WO2021052432A1 - 一种低损耗有机胺溶液净化装置及其使用方法 - Google Patents

一种低损耗有机胺溶液净化装置及其使用方法 Download PDF

Info

Publication number
WO2021052432A1
WO2021052432A1 PCT/CN2020/115961 CN2020115961W WO2021052432A1 WO 2021052432 A1 WO2021052432 A1 WO 2021052432A1 CN 2020115961 W CN2020115961 W CN 2020115961W WO 2021052432 A1 WO2021052432 A1 WO 2021052432A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
ion exchange
valve
exchange bed
liquid
Prior art date
Application number
PCT/CN2020/115961
Other languages
English (en)
French (fr)
Inventor
王金意
郜时旺
刘练波
牛红伟
郭东方
汪世清
范旭
王孟
孙美琪
白国威
Original Assignee
华能国际电力股份有限公司
中国华能集团清洁能源技术研究院有限公司
华能(天津)煤气化发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能国际电力股份有限公司, 中国华能集团清洁能源技术研究院有限公司, 华能(天津)煤气化发电有限公司 filed Critical 华能国际电力股份有限公司
Priority to AU2020347721A priority Critical patent/AU2020347721B2/en
Priority to JP2021600151U priority patent/JP3238723U/ja
Publication of WO2021052432A1 publication Critical patent/WO2021052432A1/zh
Priority to US17/488,693 priority patent/US20220016616A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/60Cleaning or rinsing ion-exchange beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/06Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/07Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/09Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds of mixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/10Separation; Purification; Stabilisation; Use of additives

