WO2022201251A1 - 蓄電池モジュールおよび蓄電池システム - Google Patents

蓄電池モジュールおよび蓄電池システム Download PDF

Info

Publication number
WO2022201251A1
WO2022201251A1 PCT/JP2021/011750 JP2021011750W WO2022201251A1 WO 2022201251 A1 WO2022201251 A1 WO 2022201251A1 JP 2021011750 W JP2021011750 W JP 2021011750W WO 2022201251 A1 WO2022201251 A1 WO 2022201251A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication module
storage battery
arithmetic processing
battery
Prior art date
Application number
PCT/JP2021/011750
Other languages
English (en)
French (fr)
Inventor
知秀 吉川
和人 黒田
祐介 菊地
伸 鈴木
康太 淺見
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2021/011750 priority Critical patent/WO2022201251A1/ja
Publication of WO2022201251A1 publication Critical patent/WO2022201251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte

Definitions

  • Embodiments of the present invention relate to storage battery modules and storage battery systems.
  • Storage battery systems that combine multiple storage battery modules are used for a variety of purposes. For example, in a storage battery system having a large number of storage battery modules, if wired communication is performed between the storage battery modules and the battery management unit, labor costs for wiring the communication lines are required, and there is a risk of wiring interruption. In addition, wiring of communication lines is required according to the number of storage battery modules, which may complicate the configuration of the storage battery system. For this reason, in recent years, for the purpose of simplifying the configuration of the storage battery system, wireless communication between the storage battery module and the battery management unit using radio waves has been studied.
  • the storage battery module is equipped with a battery monitoring unit that measures battery voltage and temperature, and a communication module.
  • the battery monitoring unit and the communication module obtain power from the battery mounted on the storage battery module. Since it is preferable that the energy stored in the battery is efficiently supplied to the load, it is required to keep the energy consumption low in the battery monitoring unit and the communication module.
  • Bluetooth (registered trademark) low energy (BLE) is known as a standard for wireless communication with low power consumption.
  • BLE the band of 2.400 GHz to 2.480 GHz is divided into 40 channels (ch) for communication.
  • 3ch included in 40ch is used as an advertising channel for discovery of a communication partner, network participation control, and broadcasting.
  • the remaining 37 channels are used as data channels for data communication after connection.
  • the battery management device that is the master of wireless communication first uses the advertising channel to discover the storage battery module that is the slave as the communication partner, and completes the connection. When the connection is completed, communication starts between the master and slave.
  • a battery management unit (master) and a battery monitoring unit (slave) first use an advertisement channel to discover a communication partner and complete a connection. When the connection is completed, communication starts between the master and slave.
  • BLE BLE standard
  • the connection between the battery management unit and the monitoring device is established when the storage battery system is in operation, the user must wait until the connection is established each time the system is activated.
  • the time required to establish the connection of the storage battery system becomes longer, the energy stored in the battery is consumed by the storage battery module, making it difficult to efficiently supply energy to the load.
  • the embodiments of the present invention have been made in view of the above circumstances, and provide a storage battery module and a storage battery system that shorten the standby time during operation and efficiently supply the energy stored in the battery to a load. intended to
  • a storage battery module includes an assembled battery including a plurality of battery cells, a first wireless communication module that transmits and receives radio waves, an arithmetic processing circuit that acquires data regarding the plurality of battery cells, and A first DC/DC converter that uses the stored energy to supply power to the first wireless communication module, and a second DC/DC converter that uses the energy stored in the assembled battery to supply power to the arithmetic processing circuit. and, when receiving a measurement stop command, the first wireless communication module transmits a command to the second DC/DC converter to stop power supply to the arithmetic processing circuit, and the first DC/DC The power supply to the first wireless communication module by the converter is continued to maintain the connection with the master.
  • FIG. 1 is a figure showing roughly the example of composition of the storage battery system of one embodiment.
  • FIG. 2 is a diagram schematically showing an example of a configuration related to the power supply of the battery monitoring unit of the storage battery module of one embodiment.
  • FIG. 3 is a timing chart explaining an example of the operation of the battery management unit and the storage battery module in the storage battery system of one embodiment.
  • FIG. 4 is a timing chart explaining an example of the operation of the battery management unit and the storage battery module during system operation in the storage battery system of one embodiment.
  • FIG. 5 is a timing chart explaining an example of the operation of the storage battery module during standby in the storage battery system of one embodiment.
  • Drawing 1 is a figure showing roughly the example of composition of the storage battery system of one embodiment.
  • the storage battery system of this embodiment includes a plurality of storage battery modules MDL1-MDLn, a battery management unit (BMU) BMU, a first contactor CP, and a second contactor CM.
  • BMU battery management unit
  • Each of the storage battery modules MDL1-MDLn includes a battery pack BT including a plurality of battery cells, a battery monitoring unit (CMU: Cell Monitoring Unit) C2, and a wireless communication module (first wireless communication module) 20. .
  • CMU Cell Monitoring Unit
  • the storage battery module MDL1 is arranged on the highest potential side, and the storage battery module MDLn is arranged on the lowest potential side.
  • the plurality of storage battery modules MDL1-MDLn are electrically connected such that, for example, the plurality of battery packs BT are connected in series.
  • the assembled battery BT includes, for example, a plurality of battery cells of lithium ion batteries connected in series or in parallel.
  • the battery monitoring unit C2 includes a measurement circuit C21 that detects the voltage of each of the plurality of battery cells and the temperature of at least one location of the assembled battery BT, and an arithmetic processing circuit C22. It is possible to automatically transmit voltage and temperature measurements to the battery management unit BMU (external).
  • the arithmetic processing circuit C22 controls the operation of the wireless communication module 20 based on the control signal received from the arithmetic processing device C1 of the battery management unit BMU via the wireless communication module 20. Further, the arithmetic processing circuit C22 equalizes (cell balances) the voltages of the plurality of battery cells based on the control signal received from the battery management unit BMU via the wireless communication module 20 .
  • the arithmetic processing circuit C22 may be configured, for example, by hardware, may be configured by software, or may be configured by combining hardware and software.
  • the arithmetic processing circuit C22 includes, for example, at least one processor such as a CPU or MPU, and a memory in which programs executed by the processor are recorded, and implements various functions of the storage battery modules MDL1-MDLn by software. circuit.
  • the wireless communication module 20 is controlled in operation by, for example, the arithmetic processing circuit C22, and can perform radio wave communication (transmitting and receiving) with the battery management unit BMU.
