WO2021051640A1 - 一种光谱分辨率增强装置 - Google Patents

一种光谱分辨率增强装置 Download PDF

Info

Publication number
WO2021051640A1
WO2021051640A1 PCT/CN2019/119943 CN2019119943W WO2021051640A1 WO 2021051640 A1 WO2021051640 A1 WO 2021051640A1 CN 2019119943 W CN2019119943 W CN 2019119943W WO 2021051640 A1 WO2021051640 A1 WO 2021051640A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
light
different wavelengths
blazed grating
diffracted
Prior art date
Application number
PCT/CN2019/119943
Other languages
English (en)
French (fr)
Inventor
刘陈
徐镜荃
付松年
刘德明
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021051640A1 publication Critical patent/WO2021051640A1/zh
Priority to US17/351,164 priority Critical patent/US11307096B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J2003/1842Types of grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials

Definitions

  • the present invention relates to the field of spectral measurement, and more specifically, to a spectral resolution enhancement device.
  • the resolution of the spectrometer used in spectrum measurement is an important indicator.
  • the resolution of the spectrometer determines the ability of the spectrometer to analyze the details of the spectrum.
  • the resolution of ordinary spectrometers is generally limited by the dispersive elements, such as the limited number of grating lines and the refraction of prism materials. In order to obtain high spectral resolution, it is necessary to enhance the spectral resolution of ordinary spectrometers.
  • the commonly used methods of spectral resolution enhancement mainly include ultra-high-resolution spectral measurement of cascade tunable Fabry-Perot interferometer, high-resolution spectrometer based on virtual imaging array (VIPA), and The arrayed waveguide grating (AWG) is used to obtain higher diffraction orders, so as to realize high-resolution spectrum measurement.
  • VIPA virtual imaging array
  • AWG arrayed waveguide grating
  • the Fabry-Perot interferometer needs to perform high-precision scanning
  • the virtual imaging array (VIPA) has a low light energy utilization rate, and the system is huge and complex
  • the arrayed waveguide grating (AWG) requires phase alignment for the arrayed waveguide. Make corrections. Therefore, it is a problem that needs to be solved at present to propose a spectral resolution enhancement device with high precision, small structure and strong applicability.
  • the purpose of the present invention is to solve the technical problem that the resolution of the existing spectrum measurement needs to sacrifice the volume and energy of the detection device, and is not practical.
  • the present invention provides a spectral resolution enhancement device, including: a pre-dispersion unit, a dual grating angular dispersion amplifying unit, and a detection unit;
  • the front-stage dispersion unit is used to receive a beam of collimated incident light, and emit light of different wavelengths in the incident light at different angles;
  • the dual grating angular dispersion amplifying unit is used to implement multiple diffractions of different wavelengths emitted by the front-stage dispersion unit, so that the angular dispersion of each wavelength is enhanced, so that the deviation of the exit angle of light of different wavelengths is increased;
  • the detection unit is used to detect light of different wavelengths emitted from the dual grating angular dispersion amplifying unit. As the deviation of the exit angles of the light of different wavelengths increases, the resolution of the detection unit to different wavelengths increases.
  • the front-stage dispersion unit includes: an entrance slit, a collimating lens, and a diffraction grating;
  • the incident light enters through the incident slit
  • the collimating lens is used for collimating the incident light passing through the incident slit and then emitting it in parallel;
  • the diffraction grating is used to receive incident light emitted through the collimating lens, and emit light of different wavelengths in the incident light at different angles.
  • the dual grating angular dispersion amplifying unit includes: a first blazed grating and a second blazed grating;
  • the first blazed grating receives light of different wavelengths emitted by the front-stage dispersion unit, and diffracts the light of different wavelengths to the second blazed grating;
  • the second blazed grating receives light of different wavelengths diffracted from the first blazed grating, and diffracts the light of different wavelengths to the first blazed grating; this cyclically reciprocates;
  • the diffracted lights of different wavelengths are diffracted by the first blazed grating or the second blazed grating and then exit to the detection unit.
  • the positions of the first blazed grating and the second blazed grating are set so that the light beam is in the first blazed grating and the second blazed grating.
  • the incident angle changes from less than the Littrow angle to greater than the Littrow angle during multiple diffractions;
  • the detection unit includes: a beam splitter, an imaging lens, and a detector;
  • the beam splitter is used to emit diffracted light of different wavelengths to the imaging lens
  • the imaging lens is used to focus the emitted light of different wavelengths on the detector
  • the detector is used for detecting light of different wavelengths emitted from the dual grating angular dispersion amplifying unit.
  • the positions of the first blazed grating and the second blazed grating are set so that the light beam is in the first blazed grating and the second blazed grating.
  • the incident angle is smaller than the Litro angle when it is diffracted multiple times in the meantime;
  • the detection unit includes: an imaging lens and a detector
  • the imaging lens is used to focus the emitted light of different wavelengths on the detector
  • the detector is used for detecting light of different wavelengths emitted from the dual grating angular dispersion amplifying unit.
  • the incident angle of the light beam is changed from less than the Littrow angle to greater than the Littrow angle when the light beam is diffracted multiple times between the first blazed grating and the second blazed grating.
  • the incident angle reaches the Litro angle after multiple diffractions, the diffraction angle is the same as the incident angle, and the light beam is diffracted multiple times in the reverse direction of the original diffraction route and then exits to the beam splitter.
  • the magnitude of the angular dispersion through grating diffraction for the jth time is D j
  • the recurrence relationship is:
  • D j-1 is the diffraction angular dispersion of the j-1th order through the grating
  • i j is the incident angle of the jth diffraction order
  • i j is the diffraction angle of the jth order diffraction
  • m is the diffraction order of the blazed grating
  • d is the diffraction order of the blazed grating.
  • the width of the incident light beam received by the detection unit remains unchanged, and the size of the imaging spot remains unchanged.
  • the angular dispersion magnification is the spectral resolution enhancement magnification
  • the incident light beam received by the detection unit is reduced, the divergence angle of the reduced beam becomes larger, the angular spectrum distribution becomes wider, and the imaging spot becomes larger.
  • the spectral resolution of the device is the full width at half maximum of the detected spot size.
  • the invention provides a spectral resolution enhancement device, in which the dual grating structure is compact, the occupied volume is small, and it is convenient for integrated use.
  • the enhancement of dual grating spectral resolution is nonlinearly distributed with wavelength, so the distribution area with higher multiples can be used in fine spectrum analysis, and the distribution area with lower multiples can be used in coarse spectrum analysis.
