WO2021052359A1 - 一种镜头组、相关设备以及相关系统 - Google Patents

一种镜头组、相关设备以及相关系统 Download PDF

Info

Publication number
WO2021052359A1
WO2021052359A1 PCT/CN2020/115562 CN2020115562W WO2021052359A1 WO 2021052359 A1 WO2021052359 A1 WO 2021052359A1 CN 2020115562 W CN2020115562 W CN 2020115562W WO 2021052359 A1 WO2021052359 A1 WO 2021052359A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
efl
object side
image
Prior art date
Application number
PCT/CN2020/115562
Other languages
English (en)
French (fr)
Inventor
叶海水
卢建龙
居远道
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/761,118 priority Critical patent/US20220404580A1/en
Priority to EP20864975.6A priority patent/EP4024111A4/en
Publication of WO2021052359A1 publication Critical patent/WO2021052359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • This application relates to the field of lens technology, and in particular to a lens group, related equipment and related systems.
  • the camera is a typical terminal equipment component. With the continuous development of portable devices, camera applications are becoming increasingly diversified. In the multi-camera combined zoom system, the indispensable part is the design of the telephoto lens group.
  • the telephoto lens group of the terminal equipment adopts 4-6 pieces of all-resin lens structure design, and the focal length and back focus of the lens group change with temperature, which is called temperature effect.
  • temperature effect As the focal length of the lens group increases, the temperature effect becomes more obvious.
  • temperature compensation is used to compensate for the temperature effect generated. Specifically, the ambient temperature of the lens group is monitored, the voice coil motor (VCM) step is calculated, and the lens is pushed to focus.
  • VCM voice coil motor
  • the voice coil motor in order to cope with a telephoto lens group with a longer focal length, the voice coil motor is required to have a larger stroke, which increases the power consumption and design difficulty of the voice coil motor. Therefore, a new type of lens group is needed to solve the temperature effect.
  • the embodiments of the present application provide a lens group, related equipment, and related systems, which are used to reduce the overall temperature effect of the lens group. At the same time, the design difficulty of the voice coil motor in the lens group is reduced, and the user experience is improved.
  • an embodiment of the present application provides a lens assembly, including: a first lens, a second lens, a third lens, a fourth lens, and a fifth lens arranged in sequence from the object side to the image side, of which at least one
  • the relative refractive index temperature coefficient ⁇ of the lens satisfies: -9 ⁇ 10 -5 ⁇ ⁇ ⁇ 9 ⁇ 10 -5 .
  • the refractive index will change under the influence of temperature.
  • the change of refractive index with temperature is expressed by the relative refractive index temperature coefficient ⁇ .
  • the present application embodiment since at least one lens group of the lens relative refractive index temperature coefficient ⁇ satisfies: -9 ⁇ 10 -5 ⁇ 9 ⁇ 10 -5, and therefore, low temperature drift coefficient range of the lens group,
  • the temperature effect of the lens group is low, that is, the defocusing phenomenon caused by the temperature change of the lens group is also weak. It can reduce the design difficulty of the lens voice coil motor and improve the user experience.
  • the temperature drift coefficient of the lens group satisfies: -2.6 micronum/°C ⁇ EFL/ ⁇ °C ⁇ 2.6um/°C, where the effective focal length of the lens group is EFL, ⁇ EFL/ ⁇ °C is the temperature drift coefficient.
  • the temperature effect of the lens group can be further improved, making the temperature effect of the lens group lower.
  • the effective focal length of the lens group is EFL and the total length of the lens group is TTL, which meets the following conditions: TTL/EFL ⁇ 0.96. Meet the miniaturization needs of lens groups.
  • the material of at least one lens in the lens group may be glass.
  • the relative refractive index temperature coefficient ⁇ 3 of the third lens satisfies: -9 ⁇ 10 -5 ⁇ ⁇ 3 ⁇ 9 ⁇ 10 -5 .
  • the dispersion coefficient V3 of the third lens may satisfy 15 ⁇ V3 ⁇ 100.
  • the third lens may be used to correct the chromatic aberration of the lens group.
  • the lens group meets the following conditions: 0.27 ⁇ F3/EFL ⁇ 0.9, where F3 is the focal length of the third lens, and EFL is the effective focal length of the lens group, which makes the distribution of focal lengths in the lens group more reasonable and meets the miniaturization of the lens group demand.
  • the third lens can also be made of glass.
  • the lens group satisfies the following conditions: SP3/LT ⁇ 0.5, where the distance between the third lens and the fourth lens is SP3, and the first lens object side vertex position to the fifth lens image The distance between the vertex positions on the square side is LT.
  • Assembling is a sequence of assembling parts and components in accordance with design requirements.
  • the lens group satisfies the following conditions: the first lens, the third lens, and the fourth lens in the lens group have positive refractive power, and the second lens and the fifth lens in the lens group have negative light Focal power.
  • the use of a lens with a lower refractive index temperature coefficient in the lens group and a reasonable distribution of optical power can make the temperature effect of the lens group further lower.
  • the object-side surface of the first lens, the second lens, and the third lens are convex, and the image-side surface is concave; the object-side surface of the fourth lens is concave, and the image-side surface is concave.
  • the side surface is convex; the object side surface of the fifth lens is concave, and the image side surface is concave.
  • the lens group satisfies the following conditions:
  • 3.39, where the effective focal length of the lens group is EFL, and the curvature of the object side surface of the second lens The radius is R21, and the radius of curvature of the image side surface of the second lens is R22. Conducive to correcting the aberration of the optical system where the lens group is located.
  • the lens group satisfies the following conditions:
  • 4.03, wherein the effective focal length of the lens group is the EFL, and the radius of curvature of the object side surface of the second lens is the R21 The radius of curvature of the image side surface of the second lens is the R22. Conducive to correcting the aberration of the optical system where the lens group is located.
  • the lens group satisfies the following conditions: the object side surface of the first lens and the second lens is convex, and the image side surface is concave; the object side surface of the third lens The square side surface is convex, the image side surface is convex; the object side surface of the fourth lens is concave, the image side surface is convex; the object side surface of the fifth lens is concave, the image side surface It is concave.
  • the object side surface of the first lens to be a convex surface, the condensing ability of the light rays on the object side is improved.
  • the first lens and the third lens have positive refractive power, and the second lens, the fourth lens, and the fifth lens have negative refractive power.
  • the use of a lens with a lower refractive index temperature coefficient in the lens group and a reasonable distribution of optical power can make the temperature effect of the lens group further lower.
  • the lens group satisfies the following conditions: the object side surface of the first lens is convex, and the image side surface is convex; the object side surface of the second lens and the fourth lens The square side surface is a concave surface, and the image side surface is a concave surface; the object side surface of the third lens and the fifth lens is a concave surface, and the image side surface is a convex surface.
  • the object side surface of the third lens and the fifth lens is a concave surface
  • the image side surface is a convex surface.
  • the lens group satisfies the following conditions:
  • 2.22, wherein the effective focal length of the lens group is the EFL, and the radius of curvature of the object side surface of the second lens is Said R21, the radius of curvature of the image side surface of the second lens is said R22. Conducive to correcting the aberration of the optical system where the lens group is located.
  • the lens group further includes an aperture stop and an infrared filter element IRCF, the aperture stop is disposed between the third lens and the fourth lens, and The infrared filter element is arranged behind the image side of the fifth lens. It can be used to reduce stray light and help improve image quality.
  • the lens group further includes a first vignetting diaphragm, and the first vignetting diaphragm is arranged in front of the object side of the first lens.
  • the lens group further includes a second vignetting stop, and the second vignetting stop is arranged behind the image side of the fifth lens. It can be used to reduce stray light and help improve image quality.
  • an embodiment of the present application further provides an image capturing optical system, including a lens group, a driving device, a sensor, and an influence stabilization module, wherein the lens group includes any one of the first aspect and the first aspect described above.
  • an image capturing optical system including a lens group, a driving device, a sensor, and an influence stabilization module, wherein the lens group includes any one of the first aspect and the first aspect described above. The possible realization of the lens group.
  • an embodiment of the present application also provides a terminal device, including an image capture optical system, a flash module, a focus assist module, an image signal processor, a user interface, and an image software processor, wherein the capture is as follows
  • the optical system includes the image capturing optical system according to the second aspect described above, and the image capturing optical system includes a lens group that includes the possible implementation of the first aspect and any one of the first aspect described above. Lens group.
  • the lens group includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens arranged in sequence from the object side to the image side, wherein the relative refractive index temperature coefficient ⁇ of at least one lens satisfies: -9 ⁇ 10 -5 ⁇ 9 ⁇ 10 -5 .
  • the overall temperature effect of the lens group composed of the lens is relatively low. At the same time, it reduces the difficulty of voice coil motor design and improves user experience.
  • FIG. 1 is a schematic structural diagram of a lens group provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of another lens group structure according to an embodiment of the application.
  • FIG. 3a is a schematic diagram of a chromatic aberration curve of a lens group according to an embodiment of the application.
  • FIG. 3b is a schematic diagram of an astigmatism curve of a lens group according to an embodiment of the application.
  • FIG. 3c is a schematic diagram of a distortion curve of a lens group according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of another lens group structure according to an embodiment of the application.
  • FIG. 5a is a schematic diagram of a chromatic aberration curve of another lens group according to an embodiment of the application.
  • FIG. 5b is a schematic diagram of an astigmatism curve of another lens group proposed in an embodiment of the application.
  • FIG. 5c is a schematic diagram of a distortion curve of another lens group according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of another lens group structure according to an embodiment of the application.
  • FIG. 7a is a schematic diagram of a chromatic aberration curve of another lens set according to an embodiment of the application.
  • FIG. 7b is a schematic diagram of an astigmatism curve of another lens group proposed in an embodiment of the application.
  • FIG. 7c is a schematic diagram of a distortion curve of another lens group according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of another lens group structure according to an embodiment of the application.
  • FIG. 9a is a schematic diagram of a chromatic aberration curve of another lens group according to an embodiment of the application.
  • FIG. 9b is a schematic diagram of an astigmatism curve of another lens group proposed in an embodiment of the application.
  • FIG. 9c is a schematic diagram of a distortion curve of another lens group proposed in an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an image capturing optical system in an embodiment of the application.
  • FIG. 11 is a schematic diagram of a terminal device in an embodiment of this application.
  • FIG. 12 is a schematic diagram of another terminal device in an embodiment of this application.
  • Lens group It is a component that uses lenses and/or mirrors to make the light of the scene form a clear image on the focusing plane.
  • Optical power equal to the difference between the image-side beam convergence and the object-side beam convergence, it represents the ability of the optical system to deflect light.
  • Curvature is a value used to indicate the degree of curvature of a curve at a certain point. The greater the curvature, the greater the degree of curvature of the curve, and the reciprocal of the curvature is the radius of curvature.
  • Aperture diaphragm the diaphragm with the smallest incident aperture angle, called the aperture diaphragm.
  • Vignetting diaphragm the phenomenon that the off-axis light beam is intercepted is called vignetting, and the diaphragm that produces vignetting is called vignetting diaphragm, that is, the diaphragm that blocks the off-axis light beam.
  • Object side surface The surface of the lens closest to the real object is the object side surface.
  • Image side surface The surface on the lens closest to the imaging surface is the image side surface.
  • Effective focal length The distance from the principal plane of the optical system to the corresponding focal point.
  • Total track length The total track length of the lens is divided into the total optical length and the total length of the mechanism.
  • the total optical length refers to the distance from the object side surface of the first lens to the image surface
  • the total length of the mechanism refers to the distance from the end surface of the lens barrel of the lens group to the image surface.
  • the total length of the lens is the distance from the object side surface of the first lens to the infinity object from the imaging surface on the optical axis.
  • Refractive index If light enters a certain non-absorptive uniform material, light reflection and refraction will occur at its interface.
  • the refractive index n is equal to the ratio of the speed c of light in vacuum to the speed v in the medium. In fact, the refractive index is measured by measuring the deflection angle caused by the refraction of the beam at the interface. The formula describing the degree of deflection is called Snell's law.
  • Dispersion refers to the amount of change in refractive index with wavelength.
  • the dispersion phenomenon can be explained by electromagnetic theory. When a beam of electromagnetic wave acts on an atom or molecule, the bound charge will vibrate at the frequency of the incident wave. The bound charge has a corresponding resonant frequency for a certain wavelength.
  • Dispersion coefficient It is an important index to measure the imaging quality of a lens, usually expressed by Abbe number, so the dispersion coefficient is also called Abbe number.
  • Abbe number the dispersion coefficient
  • the temperature coefficient of refractive index can be expressed by the relative refractive index temperature coefficient in dry air (101.3 kPa): (dn/dt) rel .; it can also be expressed by the absolute refractive index temperature coefficient in vacuum (dn/dt) abs. .
  • Temperature drift coefficient the rate of change of the effective focal length of the lens group with temperature.
  • FIG. 1 is a schematic structural diagram of a lens group provided by an embodiment of the application.
  • the embodiment of the present application provides a lens group, which includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 arranged in order from the object side to the image side.
  • the relative refractive index temperature coefficient ⁇ of at least one lens satisfies: -9 ⁇ 10 -5 ⁇ ⁇ ⁇ 9 ⁇ 10 -5 .
  • the refractive index of the lens is not sensitive to temperature changes.
  • the image capturing optical system using the lens group pushes the lens to focus through the voice coil motor, so as to compensate for the unclear image caused by the temperature change. If the temperature effect of the lens group is stronger, the voice coil motor needs to have a greater linear stroke (stroke), and at the same time, the power consumption, size, and design difficulty of the voice coil motor are increased.
  • the lens group cases forth embodiment of the present application, since at least one lens in which the relative refractive index temperature coefficient ⁇ satisfies: -9 ⁇ 10 -5 ⁇ 9 ⁇ 10 -5, and therefore, thermal effect of the lens group The range is lower, the temperature effect of the lens group is lower, that is, the defocusing phenomenon caused by the temperature change of the lens group is also weaker. It can reduce the design difficulty of the lens voice coil motor and improve the user experience.
  • the temperature drift coefficient of the lens group can be satisfied: -2.6 micronsum/°C ⁇ EFL/ ⁇ °C ⁇ 2.6um/°C, where the effective focal length of the lens group is EFL, and ⁇ EFL/ ⁇ °C is the temperature drift coefficient.
  • the effective focal length of the lens group is EFL and the total length of the lens group is TTL, and the following conditions are met: TTL/EFL ⁇ 0.96.
  • the relative refractive index temperature coefficient ⁇ 3 of the third lens L3 can be specifically selected to satisfy: -9 ⁇ 10 -5 ⁇ ⁇ 3 ⁇ 9 ⁇ 10 -5 .
  • the focal length F3 of the third lens L3 and the effective focal length EFL of the lens group satisfy the following condition: 0.27 ⁇ F3/EFL ⁇ 0.9. Since the third lens L3 has a relatively small range of refractive index change with temperature, the temperature effect of the lens group is relatively low.
  • the focal length of any lens with a relative refractive index temperature coefficient satisfying [-9 ⁇ 10 -5 , 9 ⁇ 10 -5 ] satisfies the above conditions, for example, the first The relative refractive index temperature coefficient ⁇ 4 of the four lens L4 satisfies [-9 ⁇ 10 -5 , 9 ⁇ 10 -5 ], and the focal length F4 of the fourth lens L4 satisfies 0.27 ⁇ F4/EFL ⁇ 0.9, which is not limited here.
  • the material of one or more lenses includes glass.