  • the wireless communication module 20 can communicate with the battery management unit BMU based on, for example, the BLE standard.
  • the wireless communication module 20 stops power supply from the assembled battery BT to the arithmetic processing circuit C22, and waits for the storage battery modules MDL1 to MDLn. state. That is, when the storage battery modules MDL1-MDLn are in the standby state, the power supply to the arithmetic processing circuit C22 is stopped and the wireless communication module 20 is supplied with power.
  • the wireless communication module 20 may supply power from the assembled battery BT to the arithmetic processing circuit C22 at a predetermined cycle to activate the arithmetic processing circuit C22.
  • the arithmetic processing circuit C22 By periodically activating the arithmetic processing circuit C22, even when the storage battery modules MDL1 to MDLn are in the standby state, data for monitoring the voltage and temperature of the battery cells of the assembled battery BT (data relating to the battery cells). can be obtained.
  • the cycle in which power is supplied to arithmetic processing circuit C22 in the standby state may be longer than the cycle in which battery cell data is acquired during operation of storage battery modules MDL1-MDLn.
  • the data acquired by the arithmetic processing circuit C22 while the storage battery modules MDL1-MDLn are in the standby state may be transmitted to the battery management unit BMU at the timing when the arithmetic processing circuit C22 is activated in the standby state.
  • MDL1-MDLn return from the standby state to the operating state they may be collectively transmitted to the battery management unit BMU.
  • the first contactor CP is interposed in a main circuit that connects between the high potential side terminal of the storage battery module MDL1 and the positive terminal of the storage battery system, and switches electrical connection between the plurality of storage battery modules MDL1 to MDLn and the positive terminal. be able to.
  • the first contactor CP is controlled to open and close the contact by a control signal from the battery management unit BMU.
  • the second contactor CM is interposed in a main circuit that connects between the low potential side terminal of the storage battery module MDLn and the negative terminal of the storage battery system, and switches electrical connection between the plurality of storage battery modules MDL1 to MDLn and the negative terminal. be able to.
  • the second contactor CM is controlled to open and close the contact by a control signal from the battery management unit BMU.
  • the battery management unit BMU includes a wireless communication module (second wireless communication module) 10 and an arithmetic processing device C1.
  • the arithmetic processing unit C1 includes a communication circuit (not shown) capable of performing wired communication with, for example, a host device (not shown).
  • the arithmetic processing unit C1 receives various control signals from the host device, and can control the operations of the plurality of battery monitoring units C2, the first contactor CP, and the second contactor CM based on the received information. .
  • the arithmetic processing unit C1 periodically receives the voltage detection values of the plurality of battery cells and the temperature detection value of the assembled battery BT from each of the plurality of battery monitoring units C2, and detects the current sensor (Fig. (not shown) periodically receives detected values of currents flowing through the plurality of battery packs BT.
  • the battery management unit BMU can calculate, for example, the state of charge (SOC) and state of health (SOH) of the assembled battery BT (or battery cells) based on the received values.
  • the arithmetic processing unit C1 monitors the voltages of the plurality of battery cells and the current flowing through the plurality of assembled batteries BT, and controls the battery monitoring unit C2 to equalize the voltages of the plurality of battery cells.
  • the battery management unit BMU controls the operation of the storage battery system so that the battery cells do not enter an abnormal state such as overcharge or overdischarge.
  • the arithmetic processing device C1 may be configured by hardware, may be configured by software, or may be configured by a combination of hardware and software.
  • the arithmetic processing unit C1 may include, for example, at least one processor and a memory storing programs executed by the processor.
  • the operation of the wireless communication module 10 is controlled by the arithmetic processing unit C1, and performs radio wave communication (transmitting and receiving) with the wireless communication modules 20 of the plurality of battery monitoring units C2.
  • the wireless communication module 10 communicates with the wireless communication modules 20 of the plurality of battery monitoring units C2 based on the BLE standard.
  • FIG. 2 is a diagram schematically showing an example of a configuration related to the power supply of the battery monitoring unit of the storage battery module of one embodiment. Since the plurality of storage battery modules MDL1-MDLn have the same configuration, the configuration example of the storage battery module MDL1 will be described here, and the description of the other storage battery modules MDL2-MDLn will be omitted.
  • the battery monitoring unit C2 includes a measurement circuit C21 (shown in FIG. 1), an arithmetic processing circuit C22, a first DC/DC converter C23, and a second DC/DC converter C24.
  • the first DC/DC converter C23 converts the voltage of the DC power supplied from the assembled battery BT into a predetermined value (eg, 3.3 V) and supplies power to the wireless communication module 20 .
  • the first DC/DC converter C23 starts supplying power to the wireless communication module 20 when the power of the storage battery system is turned on, and wireless communication is performed even when the storage battery system is stopped (in a standby state). Continue to supply power to the module 20 .
  • the first DC/DC converter C23 supplies power from the assembled battery BT to the wireless communication module 20 when the power is turned off, for example, when the storage battery modules MDL1 to MDLn are being transported or during maintenance such as replacement. stop the supply.
  • the second DC/DC converter C24 converts the voltage of the DC power supplied from the assembled battery BT into a predetermined value (eg, 12 V) and supplies power to the arithmetic processing circuit C22. For example, the second DC/DC converter C24 starts supplying power from the assembled battery BT to the arithmetic processing circuit C22 when receiving a start command from the wireless communication module 20, and receives a measurement stop command from the wireless communication module 20. Sometimes, power supply from the assembled battery BT to the arithmetic processing circuit C22 can be stopped.
  • a predetermined value eg, 12 V
  • a switch for switching connections may be provided in the path for supplying power from the positive terminal of the assembled battery BT to the first DC/DC converter C23 and the second DC/DC converter C24.
  • the switch closes to connect the path, and when the power is turned off, the switch opens to electrically disconnect the path.
  • FIG. 3 is a timing chart explaining an example of the operation of the battery management unit and the storage battery module in the storage battery system of one embodiment.
  • FIG. 3 and FIGS. 4-5 to be described later show only one operation of the storage battery modules MDL1 to MDLn, the plurality of storage battery modules MDL1 to MDLn each perform the same operation.
  • 3 to 5 omit the description of the arithmetic processing device C1 of the battery management unit BMU, the arithmetic processing device C1 sends control signals to the storage battery modules MDL1 to MDLn via the wireless communication modules 10 and 20. , and data and the like transmitted from the storage battery modules MDL1-MDLn can be received via the wireless communication modules 10 and 20.