  • the grating spectral resolution enhancement device can magnify the angular dispersion by 10 to 100 times in space, and is suitable for various fine spectral analysis. Rotating the diffraction grating in the pre-dispersion unit can change the spectrum measurement range and realize adjustable spectrum measurement.
  • Figure 1 is a schematic diagram of a dual grating-based spectral resolution enhancement device provided by the present invention
  • FIG. 2 is a schematic structural diagram of a transmission type spectral resolution enhancement device based on dual gratings according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a reflection type spectral resolution enhancement device based on dual gratings provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a dual grating angular dispersion amplification structure provided by an embodiment of the present invention.
  • FIG. 5(a) is a schematic diagram of a simulation curve of the variation of the dispersion angle with wavelength before enhancement provided by an embodiment of the present invention
  • FIG. 5(b) is a schematic diagram of a simulation curve of the dispersion angle changing with wavelength after enhancement provided by an embodiment of the present invention
  • Fig. 6(a) is a simulation diagram of spectral line distribution before enhancement provided by an embodiment of the present invention.
  • Figure 6(b) is a simulation diagram of enhanced spectral line distribution provided by an embodiment of the present invention.
  • 1 is the pre-dispersion unit
  • 2 is the dual grating angular dispersion amplifying unit
  • 3 is the detection unit
  • 101 is the entrance slit
  • 102 Is a collimating lens
  • 103 is a diffraction grating
  • 104 and 105 are two blazed gratings of the dual grating angular dispersion amplification unit
  • 106 is an imaging lens
  • 107 is a detector
  • 108 is a beam splitter.
  • the technical problem to be solved by the present invention is to provide a spectrometer resolution enhancement device to improve the resolution of the traditional spectrometer within a certain spectral range, and the device needs to be small in size and easy to integrate.
  • the invention provides a spectral resolution enhancement device, which includes: a pre-dispersion unit, a dual grating angular dispersion amplification unit, and a detection unit;
  • the pre-dispersion unit includes a diffraction grating, which is used to preliminarily separate different frequency components of the input signal light in space, so that the input light signal is emitted at different angles;
  • the dual grating angular dispersion amplifying unit includes two blazed gratings
  • the detection unit includes an imaging lens and a photodetector.
  • the imaging lens is used to focus incident light on the photodetector.
  • the photodetector is an imaging device CCD or CMOS.
  • the first grating angle in the dual grating angular dispersion amplification unit is set, and the incident angle and diffraction angle are relative to the grating normal, so that the center wavelength ⁇
  • the incident angle of the signal light of c is ⁇
  • the diffraction angle is ⁇
  • the incident angle and the diffraction angle satisfy the grating equation
  • the angle between the second grating and the first grating is set to ⁇
  • the center wavelength is ⁇ c incident through the second grating
  • the angle is ⁇ - ⁇ , so that the beam is diffracted multiple times between the two gratings.
  • the relative position of the two gratings is set to adjust the number of times the signal light is diffracted back and forth between the two gratings in the double grating.
  • the beam is diffracted multiple times and the angular dispersion is realized. Multiple diffraction magnifications.
  • changing the incident angle ⁇ can obtain different angular dispersion enhancement multiples and achieve different degrees of spectral resolution enhancement.
  • the device is divided into two structures: transmissive and reflective.
  • transmissive and reflective When the beam is reflected multiple times between gratings, the angle of incidence changes from less than littrow to greater than littrow. When the angle is higher, the beam will be reflected to the incident window, which is a reflective structure; when the beam is reflected multiple times between gratings, the incident angle is less than the littrow angle, and the beam emerges from the exit port, which is a transmissive structure.
  • the angular dispersion of the j-th diffraction grating is D j
  • the recurrence relationship is:
  • D j-1 is the diffraction angular dispersion of the j-1th order through the grating
  • i j is the incident angle of the jth diffraction order
  • i j is the diffraction angle of the jth order diffraction
  • m is the diffraction order of the blazed grating
  • d is the diffraction order of the blazed grating.
  • the grating constant is a recurrence relationship.
  • the angular dispersion amplification is composed of two parts. The first part on the right is the angular dispersion amplification factor determined by the incident angle and diffraction angle of the grating.
  • the angular dispersion can be amplified successively.
  • the second term is the angular dispersion of each diffraction of the grating. After multiple diffractions, the angular dispersion is superimposed multiple times to realize the angular dispersion amplification.
  • the angular dispersion has a certain non-linear relationship with the wavelength.
  • the angular dispersion of each wavelength can be calculated according to the grating equation.
  • the detection surface is calibrated with a photodetector to obtain the angular dispersion magnification and wavelength. Relationship, and finally calibrate the obtained spectrum.
  • the spectral measurement range of the device is determined by the dual grating angular dispersion amplifying unit, that is, the wavelength range of the last diffracted light that can exit from the exit window of the dual grating structure. If the diffraction angle exceeds ⁇ /2, The beam becomes an evanescent wave, so the maximum diffraction angle Therefore, the diffraction angle of wavelength ⁇ max is ⁇ /2, and the diffraction angle of light emitted from the edge of the first grating is ⁇ min . In order to ensure that the diffracted light can be emitted, the diffraction angle must be greater than ⁇ min , so the diffraction angle is the signal light corresponding to ⁇ min The wavelength is ⁇ min .
  • Figure 1 is a schematic diagram of a dual-grating-based spectral resolution enhancement device provided by the present invention. As shown in Figure 1, it includes a pre-dispersion unit 1, a dual-grating angular dispersion amplification unit 2, and a detection unit 3; The front-stage dispersion unit makes the light of different wavelengths exit at different angles, and then passes through the dual grating angular dispersion amplifying unit to make the light of different wavelengths separate at a larger angle, and finally passes through the detection unit for spectrum measurement.
  • the pre-dispersion unit 1 includes a diffraction grating for preliminary spatial separation of different frequency components of the input signal light, so that the input light signal is emitted at different angles;
  • rotating the first diffraction grating can change the first grating of the dual grating angular dispersion amplification unit to allow light of different wavelengths to be perpendicularly incident, thereby increasing the spectrum measurement range.
  • the dual grating angular dispersion amplification unit includes two blazed gratings 104 and 105 with the same parameters;
  • the center wavelength of the signal light to be measured is ⁇ c
  • the incident angle and the diffraction angle are relative to the grating normal, so that the signal light with the center wavelength ⁇ c is incident
  • the incident angle of the first grating is ⁇
  • the diffraction angle is ⁇
  • the angle between the second grating and the first grating is set to ⁇
  • the beam is diffracted multiple times between the two gratings
