of the terminal 200 at a predetermined timing.
  • the receiving unit 103 receives the reception quality of the reference signal in layer 1 from the terminal 200.
  • the receiving unit 103 receives the average or statistical information of the reception quality of the reference signal in layer 1 from the terminal 200.
  • the receiving unit 103 receives the reception quality of the reference signal in layer 3 from the terminal 200.
  • the receiving unit 103 When the receiving unit 103 receives the reception quality of the reference signal in layer 1 of the CSI-RS from the terminal 200 as the reception quality of the reference signal, the resource information of the CSI-RS may also be received from the terminal 200.
  • Beam control unit 105 performs beam forming in beam control. When beamforming is applied in beam control, the beam control unit 105 transmits a plurality of SSBs using different wide beams and transmits a plurality of reference signals using different narrow beams. In this embodiment, the communication node 100b performs beam control.
  • the processing unit 107 identifies the SSB having the highest receiving quality in layer 3 within the specified reporting period, and transmits the SSB. Identify the wide beam used in.
  • the processing unit 107 identifies the reference signal having the highest reception quality in layer 1 within the specified reporting period, and refers to the reference signal. Identify the narrow beam used to transmit the signal.
  • the holding unit 109 holds the reception quality of the reference signal received from the terminal 200 in layer 1.
  • the holding unit 109 may also hold the resource information of the CSI-RS.
  • the control unit 111 controls each functional block constituting each of the communication nodes 100a and 100b.
  • the control unit 111 acquires the average or statistical information of the reception quality of the reference signal reported in the specified reporting period in layer 1 by using the reception quality held by the holding unit 109.
  • the control unit 111 acquires either the average of the reception quality of the reference signal in layer 1 and the statistical information according to the instruction from the network.
  • the average of the reception quality of the reference signal in layer 1 for example, an arithmetic mean, a geometric mean, a weighted average, and the like can be mentioned.
  • Statistical information on the reception quality of the reference signal at layer 1 includes, for example, a statistic including a combination of mean, variance, and standard deviation.
  • the control unit 111 When the control unit 111 receives the reception quality in layer 1 of the CSI-RS and the resource information of the CSI-RS from the terminal 200, the control unit 111 uses the resource information of the CSI-RS as the trace information of the terminal 200 at a predetermined timing. May be instructed to transmit to the TCE 300. Further, in this case, the control unit 111 instructs the transmission unit 201 to transmit the narrow beam information used for transmitting the CSI-RS to the TCE300 instead of the resource information of the CSI-RS. You may.
  • the communication node 100a, the communication node 100b, or the terminal 200 acquires the average or statistical information of the reception quality in layer 1 of CSI-RS, but the present invention is not limited to this.
  • the communication node 100a, the communication node 100b, or the terminal 200 may acquire the average or statistical information of the reception quality in layer 1 such as DM-RS and SRS.
  • the communication node 100b includes a plurality of antenna elements, and a plurality of beams may be used to apply beamforming in order to secure the coverage of the cell C2. it can.
  • the communication node 100b establishes a beam pair between the communication node 100b and the terminal 200, and performs beam control in order to transmit and receive a radio signal between the communication node 100b and the terminal 200.
  • the communication node 100b When applying beamforming in beam control, the communication node 100b first transmits multiple SSBs using different wide beams.
  • analog beamforming one beam is transmitted every hour.
  • digital beamforming a plurality of orthogonalized beams are transmitted at once every hour.
  • Hybrid beamforming combines analog beamforming and digital beamforming to transmit the beam.
  • FIG. 4 is a diagram illustrating an example of beam sweeping using a wide beam in beam control.
  • the communication node 100b applies analog beamforming, sequentially switches the wide beam every hour, and transmits different wide beams to areas C21 to C26 in the cell C2.
  • the terminal 200 is located in the area C22 in the cell C2.
  • the communication node 100b sequentially switches the wide beams 1 to 6 for each subframe, and repeatedly transmits different wide beams to the areas C21 to C26 in the cell C2. Wide beams 1 to 6 are transmitted to areas C21 to C26 in cell C2, respectively.
  • Communication node 100b transmits a plurality of SSBs using wide beams 1 to 6.
  • SSB indexes (SSB index) # 1 to # 6 are assigned to a plurality of SSBs.
  • the communication node 100b associates each SSB (specifically, the SSB index) with the wide beam used to transmit the SSB.
  • the number of wide beams is not limited to six. Further, the time interval in which one beam is transmitted is not limited to one subframe, and may be, for example, one slot corresponding to the subcarrier interval.
  • the terminal 200 When the terminal 200 receives the SSB, it measures the reception quality of the SSB and acquires the SSB index included in the SSB. Examples of the reception quality of SSB include RSRP, RSRQ, SINR and the like.
  • the terminal 200 processes the measured reception quality of SSB in layer 3 and acquires the reception quality in layer 3 of SSB. Examples of the process in layer 3 include L3 filtering and the like.
  • the terminal 200 uses the layer 3 signal to report the reception quality of the SSB at layer 3 and the SSB index included in the SSB to the communication node 100b.
  • the terminal 200 may report the cell identifier (Cell ID) in which the terminal 200 is located to the communication node 100b.
  • Cell ID cell identifier
  • the terminal 200 may measure the reception quality of CSI-RS transmitted using the wide beam according to the instruction from the communication node 100b. In this case, the terminal 200 processes the measured reception quality of CSI-RS at layer 3 to acquire the reception quality at layer 3 of CSI-RS. The terminal 200 reports the reception quality of CSI-RS in layer 3 and the resource information of the CSI-RS to the communication node 100b by using the layer 3 signal.
  • the communication node 100b When the communication node 100b receives the reception quality of the SSB at layer 3 and the SSB index included in the SSB from the terminal 200, the communication node 100b is assigned to the SSB with the highest reception quality at layer 3 within a specified period. To identify. The communication node 100b identifies the wide beam associated with the identified SSB index. As a result, the communication node 100b can grasp the area where the terminal 200 is located.
  • the communication node 100b identifies the SSB index # 2 assigned to the SSB having the highest reception quality in layer 3, and identifies the wide beam 2 associated with the SSB index # 2. As a result, the communication node 100b grasps that the terminal 200 is in the area C22.
  • the terminal 200 may specify the SSB index assigned to the SSB having the highest reception quality in layer 3 within a certain period of time. In this case, the terminal 200 reports the reception quality of the SSB at layer 3 and the SSB index to the communication node 100b.
  • the communication node 100b transmits a plurality of CSI-RSs using different narrow beams that correlate with the identified wide beam in order to grasp the position of the terminal 200 in the grasped area.
  • the communication node 100b notifies the terminal 200 of the resource information of the CSI-RS used for the transmission of each CSI-RS before transmitting the plurality of CSI-RSs.
  • the CSI-RS resource information is assigned to each CSI-RS transmission in the resource block. Contains resource elements (time and frequency) to be.
  • the CSI-RS resource information is assigned to each CSI-RS transmission in the resource block. Includes the resource elements (time and frequency) to be used and the code used to orthogonalize the multiple narrow beams.
  • FIG. 5 is a diagram illustrating an example of beam sweeping using a narrow beam in beam control.
  • the communication node 100b applies analog beamforming, sequentially switches the narrow beam that correlates with the identified wide beam 2, and spots different narrow beams in the area C22. Send to C22a to C22d.
  • the terminal 200 is located at the spot C22c in the area C22.
  • the communication node 100b sequentially switches the narrow beams 21 to 24 that correlate with the wide beam 2 for each subframe, and repeatedly transmits different narrow beams to the spots C22a to C22d in the area C22. To do.
