WO2021053723A1 - 蓄電池装置 - Google Patents

蓄電池装置 Download PDF

Info

Publication number
WO2021053723A1
WO2021053723A1 PCT/JP2019/036400 JP2019036400W WO2021053723A1 WO 2021053723 A1 WO2021053723 A1 WO 2021053723A1 JP 2019036400 W JP2019036400 W JP 2019036400W WO 2021053723 A1 WO2021053723 A1 WO 2021053723A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
group
battery
wireless communication
module
Prior art date
Application number
PCT/JP2019/036400
Other languages
English (en)
French (fr)
Inventor
康太 淺見
黒田 和人
菊地 祐介
亮 野澤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP19945960.3A priority Critical patent/EP4033583A4/en
Priority to PCT/JP2019/036400 priority patent/WO2021053723A1/ja
Priority to JP2021546084A priority patent/JP7228704B2/ja
Priority to CN201980095906.7A priority patent/CN113841282B/zh
Publication of WO2021053723A1 publication Critical patent/WO2021053723A1/ja
Priority to US17/654,859 priority patent/US20220200069A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • H02J13/00026Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission involving a local wireless network, e.g. Wi-Fi, ZigBee or Bluetooth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • H04Q2209/43Arrangements in telecontrol or telemetry systems using a wireless architecture using wireless personal area networks [WPAN], e.g. 802.15, 802.15.1, 802.15.4, Bluetooth or ZigBee
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/70Arrangements in the main station, i.e. central controller
    • H04Q2209/75Arrangements in the main station, i.e. central controller by polling or interrogating the sub-stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to a storage battery device.
  • a storage battery device that combines multiple storage battery modules is used for various purposes.
  • studies have been made to make the communication between the storage battery module and the management device wireless by radio waves.
  • the storage battery module is equipped with a monitoring circuit and a communication module that measure the voltage and temperature of the battery.
  • the monitoring circuit and the communication module get power from the battery mounted on the storage battery module. Since it is preferable that the energy stored in the battery is efficiently supplied to the load, it is required to keep the energy consumption in the monitoring circuit and the communication module low.
  • Bluetooth (registered trademark) low energy (BLE) is known as a wireless communication standard that keeps power consumption low.
  • BLE the 2.4 GHz communication band is divided into 40 channels for use. 3ch included in 40ch is used as an advertising channel for discovery of communication partners, network participation control, and broadcasting. The remaining 37 channels are used as data channels for data communication after connection.
  • the management device may be equipped with multiple communication modules (become a multi-master).
  • the management device In order to establish a connection between the management device and the storage battery module in such an environment, the management device must select the storage battery module to be managed from the advertisement packets concentrated on the 3ch advertisement channel. It takes time to establish the connection between the management device and all the storage battery modules, which causes the reliability of the storage battery device to deteriorate.
  • the management device when the management device establishes a connection with a plurality of storage battery modules, there is a possibility that the plurality of storage battery modules transmit advertisement packets using the same channel at the same timing. In this case, the advertisement packets transmitted from the plurality of storage battery modules collide and cancel each other, so that the management device and the storage battery module lose the opportunity of connection.
  • the management device Since the (broadcaster (Br)) can periodically transmit the advertisement packet, it is possible to retry even if the connection opportunity is lost once.
  • the advertisement packets are concentrated on the advertisement channel of 3ch, so that retries are repeated, and the management device is the storage battery module. The timing to start management is delayed. It is not possible to monitor the voltage and temperature of the battery for the storage battery module for which the connection has not been established, and it becomes difficult to ensure the safety of the storage battery device.
  • the wireless communication module transmits a connection request to the storage battery module.
  • the connection request packet is transmitted from the wireless communication module, the 3ch advertisement channel is used, so that the connection request packet and the advertisement packet may collide with each other.
  • the connection request packet transmitted from the wireless communication module is not received by the storage battery module, so that the connection is not reached and the wireless communication module starts over from the stage of receiving the advertisement packet.
  • the timing at which the management device starts managing the storage battery module is delayed, and the battery voltage and temperature cannot be monitored for the storage battery module for which the connection has not been established, so that the storage battery device is safe. It becomes difficult to guarantee the sex.
  • An embodiment of the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly reliable storage battery device.
  • the storage battery device includes an assembled battery including a plurality of battery cells, a first wireless communication module that transmits and receives radio waves based on the BLE standard, a voltage of the battery cell, and a temperature of at least one of the assembled batteries.
  • a plurality of storage battery modules including a battery monitoring unit that measures the operation of the first wireless communication module and controls the operation of the first wireless communication module, a plurality of second wireless communication modules that transmit and receive radio waves based on the BLE standard, and the second wireless communication module.
  • a battery management unit including an arithmetic processing device for controlling the operation of the wireless communication module is provided, and the arithmetic processing apparatus comprises a plurality of the storage battery modules as a plurality of groups including at least one of the storage battery modules. According to an external command, communication between the battery management unit and the storage battery module is established in units of the group.
  • FIG. 1 is a diagram schematically showing a configuration example of a storage battery device according to an embodiment.
  • FIG. 2A is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the first embodiment.
  • FIG. 2B is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the first embodiment.
  • FIG. 3 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the first embodiment.
  • FIG. 4 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the second embodiment.
  • FIG. 1 is a diagram schematically showing a configuration example of a storage battery device according to an embodiment.
  • FIG. 2A is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of
  • FIG. 5A is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the third embodiment.
  • FIG. 5B is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the third embodiment.
  • FIG. 6 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the third embodiment.
  • FIG. 7 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the fourth embodiment.
  • FIG. 8A is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the fifth embodiment.
  • FIG. 8B is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the fifth embodiment.
  • FIG. 9 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the fifth embodiment.
  • FIG. 10A is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the sixth embodiment.
  • FIG. 10B is a diagram for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the sixth embodiment.
  • FIG. 11 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the sixth embodiment.
  • FIG. 1 is a diagram schematically showing a configuration example of a storage battery device according to an embodiment.
  • the storage battery device of the present embodiment includes a plurality of battery modules MDL, a plurality of battery management units (BMU: Battery Management Unit) BMU1, BMU2, a first contactor CP, and a second contactor CM.
  • BMU Battery Management Unit
  • the battery module MDL includes an assembled battery BT including a plurality of battery cells, a battery monitoring unit (CMU: Cell Monitoring Unit) C2, and a wireless communication module (first wireless communication module) 20.
  • the assembled battery BT includes, for example, a plurality of battery cells of lithium ion batteries connected in series or in parallel.
  • the wireless communication module 20 can perform radio wave communication (transmission / reception) with any of a plurality of battery management units BMU1 and BMU2.
  • the wireless communication module 20 can communicate with one of the battery management units BMU1 and BMU2 based on the BLE standard.
  • the battery monitoring unit C2 includes a measurement circuit (not shown) for detecting the voltage of each of the plurality of battery cells and the temperature of at least one place of the assembled battery BT, and an arithmetic processing device (not shown). The measured values of voltage and temperature can be periodically transmitted to the battery management units BMU1 and BMU2 via the wireless communication module 20.
  • the battery monitoring unit C2 equalizes the voltages of a plurality of battery cells (cell balance) based on the control signals received from the battery management units BMU1 and BMU2 via the wireless communication module 20.
  • the arithmetic processing unit of the battery monitoring unit C2 may be configured by, for example, hardware, software, or a combination of hardware and software.
  • the arithmetic processing device of the battery monitoring unit C2 is a circuit that includes, for example, at least one processor such as a CPU or MPU, and a memory in which a program executed by the processor is recorded, and realizes the above operation by software. ..
  • the first contactor CP is interposed in a main circuit that connects the terminal on the highest potential side of the plurality of battery modules MDL and the positive electrode terminal of the storage battery device, and electrically connects the plurality of battery modules MDL and the positive electrode terminal. It can be switched.
  • the first contactor CP controls the operation of opening and closing the contacts by the control signals from the battery management units BMU1 and BMU2.
  • the second contactor CN is interposed in the main circuit that connects the terminal on the lowest potential side of the plurality of battery modules MDL and the negative electrode terminal of the storage battery device, and electrically connects the plurality of battery module MDLs and the negative electrode terminal. It can be switched.
  • the operation of opening and closing the contacts of the second contactor CN is controlled by the control signals from the battery management units BMU1 and BMU2.
  • Each of the battery management units BMU1 and BMU2 includes a plurality of wireless communication modules (second wireless communication modules) BLE1-BLE4 and an arithmetic processing unit C1.
  • the arithmetic processing unit C1 includes a communication circuit (not shown) capable of performing wired communication with the host device 100 (shown in FIG. 2 and the like).
  • the arithmetic processing unit C1 can receive various control signals from the host device 100 and control the operations of the plurality of battery monitoring units C2, the first contactor CP, and the second contactor CM based on the received information. is there.
  • the arithmetic processing unit C1 periodically receives the voltage detection values of the plurality of battery cells and the temperature detection values of the assembled battery BT from each of the plurality of battery monitoring units C2, and from the current sensor SS to the plurality of assembled battery BTs. The detected value of the flowing current is periodically received.
  • the battery management units BMU1 and BMU2 can calculate the charge state (SOC: state of charge) and the deterioration state (SOH: state of health) of the assembled battery BT (or battery cell) based on the received values.
  • the arithmetic processing unit C1 monitors the voltage of a plurality of battery cells and the current flowing through the plurality of assembled battery BTs, and controls the battery monitoring unit C2 so as to equalize the voltages of the plurality of battery cells.
  • the battery management units BMU1 and BMU2 control the operation of the storage battery device so that, for example, the battery cells do not enter an abnormal state such as overcharging or overdischarging.
  • the arithmetic processing unit C1 may be configured by hardware, may be configured by software, or may be configured by a combination of hardware and software.
  • the arithmetic processing unit C1 may include, for example, at least one processor and a memory for recording a program executed by the processor.
  • the plurality of wireless communication modules BLE1-BLE4 perform radio wave communication (transmission / reception) with the wireless communication modules 20 of the plurality of battery monitoring units C2.
  • the wireless communication modules BLE1-BLE4 communicate with the wireless communication modules 20 of the plurality of battery monitoring units C2 based on the BLE standard.
  • FIG. 2A and 2B are diagrams for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the first embodiment.
  • FIG. 3 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the first embodiment.
  • a plurality of storage battery module MDLs are divided into a first group GR1 managed by the battery management unit BMU1 and a second group GR2 managed by the battery management unit BMU2, and a group of a plurality of storage battery modules MDLs.
  • An example of the operation of the storage battery device when establishing communication will be described one by one.
  • the battery management units BMU1 and BMU2 sequentially establish communication for each group of a plurality of storage battery modules MDL in an order based on a command from a higher-level device 100 provided outside the storage battery device.
  • the wireless communication modules BLE1-BLE4 of the battery management units BMU1 and BMU2 are broadcasters (Br), and the wireless communication modules 20 of the plurality of storage battery modules MDL are observers (Obs).
  • the host device 100 transmits a command instructing the connection operation to the battery management unit BMU1.
  • the arithmetic processing unit C1 of the battery management unit BMU1 receives a connection operation instruction from the host device 100, it transmits an advertisement packet via the wireless communication modules BLE1-BLE4.
  • the arithmetic processing unit C1 periodically transmits the advertisement packet via the wireless communication modules BLE1-BLE4.
  • the advertisement packet transmitted from the arithmetic processing unit C1 includes, for example, data indicating that a connection is requested to the storage battery module MDL of the first group GR1.
  • the cycle in which advertisement packets are transmitted from each of the wireless communication modules BLE1 to BLE4 is controlled by the advertisement interval (T_advEvent).