  • the relative position of the two gratings is set to Adjust the number of times that the signal light is diffracted back and forth between the two gratings in the double grating, the light beam is diffracted multiple times, and the angular dispersion realizes multiple diffraction amplification.
  • the magnitude of the angular dispersion through grating diffraction at the jth time is D j
  • the recurrence relationship is:
  • D j-1 is the diffraction angular dispersion of the j-1th order through the grating
  • i j is the incident angle of the jth diffraction order
  • i j is the diffraction angle of the jth order diffraction
  • m is the diffraction order of the blazed grating
  • d is the diffraction order of the blazed grating.
  • the grating constant and the angular dispersion magnification are determined by the grating parameters, the incident angle and the number of diffractions.
  • the magnitude of the angular dispersion amplified and the wavelength are in a nonlinear relationship.
  • the angular dispersion of each wavelength is calculated according to the grating equation. It needs to be calibrated with a detector on the detection surface to obtain the relationship between the angular dispersion magnification and the wavelength. The spectrum is calibrated.
  • the detection unit 3 includes an imaging lens 106 and a photodetector 107.
  • the focal length of the imaging lens is f 2 for focusing incident light on the photodetector.
  • the photodetector is a CCD or CMOS for measuring incident light. The spectral distribution.
  • the embodiments of the present invention provide a transmission type spectral resolution enhancement device based on dual gratings and a reflection type spectral resolution enhancement device based on dual gratings, respectively, as shown in FIG. 2 and FIG.
  • the amplification unit is integrated into the ordinary grating spectrometer,
  • the transmission type spectral resolution enhancement device based on double grating includes: entrance slit 101, collimating lens 102, diffraction grating 103, double grating angular dispersion magnifying unit (104, 105), imaging lens 106 and detector 107; including wavelength ⁇
  • the beams of and ⁇ + ⁇ are collimated and exited in parallel through the lens 102.
  • the aperture stop of the system is b. After the aperture is diffracted, and then the diffraction grating 103, the two wavelengths have different diffraction angles.
  • the angle of the two-wavelength outgoing beam becomes larger due to the angular dispersion magnification, and then passes through the imaging lens 106 and finally forms an image on the detector 107.
  • the reflection type spectral resolution enhancement device based on double grating includes: entrance slit 101, collimating lens 102, diffraction grating 103, double grating angular dispersion magnifying unit (104, 105), imaging lens 106, detector 107 and beam splitter 108; After the light beam with wavelength ⁇ and ⁇ + ⁇ passes through the entrance slit 101, it is collimated and exited by the lens 102.
  • the aperture stop of the system is b, which is diffracted by the aperture, and then passes through the diffraction grating 103, and then passes through the beam splitter 108.
  • the outgoing light enters the dual grating angular dispersion amplifier unit (104, 105) at different incident angles. After multiple diffractions, the incident angle is close to the Littrow angle, so the diffraction angle is With the same angle of incidence, the light beams are again diffracted for multiple times and finally return to the beam splitter 108, and then pass through the imaging lens 106 and finally form an image on the detector 107.
  • the minimum resolvable wavelength interval of a common grating spectrometer is:
  • a is the width of the entrance slit
  • f 1 is the focal length of the collimating lens (102)
  • d ⁇ /d ⁇ is the angular dispersion. Therefore, without changing the size of the incident slit, the aperture stop, and the focal length of the collimator lens, increasing the angular dispersion can reduce the minimum resolvable wavelength of the spectrometer, that is, increase the resolution of the spectrometer.
  • the incident angle and diffraction angle of the front grating are i 0 and ⁇ 0 , respectively, after passing through the dual grating angular dispersion amplification unit, the nth time
  • the incident angle and the diffraction angle are i n and ⁇ n , respectively, the diffraction angle of the light of ⁇ 0 + ⁇ entering the front grating is ⁇ 0 + ⁇ 0
  • the nth diffraction angle ⁇ n + ⁇ n calculate the role dispersion as follows:
  • d 1 is the grating constant of the diffraction grating 103
  • i 0 is the incident angle
  • ⁇ 0 is the diffraction angle
  • m is the diffraction order in the diffraction order double grating angular dispersion amplifier unit where the incident light passes through the reflective grating (104, 105)
  • d 2 is the grating constant of the reflective grating (104, 105).
  • the parameters of the diffraction grating 103 are as follows:
  • the grating constant is: 1 ⁇ m
  • the parameters of the reflection grating (104, 105) are as follows:
  • the spectral enhancement range of the device is determined by the exit window of the dual grating angular dispersion amplifying unit in Figure 4, and the wavelength of the exit window can determine the spectral enhancement range. According to the calculation of the geometric parameters of the grating, the described implementation For example, the spectral enhancement range of a dual grating-based spectral resolution enhancement device is: 1545.8nm-1565nm.
  • Fig. 5(a) illustrates that before passing through the dual grating angular dispersion amplifying unit, The measuring beam only passes through one grating, the angular dispersion changes approximately linearly with wavelength, and the dispersion angle is -0.025-0.005rad.
  • Figure 5(b) shows that after passing through the dual grating angular dispersion amplification unit, the diffraction angle expands, and the angular dispersion varies with the wavelength It changes nonlinearly, and the dispersion angle increases to -0.3-0.3rad. Since the angular dispersion changes nonlinearly with the wavelength, the position and wavelength need to be calibrated on the detector 107.
  • Figure 6(a) shows the simulation diagrams of spectral line distribution before and after enhancement of the spectral resolution provided by this embodiment.
  • the input spectrum is 1548nm-1551nm with ten frequency points equally spaced between two detections.
  • the focal length of the imaging lens is the same.
  • Figure 6(a) shows the spectrum obtained by an ordinary grating spectrometer. The spectral lines are linearly distributed.
  • Figure 6 (b) is the spectrogram obtained after the dual grating angular dispersion amplification unit (104, 105), the spectral line is nonlinearly distributed, because the angular dispersion is enhanced, the line dispersion increases, and the spectral line distribution is 60mm ⁇ 60mm.
  • the spot size in the wavelength region with a larger angular dispersion enhancement factor is significantly larger. From this figure, the wavelength and position can be calibrated. In addition, the final resolution of the wavelength region with a higher enhancement factor requires the spot size. The effect of size is corrected.
  • the difference between the transmission-type spectral resolution enhancement device based on dual gratings and the reflection-type spectral resolution enhancement device based on dual gratings provided in this embodiment is that the transmission-type spectral resolution enhancement device has a beam-shrinking effect on the incident light beam. After the beam, the divergence angle of the beam becomes larger, the angular spectrum distribution becomes wider, and the imaging spot becomes larger. Therefore, the actual spectral resolution should be the actual spot size, full width at half maximum (FWHM); the beam width of the reflective spectral resolution enhancement device does not change, and the imaging The light spot remains unchanged, and the angular dispersion magnification is the increase magnification of the spectral resolution.
  • FWHM full width at half maximum