  • the narrow beams 21 to 24 are transmitted to the spots C22a to C22d in the area C22, respectively.
  • the communication node 100b transmits a plurality of CSI-RSs using narrow beams 21 to 24.
  • Resource information # a to d of CSI-RS is assigned to a plurality of CSI-RSs.
  • the communication node 100b associates each CSI-RS (specifically, the resource information of the CSI-RS) with the narrow beam used for the transmission of the CSI-RS.
  • the number of narrow beams is not limited to four. Further, the time interval in which one beam is transmitted is not limited to one subframe, and may be, for example, one slot corresponding to the subcarrier interval.
  • FIG. 6 is a diagram illustrating an example of beam sweeping using a narrow beam in beam control.
  • the communication node 100b applies digital beamforming and repeatedly transmits orthogonal narrow beams 21 to 24 that correlate with the identified wide beam 2 to spots C22a to C22d in the area C22. To do.
  • Communication node 100b uses narrow beams 21 to 24 to transmit four CSI-RSs at once.
  • the communication node 100b associates each CSI-RS (specifically, the resource information of the CSI-RS) with the narrow beam used for the transmission of the CSI-RS.
  • the terminal 200 When the terminal 200 receives CSI-RS by analog beamforming or digital beamforming, it measures the reception quality of CSI-RS. Examples of the reception quality of CSI-RS include RSRP, RSRQ, and SINR. The terminal 200 processes the measured reception quality of CSI-RS in layer 1 and acquires the reception quality in layer 1 of CSI-RS.
  • the terminal 200 reports the reception quality of CSI-RS in layer 1 and the resource information of the CSI-RS to the communication node 100b by using the layer 1 signal.
  • the terminal 200 may report the reception quality of CSI-RS in layer 1 and the resource information of the CSI-RS to the communication node 100a by using the layer 1 signal.
  • the communication node 100b When the communication node 100b receives the reception quality of CSI-RS in layer 1 and the resource information of the CSI-RS from the terminal 200, the communication node 100b identifies the resource information of CSI-RS having the highest reception quality in layer 1. Communication node 100b identifies the narrow beam associated with the identified CSI-RS resource information. As a result, the communication node 100b can grasp the position of the terminal 200 in the area C22.
  • the communication node 100b establishes a beam pair between the communication node 100b and the terminal 200 using the identified narrow beam, and transmits / receives a wireless signal between the communication node 100b and the terminal 200.
  • the communication node 100b establishes a beam pair between the communication node 100b and the terminal 200 by using the narrow beam 23 transmitted to the spot C22c, and wirelessly communicates between the communication node 100b and the terminal 200. Send and receive signals.
  • the reception quality reporting cycle at layer 1 of CSI-RS is shorter than the reception quality reporting cycle at layer 3 of SSB or CSI-RS. Therefore, the reception quality at layer 1 of CSI-RS is reported from the terminal 200 to the communication node 100b more frequently than the reception quality at layer 3 of SSB or CSI-RS. As a result, it is possible to follow the movement of the terminal 200, fluctuations in instantaneous fading, and the like by using the reception quality in layer 1 of CSI-RS.
  • the communication node 100a, the communication node 100b, or the terminal 200 acquires the average or statistical information of the reception quality in layer 1 of the CSI-RS measured within the specified measurement period, and uses it as the trace information of the terminal 200. , Send the average or statistics to TCE300. This operation will be described in detail below as operation examples 1 to 3.
  • the communication node 100a, the communication node 100b, or the terminal 200 acquires either the average reception quality or the statistical information in layer 1 of CSI-RS according to the instruction from the network.
  • the communication node 100b may transmit the reception quality of SSB layer 3 reported from the terminal 200 to the TCE 300 as the trace information of the terminal 200 at a predetermined timing.
  • FIG. 7 is a diagram showing a transmission sequence (operation example 1) in the transmission of trace information. As shown in FIG. 7, the terminal 200 acquires the average or statistical information of the reception quality at layer 1 of CSI-RS measured within the specified measurement period in the beam control (S11).
  • the following is an example of the average reception quality in layer 1 of CSI-RS.
  • the terminal 200 will receive n CSI-RSs in layer 1 when the reception quality is measured within the specified measurement period. By dividing the sum of the reception qualities at layer 1 of CSI-RS by n, the average reception quality at layer 1 of CSI-RS is obtained.
  • the terminal 200 is the product of the reception quality of n CSI-RSs in layer 1 when the reception quality of n CSI-RSs in layer 1 is measured within the specified measurement period. By taking the nth root of, the average reception quality at layer 1 of CSI-RS is obtained.
  • the terminal 200 measures the reception quality of n CSI-RSs in layer 1 within the specified measurement period, and then each of the reception qualities of n CSI-RSs in layer 1 is measured. Is multiplied by a weighting coefficient and added to obtain the average reception quality in layer 1 of CSI-RS.
  • the weighting coefficient applied to the reception quality in layer 1 of CSI-RS measured at the communication node 100a or the communication node 100b at a timing close to the average transmission timing is measured at a timing far from the transmission timing. It should be larger than the weighting factor applied to the reception quality in layer 1 of CSI-RS.
  • CSI-RS layer 1 reception quality statistics include, for example, statistics that include a combination of mean, variance, and standard deviation.
  • the terminal 200 When the terminal 200 acquires the average or statistical information of the reception quality in layer 1 of CSI-RS, the terminal 200 transmits the average or statistical information to the communication node 100a or the communication node 100b at a predetermined timing (S13). For example, the terminal 200 transmits the average or statistical information to the communication node 100a or the communication node 100b using the layer 1 signal via PUCCH or PUSCH.
  • the communication node 100a or the communication node 100b uses an RRC message (for example, RRC configuration) to notify the terminal 200 in advance of the timing and channel for transmitting the average or statistical information.
  • RRC message for example, RRC configuration
  • the average or statistical information is transmitted in a message different from the reception quality at layer 1 of CSI-RS reported to the communication node 100a or the communication node 100b.
  • the communication node 100a or the communication node 100b When the communication node 100a or the communication node 100b receives the average or statistical information from the terminal 200, the communication node 100a or the communication node 100b transmits the average or statistical information to the TCE300 at a predetermined timing (S15). When the TCE300 receives the average or statistical information from the communication node 100a or the communication node 100b, the TCE300 stores the average or statistical information as trace information of the terminal 200 (S17).
  • FIG. 8 is a diagram illustrating an example of the average reception quality of the reference signal in layer 1 in the operation example 1.
  • the terminal 200 measures L1 RSRP of CSI-RS as the reception quality in layer 1 of CSI-RS.
  • the terminal 200 averages the L1 RSRP of the four CSI-RSs measured within the specified measurement period.
  • the terminal 200 transmits the averaged L1 RSRP to the communication node 100a or the communication node 100b at a predetermined timing.
  • the communication node 100a or the communication node 100b receives the averaged L1 RSRP, it transmits the averaged L1 RSRP to the TCE 300 at a predetermined timing.
  • FIG. 9 is a diagram illustrating an example of the average reception quality of the reference signal in layer 1 in the operation example 1.
  • the terminal 200 measures L1 RSRP of CSI-RS as the reception quality in layer 1 of CSI-RS. Specifically, the terminal 200 measures L1 RSRP of a plurality of CSI-RS transmitted using the narrow beams 21 to 24 by applying analog beamforming.
  • the terminal 200 acquires the average of L1 RSRP of CSI-RS measured within the measurement period T for each CSI-RS.
  • the layer 1 processing unit 207 acquires the average of L1 RSRP of CSI-RS measured within the measurement period T for each resource of CSI-RS.
  • FIG. 9 shows how the layer 1 processing unit 207 acquires the average of the L1 RSRP of the CSI-RS measured within the measurement period T in the resource information #a of the CSI-RS.
