WO2021053790A1 - Component mounting machine - Google Patents

Component mounting machine Download PDF

Info

Publication number
WO2021053790A1
WO2021053790A1 PCT/JP2019/036759 JP2019036759W WO2021053790A1 WO 2021053790 A1 WO2021053790 A1 WO 2021053790A1 JP 2019036759 W JP2019036759 W JP 2019036759W WO 2021053790 A1 WO2021053790 A1 WO 2021053790A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
substrate
mounting machine
image
head
Prior art date
Application number
PCT/JP2019/036759
Other languages
French (fr)
Japanese (ja)
Inventor
錠二 門川
辰次 野澤
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2019/036759 priority Critical patent/WO2021053790A1/en
Priority to JP2021546134A priority patent/JP7249426B2/en
Publication of WO2021053790A1 publication Critical patent/WO2021053790A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the solder applied on the substrate may peel off and adhere to the component side.
  • the solder adhering to the component is removed by cleaning and then the component is remounted on the board, there is a risk that the electrical connection between the electrode portion of the component and the land portion of the board may be defective due to insufficient solder. is there.
  • the main purpose of this disclosure is to suppress the occurrence of defective products.
  • This disclosure has taken the following measures to achieve the above-mentioned main purpose.
  • the component mounting machine of the present disclosure is A component mounting machine that holds components and mounts them on a board.
  • a head having a holding member for holding the component,
  • An imaging device that is moved by the moving device to image the substrate, and
  • An inspection process for controlling the imaging device and inspecting the mounting state of the component based on the captured image is executed, and if the inspection result of the inspection process is abnormal, the component related to the abnormality is the substrate.
  • a control device that controls the moving device and the head so as to be removed from the board, and performs an error processing that makes an operator call to prompt confirmation of the state of the board.
  • the gist is to prepare.
  • the component mounting machine of the present disclosure includes an imaging device for imaging a substrate by being moved by a moving device for moving the head. Further, the component mounting machine executes a mounting process for controlling the components held by the holding member to be mounted on the board, and then images the components mounted on the board and the mounting state of the components based on the captured image. Perform an inspection process to inspect. Then, when the inspection result is abnormal, the component mounting machine executes an abnormality processing in which an operator call is made to remove the abnormal component from the board and prompt the confirmation of the state of the board. In this way, the occurrence of defective products can be suppressed by allowing the operator to check the state of the board (solder state) after removing the abnormal component from the board.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of the component mounting machine 10 of the present embodiment.
  • FIG. 2 is an explanatory diagram showing an electrical connection relationship between the control device 60 and the management device 80 of the component mounting machine 10.
  • the left-right direction is the X-axis direction
  • the front (front) rear (back) direction is the Y-axis direction
  • the vertical direction is the Z-axis direction.
  • the component mounting machine 10 mounts components (surface mount) on the substrate S. That is, the component mounting machine 10 mounts the components so that the electrode portion comes into contact with the solder printed by a printing machine (not shown) on the copper foil which is the land portion of the substrate S.
  • the component mounting machine 10 includes a component supply device 21, a board transfer device 22, a head moving device 30, a head 40, an image display device 50, a speaker 51 (see FIG. 2), and a speaker 51 (see FIG. 2). It includes a light 52 (see FIG. 2) and a control device 60 (see FIG. 2). In addition to these, the component mounting machine 10 also includes a parts camera 24, a mark camera 25, a disposal box 26, a nozzle station 27, and the like. A plurality of component mounting machines 10 are arranged side by side in the substrate transport direction (X-axis direction) to form a production line. The production line is managed by the management device 80 (see FIG. 2).
  • the parts supply device 21 includes a tape feeder provided at the front end of the base 11 of the parts mounting machine 10.
  • the tape feeders are installed so as to line up in the left-right direction (X-axis direction), and tapes in which parts are housed in a plurality of recesses formed at predetermined intervals in the longitudinal direction are placed in the front-rear direction (Y-axis direction) from the reel. Supply parts by pulling out to.
  • the board transfer device 22 includes a pair of conveyor rails arranged on the base 11 at intervals in the front-rear direction (Y-axis direction).
  • the substrate transfer device 22 transports the substrate S from the left to the right (board transfer direction) in FIG. 1 by driving a pair of conveyor rails.
  • the head moving device 30 includes a pair of X-axis guide rails 31, an X-axis slider 32, an X-axis actuator 33 (see FIG. 2), a pair of Y-axis guide rails 35, and a Y-axis. It includes a slider 36 and a Y-axis actuator 37 (see FIG. 2).
  • the pair of Y-axis guide rails 35 are installed on the upper stage of the housing 12 so as to extend parallel to each other in the Y-axis direction.
  • the Y-axis slider 36 is bridged over a pair of Y-axis guide rails 35.
  • the Y-axis actuator 37 moves the Y-axis slider 36 along the Y-axis guide rail 35 in the Y-axis direction.
  • the pair of X-axis guide rails 31 are installed in front of the Y-axis slider 36 so as to extend parallel to each other in the X-axis direction.
  • the X-axis slider 32 is bridged over a pair of X-axis guide rails 31.
  • the X-axis actuator 33 moves the X-axis slider 32 in the X-axis direction along the X-axis guide rail 31.
  • a head 40 is attached to the X-axis slider 32.
  • the head moving device 30 moves the head 40 in the X-axis direction and the Y-axis direction by moving the X-axis slider 32 and the Y-axis slider 36.
  • the head 40 includes a Z-axis actuator 41 and a ⁇ -axis actuator 43.
  • the Z-axis actuator 41 moves a nozzle holder (not shown) in the vertical direction (Z-axis direction).
  • the ⁇ -axis actuator 43 rotates the nozzle holder around the Z-axis.
  • a suction nozzle 45 is detachably attached to the nozzle holder. The suction nozzle 45 is moved in the Z-axis direction together with the nozzle holder by the Z-axis actuator 41, and is rotated around the Z-axis together with the nozzle holder by the ⁇ -axis actuator 43.
  • the suction port of the suction nozzle 45 selectively communicates with the negative pressure source, the positive pressure source, and the air introduction port by a solenoid valve.
  • the head 40 attracts the component by the negative pressure acting on the suction port by bringing the suction port of the suction nozzle 45 into contact with the upper surface of the component in a state where the suction port of the suction nozzle 45 is communicated with the negative pressure source. be able to. Further, the head 40 can release the suction of the parts by the positive pressure acting on the suction port by communicating the suction port of the suction nozzle 45 with the positive pressure source.
  • the parts camera 24 is installed between the parts supply device 21 of the base 11 and the board transfer device 22.
  • the parts camera 24 takes an image of the bottom surface of the component from a direction perpendicular to the bottom surface of the component.
  • the captured image captured by the parts camera 24 is output to the control device 60.
  • the control device 60 inspects the suction state of the parts by performing image processing for recognizing the parts with respect to the captured image of the parts camera 24. For the inspection of the suction state, for example, it is determined whether or not the parts are sucked by the suction nozzle 45, whether or not the sucked parts are normal, and the X-axis direction of the sucked parts. This includes determining whether or not the amount of misalignment ( ⁇ x, ⁇ y, ⁇ ) in the Y-axis direction and the ⁇ -axis direction is within the permissible range.
  • the mark camera 25 is attached to the X-axis slider 32.
  • the mark camera 25 captures a mark attached to the surface of the substrate S from a direction perpendicular to the surface.
  • the captured image captured by the mark camera 25 is output to the control device 60.
  • the control device 60 confirms the position of the substrate S by performing image processing for recognizing the mark on the image captured by the mark camera 25.
  • the disposal box 26 is for disposing of the parts subject to the abnormality when the adsorbed parts have an abnormality.
  • the nozzle station 27 accommodates a plurality of replacement suction nozzles 45 suitable for suctioning the parts according to the type of the parts.
  • the image display device 50 is, for example, a liquid crystal display, and displays status information regarding the state of the component mounting machine 10, work information regarding setup change and component replenishment, and the like.
  • the image display device 50 has a touch panel attached to the screen so that it can be operated by an operator.
  • the control device 60 is configured as a microprocessor centered on a CPU 61, and includes a ROM 62, an HDD 63, a RAM 64, an input / output interface 65, and the like in addition to the CPU 61. These are electrically connected via the bus 66.
  • Various detection signals are input to the control device 60 via the input / output interface 65.
  • the various detection signals input to the control device 60 include a position signal from the X-axis position sensor 34 that detects the position of the X-axis slider 32 and a position from the Y-axis position sensor 38 that detects the position of the Y-axis slider 36.
  • various signals input to the control device 60 include an image signal from the parts camera 24, an image signal from the mark camera 25, an operation signal from the image display device 50 (touch panel), and the like.
  • various control signals are output from the control device 60 via the input / output interface 65.
  • Various control signals output from the control device 60 include a control signal to the component supply device 21 and a control signal to the substrate transfer device 22.
  • the various control signals output from the control device 60 include a drive signal to the X-axis actuator 33, a drive signal to the Y-axis actuator 37, a drive signal to the Z-axis actuator 41, and a drive signal to the ⁇ -axis actuator 43. And so on. Further, the various control signals output from the control device 60 include a control signal to the parts camera 24, a control signal to the mark camera 25, a control signal to the image display device 50, a control signal to the speaker 51, and a light 52. There is also a control signal to. Further, the control device 60 is connected to the management device 80 so as to be capable of bidirectional communication, and exchanges data and control signals with each other.
  • the management device 80 is, for example, a general-purpose computer, and includes a CPU 81, a ROM 82, an HDD 83, a RAM 84, an input / output interface 85, and the like, as shown in FIG. These are electrically connected via the bus 86.
  • An input signal is input to the management device 80 from an input device 87 such as a mouse or a keyboard via the input / output interface 85. Further, the image signal to the display 88 is output from the management device 80 via the input / output interface 85.
  • the HDD 83 stores the production job of the substrate S.
  • the production job of the board S includes production of which parts are mounted on the board S in what order in each component mounting machine 10, and how many boards S on which the components are mounted are manufactured. Includes schedule.
  • the management device 80 generates a production job based on various data input by the operator via the input device 87, and transmits the generated production job to each component mounting machine 10 to the component mounting machine 10. Instruct the start of production.
  • FIG. 3 is a flowchart showing an example of a control routine executed by the CPU 61 of the control device 60. This routine is executed when the operator instructs the start of production.
  • the control device 60 receives the production job transmitted from the management device 80, and executes the control routine based on the received production job.
  • the CPU 61 of the control device 60 first mounts the components on the substrate S and performs a component mounting process for inspecting the mounting state of the mounted components (S10). Subsequently, the CPU 61 determines whether or not the inspection result is abnormal (S20). Then, if the inspection result is not abnormal, the CPU 61 returns to S10 and repeats the component mounting process, and if the inspection result is abnormal, executes an abnormal time process for removing the component related to the abnormality (S30).
  • S10 the inspection result is abnormal
  • S30 an abnormal time process for removing the component related to the abnormality
  • FIG. 4 is a flowchart showing an example of the component mounting process.
  • the CPU 61 first performs a suction operation of sucking the component supplied from the component supply device 21 to the suction nozzle 45 (S100). Specifically, the suction operation controls the drive of the head moving device 30 so that the suction nozzle 45 moves above the component supply position where the component is supplied from the component supply device 21, and the tip (suction port) of the suction nozzle 45.
  • the Z-axis actuator 41 is driven and controlled so that the suction nozzle 45 descends until the suction nozzle 45 comes into contact with the upper surface of the component, and the electromagnetic valve is driven and controlled so that a negative pressure acts on the suction port of the suction nozzle 45.
  • the CPU 61 drives and controls the head moving device 30 so that the parts sucked by the suction nozzle 45 move upward of the parts camera 24 (S110), and images the parts with the parts camera 24 (S120).