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种光谱分辨率增强装置,包括:前级色散单元(1)、双光栅角色散放大单元(2)以及探测单元(3)。前级色散单元(1)用于接收一束准直的入射光,并将入射光中不同波长的光以不同的角度出射。双光栅角色散放大单元(2)用于对前级色散单元(1)出射的不同波长分别实现多次衍射,使得各个波长的角色散增强,以使得不同波长的光的出射角偏差增大。探测单元(3)用于探测从双光栅角色散放大单元(2)出射的不同波长的光。由于不同波长的光的出射角的偏差增大,则探测单元(3)对不同波长的分辨率增加。本光谱分辨率增强装置通过对角色散进行放大,提高了光谱分辨率,且结构体积小,易于集成到各种光谱仪。

Description

一种光谱分辨率增强装置 [技术领域]
本发明涉及光谱测量领域,更具体地,涉及一种光谱分辨率增强装置。
[背景技术]
光谱测量所用的光谱仪器的分辨率是一个重要的指标,光谱仪的分辨率决定了光谱仪分析频谱细节的能力,但是普通光谱仪分辨率一般受到色散元件的限制,如有限的光栅线数和棱镜材料折射率,为了得到高的光谱分辨能力,需要对普通光谱仪光谱分辨率进行增强。目前,常用的光谱分辨率增强方法主要有级联可调谐法布里-珀罗(Fabry-Perot)干涉仪超高分辨率的光谱测量,基于虚拟成像阵列(VIPA)的高分辨率光谱仪,以及利用阵列波导光栅(AWG)得到更高的衍射级次,从而实现高分辨率光谱测量。然而法布里-珀罗(Fabry-Perot)干涉仪需要进行高精度扫描,虚拟成像阵列(VIPA)光能量利用率低,系统庞大复杂,而阵列波导光栅(AWG)需要对阵列波导需要对相位进行校正。因此,提出一种精度高、结构体积小、适用性强的光谱分辨率增强装置是目前需要解决的问题。
[发明内容]
针对现有技术的缺陷,本发明的目的在于解决现有光谱测量的分辨率需要牺牲探测装置的体积以及能量,不具备实用性的技术问题。
为实现上述目的,本发明提供一种光谱分辨率增强装置,包括:前级色散单元、双光栅角色散放大单元以及探测单元;
所述前级色散单元用于接收一束准直的入射光,并将所述入射光中不同波长的光以不同的角度出射;
所述双光栅角色散放大单元用于对前级色散单元出射的不同波长分别实现多次衍射,使得各个波长的角色散增强,以使得不同波长的光的出射角偏差增大;
所述探测单元用于探测从所述双光栅角色散放大单元出射的不同波长的光,由于不同波长的光的出射角的偏差增大,则探测单元对不同波长的分辨率增加。
可选地,所述前级色散单元包括:入射狭缝、准直透镜以及衍射光栅;
所述入射光经过入射狭缝入射;
所述准直透镜用于对通过入射狭缝的入射光进行准直后平行出射;
所述衍射光栅用于接收经过准直透镜出射的入射光,并对入射光中不同波长的光以不同的角度出射。
可选地,所述双光栅角色散放大单元包括:第一闪耀光栅和第二闪耀光栅;
所述第一闪耀光栅接收前级色散单元出射的不同波长的光,并将不同波长的光衍射到第二闪耀光栅;
所述第二闪耀光栅接收从第一闪耀光栅衍射的不同波长的光,并又将不同波长的光衍射到第一闪耀光栅;以此循环往复;
最终,不同波长的衍射光经过第一闪耀光栅或者第二闪耀光栅衍射后出射到所述探测单元。
可选地,当不同波长的衍射光经过第一闪耀光栅衍射后出射到所述探测单元时,通过设置第一闪耀光栅和第二闪耀光栅的位置使得光束在第一闪耀光栅和第二闪耀光栅间多次衍射时入射角度由小于利特罗角变成大于利特罗角;
所述探测单元包括:分束器、成像透镜以及探测器;
所述分束器用于将出射的不同波长的衍射光出射到所述成像透镜;
所述成像透镜用于将不同波长的出射光聚焦于探测器;
所述探测器用于探测从所述双光栅角色散放大单元出射的不同波长的光。
可选地,当不同波长的衍射光经过第二闪耀光栅衍射后出射到所述探 测单元时,通过设置第一闪耀光栅和第二闪耀光栅的位置使得光束在第一闪耀光栅和第二闪耀光栅间多次衍射时入射角度均小于利特罗角;
所述探测单元包括:成像透镜和探测器;
所述成像透镜用于将不同波长的出射光聚焦于探测器;
所述探测器用于探测从所述双光栅角色散放大单元出射的不同波长的光。
可选地,通过设置第一闪耀光栅和第二闪耀光栅的位置使得光束在第一闪耀光栅和第二闪耀光栅间多次衍射时入射角度由小于利特罗角变成大于利特罗角的过程中,当经过多次衍射,入射角达到利特罗角时,衍射角和入射角相同,则光束沿原衍射路线逆向多次衍射后出射到所述分束器。
可选地,第j次经过光栅衍射角色散大小为D j,则递推关系为:
Figure PCTCN2019119943-appb-000001
其中,D j-1为第j-1次经过光栅衍射角色散,i j为第j次衍射的入射角,i j为第j次衍射的衍射角,m为闪耀光栅衍射级次,d为光栅常数。
可选地,若不同波长的衍射光经过第一闪耀光栅衍射后出射到所述探测单元,则探测单元接收到的入射光束的宽度不变,成像光斑大小不变,该装置对不同波长光的角色散放大倍数为光谱分辨率增强倍数;
若不同波长的衍射光经过第二闪耀光栅衍射后出射到所述探测单元,则探测单元接收到的入射光束被缩小,缩束后的光束发散角变大,角谱分布变宽,成像光斑变大,该装置的光谱分辨率为所探测的光斑大小的半高全宽。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
本发明提供一种光谱分辨率增强装置,其中的双光栅结构紧凑,所占体积小,方便集成使用。双光栅光谱分辨率增强随波长呈非线性分布,因 此可以在精细光谱分析时使用倍数较高的分布区域,在粗光谱分析时使用倍数较低的分布区域。该光栅光谱分辨率增强装置可以在空间上将角色散放大10~100倍,适合各种精细光谱分析。旋转前级色散单元中的衍射光栅可以改变光谱测量范围,实现可调光谱测量。
附图说明
图1为本发明提供的一种基于双光栅的光谱分辨率增强装置的示意图;
图2为本发明实施例提供的基于双光栅的透射式光谱分辨率增强装置结构示意图;
图3为本发明实施例提供的基于双光栅的反射式光谱分辨率增强装置结构示意图;
图4为本发明实施例提供的双光栅角色散放大结构示意图;
图5(a)为本发明实施例提供的增强前色散角随波长变化的仿真曲线示意图;
图5(b)为本发明实施例提供的增强后色散角随波长变化的仿真曲线示意图;
图6(a)为本发明实施例提供的增强前谱线分布仿真图;
图6(b)为本发明实施例提供的增强后谱线分布仿真图;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中,1为前级色散单元、2为双光栅角色散放大单元、3为探测单元、101为入射狭缝、102为准直透镜、103为衍射光栅、104和105为双光栅角色散放大单元的两个闪耀光栅、106为成像透镜,107为探测器,108为分束器。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可 以相互组合。
针对现有技术的缺陷和改进需求,本发明要解决的技术问题是提供一种光谱仪分辨率增强装置,使传统光谱仪在一定的光谱范围内分辨率提高,并且需要该装置体积小、易于集成。
本发明提供一种光谱分辨率增强装置,包括:前级色散单元、双光栅角色散放大单元、探测单元;
所述前级色散单元包括一个衍射光栅,用于将输入的信号光的不同频率成分在空间上初步分离,从而使输入光信号以不同的角度出射;
所述双光栅角色散放大单元包括两块闪耀光栅;
所述探测单元包括成像透镜和光电探测器,成像透镜用于将入射光聚焦到光电探测器,光电探测器为成像器件CCD或CMOS。
在一个可选的实例中,若待测信号光的中心波长为λ c,设置双光栅角色散放大单元中的第一个光栅角度,入射角和衍射角相对于光栅法线,使中心波长λ c的信号光入射角为α,衍射角为β,入射角和衍射角满足光栅方程,设置第二个光栅与第一个光栅夹角为γ,则中心波长为λ c经过第二个光栅入射角为β-γ,使光束在两个光栅之间多次衍射,设置两个光栅的相对位置来调节信号光在双光栅在两个光栅来回衍射的次数,光束经过多次衍射,角色散实现多次衍射放大,另外,改变入射角度α可以得到不同的角色散增强倍数,实现不同程度的光谱分辨率增强。
在一个可选的实例中,该装置分为透射式和反射式两种结构,当光束在光栅间多次反射时入射角度由小于利特罗(littrow)角变为大于利特罗(littrow)角时,光束会反射至入射窗口,此时为反射式结构;当光束在光栅间多次反射时入射角度均小于利特罗(littrow)角,光束从出射口出射,此时为透射式结构。
在一个可选的实例中,第j次经过光栅衍射角色散大小为D j,则递推关系为:
Figure PCTCN2019119943-appb-000002
其中,D j-1为第j-1次经过光栅衍射角色散,i j为第j次衍射的入射角,i j为第j次衍射的衍射角,m为闪耀光栅衍射级次,d为光栅常数,由递推关系,角色散放大由两部分组成,右边第一部分为光栅入射角与衍射角决定的角色散放大因子,若
Figure PCTCN2019119943-appb-000003
则可实现角色散逐次放大,第二项为光栅每次衍射的角色散,多次衍射后角色散多次叠加,实现角色散放大。
在一个可选的实例中,角色散大小和波长呈一定的非线性关系,各波长的角色散可根据光栅方程计算得到,在探测面用光探测器进行标定,得到角色散放大倍数和波长的关系,最后对得到的光谱进行校准。
在一个可选的实例中,该装置的光谱测量范围由双光栅角色散放大单元决定,即最后一次衍射的光可从双光栅结构的出射窗口出射的波长范围,若衍射角超过π/2,光束变成倏逝波,所以衍射角最大值
Figure PCTCN2019119943-appb-000004
所以波长λ max衍射角为π/2,从第一个光栅边沿出射的光衍射角为θ min,为了保证衍射光能出射,衍射角需大于θ min,因此衍射角为θ min对应的信号光波长为λ min
图1为本发明提供的一种基于双光栅的光谱分辨率增强装置的示意图,如图1所示,包括前级色散单元1、双光栅角色散放大单元2、探测单元3;待测光首先经过前级色散单元使得不同波长的光以不同的角度出射,然后经过所述的双光栅角色散放大单元,使不同波长的光分离的角度更大,最后经过探测单元进行光谱测量。
作为优选的,所述前级色散单元1包括一个衍射光栅,用于将输入的信号光的不同频率成分在空间上初步分离,从而使输入光信号以不同的角度出射;
进一步的,旋转第一个衍射光栅可以改变让不同波长的光垂直入射双 光栅角色散放大单元的第一光栅,从而增大光谱测量范围。
作为优选的,所述双光栅角色散放大单元包括两块参数相同的闪耀光栅104和105;
进一步的,若待测信号光的中心波长为λ c,设置双光栅角色散放大单元中的第一个光栅角度,入射角和衍射角相对于光栅法线,使中心波长λ c的信号光入射第一级光栅的入射角为α,衍射角为β,设置第二个光栅与第一个光栅夹角为γ,使光束在两个光栅之间多次衍射,设置两个光栅的相对位置来调节信号光在双光栅在两个光栅来回衍射的次数,光束经过多次衍射,角色散实现多次衍射放大。
进一步的,所述双光栅角色散放大单元2,第j次经过光栅衍射角色散大小为D j,则递推关系为:
Figure PCTCN2019119943-appb-000005
其中,D j-1为第j-1次经过光栅衍射角色散,i j为第j次衍射的入射角,i j为第j次衍射的衍射角,m为闪耀光栅衍射级次,d为光栅常数,角色散放大倍数由光栅参数、入射角和衍射次数决定。
进一步的,角色散放大后的大小和波长呈非线性关系,各波长角色散根据光栅方程计算得到,需要在探测面用探测器进行标定,得到角色散放大倍数和波长的关系,最后对得到的光谱进行校准。
作为优选的,所述探测单元3包括成像透镜106和光电探测器107,成像透镜焦距为f 2,用于将入射光聚焦到光电探测器,光电探测器为CCD或CMOS,用于测量入射光的光谱分布。
本发明所提供的实施例基于双光栅的透射式光谱分辨率增强装置和基于双光栅的反射式光谱分辨率增强装置,分别如图2、图3所示,两实施例均将双光栅角色散放大单元集成到普通光栅光谱仪,
基于双光栅的透射式光谱分辨率增强装置包括:入射狭缝101、准直透 镜102、衍射光栅103、双光栅角色散放大单元(104,105)、成像透镜106以及探测器107;含有波长λ和λ+Δλ的光束经过入射狭缝101之后,经过透镜102准直平行出射,系统的孔径光阑为b,经过孔径衍射,再经过衍射光栅103后,两波长光衍射角不同,出射光以不同的入射角入射双光栅角色散放大单元(104,105),经过多次衍射,由于角色散放大,两波长出射光束角度变大,再经过成像透镜106最后在探测器107上成像。
基于双光栅的反射式光谱分辨率增强装置包括:入射狭缝101、准直透镜102、衍射光栅103、双光栅角色散放大单元(104,105)、成像透镜106、探测器107以及分束器108;含有波长λ和λ+Δλ的光束经过入射狭缝101之后,经过透镜102准直平行出射,系统的孔径光阑为b,经过孔径衍射,再经过衍射光栅103后,再经过分束器108,由于两波长光衍射角不同,出射光以不同的入射角入射双光栅角色散放大单元(104,105),经过多次衍射后入射角接近利特罗(Littrow)角,于是衍射角与入射角相同,光束再次经过多次衍射最后返回分束器108,再经过成像透镜106最后在探测器107上成像。
在满足瑞利判据的情况下,普通光栅光谱仪最小可分辨波长间隔为:
Figure PCTCN2019119943-appb-000006
其中a为入射狭缝宽度、f 1为准直透镜(102)焦距,dθ/dλ为角色散。因此在不改变入射狭缝大小、孔径光阑以及准直透镜焦距的情况下,提高角色散既可减小光谱仪最小可分辨波长,即提高光谱仪分辨率。
以透射式光栅为例,如图4所示,对于波长为λ 0的入射光入射前级光栅的入射角和衍射角分别为i 0和θ 0,经过双光栅角色散放大单元,第n次入射角和衍射角分别为i n和θ n,λ 0+Δλ的光入射前级光栅的衍射角为θ 0+Δθ 0,经过双光栅角色散放大单元,第n次衍射角θ n+Δθ n,计算角色散如下:
经过衍射光栅103,可得到一下光栅方程:
d 1(sini 0+sinθ 0)=m 0λ 0
d 1(sini 0+sin(θ 0+Δθ 0))=m 00+Δλ)
其中d 1为衍射光栅103的光栅常数,i 0为入射角,θ 0为衍射角。角色散为:
Figure PCTCN2019119943-appb-000007
其中m 0为入射光经过衍射光栅103的衍射级次。结合双光栅第一次衍射,可以得到衍射递推关系:
Figure PCTCN2019119943-appb-000008
其中m为入射光经过反射光栅(104、105)的衍射级次双光栅角色散放大单元中衍射级次,d 2为反射光栅(104、105)的光栅常数。由上述的关系,之后的三次衍射均可由以上关系计算,最后得到四次衍射的角色散为:
Figure PCTCN2019119943-appb-000009
其中i p和θ p(p=1,2,3,4)为双光栅角色散放大单元四次衍射的入射角和衍射角。本实施例中心波长为λ c=1550nm。
可选的,入射光垂直入射反射光栅105,且设定反射光栅105和反射光栅104夹角为arcsin(m·λ c/d 2),则入射波长λ c的光四次均垂直入射光栅,即i 1,i 2,i 3,i 4均为0,且θ 1=θ 2=θ 3=θ 4=θ,且有di n=dθ n-1(n=2,3,4),则令入射波长λ 0的衍射角为θ。衍射级次分别为m 0=1,m=-1,则中心波长附近角色散为:
Figure PCTCN2019119943-appb-000010
作为一具体的实施例,衍射光栅103的参数如下:
光栅常数为:1μm;
大小:19mm×13.5mm;
带宽:1525nm-1565nm;
反射光栅(104、105)的参数如下:
光栅常数:1/600μm;
大小:50mm×50mm;
闪耀波长:1.6μm;
计算得到经过双光栅角色散放大单元后角色散比一次衍射增强了85倍。
需要说明的是,该装置的光谱增强范围由图4中双光栅角色散放大单元的出射窗口决定,可以从出射窗口出射的波长确定了光谱增强范围,根据光栅的几何参数计算,所述的实施例一种基于双光栅的光谱分辨率增强装置光谱增强范围为:1545.8nm-1565nm。
进一步的,本实施例提供的光谱分辨率增强前后角色散随波长变化的曲线如图5(a)、图5(b)所示,图5(a)说明经过双光栅角色散放大单元前,测量光束只经过一个光栅,角色散随波长变化近似为线性,且色散角为-0.025-0.005rad,图5(b)说明经过双光栅角色散放大单元后,衍射角扩大,并且角色散随波长呈非线性变化,且色散角增大为-0.3-0.3rad,由于角色散随波长呈非线性变化,需要在探测器107上对位置和波长进行标定。
进一步的,本实施例提供的光谱分辨率增强前后谱线分布仿真图如图6(a)、图6(b)所示,输入光谱为1548nm-1551nm等间距十个频点,两次探测的成像透镜焦距相同,图6(a)为普通光栅光谱仪得到的频谱图,谱线呈线性分布,由于角色散较小,线色散较小,谱线分布在1mm×1mm的成像面上,图6(b)为经过双光栅角色散放大单元(104,105)后得到的频谱图,谱线呈非线性分布,由于角色散得到了增强,线色散增大,谱线分布在60mm×60mm的成像面上,,另一方面,角色散增强倍数较大的波长区域光斑大小有明显变大,由此图可以对波长和位置进行标定,另外增强倍数较高的波长区域最终的分辨率需要对光斑大小的影响进行校正。