  • the terminal 200 determines the average having the highest value among the averages of the L1 RSRPs of the plurality of acquired CSI-RSs, and transmits the determined averages to the communication node 100a or the communication node 100b at a predetermined timing.
  • FIG. 10 is a diagram showing a transmission sequence (operation example 2) in providing trace information.
  • the terminal 200 reports the reception quality of CSI-RS in layer 1 and the resource information of the CSI-RS to the communication node 100a or the communication node 100b by using the layer 1 signal in the beam control. (S31).
  • Communication node 100a or communication node 100b acquires the average or statistical information of the reception quality in layer 1 of CSI-RS reported within the specified reporting period (S33).
  • Examples of the average reception quality in layer 1 of CSI-RS include the above-mentioned arithmetic mean, geometric mean, and weighted average. Further, as the statistical information of the reception quality in the layer 1 of CSI-RS, there is a statistic including the combination of the above-mentioned average, variance and standard deviation.
  • the communication node 100a or the communication node 100b When the communication node 100a or the communication node 100b acquires the average or statistical information of the reception quality in layer 1 of CSI-RS, the communication node 100a or the communication node 100b transmits the average or statistical information to the TCE300 at a predetermined timing (S35). When the TCE300 receives the average or statistical information from the communication node 100a or the communication node 100b, the TCE300 stores the average or statistical information as trace information of the terminal 200 (S37).
  • the communication node 100a or the communication node 100b obtains the reception quality at layer 1 of CSI-RS reported from the terminal 200 instead of acquiring the average or statistical information of the reception quality at layer 1 of CSI-RS. It may be thinned out.
  • the communication node 100a or the communication node 100b transmits the reception quality in layer 1 of CSI-RS reported from the terminal 200 to the TCE 300 immediately before the transmission timing of transmitting the trace information of the terminal 200 to the TCE 300. Good.
  • the transmission timing is predetermined between the communication node 100a or the communication node 100b and the TCE300.
  • FIG. 11 is a diagram illustrating an example of the average reception quality of the reference signal in layer 1 in the operation example 2.
  • the terminal 200 reports the L1 RSRP of the CSI-RS to the communication node 100a or the communication node 100b as the reception quality in the layer 1 of the CSI-RS.
  • the communication node 100a or the communication node 100b averages the L1 RSRP of the four CSI-RSs reported within the specified reporting period.
  • the communication node 100a or the communication node 100b When the communication node 100a or the communication node 100b receives the averaged L1 RSRP, it transmits the averaged L1 RSRP to the TCE300 at a predetermined timing.
  • the communication node 100a or the communication node 100b may acquire the average of L1 RSRP of CSI-RS reported within the specified reporting period for each CSI-RS.
  • the processing unit 107 acquires the average of the L1 RSRP of the CSI-RS reported within the specified reporting period for each CSI-RS resource reported from the terminal 200. ..
  • the communication node 100a or the communication node 100b identifies the average having the highest value among the acquired averages of L1 RSRP of a plurality of CSI-RSs, and transmits the averages to the TCE300 at a predetermined timing.
  • FIG. 12 is a diagram showing a transmission sequence (operation example 3) in providing trace information.
  • the terminal 200 reports the reception quality of CSI-RS in layer 1 and the resource information of the CSI-RS to the communication node 100a or the communication node 100b by using the layer 1 signal in the beam control. (S51).
  • the communication node 100a or the communication node 100b transmits the CSI-RS resource information reported from the terminal 200 to the TCE300 immediately before the timing of transmitting the trace information of the terminal 200 to the TCE300 (S53).
  • the transmission timing is predetermined between the communication node 100a or the communication node 100b and the TCE300.
  • the TCE300 When the TCE300 receives the CSI-RS resource information from the communication node 100a or the communication node 100b, the TCE300 stores the resource information of the CSI-RS as the trace information of the terminal 200 (S55). In this case, the correspondence between the resource information of each CSI-RS and the narrow beam used for the transmission of the CSI-RS is shared in advance between the communication node 100a or the communication node 100b and the TCE300.
  • the communication node 100a or the communication node 100b is the CSI-RS resource information and the corresponding.
  • Information on the narrow beam used to transmit the CSI-RS may be transmitted to the TCE300.
  • the position of the terminal 200 can be roughly estimated by referring to the resource information of the CSI-RS stored in the TCE300 and acquiring the narrow beam used for the transmission of the CSI-RS. Further, since the communication node 100a or the communication node 100b does not need to acquire the average or statistical information of the reception quality in the layer 1 of the CSI-RS, the processing load of the communication node 100a or the communication node 100b can be reduced.
  • the communication node 100a or the communication node 100b uses only the information of the narrow beam used to transmit the CSI-RS instead of the resource information of the CSI-RS, and the trace information of the terminal 200. May be sent to the TCE300.
  • the terminal 200 acquires the average or statistical information of the reception quality of the reference signal measured in layer 1 within the specified measurement period, and the acquired average or the above. Send statistics to communication node 100a or 100b.
  • the terminal 200 can reduce the number of transmissions of reception quality in layer 1.
  • the terminal 200 acquires the average or statistical information of the reception quality in the layer 1 measured within the specified measurement period, the reception quality in the layer 1 is thinned out to reduce the number of transmissions of the reception quality in the layer 1. Compared with the case, highly accurate trace information can be transmitted to the communication node 100a or 100b.
  • the terminal 200 can provide highly accurate trace information while avoiding an increase in the processing load of the network.
  • the terminal 200 acquires the weighted average of the reception quality in the layer 1 and transmits the acquired weighted average to the communication node 100a or 100b.
  • the weighting coefficient applied to the reception quality measured at a timing close to the transmission timing of the weighted average is larger than the weighting coefficient applied to the reception quality measured at a timing far from the transmission timing.
  • the ratio of the reception quality in the layer 1 measured at a timing close to the transmission timing of the weighted average to the reception quality in the layer 1 measured at a timing far from the transmission timing of the weighted average becomes large.
  • the terminal 200 can transmit more accurate trace information to the communication node.
  • the terminal 200 acquires the average or the statistical information for each reference signal.
  • the terminal 200 can transmit the trace information with higher accuracy to the communication node.
  • the terminal 200 transmits the average or statistical information indicating the best quality among the average or statistical information of the plurality of reference signals to the communication node 100a or 100b.
  • the terminal 200 is connected to the communication nodes 100a and 100b, but the present invention is not limited to this.
  • the terminal 200 may be connected to only one communication node that manages the control plane and the user plane connected to the 5G-CN20 or EPC.
  • each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, deemed, and notification ( Broadcast, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but not limited to these. ..
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be indexed.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Wireless communication system 20 5G-CN 100a, 100b communication node 101 transmitter 103 Receiver 105 Beam control unit 107 Processing unit 109 Reservoir 111 Control unit 200 terminals 201 Transmitter 203 Receiver 205 Reception quality measurement unit 207 Layer 1 processing unit 209 Layer 3 processing unit 211 Reservoir 213 Control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末(200)は、規定された測定期間内において、参照信号を受信する受信部(203)と、当該測定期間内において測定される参照信号のレイヤ1における受信品質の平均又は統計情報を取得する制御部(213)と、当該平均又は統計情報を通信ノード(100a又は100b)に送信する送信部(201)と、を備える。