  • the advertisement interval is set by the following equation (1) using, for example, the values of advInterval and advDelay.
  • T_advEvent advInterval + advDelay... (1)
  • the advInterval is a value that can be set according to the product design, and is set to, for example, a value of 20 ms or more and 10.24 s or less.
  • the advDelay is randomly used, for example, from a value of 0 ms or more and 10 ms or less.
  • the advertisement interval has a different value among the plurality of wireless communication modules BLE1 to BLE4 depending on the randomly set advDelay value, so that the timing at which the advertisement packet is transmitted shifts and the packet collision occurs. It can be suppressed.
  • the battery management unit BMU1 changes from the broadcaster state to the observer state after a predetermined time elapses after periodically transmitting the advertisement packet.
  • the plurality of storage battery modules MDL are initially in the observer (Ob) state and can receive the advertisement packet.
  • the battery monitoring unit C2 of the storage battery module MDL receives the advertisement packet via the wireless communication module 20, it determines whether or not it has been transmitted to the group to which it belongs.
  • the battery monitoring unit C2 of the storage battery module MDL included in the first group GR1 receives the advertisement packet via the wireless communication module 20, it is determined that the advertisement packet is transmitted to the storage battery module MDL of the first group GR. , From the observer state to the broadcaster state.
  • the battery monitoring unit C2 of the storage battery module MDL included in the first group GR1 transmits an advertisement packet via the wireless communication module 20.
  • the advertisement packet transmitted from the battery monitoring unit C2 includes, for example, data for identifying a plurality of storage battery modules MDL included in the first group GR1.
  • the battery management unit BMU1 is in the observer state and can receive the advertisement packet.
  • the arithmetic processing unit C1 of the battery management unit BMU1 receives the advertisement packet via the wireless communication module BLE1-BLE4, it confirms whether the advertisement packet is transmitted from the storage battery module MDL included in the first group GR1.
  • the arithmetic processing unit C1 When the arithmetic processing unit C1 confirms that the packet is an advertisement packet from the storage battery module MDL to be managed, it is assigned to any of the wireless communication modules BLE1-BLE4, and sequentially with all the storage battery modules MDL of the first group GR1. Perform connection operation.
  • the arithmetic processing unit C1 After connecting to all the storage battery modules MDL of the first group GR1 to be managed, the arithmetic processing unit C1 notifies the host device 100 that the connection operation is completed.
  • the arithmetic processing unit C1 determines that the connection operation has failed when, for example, the advertisement packet is not received from all the storage battery modules MDL of the group to be managed by the time when a predetermined time elapses after the advertisement packet is transmitted.
  • the host device 100 may be notified. If the connection cannot be established with all the storage battery modules MDL even after retrying the connection operation a predetermined number of times, it is possible to notify the host device 100 that the storage battery module MDL to be managed is abnormal.
  • the host device 100 When the host device 100 receives a notification from the arithmetic processing unit C1 of the battery management unit BMU1 that the connection operation is completed, the host device 100 transmits a command instructing the connection operation to the battery management unit BMU2.
  • the arithmetic processing unit C1 of the battery management unit BMU2 makes a connection with the storage battery module MDL of the second group GR2 to be managed, similarly to the battery management unit BMU1.
  • the plurality of battery management units BMU1 and BMU2 connect to the storage battery module MDL, the number of storage battery module MDLs managed by each of the battery management units BMU1 and BMU2 is reduced, and the advertisement packet requesting the connection and the connection Collision with the advertisement packet that responds to the request can be suppressed.
  • the storage battery device of the present embodiment is different from the above-described first embodiment in the connection operation between the battery management units BMU1 and BMU2 and the storage battery module MDL.
  • FIG. 4 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the second embodiment.
  • a plurality of storage battery modules MDL are divided into a first group GR1 managed by the battery management unit BMU1 and a second group GR2 managed by the battery management unit BMU2, and the plurality of storage battery modules MDLs are divided.
  • An example of the operation of the storage battery device when establishing a connection in parallel to the group of the above will be described.
  • the battery management units BMU1 and BMU2 establish communication in parallel for each group of a plurality of storage battery modules MDL based on a command from a higher-level device 100 provided outside the storage battery device.
  • the wireless communication modules BLE1-BLE4 of the battery management units BMU1 and BMU2 are broadcasters (Br), and the wireless communication modules 20 of the plurality of storage battery modules MDL are observers (Obs).
  • the host device 100 transmits a command instructing the connection operation to the battery management unit BMU1, and after a predetermined time elapses, transmits a command instructing the connection operation to the battery management unit BMU2. At this time, the host device 100 transmits a command instructing the connection operation to the battery management unit BMU2 even before receiving the notification from the battery management unit BMU1 that the connection operation is completed.
  • the timing of the command can be adjusted so that the timing at which the advertisement packet is transmitted is different.
  • the storage battery device of this embodiment is the same as that of the first embodiment described above, except for the operation of the higher-level device 100.
  • the period during which the connection between the battery management unit BMU1 and the storage battery module MDL of the first group GR1 and the connection between the battery management unit BMU2 and the storage battery module MDL of the second group are performed in parallel is performed. Occurs.
  • the battery management unit BMU1 and the battery management unit BMU2 transmit an advertisement packet. There is a time lag in timing. This makes it possible to suppress collisions between advertised packets.
  • the number of storage battery modules MDL managed by each of the battery management units BMU1 and BMU2 is reduced, and collision between the advertisement packet requesting the connection and the advertisement packet responding to the connection request can be suppressed.
  • 5A and 5B are diagrams for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the third embodiment.
  • a plurality of storage battery modules MDL further include an infrared receiver 40.
  • the infrared receiver 40 can receive an infrared signal (for example, a PPM (Pulse Position Modulation) signal) transmitted from the infrared transmitter 30 of the host device 100.
  • PPM Pulse Position Modulation
  • FIG. 6 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the third embodiment.
  • a plurality of storage battery module MDLs are divided into a first group GR1 managed by the battery management unit BMU1 and a second group GR2 managed by the battery management unit BMU2, and a group of a plurality of storage battery modules MDLs.
  • An example of the operation of the storage battery device when it is activated by an infrared signal for each time and a connection is sequentially established will be described.
  • the wireless communication modules BLE1-BLE4 of the battery management units BMU1 and BMU2 are observers (Obs), and the plurality of storage battery modules MDL put the infrared receiver 40 in the standby state, and the configurations other than the infrared receiver 40 are not activated. Make it a state.
  • the host device 100 outputs an infrared signal for activating a plurality of storage battery modules MDL of the first group GR1 from the infrared transmitter 30.
  • the plurality of storage battery modules MDL of the first group GR1 are energized by receiving an infrared signal from the host device 100 by the infrared receiver 40, and the battery monitoring unit C2 and the wireless communication module 20 are activated.
  • the wireless communication module 20 is in the broadcaster (Br) state when the storage battery module MDL is started.
  • the battery monitoring unit C2 of the activated storage battery module MDL transmits an advertisement packet from the wireless communication module 20.
  • the advertisement packet is periodically transmitted from the wireless communication module 20.
  • the cycle in which advertisement packets are transmitted from the wireless communication modules 20 of the plurality of storage battery modules MDL is controlled by the advertisement interval (T_advEvent).
  • the advertisement interval is set by the above equation (1) using, for example, the values of advInterval and advDelay.
  • the advertisement interval will be a different value among the plurality of wireless communication modules 20 depending on the value of the advDelay that is randomly set. Therefore, the timing at which the advertisement packet is transmitted is shifted, and the packet Collision can be suppressed.
  • the battery management unit BMU1 is initially in the observer (Ob) state and can receive advertisement packets.
  • the arithmetic processing unit C1 of the battery management unit BMU1 receives the advertisement packet via the wireless communication module BLE1-BLE4, it determines whether or not the advertisement packet is transmitted from the storage battery module MDL to be managed.
  • the battery management unit BMU1 receives the advertisement packet via the wireless communication module BLE1-BLE4, determines that the advertisement packet is transmitted from the storage battery module MDL of the first group GR1, and receives the advertisement packet from all the storage battery modules MDL. At that time, the higher-level device 100 is notified that the connection operation is completed.
  • the plurality of storage battery modules MDL of the second group GR2 are connected to the battery management unit BMU2.
  • the host device 100 outputs an infrared signal for activating a plurality of storage battery modules MDL of the second group GR2 from the infrared transmitter 30.
  • the plurality of storage battery modules MDL of the second group GR2 are energized by receiving an infrared signal from the host device 100 by the infrared receiver 40, and the battery monitoring unit C2 and the wireless communication module 20 are activated.
  • the wireless communication module 20 is in the broadcaster (Br) state when the storage battery module MDL is started.
  • the battery monitoring unit C2 of the activated storage battery module MDL transmits an advertisement packet from the wireless communication module 20.
  • the advertisement packet is periodically transmitted from the wireless communication module 20.
  • the cycle in which advertisement packets are transmitted from the wireless communication modules 20 of the plurality of storage battery modules MDL is controlled by the advertisement interval (T_advEvent).
  • the advertisement interval is set by the above equation (1) using, for example, the values of advInterval and advDelay.
  • the advertisement interval will be a different value among the plurality of wireless communication modules 20 depending on the value of the advDelay that is randomly set. Therefore, the timing at which the advertisement packet is transmitted is shifted, and the packet Collision can be suppressed.
  • the battery management unit BMU2 is initially in the observer (Ob) state and can receive advertisement packets.
  • the arithmetic processing unit C1 of the battery management unit BMU2 receives the advertisement packet via the wireless communication module BLE1-BLE4, it determines whether or not the advertisement packet is transmitted from the storage battery module MDL to be managed.
  • the battery management unit BMU2 receives the advertisement packet via the wireless communication module BLE1-BLE4, determines that the advertisement packet is transmitted from the storage battery module MDL of the second group GR2, and receives the advertisement packet from all the storage battery modules MDL. At that time, the higher-level device 100 is notified that the connection operation is completed.
  • the arithmetic processing unit C1 performs a connection operation when, for example, the advertisement packet is not received from all the storage battery modules MDL of the group to be managed by the time when a predetermined time elapses after receiving the first advertisement packet.
  • the higher-level device 100 may be notified that the failure has occurred. If the connection cannot be established with all the storage battery modules MDL even after retrying the connection operation a predetermined number of times, it is possible to notify the host device 100 that the storage battery module MDL to be managed is abnormal.
  • the first No packet collision occurs between the storage battery module MDL of the group GR1 and the storage battery module MDL of the second group GR2.
  • the battery management unit BMU2 does not make a connection request to the storage battery module MDL of the first group GR1, a connection request packet from the battery management unit BMU2 and an advertisement packet from the storage battery module MDL of the first group GR1. Does not collide with.
  • the battery management unit BMU1 does not make a connection request to the storage battery module MDL of the second group GR2, the packet of the connection request from the battery management unit BMU1 and the advertisement from the storage battery module MDL of the second group GR2. It does not collide with packets.
  • the storage battery device of the present embodiment is different from the above-described third embodiment in the connection operation between the battery management units BMU1 and BMU2 and the storage battery module MDL.
  • FIG. 7 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the fourth embodiment.
  • a plurality of storage battery modules MDL are divided into a first group GR1 managed by the battery management unit BMU1 and a second group GR2 managed by the battery management unit BMU2, and the plurality of storage battery modules MDLs are divided.
  • An example of the operation of the storage battery device when establishing a connection in parallel to the group of the above will be described.
  • the wireless communication modules BLE1-BLE4 of the battery management units BMU1 and BMU2 are observers (Obs), and the plurality of storage battery modules MDL put the infrared receiver 40 in the standby state, and the configurations other than the infrared receiver 40 are not activated. Make it a state.