  • the temperature coefficient of the relative refractive index of the lens made of glass material satisfies [-9 ⁇ 10 -5 , 9 ⁇ 10 -5 ]. It should be noted that, according to the embodiment of the present application, the temperature coefficient of the relative refractive index of the lens satisfies [- 9 ⁇ 10 -5 , 9 ⁇ 10 -5 ] is just an example, the purpose is to show that the relative refractive index temperature coefficient of the lens is small.
  • the dispersion coefficient V3 of the third lens L3 may satisfy 15 ⁇ V3 ⁇ 100. It should be noted that, in an optional implementation manner, it may also be the dispersion coefficient of other one or more lenses, which satisfies the above conditions, and is not limited here.
  • the assembly is a sequential assembly process of the parts according to the design requirements.
  • the distance between the third lens L3 and the fourth lens L4 is SP3, and the first lens
  • the distance from the apex position on the object side of L1 to the apex position on the image side of the fifth lens L5 is LT, so that the lens group can satisfy: SP3/LT ⁇ 0.5
  • the object side vertex position of the first lens L1 is the object side of the first lens L1
  • the position of the vertex on the image side of the fifth lens L5 is the position of the intersection of the image side surface of the fifth lens L5 and the optical axis (or axis of symmetry).
  • the optical power is used to characterize the deflection ability of the optical system to the incident light.
  • the optical power is positive, it means that the optical system is converging to the incident parallel beams parallel to the optical axis.
  • the optical power is negative, it means The deflection of the incident parallel light beam parallel to the optical axis by the optical system is divergent.
  • the first lens L1, the third lens L3, and the fourth lens L4 in the lens group have positive refractive power
  • the second lens L2 and the fifth lens L5 in the lens group have negative refractive power. .
  • the use of a lens with a lower refractive index temperature coefficient in the lens group and a reasonable distribution of optical power can make the temperature effect of the lens group further lower.
  • the object side surface of the first lens L1, the second lens L2, and the third lens L3 is convex, and the image side surface is concave;
  • the object side surface of the fourth lens L4 is concave, like The square side surface is a convex surface;
  • the object side surface of the fifth lens L5 is a concave surface, and the image side surface is a concave surface.
  • the above-mentioned definition of the convex surface and the concave surface is the limitation of the paraxial region of each surface, that is, the limitation of the region near the optical axis.
  • the object side surface of the first lens L1 and the second lens L2 is convex, and the image side surface is concave;
  • the object side surface of the third lens L3 is convex, and the image side surface is convex.
  • the object-side surface of the fourth lens L4 is concave, and the image-side surface is convex;
  • the object-side surface of the fifth lens L5 is concave, and the image-side surface is concave.
  • the first lens L1 and the third lens L3 in the lens group have positive refractive power
  • the second lens L2, the fourth lens L4, and the fifth lens L5 have negative refractive power.
  • the use of a lens with a lower refractive index temperature coefficient in the lens group and a reasonable distribution of optical power can make the temperature effect of the lens group further lower.
  • the object side surface of the first lens L1 is convex, and the image side surface is convex;
  • the object side surfaces of the second lens L2 and the fourth lens L4 are concave, and the image side surface is concave.
  • the third lens L3 and the fifth lens L5 have a concave surface on the object side, and a convex surface on the image side.
  • the lens set proposed in the embodiments of the present application may further include: a vignetting stop (vignetting stop), an aperture stop (STO), and an infrared filter element (ir-cut filter, IRCF).
  • vignetting stop vignetting stop
  • STO aperture stop
  • IRCF infrared filter element
  • the function of the vignetting diaphragm is to improve the imaging quality of the off-axis point and reduce the size of optical parts
  • the role of the aperture diaphragm is to improve the imaging quality of the lens group
  • the role of the infrared filter element is to filter the infrared light in the natural light , So that the image collected by the image sensor connected behind the lens group is close to the image seen by the human eye.
  • the lens group includes a first vignetting stop ST1, a second vignetting stop ST2, an aperture stop STO, and an infrared filter element IRCF, wherein the first vignetting stop ST1 is disposed on the first lens L1
  • the second vignetting stop is arranged on the image side of the fifth lens L5
  • the aperture stop STO can be arranged between the third lens L3 and the fourth lens L4
  • the infrared filter element IRCF can be arranged on the first lens.
  • the five-lens L5 is behind the image side.
  • the lens group includes an aperture stop STO and an infrared filter element IRCF, wherein the aperture stop STO can be arranged in front of the object side of the first lens L1, and the infrared filter element IRCF is arranged on the image side of the fifth lens L5 Side back.
  • one or more other diaphragms can be arranged between the lenses in the lens group.
  • the types of the other diaphragms such as glare stop or field stop, can be used. In order to reduce stray light, it helps to improve the image quality.
  • the lens group proposed in the embodiment of this application satisfies the following conditions:
  • the radius of curvature of the surface is R21, and the radius of curvature of the image side surface of the second lens is R22. Conducive to correct the overall aberration of the lens group.
  • the material of other lenses may be resin or glass.
  • the degree of freedom of refractive power configuration can be increased.
  • the lens material is resin, the production cost can be effectively reduced.
  • an aspheric surface (ASP) can be provided on the lens surface. The aspheric surface can be easily made into a shape other than a spherical surface, and more control variables can be obtained to reduce aberrations, so the total optical length can be effectively reduced.
  • r the vertical distance between the point on the aspherical curve and the optical axis
  • c the curvature of the aspheric surface at the optical center (that is, the intersection of the lens and the optical axis);
  • Ai the i-th order aspheric coefficient.
  • FIG. 2 is a schematic diagram of another lens group structure according to an embodiment of the application.
  • the first vignetting stop ST1 the first lens L1, the second lens L2, the third lens L3, the aperture stop STO, and the fourth lens.
  • the lens L4, the fifth lens L5, the infrared filter element IRCF, and the electronic photosensitive element can be placed behind the image side of the fifth lens.
  • the first lens L1 has a positive refractive power and is made of plastic. Its object side surface S1 is convex near the optical axis, and the image side surface S2 is concave near the optical axis, both of which are aspherical.
  • the second lens L2 has negative refractive power and is made of resin.
  • the object side surface S3 is convex near the optical axis, and the image side surface S4 is concave near the optical axis, both of which are aspherical.
  • the third lens L3 has a positive refractive power and is made of glass. Its object side surface S5 is convex near the optical axis, and the image side surface S6 is concave near the optical axis. Both are aspherical and have a relative refractive index. The temperature coefficient satisfies [-9 ⁇ 10 -5 , 9 ⁇ 10 -5 ].
  • the fourth lens L4 has a positive refractive power and is made of resin. Its object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis, both of which are aspherical.
  • the fifth lens L5 has negative refractive power and is made of resin. Its object side surface S13 is a concave surface near the optical axis, and the image side surface S14 is a concave surface near the optical axis, and both are aspherical.
  • the diameter of the lens group can be effectively reduced.
  • a second vignetting stop ST2 may be provided behind the image side of the fifth lens L5, which may further reduce the diameter of the lens group.
  • the maximum imaging height of the lens group is ImgH
  • the focal length of the first lens L1 is F1
  • the focal length of the second lens L2 is F2
  • the focal length of the third lens L3 is F3
  • the focal length of the fourth lens L4 is F4.
  • the focal length of the five lens L5 is F5.
  • the focal length of the third lens L3 is F3
  • the focal length of the lens group is EFL
  • F3/EFL 0.53 satisfies 0.27 ⁇ F3/EFL ⁇ 0.9.
  • the amount of EFL change is ⁇ EFL.
  • ⁇ EFL/ ⁇ °C is defined as the temperature drift coefficient of the lens group, where the temperature drift coefficient satisfies the following conditions: -1um/°C ⁇ EFL/ ⁇ °C ⁇ 1um/°C, using low refractive index temperature coefficient materials and reasonable distribution of optical power Reduce the temperature drift coefficient of the image capture optical system of the applied lens group.
  • the focal length of the lens group is EFL
  • the curvature radius of the second lens object side surface is R21
  • the curvature radius of the second lens image side surface is R22, which satisfies the following conditions:
  • 3.39, which is good for correcting system aberrations.
  • Table 1 Table 2, and Table 3 are the detailed structure data of the lens group in the embodiment corresponding to FIG. 2.
  • the units of the radius of curvature, thickness, and focal length are millimeters (mm), and the surfaces ST1 to S13 indicate the order from the object side To the surface of each optical component on the image side.
  • Table 2 is the aspheric surface data of each lens in the embodiment corresponding to FIG. 2, where k is the conical surface coefficient in the aspheric curve equation, and A4 to A20 represent the 4th to 20th order aspheric surface coefficients of each surface.
  • Table 3 shows various parameters of the lens group in the embodiment corresponding to FIG. 2.
  • the following example tables correspond to the schematic diagrams and aberration curve diagrams of the respective embodiments.
  • the definitions of the data in the tables are the same as those in Table 1, Table 2 and Table 3 of the embodiment corresponding to FIG. 2, and will not be added here. Go into details.
  • Figure 3a shows the chromatic aberration curve of the lens set corresponding to Figure 2.
  • the abscissa of Fig. 3a is the intersection of light rays incident at different angles at the same object point and the optical axis.
  • the ordinate is the normalized height of the incident light at the entrance pupil.
  • Each curve in Figure 3a corresponds to different wavelengths, such as: 470 nanometers, 510 nanometers, 555 nanometers, 610 nanometers, and 650 nanometers. It can be seen from FIG. 3a that the chromatic aberration is controlled within a small range ( ⁇ 0.025 mm), which can prove that the lens set proposed in this application has excellent chromatic aberration performance.
  • the normalized height refers to the dimensionless ratio value obtained after normalizing the height of each incident light at the entrance pupil. That is, the maximum value of the height is set to 1, and the remaining height values are represented by a proportional relationship with the maximum value. Normalization is a way to simplify calculations, that is, a dimensional expression is transformed into a dimensionless expression and becomes a scalar.
  • Fig. 3b shows the astigmatism/curvature curve of the lens group corresponding to Fig. 2.
  • the unit of abscissa in Figure 3b is millimeters, and the ordinate is image height (field of view).
  • the solid curve in Figure 3b corresponds to the astigmatism/field curvature curve of the lens group in the S direction at a wavelength of 555 nanometers, and the dashed curve corresponds to the astigmatism/field curvature curve of the lens group in the T direction under the wavelength of 555 nanometers. It can be seen from Fig. 3b that the astigmatism is controlled within a small range ( ⁇ 0.01 mm), which can prove that the lens set proposed in this application has excellent astigmatism performance.
  • Fig. 3c shows the distortion curve of the lens group corresponding to Fig. 2, the abscissa in Fig. 3c represents the distortion (it can be the ratio of the actual image height on the image plane to the ideal image height, as a percentage), and the ordinate represents the image height. It can be seen from Figure 3c that the amount of optical distortion is controlled within the range of 0 to 1%.
  • the lens set corresponding to Figure 2 has excellent anti-distortion performance.
  • the lens group along the optical axis from the object side to the image side is a vignetting stop ST1, a first lens L1, a second lens L2, a third lens L3, an aperture stop STO, and a fourth lens.
  • lens L4, the fifth lens L5 and the IRCF an infrared filter element, an electronic photosensitive member may be positioned lateral side of the fifth lens image, wherein the third lens L3 is made of glass and the relative refractive index temperature coefficient satisfies [-9 ⁇ 10 - 5 , 9 ⁇ 10 -5 ].
  • makes the lens group has a lower temperature effect.
  • the chromatic aberration performance and astigmatism performance of the lens group meet the imaging requirements with anti-distortion performance, thereby ensuring good imaging quality.
  • FIG. 4 is a schematic diagram of another lens group structure according to an embodiment of the application.
  • the aperture stop STO from the object side to the image side along the optical axis are the aperture stop STO, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, Infrared filter element IRCF, electronic photosensitive element can be placed on the image surface.
  • the first lens L1 has a positive refractive power and is made of resin.
  • the object side surface S1 is convex near the optical axis, and the image side surface S2 is concave near the optical axis, and both are aspherical.
  • the second lens L2 has negative refractive power and is made of resin.
  • the object side surface S3 is convex near the optical axis, and the image side surface S4 is concave near the optical axis, and both are aspherical.
  • the third lens L3 has a positive refractive power and is made of glass. Its object side surface S5 is convex near the optical axis, and the image side surface S6 is concave near the optical axis, and both are aspherical.
  • the fourth lens L4 has positive refractive power and is made of resin. Its object side surface S7 is concave near the optical axis, and the image side surface S8 is convex near the optical axis, and both are aspherical.
  • the fifth lens L5 has negative refractive power and is made of resin. Its object side surface S13 is concave near the optical axis, and the image side surface S14 is concave near the optical axis, and both are aspherical.
  • Table 4 shows the specific parameters of each lens
  • the maximum imaging height of the lens group is ImgH
  • the focal length of the first lens L1 is F1
  • the focal length of the second lens L2 is F2
  • the focal length of the third lens L3 is F3
  • the focal length of the fourth lens L4 is F4
  • the focal length of the fourth lens L4 is F4.
  • the focal length of the five lens L5 is F5.
  • the focal length of the third lens L3 is F3
  • the focal length of the lens group is EFL
  • the amount of EFL change is ⁇ EFL.
  • ⁇ EFL/ ⁇ °C is defined as the temperature drift coefficient of the lens group, where the temperature drift coefficient satisfies the following conditions: -1um/°C ⁇ EFL/ ⁇ °C ⁇ 1um/°C, using low refractive index temperature coefficient materials and reasonable distribution of optical power Reduce the temperature drift coefficient of the image capture optical system of the applied lens group.
  • the focal length of the lens group is EFL
  • the curvature radius of the second lens object side surface is R21
  • the curvature radius of the second lens image side surface is R22, which satisfies the following conditions:
  • 4.03, which is good for correcting system aberrations.
  • Table 4 Table 5, and Table 6 are detailed structural data of the lens group in the embodiment corresponding to FIG. 4, in which the unit of curvature radius, thickness and focal length is millimeter (mm), and the surfaces ST1 to S13 indicate the order from the object side To the surface of each optical component on the image side.
  • Table 5 shows the aspheric surface data of each lens in the embodiment corresponding to FIG. 4, where k is the conical surface coefficient in the aspheric curve equation, and A4 to A20 represent the 4th to 20th order aspheric surface coefficients of each surface.
  • Table 6 shows various parameters of the lens group in the embodiment corresponding to FIG. 4.
  • Figure 5a shows the chromatic aberration curve of the lens set corresponding to Figure 4.
  • the abscissa of Fig. 5a is the intersection of light rays incident on the same object point at different angles and the optical axis.
  • the ordinate is the normalized height of the incident light at the entrance pupil.
  • the curves in Figure 5a correspond to different wavelengths, such as 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm. It can be seen from Fig. 5a that the chromatic aberration is controlled within a small range ( ⁇ 0.025 mm), which can prove that the lens set proposed in this application has excellent chromatic aberration performance.
  • Fig. 5b shows the astigmatism/curvature curve of the lens group corresponding to Fig. 4.
  • the unit of abscissa in Fig. 5b is millimeters, and the ordinate is image height (field of view).
  • the solid curve in Figure 5b corresponds to the astigmatism/field curvature curve of the lens group in the S direction under the conditions of 470 nm, 510 nm, 555 nm, 610 nm and 650 nm wavelengths, and the dashed curve corresponds to 470 nm, 510 nm, 555 nm, The astigmatism/curvature curve of the lens group in the T direction at 610 nm and 650 nm wavelength. It can be seen from Fig. 5b that the astigmatism is controlled within a small range ( ⁇ 0.025 mm), which can prove that the lens set proposed in this application has excellent astigmatism performance.
  • Fig. 5c shows the distortion curve of the lens group corresponding to Fig. 4, the abscissa in Fig. 5c represents the distortion (it can be the ratio of the actual image height on the image surface to the ideal image height, as a percentage), and the ordinate represents the image height. It can be seen from Figure 5c that the amount of optical distortion is controlled within the range of 0 to 1%.
  • the lens set corresponding to Figure 4 has excellent anti-distortion performance.
  • the lens group along the optical axis from the object side to the image side are the first lens L1, the second lens L2, the third lens L3, the aperture stop STO, the fourth lens L4, and the fifth lens in order from the object side to the image side.
  • the IRCF L5 and an infrared filter element, an electronic photosensitive member may be positioned lateral side of the fifth lens image, wherein the third lens L3 is made of glass and the relative refractive index temperature coefficient satisfies [-9 ⁇ 10 -5, 9 ⁇ 10 - 5 ].
  • makes the lens group has a lower temperature effect.
  • the chromatic aberration performance and astigmatism performance of the lens group meet the imaging requirements with anti-distortion performance, thereby ensuring good imaging quality.
  • FIG. 6 is a schematic diagram of another lens group structure according to an embodiment of the application.
  • the aperture stop STO As shown in FIG. 6, from the object side to the image side along the optical axis are the aperture stop STO, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, Infrared filter element IRCF, electronic photosensitive element can be placed on the image surface.
  • the aperture stop STO As shown in FIG. 6, from the object side to the image side along the optical axis are the aperture stop STO, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, Infrared filter element IRCF, electronic photosensitive element can be placed on the image surface.
  • the aperture stop STO As shown in FIG. 6, from the object side to the image side along the optical axis are the aperture stop STO, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, Infrared filter element IRCF, electronic photo
  • the first lens L1 has a positive refractive power and is made of resin.
  • the object side surface S1 is convex near the optical axis, and the image side surface S2 is concave near the optical axis, and both are aspherical.
  • the second lens L2 has negative refractive power and is made of resin.
  • the object side surface S3 is convex near the optical axis, and the image side surface S4 is concave near the optical axis, and both are aspherical.
  • the third lens L3 has a positive refractive power and is made of glass. Its object side surface S5 is convex near the optical axis, and the image side surface S6 is convex near the optical axis, and both are aspherical.
  • the fourth lens L4 has positive refractive power and is made of resin. Its object side surface S7 is concave near the optical axis, and the image side surface S8 is convex near the optical axis, and both are aspherical.
  • the fifth lens L5 has negative refractive power and is made of resin. Its object side surface S13 is concave near the optical axis, and the image side surface S14 is concave near the optical axis, and both are aspherical.
  • Table 7 shows the specific parameters of each lens
  • the maximum imaging height of the lens group is ImgH
  • the focal length of the first lens L1 is F1
  • the focal length of the second lens L2 is F2
  • the focal length of the third lens L3 is F3
  • the focal length of the fourth lens L4 is F4
  • the focal length of the fourth lens L4 is F4.
  • the focal length of the five lens L5 is F5.
  • the focal length of the third lens L3 is F3
  • the focal length of the lens group is EFL
  • F3/EFL 0.53 satisfies 0.27 ⁇ F3/EFL ⁇ 0.9.
  • the amount of EFL change is ⁇ EFL.
  • ⁇ EFL/ ⁇ °C is defined as the temperature drift coefficient of the lens group, where the temperature drift coefficient satisfies the following conditions: -1um/°C ⁇ EFL/ ⁇ °C ⁇ 1um/°C, using low refractive index temperature coefficient materials and reasonable distribution of optical power Reduce the temperature drift coefficient of the image capture optical system of the applied lens group.
  • the focal length of the lens group is EFL
  • the curvature radius of the second lens object side surface is R21
  • the curvature radius of the second lens image side surface is R22, which satisfies the following conditions:
  • 4.02, which is good for correcting system aberrations.
  • Table 7, Table 8, and Table 9 are detailed structural data of the lens group in the embodiment corresponding to FIG. 6, wherein the unit of curvature radius, thickness, and focal length are millimeters (mm), and the surfaces ST1 to S13 indicate the order from the object side To the surface of each optical component on the image side.
  • Table 8 shows the aspheric surface data of each lens in the embodiment corresponding to FIG. 6, where k is the conical surface coefficient in the aspheric curve equation, and A4 to A20 represent the 4th to 20th order aspheric surface coefficients of each surface.
  • Table 9 shows various parameters of the lens group in the embodiment corresponding to FIG. 6.
  • Fig. 7a shows the chromatic aberration curve of the lens group corresponding to Fig. 6.
  • the abscissa of Fig. 7a is the intersection of light rays incident at different angles at the same object point and the optical axis.
  • the ordinate is the normalized height of the incident light at the entrance pupil.
  • the curves in Figure 7a correspond to different wavelengths, such as 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm. It can be seen from FIG. 7a that the chromatic aberration is controlled within a small range ( ⁇ 0.025 mm), which can prove that the lens set proposed in this application has excellent chromatic aberration performance.
  • Fig. 7b shows the astigmatism/curvature curve of the lens group corresponding to Fig. 6.
  • the unit of abscissa in Fig. 7b is millimeters, and the ordinate is image height (field of view).
  • the solid curve in Figure 7b corresponds to the astigmatism/field curvature curve of the lens group in the S direction under the wavelength conditions of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm, and the dashed curve corresponds to 470 nm, 510 nm, 555 nm, The astigmatism/curvature curve of the lens group in the T direction at 610 nm and 650 nm wavelength. It can be seen from Fig. 7b that the astigmatism is controlled within a small range ( ⁇ 0.02 mm), which can prove that the lens set proposed in this application has excellent astigmatism performance.
  • Fig. 7c shows the distortion curve of the lens group corresponding to Fig. 6, the abscissa in Fig. 7c represents the distortion (it can be the ratio of the actual image height on the image surface to the ideal image height, as a percentage), and the ordinate represents the image height. It can be seen from Figure 7c that the amount of optical distortion is controlled within the range of 0 to 1%.
  • the lens set corresponding to Figure 6 has excellent anti-distortion performance.
  • FIGS. 7a to 7c It can be seen from FIGS. 7a to 7c that the chromatic aberration performance and astigmatism performance of the lens set corresponding to FIG. 6 meets the imaging requirements with the anti-distortion performance, thereby ensuring good imaging quality.
  • the lens group along the optical axis from the object side to the image side are the first lens L1, the second lens L2, the third lens L3, the aperture stop STO, the fourth lens L4, and the fifth lens in order from the object side to the image side.
  • the IRCF L5 and an infrared filter element, an electronic photosensitive member may be positioned lateral side of the fifth lens image, wherein the third lens L3 is made of glass and the relative refractive index temperature coefficient satisfies [-9 ⁇ 10 -5, 9 ⁇ 10 - 5 ].
  • makes the lens group has a lower temperature effect.
  • the chromatic aberration performance and astigmatism performance of the lens group meet the imaging requirements with anti-distortion performance, thereby ensuring good imaging quality.
  • FIG. 8 is a schematic diagram of another lens group structure according to an embodiment of the application.
  • an aperture stop STO As shown in FIG. 8, from the object side to the image side along the optical axis, there are an aperture stop STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, Infrared filter element IRCF, electronic photosensitive element can be placed on the image surface.
  • a first lens L1 a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, Infrared filter element IRCF, electronic photosensitive element can be placed on the image surface.
  • IRCF Infrared filter element
  • the first lens L1 has a positive refractive power and is made of resin.
  • the object side surface S1 is convex near the optical axis, and the image side surface S2 is convex near the optical axis, and both are aspherical.
  • the second lens L2 has negative refractive power and is made of resin.
  • the object side surface S3 is concave near the optical axis, and the image side surface S4 is concave near the optical axis, and both are aspherical.
  • the third lens L3 has positive refractive power and is made of glass. Its object side surface S5 is a concave surface near the optical axis, and the image side surface S6 is a convex surface near the optical axis, and both are aspherical and have a relative refractive index temperature coefficient. Satisfy [-9 ⁇ 10 -5 , 9 ⁇ 10 -5 ].
  • the fourth lens L4 has negative refractive power and is made of resin. Its object side surface S7 is concave near the optical axis, and the image side surface S8 is concave near the optical axis, and both are aspherical.
  • the fifth lens L5 has negative refractive power and is made of resin. Its object side surface S13 is a concave surface near the optical axis, and the image side surface S14 is a convex surface near the optical axis, and both are aspherical.
  • Table 10 shows the specific parameters of each lens
  • the maximum imaging height of the lens group is ImgH
  • the focal length of the first lens L1 is F1
  • the focal length of the second lens L2 is F2
  • the focal length of the third lens L3 is F3
  • the focal length of the fourth lens L4 is F4
  • the focal length of the fourth lens L4 is F4.
  • the focal length of the five lens L5 is F5.
  • the focal length of the third lens L3 is F3
  • the focal length of the lens group is EFL
  • F3/EFL 0.72 satisfies 0.27 ⁇ F3/EFL ⁇ 0.9.
  • the amount of EFL change is ⁇ EFL.
  • ⁇ EFL/ ⁇ °C is defined as the temperature drift coefficient of the lens group, where the temperature drift coefficient satisfies the following conditions: -2.6um/°C ⁇ EFL/ ⁇ °C ⁇ 2.6um/°C, using low refractive index temperature coefficient materials and optical power Reasonable distribution reduces the temperature drift coefficient of the image capture optical system of the applied lens group.
  • the focal length of the lens group is EFL
  • the curvature radius of the second lens object side surface is R21
  • the curvature radius of the second lens image side surface is R22, which satisfies the following conditions:
  • 2.22, which is good for correcting system aberrations.
  • Table 10, Table 11, and Table 12 are the detailed structure data of the lens group in the embodiment corresponding to FIG. 8.
  • the units of the radius of curvature, thickness, and focal length are millimeters (mm), and the surfaces ST1 to S13 indicate the order from the object side To the surface of each optical component on the image side.
  • Table 11 shows the aspheric surface data of each lens in the embodiment corresponding to FIG. 8, where k is the conical surface coefficient in the aspheric curve equation, and A4 to A20 represent the 4th to 20th order aspheric surface coefficients of each surface.
  • Table 12 shows various parameters of the lens group in the embodiment corresponding to FIG. 8.
  • Fig. 9a shows the chromatic aberration curve of the lens group corresponding to Fig. 8.
  • the abscissa of Fig. 9a is the intersection of light rays incident at different angles at the same object point and the optical axis.
  • the ordinate is the normalized height of the incident light at the entrance pupil.
  • the curves in Figure 9a correspond to different wavelengths, such as 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm. It can be seen from FIG. 9a that the chromatic aberration is controlled within a small range ( ⁇ 0.025 mm), which can prove that the lens set proposed in this application has excellent chromatic aberration performance.
  • Fig. 9b shows the astigmatism/curvature curve of the lens group corresponding to Fig. 8.
  • the unit of abscissa in Fig. 9b is millimeters, and the ordinate is image height (field of view).
  • the solid curve in Fig. 9b corresponds to the astigmatism/field curvature curve of the lens group in the S direction under the wavelength conditions of 470 nm, 510 nm, 555 nm, 610 nm and 650 nm, and the dashed curve corresponds to 470 nm, 510 nm, 555 nm,
  • the astigmatism/curvature curve of the lens group in the T direction at 610nm and 650nm wavelengths. It can be seen from Fig. 9b that the astigmatism is controlled within a small range ( ⁇ 0.02 mm), which can prove that the lens set proposed in this application has excellent astigmatism performance.
  • Fig. 9c shows the distortion curve of the lens group corresponding to Fig. 8, the abscissa in Fig. 9c represents the distortion (it can be the ratio of the actual image height on the image surface to the ideal image height, as a percentage), and the ordinate represents the image height. It can be seen from Figure 9c that the amount of optical distortion is controlled within the range of 0 to 1%.
  • the lens set corresponding to Figure 8 has excellent anti-distortion performance.
  • FIGS. 9a to 9c It can be seen from FIGS. 9a to 9c that the chromatic aberration performance and astigmatism performance of the lens set corresponding to FIG. 8 meets the imaging requirements with the anti-distortion performance, thereby ensuring good imaging quality.
  • the lens group along the optical axis from the object side to the image side are the first lens L1, the second lens L2, the third lens L3, the aperture stop STO, the fourth lens L4, and the fifth lens in order from the object side to the image side.
  • the IRCF L5 and an infrared filter element, an electronic photosensitive member may be positioned lateral side of the fifth lens image, wherein the third lens L3 is made of glass and the relative refractive index temperature coefficient satisfies [-9 ⁇ 10 -5, 9 ⁇ 10 - 5 ].
  • makes the lens group has a lower temperature effect.
  • the chromatic aberration performance and astigmatism performance of the lens group meet the imaging requirements with anti-distortion performance, thereby ensuring good imaging quality.
  • FIG. 10 is a schematic structural diagram of an image capturing optical system in an embodiment of this application.
  • the image capturing optical system 100 includes an imaging lens group 101, a driving device 102, a sensor 103, and an image stabilization module 104.
  • the imaging lens group 101 includes the lens group in any of the foregoing embodiments, a lens barrel (not shown) for carrying the lens group, and a supporting device (Holder Member, not shown).
  • the image capturing optical system 100 utilizes the lens group 101 to condense light to generate an image, and cooperates with the driving device 102 to perform image focusing, and finally the image is formed on the sensor 103 and can be output as image data.
  • the driving device 102 may have an auto-focus function, and its driving method may use voice coil motors (VCM), micro electro-mechanical systems (MEMS), piezoelectric systems (piezoelectric) , And drive systems such as shape memory alloy.
  • VCM voice coil motors
  • MEMS micro electro-mechanical systems
  • piezoelectric piezoelectric
  • drive systems such as shape memory alloy.
  • the driving device 102 can allow the lens group 101 to obtain a better imaging position, and can provide a clear image of the subject under different object distances.
  • the image capturing optical system 100 is equipped with sensors 103 with good sensitivity and low noise, such as charge-coupled devices (CCD) and complementary metal-oxide-semiconductor (CMOS) sensors. Devices, etc.
  • the sensor 103 is arranged on the image surface of the lens group, which can truly present the good imaging quality of the lens group.
  • the image stabilization module 104 is, for example, an accelerometer, a gyroscope, or a Hall element (Hall Effect Sensor).
  • the driving device 102 can be combined with the image stabilization module 104 to jointly act as an optical image stabilization (OIS), which can compensate for the blurry image produced by shaking at the moment of shooting by adjusting the change of the lens group 101 in different axial directions, or using imaging software
  • OIS optical image stabilization
  • the image compensation technology in China provides electronic image stabilization (EIS) to further improve the imaging quality of dynamic and low-light scenes.
  • FIG. 11 is a schematic diagram of a terminal device in an embodiment of this application
  • FIG. 12 is a schematic diagram of another terminal device in an embodiment of this application.
  • the terminal device 20 is a smart phone.
  • the terminal device 20 includes an image capturing optical system 100, a flash module 21, a focus assist module 22, an image signal processor 23 (image signal processor), a user interface 24, and an image software processor 25.
  • the aforementioned terminal device 20 includes an image capturing optical system 100 as an example, but this embodiment is not limited to this.
  • the terminal device 20 may include a plurality of image capturing optical systems 100, or may further include other image capturing optical systems in addition to the image capturing optical system 100.
  • the terminal device 20 uses the image capturing optical system 100 to condense and capture the image, activates the flash module 21 to fill light, and uses the subject provided by the focus assist module 22
  • the object distance information of the object is quickly focused, and the image signal processor 23 performs image optimization processing to further improve the image quality produced by the lens group of the camera system.
  • the focus assist module 22 can use an infrared or laser focus assist system to achieve rapid focus.
  • the user interface 24 can use a touch screen or a physical shooting button to cooperate with the diversified functions of the image software processor 25 to perform image shooting and image processing.
  • the image capturing optical system 100 of the present invention is not limited to being applied to smart phones.
  • the image capturing optical system 100 can be applied to a mobile focusing system as required, and has the characteristics of excellent aberration correction and good image quality.
  • the image capturing optical system 100 can be applied to three-dimensional (3D) image capturing, digital cameras, mobile devices, tablet computers, smart TVs, network monitoring equipment, driving recorders, reversing developing devices, and multi-lens devices in various ways. , Identification systems, somatosensory game consoles and wearable devices and other terminal equipment.
  • the terminal device disclosed in this embodiment is only an example of practical application of the present invention, and does not limit the application scope of the image capturing optical system of the present invention.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种镜头组包括由物方侧至像方侧依次排列的第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)和第五透镜(L5),其中,至少一片透镜的相对折射率温度系数β满足:-9×10 -5≤β≤9×10 -5,该镜头组的温漂系数范围较低,该镜头组的温度效应较低,该镜头组随温度变化所产生的离焦现象也较弱。可降低镜头音圈马达的设计难度,改善用户体验。