Description

端末
 本発明は、無線通信を実行する端末、特に、参照信号の受信品質を送信する端末に関する。
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)を仕様化している。また、3GPPでは、さらに、5G又はNew Radio(NR)などと呼ばれるLTEの後継システムの仕様が検討されている。
 端末は、測定用の参照信号(例えば、チャネル状態情報参照信号(CSI-RS))を受信する場合、当該参照信号の受信電力(RSRP)などの受信品質を測定する。
 3GPPは、端末のレイヤ3で処理された参照信号の受信電力(以下、L3 RSRP)などの受信品質を、ネットワークの品質分析などに用いられるトレース情報として記録することを規定している(非特許文献1参照)。
 例えば、通信ノード(例えば、無線基地局)が、端末から報告されたL3 RSRPをトレース・コレクション・エンティティ(以下、TCE)に送信することにより、TCEはトレース情報を取得することができる。
3GPP TS 32.422 V15.2.0 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management;Subscriber and equipment trace; Trace control and configuration management (Release 15), 3GPP, 2019年6月
 端末において、参照信号の受信電力(RSRP)は、レイヤ3の他に、レイヤ1でも処理される。
 端末内のレイヤ1で処理された参照信号の受信電力(以下、L1 RSRP)の報告周期は、L3 RSRPの報告周期よりも短い。
 このため、精度の高いトレース情報を取得するために、通信ノードが、端末から報告されたL1 RSRPをTCEに送信することが考えられる。
 しかしながら、L1 RSRPは、高頻度で端末から報告されるため、通信ノードが、報告されたL1-RSRPをそのままTCEに送信する場合、ネットワークの処理負荷が増大する懸念があり、好ましくない。
 そこで、本発明は、このような状況に鑑みてなされたものであり、ネットワークの処理負荷の増大を回避しつつ、精度の高いトレース情報を提供し得る端末を提供することを目的とする。
 本発明の一態様に係る端末(200)は、規定された測定期間内において、参照信号を受信する受信部(203)と、前記測定期間内において測定される前記参照信号のレイヤ1における受信品質の平均又は統計情報を取得する制御部(213)と、前記平均又は前記統計情報を通信ノード(100a又は100b)に送信する送信部(201)と、を備える。
図1は、無線通信システム10の全体概略構成図である。 図2は、端末200の機能ブロック構成図である。 図3は、通信ノード100a, 100bの機能ブロック構成図である。 図4は、ビーム制御における、幅広ビームを用いたビームスイーピングの一例を説明する図である。 図5は、ビーム制御における、幅狭ビームを用いたビームスイーピングの一例を説明する図である。 図6は、ビーム制御における、幅狭ビームを用いたビームスイーピングの一例を説明する図である。 図7は、トレース情報の提供における、送信シーケンス(動作例1)を示す図である。 図8は、動作例1における、参照信号のレイヤ1における受信品質の平均の一例を説明する図である。 図9は、動作例1における、参照信号のレイヤ1における受信品質の平均の一例を説明する図である。 図10は、トレース情報の提供における、送信シーケンス(動作例2)を示す図である。 図11は、動作例2における、参照信号のレイヤ1における受信品質の平均の一例を説明する図である。 図12は、トレース情報の提供における、送信シーケンス(動作例3)を示す図である。 図13は、通信ノード100a, 100b及び端末200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G(NR)に従った無線通信システムである。
 図1に示すように、無線通信システム10は、コアネットワーク(5G-CN)20、通信ノード100a, 100b、端末200及びトレース・コレクション・エンティティ(TCE)300を含む。端末は、User Equipment(UE)とも呼称される。TCEは、データサーバとも呼称される。なお、通信ノード及び端末の数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 通信ノード100a, 100bの各々は、gNB又はng-eNBであり、Next Generation-Radio Access Network(NG-RAN、不図示)に含まれる。NR-RANは、NRに従った5G-CN20と接続される。なお、NG-RAN及び5G-CN20は、単にネットワークと表現されてもよい。
 通信ノード100a, 100bは、通信ノード100a, 100bと端末200との間においてNRに従った無線通信を実行する。
 通信ノード100a, 100bのうち、少なくとも1つの通信ノードは、5G-CN20に接続された制御プレーンを管理する。制御プレーン用のプロトコルスタックは、物理(PHY)レイヤ、メディア・アクセス・コントロール(MAC)レイヤ、無線リンク・コントロール(RLC)レイヤ、パケット・データ・コンバージェンス・コントロール(PDCP)レイヤ、無線リソース・コントロール(RRC)レイヤ、及び非アクセス層(NAS)レイヤを含む。
 通信ノード100a, 100bは、5G-CN20に接続されたユーザプレーンを管理する。ユーザプレーン用のプロトコルスタックは、PHYレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、及びサービス・データ・アダプテーション・プロトコル(SDAP)レイヤを含む。
 制御プレーン用のプロトコルスタック及びユーザプレーン用のプロトコルスタックの各々は、開放型システム間相互接続(OSI)参照モデルのレイヤ1~3に分類される。レイヤ1は、PHYレイヤを含む。レイヤ2は、MACレイヤ、RLCレイヤ、PDCPレイヤ及びSDAPレイヤを含む。レイヤ3は、RRCレイヤ及びNASレイヤを含む。
 また、通信ノード100a, 100bは、それぞれセルC1, C2を形成する。セルC2は、セルC1のカバレッジ内にある。なお、セルC1が、セルC2のカバレッジ内にあってもよい。本実施形態では、通信ノード100bは、複数のアンテナ素子を含んでいる。
 通信ノード100a, 100b及び端末200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及び端末と2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。なお、CCはキャリアとも呼称される。
 本実施形態では、後述するように、端末200は、規定された測定期間内において測定される参照信号のレイヤ1における受信品質の平均又は統計情報を取得する。端末200は、取得した平均又は統計情報を通信ノード100a又は通信ノード100bに送信する。参照信号として、チャネル状態情報参照信号(CSI-RS)、同期信号・報知チャネル・ブロック(SSB)、復調参照信号(DM-RS)、サウンディング参照信号(SRS)などが挙げられる。
 「参照信号のレイヤ1における受信品質」は、「レイヤ3における処理を行わない参照信号の受信品質」とも呼称される。また、「参照信号のレイヤ1における受信品質の平均」は、「参照信号のレイヤ1における受信品質の平滑化」とも呼称される。
 なお、端末200の代わりに、通信ノード100a又は通信ノード100bが、端末200から、参照信号のレイヤ1における受信品質を受信し、規定された報告期間内において受信した参照信号のレイヤ1における受信品質の平均又は統計情報を取得してもよい。
 TCE300は、5G-CN20を介して、通信ノード100a及び通信ノード100bに接続される。TCE300は、通信ノード100a又は通信ノード100bから送信された参照信号のレイヤ1における受信品質の平均又は統計情報を、トレース情報として格納する。TCE300は、通信ノード100a又は通信ノード100bから送信された参照信号のリソース情報を、トレース情報として格納してもよい。
 なお、無線通信システム10は、NG-RANの代わりに、Evolved Universal Terrestrial Radio Access Network(E-UTRAN)を含んでもよい。この場合、通信ノード100a, 100bの各々は、eNB又はen-gNBであり、E-UTRANに含まれる。E-UTRANは、LTEに従ったコアネットワーク(EPC)と接続される。この場合、E-UTRAN及びEPCは、単にネットワークと表現されてもよい。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、通信ノード100a, 100b及び端末200の機能ブロック構成について説明する。以下、本実施形態における特徴に関連する部分についてのみ説明する。したがって、通信ノード100a, 100b及び端末200は、本実施形態における特徴に直接関係しない他の機能ブロックを備えることは勿論である。
 便宜上、最初に、端末200の機能ブロック構成図を説明する。図2は、端末200の機能ブロック構成図である。図2に示すように、端末200は、送信部201、受信部203、受信品質測定部205、レイヤ1処理部207、レイヤ3処理部209、保持部211及び制御部213を備える。
 送信部201は、NRに従った上りリンク信号(UL信号)を送信する。受信部203は、NRに従った下りリンク信号(DL信号)を受信する。具体的には、送信部201及び受信部203は、物理上りリンク制御チャネル(PUCCH)、物理上りリンク共有チャネル(PUSCH)、物理下りリンク制御チャネル(PDCCH)、物理下りリンク共有チャネル(PDSCH)、物理ランダムアクセスチャネル(PRACH)などを介して、通信ノード100a, 100bと端末200との間における無線通信を実行する。
 送信部201は、レイヤ1信号を用いて、参照信号のレイヤ1における受信品質を通信ノード100a又は通信ノード100bに送信する。送信部201は、レイヤ3信号を用いて、参照信号のレイヤ3における受信品質を通信ノード100a又は通信ノード100bに送信する。
 送信部201は、レイヤ1信号を用いて、参照信号のレイヤ1における受信品質の平均又は統計情報を通信ノード100a又は通信ノード100bに送信する。