  • the host device 100 outputs an infrared signal for activating a plurality of storage battery modules MDL of the first group GR1 from the infrared transmitter 30, and after a predetermined time elapses, an infrared ray for activating the plurality of storage battery modules MDL of the second group GR2.
  • the signal is output from the infrared transmitter 30.
  • the host device 100 sends an infrared signal for activating the plurality of storage battery modules MDL of the second group GR2 even before receiving the notification from the battery management unit BMU1 that the connection operation is completed. Output from.
  • the storage battery device of this embodiment is the same as that of the first embodiment described above, except for the operation of the higher-level device 100. That is, in the storage battery device of the present embodiment, the connection between the battery management unit BMU1 and the storage battery module MDL of the first group GR1 and the connection between the battery management unit BMU2 and the storage battery module MDL of the second group are performed in parallel. There is a period.
  • the advertisement packets requesting a connection are not transmitted from the plurality of battery management units BMU1 and BMU2, a collision between the advertisement packet requesting the connection and the advertisement packet responding to the connection request may occur. Absent.
  • the storage battery device of the present embodiment is different from the first to fourth embodiments described above in that one battery management unit BMU manages a plurality of groups of storage battery modules MDL.
  • FIG. 8A and 8B are diagrams for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the fifth embodiment.
  • FIG. 9 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the fifth embodiment.
  • the wireless communication modules BLE1-BLE4 of the battery management unit BMU are broadcasters (Br), and the wireless communication modules 20 of the plurality of storage battery modules MDL are observers (Obs).
  • the host device 100 transmits a command to the battery management unit BMU instructing the connection operation with the storage battery module MDL of the first group GR.
  • the arithmetic processing unit C1 of the battery management unit BMU When the arithmetic processing unit C1 of the battery management unit BMU receives the connection operation instruction from the host device 100, it transmits an advertisement packet via the wireless communication module BLE1-BLE4. At this time, the arithmetic processing unit C1 periodically transmits the advertisement packet via the wireless communication modules BLE1-BLE4.
  • the advertisement packet transmitted from the arithmetic processing unit C1 includes, for example, data indicating that a connection is requested to the storage battery module MDL of the first group GR1.
  • the cycle in which advertisement packets are transmitted from each of the wireless communication modules BLE1-BLE4 is controlled by the advertisement interval (T_advEvent).
  • the advertisement interval is set by the above equation (1) using, for example, the values of advInterval and advDelay. Since the advertisement interval has a different value between the plurality of wireless communication modules BLE1 to BLE4 depending on the randomly set advDelay value, the timing at which the advertisement packet is transmitted is deviated, and packet collision can be suppressed. ..
  • the battery management unit BMU changes from the broadcaster state to the observer state after a predetermined time elapses after periodically transmitting the advertisement packet.
  • the plurality of storage battery modules MDL are initially in the observer (Ob) state and can receive advertisement packets.
  • the battery monitoring unit C2 of the storage battery module MDL receives the advertisement packet via the wireless communication module 20, it determines whether or not it has been transmitted to the group to which it belongs.
  • the battery monitoring unit C2 of the storage battery module MDL included in the first group GR1 receives the advertisement packet via the wireless communication module 20, it is determined that the advertisement packet is transmitted to the storage battery module MDL of the first group GR. , From the observer state to the broadcaster state.
  • the battery monitoring unit C2 of the storage battery module MDL included in the first group GR1 transmits an advertisement packet via the wireless communication module 20.
  • the advertisement packet transmitted from the battery monitoring unit C2 includes, for example, data for identifying a plurality of storage battery modules MDL included in the first group GR1.
  • the battery management unit BMU is in the observer state and can receive the advertisement packet.
  • the arithmetic processing unit C1 of the battery management unit BMU receives the advertisement packet via the wireless communication module BLE1-BLE4, it confirms whether the advertisement packet is transmitted from the storage battery module MDL included in the first group GR1.
  • the arithmetic processing unit C1 When the arithmetic processing unit C1 confirms that the packet is an advertisement packet from the storage battery module MDL to be managed, it is assigned to any of the wireless communication modules BLE1-BLE4, and sequentially with all the storage battery modules MDL of the first group GR1. Perform connection operation.
  • the arithmetic processing unit C1 After connecting to all the storage battery modules MDL of the first group GR1 to be managed, the arithmetic processing unit C1 notifies the host device 100 that the connection operation is completed.
  • the arithmetic processing unit C1 ranks higher than the fact that the connection operation has failed.
  • the device 100 may be notified. If the connection cannot be established with all the storage battery modules MDL of the first group GR1 even after retrying the connection operation a predetermined number of times, the host device 100 may be notified that the storage battery module MDL of the first group GR1 is abnormal. it can.
  • the host device 100 When the host device 100 receives a notification from the arithmetic processing unit C1 of the battery management unit BMU1 that the connection operation is completed, the host device 100 transmits a command instructing the connection operation to the battery management unit BMU.
  • the arithmetic processing unit C1 of the battery management unit BMU makes a connection with the storage battery module MDL of the second group GR2 in the same manner as the connection with the storage battery module MDL of the first group GR1.
  • the battery management unit BMU makes a connection for each group of the storage battery module MDL, the number of storage battery module MDLs to be connected at one time by the battery management unit BMU is reduced, and the advertisement packet requesting the connection and the connection request are made. Collision with the advertisement packet that replies to can be suppressed.
  • 10A and 10B are diagrams for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the sixth embodiment.
  • the storage battery device of the present embodiment is different from the above-described fifth embodiment in that a plurality of storage battery modules MDL further include an infrared receiver 40.
  • the infrared receiver 40 can receive an infrared signal (for example, a PPM (Pulse Position Modulation) signal) transmitted from the infrared transmitter 30 of the host device 100.
  • PPM Pulse Position Modulation
  • FIG. 11 is a timing chart for explaining an example of a procedure for communicating between the battery management unit and the plurality of storage battery modules in the storage battery device of the sixth embodiment.
  • a plurality of storage battery modules MDL are divided into a first group GR1 and a second group GR2, and each group of the plurality of storage battery modules MDL is activated by an infrared signal, and sequentially connected to the battery management unit BMU.
  • An example of the operation of the storage battery device when establishing the above will be described.
  • the wireless communication module BLE1-BLE4 of the battery management unit BMU is an observer (Ob), and the plurality of storage battery modules MDL are in a state in which the infrared receiver 40 is in a standby state and the configurations other than the infrared receiver 40 are not activated. To do.
  • the host device 100 outputs an infrared signal for activating a plurality of storage battery modules MDL of the first group GR1 from the infrared transmitter 30.
  • the plurality of storage battery modules MDL of the first group GR1 are energized by receiving an infrared signal from the host device 100 by the infrared receiver 40, and the battery monitoring unit C2 and the wireless communication module 20 are activated.
  • the wireless communication module 20 is in the broadcaster (Br) state when the storage battery module MDL is started.
  • the battery monitoring unit C2 of the activated storage battery module MDL transmits an advertisement packet from the wireless communication module 20.
  • the advertisement packet is periodically transmitted from the wireless communication module 20.
  • the cycle in which advertisement packets are transmitted from the wireless communication modules 20 of the plurality of storage battery modules MDL is controlled by the advertisement interval (T_advEvent).
  • the advertisement interval is set by the above equation (1) using, for example, the values of advInterval and advDelay.
  • the advertisement interval will be a different value among the plurality of wireless communication modules 20 depending on the value of the advDelay that is randomly set. Therefore, the timing at which the advertisement packet is transmitted is shifted, and the packet Collision can be suppressed.
  • the battery management unit BMU is initially in the observer (Ob) state and can receive advertisement packets.
  • the arithmetic processing unit C1 of the battery management unit BMU receives the advertisement packet via the wireless communication module BLE1-BLE4, it determines whether or not the advertisement packet is transmitted from the storage battery module MDL of the first group GR1.
  • the battery management unit BMU receives the advertisement packet via the wireless communication module BLE1-BLE4, determines that the advertisement packet is transmitted from the storage battery module MDL of the first group GR1, and determines that the advertisement packet is transmitted from the storage battery module MDL of the first group GR1.
  • the host device 100 is notified that the connection operation of the storage battery module MDL of the first group GR1 is completed.
  • the wireless communication modules BLE1-BLE4 of the battery management unit BMU become observers (Obs).
  • the host device 100 outputs an infrared signal for activating a plurality of storage battery modules MDL of the second group GR2 from the infrared transmitter 30.
  • the plurality of storage battery modules MDL of the second group GR2 are energized by receiving an infrared signal from the host device 100 by the infrared receiver 40, and the battery monitoring unit C2 and the wireless communication module 20 are activated.
  • the wireless communication module 20 is in the broadcaster (Br) state when the storage battery module MDL is started.
  • the battery monitoring unit C2 of the activated storage battery module MDL transmits an advertisement packet from the wireless communication module 20.
  • the advertisement packet is periodically transmitted from the wireless communication module 20.
  • the cycle in which advertisement packets are transmitted from the wireless communication modules 20 of the plurality of storage battery modules MDL is controlled by the advertisement interval (T_advEvent).
  • the advertisement interval is set by the above equation (1) using, for example, the values of advInterval and advDelay.
  • the advertisement interval will be a different value among the plurality of wireless communication modules 20 depending on the value of the advDelay that is randomly set. Therefore, the timing at which the advertisement packet is transmitted is shifted, and the packet Collision can be suppressed.
  • the battery management unit BMU is in the observer (Ob) state and can receive advertisement packets.
  • the arithmetic processing unit C1 of the battery management unit BMU receives the advertisement packet via the wireless communication module BLE1-BLE4, it determines whether or not the advertisement packet is transmitted from the storage battery module MDL of the second group GR2.
  • the battery management unit BMU receives the advertisement packet via the wireless communication module BLE1-BLE4, determines that the advertisement packet is transmitted from the storage battery module MDL of the second group GR2, and determines that the advertisement packet is transmitted from the storage battery module MDL of the second group GR2.
  • the host device 100 is notified that the connection operation of the storage battery module MDL of the second group GR2 is completed.
  • the arithmetic processing unit C1 advertises from all the storage battery module MDLs in the group to which the storage battery module MDL indicated by the first received advertisement packet belongs, for example, by the time when a predetermined time elapses after receiving the first advertisement packet.
  • the host device 100 may be notified that the connection operation has failed. Even if the connection operation is retried a predetermined number of times, if the connection cannot be established with all the storage battery module MDLs in the group to which the storage battery module MDL indicated by the first received advertisement packet belongs, it is considered that the storage battery module MDL to be managed is abnormal. It is possible to notify the host device 100.
  • the advertisement packet requesting the connection is not transmitted from the plurality of battery management units BMU, the advertisement packet requesting the connection and the advertisement packet responding to the connection request do not collide with each other.
  • the one or more battery management units can start monitoring the measured values of voltage and temperature in order from the storage battery module MDL for which communication has been established. Therefore, for example, when there is a storage battery module MDL that is in an overvoltage or overtemperature state, it is possible to detect that the storage battery device is in an abnormal state before communication with all the storage battery module MDLs is established.
  • the voltage and temperature monitoring is started after the communication with all the storage battery module MDLs is established, and the storage battery module MDL in an abnormal state is in an abnormal state. If this happens, measures to ensure the safety of the storage battery device will be delayed, which may lead to a major accident.
  • measures are taken to ensure the safety of the storage battery device for the storage battery module MDL of the group for which communication has been established. It is possible to do so, and a quick response is possible.
  • a group of storage battery modules may be associated with each wireless communication module to perform a connection operation.
  • the wireless communication module BLE1-BLE2 may be used to connect to the storage battery module MDL of the first group GR1
  • the wireless communication module BLE3-BLE4 may be used to connect to the storage battery module MDL of the second group GR2. Even in this case, the same effect as that of the plurality of embodiments described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