  • FIG. 3 is a timing chart explaining an example of the operation of the battery management unit and the storage battery module in the storage battery system of one embodiment.
  • FIG. 3 and FIGS. 4-5 to be described later show only one operation of the storage battery modules MDL1 to MDLn, the plurality of storage battery
  • the storage battery system when the storage battery system is installed, power supply from the assembled battery BT to the first DC/DC converter C23 is started.
  • an external switch may be installed in the power supply line from the assembled battery BT to the first DC/DC converter C23, and by turning on the switch, the power from the assembled battery BT to the first DC/DC converter C23 is switched. It may be configured such that power supply is initiated.
  • the first DC/DC converter C23 converts the DC power supplied from the assembled battery BT into DC power of a predetermined voltage, and supplies the DC power to the wireless communication module 20 as power (step S1).
  • step S2 When the storage battery system is installed, power supply is also started to the wireless communication module 10 of the battery management unit BMU. Power is supplied to the wireless communication module 10 from, for example, a host device. Subsequently, a connection is made between the wireless communication module 10 and the wireless communication module 20 .
  • the wireless communication module 20 transmits an advertising packet in response to the advertising packet transmitted from the wireless communication module 10, and establishes a connection between the storage battery module MDL and the battery management unit BMU (step S2). When the connection is completed, the connection state is maintained while power is supplied to the wireless communication modules 10 and 20 .
  • arithmetic processing device C1 Upon receiving the activation command from the host device, arithmetic processing device C1 outputs the activation command to second DC/DC converter C24 via wireless communication modules 10 and 20 (step S3) (step S4).
  • DC power is supplied from the assembled battery BT to the second DC/DC converter C24 in response to a start command from the wireless communication module 20, and the DC power supplied from the assembled battery BT is converted into DC power of a predetermined voltage, and the arithmetic processing circuit C22 is started to be supplied as a power source (step S5).
  • the arithmetic processing circuit C22 When the arithmetic processing circuit C22 is activated, the storage battery system is put into operation.
  • FIG. 4 is a timing chart explaining an example of the operation of the battery management unit and the storage battery module during system operation in the storage battery system of one embodiment.
  • the arithmetic processing circuit C22 periodically transmits data such as battery cell voltage values (data relating to battery cells) to the battery management unit BMU.
  • the arithmetic processing circuit C22 transmits data regarding the battery cell to the wireless communication module 10 (step S61) via the wireless communication module 20 (step S62).
  • the wireless communication module 10 transmits the received data to the processing device C1.
  • arithmetic processing device C1 Based on the data received via the wireless communication module, arithmetic processing device C1 transmits a cell balance instruction to wireless communication modules 20 of storage battery modules MDL1-MDLn as needed (step S63).
  • the wireless communication module 20 transmits the received cell balance instruction to the arithmetic processing circuit C22 (step S64).
  • the battery management unit BMU and the storage battery modules MDL1-MDLn perform the above steps S61-S64 at a predetermined cycle t while the storage battery system is in operation.
  • the processor C1 transmits a measurement stop command to the wireless communication modules 20 of the storage battery modules MDL1-MDLn via the wireless communication module 10 (step S7).
  • the wireless communication module 20 Upon receiving the measurement stop command, the wireless communication module 20 stops the second DC/DC converter C24 (step S8). At this time, the first DC/DC converter C23 is not stopped, the power supply to the wireless communication module 20 is continued, the connection between the wireless communication module 20 and the wireless communication module 10 (communication partner) is maintained, and the storage battery module MDL1- MDLn enters a standby state. Note that when the storage battery system is stopped (for example, a standby instruction is received from a host device), the power supply to the wireless communication module 10 should at least be continued in the battery management unit BMU. Power supply may be stopped. As a result, in the standby state of the storage battery system, the power consumption of the storage battery system can be kept low while maintaining the connection between the wireless communication module 10 and the wireless communication module 20 .
  • FIG. 5 is a timing chart explaining an example of the operation of the storage battery module during standby in the storage battery system of one embodiment. While the storage battery modules MDL1-MDLn are in the standby state, the wireless communication module 20 performs the following step S9 (S91-S94) at a predetermined cycle T. First, the wireless communication module 20 activates the second DC/DC converter C24 (step SS91) to supply power to the arithmetic processing circuit C22 (step S92).
  • the arithmetic processing circuit C22 is activated by power supplied from the second DC/DC converter C24, acquires and stores voltage and temperature data (battery cell-related data) of the assembled battery BT from the measurement circuit C21, and performs the wireless communication module. 20 is notified of the completion of data acquisition (step S93).
  • the wireless communication module 20 Upon receiving the data acquisition completion notification from the arithmetic processing circuit C22, the wireless communication module 20 transmits a stop command to the second DC/DC converter C24 to stop power supply to the arithmetic processing circuit C22 (step S94). Note that the wireless communication module 20 activates the second DC/DC converter C24 after a predetermined time TOFF has elapsed from the start of the predetermined period T, and after starting the second DC/DC converter C24, a predetermined After the time TON has elapsed, the second DC/DC converter C24 may be stopped, in which case the operation of the arithmetic processing circuit C22 to transmit the data acquisition completion notification (step S93) can be omitted.
  • processing device C1 transmits an activation command to wireless communication module 20 via wireless communication module 10 (step S10).
  • the wireless communication module 20 activates the second DC/DC converter C24 in response to the activation command (step S11), supplies power to the arithmetic processing circuit C22, and puts the storage battery modules MDL1-MDLn into an operating state (step S12).
  • the arithmetic processing circuit C22 transfers the data acquired from the measurement circuit C21 during the standby state to the battery management unit BMU via the wireless communication module 20. Send (step S13). After that, the battery management unit BMU and the storage battery modules MDL1 to MDLn perform the operations during operation (step S6).
  • the operation of establishing a connection between the battery management unit and the storage battery module is performed only at the timing after the power supply to the storage battery system is turned on, and the storage battery system is stopped. At times, the wireless communication module 20 is in a standby state. Therefore, it is not necessary to establish a connection each time the storage battery system is restarted from a stopped state, and the waiting time until operation can be shortened. In addition, it is possible to efficiently supply the energy stored in the assembled battery BT to the load without connecting each time the storage battery system is operated.
  • the standby time during operation can be shortened, and the energy stored in the battery can be efficiently supplied to the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