 受信部203は、規定された測定期間内において、SSBを受信する。受信部203は、規定された測定期間内において、参照信号を受信する。
 受信品質測定部205は、SSBの受信品質を測定する。受信品質測定部205は、参照信号の受信品質を測定する。受信品質測定部205は、受信品質として、参照信号の受信電力(RSRP)、参照信号の受信品質(RSRQ)、信号対干渉雑音比(SINR)などを測定する。なお、測定対象の受信品質は、ネットワークからRRCメッセージによって通知される。
 レイヤ1処理部207は、受信品質測定部205において測定した参照信号の受信品質をレイヤ1で処理して、参照信号のレイヤ1における受信品質を取得する。
 レイヤ3処理部209は、受信品質測定部205において測定したSSBの受信品質をレイヤ3で処理して、SSBのレイヤ3における受信品質を取得する。レイヤ3処理部209は、受信品質測定部205において測定した参照信号の受信品質をレイヤ3で処理して、参照信号のレイヤ3における受信品質を取得する。
 保持部211は、レイヤ1処理部207において取得された参照信号のレイヤ1における受信品質を保持する。
 制御部213は、端末200を構成する各機能ブロックを制御する。
 制御部213は、保持部211に保持された受信品質を用いて、規定された測定期間内において測定される参照信号のレイヤ1における受信品質の平均又は統計情報を取得する。制御部213は、ネットワークからの指示により、参照信号のレイヤ1における受信品質の平均及び統計情報のうち、いずれかを取得する。
 参照信号のレイヤ1における受信品質の平均として、後述するように、例えば、相加平均、相乗平均、重み付け平均などが挙げられる。参照信号のレイヤ1における受信品質の統計情報として、後述するように、例えば、平均と分散と標準偏差との組み合わせを含む統計量が挙げられる。
 制御部213は、参照信号のレイヤ1における受信品質の重み付け平均を取得する場合、重み付け平均の送信タイミングに近いタイミングで測定された受信品質に適用される重み付け係数は、送信タイミングから遠いタイミングで測定された受信品質に適用される重み付け係数よりも大きくなるように、重み付け係数を設定する。
 制御部213は、受信部203が、規定された測定期間内において、異なる複数の参照信号を繰り返し受信する場合、参照信号毎に、参照信号のレイヤ1における受信品質の平均又は前記統計情報を取得する。
 この場合、制御部213は、複数の参照信号の平均又は統計情報のうち、最も良い品質を示す平均又は統計情報を決定してもよい。制御部213は、決定した平均又は統計情報を通信ノード100a又は通信ノード100bに送信するように、送信部201に指示する。
 図3は、通信ノード100a, 100bの機能ブロック構成図である。図3に示すように、通信ノード100a, 100bの各々は、送信部101、受信部103、ビーム制御部105、処理部107、保持部109及び制御部111を備える。
 送信部101は、SSB及び参照信号を端末200に送信する。本実施形態では、通信ノード100bが、当該送信を行う。
 送信部101は、参照信号のレイヤ1における受信品質の平均又は統計情報を、端末200のトレース情報として、所定タイミングで、TCE300に送信する。
 受信部103は、参照信号のレイヤ1における受信品質を端末200から受信する。受信部103は、参照信号のレイヤ1における受信品質の平均又は統計情報を端末200から受信する。受信部103は、参照信号のレイヤ3における受信品質を端末200から受信する。
 受信部103は、参照信号のレイヤ1における受信品質として、CSI-RSのレイヤ1における受信品質を端末200から受信する場合、当該CSI-RSのリソース情報も端末200から受信してもよい。
 ビーム制御部105は、ビーム制御において、ビームフォーミングを行う。ビーム制御部105は、ビーム制御において、ビームフォーミングを適用する場合、異なる幅広ビームを用いて、複数のSSBを送信し、かつ、異なる幅狭ビームを用いて、複数の参照信号を送信する。本実施形態では、通信ノード100bが、ビーム制御を行う。
 処理部107は、ビーム制御において、受信部103が、SSBのレイヤ3における受信品質を受信すると、規定された報告期間内において、レイヤ3における受信品質が最も高いSSBを特定し、当該SSBの送信に用いた幅広ビームを識別する。
 処理部107は、ビーム制御において、受信部103が、参照信号のレイヤ1における受信品質を受信すると、規定された報告期間内において、レイヤ1における受信品質が最も高い参照信号を特定し、当該参照信号の送信に用いた幅狭ビームを識別する。
 保持部109は、端末200から受信した参照信号のレイヤ1における受信品質を保持する。保持部109は、参照信号のレイヤ1における受信品質として、CSI-RSのレイヤ1における受信品質を端末200から受信する場合、当該CSI-RSのリソース情報も保持してもよい。
 制御部111は、通信ノード100a, 100bの各々を構成する各機能ブロックを制御する。
 制御部111は、保持部109に保持された受信品質を用いて、規定された報告期間内において報告される参照信号のレイヤ1における受信品質の平均又は統計情報を取得する。制御部111は、ネットワークからの指示により、参照信号のレイヤ1における受信品質の平均及び統計情報のうち、いずれかを取得する。
 上述したように、参照信号のレイヤ1における受信品質の平均として、例えば、相加平均、相乗平均、重み付け平均などが挙げられる。参照信号のレイヤ1における受信品質の統計情報として、例えば、平均と分散と標準偏差との組み合わせを含む統計量が挙げられる。
 制御部111は、CSI-RSのレイヤ1における受信品質、及び当該CSI-RSのリソース情報を端末200から受信する場合、端末200のトレース情報として、所定のタイミングで、当該CSI-RSのリソース情報をTCE300に送信するように、送信部201に指示してもよい。また、この場合、制御部111は、CSI-RSのリソース情報の代わりに、当該CSI-RSを送信するのに用いた幅狭ビームの情報をTCE300に送信するように、送信部201に指示してもよい。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、通信ノードによるビーム制御を説明した上で、当該ビーム制御におけるトレース情報の提供を説明する。なお、トレース情報の提供は、ビーム制御に限定されず、例えば、リンク障害において、トレース情報の提供が行われてもよい。
 また、本実施形態では、通信ノード100a、通信ノード100b又は端末200は、CSI-RSのレイヤ1における受信品質の平均又は統計情報を取得するが、これに限定されない。例えば、通信ノード100a、通信ノード100b又は端末200は、DM-RS、SRSなどのレイヤ1における受信品質の平均又は統計情報を取得してもよい。
 (3.1)ビーム制御
 本実施形態では、通信ノード100bは、複数のアンテナ素子を含んでおり、複数のビームを用いて、セルC2のカバレッジを確保するために、ビームフォーミングを適用することができる。通信ノード100bは、通信ノード100bと端末200との間においてビームペアを確立し、通信ノード100bと端末200との間において無線信号の送受信を行うために、ビーム制御を行う。
 ビーム制御において、ビームフォーミングを適用する場合、通信ノード100bは、最初に、異なる幅広ビームを用いて、複数のSSBを送信する。
 なお、ビームフォーミングには、アナログビームフォーミング、デジタルビームフォーミング、及びハイブリッドビームフォーミングの3種類がある。アナログビームフォーミングでは、時間毎に1つのビームが送信される。デジタルビームフォーミングでは、時間毎に複数の直交化されたビームが一度に送信される。ハイブリッドビームフォーミングは、アナログビームフォーミングとデジタルビームフォーミングとを組み合わせて、ビームが送信される。
 図4は、ビーム制御における、幅広ビームを用いたビームスイーピングの一例を説明する図である。図4に示すように、通信ノード100bは、アナログビームフォーミングを適用し、時間毎に幅広ビームを順次切り替えて、異なる幅広ビームをセルC2内のエリアC21~C26に送信する。本実施形態では、端末200は、セルC2内のエリアC22に在圏する。
 具体的には、通信ノード100bは、1サブフレーム毎に、幅広ビーム1~6を順次切り替えて、異なる幅広ビームをセルC2内のエリアC21~C26に繰り返し送信する。幅広ビーム1~6は、それぞれセルC2内のエリアC21~C26に送信される。
 通信ノード100bは、幅広ビーム1~6を用いて、複数のSSBを送信する。複数のSSBには、SSBインデックス(SSB index)#1~#6が割り当てられている。通信ノード100bは、各SSB(具体的には、SSB index)を、当該SSBを送信するのに用いられる幅広ビームに対応付ける。
 なお、幅広ビームの数は6つには限定されない。また、1つのビームが送信される時間間隔は、1サブフレームに限定されず、例えば、サブキャリア間隔に対応した1スロットであってもよい。
 端末200はSSBを受信すると、SSBの受信品質を測定し、かつ、SSBに含まれるSSB indexを取得する。SSBの受信品質として、例えば、RSRP, RSRQ, SINRなどが挙げられる。端末200は、測定したSSBの受信品質をレイヤ3で処理して、SSBのレイヤ3における受信品質を取得する。レイヤ3における処理として、L3フィルタリングなどが挙げられる。
 端末200は、レイヤ3信号を用いて、SSBのレイヤ3における受信品質及び当該SSBに含まれるSSB indexを、通信ノード100bに報告する。なお、端末200は、SSBのレイヤ3における受信品質及び当該SSBに含まれるSSB indexに加えて、端末200が在圏するセル識別子(Cell ID)を、通信ノード100bに報告してもよい。
 端末200は、SSBの受信品質を測定する代わりに、通信ノード100bからの指示により、幅広ビームを用いて送信されたCSI-RSの受信品質を測定してもよい。この場合、端末200は、測定したCSI-RSの受信品質をレイヤ3で処理して、CSI-RSのレイヤ3における受信品質を取得する。端末200は、レイヤ3信号を用いて、CSI-RSのレイヤ3における受信品質及び当該CSI-RSのリソース情報を通信ノード100bに報告する。
 通信ノード100bは、SSBのレイヤ3における受信品質及び当該SSBに含まれるSSB indexを、端末200から受信すると、規定された期間内において、レイヤ3における受信品質が最も高いSSBに割り当てられたSSB indexを特定する。通信ノード100bは、特定したSSB indexに対応付けられた幅広ビームを識別する。これにより、通信ノード100bは、端末200が在圏するエリアを把握することができる。