Definitions

  • the invention belongs to the technical field of solution purification devices, and particularly relates to a low-loss organic amine solution purification device and a use method thereof.
  • Petrochemical and environmental protection industries often use chemical absorption methods based on organic amine absorbents to separate acid gases such as hydrogen sulfide and carbon dioxide in raw gas.
  • methyldiethanolamine MDEA
  • MDEA methyldiethanolamine
  • the solution removes hydrogen sulfide gas, and uses monoethanolamine (MEA) to remove carbon dioxide gas in the carbon dioxide capture process of power plant flue gas.
  • MEA monoethanolamine
  • the participation of impurities in the feed gas or the degradation reaction of the organic amine itself will cause problems such as deterioration and deterioration of the organic amine solution.
  • the effective components in the solution continue to decrease, and the absorption capacity continues to decline.
  • thermally stable salts Even if the organic amine raw materials are added on time, the smooth operation of the device cannot be guaranteed. , Because the side reactions caused by impurities and the degradation products of organic amines mainly accumulate in the solution in the form of heat-stable salts, the main components of which are formate, acetate, oxalate, sulfate, nitrate, and sulfide Etc., an increase in the concentration of thermally stable salt will cause problems such as increased corrosion, solution foaming, and device performance fluctuations. Therefore, it is generally necessary to ensure that the thermal stability salt concentration is less than 1.0wt.%. Methods of inhibiting the generation of thermally stable salts include inert gas protection, adding additives to the solution, etc.
  • thermally stable salts is one of the key technologies to ensure the continuous operation of such desulfurization and decarbonization systems.
  • Conventional mechanical filtration and activated carbon adsorption purification methods cannot remove thermally stable salts that exist in ionic state.
  • the methods currently used include: (1) Heat recovery method, by adding alkali to turn organic impurities into high-boiling inorganic salts, and then using distillation to recover low-boiling organic amine components, but this method consumes a lot of energy , The recovery rate is low, and a higher concentration of alkali will be introduced into the system; (2) Electrodialysis uses membrane technology to separate impurity ions by selective permeability of different ions. The disadvantage is that the separation effect is not good and the membrane is easy.
  • the ion exchange method is a widely used method at present. It uses the characteristic of ion exchange resin to selectively adsorb different ions to separate impurity ions from the organic amine solution by adding alkali. Regeneration of resin adsorption capacity achieves the purpose of resin recycling.
  • the ion exchange purification device is generally centered on the ion exchange bed, and the ion exchange resin is loaded into the exchange bed container.
  • the purification device generally runs on the branch line of the process system. A part of the solution is divided from the system into the ion exchange bed for purification, and the setting is fixed.
  • the operation of the program control device is to control the contact time of the solution and the resin by controlling the flow rate of the solution in the ion exchange bed. After the flow purification lasts for a period of time, the solution in the exchange bed is discharged clean, and the solution in the exchange bed is cleaned through water washing, lye regeneration and other steps. Realize the recycling of ion exchange resin. Due to the adhesion and adsorption of the resin to the solution, the excessive dead volume of the device and pipeline, the unreasonable inlet ratio and residence time, etc., some of the solution will stay in the exchange bed or pipeline. Return to the solution system and cause consumption.
  • the existing purification device control program is fixed and cannot respond according to the concentration of the solution and the operation of the purification device.
  • the concentration of the solution is changing all the time, and the adsorption performance of the ion exchange resin also changes over time. If you only operate according to fixed parameters, the performance of the purification system will not be maintained at the best state, and too much solution will occur. The issue of efflux.
  • the purpose of the present invention is to provide a low-loss organic amine solution purification device and a use method thereof to solve the technical problem that the existing purification device control program is fixed and cannot respond according to the solution concentration and the operation condition of the purification device.
  • a low-loss organic amine solution purification device includes an ion exchange bed.
  • the upper feed port of the ion exchange bed is equipped with an inert gas cylinder, a fifth liquid storage tank, and a second liquid addition pump through a pipeline.
  • a first flow meter is installed on the gas outlet pipe of the gas cylinder, a seventh valve is installed on the discharge pipe of the fifth liquid storage tank, and the lower feed port of the ion exchange bed is connected with a first liquid adding pump through a pipe , The suction port of the first liquid adding pump is connected with a first liquid storage tank through a pipeline;
  • the discharge port at the lower end of the ion exchange bed is connected with a second liquid storage tank, a third liquid storage tank, and a fourth liquid storage tank through a pipeline, and the lower discharge pipeline of the ion exchange bed is equipped with multiple total reflection infrared spectroscopy analysis instrument;
  • the upper discharge port of the ion exchange bed is connected to a fourth liquid storage tank through a pipeline, a third valve is installed on the feed pipeline of the second liquid storage tank, and the feed pipeline of the third liquid storage tank is A fourth valve is installed, a fifth valve is installed on the fourth liquid storage tank connected to the outlet pipe at the lower end of the ion exchange bed, and a second valve is installed on the fourth liquid storage tank connected to the outlet pipe at the upper end of the ion exchange bed. valve.
  • a second flow meter is installed on the discharge pipeline of the second liquid addition pump, and the suction port of the second liquid addition pump is connected with a third liquid storage tank and a sixth liquid storage tank through a pipeline.
  • a sixth valve is installed on the discharge pipe of the third liquid storage tank, and an eighth valve is installed on the discharge pipe of the sixth liquid storage tank.
  • a third flow meter and a first valve are installed on the discharge pipe of the first liquid adding pump.
  • the liquid storage tank is a raw liquid tank
  • the liquid storage tank is a waste liquid tank
  • the liquid storage tank is a circulating lye tank
  • the liquid storage tank is a clean liquid tank
  • the liquid storage tank is a waste liquid tank. Ion water tank.
  • the sixth liquid storage tank is a clean lye tank.
  • tops of the second liquid storage tank and the fourth liquid storage tank are both provided with gas discharge ports.
  • a method for using a low-loss organic amine solution purification device including:
  • the organic amine solution to be purified is contained in the first storage tank, and the circulation starts, the first dosing pump, the first valve, and the second valve are opened, and the amine solution is added from the bottom of the ion exchange bed and enters the ion exchange bed After purification, the solution enters the fourth storage tank from the top. After the purification process runs for a period of time, the device returns to the initial state;
  • Inert gas purging Open the inert gas cylinder, the first flow meter and the fifth valve, and blow inert gas from the top of the ion exchange bed to discharge the amine solution remaining in the ion exchange bed into the fourth storage tank. The device returns to the initial state;
  • Inert gas purging Open the inert gas bottle and the first flowmeter, and manually control the third valve or the fifth valve by the test results of the multiple total reflection infrared spectrum analyzer. If the amine concentration in the previous step is lower than the set value Open the third valve to discharge the waste liquid into the second liquid storage tank, otherwise, open the valve V5 to discharge the waste liquid into the liquid storage tank T4;
  • Pre-regeneration manually turn on the dosing pump P2, open valve V6, valve V3, inject the circulating lye in the storage tank T3 from the top of the ion exchange bed X1, and rinse the ion exchange resin from top to bottom for pre-regeneration.
  • the produced liquid flows into the liquid storage tank T2, and the device returns to the initial state;
  • Regeneration Turn on the second dosing pump, the eighth valve, and the fourth valve, and inject the lye in the sixth storage tank from the top of the ion exchange bed through the second dosing pump, and wash away the resin surface adsorption from top to bottom.
  • the impurity ions in the resin can be regenerated.
  • the waste liquid is collected in the third storage tank as a circulating lye, and the device is restored to the initial state;
  • step 3 if the multiple total reflection infrared spectrum analyzer monitors that the concentration of the amine solution in the washing waste liquid is higher than the set value, the third valve is closed and the fifth valve is opened at the same time, so that the high-concentration waste liquid flows into the first 4. In the liquid storage tank, the device is restored to the initial state;
  • the gas purging time in step 4) is controlled by the multiple total reflection infrared spectrum analyzer. If the amine concentration in the previous step is higher than the set value, the purging time will be extended, and then repeat the water washing step and inert gas purging step 3) and 4) Until the amine concentration in the discharged waste liquid is lower than the set value, the system restores to the initial state;
  • step 5 the multiple total reflection infrared spectrum analyzer records the amine concentration in the waste liquid from the bottom of the ion exchange bed. If the amine concentration is higher than the set value, the multiple total reflection infrared spectrum in the washing step in the next purification cycle is reduced The analyzer determines the amine concentration and prolongs the time of water washing and inert gas purging;
  • the multiple total reflection infrared spectrum analyzer records the amine concentration in the circulating lye from the bottom of the ion exchange bed. If the amine concentration is higher than the set value, the third flowmeter will increase the inflow in the next cycle. The amount of amine solution in the ion exchange bed prolongs the subsequent inert gas purging time, and reduces the judgment value of the amine concentration by the multiple total reflection infrared spectrometer in the washing step of the next purification cycle, and prolongs the water washing and inert gas purging time.
  • the present invention has the following beneficial effects:
  • the low-loss organic amine solution purification device of the present invention detects the concentration of organic amine in the solution discharged from the ion exchange bed X1 through the multiple total reflection infrared spectrum analyzer D1 in real time, which is convenient for the staff to control the opening of the valve through the real-time detection result of the multiple total reflection infrared spectrum analyzer D1 Or, it avoids the disadvantages of the prior art that the solidified operating program responds poorly to actual operating conditions and cannot independently optimize operating parameters. Furthermore, the present invention can also automatically adjust the operating program of the amine solution measurement and purification device. Combined, the amine loss in the main steps of the purification device can be informationized, and the loss can be reduced by optimizing the operating parameters and the operating cost can be reduced.
  • Figure 1 is a schematic diagram of the organic amine solution purification device of the present invention.
  • X1 is an ion exchange bed
  • D1 is a multiple total reflection infrared spectrometer
  • C1 is an inert gas cylinder
  • F1-F3 are flow meters
  • P1 and P2 are dosing pumps
  • T1-T6 are liquid storage Tank and V1-V8 are all valves.
  • a layer/element when referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be an intermediate layer/element between them. element.
  • the layer/element may be located "under” the other layer/element when the orientation is reversed.
  • a low-loss organic amine solution purification device including an ion exchange bed X1
  • the ion exchange bed X1 includes a top cover, a bottom cover and connected filters, in the ion exchange bed X1 Load the ion exchange resin.
  • the ion exchange resin contained in the ion exchange bed X1 is cation exchange resin, anion exchange resin or anion and cation mixed ion exchange resin.
  • the filter on the top and bottom cover can ensure that the resin will not flow out of the ion exchange bed X1.
  • the upper feed port of the exchange bed X1 is equipped with an inert gas cylinder C1, a liquid storage tank T5 and a liquid filling pump P2 through a pipeline.
  • the gas contained in the inert gas cylinder C1 is an inert gas such as nitrogen, argon or helium.
  • the outlet pipe of the inert gas cylinder C1 is installed with a flowmeter F1
  • the discharge pipe of the liquid storage tank T5 is installed with a valve V7
  • the discharge pipe of the liquid addition pump P2 is installed with a flowmeter F2
  • the liquid addition pump P2 is installed.
  • the pumping port is connected to the liquid storage tank T3 and the liquid storage tank T6 through the pipeline.
  • the discharge pipe of the liquid storage tank T3 is equipped with a valve V6, and the discharge pipe of the liquid storage tank T6 is equipped with a valve V8 and an ion exchange bed X1.
  • the feed port at the lower end is connected to the feed pump P1 through a pipe
  • the suction port of the feed pump P1 is connected to a storage tank T1 through a pipe
  • the discharge pipe of the feed pump P1 is equipped with a flow meter F3 and a valve V1, ion exchange
  • the discharge port at the lower end of the bed X1 is connected to a liquid storage tank T2, a liquid storage tank T3, and a liquid storage tank T4 through a pipeline
  • the upper discharge port of the ion exchange bed X1 is connected to a liquid storage tank T4 through a pipeline
  • the lower end of the ion exchange bed X1 The discharge pipeline is equipped with a multiple total reflection infrared spectrum analyzer D1.
  • the detection window of the multiple total reflection infrared spectrum analyzer D1 is embedded in the outer wall of the pipeline at the bottom of the ion exchange bed X1.
  • the surface of the window is directly in contact with the waste liquid, and the flow through the window can be measured.
  • the concentration of organic amine in the liquid, the measurement result will determine the duration and number of repetitions of each step in the subsequent purification process.
  • valve V3 is installed on the feed pipe of storage tank T2
  • valve V4 is installed on the feed pipe of storage tank T3
  • valve V4 is installed on the feed pipe of storage tank T3
  • valve is installed on the feed pipe of storage tank T3
  • valve is installed on the outlet pipe at the lower end of the liquid storage tank T4 connected to the ion exchange bed X1 V5
  • the liquid storage tank T4 is connected with a valve V2 on the upper outlet pipe of the ion exchange bed X1.
  • the liquid storage tank T1 is the original liquid tank
  • the liquid storage tank T2 is the waste liquid tank
  • the liquid storage tank T3 is the circulating lye tank
  • the liquid storage tank T4 is the clean liquid tank
  • the liquid storage tank T5 is the deionized water tank.
  • the liquid storage tank T6 is a clean lye tank
  • the top of the liquid storage tank T2 and the liquid storage tank T4 has a gas discharge port
  • the liquid storage tank T6 contains sodium hydroxide, potassium hydroxide, etc. required for the regeneration of the ion exchange resin Alkaline solution.
  • the initial state of the device is that the valves V1-V8 and the flow meters F1-F3 are closed. After the device is started, it runs in turn according to the following steps:
  • Inert gas purging manually open the inert gas bottle C1 and the flow meter F1, and manually control to open the valve V3 or the valve V5 by the test result of the multiple total reflection infrared spectrum analyzer D1. If the amine concentration in the previous step is lower than the set value Then open valve V3 to discharge the waste liquid into the liquid storage tank T2, otherwise open valve V5 to discharge the waste liquid into the liquid storage tank T4; the gas purging time is controlled by the multiple total reflection infrared spectrum analyzer D1, if the preamble In the step, if the amine concentration is higher than the set value, extend the purge time, and then repeat the water washing step and inert gas purge steps (3) and (4) until the amine concentration in the discharged waste liquid is lower than the set value, and the system returns to the original status;
  • Pre-regeneration manually turn on the dosing pump P2, open valve V6, valve V3, inject the circulating lye in the storage tank T3 from the top of the ion exchange bed X1, and rinse the ion exchange resin from top to bottom for pre-regeneration.
  • the produced liquid flows into the liquid storage tank T2, and the device is restored to the initial state;
  • the multiple total reflection infrared spectrometer D1 records the amine concentration in the waste liquid flowing out of the bottom of the ion exchange bed X1. If the amine concentration is higher, the next one is lowered.
  • the low-loss organic amine solution purification device uses a multiple total reflection infrared spectrum analyzer D1 to detect the concentration of organic amines in the solution discharged from the ion exchange bed X1 in real time, which is convenient for the staff to control the opening of the valve through the real-time detection results of the multiple total reflection infrared spectrum analyzer D1. It avoids the shortcomings of the prior art using a solidified operating program that responds poorly to actual operating conditions and cannot independently optimize operating parameters. Furthermore, the present invention can also set the valves V1-V7 as electronically controlled valves.
  • the multiple total reflection infrared spectrum analyzer D1 detects and inputs the purification device control device, and can correspondingly automatically control each electronically controlled valve according to the detected concentration;
  • the invention can combine the functions of amine solution measurement and the function of autonomous adjustment of the operation program of the purification device, and can informationize the amine loss in the main steps of the operation of the purification device, reduce the loss and reduce the operating cost by optimizing the operating parameters.
  • the ion exchange bed X1 is filled with type II anion exchange resin, the multiple total reflection infrared spectrometer D1 uses silicon windows, the number of reflections on the windows is 20, the inert gas cylinder C1 is a nitrogen cylinder, and the liquid storage tank T1 is filled Pour the methyldiethanolamine solution to be purified with a concentration of 30 wt%, and fill the liquid storage tank T6 with a 5 wt% potassium hydroxide aqueous solution.
  • the organic amine solution to be purified is contained in the liquid storage tank T1.
  • the circulation starts. Manually turn on the dosing pump P1, valve V1, and valve V2.
  • the solution enters the storage tank T4 from the top; the linear velocity of the methyldiethanolamine solution flowing through the resin surface is 1 cm/min; the purification step lasts for 0.5 hours, and the device returns to the initial state;
  • Pre-regeneration manually turn on the dosing pump P2, open valve V6, valve V3, inject the circulating lye in the storage tank T3 from the top of the ion exchange bed X1, and rinse the ion exchange resin from top to bottom for pre-regeneration.
  • the produced liquid flows into the liquid storage tank T2, and the device is restored to the initial state;
  • the multiple total reflection infrared spectrum analyzer D1 records the amine concentration in the waste liquid flowing out of the bottom of the ion exchange bed X1. If the amine concentration is higher than 3%, it will be reduced.
  • the judgment value of the multiple total reflection infrared spectrum analyzer D1 on the amine concentration is 2%, and the time of water washing and inert gas purging is 2 times the default value;
  • step 5 modify the water system and inert gas purge step time of the next cycle, and double the default time of these two steps. If the default time is increased by more than 5 times after a number of cycles, the device will notify the operating personnel to overhaul and maintain the equipment.
  • the ion exchange bed X1 is filled with anion and cation exchange resin
  • the multiple total reflection infrared spectrum analyzer D1 uses zinc selenide windows
  • the number of reflections on the windows is 25
  • the inert gas cylinder C1 is a nitrogen cylinder
  • the liquid storage tank T1 The monoethanolamine solution to be purified is filled with a concentration of 35 wt%
  • the storage tank T6 is filled with a 5 wt% sodium hydroxide aqueous solution.
  • the monoethanolamine solution to be purified is contained in the liquid storage tank T1.
  • the circulation starts. Manually turn on the dosing pump P1, valve V1, and valve V2.
  • the solution enters the storage tank T4 from the top; the linear velocity of the monoethanolamine solution flowing through the resin surface is 0.5 cm/min; the purification step lasts for 50 minutes, and the device returns to the initial state;
  • Inert gas purging manually open the inert gas bottle C1 and the flow meter F1, and manually control the opening of valve V3 or valve V5 by the test results of the multiple total reflection infrared spectrum analyzer D1. If the monoethanolamine solution in the previous step is less than 3% Then open valve V3 to discharge the waste liquid into the liquid storage tank T2, otherwise open valve V5 to discharge the waste liquid into the liquid storage tank T4; the gas purging time is controlled by the multiple total reflection infrared spectrum analyzer D1, if the preamble In the step, if the concentration of the monoethanolamine solution is higher than the set value 3%, the purge time will be extended, and then repeat the washing step and the inert gas purge steps (3) and (4) until the concentration of the monoethanolamine solution in the discharged waste liquid is lower than the set value. Set a value of 3%, and the system will return to its initial state;
  • Pre-regeneration manually turn on the dosing pump P2, open valve V6, valve V3, inject the circulating lye in the storage tank T3 from the top of the ion exchange bed X1, and rinse the ion exchange resin from top to bottom for pre-regeneration.
  • the produced liquid flows into the liquid storage tank T2, and the device returns to the initial state; the multiple total reflection infrared spectrum analyzer D1 records the amine concentration in the waste liquid flowing out of the bottom of the ion exchange bed X1.
  • the concentration of the monoethanolamine solution is higher than 3%, Reduce the determination value of the monoethanolamine solution concentration of the multiple total reflection infrared spectrum analyzer D1 in the washing step in the next purification cycle to 2%, and extend the washing and inert gas purging time to 2 times the default value;

Abstract

一种低损耗有机胺溶液净化装置及其使用方法,装置包括离子交换床(X1),所述离子交换床(X1)的上端进料口通过管道安装有惰性气体气瓶(C1)、第五储液罐(T5)和第二加液泵(P2),所述离子交换床(X1)的下端进料口通过管道连接有第一加液泵(P1),所述第一加液泵(P1)的抽料口通过管道连接有第一储液罐(T1);所述离子交换床(X1)的下端出料口通过管道连接有第二储液罐(T2)、第三储液罐(T3)和第四储液罐(T4),所述离子交换床(X1)的下端出料管道安装有多重全反射红外光谱分析仪(D1);所述离子交换床(X1)的上端出料口通过管道连接有第四储液罐(T4)。便于工作人员通过多重全反射红外光谱分析仪(D1)实时检测结果控制阀门,避免了现有技术采用固化的运行程序对实际运行情况响应差,不能自主优化运行参数的缺点。

Description

一种低损耗有机胺溶液净化装置及其使用方法 【技术领域】
本发明属于溶液净化装置技术领域,特别涉及一种低损耗有机胺溶液净化装置及其使用方法。
【背景技术】
石化、环保行业常使用基于有机胺吸收剂的化学吸收法来分离原料气中的硫化氢、二氧化碳等酸性气体,例如在天然气或煤气化合成气脱酸气工艺中使用甲基二乙醇胺(MDEA)溶液去除硫化氢气体,在电厂烟气二氧化碳捕集工艺中使用一乙醇胺(MEA)去除二氧化碳气体。原料气中的杂质参与反应或有机胺本身发生降解反应会导致有机胺溶液变质、劣化等问题,溶液中有效成分不断降低,吸收能力不断下降,即使按时补充有机胺原料也不能保证装置的平稳运行,因为杂质引起的副反应和有机胺降解的产物主要以热稳定性盐的形式在溶液中累积,其成分主要有甲酸盐、乙酸盐、草酸盐、硫酸盐、硝酸盐、硫化物等,热稳定性盐浓度增高会导致腐蚀加剧、溶液发泡、装置性能波动等问题。因此一般需保证热稳定性盐浓度低于1.0wt.%。抑制热稳定性盐产生的方法包括惰性气体保护、溶液中加入添加剂等方法,但是由于原料气中杂质千差万别、有机胺化学稳定性不高等因素,因此此类方法对于抑制有机胺劣化的作用十分有限。而放任热稳定性盐累积,采取直接更换胺液的方法则成本较高,废液还可能会带来环境问题。
如何去除热稳定性盐是保证这类脱硫、脱碳系统持续运行的关键技术之一,常规的机械过滤、活性炭吸附的净化方法无法去除以离子态存在的热稳定性盐。目前使用的方法包括:(1)、热回收法,通过加入碱,使有机杂质变为高沸点的 无机盐,再利用蒸馏的方法回收低沸点的有机胺成分,但是这种方法能耗较高,回收率低,还会在系统中引入较高浓度的碱;(2)、电渗析,利用膜技术对不同离子的选择透过性来分离杂质离子,其缺点是分离效果不佳、膜容易受污染;(3)、离子交换法,是目前使用的比较广泛的一种方法,利用离子交换树脂对不同离子有选择性吸附作用的特性,从有机胺溶液中分离杂质离子,通过加入碱实现树脂吸附能力的再生,达到树脂循环利用的目的。
离子交换净化装置一般以离子交换床为中心,在交换床容器中装入离子交换树脂,净化装置一般在工艺系统的支线上运行,从系统中分流一部分溶液进入离子交换床进行净化,设定固定的程序控制装置的运行,通过控制溶液在离子交换床中流动速度来控制溶液与树脂接触的时间,流动净化持续一段时间后,将交换床中的溶液排放干净,通过水洗、碱液再生等步骤实现离子交换树脂的循环使用。这种装置由于树脂对溶液的粘着和吸附作用、装置、管路的死体积过大、进液比和驻留时间不合理等问题,会使得部分溶液驻留在交换床或管路中,无法回到溶液系统而产生消耗。
现有的净化装置控制程序为固定的,无法根据溶液浓度和净化装置运行情况做出响应。而实际上溶液浓度在一直在发生变化,离子交换树脂的吸附性能也随时间推移发生变化,如果只按照固定的参数运行,那么净化系统性能就无法保持在最佳状态,而且会发生过多溶液外排的问题。
【发明内容】
本发明的目的在于提供一种低损耗有机胺溶液净化装置及其使用方法,以解决现有的净化装置控制程序为固定的,无法根据溶液浓度和净化装置运行情况做出响应的技术问题。
为达到上述目的,本发明采用以下技术方案予以实现:
一种低损耗有机胺溶液净化装置,包括离子交换床,所述离子交换床的上端进料口通过管道安装有惰性气体气瓶、第五储液罐和第二加液泵,所述惰性气体气瓶的出气管道上安装有第一流量计,所述第五储液罐的出料管道上安装有第七阀门,所述离子交换床的下端进料口通过管道连接有第一加液泵,所述第一加液泵的抽料口通过管道连接有第一储液罐;
所述离子交换床的下端出料口通过管道连接有第二储液罐、第三储液罐和第四储液罐,所述离子交换床的下端出料管道安装有多重全反射红外光谱分析仪;
所述离子交换床的上端出料口通过管道连接有第四储液罐,所述第二储液罐的进料管道上安装有第三阀门,所述第三储液罐的进料管道上安装有第四阀门,所述第四储液罐连接离子交换床下端出料口管道上安装有第五阀门,所述第四储液罐连接离子交换床上端出料口管道上安装有第二阀门。
进一步的,所述第二加液泵的出料管道上安装有第二流量计,所述第二加液泵的抽料口通过管道连接有第三储液罐和第六储液罐。
进一步的,所述第三储液罐的出料管道上安装有第六阀门,所述第六储液罐的出料管道上安装有第八阀门。
进一步的,所述第一加液泵的出料管道上安装有第三流量计和第一阀门。
进一步的,所述储液罐为原液罐,所述储液罐为废液罐,所述储液罐为循环碱液罐,所述储液罐为净液罐,所述储液罐为去离子水罐。
进一步的,所述第六储液罐为净碱液罐。
进一步的,第二储液罐和第四储液罐顶部均设有气体排放口。
一种低损耗有机胺溶液净化装置的使用方法,包括:
1)净化:待净化的有机胺溶液盛装在第一储液罐中,循环开始,开启第一加液泵、第一阀门、第二阀门,由离子交换床底部加入胺液,进入离子交换床的溶液经过净化后从顶部进入第四储液罐,净化流程运行一段时间后,装置回复初始状态;
2)惰性气体吹扫:打开惰性气体气瓶、第一流量计和第五阀门,由离子交换床顶部吹入惰性气体,使残留于离子交换床中的胺溶液排入第四储液罐,装置回复初始状态;
3)水洗:打开第七阀门,使第五储液罐中的去离子水从顶部加入到离子交换床中,到达一定液位后关闭第七阀门,去离子水浸泡离子交换床中离子交换树脂一段时间后,打开第三阀门排出废液到第二储液罐;
4)惰性气体吹扫:打开惰性气体瓶和第一流量计,由多重全反射红外光谱分析仪测试结果手动控制打开第三阀门或第五阀门,如果前序步骤中胺浓度低于设定值则开启第三阀门,使废液排入第二储液罐,反之则开启阀门V5,使废液排入储液罐T4;;
5)预再生:手动开启加液泵P2,打开阀门V6、阀门V3,将储液罐T3中的循环碱液从离子交换床X1顶部注入,从上自下淋洗离子交换树脂进行预再生,产生的液体流入到储液罐T2中,装置恢复到初始状态;
6)再生:开启第二加液泵、第八阀门、第四阀门,将第六储液罐中碱液通过第二加液泵从离子交换床顶部注入,从上自下洗去树脂表面吸附的杂质离子,使树脂再生,淋洗后废液收集到第三储液罐中作为循环碱液,装置恢复到初始状态;
7)惰性气体吹扫:手动打开惰性气体气瓶、第一流量计F1和第三阀门,使 残留于离子交换床中碱液排入第二储液罐,装置恢复到初始状态;
8)循环完成,开启下一个循环。
进一步的,步骤3)中,如多重全反射红外光谱分析仪监测水洗废液中胺溶液浓度高于设定值,则将第三阀门关闭,同时开启第五阀门,使高浓废液流入第四储液罐中,装置恢复到初始状态;
步骤4)中气体吹扫的时间由多重全反射红外光谱分析仪控制,如果前序步骤中胺浓度高于设定值则延长吹扫时间,然后重复水洗步和惰性气体吹扫步骤3)和4),直至外排废液中胺浓度低于设定值,系统恢复初始状态;
步骤5)中,多重全反射红外光谱分析仪记录离子交换床底部流出废液中的胺浓度,如果其中胺浓度高于设定值,则降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪对胺浓度的判定值,并延长水洗和惰性气体吹扫的时间;
步骤6)中,多重全反射红外光谱分析仪记录离子交换床底部流出的循环碱液中的胺浓度,如果其中胺浓度高于设定值,则下一循环中结合第三流量计结果增加流入离子交换床的胺溶液的量,延长后续惰性气体吹扫的时间,并降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪对胺浓度的判定值,延长水洗和惰性气体吹扫的时间。
与现有技术相比,本发明具有以下有益效果:
本发明低损耗有机胺溶液净化装置通过多重全反射红外光谱分析仪D1实时检测离子交换床X1排出溶液内有机胺浓度,便于工作人员通过多重全反射红外光谱分析仪D1实时检测结果控制阀门的开或关,避免了现有技术采用固化的运行程序对实际运行情况响应差,不能自主优化运行参数的缺点,并且,进一步的,本发明还可以将胺溶液测量和净化装置运行程序自主调节的功能结合到一起,可 以将净化装置运行主要步骤的胺损耗信息化,通过优化操作参数来减少损耗,降低运行成本。
【附图说明】
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明有机胺溶液净化装置示意图。
图中:X1为离子交换床、D1为多重全反射红外光谱分析仪、C1为惰性气体气瓶、F1-F3均为流量计、P1和P2均为加液泵、T1-T6均为储液罐、V1-V8均为阀门。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人 员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
请参阅图1,本发明提供一种技术方案:一种低损耗有机胺溶液净化装置,包括离子交换床X1,离子交换床X1含有顶盖、底盖及相连的滤网,离子交换床X1中装入离子交换树脂,离子交换床X1中所盛装的离子交换树脂为阳离子交换树脂、阴离子交换树脂或阴阳混合离子交换树脂,顶底盖的滤网可以保证树脂不会流出离子交换床X1,离子交换床X1的上端进料口通过管道安装有惰性气体气瓶C1、储液罐T5和加液泵P2,惰性气体气瓶C1气瓶中盛装的气体为氮气、氩气或氦气等惰性气体,惰性气体气瓶C1的出气管道上安装有流量计F1,储液罐T5的出料管道上安装有阀门V7,加液泵P2的出料管道上安装有流量计F2,加 液泵P2的抽料口通过管道连接有储液罐T3和储液罐T6,储液罐T3的出料管道上安装有阀门V6,储液罐T6的出料管道上安装有阀门V8,离子交换床X1的下端进料口通过管道连接有加液泵P1,加液泵P1的抽料口通过管道连接有储液罐T1,加液泵P1的出料管道上安装有流量计F3和阀门V1,离子交换床X1的下端出料口通过管道连接有储液罐T2、储液罐T3和储液罐T4,离子交换床X1的上端出料口通过管道连接有储液罐T4,离子交换床X1的下端出料管道安装有多重全反射红外光谱分析仪D1,多重全反射红外光谱分析仪D1的检测窗口嵌入到离子交换床X1底部管路的外壁,窗口表面直接与废液接触,可测量流经窗口的液体中有机胺的浓度,其测量结果将决定后续净化过程中各步骤的持续时间和重复次数,多重全反射红外光谱分析仪D1红外光谱窗口的材质为单晶硅、硒化锌、金刚石或氟化钙,储液罐T2的进料管道上安装有阀门V3,储液罐T3的进料管道上安装有阀门V4,储液罐T4连接离子交换床X1下端出料口管道上安装有阀门V5,储液罐T4连接离子交换床X1上端出料口管道上安装有阀门V2。
请参阅图1,储液罐T1为原液罐,储液罐T2为废液罐,储液罐T3为循环碱液罐,储液罐T4为净液罐,储液罐T5为去离子水罐,储液罐T6为净碱液罐,储液罐T2、储液罐T4顶部有气体排放口,储液罐T6中所盛装的为离子交换树脂再生所需的氢氧化钠、氢氧化钾等碱溶液。
请参阅图1,装置初始状态为阀门V1-V8、流量计F1-F3均关闭,装置启动后按照下述步骤依次循环运行:
1)净化:待净化的有机胺溶液盛装在储液罐T1中,循环开始,手动开启加液泵P1、阀门V1、阀门V2,由离子交换床X1底部加入胺液,进入离子交换床X1的溶液经过净化后从顶部进入储液罐T4,净化流程运行一段时间后,装置回 复初始状态;
2)惰性气体吹扫:手动打开惰性气体气瓶C1、流量计F1和阀门V5,由离子交换床X1顶部吹入惰性气体,使残留于离子交换床X1中的胺溶液排入储液罐T4,装置回复初始状态;
3)水洗:手动打开阀门V7,使储液罐T5中的去离子水从顶部加入到离子交换床X1中,到达一定液位后关闭阀门V7,去离子水浸泡离子交换床X1中离子交换树脂一段时间后,手动打开阀门V3排出废液到储液罐T2,如多重全反射红外光谱分析仪D1监测水洗废液中胺溶液浓度较高,则其将阀门V3关闭,同时开启阀门V5,使高浓废液流入储液罐T4中,装置恢复到初始状态;
4)惰性气体吹扫:手动打开惰性气体瓶C1和流量计F1,由多重全反射红外光谱分析仪D1测试结果手动控制打开阀门V3或阀门V5,如果前序步骤中胺浓度低于设定值则开启阀门V3,使废液排入储液罐T2,反之则开启阀门V5,使废液排入储液罐T4;气体吹扫的时间由多重全反射红外光谱分析仪D1控制,如果前序步骤中胺浓度高于设定值则延长吹扫时间,然后重复水洗步和惰性气体吹扫步骤(3)和(4),直至外排废液中胺浓度低于设定值,系统恢复初始状态;
5)预再生:手动开启加液泵P2,打开阀门V6、阀门V3,将储液罐T3中的循环碱液从离子交换床X1顶部注入,从上自下淋洗离子交换树脂进行预再生,产生的液体流入到储液罐T2中,装置恢复到初始状态;多重全反射红外光谱分析仪D1记录离子交换床X1底部流出废液中的胺浓度,如果其中胺浓度较高,则降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪D1对胺浓度的判定值,并延长水洗和惰性气体吹扫的时间;
6)再生:手动开启加液泵P2、阀门V8、阀门V4,将储液罐T6中碱液通 过加液泵P2从离子交换床X1顶部注入,从上自下洗去树脂表面吸附的杂质离子,使树脂再生,淋洗后废液收集到储液罐T3中作为循环碱液,装置恢复到初始状态;多重全反射红外光谱分析仪D1记录离子交换床X1底部流出的循环碱液中的胺浓度,如果其中胺浓度较高,则下一循环中结合流量计F3结果增加流入离子交换床X1的胺溶液的量,延长后续惰性气体吹扫的时间,并降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪D1对胺浓度的判定值,延长水洗和惰性气体吹扫的时间;
7)惰性气体吹扫:手动打开惰性气体气瓶C1、流量计F1和阀门V3,使残留于离子交换床X1中碱液排入储液罐T2,装置恢复到初始状态;
8)循环完成,开启下一个循环。
该低损耗有机胺溶液净化装置通过多重全反射红外光谱分析仪D1实时检测离子交换床X1排出溶液内有机胺浓度,便于工作人员通过多重全反射红外光谱分析仪D1实时检测结果控制阀门的开或关,避免了现有技术采用固化的运行程序对实际运行情况响应差,不能自主优化运行参数的缺点。并且,进一步的,本发明还能够将阀门V1-V7设置为电控阀,多重全反射红外光谱分析仪D1检测加过输入净化装置控制装置,根据检测的浓度可以对应自动控制各个电控阀;本发明能够将胺溶液测量和净化装置运行程序自主调节的功能结合到一起,可以将净化装置运行主要步骤的胺损耗信息化,通过优化操作参数来减少损耗,降低运行成本。
实施例1:
离子交换床X1中装入II型阴离子交换树脂,多重全反射红外光谱分析仪D1采用硅窗片,窗片上的反射次数为20次,惰性气体气瓶C1为氮气瓶,储液 罐T1中装入待净化的甲基二乙醇胺溶液,浓度为30wt%,储液罐T6中装入5wt%的氢氧化钾水溶液。
系统启动后按如下步骤进行:
1)净化:待净化的有机胺溶液盛装在储液罐T1中,循环开始,手动开启加液泵P1、阀门V1、阀门V2,由离子交换床X1底部加入胺液,进入离子交换床X1的溶液经过净化后从顶部进入储液罐T4;甲基二乙醇胺溶液流经树脂表面的线速度为1厘米/分;净化步骤持续0.5小时,装置回复初始状态;
2)惰性气体吹扫:手动打开惰性气体气瓶C1、流量计F1和阀门V5,由离子交换床X1顶部吹入惰性气体,使残留于离子交换床X1中的胺溶液排入储液罐T4,吹扫持续默认值为2分钟,装置回复初始状态;
3)水洗:手动打开阀门V7,使储液罐T5中的去离子水从顶部加入到离子交换床X1中,到达一定液位后关闭阀门V7,去离子水浸泡离子交换床X1中离子交换树脂一段时间后,手动打开阀门V3排出废液到储液罐T2,如多重全反射红外光谱分析仪D1监测水洗废液中胺溶液浓度高于3%,则其将阀门V3关闭,同时开启阀门V5,使高浓废液流入储液罐T4中,装置恢复到初始状态;
4)惰性气体吹扫:手动打开惰性气体瓶C1和流量计F1,由多重全反射红外光谱分析仪D1测试结果手动控制打开阀门V3或阀门V5,如果前序步骤中胺浓度低于3%则开启阀门V3,使废液排入储液罐T2,反之则开启阀门V5,使废液排入储液罐T4;气体吹扫的时间由多重全反射红外光谱分析仪D1控制,如果前序步骤中胺浓度高于设定值3%则延长吹扫时间,然后重复水洗步和惰性气体吹扫步骤(3)和(4),直至外排废液中胺浓度低于设定值,系统恢复初始状态;
5)预再生:手动开启加液泵P2,打开阀门V6、阀门V3,将储液罐T3中 的循环碱液从离子交换床X1顶部注入,从上自下淋洗离子交换树脂进行预再生,产生的液体流入到储液罐T2中,装置恢复到初始状态;多重全反射红外光谱分析仪D1记录离子交换床X1底部流出废液中的胺浓度,如果其中胺浓度高于3%,则降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪D1对胺浓度的判定值到2%,并延长水洗和惰性气体吹扫的时间为默认值的2倍;
6)再生:手动开启加液泵P2、阀门V8、阀门V4,将储液罐T6中碱液通过加液泵P2从离子交换床X1顶部注入,从上自下洗去树脂表面吸附的杂质离子,使树脂再生,淋洗后废液收集到储液罐T3中作为循环碱液,装置恢复到初始状态;多重全反射红外光谱分析仪D1记录离子交换床X1底部流出的循环碱液中的胺浓度,如果其中胺浓度较高,则下一循环中结合流量计F3结果增加流入离子交换床X1的胺溶液的量为本轮的1.5倍,延长后续惰性气体吹扫的时间至默认值的2倍,并降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪D1对胺浓度的判定值到2%,延长水洗和惰性气体吹扫的时间至默认时间的2倍;
7)惰性气体吹扫:手动打开惰性气体气瓶C1、流量计F1和阀门V3,使残留于离子交换床X1中碱液排入储液罐T2,装置恢复到初始状态;
8)循环完成,开启下一个循环。
如连续3个循环在步骤5)或6)对下一循环的水系和惰性气体吹扫步骤时间进行修改,将这两步持续的默认时间提高1倍。如经过若干循环默认时间提高5倍以上,装置则对运行人员发出通知进行设备检修和维护。
实施例2:
离子交换床X1中装入阴阳离子交换树脂,多重全反射红外光谱分析仪D1采用硒化锌窗片,窗片上的反射次数为25次,惰性气体气瓶C1为氮气瓶,储液 罐T1中装入待净化的一乙醇胺溶液,浓度为35wt%,储液罐T6中装入5wt%的氢氧化钠水溶液。
系统启动后按如下步骤进行:
1)净化:待净化的一乙醇胺溶液盛装在储液罐T1中,循环开始,手动开启加液泵P1、阀门V1、阀门V2,由离子交换床X1底部加入胺液,进入离子交换床X1的溶液经过净化后从顶部进入储液罐T4;一乙醇胺溶液流经树脂表面的线速度为0.5厘米/分;净化步骤持续50分钟,装置回复初始状态;
2)惰性气体吹扫:手动打开惰性气体气瓶C1、流量计F1和阀门V5,由离子交换床X1顶部吹入惰性气体,使残留于离子交换床X1中的一乙醇胺溶液排入储液罐T4,吹扫持续默认值为2分钟,装置回复初始状态;
3)水洗:手动打开阀门V7,使储液罐T5中的去离子水从顶部加入到离子交换床X1中,到达一定液位后关闭阀门V7,去离子水浸泡离子交换床X1中离子交换树脂一段时间后,手动打开阀门V3排出废液到储液罐T2,如多重全反射红外光谱分析仪D1监测水洗废液中一乙醇胺溶液浓度高于3%,则其将阀门V3关闭,同时开启阀门V5,使高浓废液流入储液罐T4中,装置恢复到初始状态;
4)惰性气体吹扫:手动打开惰性气体瓶C1和流量计F1,由多重全反射红外光谱分析仪D1测试结果手动控制打开阀门V3或阀门V5,如果前序步骤中一乙醇胺溶液低于3%则开启阀门V3,使废液排入储液罐T2,反之则开启阀门V5,使废液排入储液罐T4;气体吹扫的时间由多重全反射红外光谱分析仪D1控制,如果前序步骤中一乙醇胺溶液浓度高于设定值3%则延长吹扫时间,然后重复水洗步和惰性气体吹扫步骤(3)和(4),直至外排废液中一乙醇胺溶液浓度低于设定值3%,系统恢复初始状态;
5)预再生:手动开启加液泵P2,打开阀门V6、阀门V3,将储液罐T3中的循环碱液从离子交换床X1顶部注入,从上自下淋洗离子交换树脂进行预再生,产生的液体流入到储液罐T2中,装置恢复到初始状态;多重全反射红外光谱分析仪D1记录离子交换床X1底部流出废液中的胺浓度,如果其中一乙醇胺溶液浓度高于3%,则降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪D1对一乙醇胺溶液浓度的判定值到2%,并延长水洗和惰性气体吹扫的时间为默认值的2倍;
6)再生:手动开启加液泵P2、阀门V8、阀门V4,将储液罐T6中碱液通过加液泵P2从离子交换床X1顶部注入,从上自下洗去树脂表面吸附的杂质离子,使树脂再生,淋洗后废液收集到储液罐T3中作为循环碱液,装置恢复到初始状态;多重全反射红外光谱分析仪D1记录离子交换床X1底部流出的循环碱液中的一乙醇胺溶液浓度,如果其中一乙醇胺溶液浓度较高,则下一循环中结合流量计F3结果增加流入离子交换床X1的胺溶液的量为本轮的1.5倍,延长后续惰性气体吹扫的时间至默认值的2倍,并降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪D1对胺浓度的判定值到2%,延长水洗和惰性气体吹扫的时间至默认时间的2倍;
7)惰性气体吹扫:手动打开惰性气体气瓶C1、流量计F1和阀门V3,使残留于离子交换床X1中碱液排入储液罐T2,装置恢复到初始状态;
8)循环完成,开启下一个循环。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (9)

  1. 一种低损耗有机胺溶液净化装置,包括离子交换床(X1),其特征在于:所述离子交换床(X1)的上端进料口通过管道安装有惰性气体气瓶(C1)、第五储液罐(T5)和第二加液泵(P2),所述惰性气体气瓶(C1)的出气管道上安装有第一流量计(F1),所述第五储液罐(T5)的出料管道上安装有第七阀门(V7),所述离子交换床(X1)的下端进料口通过管道连接有第一加液泵(P1),所述第一加液泵(P1)的抽料口通过管道连接有第一储液罐(T1);
    所述离子交换床(X1)的下端出料口通过管道连接有第二储液罐(T2)、第三储液罐(T3)和第四储液罐(T4),所述离子交换床(X1)的下端出料管道安装有多重全反射红外光谱分析仪(D1);
    所述离子交换床(X1)的上端出料口通过管道连接有第四储液罐(T4),所述第二储液罐(T2)的进料管道上安装有第三阀门(V3),所述第三储液罐(T3)的进料管道上安装有第四阀门(V4),所述第四储液罐(T4)连接离子交换床(X1)下端出料口管道上安装有第五阀门(V5),所述第四储液罐(T4)连接离子交换床(X1)上端出料口管道上安装有第二阀门(V2)。
  2. 根据权利要求1所述的一种低损耗有机胺溶液净化装置,其特征在于:所述第二加液泵(P2)的出料管道上安装有第二流量计(F2),所述第二加液泵(P2)的抽料口通过管道连接有第三储液罐(T3)和第六储液罐(T6)。
  3. 根据权利要求2所述的一种低损耗有机胺溶液净化装置,其特征在于:所述第三储液罐(T3)的出料管道上安装有第六阀门(V6),所述第六储液罐(T6)的出料管道上安装有第八阀门(V8)。
  4. 根据权利要求1所述的一种低损耗有机胺溶液净化装置,其特征在于:所述第一加液泵(P1)的出料管道上安装有第三流量计(F3)和第一阀门(V1)。
  5. 根据权利要求1所述的一种低损耗有机胺溶液净化装置,其特征在于:所述储液罐(T1)为原液罐,所述储液罐(T2)为废液罐,所述储液罐(T3)为循环碱液罐,所述储液罐(T4)为净液罐,所述储液罐(T5)为去离子水罐。
  6. 根据权利要求2所述的一种低损耗有机胺溶液净化装置,其特征在于:所述第六储液罐(T6)为净碱液罐。
  7. 根据权利要求1所述的一种低损耗有机胺溶液净化装置,其特征在于:第二储液罐(T2)和第四储液罐(T4)顶部均设有气体排放口。
  8. 根据权利要求1至7中任一项所述的一种低损耗有机胺溶液净化装置的使用方法,其特征在于,包括:
    1)净化:待净化的有机胺溶液盛装在第一储液罐(T1)中,循环开始,开启第一加液泵(P1)、第一阀门(V1)、第二阀门(V2),由离子交换床(X1)底部加入胺液,进入离子交换床(X1)的溶液经过净化后从顶部进入第四储液罐(T4),净化流程运行一段时间后,装置回复初始状态;
    2)惰性气体吹扫:打开惰性气体气瓶(C1)、第一流量计(F1)和第五阀门(V5),由离子交换床(X1)顶部吹入惰性气体,使残留于离子交换床(X1)中的胺溶液排入第四储液罐(T4),装置回复初始状态;
    3)水洗:打开第七阀门(V7),使第五储液罐(T5)中的去离子水从顶部加入到离子交换床(X1)中,到达一定液位后关闭第七阀门(V7),去离子水浸泡离子交换床(X1)中离子交换树脂一段时间后,打开第三阀门(V3)排出废液到第二储液罐(T2);
    4)惰性气体吹扫:打开惰性气体瓶(C1)和第一流量计(F1),由多重全反射红外光谱分析仪(D1)测试结果手动控制打开第三阀门(V3)或第五阀门(V5), 如果前序步骤中胺浓度低于设定值则开启第三阀门(V3),使废液排入第二储液罐(T2),反之则开启阀门V5,使废液排入储液罐T4;;
    5)预再生:手动开启加液泵P2,打开阀门V6、阀门V3,将储液罐T3中的循环碱液从离子交换床X1顶部注入,从上自下淋洗离子交换树脂进行预再生,产生的液体流入到储液罐T2中,装置恢复到初始状态;
    6)再生:开启第二加液泵(P2)、第八阀门(V8)、第四阀门(V4),将第六储液罐(T6)中碱液通过第二加液泵(P2)从离子交换床(X1)顶部注入,从上自下洗去树脂表面吸附的杂质离子,使树脂再生,淋洗后废液收集到第三储液罐(T3)中作为循环碱液,装置恢复到初始状态;
    7)惰性气体吹扫:手动打开惰性气体气瓶(C1)、第一流量计F1和第三阀门(V3),使残留于离子交换床(X1)中碱液排入第二储液罐(T2),装置恢复到初始状态;
    8)循环完成,开启下一个循环。
  9. 根据权利要求8所述的使用方法,其特征在于,步骤3)中,如多重全反射红外光谱分析仪(D1)监测水洗废液中胺溶液浓度高于设定值,则将第三阀门(V3)关闭,同时开启第五阀门(V5),使高浓废液流入第四储液罐(T4)中,装置恢复到初始状态;
    步骤4)中气体吹扫的时间由多重全反射红外光谱分析仪(D1)控制,如果前序步骤中胺浓度高于设定值则延长吹扫时间,然后重复水洗步和惰性气体吹扫步骤3)和4),直至外排废液中胺浓度低于设定值,系统恢复初始状态;
    步骤5)中,多重全反射红外光谱分析仪(D1)记录离子交换床(X1)底部流出废液中的胺浓度,如果其中胺浓度高于设定值,则降低下一个净化循环中水 洗步骤中多重全反射红外光谱分析仪(D1)对胺浓度的判定值,并延长水洗和惰性气体吹扫的时间;
    步骤6)中,多重全反射红外光谱分析仪(D1)记录离子交换床(X1)底部流出的循环碱液中的胺浓度,如果其中胺浓度高于设定值,则下一循环中结合第三流量计(F3)结果增加流入离子交换床(X1)的胺溶液的量,延长后续惰性气体吹扫的时间,并降低下一个净化循环中水洗步骤中多重全反射红外光谱分析仪(D1)对胺浓度的判定值,延长水洗和惰性气体吹扫的时间。
PCT/CN2020/115961 2019-09-19 2020-09-17 一种低损耗有机胺溶液净化装置及其使用方法 WO2021052432A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020347721A AU2020347721B2 (en) 2019-09-19 2020-09-17 Low-loss organic amine solution purification device and use method thereof
JP2021600151U JP3238723U (ja) 2019-09-19 2020-09-17 低損失有機アミン溶液精製装置
US17/488,693 US20220016616A1 (en) 2019-09-19 2021-09-29 Device and method for purifying organic amine solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910889282.8 2019-09-19
CN201910889282.8A CN110508331B (zh) 2019-09-19 2019-09-19 一种低损耗有机胺溶液净化装置及其使用方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/488,693 Continuation US20220016616A1 (en) 2019-09-19 2021-09-29 Device and method for purifying organic amine solution

Publications (1)

Publication Number Publication Date
WO2021052432A1 true WO2021052432A1 (zh) 2021-03-25

Family

ID=68632890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115961 WO2021052432A1 (zh) 2019-09-19 2020-09-17 一种低损耗有机胺溶液净化装置及其使用方法

Country Status (6)

Country Link
US (1) US20220016616A1 (zh)
JP (1) JP3238723U (zh)
CN (1) CN110508331B (zh)
AU (1) AU2020347721B2 (zh)
DE (1) DE202020005624U1 (zh)
WO (1) WO2021052432A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110508331B (zh) * 2019-09-19 2023-08-18 华能国际电力股份有限公司 一种低损耗有机胺溶液净化装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304556A (ja) * 1993-04-23 1994-11-01 Mitsubishi Kasei Corp 飲料および食品製造用水の製造方法
CN203866136U (zh) * 2014-05-22 2014-10-08 西安热工研究院有限公司 燃煤电站烟气co2捕集系统的胺液净化回用系统
CN205019965U (zh) * 2015-09-29 2016-02-10 成都赛普瑞兴科技有限公司 一种胺液净化装置
CN209205318U (zh) * 2018-11-20 2019-08-06 杭州多能环保科技有限公司 一种用于醇胺溶液净化设备的高效复苏装置
CN110508331A (zh) * 2019-09-19 2019-11-29 华能国际电力股份有限公司 一种低损耗有机胺溶液净化装置及其使用方法
CN210875372U (zh) * 2019-09-19 2020-06-30 华能国际电力股份有限公司 一种低损耗有机胺溶液净化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564967B2 (ja) * 2010-02-04 2014-08-06 栗田エンジニアリング株式会社 アミン液の再生に用いたイオン交換樹脂の再生方法
CN102125803B (zh) * 2010-12-10 2013-05-01 北京科技大学 一种劣化胺液的净化方法
CN103769249B (zh) * 2012-10-25 2016-01-20 中国石油化工股份有限公司 一种离子交换方法
CN203402946U (zh) * 2013-07-31 2014-01-22 神华集团有限责任公司 水处理系统
CN104192946B (zh) * 2014-08-12 2017-01-25 江西瑞林电气自动化有限公司 胺液净化的控制方法及装置
CN105366766B (zh) * 2014-08-25 2018-02-16 中石化洛阳工程有限公司 一种树脂床热稳定盐脱除方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304556A (ja) * 1993-04-23 1994-11-01 Mitsubishi Kasei Corp 飲料および食品製造用水の製造方法
CN203866136U (zh) * 2014-05-22 2014-10-08 西安热工研究院有限公司 燃煤电站烟气co2捕集系统的胺液净化回用系统
CN205019965U (zh) * 2015-09-29 2016-02-10 成都赛普瑞兴科技有限公司 一种胺液净化装置
CN209205318U (zh) * 2018-11-20 2019-08-06 杭州多能环保科技有限公司 一种用于醇胺溶液净化设备的高效复苏装置
CN110508331A (zh) * 2019-09-19 2019-11-29 华能国际电力股份有限公司 一种低损耗有机胺溶液净化装置及其使用方法
CN210875372U (zh) * 2019-09-19 2020-06-30 华能国际电力股份有限公司 一种低损耗有机胺溶液净化装置

Also Published As

Publication number Publication date
US20220016616A1 (en) 2022-01-20
AU2020347721A1 (en) 2021-10-28
JP3238723U (ja) 2022-08-16
CN110508331B (zh) 2023-08-18
DE202020005624U1 (de) 2021-11-03
CN110508331A (zh) 2019-11-29
AU2020347721B2 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
KR101566936B1 (ko) 선박 연료가스의 탈황 방법 및 장치
CN202237816U (zh) 高效自洁式膜分离净化装置
WO2021052432A1 (zh) 一种低损耗有机胺溶液净化装置及其使用方法
CN201454425U (zh) 超滤膜水气混合清洗装置
CN207708845U (zh) 电渗析胺液净化设备的自动清洗倒极系统
CN210875372U (zh) 一种低损耗有机胺溶液净化装置
CN209020210U (zh) 一种可反向清洗的管式膜离线清洗装置
CN106007040A (zh) 重金属废水处理系统及方法
CN201150945Y (zh) 一种减少碱液损失的带钢清洗装置
CN104003476B (zh) 一种采用曝气式离子交换装置的电解锰废水离子交换处理系统
CN208120839U (zh) 一种双膜净水装置
CN211169987U (zh) 一种蜂窝陶瓷膜过滤装置
CN103991925B (zh) 一种全过程自动控制的电解锰废水离子交换处理系统
CN203922804U (zh) 一种采用曝气式离子交换装置的电解锰废水离子交换处理系统
CN202876837U (zh) 一种离子交换树脂逆流再生装置
CN204778944U (zh) 混床再生装置
CN207079089U (zh) 改进的可实现单根膜壳清洗的ro系统
CN203922803U (zh) 一种全过程自动控制的电解锰废水离子交换处理系统
CN203922802U (zh) 一种全过程自动控制、采用曝气式离子交换装置的电解锰废水离子交换处理系统
CN203922805U (zh) 一种电解锰废水离子交换处理系统
CN218553691U (zh) 一种超滤膜清洗装置
CN103991929B (zh) 一种电解锰废水离子交换处理系统
CN215917418U (zh) 一种用于离子液脱硫剂的脱氯离子系统
CN212504282U (zh) 一种低氘水的净化灌装设备
CN219652757U (zh) 一种钛白粉行业膜法除硝的处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021600151

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020347721

Country of ref document: AU

Date of ref document: 20200917

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864364

Country of ref document: EP

Kind code of ref document: A1