実施形態による蓄電池モジュールは、待機時間を短縮するとともに電池に蓄えられたエネルギーを効率よく負荷へ供給するものであって、複数の電池セルを含む組電池(BT)と、電波を送受信する第1無線通信モジュール(20)と、複数の電池セルに関するデータを取得する演算処理回路(C22)と、組電池(BT)に蓄えられたエネルギーを用いて第1無線通信モジュール(20)に電源を供給する第1DC/DCコンバータ(C23)と、組電池(BT)に蓄えられたエネルギーを用いて演算処理回路(C22)に電源を供給する第2DC/DCコンバータ(C24)と、を備え、第1無線通信モジュール(20)は、計測停止指令を受信したときに、第2DC/DCコンバータ(C24)に演算処理回路(C22)への電源供給を停止する指令を送信し、第1DC/DCコンバータ(C23)による第1無線通信モジュール(20)への電源供給を継続し、通信相手とのコネクションを維持する。

Description

蓄電池モジュールおよび蓄電池システム
 本発明の実施形態は、蓄電池モジュールおよび蓄電池システムに関する。
 複数の蓄電池モジュールを組み合わせた蓄電池システムは、様々な用途で利用されている。例えば多数の蓄電池モジュールを備えた蓄電池システムにおいて、蓄電池モジュールと電池管理ユニットとの間で有線通信を行うと、通信線の配線のための人件費が必要となるとともに、配線途絶のリスクも生じる。また、蓄電池モジュール数に応じて通信線の配線が必要となり、蓄電池システムの構成が複雑になる可能性がある。このため、近年、蓄電池システムの構成の簡素化等を目的に、蓄電池モジュールと電池管理ユニットとの間の通信を電波により無線化する検討がされている。
 蓄電池モジュールは、電池の電圧と温度とを測定する電池監視ユニットおよび通信モジュールを備えている。蓄電池モジュールが有線により接続されないときには、電池監視ユニットと通信モジュールとは、蓄電池モジュールに搭載された電池から電源を得ることとなる。電池に蓄えられたエネルギーは効率よく負荷へ供給されることが好ましいため、電池監視ユニットや通信モジュールでのエネルギー消費を低く抑えることが要求される。
 消費電力を低く抑えた無線通信の規格として、例えば、Bluetooth(登録商標) low energy(BLE)が知られている。BLEでは、2.400GHz~2.480GHzの帯域を40のチャネル(ch)に分割して通信する。40chに含まれる3chは、アドバタイジングチャネルとして、通信相手の発見・ネットワーク参加制御の用途やブロードキャストに用いられる。残りの37chは、データチャンネルとして、コネクション後のデータ通信に用いられる。
 想定するBLEを用いた蓄電池システムでは、はじめに無線通信のマスターとなる電池管理装置が、アドバタイズチャンネルを使用して通信相手としてスレーブである蓄電池モジュールを発見し、コネクションを完了する。コネクションが完了したらマスター・スレーブ間で通信を開始する。
日本国特許第6708318号公報
 例えばBLEを用いた蓄電池システムでは、電池管理ユニット(マスター)と電池監視ユニット(スレーブ)とは、はじめにアドバタイズチャンネルを使用して通信相手を発見し、コネクションを完了する。コネクションが完了したらマスター・スレーブ間で通信を開始する。BLEの規格ではアドバタイジングパケットを調停する仕様は無く、例えば数百台の蓄電池モジュールで構成される大規模な蓄電池システムでは、各々の蓄電池モジュールがランダムなタイミングで送信を試みるため、多数のアドバタイジングパケットが3チャネルに集中して高確率で衝突が発生し、コネクションに複数回失敗することが予想される。そのため、全ての電池監視ユニットと電池管理ユニットとの間での通信が確立されるまで蓄電池システムを稼働させることができず、蓄電池システムが稼働するまでに長時間要する可能性があった。
 しかしながら、蓄電池システムが稼働する際に電池管理ユニットと監視装置とのコネクションの確立を行うと、ユーザは、起動する度にコネクションが確立するまで待機しなければならない。また、蓄電池システムのコネクションが確立するまでに要する時間が長くなると、電池に蓄えられたエネルギーが蓄電池モジュールにより消費され、効率よく負荷へエネルギーを供給することが難しくなる。
 本発明の実施形態は上記事情を鑑みて成されたものであって、稼働するときの待機時間を短縮するとともに、電池に蓄えられたエネルギーを効率よく負荷へ供給する蓄電池モジュールおよび蓄電池システムを提供することを目的とする。
 本発明の実施形態による蓄電池モジュールは、複数の電池セルを含む組電池と、電波を送受信する第1無線通信モジュールと、複数の前記電池セルに関するデータを取得する演算処理回路と、前記組電池に蓄えられたエネルギーを用いて前記第1無線通信モジュールに電源を供給する第1DC/DCコンバータと、前記組電池に蓄えられたエネルギーを用いて前記演算処理回路に電源を供給する第2DC/DCコンバータと、を備え、前記第1無線通信モジュールは、計測停止指令を受信したときに、前記第2DC/DCコンバータへ前記演算処理回路への電源供給を停止する指令を送信し、前記第1DC/DCコンバータによる前記第1無線通信モジュールへの電源供給を継続してマスターとのコネクションを維持させる。
図1は、一実施形態の蓄電池システムの構成例を概略的に示す図である。 図2は、一実施形態の蓄電池モジュールの電池監視ユニットの電源に関する構成の一例を概略的に示す図である。 図3は、一実施形態の蓄電池システムにおける、電池管理ユニットと蓄電池モジュールとの動作の一例を説明するタイミングチャートである。 図4は、一実施形態の蓄電池システムにおける、システム稼動時の電池管理ユニットと蓄電池モジュールとの動作の一例を説明するタイミングチャートである。 図5は、一実施形態の蓄電池システムにおける、待機時の蓄電池モジュールの動作の一例を説明するタイミングチャートである。
実施形態
 以下に、実施形態の蓄電池システムについて図面を参照して詳細に説明する。
 図1は、一実施形態の蓄電池システムの構成例を概略的に示す図である。
 本実施形態の蓄電池システムは、複数の蓄電池モジュールMDL1-MDLnと、電池管理ユニット(BMU:Battery Management Unit)BMU、第1コンタクタCPと、第2コンタクタCMと、を備えている。
 蓄電池モジュールMDL1-MDLnの各々は、複数の電池セルを含む組電池BTと、電池監視ユニット(CMU:Cell Monitoring Unit)C2と、無線通信モジュール(第1無線通信モジュール)20と、を備えている。
 蓄電池モジュールMDL1は最も高電位側に配置され、蓄電池モジュールMDLnは最も低電位側に配置されている。複数の蓄電池モジュールMDL1-MDLnは、例えば複数の組電池BTが直列になるように電気的に接続されている。
 組電池BTは、例えば、直列又は並列に接続されたリチウムイオン電池の電池セルを複数備えている。
 電池監視ユニットC2は、複数の電池セルそれぞれの電圧と、組電池BTの少なくとも1か所の温度とを検出する測定回路C21と、演算処理回路C22とを備え、無線通信モジュール20を介して周期的に電池管理ユニットBMU(外部)へ電圧と温度との測定値を送信することができる。
 また、演算処理回路C22は、無線通信モジュール20を介して電池管理ユニットBMUの演算処理装置C1から受信した制御信号に基づいて、無線通信モジュール20の動作を制御する。また、演算処理回路C22は、無線通信モジュール20を介して電池管理ユニットBMUから受信した制御信号に基づいて、複数の電池セルの電圧の均等化(セルバランス)を行う。