 本実施形態では、通信ノード100bは、レイヤ3における受信品質が最も高いSSBに割り当てられたSSB index#2を特定し、SSB index#2に対応付けられた幅広ビーム2を識別する。これにより、通信ノード100bは、端末200がエリアC22に在圏することを把握する。
 なお、通信ノード100bの代わりに、端末200が、一定期間内でレイヤ3における受信品質が最も高いSSBに割り当てられたSSB indexを特定してもよい。この場合、端末200は、当該SSBのレイヤ3における受信品質及び当該SSB indexを通信ノード100bに報告する。
 続いて、通信ノード100bは、把握したエリア内における端末200の位置を把握するために、識別した幅広ビームと相関のある異なる幅狭ビームを用いて、複数のCSI-RSを送信する。なお、通信ノード100bは、複数のCSI-RSを送信する前に、各CSI-RSの送信に用いられるCSI-RSのリソース情報を、端末200に通知する。
 通信ノード100bが、アナログビームフォーミングを適用して、幅狭ビームを用いて、複数のCSI-RSを送信する場合、CSI-RSのリソース情報は、リソースブロックにおける、各CSI-RSの送信に割り当てられるリソースエレメント(時間及び周波数)を含む。
 通信ノード100bが、デジタルビームフォーミングを適用して、幅狭ビームを用いて、複数のCSI-RSを送信する場合、CSI-RSのリソース情報は、リソースブロックにおける、各CSI-RSの送信に割り当てられるリソースエレメント(時間及び周波数)と、複数の幅狭ビームを直交化するのに使用した符号とを含む。
 図5は、ビーム制御における、幅狭ビームを用いたビームスイーピングの一例を説明する図である。図5に示すように、通信ノード100bは、アナログビームフォーミングを適用し、時間毎に、識別した幅広ビーム2と相関のある幅狭ビームを順次切り替えて、異なる幅狭ビームをエリアC22内のスポットC22a~C22dに送信する。本実施形態では、端末200は、エリアC22内のスポットC22cに位置する。
 具体的には、通信ノード100bは、1サブフレーム毎に、幅広ビーム2と相関のある幅狭ビーム21~24を順次切り替えて、異なる幅狭ビームをエリアC22内のスポットC22a~C22dに繰り返し送信する。幅狭ビーム21~24は、それぞれエリアC22内のスポットC22a~C22dに送信される。
 通信ノード100bは、幅狭ビーム21~24を用いて、複数のCSI-RSを送信する。複数のCSI-RSには、CSI-RSのリソース情報#a~dが割り当てられている。通信ノード100bは、各CSI-RS(具体的には、CSI-RSのリソース情報)を、当該CSI-RSの送信に用いられる幅狭ビームに対応付ける。
 なお、幅狭ビームの数は4つには限定されない。また、1つのビームが送信される時間間隔は、1サブフレームに限定されず、例えば、サブキャリア間隔に対応した1スロットであってもよい。
 図6は、ビーム制御における、幅狭ビームを用いたビームスイーピングの一例を説明する図である。図6に示すように、通信ノード100bは、デジタルビームフォーミングを適用し、識別した幅広ビーム2と相関のある直交化した幅狭ビーム21~24を、エリアC22内のスポットC22a~C22dに繰り返し送信する。通信ノード100bは、幅狭ビーム21~24を用いて、4つのCSI-RSを一度に送信する。通信ノード100bは、各CSI-RS(具体的には、CSI-RSのリソース情報)を、当該CSI-RSの送信に用いられる幅狭ビームに対応付ける。
 端末200は、アナログビームフォーミング又はデジタルビームフォーミングにより、CSI-RSを受信すると、CSI-RSの受信品質を測定する。CSI-RSの受信品質として、例えば、RSRP, RSRQ, SINRなどが挙げられる。端末200は、測定したCSI-RSの受信品質をレイヤ1で処理して、CSI-RSのレイヤ1における受信品質を取得する。
 端末200は、レイヤ1信号を用いて、CSI-RSのレイヤ1における受信品質及び当該CSI-RSのリソース情報を、通信ノード100bに報告する。なお、端末200は、レイヤ1信号を用いて、CSI-RSのレイヤ1における受信品質及び当該CSI-RSのリソース情報を、通信ノード100aに報告してもよい。
 通信ノード100bは、CSI-RSのレイヤ1における受信品質及び当該CSI-RSのリソース情報を、端末200から受信すると、レイヤ1における受信品質が最も高いCSI-RSのリソース情報を特定する。通信ノード100bは、特定したCSI-RSリソース情報に対応付けられた幅狭ビームを識別する。これにより、通信ノード100bは、エリアC22内における端末200の位置を把握することができる。
 通信ノード100bは、識別した幅狭ビームを用いて、通信ノード100bと端末200との間においてビームペアを確立し、通信ノード100bと端末200との間において無線信号の送受信を行う。
 本実施形態では、通信ノード100bは、スポットC22cに送信される幅狭ビーム23を用いて、通信ノード100bと端末200との間においてビームペアを確立し、通信ノード100bと端末200との間において無線信号の送受信を行う。
 なお、CSI-RSのレイヤ1における受信品質の報告周期は、SSB又はCSI-RSのレイヤ3における受信品質の報告周期よりも短い。このため、CSI-RSのレイヤ1における受信品質は、SSB又はCSI-RSのレイヤ3における受信品質よりも高頻度で、端末200から通信ノード100bに報告される。これにより、CSI-RSのレイヤ1における受信品質を用いて、端末200の移動、瞬時フェージングの変動などに追従することができる。
 (3.2)トレース情報の提供
 次に、ビーム制御におけるトレース情報の提供を説明する。通信ノード100a、通信ノード100b又は端末200は、ビーム制御において、規定された測定期間内において測定されたCSI-RSのレイヤ1における受信品質の平均又は統計情報を取得し、端末200のトレース情報として、当該平均又は統計情報をTCE300に送信する。以下に、動作例1~3として、本動作を詳細に説明する。
 なお、通信ノード100a、通信ノード100b又は端末200は、ネットワークからの指示により、CSI-RSのレイヤ1における受信品質の平均及び統計情報のうち、いずれかを取得する。
 また、通信ノード100bは、上記の動作に加えて、端末200のトレース情報として、端末200から報告されたSSBのレイヤ3における受信品質を、所定のタイミングでTCE300に送信してもよい。
 (3.2.1)動作例1
 本動作例では、端末200が、CSI-RSのレイヤ1における受信品質の平均又は統計情報を取得する。図7は、トレース情報の送信における、送信シーケンス(動作例1)を示す図である。図7に示すように、端末200は、ビーム制御において、規定された測定期間内において測定されるCSI-RSのレイヤ1における受信品質の平均又は統計情報を取得する(S11)。
 CSI-RSのレイヤ1における受信品質の平均として、次の例が挙げられる。
  ・相加平均
  ・相乗平均
  ・重み付け平均
 相加平均を用いる場合、端末200は、規定された測定期間内において、n個のCSI-RSのレイヤ1における受信品質が測定されると、n個のCSI-RSのレイヤ1における受信品質の和をnで割ることにより、CSI-RSのレイヤ1における受信品質の平均を取得する。
 相乗平均を用いる場合、端末200は、規定された測定期間内において、n個のCSI-RSのレイヤ1における受信品質が測定されると、n個のCSI-RSのレイヤ1における受信品質の積のn乗根をとることにより、CSI-RSのレイヤ1における受信品質の平均を取得する。
 重み付け平均を用いる場合、端末200は、規定された測定期間内で、n個のCSI-RSのレイヤ1における受信品質が測定されると、n個のCSI-RSのレイヤ1における受信品質の各々に重み付け係数を掛けて足し合わせることにより、CSI-RSのレイヤ1における受信品質の平均を取得する。
 この場合、例えば、通信ノード100a又は通信ノード100bに当該平均の送信タイミングに近いタイミングで測定されたCSI-RSのレイヤ1における受信品質に適用される重み付け係数を、送信タイミングから遠いタイミングで測定されたCSI-RSのレイヤ1における受信品質に適用される重み付け係数より大きくする。
 CSI-RSのレイヤ1における受信品質の統計情報として、例えば、平均と分散と標準偏差との組み合わせを含む統計量が挙げられる。
 端末200は、CSI-RSのレイヤ1における受信品質の平均又は統計情報を取得すると、所定のタイミングで、当該平均又は統計情報を通信ノード100a又は通信ノード100bに送信する(S13)。例えば、端末200は、PUCCH又はPUSCHを介して、レイヤ1信号を用いて、当該平均又は統計情報を通信ノード100a又は通信ノード100bに送信する。
 なお、通信ノード100a又は通信ノード100bは、RRCメッセージ(例えば、RRC configuration)を用いて、当該平均又は統計情報を送信するタイミング及びチャネルなどを、予め端末200に通知する。当該平均又は統計情報は、通信ノード100a又は通信ノード100bに報告されるCSI-RSのレイヤ1における受信品質とは、別のメッセージで送信される。
 通信ノード100a又は通信ノード100bは、端末200から当該平均又は統計情報を受信すると、所定のタイミングで、当該平均又は統計情報をTCE300に送信する(S15)。TCE300は、通信ノード100a又は通信ノード100bから当該平均又は統計情報を受信すると、端末200のトレース情報として、当該平均又は統計情報を格納する(S17)。
 図8は、動作例1における、参照信号のレイヤ1における受信品質の平均の一例を説明する図である。図8に示した例では、端末200は、CSI-RSのレイヤ1における受信品質として、CSI-RSのL1 RSRPを測定する。図8に示すように、端末200は、規定された測定期間内において測定された4つのCSI-RSのL1 RSRPを平均化する。
 端末200は、所定のタイミングで、平均化したL1 RSRPを、通信ノード100a又は通信ノード100bに送信する。通信ノード100a又は通信ノード100bは、平均したL1 RSRPを受信すると、所定のタイミングで、当該平均化したL1 RSRPをTCE300に送信する。