Description

一种镜头组、相关设备以及相关系统
本申请要求于2019年09月17日提交中国专利局、申请号为201910877855.5、发明名称为“一种镜头组、相关设备以及相关系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及镜头技术领域,尤其涉及一种镜头组、相关设备以及相关系统。
背景技术
摄像头是典型的终端设备组件。随着便携设备的不断发展,摄像头应用日益多样化。在多摄像头的组合式变焦系统中,不可或缺的是长焦镜头组设计。
通常情况下,终端设备的长焦镜头组采用4片-6片全树脂透镜结构设计,镜头组的焦距和后截距随温度发生变化,称为温度效应。随着镜头组的焦距增长,温度效应更加明显。现有方案中,通过温度补偿弥补所产生的温度效应,具体的:监控镜头组的环境温度,计算音圈马达(voice coil motor,VCM)的步进量,推动镜头进行对焦。
现有方案下,为了应对焦距更长的长焦镜头组,要求音圈马达具有更大行程(stroke),增加音圈马达的功耗和设计难度。因此需要一种新型镜头组以解决温度效应。
发明内容
本申请实施例提供了一种镜头组、相关设备以及相关系统,用于降低镜头组整体的温度效应。同时降低镜头组中音圈马达的设计难度,改善用户体验。
为解决上述技术问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种镜头组,包括:物方侧至像方侧依次排列的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其中,至少一片透镜的相对折射率温度系数β满足:-9×10 -5≤β≤9×10 -5。折射率会受温度的影响而发生变化。折射率随温度的变化用相对折射率温度系数β来表示。
本申请实施例中,由于镜头组中至少一片透镜的相对折射率温度系数β满足:-9×10 -5≤β≤9×10 -5,因此,该镜头组的温漂系数范围较低,该镜头组的温度效应较低,即该镜头组随温度变化所产生的离焦现象也较弱。可降低镜头音圈马达的设计难度,改善用户体验。
在第一方面的一种可能实现中,镜头组的温漂系数满足:-2.6微米um/℃≤△EFL/△℃≤2.6um/℃,其中,镜头组的有效焦距为EFL,△EFL/△℃为温漂系数。可使镜头组的温度效应得到进一步改善,使得镜头组的温度效应更低。镜头组的有效焦距为EFL以及镜头组的镜头总长为TTL满足以下条件:TTL/EFL≤0.96。满足镜头组的小型化需求。
在第一方面的一种可能实现中,镜头组中至少一片透镜的材质可以是玻璃。
在第一方面的一种可能实现中,镜头组中,第三透镜的相对折射率温度系数β3满足:-9×10 -5≤β3≤9×10 -5。第三透镜的色散系数V3可以满足15≤V3≤100,此时,第三透镜可用于矫正镜头组的色差。镜头组满足下列条件:0.27≤F3/EFL≤0.9,其中,F3为第三透镜的焦距,EFL为镜头组的有效焦距,使得镜头组内焦距的分布更为合理,并满足镜头组的小型化需求。第三镜头还可以是玻璃材质。
在第一方面的一种可能实现中,镜头组满足下列条件:SP3/LT≤0.5,其中,第三透镜与第四透镜的间距为SP3,第一透镜物方侧顶点位置到第五透镜像方侧顶点位置的间距为LT。以使得降低镜头组的组立难度。组立是将零部件按照设计要求进行先后顺序的组装过程。
在第一方面的一种可能实现中,镜头组满足下列条件:镜头组中第一透镜、第三透镜以及第四透镜具有正光焦度,镜头组中的第二透镜以及第五透镜具有负光焦度。镜头组中采用折射率温度系数较低的透镜以及光焦度的合理分配,可使得该镜头组的温度效应进一步较低。
在第一方面的一种可能实现中,第一透镜、第二透镜以及第三透镜的物方侧表面为凸面,像方侧表面为凹面;第四透镜的物方侧表面为凹面,像方侧表面为凸面;第五透镜的物方侧表面为凹面,像方侧表面为凹面。需要说明的是,上述凸面和凹面的限定是对各表面在近轴区域的限定,即靠近光轴附近的区域的限定。通过设置第一透镜的物方侧表面为凸面,提升物方侧光线的会聚能力。
在第一方面的一种可能实现中,镜头组满足以下条件:|EFL/R21|+|EFL/R22|=3.39,其中,镜头组的有效焦距为EFL,第二透镜物方侧表面的曲率半径为R21,第二透镜像方侧表面的曲率半径为R22。利于矫正镜头组所在光学系统的像差。镜头组满足以下条件:|EFL/R21|+|EFL/R22|=4.03,其中,所述镜头组的有效焦距为所述EFL,所述第二透镜物方侧表面的曲率半径为所述R21,所述第二透镜像方侧表面的曲率半径为所述R22。利于矫正镜头组所在光学系统的像差。
在第一方面的一种可能实现中,镜头组满足以下条件:所述第一透镜、所述第二透镜的物方侧表面为凸面,像方侧表面为凹面;所述第三透镜的物方侧表面为凸面,像方侧表面为凸面;所述第四透镜的物方侧表面为凹面,像方侧表面为凸面;所述第五透镜的物方侧表面为凹面,像方侧表面为凹面。通过设置第一透镜的物方侧表面为凸面,提升物方侧光线的会聚能力。所述第一透镜以及所述第三透镜具有正光焦度,所述第二透镜、所述第四透镜以及所述第五透镜具有负光焦度。镜头组中采用折射率温度系数较低的透镜以及光焦度的合理分配,可使得该镜头组的温度效应进一步较低。
在第一方面的一种可能实现中,镜头组满足以下条件:所述第一透镜的物方侧表面为凸面,像方侧表面为凸面;所述第二透镜以及所述第四透镜的物方侧表面为凹面,像方侧表面为凹面;所述第三透镜以及所述第五透镜的物方侧表面为凹面,像方侧表面为凸面。提升物方侧光线的会聚能力。所述镜头组满足以下条件:|EFL/R21|+|EFL/R22|=2.22,其中,所述镜头组的有效焦距为所述EFL,所述第二透镜物方侧表面的曲率半径为所述R21,所述第二透镜像方侧表面的曲率半径为所述R22。利于矫正镜头组所在光学系统的像差。
在第一方面的一种可能实现中,所述镜头组还包括孔径光阑以及红外滤光元件IRCF,所述孔径光阑设置于所述第三透镜与所述第四透镜之间,所述红外滤光元件设置于所述第五透镜像方侧后。可用以减少杂散光,有助于提升成像品质。
在第一方面的一种可能实现中,所述镜头组还包括第一渐晕光阑,所述第一渐晕光阑设置于所述第一透镜物方侧前。所述镜头组还包括第二渐晕光阑,所述第二渐晕光阑设置 于所述第五透镜像方侧后。可用以减少杂散光,有助于提升成像品质。
第二方面中,本申请实施例还提供一种图像擷取光学系统,包括镜头组、驱动装置、传感器以及影响稳定模块,其中,该镜头组包括如上述第一方面以及第一方面的任一项可能实现的所述镜头组。
第三方面中,本申请实施例还提供一种终端设备,包括图像撷取光学系统、闪光灯模块、对焦辅助模块、影像信号处理器、使用者界面以及影像软件处理器,其中,该如下撷取光学系统包括如上述第二方面的所述图像撷取光学系统,该图像撷取光学系统中包括镜头组,该镜头组包括如上述第一方面以及第一方面的任一项可能实现的所述镜头组。
从以上技术方案可以看出,本申请实施例具有以下优点:
镜头组包括由物方侧至像方侧依次排列的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其中,至少一片透镜的相对折射率温度系数β满足:-9×10 -5≤β≤9×10 -5。使得由该透镜组成的镜头组,整体的温度效应较低。同时降低音圈马达的设计难度,改善用户体验。
附图说明
图1为本申请实施例提供的一种镜头组的结构示意图;
图2为本申请实施例提出的另一种镜头组结构示意图;
图3a为本申请实施例提出的一种镜头组的色差曲线示意图;
图3b为本申请实施例提出的一种镜头组的象散曲线示意图;
图3c为本申请实施例提出的一种镜头组的畸变曲线示意图;
图4为本申请实施例提出的另一种镜头组结构示意图;
图5a为本申请实施例提出的另一种镜头组的色差曲线示意图;
图5b为本申请实施例提出的另一种镜头组的象散曲线示意图;
图5c为本申请实施例提出的另一种镜头组的畸变曲线示意图;
图6为本申请实施例提出的另一种镜头组结构示意图;
图7a为本申请实施例提出的另一种镜头组的色差曲线示意图;
图7b为本申请实施例提出的另一种镜头组的象散曲线示意图;
图7c为本申请实施例提出的另一种镜头组的畸变曲线示意图;
图8为本申请实施例提出的另一种镜头组结构示意图;
图9a为本申请实施例提出的另一种镜头组的色差曲线示意图;
图9b为本申请实施例提出的另一种镜头组的象散曲线示意图;
图9c为本申请实施例提出的另一种镜头组的畸变曲线示意图;
图10为本申请实施例中一种图像撷取光学系统的结构示意图;
图11为本申请实施例中一种终端设备示意图;
图12为本申请实施例中另一种终端设备示意图。
具体实施方式
为了方便理解本申请的各个实施例,首先介绍本申请中可能出现的几个概念。应理解的是,以下的概念解释可能会因为本申请的具体情况有所限制,但并不代表本申请仅能局限于该具体情况,以下概念的解释伴随不同实施例的具体情况可能也会存在差异:
镜头组:是利用透镜和/或反射镜,使景物光线在像平面(focusing plane)上形成清晰的影像的部件。
光焦度:等于像方光束会聚度与物方光束会聚度之差,它表征光学系统偏折光线的能力。
曲率半径:曲率是用于表示曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大,曲率的倒数就是曲率半径。
孔径光阑:入射孔径角最小的光阑,称为孔径光阑。
渐晕光阑:轴外光束被拦截的现象称为渐晕,产生渐晕的光阑称为渐晕光阑,即遮挡了轴外光束的光阑。
物方侧表面:透镜上最靠近实物体的表面为物方侧表面。
像方侧表面:透镜上最靠近成像面的表面为像方侧表面。
有效焦距(effective focal length,EFL):光学系统的主平面至对应的焦点的距离。
镜头总长(total track length,TTL):镜头总长分为光学总长和机构总长,光学总长指第一透镜的物方侧表面到像面的距离,机构总长指镜头组镜筒端面到像面的距离,在本申请实施例中,镜头总长为第一透镜物方侧表面至无穷远物体距离成像面于光轴上的距离。
折射率:如果光线进入某种非吸收型均匀材料,在其界面就会产生光的反射和折射现象。折射率n等于光在真空中的速度c与在介质中的速度v的比值。实际上,折射率的测量是通过测量由于光束在界面的折射而产生的偏折角度来测量的,描述偏折度的公式称为斯涅耳(Snell)定律。
色散:色散指折射率随波长的变化量。色散现象可以用电磁理论来解释,当一束电磁波作用在一个原子或分子上时,被束缚的电荷就会以入射波的频率振动。被束缚的电荷,对一定的波长有其相应的谐振频率。
色散系数:是衡量透镜成像品质的重要指标,通常用阿贝数表示,所以色散系数也叫阿贝数。色散系数(阿贝数)越大,色散越不明显,透镜的成像品质越好;色散系数(阿贝数)越小,色散越明显,透镜的成像品质就差。
相对折射率温度系数(β):折射率会受温度的影响而发生变化。折射率随温度的变化用相对折射率温度系数β来表示,具体的β=dn/dt。折射率温度系数可用干燥空气(101.3千帕斯卡)中的相对折射率温度系数:(dn/dt) rel.来表示;也可以用真空中的绝对折射率温度系数(dn/dt) abs.来表示。
温漂系数:镜头组的有效焦距随温度的变化率。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例进行介绍。
请参阅图1,图1为本申请实施例提供的一种镜头组的结构示意图。本申请实施例提供了一种镜头组,该镜头组包括由物方侧至像方侧依次排列的第一透镜L1、第二透镜L2、 第三透镜L3、第四透镜L4和第五透镜L5,其中,至少一片透镜的相对折射率温度系数β满足:-9×10 -5≤β≤9×10 -5
本申请实施例提供的镜头组,由于其中的至少一片透镜的相对折射率温度系数β满足:-9×10 -5≤β≤9×10 -5,该透镜的折射率对温度变化不敏感。
由于现有方案中,当温度变化时,采用镜头组的图像撷取光学系统通过音圈马达,推动镜头进行对焦,弥补温度变化造成图像的不清晰。若镜头组的温度效应越强,则需要音圈马达具有更大的线性行程(stroke),同时,提升了音圈马达的功耗、尺寸与设计难度。因此,本申请实施例提出的镜头组,由于其中的至少一片透镜的相对折射率温度系数β满足:-9×10 -5≤β≤9×10 -5,因此,该镜头组的温漂系数范围较低,该镜头组的温度效应较低,即该镜头组随温度变化所产生的离焦现象也较弱。可降低镜头音圈马达的设计难度,改善用户体验。
在图1对应的实施例的基础上,为了进一步改善镜头组的温度效应,即使得镜头组的温度效应更低,可使镜头组的温漂系数满足:-2.6微米um/℃≤△EFL/△℃≤2.6um/℃,其中,镜头组的有效焦距为EFL,△EFL/△℃为温漂系数。
在图1对应的实施例的基础上,为了满足镜头组的小型化需求。可使镜头组的有效焦距为EFL以及镜头组的镜头总长为TTL满足以下条件:TTL/EFL≤0.96。
在上述实施例的基础上,本申请实施例提出的镜头组中,具体可以选择第三透镜L3的相对折射率温度系数β3满足:-9×10 -5≤β3≤9×10 -5。并且,为了镜头组内焦距的分布更为合理以及镜头组的小型化需求,第三透镜L3的焦距F3以及镜头组的有效焦距EFL满足以下条件:0.27≤F3/EFL≤0.9。由于,第三透镜L3的随温度折射率变化的范围较小,因此使得该镜头组的温度效应较低。需要说明的是,在一种可选的实现方式中,还可以是相对折射率温度系数满足[-9×10 -5,9×10 -5]的任意透镜的焦距满足上述条件,例如,第四透镜L4的相对折射率温度系数β4,满足[-9×10 -5,9×10 -5],且第四透镜L4的焦距F4满足0.27≤F4/EFL≤0.9,此处不作限定。
可选地,本申请实施例提出的镜头组中,其中的一个或多个透镜的材质包括玻璃。使用玻璃材质的透镜,其相对折射率温度系数满足[-9×10 -5,9×10 -5],需要说明的是,本申请实施例提出的,透镜的相对折射率温度系数满足[-9×10 -5,9×10 -5],仅是一种示例说明,目的是说明该透镜的相对折射率温度系数较小。
在上述实施例的基础上,为了矫正镜头组的色差,第三透镜L3的色散系数V3可以满足15≤V3≤100。需要说明的是,在一种可选的实现方式中,还可以是其他一片或多片透镜的色散系数,满足上述条件,此处不作限定。
在上述实施例的基础上,组立是将零部件按照设计要求进行先后顺序的组装过程,为了降低镜头组的组立难度,第三透镜L3和第四透镜L4的间距为SP3,第一透镜L1物方侧顶点位置到第五透镜L5像方侧顶点位置的间距为LT,可使镜头组满足:SP3/LT≤0.5,第一透镜L1物方侧顶点位置为第一透镜L1的物方侧表面与光轴(或对称轴)的交点位置,第五透镜L5像方侧顶点位置为第五透镜L5的像方侧表面与光轴(或对称轴)的交点位置。
光焦度用于表征光学系统对入射光线的偏折能力,光焦度为正值时表示光学系统对平 行于光轴的入射平行光束的偏折是汇聚的,光焦度为负值时表示光学系统对平行于光轴的入射平行光束的偏折是发散的。在一种可选的实现方式中,镜头组中第一透镜L1、第三透镜L3以及第四透镜L4具有正光焦度,镜头组中的第二透镜L2以及第五透镜L5具有负光焦度。镜头组中采用折射率温度系数较低的透镜以及光焦度的合理分配,可使得该镜头组的温度效应进一步较低。
在上述实施例的基础上,第一透镜L1、第二透镜L2以及第三透镜L3的物方侧表面为凸面,像方侧表面为凹面;第四透镜L4的物方侧表面为凹面,像方侧表面为凸面;第五透镜L5的物方侧表面为凹面,像方侧表面为凹面。需要说明的是,上述凸面和凹面的限定是对各表面在近轴区域的限定,即靠近光轴附近的区域的限定。通过设置第一透镜L1的物方侧表面为凸面,提升物方侧光线的会聚能力。
在上述实施例的基础上,第一透镜L1、第二透镜L2的物方侧表面为凸面,像方侧表面为凹面;第三透镜L3的物方侧表面为凸面,像方侧表面为凸面;第四透镜L4的物方侧表面为凹面,像方侧表面为凸面;第五透镜L5的物方侧表面为凹面,像方侧表面为凹面。通过设置第一透镜L1的物方侧表面为凸面,提升物方侧光线的会聚能力。
在一种可选的实现方式中,镜头组中第一透镜L1以及第三透镜L3具有正光焦度,第二透镜L2、第四透镜L4以及第五透镜L5具有负光焦度。镜头组中采用折射率温度系数较低的透镜以及光焦度的合理分配,可使得该镜头组的温度效应进一步较低。
在上述实施例的基础上,第一透镜L1的物方侧表面为凸面,像方侧表面为凸面;第二透镜L2以及第四透镜L4的物方侧表面为凹面,像方侧表面为凹面;第三透镜L3以及第五透镜L5的物方侧表面为凹面,像方侧表面为凸面。
在上述实施例的基础上,本申请实施例提出的镜头组还可以包括:渐晕光阑(vignetting stop)、孔径光阑(aperture stop,STO)以及红外滤光元件(ir-cut filter,IRCF),其中,渐晕光阑的作用是提高轴外点成像质量,减小光学零件尺寸;孔径光阑的作用是提高镜头组的成像质量;红外滤光元件的作用是过滤自然光中的红外光,使得镜头组后连接的图像传感器采集到的图像,与人眼所看到的图像接近。
可选地,透镜组中包括第一渐晕光阑ST1、第二渐晕光阑ST2、孔径光阑STO以及红外滤光元件IRCF,其中,第一渐晕光阑ST1设置于第一透镜L1物方侧前,第二渐晕光阑设置于第五透镜L5像方侧后,孔径光阑STO可以设置于第三透镜L3与第四透镜L4之间,红外滤光元件IRCF可以设置于第五透镜L5像方侧后。通过在第一透镜L1物方侧前设置第一渐晕光阑ST1,在第五透镜L5像方侧后设置第二渐晕光阑ST2,可减小镜头组的外径。
可选地,透镜组中包括孔径光阑STO以及红外滤光元件IRCF,其中,孔径光阑STO可以设置于第一透镜L1物方侧前,红外滤光元件IRCF设置于第五透镜L5像方侧后。
可选地,还可以在透镜组中各个透镜之间设置一个或多个其它光阑,该其它光阑的种类如耀光光阑(glare stop)或视场光阑(field stop)等,可用以减少杂散光,有助于提升成像品质。
基于上述实施例的基础上,本申请实施例提出的镜头组满足以下条件:|EFL/R21|+|EFL/R22|<6,其中,镜头组的有效焦距为EFL,第二透镜物方侧表面的曲率 半径为R21,第二透镜像方侧表面的曲率半径为R22。利于校正镜头组的综合像差。
可选地,本申请实施例提出的镜头组中,其它透镜的材质可为树脂或玻璃。当透镜的材质为玻璃,可以增加屈折力配置的自由度。当透镜材质为树脂,则可以有效降低生产成本。此外,可于透镜表面上设置非球面(ASP),非球面可以容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,因此可以有效降低光学总长度。
具体地,各透镜的非球面曲线方程式表示如下:
Figure PCTCN2020115562-appb-000001
z:非球面曲线上距离光轴为r的点,与相切于非球面光轴上顶点的切面,两者之间的垂直距离;
r:非球面曲线上的点与光轴的垂直距离;
c:非球面在光心(即透镜与光轴的交点)处的曲率;
k:锥面系数;
Ai:第i阶非球面系数。
以下参照附图列举几种镜头组的具体实施例,需要说明的是,以下实施例中的各透镜的非球面的面型参数均符合上述方程式,附图中所示的球面或非球面的形状仅仅是示意性的表示,即球面或非球面的形状不限于附图中所示的形状。
请参阅图2,图2为本申请实施例提出的另一种镜头组结构示意图。如图2所示,沿着光轴从物方侧到像方侧依次为第一渐晕光阑ST1、第一透镜L1、第二透镜L2、第三透镜L3、孔径光阑STO、第四透镜L4、第五透镜L5以及红外滤光元件IRCF、电子感光元件可置于第五透镜像方侧后。
第一透镜L1具有正光焦度,且为树脂(plastic)材质,其物方侧表面S1近光轴处为凸面,像方侧表面S2近光轴处为凹面,均为非球面。
第二透镜L2具有负光焦度,且为树脂材质,其物方侧表面S3近光轴处为凸面,像方侧表面S4近光轴处为凹面,均为非球面。
第三透镜L3具有正光焦度,且为玻璃(glass)材质,其物方侧表面S5近光轴处为凸面,像方侧表面S6近光轴处为凹面,均为非球面,相对折射率温度系数满足[-9×10 -5,9×10 -5]。
第四透镜L4具有正光焦度,且为树脂材质,其物方侧表面S7近光轴处为凹面,像方侧表面S8近光轴处为凸面,均为非球面。
第五透镜L5具有负光焦度,且为树脂材质,其物方侧表面S13近光轴处为凹面,像方侧表面S14近光轴处为凹面,均为非球面。
通过设置第一渐晕光阑ST1,可有效减小镜头组的直径。
在一种可选的实施方式中,还可以在第五透镜L5的像方侧后设置第二渐晕光阑ST2,可进一步减小镜头组的直径。
表1中给出了各透镜的具体参数,表2给出了各透镜表面的圆锥系数k以及非球面系数Ai(i=4、6、8、10、12、14、16、18以及20)。
表1
Figure PCTCN2020115562-appb-000002
表2
Figure PCTCN2020115562-appb-000003
Figure PCTCN2020115562-appb-000004
表3
Figure PCTCN2020115562-appb-000005
表3中,镜头组的最大成像高度为ImgH,第一透镜L1的焦距为F1,第二透镜L2的焦距为F2,第三透镜L3的焦距为F3,第四透镜L4的焦距为F4,第五透镜L5的焦距为F5。
本实施例中,第三透镜L3的焦距为F3,镜头组的焦距为EFL,F3/EFL=0.53满足0.27≤F3/EFL≤0.9。温度变化△℃时,EFL变化量为△EFL。△EFL/△℃定义为镜头组的温漂系数,其中温漂系数满足如下条件:-1um/℃≤△EFL/△℃≤1um/℃,采用低折射率温度系数材料和光焦度的合理分配减少应用镜头组的图像擷取光学系统的温漂系数。
本实施例中,镜头组的焦距为EFL,该第二透镜物方侧表面的曲率半径为R21,该第二透镜像方侧表面的曲率半径为R22,满足如下条件:|EFL/R21|+|EFL/R22|=3.39,利于矫正系统像差。
表1、表2以及表3为图2所对应的实施例中镜头组的详细结构数据,其中曲率半径、厚度及焦距的单位为毫米(mm),且表面ST1到S13依序表示由物侧至像侧各个光学元器件的表面。表2为图2所对应的实施例中各个透镜的非球面数据,其中,k为非球面曲线方程式中的锥面系数,A4到A20则表示各表面第4到20阶非球面系数。表3为图2所对应的实施例中镜头组的各项参数。此外,以下各实施例表格乃对应各实施例的示意图与像差曲线图,表格中数据的定义皆与图2对应的实施例的表1、表2以及表3的定义相同,在此不加以赘述。
图3a所示为图2对应镜头组的色差曲线。图3a的横坐标为在同一物点以不同角度入射的光线与光轴的交点。纵坐标为入射光线在入瞳处的归一化高度。图3a中各个曲线对应不同的波长,如:470纳米、510纳米、555纳米、610纳米以及650纳米。由图3a可以看出,色差被控制在较小的范围内(±0.025毫米),可证明本申请提出的镜头组具有优良的色差性能。需要说明的是,归一化高度是指将各入射光线在入瞳处的高度经过归一化处理后得到的无量纲的比例值。即设高度的最大值为1,其余高度值通过与最大值的比例关系来表示。归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为标量。
图3b所示为图2对应镜头组的象散/场曲曲线。图3b的横坐标单位是毫米,纵坐标是像高(视场)。图3b中实线曲线对应555纳米波长条件下镜头组在S方向象散/场曲曲线,虚线曲线对应555纳米波长条件下镜头组在T方向象散/场曲曲线。由图3b可知,象散控制在较小范围内(±0.01毫米),可证明本申请提出的镜头组具有优良的象散性能。
图3c所示为图2对应镜头组的畸变曲线,图3c中的横坐标表示畸变(可以为像面上的实际像高与理想像高的比值,为百分数),纵坐标表示像高。由图3c可以看出,光学畸变量被控制在0~1%的范围内。图2所对应的镜头组具有优良的抗畸变性能。
由图3a~图3c可以看出,图2所对应的镜头组的色差性能、象散性能以抗畸变性能满足成像要求,从而能够保证良好的成像质量。
本申请实施例中,镜头组沿着光轴从物方侧到像方侧依次为渐晕光阑ST1、第一透镜L1、第二透镜L2、第三透镜L3、孔径光阑STO、第四透镜L4、第五透镜L5以及红外滤光元件IRCF、电子感光元件可置于第五透镜像方侧后,其中,第三透镜L3为玻璃材质且相对折射率温度系数满足[-9×10 -5,9×10 -5]。使得该镜头组具有较低的温度效应。并且该镜头组的色差性能、象散性能以抗畸变性能满足成像要求,从而能够保证良好的成像质量。
请参阅图4,图4为本申请实施例提出的另一种镜头组结构示意图。如图4所示,沿着光轴从物方侧到像方侧依次为孔径光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外滤光元件IRCF、电子感光元件可置于像面。
第一透镜L1具有正光焦度,且为树脂材质,其物方侧表面S1近光轴处为凸面,像方侧表面S2近光轴处为凹面,且均为非球面。
第二透镜L2具有负光焦度,且为树脂材质,其物方侧表面S3近光轴处为凸面,像方侧表面S4近光轴处为凹面,且均为非球面。
第三透镜L3具有正光焦度,且为玻璃材质,其物方侧表面S5近光轴处为凸面,像方侧表面S6近光轴处为凹面,且均为非球面,相对折射率温度系数满足[-9×10 -5,9×10 -5]。
第四透镜L4具有正光焦度,且为树脂材质,其物方侧表面S7近光轴处为凹面,像方侧表面S8近光轴处为凸面,且均为非球面。
第五透镜L5具有负光焦度,且为树脂材质,其物方侧表面S13近光轴处为凹面,像方侧表面S14近光轴处为凹面,且均为非球面。
表4中给出了各透镜的具体参数,表5给出了各透镜表面的圆锥系数k以及非球面系数Ai(i=4、6、8、10、12、14、16、18以及20)。
表4
Figure PCTCN2020115562-appb-000006
表5
面号 K A4 A6 A8 A10
S1 -3.12084E-01 5.52218E-05 -9.92683E-05 4.78175E-05 -8.64741E-06
S2 -1.85786E+01 2.20877E-02 -1.01583E-02 4.11673E-03 -9.31877E-04
S3 -2.62577E+01 1.89738E-02 -1.72928E-02 9.13426E-03 -2.58841E-03
S4 -5.85775E-01 2.13164E-02 -2.30550E-02 1.35283E-02 -4.16042E-03
S5 -1.36169E+00 8.23904E-03 -8.81881E-03 5.65384E-03 -1.65213E-03
S6 -9.99900E+01 -3.93244E-06 2.44829E-04 -2.37704E-04 7.51153E-05
S7 6.19810E+00 1.15453E-02 -8.16920E-03 2.03553E-03 -7.80287E-04
S8 1.91849E+00 5.47846E-03 -2.46854E-03 -2.82789E-05 5.84776E-05
S9 -9.99900E+01 -6.68782E-02 1.98477E-02 -5.14875E-03 1.41559E-03
S10 -3.94752E+01 -3.65793E-02 1.21638E-02 -2.92545E-03 5.91877E-04
面号 A12 A14 A16 A18 A20
S1 6.58646E-07        
S2 9.76697E-05 -3.23644E-06      
S3 3.37117E-04 -1.05407E-05 -1.11719E-06    
S4 6.10474E-04 -3.53700E-05      
S5 2.15010E-04 -1.03181E-05      
S6 -7.74252E-06        
S7 1.01626E-04        
S8 2.93456E-06        
S9 -2.51896E-04 1.90191E-05      
S10 -8.78975E-05 6.08165E-06      
表6
参数(mm) TTL ImgH EFL F1 F2 F3 F4 F5
数值 12.7 2.5 14.46 16.6 -12.1 7.6 17.4 -8.1
表6中,镜头组的最大成像高度为ImgH,第一透镜L1的焦距为F1,第二透镜L2的焦距为F2,第三透镜L3的焦距为F3,第四透镜L4的焦距为F4,第五透镜L5的焦距为F5。
本实施例中,第三透镜L3的焦距为F3,镜头组的焦距为EFL,F3/EFL=0.52满足0.27≤F3/EFL≤0.9。温度变化△℃时,EFL变化量为△EFL。△EFL/△℃定义为镜头组的温漂系数,其中温漂系数满足如下条件:-1um/℃≤△EFL/△℃≤1um/℃,采用低折射率温度系数材料和光焦度的合理分配减少应用镜头组的图像擷取光学系统的温漂系数。
本实施例中,镜头组的焦距为EFL,该第二透镜物方侧表面的曲率半径为R21,该第二透镜像方侧表面的曲率半径为R22,满足如下条件:|EFL/R21|+|EFL/R22|=4.03,利于矫正系统像差。
表4、表5以及表6为图4所对应的实施例中镜头组的详细结构数据,其中曲率半径、厚度及焦距的单位为毫米(mm),且表面ST1到S13依序表示由物侧至像侧各个光学元器件的表面。表5为图4所对应的实施例中各个透镜的非球面数据,其中,k为非球面曲线方程式中的锥面系数,A4到A20则表示各表面第4到20阶非球面系数。表6为图4所对应的实施例中镜头组的各项参数。
图5a所示为图4对应镜头组的色差曲线。图5a的横坐标为在同一物点以不同角度入射的光线与光轴的交点。纵坐标为入射光线在入瞳处的归一化高度。图5a中各个曲线对应不同的波长,如:470纳米、510纳米、555纳米、610纳米以及650纳米。由图5a可以看出,色差被控制在较小的范围内(±0.025毫米),可证明本申请提出的镜头组具有优良的色差性能。
图5b所示为图4对应镜头组的象散/场曲曲线。图5b的横坐标单位是毫米,纵坐标是像高(视场)。图5b中实线曲线分别对应470纳米、510纳米、555纳米、610纳米以及650纳米波长条件下镜头组在S方向象散/场曲曲线,虚线曲线分别对应470纳米、510纳米、555纳米、610纳米以及650纳米波长条件下镜头组在T方向象散/场曲曲线。由图 5b可知,象散控制在较小范围内(±0.025毫米),可证明本申请提出的镜头组具有优良的象散性能。
图5c所示为图4对应镜头组的畸变曲线,图5c中的横坐标表示畸变(可以为像面上的实际像高与理想像高的比值,为百分数),纵坐标表示像高。由图5c可以看出,光学畸变量被控制在0~1%的范围内。图4所对应的镜头组具有优良的抗畸变性能。
由图5a~图5c可以看出,图4所对应的镜头组的色差性能、象散性能以抗畸变性能满足成像要求,从而能够保证良好的成像质量。
本申请实施例中,镜头组沿着光轴从物方侧到像方侧依次为第一透镜L1、第二透镜L2、第三透镜L3、孔径光阑STO、第四透镜L4、第五透镜L5以及红外滤光元件IRCF、电子感光元件可置于第五透镜像方侧后,其中,第三透镜L3为玻璃材质且相对折射率温度系数满足[-9×10 -5,9×10 -5]。使得该镜头组具有较低的温度效应。并且该镜头组的色差性能、象散性能以抗畸变性能满足成像要求,从而能够保证良好的成像质量。
请参阅图6,图6为本申请实施例提出的另一种镜头组结构示意图。如图6所示,沿着光轴从物方侧到像方侧依次为孔径光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外滤光元件IRCF、电子感光元件可置于像面。
第一透镜L1具有正光焦度,且为树脂材质,其物方侧表面S1近光轴处为凸面,像方侧表面S2近光轴处为凹面,且均为非球面。
第二透镜L2具有负光焦度,且为树脂材质,其物方侧表面S3近光轴处为凸面,像方侧表面S4近光轴处为凹面,且均为非球面。
第三透镜L3具有正光焦度,且为玻璃材质,其物方侧表面S5近光轴处为凸面,像方侧表面S6近光轴处为凸面,且均为非球面,相对折射率温度系数满足[-9×10 -5,9×10 -5]。
第四透镜L4具有正光焦度,且为树脂材质,其物方侧表面S7近光轴处为凹面,像方侧表面S8近光轴处为凸面,且均为非球面。
第五透镜L5具有负光焦度,且为树脂材质,其物方侧表面S13近光轴处为凹面,像方侧表面S14近光轴处为凹面,且均为非球面。
表7中给出了各透镜的具体参数,表8给出了各透镜表面的圆锥系数k以及非球面系数Ai(i=4、6、8、10、12、14、16、18以及20)。
表7
Figure PCTCN2020115562-appb-000007
Figure PCTCN2020115562-appb-000008
表8
面号 K A4 A6 A8 A10
S1 -3.13697E-01 4.15951E-04 -1.54454E-04 3.29403E-05 -6.44789E-06
S2 -1.70744E+01 1.30006E-02 -3.75490E-03 8.07084E-04 -1.47605E-04
S3 -7.90193E+01 -5.62170E-03 2.17448E-03 -4.40634E-04 2.81502E-05
S4 -1.85496E+00 -8.89666E-03 2.02010E-03 -1.04418E-05 -8.72707E-05
S5 2.81022E+00 4.79389E-03 -6.43603E-03 1.56228E-03 -3.74589E-04
S6 4.82745E+01 4.05588E-03 -3.78338E-03 3.18547E-04 -3.77117E-05
S7 -4.18556E+01 -4.73412E-03 -9.51575E-03 2.08716E-03 -8.91864E-04
S8 -1.88823E+01 -1.84720E-02 -3.34689E-03 1.42039E-03 -3.03952E-04
S9 3.15528E+01 -6.76522E-02 1.98642E-02 -1.76778E-03 -2.13791E-04
S10 -3.62150E+01 -3.82288E-02 1.52770E-02 -3.72175E-03 5.06837E-04
面号 A12 A14 A16 A18 A20
S1 6.56791E-07        
S2 1.50389E-05        
S3 -2.73030E-06        
S4 8.06004E-06        
S5 3.46669E-05        
S6 5.30075E-06        
S7 1.68599E-04        
S8 2.14123E-05        
S9 3.07644E-05        
S10 -3.25778E-05        
表9
Figure PCTCN2020115562-appb-000009
表9中,镜头组的最大成像高度为ImgH,第一透镜L1的焦距为F1,第二透镜L2的焦距为F2,第三透镜L3的焦距为F3,第四透镜L4的焦距为F4,第五透镜L5的焦距为F5。
本实施例中,第三透镜L3的焦距为F3,镜头组的焦距为EFL,F3/EFL=0.53满足0.27≤F3/EFL≤0.9。温度变化△℃时,EFL变化量为△EFL。△EFL/△℃定义为镜头组的温漂系数,其中温漂系数满足如下条件:-1um/℃≤△EFL/△℃≤1um/℃,采用低折射率温度系数材料和光焦度的合理分配减少应用镜头组的图像擷取光学系统的温漂系数。
本实施例中,镜头组的焦距为EFL,该第二透镜物方侧表面的曲率半径为R21,该第二透镜像方侧表面的曲率半径为R22,满足如下条件:|EFL/R21|+|EFL/R22|=4.02,利于矫正系统像差。
表7、表8以及表9为图6所对应的实施例中镜头组的详细结构数据,其中曲率半径、厚度及焦距的单位为毫米(mm),且表面ST1到S13依序表示由物侧至像侧各个光学元器件的表面。表8为图6所对应的实施例中各个透镜的非球面数据,其中,k为非球面曲线方程式中的锥面系数,A4到A20则表示各表面第4到20阶非球面系数。表9为图6所对应的实施例中镜头组的各项参数。
图7a所示为图6对应镜头组的色差曲线。图7a的横坐标为在同一物点以不同角度入射的光线与光轴的交点。纵坐标为入射光线在入瞳处的归一化高度。图7a中各个曲线对应不同的波长,如:470纳米、510纳米、555纳米、610纳米以及650纳米。由图7a可以看出,色差被控制在较小的范围内(±0.025毫米),可证明本申请提出的镜头组具有优良的色差性能。
图7b所示为图6对应镜头组的象散/场曲曲线。图7b的横坐标单位是毫米,纵坐标是像高(视场)。图7b中实线曲线分别对应470纳米、510纳米、555纳米、610纳米以及650纳米波长条件下镜头组在S方向象散/场曲曲线,虚线曲线分别对应470纳米、510纳米、555纳米、610纳米以及650纳米波长条件下镜头组在T方向象散/场曲曲线。由图7b可知,象散控制在较小范围内(±0.02毫米),可证明本申请提出的镜头组具有优良的象散性能。
图7c所示为图6对应镜头组的畸变曲线,图7c中的横坐标表示畸变(可以为像面上的实际像高与理想像高的比值,为百分数),纵坐标表示像高。由图7c可以看出,光学畸变量被控制在0~1%的范围内。图6所对应的镜头组具有优良的抗畸变性能。
由图7a~图7c可以看出,图6所对应的镜头组的色差性能、象散性能以抗畸变性能满足成像要求,从而能够保证良好的成像质量。
本申请实施例中,镜头组沿着光轴从物方侧到像方侧依次为第一透镜L1、第二透镜L2、第三透镜L3、孔径光阑STO、第四透镜L4、第五透镜L5以及红外滤光元件IRCF、电子感光元件可置于第五透镜像方侧后,其中,第三透镜L3为玻璃材质且相对折射率温度系数满 足[-9×10 -5,9×10 -5]。使得该镜头组具有较低的温度效应。并且该镜头组的色差性能、象散性能以抗畸变性能满足成像要求,从而能够保证良好的成像质量。
请参阅图8,图8为本申请实施例提出的另一种镜头组结构示意图。如图8所示,沿着光轴从物方侧到像方侧依次为孔径光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、红外滤光元件IRCF、电子感光元件可置于像面。
第一透镜L1具有正光焦度,且为树脂材质,其物方侧表面S1近光轴处为凸面,像方侧表面S2近光轴处为凸面,且均为非球面。
第二透镜L2具有负光焦度,且为树脂材质,其物方侧表面S3近光轴处为凹面,像方侧表面S4近光轴处为凹面,且均为非球面。
第三透镜L3具有正光焦度,且为玻璃材质,其物方侧表面S5近光轴处为凹面,像方侧表面S6近光轴处为凸面,且均为非球面,相对折射率温度系数满足[-9×10 -5,9×10 -5]。
第四透镜L4具有负光焦度,且为树脂材质,其物方侧表面S7近光轴处为凹面,像方侧表面S8近光轴处为凹面,且均为非球面。
第五透镜L5具有负光焦度,且为树脂材质,其物方侧表面S13近光轴处为凹面,像方侧表面S14近光轴处为凸面,且均为非球面。
表10中给出了各透镜的具体参数,表11给出了各透镜表面的圆锥系数k以及非球面系数Ai(i=4、6、8、10、12、14、16、18以及20)。
表10
Figure PCTCN2020115562-appb-000010
表11
面号 K A4 A6 A8 A10
S1 -2.42314E-01 4.30710E-04 -3.70881E-05 -8.86768E-06 -7.93058E-07
S2 -9.99900E+01        
S3 5.00000E+01 5.68764E-03 2.89227E-04 -8.70673E-05 -3.67068E-06
S4 2.85244E+00 7.08247E-03 5.77867E-04 8.42268E-05 -1.05079E-04
S5 5.00000E+01 -1.36213E-02 -2.08786E-03 -1.21020E-04 -1.13427E-04
S6 1.17326E+01 -1.22861E-02 3.72293E-04 1.02203E-03 -3.80036E-04
S7 -2.04939E+00 2.90141E-03 7.93886E-03 -1.26197E-03 1.65087E-04
S8 9.14076E+00 1.06882E-03 9.53213E-03 -2.63250E-03 5.45581E-04
S9 1.64371E+01 -4.30973E-02 6.68361E-03 -6.33322E-04 -4.12765E-05
S10 -3.73219E+01 -3.32581E-02 5.86386E-03 -1.20598E-03 1.72944E-04
面号 A12 A14 A16 A18 A20
S1          
S2          
S3 9.40457E-07        
S4 1.65444E-05 -1.69491E-06      
S5 2.96031E-05 -2.82634E-06      
S6 4.98608E-05        
S7 -1.70216E-05        
S8          
S9 3.59336E-05        
S10 -1.39307E-05 1.81530E-07      
表12
Figure PCTCN2020115562-appb-000011
表12中,镜头组的最大成像高度为ImgH,第一透镜L1的焦距为F1,第二透镜L2的焦距为F2,第三透镜L3的焦距为F3,第四透镜L4的焦距为F4,第五透镜L5的焦距为F5。
本实施例中,第三透镜L3的焦距为F3,镜头组的焦距为EFL,F3/EFL=0.72满足0.27≤F3/EFL≤0.9。温度变化△℃时,EFL变化量为△EFL。△EFL/△℃定义为镜头组的温漂系数,其中温漂系数满足如下条件:-2.6um/℃≤△EFL/△℃≤2.6um/℃,采用低折射率温度系数材料和光焦度的合理分配减少应用镜头组的图像擷取光学系统的温漂系数。
本实施例中,镜头组的焦距为EFL,该第二透镜物方侧表面的曲率半径为R21,该第二 透镜像方侧表面的曲率半径为R22,满足如下条件:|EFL/R21|+|EFL/R22|=2.22,利于矫正系统像差。
表10、表11以及表12为图8所对应的实施例中镜头组的详细结构数据,其中曲率半径、厚度及焦距的单位为毫米(mm),且表面ST1到S13依序表示由物侧至像侧各个光学元器件的表面。表11为图8所对应的实施例中各个透镜的非球面数据,其中,k为非球面曲线方程式中的锥面系数,A4到A20则表示各表面第4到20阶非球面系数。表12为图8所对应的实施例中镜头组的各项参数。
图9a所示为图8对应镜头组的色差曲线。图9a的横坐标为在同一物点以不同角度入射的光线与光轴的交点。纵坐标为入射光线在入瞳处的归一化高度。图9a中各个曲线对应不同的波长,如:470纳米、510纳米、555纳米、610纳米以及650纳米。由图9a可以看出,色差被控制在较小的范围内(±0.025毫米),可证明本申请提出的镜头组具有优良的色差性能。
图9b所示为图8对应镜头组的象散/场曲曲线。图9b的横坐标单位是毫米,纵坐标是像高(视场)。图9b中实线曲线分别对应470纳米、510纳米、555纳米、610纳米以及650纳米波长条件下镜头组在S方向象散/场曲曲线,虚线曲线分别对应470纳米、510纳米、555纳米、610纳米以及650纳米波长条件下镜头组在T方向象散/场曲曲线。由图9b可知,象散控制在较小范围内(±0.02毫米),可证明本申请提出的镜头组具有优良的象散性能。
图9c所示为图8对应镜头组的畸变曲线,图9c中的横坐标表示畸变(可以为像面上的实际像高与理想像高的比值,为百分数),纵坐标表示像高。由图9c可以看出,光学畸变量被控制在0~1%的范围内。图8所对应的镜头组具有优良的抗畸变性能。
由图9a~图9c可以看出,图8所对应的镜头组的色差性能、象散性能以抗畸变性能满足成像要求,从而能够保证良好的成像质量。
本申请实施例中,镜头组沿着光轴从物方侧到像方侧依次为第一透镜L1、第二透镜L2、第三透镜L3、孔径光阑STO、第四透镜L4、第五透镜L5以及红外滤光元件IRCF、电子感光元件可置于第五透镜像方侧后,其中,第三透镜L3为玻璃材质且相对折射率温度系数满足[-9×10 -5,9×10 -5]。使得该镜头组具有较低的温度效应。并且该镜头组的色差性能、象散性能以抗畸变性能满足成像要求,从而能够保证良好的成像质量。
另一方面,请参阅图10,图10为本申请实施例中一种图像撷取光学系统的结构示意图。在本实施例中,图像撷取光学系统100包含成像镜头组101、驱动装置102、传感器103以及影像稳定模块104。成像镜头组101包括上述任一实施例中的镜头组、用于承载镜头组的镜筒(未另标号)以及支持装置(Holder Member,未另标号)。图像撷取光学系统100利用镜头组101聚光产生影像,并配合驱动装置102进行影像对焦,最后成像于传感器103并且能作为影像资料输出。
驱动装置102可具有自动对焦(auto-focus)功能,其驱动方式可使用如音圈马达(voice coil motor,VCM)、微机电系统(micro electro-mechanical systems,MEMS)、压电系统(piezoelectric)、以及记忆金属(shape memory alloy)等驱动系统。驱动装置102可让镜头组 101取得较佳的成像位置,可提供被摄物于不同物距的状态下,皆能拍摄清晰影像。
此外,图像撷取光学系统100搭载感光度佳及低杂讯的传感器103,例如电荷耦合器件(charge-coupled device,CCD)、互补式金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)感光器件等。传感器103设置于镜头组的像面,可真实呈现镜头组的良好成像品质。
影像稳定模块104例如为加速计、陀螺仪或霍尔元件(Hall Effect Sensor)。驱动装置102可搭配影像稳定模块104而共同作为光学防抖装置(optical image stabilization,OIS),通过调整镜头组101不同轴向的变化以补偿拍摄瞬间因晃动而产生的模糊影像,或利用影像软件中的影像补偿技术,来提供电子防抖功能(electronic image stabilization,EIS),进一步提升动态以及低照度场景拍摄的成像品质。
请参照图11以及图12,图11为本申请实施例中一种终端设备示意图,图12为本申请实施例中另一种终端设备示意图。在本实施例中,终端设备20为智能手机。终端设备20包含图像撷取光学系统100、闪光灯模块21、对焦辅助模块22、影像信号处理器23(image signal processor)、使用者界面24以及影像软件处理器25。上述终端设备20以包含一个图像撷取光学系统100为例,但本实施例并不以此为限。终端设备20可包含多个图像撷取光学系统100,或是除了图像撷取光学系统100之外再进一步包含其他图像撷取光学系统。
当使用者经由使用者界面24拍摄物体(被摄物)时,终端设备20利用图像撷取光学系统100聚光取像,启动闪光灯模块21进行补光,并使用对焦辅助模块22提供的被摄物的物距信息进行快速对焦,再加上影像信号处理器23进行影像最佳化处理,来进一步提升摄像系统镜头组所产生的影像品质。对焦辅助模块22可采用红外线或激光对焦辅助系统来达到快速对焦。
使用者界面24可采用触控屏幕或实体拍摄按钮,配合影像软件处理器25的多样化功能进行影像拍摄以及影像处理。
本发明的图像撷取光学系统100并不以应用于智能手机为限。图像撷取光学系统100更可视需求应用于移动对焦的系统,并兼具优良像差修正与良好成像品质的特色。举例来说,图像撷取光学系统100可多方面应用于三维(3D)影像撷取、数码相机、移动装置、平板计算机、智能电视、网络监控设备、行车记录器、倒车显影装置、多镜头装置、辨识系统、体感游戏机与穿戴式装置等终端设备中。本实施例所公开的终端设备中仅是示范性地说明本发明的实际运用例子,并非限制本发明的图像撷取光学系统的运用范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或 者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (22)