进一步的,本实施例提供的基于双光栅的透射式光谱分辨率增强装置和基于双光栅的反射式光谱分辨率增强装置区别在于:透射式光谱分辨率增强装置对入射光束有缩束作用,缩束后的光束发散角变大,角谱分布变宽,成像光斑变大,因此实际的光谱分辨率应该为实际光斑大小半高全宽(FWHM);反射式光谱分辨率增强装置光束宽度不变,成像光斑不变,角色散放大倍数即为光谱分辨率提高倍率。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种光谱分辨率增强装置,其特征在于,包括:前级色散单元、双光栅角色散放大单元以及探测单元;
    所述前级色散单元用于接收一束准直的入射光,并将所述入射光中不同波长的光以不同的角度出射;
    所述双光栅角色散放大单元用于对前级色散单元出射的不同波长分别实现多次衍射,使得各个波长的角色散增强,以使得不同波长的光的出射角偏差增大;
    所述探测单元用于探测从所述双光栅角色散放大单元出射的不同波长的光,由于不同波长的光的出射角的偏差增大,则探测单元对不同波长的分辨率增加。
  2. 根据权利要求1所述的光谱分辨率增强装置,其特征在于,所述前级色散单元包括:入射狭缝、准直透镜以及衍射光栅;
    所述入射光经过入射狭缝入射;
    所述准直透镜用于对通过入射狭缝的入射光进行准直后平行出射;
    所述衍射光栅用于接收经过准直透镜出射的入射光,并对入射光中不同波长的光以不同的角度出射。
  3. 根据权利要求1所述的光谱分辨率增强装置,其特征在于,所述双光栅角色散放大单元包括:第一闪耀光栅和第二闪耀光栅;
    所述第一闪耀光栅接收前级色散单元出射的不同波长的光,并将不同波长的光衍射到第二闪耀光栅;
    所述第二闪耀光栅接收从第一闪耀光栅衍射的不同波长的光,并又将不同波长的光衍射到第一闪耀光栅;以此循环往复;
    最终,不同波长的衍射光经过第一闪耀光栅或者第二闪耀光栅衍射后出射到所述探测单元。
  4. 根据权利要求3所述的光谱分辨率增强装置,其特征在于,当不同波长的衍射光经过第一闪耀光栅衍射后出射到所述探测单元时,通过设置第一闪耀光栅和第二闪耀光栅的位置使得光束在第一闪耀光栅和第二闪耀光栅间多次衍射时入射角度由小于利特罗角变成大于利特罗角;
    所述探测单元包括:分束器、成像透镜以及探测器;
    所述分束器用于将出射的不同波长的衍射光出射到所述成像透镜;
    所述成像透镜用于将不同波长的出射光聚焦于探测器;
    所述探测器用于探测从所述双光栅角色散放大单元出射的不同波长的光。
  5. 根据权利要求3所述的光谱分辨率增强装置,其特征在于,当不同波长的衍射光经过第二闪耀光栅衍射后出射到所述探测单元时,通过设置第一闪耀光栅和第二闪耀光栅的位置使得光束在第一闪耀光栅和第二闪耀光栅间多次衍射时入射角度均小于利特罗角;
    所述探测单元包括:成像透镜和探测器;
    所述成像透镜用于将不同波长的出射光聚焦于探测器;
    所述探测器用于探测从所述双光栅角色散放大单元出射的不同波长的光。
  6. 根据权利要求4所述的光谱分辨率增强装置,其特征在于,通过设置第一闪耀光栅和第二闪耀光栅的位置使得光束在第一闪耀光栅和第二闪耀光栅间多次衍射时入射角度由小于利特罗角变成大于利特罗角的过程中,当经过多次衍射,入射角达到利特罗角时,衍射角和入射角相同,则光束沿原衍射路线逆向多次衍射后出射到所述分束器。
  7. 根据权利要求1至6任一项所述的光谱分辨率增强装置,其特征在于,第j次经过光栅衍射角色散大小为D j,则递推关系为:
    Figure PCTCN2019119943-appb-100001
    其中,D j-1为第j-1次经过光栅衍射角色散,i j为第j次衍射的入射角,i j为第j次衍射的衍射角,m为闪耀光栅衍射级次,d为光栅常数。
  8. 根据权利要求3所述的光谱分辨率增强装置,其特征在于,若不同波长的衍射光经过第一闪耀光栅衍射后出射到所述探测单元,则探测单元接收到的入射光束的宽度不变,成像光斑大小不变,该装置对不同波长光的角色散放大倍数为光谱分辨率增强倍数;
    若不同波长的衍射光经过第二闪耀光栅衍射后出射到所述探测单元,则探测单元接收到的入射光束被缩小,缩束后的光束发散角变大,角谱分布变宽,成像光斑变大,该装置的光谱分辨率为所探测的光斑大小的半高全宽。
PCT/CN2019/119943 2019-09-17 2019-11-21 一种光谱分辨率增强装置 WO2021051640A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/351,164 US11307096B2 (en) 2019-09-17 2021-06-17 Spectral resolution enhancement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910875595.8 2019-09-17
CN201910875595.8A CN110631702B (zh) 2019-09-17 2019-09-17 一种光谱分辨率增强装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/351,164 Continuation US11307096B2 (en) 2019-09-17 2021-06-17 Spectral resolution enhancement device

Publications (1)

Publication Number Publication Date
WO2021051640A1 true WO2021051640A1 (zh) 2021-03-25

Family

ID=68972744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119943 WO2021051640A1 (zh) 2019-09-17 2019-11-21 一种光谱分辨率增强装置

Country Status (3)

Country Link
US (1) US11307096B2 (zh)
CN (1) CN110631702B (zh)
WO (1) WO2021051640A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217435A (zh) * 2021-12-10 2022-03-22 武汉邮电科学研究院有限公司 一种提高灵活光谱成形器光谱分辨率的装置及方法
CN114440772A (zh) * 2022-01-28 2022-05-06 合肥工业大学 一种闪耀透射光栅型光谱仪

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111708175A (zh) * 2020-06-29 2020-09-25 国科光芯(海宁)科技股份有限公司 一种结构光投影装置
CN114166347A (zh) * 2021-12-07 2022-03-11 苏州东方克洛托光电技术有限公司 一种中波红外高光谱分光成像单元
CN114235152A (zh) * 2021-12-07 2022-03-25 苏州东方克洛托光电技术有限公司 小型化的成像光谱仪分光光路
CN114295208B (zh) * 2021-12-31 2023-05-26 中国科学院长春光学精密机械与物理研究所 双光栅光谱仪
CN115290186A (zh) * 2022-07-20 2022-11-04 天津大学 一种窄波段高分辨力微型红外光谱仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946128A (en) * 1997-08-15 1999-08-31 The United States Of America As Represented By The Secretary Of Commerce Grating assisted acousto-optic tunable filter and method
KR100784834B1 (ko) * 2006-07-05 2007-12-14 한국과학기술원 회절격자 구조의 3차 분산을 이용한 u자형 처프 펄스발생기
CN101281061A (zh) * 2008-01-16 2008-10-08 蔡小舒 高分辨率光谱测量装置
CN102539360A (zh) * 2011-12-31 2012-07-04 聚光科技(杭州)股份有限公司 提高光谱探测范围的分光装置及方法
CN108593108A (zh) * 2018-05-17 2018-09-28 深圳市太赫兹科技创新研究院 光谱仪
CN108759722A (zh) * 2018-05-04 2018-11-06 华中科技大学 一种基于闪耀光栅的光束偏转角放大单元

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105290A (en) * 1976-06-10 1978-08-08 Mcdonnell Douglas Corporation Optical color communication system
CN104729402B (zh) * 2015-03-23 2017-05-03 中国科学院上海光学精密机械研究所 基于平面镜的高光学细分光栅干涉仪
CN108709639A (zh) * 2018-01-31 2018-10-26 中国科学院长春光学精密机械与物理研究所 基于反射式棱镜-光栅分光模块的成像光谱仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946128A (en) * 1997-08-15 1999-08-31 The United States Of America As Represented By The Secretary Of Commerce Grating assisted acousto-optic tunable filter and method
KR100784834B1 (ko) * 2006-07-05 2007-12-14 한국과학기술원 회절격자 구조의 3차 분산을 이용한 u자형 처프 펄스발생기
CN101281061A (zh) * 2008-01-16 2008-10-08 蔡小舒 高分辨率光谱测量装置
CN102539360A (zh) * 2011-12-31 2012-07-04 聚光科技(杭州)股份有限公司 提高光谱探测范围的分光装置及方法
CN108759722A (zh) * 2018-05-04 2018-11-06 华中科技大学 一种基于闪耀光栅的光束偏转角放大单元
CN108593108A (zh) * 2018-05-17 2018-09-28 深圳市太赫兹科技创新研究院 光谱仪

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217435A (zh) * 2021-12-10 2022-03-22 武汉邮电科学研究院有限公司 一种提高灵活光谱成形器光谱分辨率的装置及方法
CN114440772A (zh) * 2022-01-28 2022-05-06 合肥工业大学 一种闪耀透射光栅型光谱仪
CN114440772B (zh) * 2022-01-28 2023-06-27 合肥工业大学 一种闪耀透射光栅型光谱仪

Also Published As

Publication number Publication date
CN110631702A (zh) 2019-12-31
US11307096B2 (en) 2022-04-19
CN110631702B (zh) 2021-03-26
US20210318170A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2021051640A1 (zh) 一种光谱分辨率增强装置
US7315371B2 (en) Multi-channel spectrum analyzer
JP5517621B2 (ja) 高感度スペクトル分析ユニット
CN103471992B (zh) 一种光谱椭偏仪中氙灯光源的光强平滑处理装置及方法
JP6218338B2 (ja) 光ビームのスペクトルを分析するための分光計
US9194799B2 (en) Imaging based refractometers
CN108344508A (zh) 一种宽光谱范围非对称空间外差光谱仪
CN208270077U (zh) 高通量宽谱段高分辨率的相干色散光谱成像装置
US9638635B2 (en) Spectrometer for analysing the spectrum of a light beam
US9638577B2 (en) Spectrometer comprising a plurality of diffraction gratings
CN110501074B (zh) 高通量宽谱段高分辨率的相干色散光谱成像方法及装置
JP2001264168A (ja) スペクトル分布測定用分光装置
JP3095167B2 (ja) マルチチャネルフーリエ変換分光装置
US20160209269A1 (en) Hybrid image-pupil optical reformatter
CN113624339B (zh) 一种基于dmd和中阶梯光栅的同向色散光谱分析仪及方法
GB1595528A (en) Reduction of astigmatism and coma in a spectrograph
US20200300699A1 (en) Method and apparatus for linear variable bandpass filter array optical spectrometer
US20210325245A1 (en) High resolution multi-pass optical spectrum analyzer
JPS59500984A (ja) スペクトル分析を実施する装置
EP2211154B1 (en) Monochromator having a tunable grating
US11821791B1 (en) Techniques for reducing optical ghosts in a gratings-based optical spectrum analyzer (OSA)
EP3594642A1 (en) Imaging spectograph utilizing the zero order of the diffraction grating
Zarobila et al. Supercontinuum fiber laser source for reflectance calibrations in remote sensing
JP2001116618A (ja) 分光計
Shen et al. Ultrahigh-resolution broadband spectrometer based on grating-beamsplitter interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945625

Country of ref document: EP

Kind code of ref document: A1