 図9は、動作例1における、参照信号のレイヤ1における受信品質の平均の一例を説明する図である。図9に示した例では、端末200は、CSI-RSのレイヤ1における受信品質として、CSI-RSのL1 RSRPを測定する。具体的には、端末200は、アナログビームフォーミングの適用により、幅狭ビーム21~24を用いて送信された複数のCSI-RSのL1 RSRPを測定する。
 図9に示すように、端末200は、CSI-RS毎に、測定期間T内において測定されるCSI-RSのL1 RSRPの平均を取得する。具体的には、レイヤ1処理部207(図2参照)は、CSI-RSのリソース毎に、測定期間T内において測定されるCSI-RSのL1 RSRPの平均を取得する。
 なお、図9は、レイヤ1処理部207が、CSI-RSのリソース情報#aにおける、測定期間T内において測定されるCSI-RSのL1 RSRPの平均を取得する様子を示している。
 端末200は、取得した複数のCSI-RSのL1 RSRPの平均のうち、最も高い値を有する平均を決定し、所定のタイミングで、決定した平均を通信ノード100a又は通信ノード100bに送信する。
 (3.2.2)動作例2
 本動作例では、通信ノード100a又は通信ノード100bが、CSI-RSのレイヤ1における受信品質の平均又は統計情報を取得する。図10は、トレース情報の提供における、送信シーケンス(動作例2)を示す図である。図10に示すように、端末200は、ビーム制御において、レイヤ1信号を用いて、CSI-RSのレイヤ1における受信品質及び当該CSI-RSのリソース情報を、通信ノード100a又は通信ノード100bに報告する(S31)。
 通信ノード100a又は通信ノード100bは、規定された報告期間内において報告されるCSI-RSのレイヤ1における受信品質の平均又は統計情報を取得する(S33)。
 CSI-RSのレイヤ1における受信品質の平均として、上述した相加平均、相乗平均、重み付け平均などが挙げられる。また、CSI-RSのレイヤ1における受信品質の統計情報として、上述した平均と分散と標準偏差との組み合わせを含む統計量が挙げられる。
 通信ノード100a又は通信ノード100bは、CSI-RSのレイヤ1における受信品質の平均又は統計情報を取得すると、所定のタイミングで、当該平均又は統計情報をTCE300に送信する(S35)。TCE300は、通信ノード100a又は通信ノード100bから当該平均又は統計情報を受信すると、端末200のトレース情報として、当該平均又は統計情報を格納する(S37)。
 なお、S33において、通信ノード100a又は通信ノード100bは、CSI-RSのレイヤ1における受信品質の平均又は統計情報を取得する代わりに、端末200から報告されるCSI-RSのレイヤ1における受信品質を間引いてもよい。
 この場合、通信ノード100a又は通信ノード100bは、端末200のトレース情報をTCE300に送信する送信タイミングの直前に、端末200から報告されたCSI-RSのレイヤ1における受信品質をTCE300に送信してもよい。なお、当該送信タイミングは、通信ノード100a又は通信ノード100bとTCE300との間において、予め規定されている。
 図11は、動作例2における、参照信号のレイヤ1における受信品質の平均の一例を説明する図である。図11では、端末200は、CSI-RSのレイヤ1における受信品質として、CSI-RSのL1 RSRPを通信ノード100a又は通信ノード100bに報告する。図11に示すように、通信ノード100a又は通信ノード100bは、規定された報告期間内において報告された4つのCSI-RSのL1 RSRPを平均化する。
 通信ノード100a又は通信ノード100bは、平均したL1 RSRPを受信すると、所定のタイミングで、当該平均化したL1 RSRPをTCE300に送信する。
 なお、通信ノード100a又は通信ノード100bは、CSI-RS毎に、規定された報告期間内において報告されたCSI-RSのL1 RSRPの平均を取得してもよい。具体的には、処理部107(図3参照)は、端末200から報告されるCSI-RSのリソース毎に、規定された報告期間内において報告されるCSI-RSのL1 RSRPの平均を取得する。
 この場合、通信ノード100a又は通信ノード100bは、取得した複数のCSI-RSのL1 RSRPの平均のうち、最も高い値を有する平均を特定し、所定のタイミングで、当該平均をTCE300に送信する。
 (3.2.3)動作例3
 本動作例では、通信ノード100a又は通信ノード100bが、CSI-RSのリソース情報をTCE300に送信する。図12は、トレース情報の提供における、送信シーケンス(動作例3)を示す図である。図12に示すように、端末200は、ビーム制御において、レイヤ1信号を用いて、CSI-RSのレイヤ1における受信品質及び当該CSI-RSのリソース情報を、通信ノード100a又は通信ノード100bに報告する(S51)。
 通信ノード100a又は通信ノード100bは、端末200のトレース情報をTCE300に送信するタイミングの直前に、端末200から報告されたCSI-RSのリソース情報をTCE300に送信する(S53)。なお、当該送信タイミングは、通信ノード100a又は通信ノード100bとTCE300との間において、予め規定されている。
 TCE300は、通信ノード100a又は通信ノード100bからCSI-RSのリソース情報を受信すると、端末200のトレース情報として、当該CSI-RSのリソース情報を格納する(S55)。この場合、通信ノード100a又は通信ノード100bとTCE300と間において、各CSI-RSのリソース情報と、当該CSI-RSの送信に用いられる幅狭ビームとの対応付けが、予め共有されている。
 なお、通信ノード100a又は通信ノード100bとTCE300との間において、当該対応付けが予め共有されていない場合には、S53において、通信ノード100a又は通信ノード100bは、CSI-RSのリソース情報と、当該CSI-RSの送信に用いられる幅狭ビームの情報とをTCE300に送信してもよい。
 これにより、TCE300に格納されたCSI-RSのリソース情報を参照して、当該CSI-RSの送信に用いられる幅狭ビームを取得することにより、端末200の位置を大まかに推定することができる。また、通信ノード100a又は通信ノード100bは、CSI-RSのレイヤ1における受信品質の平均又は統計情報を取得する必要がないため、通信ノード100a又は通信ノード100bの処理負荷を低減することができる。
 なお、S53において、通信ノード100a又は通信ノード100bは、CSI-RSのリソース情報の代わりに、当該CSI-RSを送信するのに用いた幅狭ビームの情報の情報のみを、端末200のトレース情報として、TCE300に送信してもよい。
 (4)作用・効果
 上述した実施形態によれば、端末200は、規定された測定期間内において測定される参照信号のレイヤ1における受信品質の平均又は統計情報を取得し、取得した平均又は前記統計情報を通信ノード100a又は100bに送信する。
 このような構成により、端末200は、レイヤ1における受信品質の送信回数を減らすことができる。
 また、端末200は、規定された測定期間内において測定されるレイヤ1における受信品質の平均又は統計情報を取得するため、レイヤ1における受信品質を間引いて、レイヤ1における受信品質の送信回数を減らす場合と比較して、精度の高いトレース情報を通信ノード100a又は100bに送信することができる。
 したがって、端末200は、ネットワークの処理負荷の増大を回避しつつ、精度の高いトレース情報を提供し得る。
 上述した実施形態によれば、端末200は、レイヤ1における受信品質の重み付け平均を取得し、取得した重み付け平均を通信ノード100a又は100bに送信する。当該重み付け平均の送信タイミングに近いタイミングで測定された受信品質に適用される重み付け係数は、当該送信タイミングから遠いタイミングで測定された受信品質に適用される重み付け係数よりも大きい。
 このような構成により、重み付け平均の送信タイミングから遠いタイミングで測定されたレイヤ1における受信品質に対する、重み付け平均の送信タイミングに近いタイミングで測定されたレイヤ1における受信品質の比率が大きくなる。
 これにより、重み付け平均の送信タイミングから遠いタイミングで測定されたレイヤ1における受信品質の影響を低減することができる。
 したがって、端末200は、より精度の高いトレース情報を通信ノードに送信することができる。
 上述した実施形態によれば、端末200は、参照信号毎に、前記平均又は前記統計情報を取得する。
 このような構成により、異なる参照信号のレイヤ1における受信品質の平均又は統計情報が混在することを回避できる。このため、端末200は、より精度の高いトレース情報を通信ノードに送信することができる。
 上述した実施形態によれば、端末200は、複数の参照信号の平均又は統計情報のうち、最も良い品質を示す平均又は統計情報を通信ノード100a又は100bに送信する。
 このような構成により、トレース情報を用いて、より正確な端末200の位置又は当該位置における品質の分析が可能になる。
 (5)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 上述した実施形態では、端末200は、通信ノード100a, 100bに接続されるが、これに限定されない。例えば、端末200は、5G-CN20又はEPCに接続された制御プレーン及びユーザプレーンを管理する1つの通信ノードのみに接続されてもよい。
 上述した実施形態の説明に用いたブロック構成図(図2及び図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述した端末200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロックは、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間毎に異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10 無線通信システム
20 5G-CN
100a, 100b 通信ノード
101 送信部
103 受信部
105 ビーム制御部
107 処理部
109 保持部
111 制御部
200 端末
201 送信部
203 受信部
205 受信品質測定部
207 レイヤ1処理部
209 レイヤ3処理部
211 保持部
213 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス

Claims (4)

  1.  規定された測定期間内において、参照信号を受信する受信部と、
     前記測定期間内において測定される前記参照信号のレイヤ1における受信品質の平均又は統計情報を取得する制御部と、
     前記平均又は前記統計情報を通信ノードに送信する送信部と、
    を備える端末。
  2.  前記制御部は、前記レイヤ1における受信品質の重み付け平均を取得し、
     前記送信部は、前記重み付け平均を前記通信ノードに送信し、
     前記重み付け平均の送信タイミングに近いタイミングで測定された前記受信品質に適用される重み付け係数は、前記送信タイミングから遠いタイミングで測定された前記受信品質に適用される重み付け係数よりも大きい請求項1に記載の端末。
  3.  前記受信部は、前記測定期間内において、異なる複数の参照信号を繰り返し受信し、
     前記制御部は、前記参照信号毎に、前記平均又は前記統計情報を取得する請求項1に記載の端末。
  4.  前記制御部は、前記複数の参照信号の平均又は統計情報のうち、最も良い品質を示す平均又は統計情報を決定し、
     前記送信部は、決定された前記平均又は前記統計情報を前記通信ノードに送信する請求項3に記載の端末。
     
PCT/JP2019/037079 2019-09-20 2019-09-20 端末 WO2021053825A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980100329.6A CN114391266A (zh) 2019-09-20 2019-09-20 终端
US17/761,899 US20220377589A1 (en) 2019-09-20 2019-09-20 Terminal
PCT/JP2019/037079 WO2021053825A1 (ja) 2019-09-20 2019-09-20 端末
EP19945874.6A EP4033801A4 (en) 2019-09-20 2019-09-20 TERMINAL
JP2021546165A JP7558958B2 (ja) 2019-09-20 2019-09-20 端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037079 WO2021053825A1 (ja) 2019-09-20 2019-09-20 端末

Publications (1)

Publication Number Publication Date
WO2021053825A1 true WO2021053825A1 (ja) 2021-03-25

Family

ID=74884450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037079 WO2021053825A1 (ja) 2019-09-20 2019-09-20 端末

Country Status (5)

Country Link
US (1) US20220377589A1 (ja)
EP (1) EP4033801A4 (ja)
JP (1) JP7558958B2 (ja)
CN (1) CN114391266A (ja)
WO (1) WO2021053825A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752274B (zh) * 2019-10-29 2022-08-19 上海华为技术有限公司 波束切换方法以及波束切换装置
US11742925B2 (en) * 2020-07-30 2023-08-29 Samsung Electronics Co., Ltd. Methods and apparatus for mitigating codebook inaccuracy when using hierarchical beam operations
WO2024144542A1 (en) * 2022-12-28 2024-07-04 Eczacibasi Yapi Gerecleri Sanayi Ve Ticaret Anonim Sirketi Method and connection system for connecting to the nearest ceramic sanitary ware system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232090A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Unified beam management in a wireless network
JP2019062506A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 端末装置および方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249951B1 (en) * 2000-11-16 2016-06-01 Sony Corporation Communication apparatus
US20170118665A1 (en) * 2014-04-29 2017-04-27 Lg Electronics Inc. Method for performing measurement in wireless communication system and apparatus therefor
CN109155928B (zh) * 2016-05-12 2022-06-03 株式会社Ntt都科摩 用户装置以及方法
US10720982B2 (en) * 2017-01-05 2020-07-21 Intel IP Corporation Measurement of beam refinement signal
US11134492B2 (en) * 2017-04-12 2021-09-28 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in next generation wireless systems
JP7184893B2 (ja) * 2017-11-27 2022-12-06 ノキア テクノロジーズ オサケユイチア 無線ネットワーク用の結合ビーム報告
US10784947B2 (en) * 2018-04-09 2020-09-22 Apple Inc. Methods of beam management and beam selection based on measurement reporting in new radio (NR) systems
WO2020033860A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Measurement period for beam reporting
US10791474B2 (en) * 2018-09-07 2020-09-29 Apple Inc. Licensed assisted access signal detection for reducing power use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232090A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Unified beam management in a wireless network
JP2019062506A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 端末装置および方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP: "Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Subscriber and equipment trace; Trace control and configuration management (Release 15", 3GPP TS 32.422, June 2019 (2019-06-01)
NOKIA, NOKIA SHANGHAI BELL: "NR Ll-RSRP measurements and Reporting", 3GPP TSG RAN WG4 #89 R4-1815435, 16 November 2018 (2018-11-16), XP051484067 *
NTT DOCOMO, INC.: "Discussion on CSI-RS Ll-RSRP measurement in immediate MDT", 3GPP TSG RAN WG2 #106 R2-1907804, 17 May 2019 (2019-05-17), XP051712078 *
NTT DOCOMO, INC.: "Remaining issues on Ll-RSRP Computation for reporting", 3GPP TSG RAN WG4 #88BIS R4-1812711, 12 October 2018 (2018-10-12), XP051581423 *
See also references of EP4033801A4

Also Published As

Publication number Publication date
EP4033801A4 (en) 2023-06-07
CN114391266A (zh) 2022-04-22
US20220377589A1 (en) 2022-11-24
EP4033801A1 (en) 2022-07-27
JP7558958B2 (ja) 2024-10-01
JPWO2021053825A1 (ja) 2021-03-25

Similar Documents

Publication Publication Date Title
JPWO2019239583A1 (ja) ユーザ端末及び無線通信方法
JP7398278B2 (ja) 端末、無線通信方法及びシステム
JPWO2020026454A1 (ja) ユーザ端末及び無線通信方法
JP7089027B2 (ja) 端末、無線通信方法、基地局及びシステム
US11974267B2 (en) Terminal, radio communication system, and communication method supporting inter-terminal direct communication
JP7088934B2 (ja) 端末、無線通信方法及びシステム
JPWO2020008649A1 (ja) ユーザ端末及び無線通信方法
JPWO2020031387A1 (ja) ユーザ端末及び無線通信方法
WO2020129228A1 (ja) 無線ノード、及び、無線通信方法
JPWO2019159245A1 (ja) ユーザ端末及び無線通信方法
JPWO2019026216A1 (ja) ユーザ端末及び無線通信方法
JPWO2020017055A1 (ja) ユーザ端末及び無線通信方法
JP7223026B2 (ja) 端末、基地局、無線通信システム、及び通信方法
JP7558958B2 (ja) 端末
WO2020217514A1 (ja) ユーザ端末及び無線通信方法
WO2021144976A1 (ja) 通信装置
JPWO2020035954A1 (ja) ユーザ端末及び無線通信方法
JPWO2020031342A1 (ja) ユーザ端末及び無線通信方法
JPWO2020017056A1 (ja) 基地局
JPWO2020039481A1 (ja) ユーザ端末及び無線通信方法
JPWO2020012620A1 (ja) ユーザ端末及び基地局
WO2021144972A1 (ja) 通信装置
WO2019049382A1 (ja) ユーザ端末及び無線通信方法
WO2020194639A1 (ja) 端末
WO2022234654A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019945874

Country of ref document: EP

Effective date: 20220420