 演算処理回路C22は、例えばハードウエアにより構成されてもよく、ソフトウエアにより構成されてもよく、ハードウエアとソフトウエアとを組み合わせて構成されてもよい。演算処理回路C22は、例えば、CPUやMPUなどのプロセッサを少なくとも1つと、プロセッサにより実行されるプログラムが記録されたメモリと、を備え、ソフトウエアにより蓄電池モジュールMDL1-MDLnの種々の機能を実現する回路である。
 無線通信モジュール20は、蓄電池システムが起動している間、例えば演算処理回路C22により動作を制御され、電池管理ユニットBMUとの間で電波による通信(送受信)を行うことができる。本実施形態の蓄電池システムでは、無線通信モジュール20は、例えばBLE規格に基づいて、電池管理ユニットBMUとの間で通信を行うことができる。
 また、無線通信モジュール20は、電池管理ユニットBMUから例えば蓄電池システムを停止する旨の通知を受けたときには、組電池BTから演算処理回路C22への電源供給を停止し、蓄電池モジュールMDL1-MDLnを待機状態とする。すなわち、蓄電池モジュールMDL1-MDLnが待機状態であるときには、演算処理回路C22への電源供給が停止し、無線通信モジュール20に電源が供給されている状態である。
 蓄電池モジュールMDL1-MDLnが待機状態であるとき、無線通信モジュール20は、所定の周期で組電池BTから演算処理回路C22に電源を供給させて、演算処理回路C22を起動してもよい。周期的に演算処理回路C22が起動されることにより、蓄電池モジュールMDL1-MDLnが待機状態であるときにも、組電池BTの電池セルの電圧や温度を監視するためのデータ(電池セルに関するデータ)を取得することができる。待機状態において演算処理回路C22に電源が供給される周期は、蓄電池モジュールMDL1-MDLnの稼動時において電池セルに関するデータを取得する周期よりも長くてもよい。
 なお、蓄電池モジュールMDL1-MDLnが待機状態である間に演算処理回路C22が取得したデータは、待機状態において演算処理回路C22が起動されたタイミングで電池管理ユニットBMUに送信されてもよく、蓄電池モジュールMDL1-MDLnが待機状態から稼動状態に戻ったときにまとめて電池管理ユニットBMUに送信されてもよい。
 第1コンタクタCPは、蓄電池モジュールMDL1の高電位側の端子と蓄電池システムの正極端子との間を接続する主回路に介在し、複数の蓄電池モジュールMDL1-MDLnと正極端子との電気的接続を切替えることができる。第1コンタクタCPは、電池管理ユニットBMUからの制御信号により、接点を開閉する動作を制御される。
 第2コンタクタCMは、蓄電池モジュールMDLnの低電位側の端子と蓄電池システムの負極端子との間を接続する主回路に介在し、複数の蓄電池モジュールMDL1-MDLnと負極端子との電気的接続を切替えることができる。第2コンタクタCMは、電池管理ユニットBMUからの制御信号により、接点を開閉する動作を制御される。
 電池管理ユニットBMUは、無線通信モジュール(第2無線通信モジュール)10と、演算処理装置C1と、を備えている。
 演算処理装置C1は、例えば上位装置(図示せず)との間で有線通信を行うことが可能な通信回路(図示せず)を備えている。演算処理装置C1は、上位装置から各種制御信号を受信し、受信した情報に基づいて複数の電池監視ユニットC2、第1コンタクタCP、および、第2コンタクタCMの動作を制御することが可能である。
 演算処理装置C1は、複数の電池監視ユニットC2それぞれから複数の電池セルの電圧の検出値と組電池BTの温度の検出値とを周期的に受信し、主回路に設けられた電流センサ(図示せず)から複数の組電池BTに流れる電流の検出値を周期的に受信する。電池管理ユニットBMUは、受信した値に基づいて、例えば組電池BT(又は電池セル)の充電状態(SOC:state of charge)および劣化状態(SOH:state of health)を演算することができる。
 演算処理装置C1は、複数の電池セルの電圧や複数の組電池BTに流れる電流を監視し、複数の電池セルの電圧を均等化するよう電池監視ユニットC2を制御する。電池管理ユニットBMUは、例えば、電池セルが過充電や過放電などの異常な状態とならないよう蓄電池システムの動作を制御する。
 演算処理装置C1は、ハードウエアにより構成されてもよく、ソフトウエアにより構成されてもよく、ハードウエアとソフトウエアとの組み合わせにより構成されてもよい。演算処理装置C1は、例えば、プロセッサを少なくとも1つと、プロセッサにより実行されるプログラムを記録したメモリと、を備えていてもよい。
 無線通信モジュール10は、演算処理装置C1により動作を制御され、複数の電池監視ユニットC2の無線通信モジュール20との間で、電波による通信(送受信)を行う。本実施形態の蓄電池システムでは、無線通信モジュール10は、BLE規格に基づいて複数の電池監視ユニットC2の無線通信モジュール20との間で通信を行う。
 次に、本実施形態の蓄電池モジュールMDL1-MDLnの構成例について説明する。
 図2は、一実施形態の蓄電池モジュールの電池監視ユニットの電源に関する構成の一例を概略的に示す図である。
 なお、複数の蓄電池モジュールMDL1-MDLnは同じ構成であるため、ここでは蓄電池モジュールMDL1の構成例について説明し、他の蓄電池モジュールMDL2-MDLnについては説明を省略する。
 電池監視ユニットC2は、測定回路C21(図1に示す)と、演算処理回路C22と、第1DC/DCコンバータC23と、第2DC/DCコンバータC24と、を備えている。
 第1DC/DCコンバータC23は、組電池BTから供給される直流電力の電圧を所定の値(例えば3.3V)に変換して、無線通信モジュール20の電源を供給する。第1DC/DCコンバータC23は、例えば、蓄電池システムの電源が投入されたときに無線通信モジュール20へ電源供給を開始し、蓄電池システムが停止しているとき(待機状態であるとき)にも無線通信モジュール20への電源供給を継続する。
 なお、第1DC/DCコンバータC23は、例えば、蓄電池モジュールMDL1-MDLnが運搬されているときや、交換等のメンテナンス時など、電源がオフされたとときに組電池BTから無線通信モジュール20への電源供給を停止する。
 第2DC/DCコンバータC24は、組電池BTから供給される直流電力の電圧を所定の値(例えば12V)に変換して、演算処理回路C22の電源を供給する。第2DC/DCコンバータC24は、例えば、無線通信モジュール20からの起動指令を受信したときに、組電池BTから演算処理回路C22へ電源供給を開始し、無線通信モジュール20から計測停止指令を受信したときに、組電池BTから演算処理回路C22への電源供給を停止することができる。
 例えば、組電池BTの正極端子から第1DC/DCコンバータC23および第2DC/DCコンバータC24へ電力を供給する経路に、接続を切り替える切り替え器(図示せず)が設けられてもよい。例えば、蓄電池システムの電源投入時に切り替え器が閉じて経路が導通し、電源がオフされるときに切り替え器が開いて経路が電気的に切断される。
 次に、本実施形態の蓄電池システムの動作の一例について説明する。
 図3は、一実施形態の蓄電池システムにおける、電池管理ユニットと蓄電池モジュールとの動作の一例を説明するタイミングチャートである。
 なお、図3および後述する図4-5では、蓄電池モジュールMDL1-MDLnの1つの動作のみ示しているが、複数の蓄電池モジュールMDL1-MDLnは、それぞれ同様の動作を行う。また、図3乃至図5では、電池管理ユニットBMUの演算処理装置C1の記載を省略しているが、演算処理装置C1は、無線通信モジュール10、20を介して蓄電池モジュールMDL1-MDLnに制御信号を送信し、蓄電池モジュールMDL1-MDLnから送信されたデータ等を、無線通信モジュール10、20を介して受信することができる。