  1. 一种镜头组,其特征在于,所述镜头组包括由物方侧至像方侧依次排列的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,其中,至少一片透镜的相对折射率温度系数β满足:-9×10 -5≤β≤9×10 -5
  2. 根据权利要求1所述的镜头组,其特征在于,所述镜头组的温漂系数满足:-2.6微米um/℃≤△EFL/△℃≤2.6um/℃,其中,所述镜头组的有效焦距为EFL,所述△EFL/所述△℃为温漂系数。
  3. 根据权利要求1-2中任一项所述的镜头组,其特征在于,所述第三透镜的相对折射率温度系数β3满足:-9×10 -5≤β3≤9×10 -5
  4. 根据权利要求3所述的镜头组,其特征在于,所述镜头组满足下列条件:0.27≤F3/EFL≤0.9,其中,所述F3为所述第三透镜的焦距,所述EFL为所述镜头组的有效焦距。
  5. 根据权利要求3所述的镜头组,其特征在于,所述第三透镜的色散系数V3满足:15≤V3≤100。
  6. 根据权利要求5所述的镜头组,其特征在于,所述镜头组满足下列条件:SP3/LT≤0.5,其中,所述第三透镜和所述第四透镜的间距为所述SP3,所述第一透镜物方侧顶点位置到所述第五透镜像方侧顶点位置的间距为所述LT。
  7. 根据权利要求1-6中任一项所述的镜头组,其特征在于,所述第一透镜、所述第三透镜以及所述第四透镜具有正光焦度,所述第二透镜以及所述第五透镜具有负光焦度。
  8. 根据权利要求7所述的镜头组,其特征在于,
    所述第一透镜、所述第二透镜以及所述第三透镜的物方侧表面为凸面,像方侧表面为凹面;
    所述第四透镜的物方侧表面为凹面,像方侧表面为凸面;
    所述第五透镜的物方侧表面为凹面,像方侧表面为凹面。
  9. 根据权利要求8所述的镜头组,其特征在于,所述镜头组满足以下条件:|EFL/R21|+|EFL/R22|=3.39,其中,所述镜头组的有效焦距为所述EFL,所述第二透镜物方侧表面的曲率半径为所述R21,所述第二透镜像方侧表面的曲率半径为所述R22。
  10. 根据权利要求8所述的镜头组,其特征在于,所述镜头组满足以下条件:|EFL/R21|+|EFL/R22|=4.03,其中,所述镜头组的有效焦距为所述EFL,所述第二透镜物方侧表面的曲率半径为所述R21,所述第二透镜像方侧表面的曲率半径为所述R22。
  11. 根据权利要求7所述的镜头组,其特征在于,
    所述第一透镜、所述第二透镜的物方侧表面为凸面,像方侧表面为凹面;
    所述第三透镜的物方侧表面为凸面,像方侧表面为凸面;
    所述第四透镜的物方侧表面为凹面,像方侧表面为凸面;
    所述第五透镜的物方侧表面为凹面,像方侧表面为凹面。
  12. 根据权利要求11所述的镜头组,其特征在于,所述镜头组满足以下条件:|EFL/R21|+|EFL/R22|=4.03,其中,所述镜头组的有效焦距为所述EFL,所述第二透镜物方侧表面的曲率半径为所述R21,所述第二透镜像方侧表面的曲率半径为所述R22。
  13. 根据权利要求1-6中任一项所述的镜头组,其特征在于,所述第一透镜以及所述第三透镜具有正光焦度,所述第二透镜、所述第四透镜以及所述第五透镜具有负光焦度。
  14. 根据权利要求13所述的镜头组,其特征在于,所述第一透镜的物方侧表面为凸面,像方侧表面为凸面;
    所述第二透镜以及所述第四透镜的物方侧表面为凹面,像方侧表面为凹面;
    所述第三透镜以及所述第五透镜的物方侧表面为凹面,像方侧表面为凸面。
  15. 根据权利要求14所述的镜头组,其特征在于,所述镜头组满足以下条件:|EFL/R21|+|EFL/R22|=2.22,其中,所述镜头组的有效焦距为所述EFL,所述第二透镜物方侧表面的曲率半径为所述R21,所述第二透镜像方侧表面的曲率半径为所述R22。
  16. 根据权利要求1-15所述的镜头组,其特征在于,所述镜头组满足下列条件:TTL/EFL≤0.96,其中,所述镜头组的焦距为所述EFL,所述镜头组的镜头总长为所述TTL。
  17. 根据权利要求1-16中任一项所述的镜头组,其特征在于,所述镜头组还包括孔径光阑以及红外滤光元件IRCF,
    所述孔径光阑设置于所述第三透镜与所述第四透镜之间,所述红外滤光元件设置于所述第五透镜像方侧后。
  18. 根据权利要求17所述的镜头组,其特征在于,所述镜头组还包括第一渐晕光阑,所述第一渐晕光阑设置于所述第一透镜物方侧前。
  19. 根据权利要求18所述的镜头组,其特征在于,所述镜头组还包括第二渐晕光阑,所述第二渐晕光阑设置于所述第五透镜像方侧后。
  20. 根据权利要求1-19中任一项所述的镜头组,其特征在于,所述镜头组中至少一片透镜的材质包括玻璃。
  21. 一种图像擷取光学系统,其特征在于,所述图像撷取光学系统包括权利要求1-20中任一项所述的镜头组。
  22. 一种终端设备,其特征在于,所述终端设备包括权利要求1-20中任一项所述的镜头组。
PCT/CN2020/115562 2019-09-17 2020-09-16 一种镜头组、相关设备以及相关系统 WO2021052359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/761,118 US20220404580A1 (en) 2019-09-17 2020-09-16 Lens group, related device, and related system
EP20864975.6A EP4024111A4 (en) 2019-09-17 2020-09-16 LENS GROUP, ASSOCIATED DEVICE AND ASSOCIATED SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910877855.5 2019-09-17
CN201910877855.5A CN112526706B (zh) 2019-09-17 2019-09-17 一种镜头组、相关设备以及相关系统

Publications (1)

Publication Number Publication Date
WO2021052359A1 true WO2021052359A1 (zh) 2021-03-25

Family

ID=74883119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115562 WO2021052359A1 (zh) 2019-09-17 2020-09-16 一种镜头组、相关设备以及相关系统

Country Status (4)

Country Link
US (1) US20220404580A1 (zh)
EP (1) EP4024111A4 (zh)
CN (1) CN112526706B (zh)
WO (1) WO2021052359A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354476A (zh) * 2008-09-10 2009-01-28 上海微电子装备有限公司 低热效应投影物镜
US20100076268A1 (en) * 2008-09-19 2010-03-25 Olympus Medical Systems Corp. Endoscope for oblique viewing
CN102023370A (zh) * 2009-09-15 2011-04-20 大立光电股份有限公司 成像透镜系统
CN102269861A (zh) * 2010-06-01 2011-12-07 大立光电股份有限公司 摄像光学镜片组
CN102313970A (zh) * 2010-07-09 2012-01-11 大立光电股份有限公司 成像光学镜片组
CN108254858A (zh) * 2016-12-28 2018-07-06 株式会社腾龙 光学系统及拍摄装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314767A (ja) * 2001-04-10 2002-10-25 Canon Inc 結像レンズ及びそれを用いた画像読取装置
JP5472307B2 (ja) * 2009-09-02 2014-04-16 コニカミノルタ株式会社 単焦点光学系、撮像装置およびデジタル機器
WO2012176379A1 (ja) * 2011-06-24 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 撮像光学系、撮像装置およびデジタル機器
JP2014035396A (ja) * 2012-08-08 2014-02-24 Ricoh Co Ltd 画像読取レンズ、画像読取装置及び画像形成装置
JP6377096B2 (ja) * 2016-04-04 2018-08-22 カンタツ株式会社 撮像レンズ
JP5986696B1 (ja) * 2016-06-16 2016-09-06 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. 撮像レンズ
CN207336907U (zh) * 2017-11-08 2018-05-08 浙江舜宇光学有限公司 光学镜头
CN108169876B (zh) * 2017-12-25 2020-09-29 瑞声光电科技(苏州)有限公司 摄像光学镜头
CN209215721U (zh) * 2018-12-05 2019-08-06 浙江舜宇光学有限公司 光学成像镜头组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354476A (zh) * 2008-09-10 2009-01-28 上海微电子装备有限公司 低热效应投影物镜
US20100076268A1 (en) * 2008-09-19 2010-03-25 Olympus Medical Systems Corp. Endoscope for oblique viewing
CN102023370A (zh) * 2009-09-15 2011-04-20 大立光电股份有限公司 成像透镜系统
CN102269861A (zh) * 2010-06-01 2011-12-07 大立光电股份有限公司 摄像光学镜片组
CN102313970A (zh) * 2010-07-09 2012-01-11 大立光电股份有限公司 成像光学镜片组
CN108254858A (zh) * 2016-12-28 2018-07-06 株式会社腾龙 光学系统及拍摄装置

Also Published As

Publication number Publication date
EP4024111A4 (en) 2022-11-30
EP4024111A1 (en) 2022-07-06
CN112526706A (zh) 2021-03-19
US20220404580A1 (en) 2022-12-22
CN112526706B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
TWI629503B (zh) 影像擷取鏡片系統組、取像裝置及電子裝置
TWI642991B (zh) 攝影透鏡組、取像裝置及電子裝置
US11366294B2 (en) Optical imaging lens assembly, image capturing unit and electronic device
TWI655474B (zh) 取像用光學鏡頭、取像裝置及電子裝置
TWI639864B (zh) 影像擷取光學透鏡組、取像裝置及電子裝置
TWI650588B (zh) 取像用光學鏡組、取像裝置及電子裝置
TW201937226A (zh) 成像光學鏡頭、取像裝置及電子裝置
TWI707157B (zh) 攝影透鏡系統、取像裝置及電子裝置
TW201837523A (zh) 取像系統鏡頭組、取像裝置及電子裝置
TWI681229B (zh) 取像光學透鏡組、取像裝置及電子裝置
TWI656375B (zh) 影像鏡片系統組、取像裝置及電子裝置
TWI707156B (zh) 光學取像鏡頭組、取像裝置及電子裝置
TW202036077A (zh) 光學成像透鏡組、取像裝置及電子裝置
TW202036075A (zh) 光學成像系統、取像裝置及電子裝置
TWI734536B (zh) 攝像用光學鏡片組、取像裝置及電子裝置
TW202206877A (zh) 影像鏡片組、變焦取像裝置及電子裝置
TWI721904B (zh) 影像擷取鏡片組、取像裝置及電子裝置
TW202229961A (zh) 成像光學鏡片系統
TW202223484A (zh) 影像擷取光學鏡頭、取像裝置及電子裝置
TWI822015B (zh) 光學影像透鏡系統組、取像裝置及電子裝置
TWI817255B (zh) 光學系統鏡組、取像裝置及電子裝置
TWI736377B (zh) 影像擷取透鏡組、取像裝置及電子裝置
WO2021052359A1 (zh) 一种镜头组、相关设备以及相关系统
TWI819545B (zh) 光學影像擷取系統鏡組、取像裝置及電子裝置
TWI819551B (zh) 影像擷取系統鏡組、取像裝置及電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020864975

Country of ref document: EP

Effective date: 20220328