実施形態による蓄電池装置は、信頼性の高い蓄電池装置を提供するものであって。複数の電池セルを含む組電池BTと、BLE規格に基づいて電波を送受信する第1無線通信モジュール20と、電池セルの電圧と組電池BTの少なくとも1か所の温度とを測定し、第1無線通信モジュール20の動作を制御する電池監視ユニットC2と、を備えた蓄電池モジュールMDLを複数と、BLE規格に基づいて電波を送受信する複数の第2無線通信モジュールBLE1-BLE4と、第2無線通信モジュールBLE1-BLE4の動作を制御する演算処理装置C1と、を備えた電池管理ユニットBMUと、を備え、演算処理装置C1は、複数の蓄電池モジュールMDLを蓄電池モジュールMDLの少なくとも1つを含む複数のグループGR1、GR2とし、外部からの指令に従って、グループGR1、GR2の単位で電池管理ユニットBMUと蓄電池モジュールMDLとの通信を確立させる。

Description

蓄電池装置
 本発明は、蓄電池装置に関する。
 複数の蓄電池モジュールを組み合わせた蓄電池装置は、様々な用途で利用されている。近年、蓄電池装置の構成の簡素化を目的に、蓄電池モジュールと管理装置との間の通信を電波により無線化する検討がされている。
 蓄電池モジュールは、電池の電圧と温度とを測定する監視回路および通信モジュールを備えている。蓄電池モジュールが有線により接続されないときには、監視回路と通信モジュールとは、蓄電池モジュールに搭載された電池から電源を得ることとなる。電池に蓄えられたエネルギーは効率よく負荷へ供給されることが好ましいため、監視回路や通信モジュールでのエネルギー消費を低く抑えることが要求される。
 消費電力を低く抑えた無線通信の規格として、例えば、Bluetooth(登録商標) low energy(BLE)が知られている。BLEでは、2.4GHzの通信帯域を40chに分割して使用する。40chに含まれる3chは、アドバタイジングチャネルとして、通信相手の発見・ネットワーク参加制御の用途やブロードキャストに用いられる。残りの37chは、データチャンネルとして、コネクション後のデータ通信に用いられる。
日本国特開2017-143725号公報
 例えばCAN(Control Area Network)による通信を行うときには、管理装置の管理対象である複数の蓄電池モジュールに優先順位を付して、複数の蓄電池モジュールから同時に送信されたデータを受信することができた。しかしながら、BLEにより通信を行う場合には、複数の蓄電池モジュールに優先順位を付することができないため、管理装置は、複数の蓄電池モジュールから同時に送信されたアドバタイズパケットを受信できない可能性があった。
 数百台の蓄電池モジュールを管理する必要のある変電所のような施設では、管理装置は複数の通信モジュールを備える(マルチマスターとなる)可能性がある。この様な環境下で管理装置と蓄電池モジュールとの間のコネクションを確立しようとすると、管理装置は、3chのアドバタイズチャンネルに集中するアドバタイズパケットから管理対象である蓄電池モジュールを選択しなければならず、管理装置と全ての蓄電池モジュールとの間のコネクションの確立に時間を要し、蓄電池装置の信頼性が低下する原因となる。
 また、例えば管理装置が複数の蓄電池モジュールとの間でコネクションを確立する際に、複数の蓄電池モジュールが同じタイミングで同じチャンネルを利用してアドバタイズパケットを送信する可能性がある。この場合には、複数の蓄電池モジュールから送信されたアドバタイズパケットが衝突して打ち消しあうため、管理装置と蓄電池モジュールとはコネクションの機会を失うこととなる。
 例えば、管理装置の複数の無線通信モジュールがブロードキャスター(Br)となり、複数の無線通信モジュールと複数の蓄電池モジュール(オブザーバ(Ob))との間で、電波による無線通信を行うときに、管理装置(ブロードキャスター(Br))は周期的にアドバタイズパケットを送信することができるため、一度コネクションの機会を失ってもリトライは可能である。しかしながら、複数の無線通信モジュールが、同時に、数百台の蓄電池モジュールとのコネクションを確立しようとすると、アドバタイズパケットが3chのアドバタイズチャンネルに集中するためリトライが繰り返されることとなり、管理装置が蓄電池モジュールの管理を開始するタイミングが遅れる。コネクションが確立していない蓄電池モジュールに対して電池の電圧や温度を監視することができず、蓄電池装置の安全性を担保することが困難となる。
 例えば、1つの無線通信モジュールが受信したアドバタイズパケットの中に、コネクションすべき蓄電池モジュールの情報が含まれているときには、無線通信モジュールは蓄電池モジュールへコネクション要求を送信する。無線通信モジュールからコネクション要求のパケットを送信するときには、3chのアドバタイズチャンネルを使用するため、コネクション要求のパケットとアドバタイズパケットとが衝突する可能性がある。パケットが衝突すると、無線通信モジュールから送信されたコネクション要求のパケットは蓄電池モジュールに受信されないため、コネクションに至らず、無線通信モジュールがアドバタイズパケットを受信する段階からやり直すこととなる。この様な場合にも、管理装置が蓄電池モジュールの管理を開始するタイミングが遅れ、コネクションが確立していない蓄電池モジュールに対しては電池の電圧や温度を監視することができず、蓄電池装置の安全性を担保することが困難となる。
 本発明の実施形態は上記事情を鑑みて成されたものであって、信頼性の高い蓄電池装置を提供することを目的とする。
 実施形態による蓄電池装置は、複数の電池セルを含む組電池と、BLE規格に基づいて電波を送受信する第1無線通信モジュールと、前記電池セルの電圧と前記組電池の少なくとも1か所の温度とを測定し、前記第1無線通信モジュールの動作を制御する電池監視ユニットと、を備えた蓄電池モジュールを複数と、BLE規格に基づいて電波を送受信する複数の第2無線通信モジュールと、前記第2無線通信モジュールの動作を制御する演算処理装置と、を備えた電池管理ユニットと、を備え、前記演算処理装置は、複数の前記蓄電池モジュールを前記蓄電池モジュールの少なくとも1つを含む複数のグループとし、外部からの指令に従って、前記グループの単位で前記電池管理ユニットと前記蓄電池モジュールとの通信を確立させる。
図1は、一実施形態の蓄電池装置の構成例を概略的に示す図である。 図2Aは、第1実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。 図2Bは、第1実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。 図3は、第1実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。 図4は、第2実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。 図5Aは、第3実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。 図5Bは、第3実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。 図6は、第3実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。 図7は、第4実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。 図8Aは、第5実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。 図8Bは、第5実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。 図9は、第5実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。 図10Aは、第6実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。 図10Bは、第6実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。 図11は、第6実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。
実施形態
 以下に、実施形態の蓄電池装置の一例について図面を参照して詳細に説明する。
 図1は、一実施形態の蓄電池装置の構成例を概略的に示す図である。
 本実施形態の蓄電池装置は、複数の電池モジュールMDLと、複数の電池管理ユニット(BMU:Battery Management Unit)BMU1、BMU2と、第1コンタクタCPと、第2コンタクタCMと、を備えている。
 電池モジュールMDLは、複数の電池セルを含む組電池BTと、電池監視ユニット(CMU:Cell Monitoring Unit)C2と、無線通信モジュール(第1無線通信モジュール)20と、を備えている。
 組電池BTは、例えば、直列又は並列に接続されたリチウムイオン電池の電池セルを複数備えている。
 無線通信モジュール20は、複数の電池管理ユニットBMU1、BMU2のいずれかとの間で電波による通信(送受信)を行うことが可能である。本実施形態の蓄電池装置では、無線通信モジュール20は、BLE規格に基づいて、電池管理ユニットBMU1、BMU2の一方との間で通信を行うことができる。
 電池監視ユニットC2は、複数の電池セルそれぞれの電圧と、組電池BTの少なくとも1か所の温度とを検出する測定回路(図示せず)と、演算処理装置(図示せず)とを備え、無線通信モジュール20を介して周期的に電池管理ユニットBMU1、BMU2へ電圧と温度との測定値を送信することができる。
 また、電池監視ユニットC2は、無線通信モジュール20を介して電池管理ユニットBMU1、BMU2から受信した制御信号に基づいて、複数の電池セルの電圧の均等化(セルバランス)を行う。
 電池監視ユニットC2の演算処理装置は、例えばハードウエアにより構成されてもよく、ソフトウエアにより構成されてもよく、ハードウエアとソフトウエアとを組み合わせて構成されてもよい。電池監視ユニットC2の演算処理装置は、例えば、CPUやMPUなどのプロセッサを少なくとも1つと、プロセッサにより実行されるプログラムが記録されたメモリと、を備え、ソフトウエアにより上記動作を実現する回路である。
 第1コンタクタCPは、複数の電池モジュールMDLの最も高電位側の端子と蓄電池装置の正極端子との間を接続する主回路に介在し、複数の電池モジュールMDLと正極端子との電気的接続を切替えることができる。第1コンタクタCPは、電池管理ユニットBMU1、BMU2からの制御信号により、接点を開閉する動作を制御される。
 第2コンタクタCNは、複数の電池モジュールMDLの最も低電位側の端子と蓄電池装置の負極端子との間を接続する主回路に介在し、複数の電池モジュールMDLと負極端子との電気的接続を切替えることができる。第2コンタクタCNは、電池管理ユニットBMU1、BMU2からの制御信号により、接点を開閉する動作を制御される。
 電池管理ユニットBMU1、BMU2のそれぞれは、複数の無線通信モジュール(第2無線通信モジュール)BLE1-BLE4と、演算処理装置C1と、を備えている。
 演算処理装置C1は、上位装置100(図2等に示す)との間で有線通信を行うことが可能な通信回路(図示せず)を備えている。演算処理装置C1は、上位装置100から各種制御信号を受信し、受信した情報に基づいて複数の電池監視ユニットC2、第1コンタクタCP、および、第2コンタクタCMの動作を制御することが可能である。
 演算処理装置C1は、複数の電池監視ユニットC2それぞれから複数の電池セルの電圧の検出値と組電池BTの温度の検出値とを周期的に受信し、電流センサSSから複数の組電池BTに流れる電流の検出値を周期的に受信する。電池管理ユニットBMU1、BMU2は、受信した値に基づいて、組電池BT(又は電池セル)の充電状態(SOC:state of charge)および劣化状態(SOH:state of health)を演算することができる。
 演算処理装置C1は、複数の電池セルの電圧や複数の組電池BTに流れる電流を監視し、複数の電池セルの電圧を均等化するよう電池監視ユニットC2を制御する。電池管理ユニットBMU1、BMU2は、例えば、電池セルが過充電や過放電などの異常な状態とならないよう蓄電池装置の動作を制御する。
 演算処理装置C1は、ハードウエアにより構成されてもよく、ソフトウエアにより構成されてもよく、ハードウエアとソフトウエアとの組み合わせにより構成されてもよい。演算処理装置C1は、例えば、プロセッサを少なくとも1つと、プロセッサにより実行されるプログラムを記録したメモリと、を備えていてもよい。
 複数の無線通信モジュールBLE1-BLE4は、複数の電池監視ユニットC2の無線通信モジュール20との間で、電波による通信(送受信)を行う。本実施形態の蓄電池装置では、無線通信モジュールBLE1-BLE4は、BLE規格に基づいて複数の電池監視ユニットC2の無線通信モジュール20との間で通信を行う。
 次に、本実施形態の蓄電池装置において、電池管理ユニットBMU1、BMU2と複数の蓄電池モジュールMDLとの間で通信を行う動作の一例について説明する。
 図2Aおよび図2Bは、第1実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。
 図3は、第1実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。
 ここでは、例えば、複数の蓄電池モジュールMDLを、電池管理ユニットBMU1により管理される第1グループGR1と、電池管理ユニットBMU2により管理される第2グループGR2とに分けて、複数の蓄電池モジュールMDLのグループ毎に、順次、通信を確立させるときの、蓄電池装置の動作の一例について説明する。
 なお、電池管理ユニットBMU1、BMU2は、蓄電池装置の外部に設けられた上位装置100からの指令に基づく順序で、複数の蓄電池モジュールMDLのグループ毎に、順次、通信を確立させる。
 最初に、電池管理ユニットBMU1、BMU2の無線通信モジュールBLE1-BLE4はブロードキャスター(Br)とし、複数の蓄電池モジュールMDLの無線通信モジュール20をオブザーバ(Ob)とする。
 上位装置100は、電池管理ユニットBMU1へコネクション動作を指示する指令を送信する。
 電池管理ユニットBMU1の演算処理装置C1は、上位装置100からコネクション動作の指示を受信すると、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを送信する。このとき、演算処理装置C1は、周期的に、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを送信する。演算処理装置C1から送信されるアドバタイズパケットは、例えば、第1グループGR1の蓄電池モジュールMDLに対してコネクションを要求することを示すデータを含む。
 無線通信モジュールBLE1-BLE4のそれぞれからアドバタイズパケットが送信される周期は、アドバタイズ間隔(T_advEvent)によって制御される。アドバタイズ間隔は、例えばadvIntervalとadvDelayとの値を用いて下記式(1)により設定される。
 T_advEvent = advInterval + advDelay …(1)
 ここで、advIntervalは製品設計に応じて設定され得る値であって、例えば、20ms以上10.24s以下の値に設定される。advDelayは、例えば、0ms以上10ms以下の値からランダムに用いられる。上記のように、アドバタイズ間隔は、ランダムに設定されるadvDelayの値により、複数の無線通信モジュールBLE1-BLE4間で異なる値となるため、アドバタイズパケットが送信されるタイミングがずれて、パケットの衝突を抑制することができる。
 電池管理ユニットBMU1は、アドバタイズパケットを周期的に送信した後、所定時間経過後に、ブロードキャスターの状態からオブザーバの状態となる。
 複数の蓄電池モジュールMDLは、最初、オブザーバ(Ob)の状態であり、アドバタイズパケットを受信することができる。蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20を介してアドバタイズパケットを受信すると、自身が属するグループへ送信されたものか否か判断する。
 第1グループGR1に含まれる蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20を介してアドバタイズパケットを受信し、第1グループGRの蓄電池モジュールMDLに対して送信されたものであると判断すると、オブザーバの状態からブロードキャスターの状態となる。
 続いて、第1グループGR1に含まれる蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20を介してアドバタイズパケットを送信する。このとき、電池監視ユニットC2から送信されるアドバタイズパケットは、例えば、第1グループGR1に含まれる複数の蓄電池モジュールMDLを識別するデータを含む。
 このとき、電池管理ユニットBMU1はオブザーバの状態であり、アドバタイズパケットを受信可能である。電池管理ユニットBMU1の演算処理装置C1は、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信すると、第1グループGR1に含まれる蓄電池モジュールMDLから送信されたものであるか確認する。
 演算処理装置C1は、管理対象である蓄電池モジュールMDLからのアドバタイズパケットであると確認したときには、無線通信モジュールBLE1-BLE4のいずれかに割り当て、順次、第1グループGR1の全ての蓄電池モジュールMDLとのコネクション動作を行う。
 演算処理装置C1は、管理対象である第1グループGR1の全ての蓄電池モジュールMDLとコネクションを行った後に、上位装置100へコネクション動作が完了した旨の通知を行う。
 演算処理装置C1は、例えば、アドバタイズパケットを送信してから所定の時間が経過するまでに、管理対象であるグループの全ての蓄電池モジュールMDLからアドバタイズパケットが受信されないときには、コネクション動作が失敗したことを上位装置100へ通知してもよい。コネクション動作のリトライを所定回数行っても、全ての蓄電池モジュールMDLとコネクションを確立できないときには、管理対象の蓄電池モジュールMDLが異常であるとして、上位装置100へ通知することができる。
 上位装置100は、電池管理ユニットBMU1の演算処理装置C1から、コネクション動作が完了した旨の通知を受信すると、電池管理ユニットBMU2へコネクション動作を指示する指令を送信する。
 電池管理ユニットBMU2の演算処理装置C1は、電池管理ユニットBMU1と同様に、管理対象である第2グループGR2の蓄電池モジュールMDLとのコネクションを行う。
 上記のように、複数の電池管理ユニットBMU1、BMU2にて異なるタイミングでコネクション動作行うことにより、アドバタイズパケットが衝突することを抑制することができる。また、複数の電池管理ユニットBMU1、BMU2にて蓄電池モジュールMDLとコネクションを行うため、電池管理ユニットBMU1、BMU2それぞれが管理する蓄電池モジュールMDLの数が少なくなり、コネクションを要求するアドバタイズパケットと、コネクションの要求に返答するアドバタイズパケットとの衝突を抑制することができる。
 これらの結果、電池管理ユニットBMU1、BMU2と複数の蓄電池モジュールMDLとのコネクションが完了するまでの時間を短縮することが可能であり、システムが稼働するまでに要する時間を短縮することができる。すなわち、本実施形態によれば、信頼性の高い蓄電池装置を提供することができる。
 次に、第2実施形態の蓄電池装置について図面を参照して詳細に説明する。
 本実施形態の蓄電池装置は、電池管理ユニットBMU1、BMU2と蓄電池モジュールMDLとの間のコネクション動作が上述の第1実施形態と異なっている。
 図4は、第2実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。
 本実施形態では、例えば、複数の蓄電池モジュールMDLを、電池管理ユニットBMU1により管理される第1グループGR1と、電池管理ユニットBMU2により管理される第2グループGR2とに分けて、複数の蓄電池モジュールMDLのグループに対して並列にコネクションを確立させるときの、蓄電池装置の動作の一例について説明する。
 なお、電池管理ユニットBMU1、BMU2は、蓄電池装置の外部に設けられた上位装置100からの指令に基づいて、複数の蓄電池モジュールMDLのグループ毎に並列に通信を確立させる。
 最初に、電池管理ユニットBMU1、BMU2の無線通信モジュールBLE1-BLE4はブロードキャスター(Br)とし、複数の蓄電池モジュールMDLの無線通信モジュール20をオブザーバ(Ob)とする。
 上位装置100は、電池管理ユニットBMU1へコネクション動作を指示する指令を送信し、所定時間が経過した後に、電池管理ユニットBMU2へコネクション動作を指示する指令を送信する。このとき、上位装置100は、電池管理ユニットBMU1からコネクション動作が完了したとの通知を受信する前であっても、電池管理ユニットBMU2へコネクション動作を指示する指令を送信する。
 本実施形態の蓄電池装置において、例えば、電池管理ユニットBMU1から送信されたアドバタイズパケットに対して、第1グループGR1の蓄電池モジュールMDLから返答されるアドバタイズパケットが送信されるタイミングと、電池管理ユニットBMU2からアドバタイズパケットが送信されるタイミングとが異なるように、指令のタイミングを調整することができる。
 上記上位装置100の動作以外は、本実施形態の蓄電池装置は上述の第1実施形態と同様である。
 本実施形態の蓄電池装置では、電池管理ユニットBMU1と第1グループGR1の蓄電池モジュールMDLとのコネクションと、電池管理ユニットBMU2と第2グループの蓄電池モジュールMDLとのコネクションとが、並列に行われる期間が生じる。
 上位装置100から、電池管理ユニットBMU1へ指令が送信されるタイミングと、電池管理ユニットBMU2へ指令が送信されるタイミングとが異なるため、電池管理ユニットBMU1と電池管理ユニットBMU2とがアドバタイズパケットを送信するタイミングに時間差が生じる。このことにより、アドバタイズパケット同士の衝突を抑制することが可能である。
 また、電池管理ユニットBMU1、BMU2それぞれが管理する蓄電池モジュールMDLの数が少なくなり、コネクションを要求するアドバタイズパケットと、コネクションの要求に返答するアドバタイズパケットとの衝突を抑制することができる。
 これらの結果、電池管理ユニットBMU1、BMU2と複数の蓄電池モジュールMDLとのコネクションが完了するまでの時間を短縮することが可能であり、システムが稼働するまでに要する時間を短縮することができる。すなわち、本実施形態によれば、信頼性の高い蓄電池装置を提供することができる。
 次に、第3実施形態の蓄電池装置について図面を参照して詳細に説明する。
 図5Aおよび図5Bは、第3実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。
 本実施形態の蓄電池装置では、複数の蓄電池モジュールMDLが赤外線受信器40をさらに備えている。赤外線受信器40は、上位装置100の赤外線送信器30から送信された赤外線信号(例えばPPM(Pulse Position Modulation)信号)を受信することができる。
 図6は、第3実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。
 ここでは、例えば、複数の蓄電池モジュールMDLを、電池管理ユニットBMU1により管理される第1グループGR1と、電池管理ユニットBMU2により管理される第2グループGR2とに分けて、複数の蓄電池モジュールMDLのグループ毎に赤外線信号により起動させて、順次、コネクションを確立させるときの、蓄電池装置の動作の一例について説明する。
 最初に、電池管理ユニットBMU1、BMU2の無線通信モジュールBLE1-BLE4はオブザーバ(Ob)とし、複数の蓄電池モジュールMDLは赤外線受信器40を待機状態とし、赤外線受信器40以外の構成が起動していない状態とする。
 上位装置100は、第1グループGR1の複数の蓄電池モジュールMDLを起動させる赤外線信号を、赤外線送信器30から出力する。
 第1グループGR1の複数の蓄電池モジュールMDLは、赤外線受信器40により上位装置100からの赤外線信号を受信することにより通電され、電池監視ユニットC2および無線通信モジュール20が起動される。無線通信モジュール20は、蓄電池モジュールMDLの起動時にはブロードキャスター(Br)の状態である。
 起動した蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20からアドバタイズパケットを送信させる。アドバタイズパケットは、無線通信モジュール20から周期的に送信される。
 複数の蓄電池モジュールMDLの無線通信モジュール20からアドバタイズパケットが送信される周期は、アドバタイズ間隔(T_advEvent)によって制御される。アドバタイズ間隔は、例えばadvIntervalとadvDelayとの値を用いて上記式(1)により設定される。アドバタイズ間隔は、上述の第1実施形態と同様に、ランダムに設定されるadvDelayの値により、複数の無線通信モジュール20間で異なる値となるため、アドバタイズパケットが送信されるタイミングがずれて、パケットの衝突を抑制することができる。
 電池管理ユニットBMU1は、最初、オブザーバ(Ob)の状態であり、アドバタイズパケットを受信することができる。電池管理ユニットBMU1の演算処理装置C1は、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信すると、管理対象の蓄電池モジュールMDLから送信されたものか否か判断する。
 電池管理ユニットBMU1は、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信し、第1グループGR1の蓄電池モジュールMDLから送信されたものであると判断し、全ての蓄電池モジュールMDLからアドバタイズパケットを受信したときに上位装置100へコネクション動作が完了したことを通知する。
 続いて、第2グループGR2の複数の蓄電池モジュールMDLと、電池管理ユニットBMU2とのコネクションを行う。
 上位装置100は、第2グループGR2の複数の蓄電池モジュールMDLを起動させる赤外線信号を、赤外線送信器30から出力する。
 第2グループGR2の複数の蓄電池モジュールMDLは、赤外線受信器40により上位装置100からの赤外線信号を受信することにより通電され、電池監視ユニットC2および無線通信モジュール20が起動される。無線通信モジュール20は、蓄電池モジュールMDLの起動時にはブロードキャスター(Br)の状態である。
 起動した蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20からアドバタイズパケットを送信させる。アドバタイズパケットは、無線通信モジュール20から周期的に送信される。
 複数の蓄電池モジュールMDLの無線通信モジュール20からアドバタイズパケットが送信される周期は、アドバタイズ間隔(T_advEvent)によって制御される。アドバタイズ間隔は、例えばadvIntervalとadvDelayとの値を用いて上記式(1)により設定される。アドバタイズ間隔は、上述の第1実施形態と同様に、ランダムに設定されるadvDelayの値により、複数の無線通信モジュール20間で異なる値となるため、アドバタイズパケットが送信されるタイミングがずれて、パケットの衝突を抑制することができる。
 電池管理ユニットBMU2は、最初、オブザーバ(Ob)の状態であり、アドバタイズパケットを受信することができる。電池管理ユニットBMU2の演算処理装置C1は、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信すると、管理対象の蓄電池モジュールMDLから送信されたものか否か判断する。
 電池管理ユニットBMU2は、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信し、第2グループGR2の蓄電池モジュールMDLから送信されたものであると判断し、全ての蓄電池モジュールMDLからアドバタイズパケットを受信したときに上位装置100へコネクション動作が完了したことを通知する。
 なお、演算処理装置C1は、例えば、最初のアドバタイズパケットを受信してから所定の時間が経過するまでに、管理対象であるグループの全ての蓄電池モジュールMDLからアドバタイズパケットが受信されないときには、コネクション動作が失敗したことを上位装置100へ通知してもよい。コネクション動作のリトライを所定回数行っても、全ての蓄電池モジュールMDLとコネクションを確立できないときには、管理対象の蓄電池モジュールMDLが異常であるとして、上位装置100へ通知することができる。
 上記のように、複数の電池管理ユニットBMU1、BMU2において異なるタイミングでコネクション動作行うことにより、アドバタイズパケットが衝突することを抑制することができる。電池管理ユニットBMU1が接続する第1グループGR1の蓄電池モジュールMDLからのアドバタイズパケットと電池管理ユニットBMU2が接続する第2グループGR2の蓄電池モジュールMDLからのアドバタイズパケットとが別のタイミングとなるため、第1グループGR1の蓄電池モジュールMDLと第2グループGR2の蓄電池モジュールMDLにおけるパケット衝突が生じない。また、電池管理ユニットBMU2は、第1グループGR1の蓄電池モジュールMDLに対してはコネクション要求を行わないため、電池管理ユニットBMU2からのコネクション要求のパケットと第1グループGR1の蓄電池モジュールMDLからのアドバタイズパケットとが衝突することはない。同様に、電池管理ユニットBMU1は、第2グループGR2の蓄電池モジュールMDLに対してはコネクション要求を行わないため、電池管理ユニットBMU1からのコネクション要求のパケットと第2グループGR2の蓄電池モジュールMDLからのアドバタイズパケットとが衝突することはない。
 これらの結果、電池管理ユニットBMU1、BMU2と複数の蓄電池モジュールMDLとのコネクションが完了するまでの時間を短縮することが可能であり、システムが稼働するまでに要する時間を短縮することができる。すなわち、本実施形態によれば、信頼性の高い蓄電池装置を提供することができる。
 次に、第4実施形態の蓄電池装置について図面を参照して詳細に説明する。
 本実施形態の蓄電池装置は、電池管理ユニットBMU1、BMU2と蓄電池モジュールMDLとの間のコネクション動作が上述の第3実施形態と異なっている。
 図7は、第4実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。
 本実施形態では、例えば、複数の蓄電池モジュールMDLを、電池管理ユニットBMU1により管理される第1グループGR1と、電池管理ユニットBMU2により管理される第2グループGR2とに分けて、複数の蓄電池モジュールMDLのグループに対して並列にコネクションを確立させるときの、蓄電池装置の動作の一例について説明する。
 最初に、電池管理ユニットBMU1、BMU2の無線通信モジュールBLE1-BLE4はオブザーバ(Ob)とし、複数の蓄電池モジュールMDLは赤外線受信器40を待機状態とし、赤外線受信器40以外の構成が起動していない状態とする。
 上位装置100は、第1グループGR1の複数の蓄電池モジュールMDLを起動させる赤外線信号を赤外線送信器30から出力させ、所定時間が経過した後に、第2グループGR2の複数の蓄電池モジュールMDLを起動させる赤外線信号を赤外線送信器30から出力させる。このとき、上位装置100は、電池管理ユニットBMU1からコネクション動作が完了したとの通知を受信する前であっても、第2グループGR2の複数の蓄電池モジュールMDLを起動させる赤外線信号を赤外線送信器30から出力させる。
 上記上位装置100の動作以外は、本実施形態の蓄電池装置は上述の第1実施形態と同様である。すなわち、本実施形態の蓄電池装置では、電池管理ユニットBMU1と第1グループGR1の蓄電池モジュールMDLとのコネクションと、電池管理ユニットBMU2と第2グループの蓄電池モジュールMDLとのコネクションとが、並列に行われる期間が生じる。
 上位装置100が、第1グループGR1の複数の蓄電池モジュールMDLを起動させるタイミングと、第2グループGR2の複数の蓄電池モジュールMDLを起動させるタイミングとが異なるため、第1グループGR1の蓄電池モジュールMDLと第2グループGR2の蓄電池モジュールMDLとがアドバタイズパケットを送信するタイミングに時間差が生じる。このことにより、各グループ間同士のアドバタイズパケットの衝突を抑制することが可能である。
 また、本実施形態では、複数の電池管理ユニットBMU1、BMU2からコネクションを要求するアドバタイズパケットを送信しないため、コネクションを要求するアドバタイズパケットと、コネクションの要求に返答するアドバタイズパケットとの衝突が生じることはない。
 これらの結果、電池管理ユニットBMU1、BMU2と複数の蓄電池モジュールMDLとのコネクションが完了するまでの時間を短縮することが可能であり、システムが稼働するまでに要する時間を短縮することができる。すなわち、本実施形態によれば、信頼性の高い蓄電池装置を提供することができる。
 次に、第5実施形態の蓄電池装置について図面を参照して詳細に説明する。
 本実施形態の蓄電池装置では、1つの電池管理ユニットBMUが、複数グループの蓄電池モジュールMDLを管理対象としている点が上述の第1乃至第4実施形態と異なっている。
 図8Aおよび図8Bは、第5実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。
 図9は、第5実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。
 ここでは、例えば、複数の蓄電池モジュールMDLを、第1グループGR1と第2グループGR2とに分けて、複数の蓄電池モジュールMDLのグループ毎に、順次、電池管理ユニットBMUとのコネクションを確立させるときの、蓄電池装置の動作の一例について説明する。
 最初に、電池管理ユニットBMUの無線通信モジュールBLE1-BLE4はブロードキャスター(Br)とし、複数の蓄電池モジュールMDLの無線通信モジュール20をオブザーバ(Ob)とする。
 上位装置100は、電池管理ユニットBMUへ第1グループGRの蓄電池モジュールMDLとのコネクション動作を指示する指令を送信する。
 電池管理ユニットBMUの演算処理装置C1は、上位装置100からコネクション動作の指示を受信すると、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを送信する。このとき、演算処理装置C1は、周期的に、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを送信する。演算処理装置C1から送信されるアドバタイズパケットは、例えば、第1グループGR1の蓄電池モジュールMDLに対してコネクションを要求することを示すデータを含む。
 無線通信モジュールBLE1-BLE4のそれぞれからアドバタイズパケットが送信される周期は、アドバタイズ間隔(T_advEvent)によって制御される。アドバタイズ間隔は、例えばadvIntervalとadvDelayとの値を用いて上記式(1)により設定される。アドバタイズ間隔は、ランダムに設定されるadvDelayの値により、複数の無線通信モジュールBLE1-BLE4間で異なる値となるため、アドバタイズパケットが送信されるタイミングがずれて、パケットの衝突を抑制することができる。
 電池管理ユニットBMUは、アドバタイズパケットを周期的に送信した後、所定時間経過後に、ブロードキャスターの状態からオブザーバの状態となる。
 複数の蓄電池モジュールMDLは、最初、オブザーバ(Ob)の状態であり、アドバタイズパケットを受信することができる。蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20を介してアドバタイズパケットを受信すると、自身が属するグループへ送信されたものか否か判断する。
 第1グループGR1に含まれる蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20を介してアドバタイズパケットを受信し、第1グループGRの蓄電池モジュールMDLに対して送信されたものであると判断すると、オブザーバの状態からブロードキャスターの状態となる。
 続いて、第1グループGR1に含まれる蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20を介してアドバタイズパケットを送信する。このとき、電池監視ユニットC2から送信されるアドバタイズパケットは、例えば、第1グループGR1に含まれる複数の蓄電池モジュールMDLを識別するデータを含む。
 このとき、電池管理ユニットBMUはオブザーバの状態であり、アドバタイズパケットを受信可能である。電池管理ユニットBMUの演算処理装置C1は、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信すると、第1グループGR1に含まれる蓄電池モジュールMDLから送信されたものであるか確認する。
 演算処理装置C1は、管理対象である蓄電池モジュールMDLからのアドバタイズパケットであると確認したときには、無線通信モジュールBLE1-BLE4のいずれかに割り当て、順次、第1グループGR1の全ての蓄電池モジュールMDLとのコネクション動作を行う。
 演算処理装置C1は、管理対象である第1グループGR1の全ての蓄電池モジュールMDLとコネクションを行った後に、上位装置100へコネクション動作が完了した旨の通知を行う。
 演算処理装置C1は、例えば、アドバタイズパケットを送信してから所定の時間が経過するまでに、第1グループGR1の全ての蓄電池モジュールMDLからアドバタイズパケットが受信されないときには、コネクション動作が失敗したことを上位装置100へ通知してもよい。コネクション動作のリトライを所定回数行っても、第1グループGR1の全ての蓄電池モジュールMDLとコネクションを確立できないときには、第1グループGR1の蓄電池モジュールMDLが異常であるとして、上位装置100へ通知することができる。
 上位装置100は、電池管理ユニットBMU1の演算処理装置C1から、コネクション動作が完了した旨の通知を受信すると、電池管理ユニットBMUへコネクション動作を指示する指令を送信する。
 電池管理ユニットBMUの演算処理装置C1は、第1グループGR1の蓄電池モジュールMDLとのコネクションと同様に、第2グループGR2の蓄電池モジュールMDLとのコネクションを行う。
 上記のように、1つの電池管理ユニットBMUにて異なるタイミングでコネクション動作行うことにより、アドバタイズパケットが衝突することを抑制することができる。また、電池管理ユニットBMUにて蓄電池モジュールMDLのグループ毎にコネクションを行うため、電池管理ユニットBMUが一度にコネクションを行う蓄電池モジュールMDLの数が少なくなり、コネクションを要求するアドバタイズパケットと、コネクションの要求に返答するアドバタイズパケットとの衝突を抑制することができる。
 これらの結果、電池管理ユニットBMUと複数の蓄電池モジュールMDLとのコネクションが完了するまでの時間を短縮することが可能であり、システムが稼働するまでに要する時間を短縮することができる。すなわち、本実施形態によれば、信頼性の高い蓄電池装置を提供することができる。
 次に、第6実施形態の蓄電池装置について図面を参照して詳細に説明する。
 図10Aおよび図10Bは、第6実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するための図である。
 本実施形態の蓄電池装置では、複数の蓄電池モジュールMDLが赤外線受信器40をさらに備えている点が上述の第5実施形態と異なっている。赤外線受信器40は、上位装置100の赤外線送信器30から送信された赤外線信号(例えばPPM(Pulse Position Modulation)信号)を受信することができる。
 図11は、第6実施形態の蓄電池装置において、電池管理ユニットと複数の蓄電池モジュールとの間で通信を行う手順の一例を説明するためのタイミングチャートである。
 ここでは、例えば、複数の蓄電池モジュールMDLを、第1グループGR1と第2グループGR2とに分けて、複数の蓄電池モジュールMDLのグループ毎に赤外線信号により起動させて、順次、電池管理ユニットBMUとコネクションを確立させるときの、蓄電池装置の動作の一例について説明する。
 最初に、電池管理ユニットBMUの無線通信モジュールBLE1-BLE4はオブザーバ(Ob)とし、複数の蓄電池モジュールMDLは赤外線受信器40を待機状態とし、赤外線受信器40以外の構成が起動していない状態とする。
 上位装置100は、第1グループGR1の複数の蓄電池モジュールMDLを起動させる赤外線信号を、赤外線送信器30から出力する。
 第1グループGR1の複数の蓄電池モジュールMDLは、赤外線受信器40により上位装置100からの赤外線信号を受信することにより通電され、電池監視ユニットC2および無線通信モジュール20が起動される。無線通信モジュール20は、蓄電池モジュールMDLの起動時にはブロードキャスター(Br)の状態である。
 起動した蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20からアドバタイズパケットを送信させる。アドバタイズパケットは、無線通信モジュール20から周期的に送信される。
 複数の蓄電池モジュールMDLの無線通信モジュール20からアドバタイズパケットが送信される周期は、アドバタイズ間隔(T_advEvent)によって制御される。アドバタイズ間隔は、例えばadvIntervalとadvDelayとの値を用いて上記式(1)により設定される。アドバタイズ間隔は、上述の第1実施形態と同様に、ランダムに設定されるadvDelayの値により、複数の無線通信モジュール20間で異なる値となるため、アドバタイズパケットが送信されるタイミングがずれて、パケットの衝突を抑制することができる。
 電池管理ユニットBMUは、最初、オブザーバ(Ob)の状態であり、アドバタイズパケットを受信することができる。電池管理ユニットBMUの演算処理装置C1は、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信すると、第1グループGR1の蓄電池モジュールMDLから送信されたものか否か判断する。
 電池管理ユニットBMUは、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信し、第1グループGR1の蓄電池モジュールMDLから送信されたものであると判断し、第1グループGR1の全ての蓄電池モジュールMDLからアドバタイズパケットを受信したときに、上位装置100へ第1グループGR1の蓄電池モジュールMDLのコネクション動作が完了したことを通知する。
 続いて、第2グループGR2の複数の蓄電池モジュールMDLと、電池管理ユニットBMUとのコネクションを行うため、電池管理ユニットBMUの無線通信モジュールBLE1-BLE4はオブザーバ(Ob)となる。
 上位装置100は、第2グループGR2の複数の蓄電池モジュールMDLを起動させる赤外線信号を、赤外線送信器30から出力する。
 第2グループGR2の複数の蓄電池モジュールMDLは、赤外線受信器40により上位装置100からの赤外線信号を受信することにより通電され、電池監視ユニットC2および無線通信モジュール20が起動される。無線通信モジュール20は、蓄電池モジュールMDLの起動時にはブロードキャスター(Br)の状態である。
 起動した蓄電池モジュールMDLの電池監視ユニットC2は、無線通信モジュール20からアドバタイズパケットを送信させる。アドバタイズパケットは、無線通信モジュール20から周期的に送信される。
 複数の蓄電池モジュールMDLの無線通信モジュール20からアドバタイズパケットが送信される周期は、アドバタイズ間隔(T_advEvent)によって制御される。アドバタイズ間隔は、例えばadvIntervalとadvDelayとの値を用いて上記式(1)により設定される。アドバタイズ間隔は、上述の第1実施形態と同様に、ランダムに設定されるadvDelayの値により、複数の無線通信モジュール20間で異なる値となるため、アドバタイズパケットが送信されるタイミングがずれて、パケットの衝突を抑制することができる。
 電池管理ユニットBMUはオブザーバ(Ob)の状態であり、アドバタイズパケットを受信することができる。電池管理ユニットBMUの演算処理装置C1は、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信すると、第2グループGR2の蓄電池モジュールMDLから送信されたものか否か判断する。
 電池管理ユニットBMUは、無線通信モジュールBLE1-BLE4を介してアドバタイズパケットを受信し、第2グループGR2の蓄電池モジュールMDLから送信されたものであると判断し、第2グループGR2の全ての蓄電池モジュールMDLからアドバタイズパケットを受信したときに、上位装置100へ第2グループGR2の蓄電池モジュールMDLのコネクション動作が完了したことを通知する。
 なお、演算処理装置C1は、例えば、最初のアドバタイズパケットを受信してから所定の時間が経過するまでに、最初に受信したアドバタイズパケットが示す蓄電池モジュールMDLが属するグループの全ての蓄電池モジュールMDLからアドバタイズパケットが受信されないときには、コネクション動作が失敗したことを上位装置100へ通知してもよい。コネクション動作のリトライを所定回数行っても、最初に受信したアドバタイズパケットが示す蓄電池モジュールMDLが属するグループの全ての蓄電池モジュールMDLとコネクションを確立できないときには、管理対象の蓄電池モジュールMDLが異常であるとして、上位装置100へ通知することができる。
 上記のように、1つの電池管理ユニットBMUにて異なるタイミングでコネクション動作行うことにより、アドバタイズパケットが衝突することを抑制することができる。また、本実施形態では、複数の電池管理ユニットBMUからコネクションを要求するアドバタイズパケットを送信しないため、コネクションを要求するアドバタイズパケットと、コネクションの要求に返答するアドバタイズパケットとの衝突が生じることはない。
 これらの結果、電池管理ユニットBMUと複数の蓄電池モジュールMDLとのコネクションが完了するまでの時間を短縮することが可能であり、システムが稼働するまでに要する時間を短縮することができる。すなわち、本実施形態によれば、信頼性の高い蓄電池装置を提供することができる。
 なお、上記の複数の実施形態において、1又は複数の電池管理ユニットは、通信が確立された蓄電池モジュールMDLから順に、電圧や温度の測定値の監視を開始することができる。したがって、例えば過電圧や過温度状態である蓄電池モジュールMDLが存在する場合には、全ての蓄電池モジュールMDLに対する通信が確立される前に蓄電池装置が異常な状態であることを検知することができる。
 例えば、全ての蓄電池モジュールMDLに対して一斉にコネクションを行うときには、全ての蓄電池モジュールMDLとの通信が確立した後に電圧や温度の監視が開始されることとなり、異常な状態である蓄電池モジュールMDLがあったときに、蓄電池装置の安全性を担保するための対策が遅れ、大きな事故につながる可能性がある。これに対し、上記複数の実施形態では、複数の蓄電池モジュールMDLをグループ毎にコネクションを行うため、通信が確立したグループの蓄電池モジュールMDLに対して、蓄電池装置の安全性を担保するための対策を行うことが可能であり、迅速な対応が可能となる。
 また、上述の複数の実施形態において、電池管理ユニットが複数の無線通信モジュールを備えるときには、無線通信モジュール毎に蓄電池モジュールのグループを対応付けてコネクション動作を行ってもよい。例えば、無線通信モジュールBLE1-BLE2により第1グループGR1の蓄電池モジュールMDLとコネクションを行い、無線通信モジュールBLE3-BLE4により第2グループGR2の蓄電池モジュールMDLとコネクションを行ってもよい。この場合であっても、上述の複数の実施形態と同様の効果を得ることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (10)

  1.  複数の電池セルを含む組電池と、BLE規格に基づいて電波を送受信する第1無線通信モジュールと、前記電池セルの電圧と前記組電池の少なくとも1か所の温度とを測定し、前記第1無線通信モジュールの動作を制御する電池監視ユニットと、を備えた蓄電池モジュールを複数と、
     BLE規格に基づいて電波を送受信する複数の第2無線通信モジュールと、前記第2無線通信モジュールの動作を制御する演算処理装置と、を備えた電池管理ユニットと、を備え、
     前記演算処理装置は、複数の前記蓄電池モジュールを前記蓄電池モジュールの少なくとも1つを含む複数のグループとし、外部からの指令に従って、前記グループの単位で前記電池管理ユニットと前記蓄電池モジュールとの通信を確立させる、蓄電池装置。
  2.  複数の前記グループは、第1グループと第2グループとを含み、
     前記演算処理装置は、ブロードキャスターとしてコネクションを要求するアドバタイズパケットを送信した後に、オブザーバとしてアドバタイズパケットを受信することにより前記蓄電池モジュールとコネクションを行い、前記第1グループに含まれる全ての前記蓄電池モジュールとの通信が確立した後に、前記第2グループに含まれる前記蓄電池モジュールとのコネクションの動作を開始する、請求項1記載の蓄電池装置。
  3. 複数の電池セルを含む組電池と、BLE規格に基づいて電波を送受信する第1無線通信モジュールと、赤外線信号を受信する赤外線受信器と、前記電池セルの電圧と前記組電池の少なくとも1か所の温度とを測定し、前記第1無線通信モジュールの動作を制御する電池監視ユニットと、を備え、外部から供給される赤外線信号により起動される蓄電池モジュールを複数と、
     BLE規格に基づいて電波を送受信する複数の第2無線通信モジュールと、前記第2無線通信モジュールの動作を制御する演算処理装置と、を備えた電池管理ユニットと、を備え、
     複数の前記蓄電池モジュールのそれぞれは、第1赤外線信号により起動される第1グループと、第2赤外線信号により起動される第2グループとのいずれか一方に含まれ、
     前記演算処理装置は、前記第1グループと第2グループとの単位で、前記電池管理ユニットと前記蓄電池モジュールとの通信を確立させる、蓄電池装置。
  4.  前記蓄電池モジュールが起動されると、ブロードキャスターとして前記第1無線通信モジュールよりアドバタイズパケットが送信され、
     前記演算処理装置は、オブザーバとしてアドバタイズパケットを受信することにより前記蓄電池モジュールとコネクションを行い、前記第1グループに含まれる全ての前記蓄電池モジュールとの通信が確立した後に、前記第2グループに含まれる前記蓄電池モジュールとのコネクションの動作を開始する、請求項3記載の蓄電池装置。
  5.  複数の電池セルを含む組電池と、BLE規格に基づいて電波を送受信する第1無線通信モジュールと、前記電池セルの電圧と前記組電池の少なくとも1か所の温度とを測定し、前記第1無線通信モジュールの動作を制御する電池監視ユニットと、を備えた蓄電池モジュールを複数と、
     BLE規格に基づいて電波を送受信する複数の第2無線通信モジュールと、前記第2無線通信モジュールの動作を制御する演算処理装置と、を備えた電池管理ユニットを複数と、を備え、
     複数の前記電池管理ユニットのそれぞれは、複数の前記蓄電池モジュールを前記蓄電池モジュールの少なくとも1つを含む複数のグループとした前記グループの単位で前記蓄電池モジュールを管理対象とし、
     前記演算処理装置は、外部からの指令に従って、前記グループの単位で前記電池管理ユニットと前記蓄電池モジュールとの通信を確立させる、蓄電池装置。
  6.  前記演算処理装置は、ブロードキャスターとしてコネクションを要求するアドバタイズパケットを送信した後に、オブザーバとしてアドバタイズパケットを受信することにより前記蓄電池モジュールとコネクションを行い、複数の前記電池管理ユニットの前記演算処理装置は、管理対象である前記グループに含まれる前記蓄電池モジュールとのコネクションの動作を、外部からの指令に基づく順序で順次行う、請求項5記載の蓄電池装置。
  7.  前記演算処理装置は、ブロードキャスターとしてコネクションを要求するアドバタイズパケットを送信した後に、オブザーバとしてアドバタイズパケットを受信することにより前記蓄電池モジュールとコネクションを行い、複数の前記電池管理ユニットの前記演算処理装置は、管理対象である前記グループに含まれる前記蓄電池モジュールとのコネクションの動作を外部からの指令に基づく順序で並列に行う、請求項5記載の蓄電池装置。
  8.  複数の電池セルを含む組電池と、BLE規格に基づいて電波を送受信する第1無線通信モジュールと、赤外線信号を受信する赤外線受信器と、前記電池セルの電圧と前記組電池の少なくとも1か所の温度とを測定し、前記第1無線通信モジュールの動作を制御する電池監視ユニットと、を備え、外部から供給される赤外線信号により起動される蓄電池モジュールを複数と、
     BLE規格に基づいて電波を送受信する複数の第2無線通信モジュールと、前記第2無線通信モジュールの動作を制御する演算処理装置と、を備えた電池管理ユニットを複数と、を備え、
     複数の前記電池管理ユニットのそれぞれは、前記蓄電池モジュールを少なくとも1つ含むグループの単位で前記蓄電池モジュールを管理対象とし、
     前記グループは、第1赤外線信号により起動される前記蓄電池モジュールを含む第1グループと、第2赤外線信号により起動される前記蓄電池モジュールを含む第2グループとを備え、
     前記演算処理装置は、前記第1グループと第2グループとの単位で、前記電池管理ユニットと前記蓄電池モジュールとの通信を確立させる、蓄電池装置。
  9.  前記蓄電池モジュールが起動されると、ブロードキャスターとして前記第1無線通信モジュールよりアドバタイズパケットが送信され、
     前記演算処理装置は、オブザーバとしてアドバタイズパケットを受信することにより前記蓄電池モジュールとコネクションを行い、複数の前記電池管理ユニットの前記演算処理装置は、管理対象である前記グループに含まれる前記蓄電池モジュールとのコネクションの動作を、外部からの指令に基づく順序で順次行う、請求項8記載の蓄電池装置。
  10.  前記蓄電池モジュールが起動されると、ブロードキャスターとして前記第1無線通信モジュールよりアドバタイズパケットが送信され、
     前記演算処理装置は、オブザーバとしてアドバタイズパケットを受信することにより前記蓄電池モジュールとコネクションを行い、複数の前記電池管理ユニットの前記演算処理装置は、管理対象である前記グループに含まれる前記蓄電池モジュールとのコネクションの動作を、外部からの指令に基づく順序で並列に行う、請求項8記載の蓄電池装置。
PCT/JP2019/036400 2019-09-17 2019-09-17 蓄電池装置 WO2021053723A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19945960.3A EP4033583A4 (en) 2019-09-17 2019-09-17 STORAGE BATTERY DEVICE
PCT/JP2019/036400 WO2021053723A1 (ja) 2019-09-17 2019-09-17 蓄電池装置
JP2021546084A JP7228704B2 (ja) 2019-09-17 2019-09-17 蓄電池装置
CN201980095906.7A CN113841282B (zh) 2019-09-17 2019-09-17 蓄电池装置
US17/654,859 US20220200069A1 (en) 2019-09-17 2022-03-15 Storage battery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036400 WO2021053723A1 (ja) 2019-09-17 2019-09-17 蓄電池装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/654,859 Continuation US20220200069A1 (en) 2019-09-17 2022-03-15 Storage battery apparatus

Publications (1)

Publication Number Publication Date
WO2021053723A1 true WO2021053723A1 (ja) 2021-03-25

Family

ID=74883054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036400 WO2021053723A1 (ja) 2019-09-17 2019-09-17 蓄電池装置

Country Status (5)

Country Link
US (1) US20220200069A1 (ja)
EP (1) EP4033583A4 (ja)
JP (1) JP7228704B2 (ja)
CN (1) CN113841282B (ja)
WO (1) WO2021053723A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11982716B2 (en) * 2020-09-04 2024-05-14 Analog Devices, Inc. Self-characterizing smart cells for battery lifecycle management
JP2022129354A (ja) * 2021-02-24 2022-09-05 株式会社デンソー 電池管理システム
CN116085853A (zh) * 2023-02-11 2023-05-09 广东永光新能源设计咨询有限公司 一种可再生能源的供热方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041438A (ja) * 2013-08-21 2015-03-02 アプリックスIpホールディングス株式会社 照明制御システム、端末およびその照明制御方法
JP2017143725A (ja) 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 蓄電装置、蓄電装置の制御方法、充電装置、充電装置の制御方法、および、無線接続設定システム
JP2018061303A (ja) * 2016-10-03 2018-04-12 株式会社オートネットワーク技術研究所 車両用のバッテリ監視装置及び車両用のバッテリ監視システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879294B2 (ja) * 2013-03-29 2016-03-08 日立オートモティブシステムズ株式会社 電池システム
WO2016135913A1 (ja) * 2015-02-26 2016-09-01 株式会社 東芝 蓄電池、蓄電池監視方法および監視コントローラ
JP6916983B2 (ja) * 2016-11-01 2021-08-11 株式会社オートネットワーク技術研究所 車両用のバッテリ監視システム
JP6819233B2 (ja) * 2016-11-17 2021-01-27 株式会社オートネットワーク技術研究所 車両用のバッテリ監視システム
CN110166070A (zh) * 2018-02-15 2019-08-23 马克西姆综合产品公司 用于电池管理系统的多点通信系统、以及相关联系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041438A (ja) * 2013-08-21 2015-03-02 アプリックスIpホールディングス株式会社 照明制御システム、端末およびその照明制御方法
JP2017143725A (ja) 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 蓄電装置、蓄電装置の制御方法、充電装置、充電装置の制御方法、および、無線接続設定システム
JP2018061303A (ja) * 2016-10-03 2018-04-12 株式会社オートネットワーク技術研究所 車両用のバッテリ監視装置及び車両用のバッテリ監視システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033583A4

Also Published As

Publication number Publication date
JPWO2021053723A1 (ja) 2021-03-25
CN113841282A (zh) 2021-12-24
CN113841282B (zh) 2024-06-28
EP4033583A1 (en) 2022-07-27
JP7228704B2 (ja) 2023-02-24
EP4033583A4 (en) 2022-09-14
US20220200069A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US20220200069A1 (en) Storage battery apparatus
US20200176828A1 (en) Battery management method, battery, flight control system and unmanned aerial vehicle
US9088052B2 (en) Battery multi-series system and communication method thereof
US6677759B2 (en) Method and apparatus for high-voltage battery array monitoring sensors network
CN110945573B (zh) 无线电池系统以及无线系统
WO2011001491A1 (ja) 二次電池パック
JP2021513186A (ja) 無線制御システム、無線制御方法及びバッテリーパック
JP2020526161A (ja) 複数のスレーブ管理モジュールにidを割り当てるための無線バッテリー制御システム、方法及びバッテリーパック
WO2017072949A1 (ja) 配線診断装置、電池システム、および電力システム
CN110896158B (zh) 电池管理系统、电池管理单元和待管理单元
JP5656571B2 (ja) 通信システム
US20220200316A1 (en) Storage battery apparatus
KR20200136733A (ko) 배터리 관리 시스템 및 상위 시스템으로 데이터를 송신하는 방법
US20150185291A1 (en) Switched capacitor battery unit monitoring system
EP3290936A1 (en) Battery pack status parallel monitoring device
KR20210016795A (ko) 에너지 허브 장치 및 에너지 관리 방법
GB2541413A (en) Battery cell management
EP4033637A1 (en) Storage battery device
EP4095977B1 (en) Slave bms for diagnosing an error of a battery module and battery pack comprising same slave bms
KR101439233B1 (ko) 보조 전원을 구비한 배터리 관리 시스템
US11880264B2 (en) BMS recognition system and method
US20230420756A1 (en) Storage battery system
WO2022201251A1 (ja) 蓄電池モジュールおよび蓄電池システム
US20240348061A1 (en) Battery system and monitoring method of battery system
US20240332645A1 (en) Methods of master battery unit and module battery unit management, and battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019945960

Country of ref document: EP

Effective date: 20220419