 最初に、蓄電池システムが据付されると、組電池BTから第1DC/DCコンバータC23へ電力供給が開始される。例えば、組電池BTから第1DC/DCコンバータC23への電源供給ラインには、外付けのスイッチが設置されてもよく、スイッチをオンすることにより、組電池BTから第1DC/DCコンバータC23への電源供給が開始されるように構成されてもよい。第1DC/DCコンバータC23は、組電池BTから供給される直流電力を所定の電圧の直流電力に変換し、無線通信モジュール20へ電源として供給する(ステップS1)。
 蓄電池システムが据付されると、電池管理ユニットBMUの無線通信モジュール10にも電源供給が開始される。無線通信モジュール10には、例えば、上位装置から電源が供給される。
 続いて、無線通信モジュール10と無線通信モジュール20との間で、コネクションを行う。無線通信モジュール20は、無線通信モジュール10から送信されたアドバタイズパケットに対し、アドバタイズパケットを送信し、蓄電池モジュールMDLと電池管理ユニットBMUとの間でコネクションを行う(ステップS2)。コネクションが完了すると、無線通信モジュール10、20に電源が供給されている間、コネクション状態が維持される。
 上位装置から起動指令を受信すると、演算処理装置C1は、無線通信モジュール10、20を介して(ステップS3)、第2DC/DCコンバータC24へ起動指令を出力する(ステップS4)。
 無線通信モジュール20からの起動指令により組電池BTから第2DC/DCコンバータC24に直流電力が供給され、組電池BTから供給される直流電力を所定の電圧の直流電力に変換し、演算処理回路C22へ電源として供給を開始する(ステップS5)。
 演算処理回路C22が起動すると、蓄電池システムが稼動状態となる。
 図4は、一実施形態の蓄電池システムにおける、システム稼動時の電池管理ユニットと蓄電池モジュールとの動作の一例を説明するタイミングチャートである。
 蓄電池システムが稼働しているとき(ステップS6)、演算処理回路C22は一定周期で電池セルの電圧値等のデータ(電池セルに関するデータ)を電池管理ユニットBMUへ送信する。演算処理回路C22は、無線通信モジュール20を介して(ステップS61)無線通信モジュール10へ電池セルに関するデータを送信する(ステップS62)。無線通信モジュール10は、受信したデータを演算処理装置C1へ送信する。
 演算処理装置C1は、無線通信モジュールを介して受信したデータを元に、必要に応じて、蓄電池モジュールMDL1-MDLnの無線通信モジュール20へセルバランス指示を送信する(ステップS63)。無線通信モジュール20は、受信したセルバランス指示を演算処理回路C22へ送信する(ステップS64)。
 電池管理ユニットBMUおよび蓄電池モジュールMDL1-MDLnは、蓄電池システムの稼動中に、上記ステップS61-S64を所定の周期tで行う。
 蓄電池システムが稼動している状態から停止されると、演算処理装置C1は無線通信モジュール10を介して、蓄電池モジュールMDL1-MDLnの無線通信モジュール20へ計測停止指令を送信する(ステップS7)。
 無線通信モジュール20は計測停止指令を受信すると、第2DC/DCコンバータC24を停止させる(ステップS8)。このとき、第1DC/DCコンバータC23は停止されず、無線通信モジュール20への電源供給は継続され、無線通信モジュール20と無線通信モジュール10(通信相手)とのコネクションが維持され、蓄電池モジュールMDL1-MDLnは待機状態となる。
 なお、蓄電池システムが停止された(例えば上位装置から待機指示を受信した)ときには、電池管理ユニットBMUにおいて、無線通信モジュール10への電源供給が少なくとも継続されていればよく、演算処理装置C1への電源供給は停止されてもよい。このことにより、蓄電池システムの待機状態において、無線通信モジュール10と無線通信モジュール20との間のコネクションを維持した状態で、蓄電池システムの消費電力を低く抑えることができる。
 図5は、一実施形態の蓄電池システムにおける、待機時の蓄電池モジュールの動作の一例を説明するタイミングチャートである。
 蓄電池モジュールMDL1-MDLnが待機状態である間、無線通信モジュール20は、下記ステップS9(S91-S94)を所定の周期Tで行う。まず、無線通信モジュール20は、第2DC/DCコンバータC24を起動し(ステップSS91)、演算処理回路C22へ電源を供給させる(ステップS92)。
 演算処理回路C22は、第2DC/DCコンバータC24から供給される電源により起動し、測定回路C21から組電池BTの電圧や温度のデータ(電池セルに関するデータ)を取得して保存し、無線通信モジュール20に対してデータ取得完了の通知を行う(ステップS93)。
 無線通信モジュール20は、演算処理回路C22からデータ取得完了の通知を受信すると、第2DC/DCコンバータC24へ停止指令を送信し、演算処理回路C22への電源供給を停止させる(ステップS94)。
 なお、無線通信モジュール20は、無線通信モジュール20は、例えば所定の周期Tの開始から所定時間TOFF経過後に第2DC/DCコンバータC24を起動し、第2DC/DCコンバータC24を起動してから所定時間TON経過後に、第2DC/DCコンバータC24を停止してもよく、その場合には、演算処理回路C22がデータ取得完了の通知(ステップS93)を送信する動作を省略できる。
 蓄電池システムが稼動状態に戻るときに、演算処理装置C1は、無線通信モジュール10を介して、無線通信モジュール20へ起動指令を送信する(ステップS10)。
 無線通信モジュール20は、起動指令により、第2DC/DCコンバータC24を起動し(ステップS11)、演算処理回路C22へ電源を供給させて蓄電池モジュールMDL1-MDLnを稼動状態とする(ステップS12)。
 なお、蓄電池モジュールMDL1-MDLnを稼動状態となったときに、演算処理回路C22は、待機状態であった期間に測定回路C21から取得したデータを、無線通信モジュール20を介して電池管理ユニットBMUへ送信する(ステップS13)。その後、電池管理ユニットBMUおよび蓄電池モジュールMDL1-MDLnは、稼動時の動作(ステップS6)を行う。
 このことにより、蓄電池システムが停止している期間中も組電池BTの電圧値等のデータを取得することが可能となる。また、待機状態である期間中の組電池BTのデータを取得するための期間のみ、演算処理回路C22に電源が供給されるため、組電池BTに蓄えられたエネルギー中で演算処理回路C22の電源として利用される分を低く抑えることができる。
 すなわち、本実施形態の蓄電池システムでは、電池管理ユニットと蓄電池モジュールとの間でコネクションを確立する動作は、蓄電池システムに電源が投入された後のタイミングのみであって、蓄電池システムが停止しているときには、無線通信モジュール20は待機状態となっている。このため、蓄電池システムが停止状態から再度稼動する度に、コネクションを確立する必要がなくなり、稼動するまでの待機時間を短縮することができる。また、蓄電池システムが稼動する度にコネクションを行うことがなくなり、組電池BTに蓄えられたエネルギーを効率よく負荷へ供給することができる。
 上記の様に、本実施形態の蓄電池システムおよび蓄電池モジュールによれば、稼働するときの待機時間を短縮するとともに、電池に蓄えられたエネルギーを効率よく負荷へ供給することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (5)