  • the CPU 61 When the CPU 61 captures an image of the component, the CPU 61 performs image processing for recognizing the component in the obtained captured image (S130). Then, the CPU 61 inspects the suction state of the recognized component (S140), and determines whether or not the inspection result is normal (S150). In the inspection of the suction state, as described above, it is determined whether or not the component is adsorbed on the adsorption nozzle 45 (the component is normally recognized in the captured image), and the adsorbed component is normal (the component is adsorbed normally).
  • the CPU 61 determines that the inspection result of the suction state is not normal and abnormal, the CPU 61 drives and controls the head moving device 30 so that the parts sucked by the suction nozzle 45 move above the waste box 26 (S220). Then, the CPU 61 disposes of the component in the disposal box 26 by releasing the adsorption of the component (S230), and returns to step S100 in order to redo the adsorption operation of the component.
  • the CPU 61 determines that the inspection result of the suction state is normal, the CPU 61 corrects the mounting position of the component based on each position deviation amount ( ⁇ x, ⁇ y, ⁇ ) determined in step S140 (S160). Then, the CPU 61 performs a mounting operation of mounting the component sucked on the suction nozzle 45 at the corrected mounting position (S170). Specifically, in the mounting operation, the head moving device 30 is driven and controlled so that the component sucked by the suction nozzle 45 moves above the mounting position, and the suction nozzle 45 is lowered until the component abuts on the substrate S.
  • the Z-axis actuator 41 is driven and controlled, and the solenoid valve is driven and controlled so that a positive pressure acts on the suction port of the suction nozzle 45.
  • the CPU 61 drives and controls the head moving device 30 so that the mark camera 25 moves above the mounting position of the mounted component when the mounting operation is performed (S180). Subsequently, the CPU 61 takes an image of the component mounted by the mark camera 25 (S190), and performs image processing for recognizing the component in the obtained captured image (S200). Then, the CPU 61 inspects the recognized mounting state of the component (S210), and ends the component mounting process. As an inspection of the mounting state, the CPU 61 determines whether or not the positions (x, y, ⁇ ) of the parts recognized by the image processing match the mounting positions described above. When the component mounting process is completed, the CPU 61 returns to the control routine and determines whether or not the inspection result of the mounting state is abnormal in step S20 as described above. Then, when the CPU 61 determines that the inspection result is abnormal, the CPU 61 executes an abnormality processing (S30).
  • FIG. 5 is a flowchart showing an example of processing at the time of abnormality.
  • the CPU 61 first uses the suction nozzle 45 (return target nozzle) mounted on the head 40 to suck and remove the parts related to the abnormality, and the dedicated suction nozzle 45 (replacement target). Nozzle replacement process is performed (S300).
  • the CPU 61 executes the following processing in the nozzle replacement processing. That is, the CPU 61 first drives and controls the head moving device 30 so that the nozzle holder holding the nozzle to be returned moves above the empty accommodating portion in which the suction nozzle 45 is not accommodated among the plurality of accommodating portions of the nozzle station 27. To do.
  • the CPU 61 drives and controls the Z-axis actuator 41 so that the nozzle holder is lowered, and returns the nozzle to be returned to the nozzle station 27 by releasing the holding of the nozzle to be returned by the nozzle holder.
  • the CPU 61 drives and controls the head moving device 30 so that the nozzle holder that has returned the nozzle to be returned moves above the accommodating portion that accommodates the nozzle to be replaced.
  • the CPU 61 drives and controls the Z-axis actuator 41 so that the nozzle holder is lowered, and causes the nozzle holder to hold the nozzle to be replaced, thereby taking out the nozzle to be replaced from the nozzle station 27.
  • the CPU 61 drives and controls the head moving device 30 and the head 40 so that the replaced dedicated suction nozzle 45 sucks and removes the abnormal parts (S310). Subsequently, the CPU 61 drives and controls the head moving device 30 so that the mark camera 25 moves above the mounting position of the component removed from the board S (S320), and the mark camera 25 images the board S (S330). Then, the CPU 61 displays the captured image of the substrate S on the image display device 50 (S340), and prompts the operator to confirm the state of the substrate S by outputting the sound from the speaker 51 and turning on the light 52. (S350).
  • FIG. 6 is an explanatory diagram showing an example of a confirmation screen for confirming the solder state.
  • the elliptical broken line indicates a portion where the component is removed from the substrate S.
  • the confirmation screen displays an image of the substrate S captured by the mark camera 25 and an enlarged enlarged image of the portion of the substrate S from which the component has been removed.
  • the operator confirms whether or not sufficient solder remains on the land portion (on the copper foil) of the substrate S, and if there is no abnormality, taps the "OK” button, and if there is an abnormality, clicks the "NG” button. Tap.
  • the CPU 61 determines that there is no abnormality in the solder state (“OK” button is tapped) (“NO” in S360), the CPU 61 remounts the component in the removed portion of the board S (S380). Ends abnormal processing.
  • the components removed from the substrate S in step S310 are held in the suction nozzle 45, and the mounting position is corrected and held based on the inspection result of the mounting state performed in step S210 of the component mounting process. It may be carried out by mounting the above-mentioned parts. Further, the remounting of the components may be performed by discarding the components removed from the substrate S in the disposal box 26, and then sucking new components and mounting them on the substrate S.
  • the CPU 61 determines that the solder state is abnormal (the "NG" button has been tapped) ("YES" in S360)
  • the CPU 61 waits until the operator corrects the solder state and performs a release operation ("YES"). S370), when the release operation is performed, the component is remounted (S380), and the abnormal processing is terminated.
  • the CPU 61 finishes the abnormal processing it returns to S10 of the control routine and executes the component mounting process.
  • the suction nozzle 45 of the present embodiment corresponds to the holding member
  • the head 40 corresponds to the head
  • the mark camera 25 corresponds to the image pickup device
  • the control device 60 corresponds to the control device.
  • the image display device 50 corresponds to the image display device
  • the head moving device 30 corresponds to the moving device
  • the mark camera 25 corresponds to the imaging device.
  • the CPU 61 when the CPU 61 has an abnormality in the mounting state of the parts mounted on the board S, the CPU 61 removes the parts related to the abnormality from the board S and then makes an operator call to the operator. It was decided to prompt confirmation of the solder condition at the place where the parts were removed. However, the CPU 61 may check the solder state at the portion where the component is removed based on the captured image of the substrate S. In this case, the CPU 61 may execute the abnormality processing of FIG. 7 instead of FIG. Of the abnormal processing in FIG. 7, the same processing as in FIG. 5 is assigned the same step number, and detailed description thereof will be omitted. In the abnormality processing shown in FIG.
  • the CPU 61 when the CPU 61 removes the component related to the abnormality from the substrate S in steps S310 to S330 and then images the substrate S with the mark camera 25, the component of the substrate S is captured in the obtained image.
  • the solder region of the removed portion is detected (S400). This process can be performed by comparing the color of the image with the color of the solder registered in advance for each pixel within a predetermined range including the mounting position of the removed component in the captured image. Subsequently, the CPU 61 extracts the contour of the detected solder region (S410) and calculates the area of the extracted contour (S420). This process can be performed by counting the number of pixels in the contour of the solder.
  • the CPU 61 inspects the solder state at the portion where the component of the substrate S is removed based on the calculated area (S430). In the inspection of the solder condition, for example, if the calculated area is equal to or more than the predetermined value, the solder condition is judged to be normal, and if the calculated solder area is less than the predetermined value, the solder condition is abnormal (parts are removed). Therefore, it is determined that the solder on the substrate S has peeled off). When the CPU 61 determines that there is no abnormality in the solder state (“NO” in S440), the CPU 61 remounts the component (S380) and ends the abnormality processing.
  • NO no abnormality in the solder state
  • the CPU 61 determines that there is an abnormality in the solder state (“YES” in S440)
  • the CPU 61 displays the image of the substrate S captured in step S330 on the image display device 50 (S340) and makes an operator call. (S350).
  • the CPU 61 waits until the release operation is performed by the operator, and when the release operation is performed, the component is remounted (S370, S380), and the abnormality processing is terminated.
  • the CPU 61 can confirm the solder state at the portion where the component of the substrate S has been removed and remount the component.
  • the CPU 61 when there is an abnormality in the mounting state of the components mounted on the board S, the CPU 61 removes the components related to the abnormality from the board S, and then uses the mark camera 25 to take an image of the board S.
  • the captured image is displayed on the image display device 50 and an operator call is made.
  • the CPU 61 may only make an operator call and do not display the captured image. In this case, the operator needs to take out the board S from the component mounting machine 10 and check it directly.
  • the CPU 61 is intended to display an enlarged image of the portion where the component of the substrate S is removed as the image to be displayed on the image display device 50, the enlarged image may not be displayed.
  • the CPU 61 is replaced with a dedicated suction nozzle 45, and the replaced suction nozzle 45 is used to suck and remove the component determined to be in an abnormal mounting state.
  • the CPU 61 is used for mounting the component.
  • the suction nozzle 45 may be used to suck and remove the parts.
  • the component mounting machine of the present disclosure is a component mounting machine that holds a component and mounts the component on a board, and includes a head having a holding member for holding the component and a moving device for moving the head.
  • An image pickup device that is moved by the moving device to image the substrate, and a mounting process that controls the moving device and the head so that the components held by the holding member are mounted on the board are executed.
  • the moving device and the imaging device are controlled so that the component mounted on the substrate is imaged, and an inspection process for inspecting the mounting state of the component based on the captured image is executed, and the inspection is performed.
  • the gist is to provide a control device that executes time processing.
  • the component mounting machine of the present disclosure includes an imaging device for imaging a substrate by being moved by a moving device for moving the head. Further, the component mounting machine executes a mounting process for controlling the components held by the holding member to be mounted on the board, and then images the components mounted on the board and the mounting state of the components based on the captured image. Perform an inspection process to inspect. Then, when the inspection result is abnormal, the component mounting machine executes an abnormality processing in which an operator call is made to remove the abnormal component from the board and prompt the confirmation of the state of the board. In this way, the occurrence of defective products can be suppressed by allowing the operator to check the state of the board (solder state) after removing the abnormal component from the board.
  • Such a component mounting machine of the present disclosure includes an image display device for displaying an image, and the control device includes the head and the head so that the substrate after removing the component related to the abnormality is imaged as the processing at the time of abnormality.
  • the image of the substrate may be displayed on the image display device while controlling the image pickup device. In this way, the operator can easily check the state of the substrate.
  • the control device may enlarge and display the image of the substrate as the processing at the time of abnormality.
  • the control device calculates the area of the solder region printed on the portion where the component of the substrate is removed based on the captured image of the substrate as the processing at the time of abnormality. Then, the state of the substrate may be determined based on the calculated area. In this way, the burden of confirmation by the operator can be further reduced.
  • control device may suspend the execution of the mounting process as the error processing until the operator instructs the restart.
  • the present invention can be used in the manufacturing industry of component mounting machines and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This component mounting machine comprises an image-capturing device being moved by a moving device for moving a head and capturing an image of a substrate. The component mounting machine performs a mounting operation in which a component held by a holding member is mounted on the substrate and then performs an inspection in which an image of the component mounted on the substrate is captured and the mounting state of the component is inspected on the basis of the captured image. If the mounting state is found to be abnormal in the inspection, the component found to be abnormal is removed from the substrate, and abnormality processing is performed to make an operator call for prompting checking of the state of the substrate.

Description

部品実装機Parts mounting machine
 本明細書は、部品実装機について開示する。 This specification discloses the component mounting machine.
 従来、この種の部品実装機として、基板上に実装(配置)された部品の実装状態を検査した検査結果を取得し、取得した検査結果に位置ずれの生じた部品の情報が含まれるときには、この基板上に実装された部品を採取し、部品の角度および位置を修正して基板に再実装するものが提案されている(例えば、特許文献1参照)。また、部品実装機として、部品を基板に実装(配置)した後、その部品実装機が備えるマークカメラを用いて部品の実装方向に誤りがないかを検査し、実装方向が誤っている場合には、その部品を採取し、部品の下面を清掃した後、実装方向を正して部品を再実装するものも提案されている(例えば、特許文献2参照)。 Conventionally, as this type of component mounting machine, when the inspection result of inspecting the mounting state of the component mounted (arranged) on the board is acquired and the acquired inspection result includes information on the component with misalignment, It has been proposed that a component mounted on the substrate is collected, the angle and position of the component are corrected, and the component is remounted on the substrate (see, for example, Patent Document 1). In addition, as a component mounting machine, after mounting (arranging) the component on the board, the mark camera provided in the component mounting machine is used to inspect whether the component mounting direction is correct, and if the mounting direction is incorrect. Has also proposed a method in which the component is sampled, the lower surface of the component is cleaned, and then the component is remounted in the correct mounting direction (see, for example, Patent Document 2).
国際公開第2017/119114号International Publication No. 2017/11114 特開2016-219608号公報Japanese Unexamined Patent Publication No. 2016-219608
 上述した部品実装機では、実装した部品の検査結果に異常が生じてその部品が採取される際に、基板上に塗布されていた半田が剥離して部品側に付着する場合がある。この場合、部品に付着した半田を清掃により除去した後、部品を基板に再実装しても、半田不足によって部品の電極部と基板のランド部との間の電気的接続に不良が生じるおそれがある。 In the above-mentioned component mounting machine, when an abnormality occurs in the inspection result of the mounted component and the component is collected, the solder applied on the substrate may peel off and adhere to the component side. In this case, even if the solder adhering to the component is removed by cleaning and then the component is remounted on the board, there is a risk that the electrical connection between the electrode portion of the component and the land portion of the board may be defective due to insufficient solder. is there.
 本開示は、不良品の発生を抑制することを主目的とする。 The main purpose of this disclosure is to suppress the occurrence of defective products.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure has taken the following measures to achieve the above-mentioned main purpose.
 本開示の部品実装機は、
 部品を保持して基板に実装する部品実装機であって、
 前記部品を保持する保持部材を有するヘッドと、
 前記ヘッドを移動させる移動装置と、
 前記移動装置により移動させられ、前記基板を撮像するための撮像装置と、
 前記保持部材に保持された部品が前記基板に実装されるよう前記移動装置と前記ヘッドとを制御する実装処理を実行した後、前記基板に実装された部品が撮像されるよう前記移動装置と前記撮像装置とを制御すると共に撮像された画像に基づいて前記部品の実装状態を検査する検査処理を実行し、前記検査処理の検査結果が異常であった場合には、異常に係る部品が前記基板から除去されるよう前記移動装置と前記ヘッドとを制御し前記基板の状態の確認を促すためのオペレータコールを行なう異常時処理を実行する制御装置と、
 を備えることを要旨とする。
The component mounting machine of the present disclosure is
A component mounting machine that holds components and mounts them on a board.
A head having a holding member for holding the component,
A moving device for moving the head and
An imaging device that is moved by the moving device to image the substrate, and
After executing a mounting process that controls the moving device and the head so that the parts held by the holding member are mounted on the board, the moving device and the moving device and the head are imaged so that the parts mounted on the board are imaged. An inspection process for controlling the imaging device and inspecting the mounting state of the component based on the captured image is executed, and if the inspection result of the inspection process is abnormal, the component related to the abnormality is the substrate. A control device that controls the moving device and the head so as to be removed from the board, and performs an error processing that makes an operator call to prompt confirmation of the state of the board.
The gist is to prepare.
 この本開示の部品実装機は、ヘッドを移動させる移動装置により移動させられて基板を撮像するための撮像装置を備える。また、部品実装機は、保持部材に保持された部品が基板に実装されるよう制御する実装処理を実行した後、基板に実装された部品を撮像すると共に撮像した画像に基づいて部品の実装状態を検査する検査処理を実行する。そして、部品実装機は、検査結果が異常であった場合には、異常に係る部品を基板から除去し基板の状態の確認を促すためのオペレータコールを行なう異常時処理を実行する。このように、異常に係る部品を基板から除去した後にオペレータが基板の状態(半田の状態)を確認できるようにすることで、不良品の発生を抑制することができる。 The component mounting machine of the present disclosure includes an imaging device for imaging a substrate by being moved by a moving device for moving the head. Further, the component mounting machine executes a mounting process for controlling the components held by the holding member to be mounted on the board, and then images the components mounted on the board and the mounting state of the components based on the captured image. Perform an inspection process to inspect. Then, when the inspection result is abnormal, the component mounting machine executes an abnormality processing in which an operator call is made to remove the abnormal component from the board and prompt the confirmation of the state of the board. In this way, the occurrence of defective products can be suppressed by allowing the operator to check the state of the board (solder state) after removing the abnormal component from the board.
本実施形態の部品実装機10の構成の概略を示す構成図である。It is a block diagram which shows the outline of the structure of the component mounting machine 10 of this embodiment. 部品実装機10の制御装置60と管理装置80の電気的な接続関係を示すブロック図である。It is a block diagram which shows the electrical connection relationship between the control device 60 and the management device 80 of a component mounting machine 10. 制御装置60のCPU61により実行される制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the control routine executed by the CPU 61 of the control device 60. 部品実装処理の一例を示すフローチャートである。It is a flowchart which shows an example of a component mounting process. 異常時処理の一例を示すフローチャートである。It is a flowchart which shows an example of the abnormal state processing. 半田状態を確認するための確認用画面の一例を示す説明図である。It is explanatory drawing which shows an example of the confirmation screen for confirming the solder state. 他の実施形態に係る異常時処理を示すフローチャートである。It is a flowchart which shows the abnormal state processing which concerns on other embodiment.
 次に、本開示を実施するための形態について図面を参照しながら説明する。 Next, a mode for carrying out the present disclosure will be described with reference to the drawings.
 図1は、本実施形態の部品実装機10の構成の概略を示す構成図である。図2は、部品実装機10の制御装置60および管理装置80の電気的な接続関係を示す説明図である。なお、図1および図2中、左右方向がX軸方向であり、前(手前)後(奥)方向がY軸方向であり、上下方向がZ軸方向である。 FIG. 1 is a configuration diagram showing an outline of the configuration of the component mounting machine 10 of the present embodiment. FIG. 2 is an explanatory diagram showing an electrical connection relationship between the control device 60 and the management device 80 of the component mounting machine 10. In FIGS. 1 and 2, the left-right direction is the X-axis direction, the front (front) rear (back) direction is the Y-axis direction, and the vertical direction is the Z-axis direction.
 部品実装機10は、基板Sに部品を実装(表面実装)するものである。すなわち、部品実装機10は、基板Sのランド部となる銅箔上に図示しない印刷機により印刷された半田に電極部が接触するように部品を実装する。 The component mounting machine 10 mounts components (surface mount) on the substrate S. That is, the component mounting machine 10 mounts the components so that the electrode portion comes into contact with the solder printed by a printing machine (not shown) on the copper foil which is the land portion of the substrate S.
 部品実装機10は、図1に示すように、部品供給装置21と、基板搬送装置22と、ヘッド移動装置30と、ヘッド40と、画像表示装置50と、スピーカ51(図2参照)と、ライト52(図2参照)と、制御装置60(図2参照)とを備える。また、部品実装機10は、これらの他に、パーツカメラ24やマークカメラ25、廃棄ボックス26、ノズルステーション27なども備える。部品実装機10は、基板搬送方向(X軸方向)に複数台並べて配置されて、生産ラインを構成する。生産ラインは、管理装置80(図2参照)によって管理される。 As shown in FIG. 1, the component mounting machine 10 includes a component supply device 21, a board transfer device 22, a head moving device 30, a head 40, an image display device 50, a speaker 51 (see FIG. 2), and a speaker 51 (see FIG. 2). It includes a light 52 (see FIG. 2) and a control device 60 (see FIG. 2). In addition to these, the component mounting machine 10 also includes a parts camera 24, a mark camera 25, a disposal box 26, a nozzle station 27, and the like. A plurality of component mounting machines 10 are arranged side by side in the substrate transport direction (X-axis direction) to form a production line. The production line is managed by the management device 80 (see FIG. 2).
 部品供給装置21は、部品実装機10の基台11の前端部に設けられるテープフィーダを備える。テープフィーダは、左右方向(X軸方向)に並ぶように設置され、長手方向に所定間隔をおいて形成された複数の凹部にそれぞれ部品が収容されたテープをリールから前後方向(Y軸方向)に引き出すことにより部品を供給する。 The parts supply device 21 includes a tape feeder provided at the front end of the base 11 of the parts mounting machine 10. The tape feeders are installed so as to line up in the left-right direction (X-axis direction), and tapes in which parts are housed in a plurality of recesses formed at predetermined intervals in the longitudinal direction are placed in the front-rear direction (Y-axis direction) from the reel. Supply parts by pulling out to.
 基板搬送装置22は、前後方向(Y軸方向)に間隔を空けて基台11上に配置される一対のコンベアレールを備える。基板搬送装置22は、一対のコンベアレールを駆動することにより基板Sを図1の左から右(基板搬送方向)へと搬送する。 The board transfer device 22 includes a pair of conveyor rails arranged on the base 11 at intervals in the front-rear direction (Y-axis direction). The substrate transfer device 22 transports the substrate S from the left to the right (board transfer direction) in FIG. 1 by driving a pair of conveyor rails.
 ヘッド移動装置30は、図1に示すように、一対のX軸ガイドレール31と、X軸スライダ32と、X軸アクチュエータ33(図2参照)と、一対のY軸ガイドレール35と、Y軸スライダ36と、Y軸アクチュエータ37(図2参照)と、を備える。一対のY軸ガイドレール35は、Y軸方向に互いに平行に延在するように筐体12の上段に設置される。Y軸スライダ36は、一対のY軸ガイドレール35に架け渡されている。Y軸アクチュエータ37は、Y軸スライダ36をY軸ガイドレール35に沿ってY軸方向に移動させる。一対のX軸ガイドレール31は、X軸方向に互いに平行に延在するようにY軸スライダ36の前面に設置される。X軸スライダ32は、一対のX軸ガイドレール31に架け渡されている。X軸アクチュエータ33は、X軸スライダ32をX軸ガイドレール31に沿ってX軸方向に移動させる。X軸スライダ32にはヘッド40が取り付けられている。ヘッド移動装置30は、X軸スライダ32とY軸スライダ36とを移動させることで、ヘッド40をX軸方向とY軸方向とに移動させる。 As shown in FIG. 1, the head moving device 30 includes a pair of X-axis guide rails 31, an X-axis slider 32, an X-axis actuator 33 (see FIG. 2), a pair of Y-axis guide rails 35, and a Y-axis. It includes a slider 36 and a Y-axis actuator 37 (see FIG. 2). The pair of Y-axis guide rails 35 are installed on the upper stage of the housing 12 so as to extend parallel to each other in the Y-axis direction. The Y-axis slider 36 is bridged over a pair of Y-axis guide rails 35. The Y-axis actuator 37 moves the Y-axis slider 36 along the Y-axis guide rail 35 in the Y-axis direction. The pair of X-axis guide rails 31 are installed in front of the Y-axis slider 36 so as to extend parallel to each other in the X-axis direction. The X-axis slider 32 is bridged over a pair of X-axis guide rails 31. The X-axis actuator 33 moves the X-axis slider 32 in the X-axis direction along the X-axis guide rail 31. A head 40 is attached to the X-axis slider 32. The head moving device 30 moves the head 40 in the X-axis direction and the Y-axis direction by moving the X-axis slider 32 and the Y-axis slider 36.
 ヘッド40には、Z軸アクチュエータ41と、θ軸アクチュエータ43と、を備える。Z軸アクチュエータ41は、図示しないノズルホルダを上下方向(Z軸方向)に移動させる。θ軸アクチュエータ43は、ノズルホルダをZ軸回りに回転させる。ノズルホルダには、吸着ノズル45が着脱可能に取り付けられる。吸着ノズル45は、Z軸アクチュエータ41によりノズルホルダと共にZ軸方向に移動し、θ軸アクチュエータ43によりノズルホルダと共にZ軸回りに回転する。吸着ノズル45の吸引口は、図示しないが、電磁弁により負圧源と正圧源とエア導入口とに対して選択的に連通する。ヘッド40は、吸着ノズル45の吸引口を負圧源と連通させた状態で吸着ノズル45の吸引口を部品の上面に当接させることで、当該吸引口に作用する負圧によって部品を吸着することができる。また、ヘッド40は、吸着ノズル45の吸引口を正圧源と連通させることで、当該吸引口に作用する正圧によって部品の吸着を解除することができる。 The head 40 includes a Z-axis actuator 41 and a θ-axis actuator 43. The Z-axis actuator 41 moves a nozzle holder (not shown) in the vertical direction (Z-axis direction). The θ-axis actuator 43 rotates the nozzle holder around the Z-axis. A suction nozzle 45 is detachably attached to the nozzle holder. The suction nozzle 45 is moved in the Z-axis direction together with the nozzle holder by the Z-axis actuator 41, and is rotated around the Z-axis together with the nozzle holder by the θ-axis actuator 43. Although not shown, the suction port of the suction nozzle 45 selectively communicates with the negative pressure source, the positive pressure source, and the air introduction port by a solenoid valve. The head 40 attracts the component by the negative pressure acting on the suction port by bringing the suction port of the suction nozzle 45 into contact with the upper surface of the component in a state where the suction port of the suction nozzle 45 is communicated with the negative pressure source. be able to. Further, the head 40 can release the suction of the parts by the positive pressure acting on the suction port by communicating the suction port of the suction nozzle 45 with the positive pressure source.
 パーツカメラ24は、基台11の部品供給装置21と基板搬送装置22との間に設置される。パーツカメラ24は、吸着ノズル45に吸着させた部品がパーツカメラ24の上方を通過する際、部品の底面を当該部品の底面に垂直な方向から撮像する。パーツカメラ24により撮像された撮像画像は、制御装置60へ出力される。制御装置60は、パーツカメラ24の撮像画像に対して部品を認識する画像処理を行なうことで、部品の吸着状態の検査を行なう。吸着状態の検査には、例えば、吸着ノズル45に部品が吸着されているか否かの判定や、吸着されている部品が正常であるか否かの判定、吸着されている部品のX軸方向,Y軸方向およびθ軸方向の各位置ずれ量(Δx,Δy,Δθ)が許容範囲内にあるか否かの判定などが含まれる。 The parts camera 24 is installed between the parts supply device 21 of the base 11 and the board transfer device 22. When the component sucked by the suction nozzle 45 passes above the part camera 24, the parts camera 24 takes an image of the bottom surface of the component from a direction perpendicular to the bottom surface of the component. The captured image captured by the parts camera 24 is output to the control device 60. The control device 60 inspects the suction state of the parts by performing image processing for recognizing the parts with respect to the captured image of the parts camera 24. For the inspection of the suction state, for example, it is determined whether or not the parts are sucked by the suction nozzle 45, whether or not the sucked parts are normal, and the X-axis direction of the sucked parts. This includes determining whether or not the amount of misalignment (Δx, Δy, Δθ) in the Y-axis direction and the θ-axis direction is within the permissible range.
 マークカメラ25は、X軸スライダ32に取り付けられている。マークカメラ25は、基板Sの表面に付されたマークを当該表面に垂直な方向から撮像する。マークカメラ25により撮像された撮像画像は、制御装置60へ出力される。制御装置60は、マークカメラ25の撮像画像に対してマークを認識する画像処理を行なうことで、基板Sの位置を確認する。 The mark camera 25 is attached to the X-axis slider 32. The mark camera 25 captures a mark attached to the surface of the substrate S from a direction perpendicular to the surface. The captured image captured by the mark camera 25 is output to the control device 60. The control device 60 confirms the position of the substrate S by performing image processing for recognizing the mark on the image captured by the mark camera 25.
 廃棄ボックス26は、吸着した部品に異常が生じているときに当該異常の対象となった部品を廃棄するためのものである。ノズルステーション27は、ヘッド40が複数種類の部品を実装する際に、部品の種類に応じてその吸着に適した交換用の吸着ノズル45を複数収容するものである。 The disposal box 26 is for disposing of the parts subject to the abnormality when the adsorbed parts have an abnormality. When the head 40 mounts a plurality of types of parts, the nozzle station 27 accommodates a plurality of replacement suction nozzles 45 suitable for suctioning the parts according to the type of the parts.
 画像表示装置50は、例えば液晶ディスプレイであり、部品実装機10の状態に関するステータス情報や、段取り替えや部品の補充に関する作業情報などを表示する。画像表示装置50は、本実施形態では、オペレータによる操作が可能に画面にタッチパネルが取り付けられている。 The image display device 50 is, for example, a liquid crystal display, and displays status information regarding the state of the component mounting machine 10, work information regarding setup change and component replenishment, and the like. In the present embodiment, the image display device 50 has a touch panel attached to the screen so that it can be operated by an operator.
 制御装置60は、図2に示すように、CPU61を中心としたマイクロプロセッサとして構成されており、CPU61の他に、ROM62と、HDD63と、RAM64と、入出力インタフェース65などを備える。これらは、バス66を介して電気的に接続されている。制御装置60には、各種検出信号が入出力インタフェース65を介して入力されている。制御装置60に入力される各種検出信号には、X軸スライダ32の位置を検知するX軸位置センサ34からの位置信号や、Y軸スライダ36の位置を検知するY軸位置センサ38からの位置信号、吸着ノズル45のZ軸方向における位置を検出するZ軸位置センサ42からの位置信号、吸着ノズル45のθ軸方向における位置を検出するθ軸位置センサ44からの位置信号がある。また、制御装置60に入力される各種信号には、パーツカメラ24からの画像信号や、マークカメラ25からの画像信号、画像表示装置50(タッチパネル)からの操作信号などもある。一方、制御装置60からは、各種制御信号が入出力インタフェース65を介して出力されている。制御装置60から出力される各種制御信号には、部品供給装置21への制御信号や、基板搬送装置22への制御信号がある。また、制御装置60から出力される各種制御信号には、X軸アクチュエータ33への駆動信号、Y軸アクチュエータ37への駆動信号、Z軸アクチュエータ41への駆動信号、θ軸アクチュエータ43への駆動信号などもある。さらに、制御装置60から出力される各種制御信号には、パーツカメラ24への制御信号や、マークカメラ25への制御信号、画像表示装置50への制御信号、スピーカ51への制御信号、ライト52への制御信号などもある。また、制御装置60は、管理装置80と双方向通信可能に接続されており、互いにデータや制御信号のやり取りを行っている。 As shown in FIG. 2, the control device 60 is configured as a microprocessor centered on a CPU 61, and includes a ROM 62, an HDD 63, a RAM 64, an input / output interface 65, and the like in addition to the CPU 61. These are electrically connected via the bus 66. Various detection signals are input to the control device 60 via the input / output interface 65. The various detection signals input to the control device 60 include a position signal from the X-axis position sensor 34 that detects the position of the X-axis slider 32 and a position from the Y-axis position sensor 38 that detects the position of the Y-axis slider 36. There is a signal, a position signal from the Z-axis position sensor 42 that detects the position of the suction nozzle 45 in the Z-axis direction, and a position signal from the θ-axis position sensor 44 that detects the position of the suction nozzle 45 in the θ-axis direction. Further, various signals input to the control device 60 include an image signal from the parts camera 24, an image signal from the mark camera 25, an operation signal from the image display device 50 (touch panel), and the like. On the other hand, various control signals are output from the control device 60 via the input / output interface 65. Various control signals output from the control device 60 include a control signal to the component supply device 21 and a control signal to the substrate transfer device 22. The various control signals output from the control device 60 include a drive signal to the X-axis actuator 33, a drive signal to the Y-axis actuator 37, a drive signal to the Z-axis actuator 41, and a drive signal to the θ-axis actuator 43. And so on. Further, the various control signals output from the control device 60 include a control signal to the parts camera 24, a control signal to the mark camera 25, a control signal to the image display device 50, a control signal to the speaker 51, and a light 52. There is also a control signal to. Further, the control device 60 is connected to the management device 80 so as to be capable of bidirectional communication, and exchanges data and control signals with each other.
 管理装置80は、例えば、汎用のコンピュータであり、図2に示すように、CPU81と、ROM82と、HDD83と、RAM84と、入出力インタフェース85などを備える。これらは、バス86を介して電気的に接続されている。この管理装置80には、マウスやキーボード等の入力デバイス87から入力信号が入出力インタフェース85を介して入力されている。また、管理装置80からは、ディスプレイ88への画像信号が入出力インタフェース85を介して出力されている。HDD83は、基板Sの生産ジョブを記憶している。ここで、基板Sの生産ジョブには、各部品実装機10においてどの部品をどの順番で基板Sへ実装するか、また、そのように部品を実装した基板Sを何枚作製するかなどの生産スケジュールが含まれる。管理装置80は、オペレータが入力デバイス87を介して入力した各種データに基づいて生産ジョブを生成し、生成した生産ジョブを各部品実装機10へ送信することで、各部品実装機10に対して生産の開始を指示する。 The management device 80 is, for example, a general-purpose computer, and includes a CPU 81, a ROM 82, an HDD 83, a RAM 84, an input / output interface 85, and the like, as shown in FIG. These are electrically connected via the bus 86. An input signal is input to the management device 80 from an input device 87 such as a mouse or a keyboard via the input / output interface 85. Further, the image signal to the display 88 is output from the management device 80 via the input / output interface 85. The HDD 83 stores the production job of the substrate S. Here, the production job of the board S includes production of which parts are mounted on the board S in what order in each component mounting machine 10, and how many boards S on which the components are mounted are manufactured. Includes schedule. The management device 80 generates a production job based on various data input by the operator via the input device 87, and transmits the generated production job to each component mounting machine 10 to the component mounting machine 10. Instruct the start of production.
 次に、こうして構成された本実施形態の部品実装機10の動作について説明する。図3は、制御装置60のCPU61により実行される制御ルーチンの一例を示すフローチャートである。このルーチンは、オペレータによって生産の開始が指示されたときに実行される。制御装置60は、管理装置80から送信された生産ジョブを受信し、受信した生産ジョブに基づいて制御ルーチンを実行する。 Next, the operation of the component mounting machine 10 of the present embodiment configured in this way will be described. FIG. 3 is a flowchart showing an example of a control routine executed by the CPU 61 of the control device 60. This routine is executed when the operator instructs the start of production. The control device 60 receives the production job transmitted from the management device 80, and executes the control routine based on the received production job.
 制御ルーチンでは、制御装置60のCPU61は、まず、部品を基板Sに実装すると共に実装した部品の実装状態を検査する部品実装処理を行なう(S10)。続いて、CPU61は、検査結果が異常であるか否かを判定する(S20)。そして、CPU61は、検査結果が異常でなければ、S10に戻って部品実装処理を繰り返し、検査結果が異常であれば、異常に係る部品を除去する異常時処理を実行する(S30)。以下、部品実装処理と異常時処理とについて詳細を説明する。 In the control routine, the CPU 61 of the control device 60 first mounts the components on the substrate S and performs a component mounting process for inspecting the mounting state of the mounted components (S10). Subsequently, the CPU 61 determines whether or not the inspection result is abnormal (S20). Then, if the inspection result is not abnormal, the CPU 61 returns to S10 and repeats the component mounting process, and if the inspection result is abnormal, executes an abnormal time process for removing the component related to the abnormality (S30). Hereinafter, the component mounting process and the error processing will be described in detail.
 図4は、部品実装処理の一例を示すフローチャートである。部品実装処理が実行されると、CPU61は、まず、吸着ノズル45に部品供給装置21から供給された部品を吸着させる吸着動作を行なう(S100)。吸着動作は、具体的には、部品供給装置21から部品が供給される部品供給位置の上方へ吸着ノズル45が移動するようヘッド移動装置30を駆動制御し、吸着ノズル45の先端(吸引口)が部品の上面に当接するまで吸着ノズル45が下降するようZ軸アクチュエータ41を駆動制御すると共に吸着ノズル45の吸引口に負圧が作用するよう電磁弁を駆動制御することにより行なう。続いて、CPU61は、吸着ノズル45に吸着させた部品がパーツカメラ24の上方へ移動するようヘッド移動装置30を駆動制御して(S110)、当該部品をパーツカメラ24で撮像する(S120)。 FIG. 4 is a flowchart showing an example of the component mounting process. When the component mounting process is executed, the CPU 61 first performs a suction operation of sucking the component supplied from the component supply device 21 to the suction nozzle 45 (S100). Specifically, the suction operation controls the drive of the head moving device 30 so that the suction nozzle 45 moves above the component supply position where the component is supplied from the component supply device 21, and the tip (suction port) of the suction nozzle 45. The Z-axis actuator 41 is driven and controlled so that the suction nozzle 45 descends until the suction nozzle 45 comes into contact with the upper surface of the component, and the electromagnetic valve is driven and controlled so that a negative pressure acts on the suction port of the suction nozzle 45. Subsequently, the CPU 61 drives and controls the head moving device 30 so that the parts sucked by the suction nozzle 45 move upward of the parts camera 24 (S110), and images the parts with the parts camera 24 (S120).
 CPU61は、部品を撮像すると、得られた撮像画像において部品を認識する画像処理を行なう(S130)。そして、CPU61は、認識した部品の吸着状態を検査し(S140)、その検査結果が正常であるか否かを判定する(S150)。吸着状態の検査には、上述したように、吸着ノズル45に部品が吸着されている(撮像画像中に部品が正常に認識された)か否かの判定や、吸着されている部品が正常(正しい部品)であるか否かの判定、吸着されている部品のX軸方向,Y軸方向およびθ軸方向の各位置ずれ量(Δx,Δy,Δθ)が許容範囲内にあるか否かの判定などがある。 When the CPU 61 captures an image of the component, the CPU 61 performs image processing for recognizing the component in the obtained captured image (S130). Then, the CPU 61 inspects the suction state of the recognized component (S140), and determines whether or not the inspection result is normal (S150). In the inspection of the suction state, as described above, it is determined whether or not the component is adsorbed on the adsorption nozzle 45 (the component is normally recognized in the captured image), and the adsorbed component is normal (the component is adsorbed normally). Judgment of whether or not the component is correct, and whether or not the amount of misalignment (Δx, Δy, Δθ) in the X-axis direction, Y-axis direction, and θ-axis direction of the adsorbed component is within the permissible range. There is a judgment and so on.
 CPU61は、吸着状態の検査結果が正常でなく異常であると判定すると、吸着ノズル45に吸着されている部品が廃棄ボックス26の上方へ移動するようヘッド移動装置30を駆動制御する(S220)。そして、CPU61は、部品の吸着を解除することにより当該部品を廃棄ボックス26へ廃棄して(S230)、部品の吸着動作をやり直すためにステップS100に戻る。 When the CPU 61 determines that the inspection result of the suction state is not normal and abnormal, the CPU 61 drives and controls the head moving device 30 so that the parts sucked by the suction nozzle 45 move above the waste box 26 (S220). Then, the CPU 61 disposes of the component in the disposal box 26 by releasing the adsorption of the component (S230), and returns to step S100 in order to redo the adsorption operation of the component.
 CPU61は、吸着状態の検査結果が正常であると判定すると、ステップS140で判定した各位置ずれ量(Δx,Δy,Δθ)に基づいて部品の実装位置を補正する(S160)。そして、CPU61は、吸着ノズル45に吸着されている部品を補正した実装位置に実装する実装動作を行なう(S170)。実装動作は、具体的には、吸着ノズル45に吸着されている部品が実装位置の上方へ移動するようヘッド移動装置30を駆動制御し、部品が基板Sに当接するまで吸着ノズル45が下降するようZ軸アクチュエータ41を駆動制御すると共に吸着ノズル45の吸引口に正圧が作用するよう電磁弁を駆動制御することにより行なう。 When the CPU 61 determines that the inspection result of the suction state is normal, the CPU 61 corrects the mounting position of the component based on each position deviation amount (Δx, Δy, Δθ) determined in step S140 (S160). Then, the CPU 61 performs a mounting operation of mounting the component sucked on the suction nozzle 45 at the corrected mounting position (S170). Specifically, in the mounting operation, the head moving device 30 is driven and controlled so that the component sucked by the suction nozzle 45 moves above the mounting position, and the suction nozzle 45 is lowered until the component abuts on the substrate S. The Z-axis actuator 41 is driven and controlled, and the solenoid valve is driven and controlled so that a positive pressure acts on the suction port of the suction nozzle 45.
 CPU61は、実装動作を行なうと、実装した部品の実装位置の上方へマークカメラ25が移動するようヘッド移動装置30を駆動制御する(S180)。続いて、CPU61は、マークカメラ25で実装した部品を撮像し(S190)、得られた撮像画像において部品を認識する画像処理を行なう(S200)。そして、CPU61は、認識した部品の実装状態を検査して(S210)、部品実装処理を終了する。CPU61は、実装状態の検査として、画像処理により認識した部品の位置(x,y,θ)が上述した実装位置と一致しているか否かの判定を行なう。CPU61は、部品実装処理を終了すると、制御ルーチンに戻って、上述したように、ステップS20において実装状態の検査結果が異常であるか否かを判定する。そして、CPU61は、検査結果が異常であると判定すると、異常時処理を実行する(S30)。 The CPU 61 drives and controls the head moving device 30 so that the mark camera 25 moves above the mounting position of the mounted component when the mounting operation is performed (S180). Subsequently, the CPU 61 takes an image of the component mounted by the mark camera 25 (S190), and performs image processing for recognizing the component in the obtained captured image (S200). Then, the CPU 61 inspects the recognized mounting state of the component (S210), and ends the component mounting process. As an inspection of the mounting state, the CPU 61 determines whether or not the positions (x, y, θ) of the parts recognized by the image processing match the mounting positions described above. When the component mounting process is completed, the CPU 61 returns to the control routine and determines whether or not the inspection result of the mounting state is abnormal in step S20 as described above. Then, when the CPU 61 determines that the inspection result is abnormal, the CPU 61 executes an abnormality processing (S30).
 次に、異常時処理について説明する。図5は、異常時処理の一例を示すフローチャートである。異常時処理が実行されると、CPU61は、まず、ヘッド40に装着されている吸着ノズル45(返却対象ノズル)を、異常に係る部品を吸着・除去するための専用の吸着ノズル45(交換対象ノズル)に交換するノズル交換処理を行なう(S300)。CPU61は、ノズル交換処理において、以下の処理を実行する。すなわち、CPU61は、まず、返却対象ノズルを保持するノズルホルダがノズルステーション27の複数の収容部のうち吸着ノズル45が収容されていない空き収容部の上方へ移動するようヘッド移動装置30を駆動制御する。続いて、CPU61は、そのノズルホルダが下降するようZ軸アクチュエータ41を駆動制御し、ノズルホルダによる返却対象ノズルの保持を解除することにより、返却対象ノズルをノズルステーション27に返却する。次に、CPU61は、返却対象ノズルを返却したノズルホルダが交換対象ノズルを収容した収容部の上方へ移動するようヘッド移動装置30を駆動制御する。そして、CPU61は、そのノズルホルダが下降するようZ軸アクチュエータ41を駆動制御し、ノズルホルダに交換対象ノズルを保持させることにより、ノズルステーション27から交換対象ノズルを取り出す。 Next, the processing at the time of abnormality will be described. FIG. 5 is a flowchart showing an example of processing at the time of abnormality. When the abnormality processing is executed, the CPU 61 first uses the suction nozzle 45 (return target nozzle) mounted on the head 40 to suck and remove the parts related to the abnormality, and the dedicated suction nozzle 45 (replacement target). Nozzle replacement process is performed (S300). The CPU 61 executes the following processing in the nozzle replacement processing. That is, the CPU 61 first drives and controls the head moving device 30 so that the nozzle holder holding the nozzle to be returned moves above the empty accommodating portion in which the suction nozzle 45 is not accommodated among the plurality of accommodating portions of the nozzle station 27. To do. Subsequently, the CPU 61 drives and controls the Z-axis actuator 41 so that the nozzle holder is lowered, and returns the nozzle to be returned to the nozzle station 27 by releasing the holding of the nozzle to be returned by the nozzle holder. Next, the CPU 61 drives and controls the head moving device 30 so that the nozzle holder that has returned the nozzle to be returned moves above the accommodating portion that accommodates the nozzle to be replaced. Then, the CPU 61 drives and controls the Z-axis actuator 41 so that the nozzle holder is lowered, and causes the nozzle holder to hold the nozzle to be replaced, thereby taking out the nozzle to be replaced from the nozzle station 27.
 CPU61は、こうしてノズル交換処理を行なうと、交換した専用の吸着ノズル45により異常に係る部品が吸着・除去されるようヘッド移動装置30とヘッド40とを駆動制御する(S310)。続いて、CPU61は、基板Sから除去した部品の実装位置の上方へマークカメラ25が移動するようヘッド移動装置30を駆動制御し(S320)、マークカメラ25で基板Sを撮像する(S330)。そして、CPU61は、撮像した基板Sの画像を画像表示装置50に表示すると共に(S340)、スピーカ51からの音声出力やライト52の点灯によりオペレータに基板Sの状態の確認を促すためのオペレータコールを行なう(S350)。図6は、半田状態を確認するための確認用画面の一例を示す説明図である。図中、楕円状の破線は、基板Sから部品が除去された箇所を示す。図示するように、確認用画面には、マークカメラ25で撮像された基板Sの画像と、基板Sにおける部品が除去された箇所が拡大された拡大画像とが表示される。オペレータは、基板Sのランド部(銅箔上)に半田が十分に残存しているかどうかを確認し、異常がなければ、「OK」ボタンをタップし、異常があれば、「NG」ボタンをタップする。CPU61は、半田の状態に異常がない(「OK」ボタンがタップされた)と判定すると(S360の「NO」)、基板Sの部品を除去した箇所に部品を再実装して(S380)、異常時処理を終了する。部品の再実装は、ステップS310で基板Sから除去した部品を吸着ノズル45に保持しておき、部品実装処理のステップS210で行なわれた実装状態の検査結果に基づいて実装位置を修正して保持した部品を実装することにより行なうものとしてもよい。また、部品の再実装は、基板Sから除去した部品を廃棄ボックス26へ廃棄した後、新たな部品を吸着して当該基板Sに実装することにより行なうものとしてもよい。一方、CPU61は、半田の状態に異常がある(「NG」ボタンがタップされた)と判定すると(S360の「YES」)、オペレータが半田の状態を修正して解除操作を行なうまで待機し(S370)、解除操作が行なわれると、部品を再実装して(S380)、異常時処理を終了する。CPU61は、異常時処理を終了すると、制御ルーチンのS10に戻って部品実装処理を実行する。 When the nozzle replacement process is performed in this way, the CPU 61 drives and controls the head moving device 30 and the head 40 so that the replaced dedicated suction nozzle 45 sucks and removes the abnormal parts (S310). Subsequently, the CPU 61 drives and controls the head moving device 30 so that the mark camera 25 moves above the mounting position of the component removed from the board S (S320), and the mark camera 25 images the board S (S330). Then, the CPU 61 displays the captured image of the substrate S on the image display device 50 (S340), and prompts the operator to confirm the state of the substrate S by outputting the sound from the speaker 51 and turning on the light 52. (S350). FIG. 6 is an explanatory diagram showing an example of a confirmation screen for confirming the solder state. In the figure, the elliptical broken line indicates a portion where the component is removed from the substrate S. As shown in the figure, the confirmation screen displays an image of the substrate S captured by the mark camera 25 and an enlarged enlarged image of the portion of the substrate S from which the component has been removed. The operator confirms whether or not sufficient solder remains on the land portion (on the copper foil) of the substrate S, and if there is no abnormality, taps the "OK" button, and if there is an abnormality, clicks the "NG" button. Tap. When the CPU 61 determines that there is no abnormality in the solder state (“OK” button is tapped) (“NO” in S360), the CPU 61 remounts the component in the removed portion of the board S (S380). Ends abnormal processing. To remount the components, the components removed from the substrate S in step S310 are held in the suction nozzle 45, and the mounting position is corrected and held based on the inspection result of the mounting state performed in step S210 of the component mounting process. It may be carried out by mounting the above-mentioned parts. Further, the remounting of the components may be performed by discarding the components removed from the substrate S in the disposal box 26, and then sucking new components and mounting them on the substrate S. On the other hand, when the CPU 61 determines that the solder state is abnormal (the "NG" button has been tapped) ("YES" in S360), the CPU 61 waits until the operator corrects the solder state and performs a release operation ("YES"). S370), when the release operation is performed, the component is remounted (S380), and the abnormal processing is terminated. When the CPU 61 finishes the abnormal processing, it returns to S10 of the control routine and executes the component mounting process.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の吸着ノズル45が保持部材に相当し、ヘッド40がヘッドに相当し、マークカメラ25が撮像装置に相当し、制御装置60が制御装置に相当する。また、画像表示装置50が画像表示装置に相当し、ヘッド移動装置30が移動装置に相当し、マークカメラ25が撮像装置に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The suction nozzle 45 of the present embodiment corresponds to the holding member, the head 40 corresponds to the head, the mark camera 25 corresponds to the image pickup device, and the control device 60 corresponds to the control device. Further, the image display device 50 corresponds to the image display device, the head moving device 30 corresponds to the moving device, and the mark camera 25 corresponds to the imaging device.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various embodiments as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、CPU61は、基板Sに実装した部品の実装状態に異常があった場合には、異常に係る部品を基板Sから除去した後、オペレータコールを行なうことによりオペレータに対して部品を除去した箇所の半田の状態の確認を促すものとした。しかし、CPU61が、基板Sの撮像画像に基づいて部品を除去した箇所の半田の状態を確認するものとしてもよい。この場合、CPU61は、図5に代えて図7の異常時処理を実行すればよい。図7の異常時処理のうち図5と同一の処理については、同一のステップ番号を付し、その詳細な説明を省略する。図7に示す異常時処理では、CPU61は、ステップS310~S330において、基板Sから異常に係る部品を除去した後、マークカメラ25で基板Sを撮像すると、得られた撮像画像において基板Sの部品を除去した箇所の半田領域を検出する(S400)。この処理は、撮像画像中の除去した部品の実装位置を含む所定範囲内において、画素ごとに画像の色と予め登録された半田の色とを比較することにより行なうことができる。続いて、CPU61は、検出した半田領域の輪郭を抽出し(S410)、抽出した輪郭の面積を算出する(S420)。この処理は、半田の輪郭内にある画素の数を計数することにより行なうことができる。そして、CPU61は、算出した面積に基づいて基板Sの部品を除去した箇所の半田の状態を検査する(S430)。半田の状態の検査は、例えば、算出した面積が所定値以上であれば半田の状態は正常と判定し、算出した半田の面積が所定値未満であれば半田の状態は異常(部品を除去したことで基板S上の半田が剥離した)と判定することにより行なう。CPU61は、半田の状態に異常がないと判定すると(S440の「NO」)、部品を再実装して(S380)、異常時処理を終了する。一方、CPU61は、半田の状態に異常があると判定する(S440の「YES」)と、ステップS330で撮像した基板Sの画像を画像表示装置50に表示すると共に(S340)、オペレータコールを行なう(S350)。そして、CPU61は、オペレータによる解除操作がなされるまで待機し、解除操作がなされると、部品を再実装して(S370,S380)、異常時処理を終了する。これにより、CPU61は、基板Sの部品を除去した箇所の半田の状態を確認して部品を再実装することができる。 For example, in the above-described embodiment, when the CPU 61 has an abnormality in the mounting state of the parts mounted on the board S, the CPU 61 removes the parts related to the abnormality from the board S and then makes an operator call to the operator. It was decided to prompt confirmation of the solder condition at the place where the parts were removed. However, the CPU 61 may check the solder state at the portion where the component is removed based on the captured image of the substrate S. In this case, the CPU 61 may execute the abnormality processing of FIG. 7 instead of FIG. Of the abnormal processing in FIG. 7, the same processing as in FIG. 5 is assigned the same step number, and detailed description thereof will be omitted. In the abnormality processing shown in FIG. 7, when the CPU 61 removes the component related to the abnormality from the substrate S in steps S310 to S330 and then images the substrate S with the mark camera 25, the component of the substrate S is captured in the obtained image. The solder region of the removed portion is detected (S400). This process can be performed by comparing the color of the image with the color of the solder registered in advance for each pixel within a predetermined range including the mounting position of the removed component in the captured image. Subsequently, the CPU 61 extracts the contour of the detected solder region (S410) and calculates the area of the extracted contour (S420). This process can be performed by counting the number of pixels in the contour of the solder. Then, the CPU 61 inspects the solder state at the portion where the component of the substrate S is removed based on the calculated area (S430). In the inspection of the solder condition, for example, if the calculated area is equal to or more than the predetermined value, the solder condition is judged to be normal, and if the calculated solder area is less than the predetermined value, the solder condition is abnormal (parts are removed). Therefore, it is determined that the solder on the substrate S has peeled off). When the CPU 61 determines that there is no abnormality in the solder state (“NO” in S440), the CPU 61 remounts the component (S380) and ends the abnormality processing. On the other hand, when the CPU 61 determines that there is an abnormality in the solder state (“YES” in S440), the CPU 61 displays the image of the substrate S captured in step S330 on the image display device 50 (S340) and makes an operator call. (S350). Then, the CPU 61 waits until the release operation is performed by the operator, and when the release operation is performed, the component is remounted (S370, S380), and the abnormality processing is terminated. As a result, the CPU 61 can confirm the solder state at the portion where the component of the substrate S has been removed and remount the component.
 上述した実施形態では、CPU61は、基板Sに実装した部品の実装状態に異常がある場合には、基板Sから異常に係る部品を除去した後、マークカメラ25を用いて基板Sを撮像し、撮像画像を画像表示装置50に表示すると共にオペレータコールを行なうものとした。しかし、CPU61は、オペレータコールのみを行ない、撮像画像を表示しないものとしてもよい。この場合、オペレータは、部品実装機10から基板Sを取り出して直接確認する必要がある。また、CPU61は、画像表示装置50に表示する画像として、基板Sの部品を除去した箇所の拡大画像を表示するものとしたが、拡大画像を表示しないものとしてもよい。 In the above-described embodiment, when there is an abnormality in the mounting state of the components mounted on the board S, the CPU 61 removes the components related to the abnormality from the board S, and then uses the mark camera 25 to take an image of the board S. The captured image is displayed on the image display device 50 and an operator call is made. However, the CPU 61 may only make an operator call and do not display the captured image. In this case, the operator needs to take out the board S from the component mounting machine 10 and check it directly. Further, although the CPU 61 is intended to display an enlarged image of the portion where the component of the substrate S is removed as the image to be displayed on the image display device 50, the enlarged image may not be displayed.
 上述した実施形態では、CPU61は、専用の吸着ノズル45に交換し、交換した吸着ノズル45を用いて実装状態が異常と判定した部品を吸着・除去するものとしたが、部品の実装に用いた吸着ノズル45を用いて部品を吸着・除去するものとしてもよい。 In the above-described embodiment, the CPU 61 is replaced with a dedicated suction nozzle 45, and the replaced suction nozzle 45 is used to suck and remove the component determined to be in an abnormal mounting state. However, the CPU 61 is used for mounting the component. The suction nozzle 45 may be used to suck and remove the parts.
 以上説明したように、本開示の部品実装機は、部品を保持して基板に実装する部品実装機であって、前記部品を保持する保持部材を有するヘッドと、前記ヘッドを移動させる移動装置と、前記移動装置により移動させられ、前記基板を撮像するための撮像装置と、前記保持部材に保持された部品が前記基板に実装されるよう前記移動装置と前記ヘッドとを制御する実装処理を実行した後、前記基板に実装された部品が撮像されるよう前記移動装置と前記撮像装置とを制御すると共に撮像された画像に基づいて前記部品の実装状態を検査する検査処理を実行し、前記検査処理の検査結果が異常であった場合には、異常に係る部品が前記基板から除去されるよう前記移動装置と前記ヘッドとを制御し前記基板の状態の確認を促すためのオペレータコールを行なう異常時処理を実行する制御装置と、を備えることを要旨とする。 As described above, the component mounting machine of the present disclosure is a component mounting machine that holds a component and mounts the component on a board, and includes a head having a holding member for holding the component and a moving device for moving the head. An image pickup device that is moved by the moving device to image the substrate, and a mounting process that controls the moving device and the head so that the components held by the holding member are mounted on the board are executed. After that, the moving device and the imaging device are controlled so that the component mounted on the substrate is imaged, and an inspection process for inspecting the mounting state of the component based on the captured image is executed, and the inspection is performed. When the inspection result of the process is abnormal, the moving device and the head are controlled so that the parts related to the abnormality are removed from the board, and an operator call is made to prompt the confirmation of the state of the board. The gist is to provide a control device that executes time processing.
 この本開示の部品実装機は、ヘッドを移動させる移動装置により移動させられて基板を撮像するための撮像装置を備える。また、部品実装機は、保持部材に保持された部品が基板に実装されるよう制御する実装処理を実行した後、基板に実装された部品を撮像すると共に撮像した画像に基づいて部品の実装状態を検査する検査処理を実行する。そして、部品実装機は、検査結果が異常であった場合には、異常に係る部品を基板から除去し基板の状態の確認を促すためのオペレータコールを行なう異常時処理を実行する。このように、異常に係る部品を基板から除去した後にオペレータが基板の状態(半田の状態)を確認できるようにすることで、不良品の発生を抑制することができる。 The component mounting machine of the present disclosure includes an imaging device for imaging a substrate by being moved by a moving device for moving the head. Further, the component mounting machine executes a mounting process for controlling the components held by the holding member to be mounted on the board, and then images the components mounted on the board and the mounting state of the components based on the captured image. Perform an inspection process to inspect. Then, when the inspection result is abnormal, the component mounting machine executes an abnormality processing in which an operator call is made to remove the abnormal component from the board and prompt the confirmation of the state of the board. In this way, the occurrence of defective products can be suppressed by allowing the operator to check the state of the board (solder state) after removing the abnormal component from the board.
 こうした本開示の部品実装機において、画像を表示する画像表示装置を備え、前記制御装置は、前記異常時処理として、異常に係る部品を除去した後の前記基板が撮像されるよう前記ヘッドと前記撮像装置とを制御すると共に撮像された基板の画像を前記画像表示装置に表示するものとしてもよい。こうすれば、オペレータは、基板の状態を容易に確認することができる。この場合、前記制御装置は、前記異常時処理として、前記基板の画像を拡大表示するものとしてもよい。 Such a component mounting machine of the present disclosure includes an image display device for displaying an image, and the control device includes the head and the head so that the substrate after removing the component related to the abnormality is imaged as the processing at the time of abnormality. The image of the substrate may be displayed on the image display device while controlling the image pickup device. In this way, the operator can easily check the state of the substrate. In this case, the control device may enlarge and display the image of the substrate as the processing at the time of abnormality.
 また、本開示の部品実装機において、前記制御装置は、前記異常時処理として、撮像された基板の画像に基づいて該基板の部品が除去された箇所に印刷された半田の領域の面積を算出し、算出した面積に基づいて前記基板の状態を判定するものとしてもよい。こうすれば、オペレータの確認負担をより低減することができる。 Further, in the component mounting machine of the present disclosure, the control device calculates the area of the solder region printed on the portion where the component of the substrate is removed based on the captured image of the substrate as the processing at the time of abnormality. Then, the state of the substrate may be determined based on the calculated area. In this way, the burden of confirmation by the operator can be further reduced.
 さらに、本開示の部品実装機において、前記制御装置は、前記異常時処理として、オペレータにより再開が指示されるまで前記実装処理の実行を中断するものとしてもよい。 Further, in the component mounting machine of the present disclosure, the control device may suspend the execution of the mounting process as the error processing until the operator instructs the restart.
 本発明は、部品実装機の製造産業などに利用可能である。 The present invention can be used in the manufacturing industry of component mounting machines and the like.
 10 部品実装機、11 基台、12 筐体、21 部品供給装置、22 基板搬送装置、24 パーツカメラ、25 マークカメラ、26 廃棄ボックス、27 ノズルステーション、30 ヘッド移動装置、31 X軸ガイドレール、32 X軸スライダ、33 X軸アクチュエータ、34 X軸位置センサ、35 Y軸ガイドレール、36 Y軸スライダ、37 Y軸アクチュエータ、38 Y軸位置センサ、40 ヘッド、41 Z軸アクチュエータ、42 Z軸位置センサ、43 θ軸アクチュエータ、44 θ軸位置センサ、45 吸着ノズル、50 画像表示装置、51 スピーカ、52 ライト、60 制御装置、61 CPU、62 ROM 63 HDD、64 RAM、65 入出力インタフェース、66 バス、80 管理装置、81 CPU、82 ROM、83 HDD、84 RAM、85 入出力インタフェース、86 バス、87 入力デバイス、88 ディスプレイ、S 基板。 10 parts mounting machine, 11 base, 12 housing, 21 parts supply device, 22 board transfer device, 24 parts camera, 25 mark camera, 26 disposal box, 27 nozzle station, 30 head moving device, 31 X-axis guide rail, 32 X-axis slider, 33 X-axis actuator, 34 X-axis position sensor, 35 Y-axis guide rail, 36 Y-axis slider, 37 Y-axis actuator, 38 Y-axis position sensor, 40 head, 41 Z-axis actuator, 42 Z-axis position Sensor, 43 θ-axis actuator, 44 θ-axis position sensor, 45 suction nozzle, 50 image display device, 51 speaker, 52 light, 60 control device, 61 CPU, 62 ROM 63 HDD, 64 RAM, 65 input / output interface, 66 bus , 80 management device, 81 CPU, 82 ROM, 83 HDD, 84 RAM, 85 input / output interface, 86 bus, 87 input device, 88 display, S board.

Claims (5)

  1.  部品を保持して基板に実装する部品実装機であって、
     前記部品を保持する保持部材を有するヘッドと、
     前記ヘッドを移動させる移動装置と、
     前記移動装置により移動させられ、前記基板を撮像するための撮像装置と、
     前記保持部材に保持された部品が前記基板に実装されるよう前記移動装置と前記ヘッドとを制御する実装処理を実行した後、前記基板に実装された部品が撮像されるよう前記移動装置と前記撮像装置とを制御すると共に撮像された画像に基づいて前記部品の実装状態を検査する検査処理を実行し、前記検査処理の検査結果が異常であった場合には、異常に係る部品が前記基板から除去されるよう前記移動装置と前記ヘッドとを制御し前記基板の状態の確認を促すためのオペレータコールを行なう異常時処理を実行する制御装置と、
     を備える部品実装機。
    A component mounting machine that holds components and mounts them on a board.
    A head having a holding member for holding the component,
    A moving device for moving the head and
    An imaging device that is moved by the moving device to image the substrate, and
    After executing a mounting process that controls the moving device and the head so that the parts held by the holding member are mounted on the board, the moving device and the moving device and the head are imaged so that the parts mounted on the board are imaged. An inspection process for controlling the imaging device and inspecting the mounting state of the component based on the captured image is executed, and if the inspection result of the inspection process is abnormal, the component related to the abnormality is the substrate. A control device that controls the moving device and the head so as to be removed from the board, and performs an error processing that makes an operator call to prompt confirmation of the state of the board.
    A component mounting machine equipped with.
  2.  請求項1に記載の部品実装機であって、
     画像を表示する画像表示装置を備え、
     前記制御装置は、前記異常時処理として、異常に係る部品を除去した後の前記基板が撮像されるよう前記ヘッドと前記撮像装置とを制御すると共に撮像された基板の画像を前記画像表示装置に表示する、
     部品実装機。
    The component mounting machine according to claim 1.
    Equipped with an image display device that displays images
    The control device controls the head and the imaging device so that the substrate after removing the component related to the abnormality is imaged as the processing at the time of abnormality, and displays the image of the imaged substrate on the image display device. indicate,
    Parts mounting machine.
  3.  請求項2に記載の部品実装機であって、
     前記制御装置は、前記異常時処理として、前記基板の画像を拡大表示する、
     部品実装機。
    The component mounting machine according to claim 2.
    The control device enlarges and displays an image of the substrate as the processing at the time of abnormality.
    Parts mounting machine.
  4.  請求項1ないし3いずれか1項に記載の部品実装機であって、
     前記制御装置は、前記異常時処理として、撮像された基板の画像に基づいて該基板の部品が除去された箇所に印刷された半田の領域の面積を算出し、算出した面積に基づいて前記基板の状態を判定する、
     部品実装機。
    The component mounting machine according to any one of claims 1 to 3.
    The control device calculates the area of the solder region printed on the portion where the component of the substrate is removed based on the image of the substrate captured as the processing at the time of abnormality, and the substrate is based on the calculated area. To judge the state of
    Parts mounting machine.
  5.  請求項1ないし4いずれか1項に記載の部品実装機であって、
     前記制御装置は、前記異常時処理として、オペレータにより再開が指示されるまで前記実装処理の実行を中断する、
     部品実装機。
    The component mounting machine according to any one of claims 1 to 4.
    The control device interrupts the execution of the mounting process as the error processing until the operator instructs the restart.
    Parts mounting machine.
PCT/JP2019/036759 2019-09-19 2019-09-19 Component mounting machine WO2021053790A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/036759 WO2021053790A1 (en) 2019-09-19 2019-09-19 Component mounting machine
JP2021546134A JP7249426B2 (en) 2019-09-19 2019-09-19 Mounting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036759 WO2021053790A1 (en) 2019-09-19 2019-09-19 Component mounting machine

Publications (1)

Publication Number Publication Date
WO2021053790A1 true WO2021053790A1 (en) 2021-03-25

Family

ID=74884447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036759 WO2021053790A1 (en) 2019-09-19 2019-09-19 Component mounting machine

Country Status (2)

Country Link
JP (1) JP7249426B2 (en)
WO (1) WO2021053790A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039819A (en) * 2002-07-02 2004-02-05 Fuji Mach Mfg Co Ltd Method, device, program, and production system for repairing part packaging substrate
JP2004111424A (en) * 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd Apparatus and method for mounting component
JP2005216958A (en) * 2004-01-27 2005-08-11 Yamaha Motor Co Ltd Mounting substrate manufacturing apparatus, and working state confirmation method thereof
JP2011018816A (en) * 2009-07-10 2011-01-27 I-Pulse Co Ltd Method for attaching electronic component
WO2011043080A1 (en) * 2009-10-08 2011-04-14 パナソニック株式会社 Part-mounting system and part-mounting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039819A (en) * 2002-07-02 2004-02-05 Fuji Mach Mfg Co Ltd Method, device, program, and production system for repairing part packaging substrate
JP2004111424A (en) * 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd Apparatus and method for mounting component
JP2005216958A (en) * 2004-01-27 2005-08-11 Yamaha Motor Co Ltd Mounting substrate manufacturing apparatus, and working state confirmation method thereof
JP2011018816A (en) * 2009-07-10 2011-01-27 I-Pulse Co Ltd Method for attaching electronic component
WO2011043080A1 (en) * 2009-10-08 2011-04-14 パナソニック株式会社 Part-mounting system and part-mounting method

Also Published As

Publication number Publication date
JP7249426B2 (en) 2023-03-30
JPWO2021053790A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP5201115B2 (en) Component mounting system
JP6462000B2 (en) Component mounter
JP4674220B2 (en) Component transfer device, surface mounter, and electronic component inspection device
JP6293866B2 (en) Mounting deviation correction device and component mounting system
US20120240388A1 (en) Component mounting method and component mounting device
WO2013080408A1 (en) Component mounting method and component mounting system
JP2017220544A (en) Component mounting machine
JP2003304100A (en) Method and system for managing mounting of component and mounting system
JP5957703B2 (en) Component mounting system
WO2021053790A1 (en) Component mounting machine
JP7261309B2 (en) Mounting machine
JP7406571B2 (en) Inspection equipment and inspection method
CN114128415B (en) Mounting device and control method for mounting device
JP7425091B2 (en) Inspection equipment and inspection method
JP6742498B2 (en) Component mounting system and component mounting method
JP2011086695A (en) Method for mounting connector
JP7297907B2 (en) Mounting machine
JP6043966B2 (en) Head maintenance method
JP4865917B2 (en) Electronic component mounting device
WO2024009506A1 (en) Substrate working apparatus
WO2024069783A1 (en) Control device, mounting device, management device and information processing method
JP6997069B2 (en) Parts mounting machine
WO2021002005A1 (en) Component mounting machine
JP2023060597A (en) Component mounting system
JP2017126633A (en) Feeder type fixture, deviation amount detection method, and parameter setting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945507

Country of ref document: EP

Kind code of ref document: A1