  1.  複数の電池セルを含む組電池と、
     電波を送受信する第1無線通信モジュールと、
     複数の前記電池セルに関するデータを取得する演算処理回路と、
     前記組電池に蓄えられたエネルギーを用いて前記第1無線通信モジュールに電源を供給する第1DC/DCコンバータと、
     前記組電池に蓄えられたエネルギーを用いて前記演算処理回路に電源を供給する第2DC/DCコンバータと、を備え、
     前記第1無線通信モジュールは、計測停止指令を受信したときに、前記第2DC/DCコンバータに前記演算処理回路への電源供給を停止する指令を送信し、前記第1DC/DCコンバータによる前記第1無線通信モジュールへの電源供給を継続して通信相手とのコネクションを維持させる、蓄電池モジュール。
  2.  前記計測停止指令を受信した後、前記第1無線通信モジュールは、周期的に、前記第2DC/DCコンバータから前記演算処理回路へ電源供給させるように構成され、
     前記演算処理回路は、電源が供給されている期間に前記電池セルに関するデータを取得する、請求項1記載の蓄電池モジュール。
  3.  前記計測停止指令を受信した後に起動指令を受信したとき、前記第1無線通信モジュールは、前記演算処理回路への電源供給を開始する指令を前記第2DC/DCへ送信するように構成され、
     前記演算処理回路は、前記計測停止指令により電源供給が停止されてから前記起動指令により起動されるまでの期間に取得した複数の前記電池セルに関するデータを、前記第1無線通信モジュールを介して外部へ送信する、請求項2記載の蓄電池モジュール。
  4.  前記第1無線通信モジュールはBLE規格に基づいて電波を送受信する、請求項1乃至請求項3のいずれか1項記載の蓄電池モジュール。
  5.  請求項1乃至請求項4のいずれか1項に記載の蓄電池モジュールを複数と、
     複数の前記蓄電池モジュールとの間で電波を送受信する第2無線通信モジュールと、前記第2無線通信モジュールの動作を制御する演算処理装置と、を各々備えた電池管理ユニットと、を備え、
     前記第2無線通信モジュールが前記計測停止指令を送信した後、前記第2無線通信モジュールへの電源供給を継続して前記第1無線通信モジュールとのコネクションを維持させ、前記演算処理装置への電源供給は停止される、蓄電池システム。
PCT/JP2021/011750 2021-03-22 2021-03-22 蓄電池モジュールおよび蓄電池システム WO2022201251A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011750 WO2022201251A1 (ja) 2021-03-22 2021-03-22 蓄電池モジュールおよび蓄電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011750 WO2022201251A1 (ja) 2021-03-22 2021-03-22 蓄電池モジュールおよび蓄電池システム

Publications (1)

Publication Number Publication Date
WO2022201251A1 true WO2022201251A1 (ja) 2022-09-29

Family

ID=83395363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011750 WO2022201251A1 (ja) 2021-03-22 2021-03-22 蓄電池モジュールおよび蓄電池システム

Country Status (1)

Country Link
WO (1) WO2022201251A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138508A (ja) * 2013-01-17 2014-07-28 Mitsubishi Heavy Ind Ltd 電力貯蔵装置の制御装置及び方法、それを備えた電力貯蔵システム
WO2015107687A1 (ja) * 2014-01-20 2015-07-23 日立オートモティブシステムズ株式会社 電源制御システム、電源制御装置及び方法
JP2019536215A (ja) * 2017-07-06 2019-12-12 エルジー・ケム・リミテッド バッテリーパック管理装置
JP2020501299A (ja) * 2017-07-31 2020-01-16 エルジー・ケム・リミテッド バッテリー管理装置及びそれを含むバッテリーパック
JP2020089064A (ja) * 2018-11-26 2020-06-04 株式会社村田製作所 セルバランス制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138508A (ja) * 2013-01-17 2014-07-28 Mitsubishi Heavy Ind Ltd 電力貯蔵装置の制御装置及び方法、それを備えた電力貯蔵システム
WO2015107687A1 (ja) * 2014-01-20 2015-07-23 日立オートモティブシステムズ株式会社 電源制御システム、電源制御装置及び方法
JP2019536215A (ja) * 2017-07-06 2019-12-12 エルジー・ケム・リミテッド バッテリーパック管理装置
JP2020501299A (ja) * 2017-07-31 2020-01-16 エルジー・ケム・リミテッド バッテリー管理装置及びそれを含むバッテリーパック
JP2020089064A (ja) * 2018-11-26 2020-06-04 株式会社村田製作所 セルバランス制御装置

Similar Documents

Publication Publication Date Title
US9088052B2 (en) Battery multi-series system and communication method thereof
KR101485127B1 (ko) 무선 제어 방식의 배터리 에너지 저장장치
US7405579B2 (en) Voltage detector and insulator interface
US7911179B2 (en) Charging/discharging apparatus
US9088163B2 (en) Secondary battery pack
JP7420962B2 (ja) 自己加熱制御回路及びシステム
CN103069641A (zh) 用于管理蓄电池组的装置
US5628054A (en) Portable radio apparatus having batteries for supplying a plurality of voltages
JP5694902B2 (ja) 二次電池監視装置
WO2012157475A1 (ja) 電源システム及び電源システムの識別情報設定方法並びに電池ユニット
CN110994744A (zh) 一种多电池充放电控制装置和系统
JP2003009403A (ja) 蓄電装置の管理システム
WO2022201251A1 (ja) 蓄電池モジュールおよび蓄電池システム
CN211830247U (zh) 一种多电池充放电控制装置和系统
US20220200069A1 (en) Storage battery apparatus
KR101439233B1 (ko) 보조 전원을 구비한 배터리 관리 시스템
CN114976319A (zh) 用于并联的多个电池模块的控制方法以及电源系统
JP2007236017A (ja) 電池システム
CA3219737A1 (en) Energy storage system, primary energy-storage-apparatus, and auxiliary energy-storage-apparatus
WO2022195820A1 (ja) 蓄電池システム
US10770907B2 (en) Battery device and control method thereof
KR102433850B1 (ko) Bms 인식 시스템 및 방법
CN113841282B (zh) 蓄电池装置
KR20210114757A (ko) 배터리 팩 및 이의 제어방법
JP7508694B2 (ja) 蓄電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP