WO2021051388A1 - 小区切换的方法和设备 - Google Patents

小区切换的方法和设备 Download PDF

Info

Publication number
WO2021051388A1
WO2021051388A1 PCT/CN2019/107001 CN2019107001W WO2021051388A1 WO 2021051388 A1 WO2021051388 A1 WO 2021051388A1 CN 2019107001 W CN2019107001 W CN 2019107001W WO 2021051388 A1 WO2021051388 A1 WO 2021051388A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
measurement report
terminal device
distance
communication
Prior art date
Application number
PCT/CN2019/107001
Other languages
English (en)
French (fr)
Inventor
尤心
Original Assignee
Oppo广东移动通信有限公司
Oppo广东移动通信有限公司深圳分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, Oppo广东移动通信有限公司深圳分公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980100325.8A priority Critical patent/CN114402545A/zh
Priority to PCT/CN2019/107001 priority patent/WO2021051388A1/zh
Publication of WO2021051388A1 publication Critical patent/WO2021051388A1/zh
Priority to US17/555,074 priority patent/US20220110028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/328Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by altitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and device for cell handover.
  • the terminal device can perform cell measurement based on the measurement event configured by the network, and send a measurement report to the network device when the conditions are met.
  • the source base station can select the target base station to be handed over based on the measurement report.
  • NTN Non-Terrestrial Network
  • This application provides a method and device for cell handover, which can realize effective cell handover in the NTN system.
  • a method for cell handover including: obtaining a measurement report of cell measurement; and adjusting the measurement report according to information that characterizes the change in the communication distance between a terminal device and a network device for use Cell handover.
  • the measurement report obtained by the cell measurement is adjusted by the information that characterizes the change in the communication distance between the terminal equipment and the network equipment, so that the measurement report is suitable for the terminal equipment and network equipment at the current location, so that the network equipment can Based on the adjusted measurement report, perform cell handover operations, effectively realizing cell handover in the NTN system.
  • a method for cell handover including: a first satellite receives a measurement report of cell measurement sent by a terminal device; the first satellite determines a second satellite according to the satellite ephemeris; The second satellite sends the measurement report for cell handover.
  • the first satellite forwards the measurement report to the second satellite, and the second satellite performs cell handover related operations, thereby Effectively realize the cell handover in the NTN system.
  • a communication device in a third aspect, can execute the foregoing first aspect or the method in any optional implementation manner of the first aspect.
  • the communication device includes a functional module for executing the foregoing first aspect or any possible implementation of the first aspect.
  • a satellite in a fourth aspect, can execute the method in the first aspect or any optional implementation of the first aspect.
  • the satellite includes a functional module for executing the above-mentioned second aspect or any possible implementation of the second aspect.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a satellite including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the foregoing second aspect or any possible implementation method of the second aspect.
  • an apparatus for cell handover is provided, which is used to implement the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the device includes a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes the method in the above-mentioned first aspect or any possible implementation of the first aspect.
  • the device may be a chip, for example.
  • a device for cell handover is provided, which is used to implement the foregoing second aspect or any possible implementation of the second aspect.
  • the device includes a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes the method in the above-mentioned second aspect or any possible implementation manner of the second aspect.
  • the device may be a chip, for example.
  • a computer-readable storage medium for storing computer programs.
  • the computer program causes the computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer-readable storage medium for storing computer programs.
  • the computer program causes the computer to execute the above-mentioned second aspect or the method in any possible implementation of the second aspect.
  • a computer program product including computer program instructions.
  • the computer program instructions cause the computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer program product including computer program instructions.
  • the computer program instructions cause the computer to execute the foregoing second aspect or the method in any possible implementation of the second aspect.
  • a computer program which when running on a computer, causes the computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer program which when running on a computer, causes the computer to execute the above-mentioned second aspect or the method in any possible implementation of the second aspect.
  • Fig. 1 is a schematic diagram of a possible wireless communication system applied by an embodiment of the present application.
  • Figure 2 is a flow chart of cell handover.
  • Figure 3 is a flow interaction diagram of conditional switching.
  • Fig. 4 is a schematic flowchart of a cell handover method according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a possible implementation based on the method shown in Fig. 4.
  • Fig. 6 is a schematic diagram of a possible implementation based on the method shown in Fig. 4.
  • Figure 7 is a schematic diagram of the locations of satellites and terminal equipment.
  • FIG. 8 is a schematic flowchart of a method for cell handover according to another embodiment of the present application.
  • Figure 9 is a schematic diagram of the locations of satellites and terminal equipment.
  • Figure 10 is a schematic diagram of a satellite moving along an orbit.
  • Figure 11 is a schematic diagram of a satellite moving along an orbit.
  • FIG. 12 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a satellite according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an apparatus for cell handover according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A advanced Advanced long term evolution
  • NR New Radio
  • NR NR
  • NR-based access to unlicensed spectrum, LTE-U NR
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • 5G system or other communication systems etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V vehicle to vehicle
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system 100 applied in the embodiment of this application is shown in FIG. 1.
  • the communication system 100 includes a network device 110.
  • the network device 110 may be a device that communicates with the terminal device 120.
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be, for example, a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system; a base station (NodeB, NB) in a WCDMA system; , ENB or eNodeB); the radio controller in the Cloud Radio Access Network (Cloud Radio Access Network, CRAN).
  • the network device 110 may be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network device in a 5G network, or a public land mobile network that will evolve in the future (Public Land Mobile Network). Network equipment in Mobile Network, PLMN).
  • the network device 110 may also be a satellite in the NTN system.
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may be, for example, a user equipment (UE), an access terminal, a user unit, a user station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user. Device.
  • UE user equipment
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, and future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., which are not limited in the embodiment of the present application.
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through transmission resources corresponding to the cell.
  • the cell may be a cell corresponding to the network device 110.
  • a cell may belong to a macro base station or a base station corresponding to a small cell (Small cell).
  • the small cell here may include a metro cell (Metro cell), a micro cell (Micro cell), a pico cell (Pico cell), a femto cell (Femto cell), and so on. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Fig. 1 exemplarily shows one network device and two terminal devices, but the present application is not limited to this.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity.
  • the embodiments of the present application can be applied to a non-terrestrial communication network (Non Terrestrial Network, NTN) system.
  • NTN Non Terrestrial Network
  • the network device 110 in FIG. 1 can communicate with the terminal device through a satellite, or the network device 110 itself is a satellite.
  • NTN generally uses satellite communication to provide communication services to ground users.
  • satellite communication has many unique advantages.
  • satellite communication is not restricted by the user area.
  • general terrestrial communication cannot cover the ocean, mountains, deserts and other areas where communication equipment cannot be installed or because of the sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so in theory every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value. Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases.
  • the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO Highly elliptical Orbit
  • the main research is LEO satellite and GEO satellite.
  • the altitude range of the LEO satellite is 500km-1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes, the signal propagation distance is short, the link loss is small, and the transmission power requirements of the user terminal are not high.
  • the orbital height of the GEO satellite is 35786km, and the rotation period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure the coverage of satellites and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • handover of a cell can be understood as handover of a network device, for example, a terminal device is handed over from a source base station (Source gNB) to a target base station (TargegNB).
  • the handover process mainly includes three processes of handover preparation, handover execution, and handover completion, which specifically includes some or all of the following steps:
  • the terminal device performs measurement control and measurement report (Measurement Control and Report).
  • the source base station makes a handover decision (Handover Decision).
  • the source base station sends a handover request (Handover Request) message to the target base station.
  • Handover Request handover request
  • the handover request message includes related information about handover preparation.
  • the target base station performs admission control (Admission Request) to improve the success rate of handover.
  • the target base station sends a Handover Request Acknowledge (Handover Request Acknowledge) message to the source base station.
  • Handover Request Acknowledge Handover Request Acknowledge
  • the handover request confirmation message includes the handover command generated by the target base station, and the source base station does not allow any modification to the handover command generated by the target base station, but directly forwards the handover command to the terminal device.
  • the Handover Initiation (Handover Initiation) of the wireless access network (Wireless Access Network, RAN) is started.
  • the terminal device immediately executes the handover process after receiving the handover command, that is, disconnects the source base station and connects to the target base station, for example, initiates random access, sends an RRC handover complete message to the target base station, and so on.
  • the source base station sends a sequence number (SN) status to the target base station.
  • SN sequence number
  • the target base station sends a Path Switch Request (Path Switch Request) message to the AMF to inform its terminal equipment that it has changed cells.
  • Path Switch Request Path Switch Request
  • a path switch (Path Switch in UPF(s)) is performed in a user plane function (User Plane Function, UPF).
  • UPF User Plane Function
  • the Access and Mobility Management Function sends a Path Switch Request Acknowledge (Path Switch Request Acknowledge) message to the target base station.
  • AMF Access and Mobility Management Function
  • the target base station completes the path switching process with the AMF and UPF.
  • the purpose of the process is to switch the data path of the user plane from the source base station to the target base station.
  • the data packets of the forward path and the new path may alternately arrive at the target base station.
  • the target base station can first transfer all forwarded data packets to the terminal device, and then transfer the packets received from the new path. This can ensure the correct transmission sequence.
  • the AMF can immediately send one or more "end markers" on the old path, which does not include user data. After sending the packet containing the end flag, the AMF should not send any data packets on the old path. After receiving the packet containing the end flag, if forwarding is active for this bearer, the source base station should send this packet to the target base station. After detecting the packet containing the end flag, the target base station should discard it and initiate any necessary procedures to maintain the user's orderly delivery.
  • the target base station sends a UE context release message to the source base station.
  • the target base station After receiving the path switch confirmation message, the target base station notifies the source base station of the success of the handover, and triggers the resource release of the source base station. After receiving the UE context release message, the source base station can release the radio bearer and control plane resources related to the UE context.
  • conditional handover can be used.
  • Conditional switching avoids the problem that the switching preparation time is too long and the terminal device needs to switch too late.
  • the running track of the terminal device is specific, so the source base station can configure the target base station to the terminal device in advance, and the HO command carries the conditions for triggering the terminal device to switch.
  • the terminal device initiates an access request to the target base station.
  • the terminal device sends a measurement report to the source base station.
  • a handover preparation is performed between the source base station and the target base station.
  • the source base station sends a handover command to the terminal device.
  • the network device can configure measurement objects, measurement conditions, or handover conditions, etc., to the terminal device for the terminal device to determine whether a cell handover is required.
  • the measurement refers to the mobility measurement in the connected state.
  • the measurement object is the basic unit of frequency point. Each configured measurement object is a separate frequency point and has a separate measurement object identifier. For Evolved Universal Terrestrial Radio Access (E-UTRA), the same frequency As with inter-frequency measurement, the measurement object is a single E-UTRA carrier frequency. For the cell related to the carrier frequency, E-UTRA may configure a cell offset list and a blacklist cell list. No operation is performed on the blacklisted cells in the measurement evaluation and measurement report.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Reporting configurations are divided into event-triggered reporting and periodic-triggering reporting according to their types, and each reporting configuration has a separate identification.
  • the event-triggered reporting configuration includes event types and thresholds, as well as the duration (Time to Trigger, TTT) that satisfies the trigger condition. TTT can also be referred to as the trigger time.
  • the reporting configuration of the periodic trigger type includes the reporting period and the purpose of the periodic trigger.
  • the measurement events currently supported in the NR system include the following:
  • Event A1 The serving cell is higher than an absolute threshold (serving>threshold);
  • Event A2 The serving cell is below an absolute threshold (serving ⁇ threshold);
  • Event A3 The neighboring cell is higher than the primary cell/primary and secondary cell by an offset
  • Event A4 The neighboring cell is higher than an absolute threshold (Neighbour>threshold);
  • Event A5 The primary cell/primary and secondary cell is below an absolute threshold 1, and the neighboring cell/secondary cell is above another absolute threshold 2;
  • Event A6 The neighboring cell is higher than the secondary cell by an offset
  • Event B1 The neighboring cell is higher than an absolute threshold
  • Event B2 The primary cell is higher than an absolute threshold 1, and the neighboring cell is higher than another absolute threshold 2.
  • a separate measurement identifier associates the measurement object with a specific reporting configuration. If the terminal device reaches the measurement start threshold, the terminal device will determine whether to perform the measurement based on the presence or absence of the measurement identifier.
  • the terminal device After the terminal device completes the measurement, it evaluates the measurement report when certain trigger conditions are met. If the report condition is met, the terminal device fills in the measurement report and sends it to the network device.
  • Measurement reports are mainly divided into three categories:
  • the terminal device triggers the sending of the measurement report only after the measurement event entry threshold configured by the network is met and continues for a period of time, and the process ends after the measurement report is sent once.
  • the reporting configuration corresponding to this criterion is:
  • the trigger type is "event", including A1-A6, B1-B2, one of the measurement events and their threshold parameters;
  • the number of reports is 1;
  • the UE ignores it.
  • the terminal equipment After the network configuration measurement, the terminal equipment measures the corresponding frequency points according to the configuration content, and sends the measurement report according to the specified reporting period and interval.
  • the trigger period is "period", including "reportCGI” and “reportStrongestCell”.
  • the report purpose is "reportCGI”
  • the number of reports is equal to 1
  • the report purpose is "reportStrongestCell”
  • the number of reports can be greater than 1.
  • the terminal device Once the terminal device is configured with the "reportCGI" purpose of reporting, it will start the T321 timer. In order for the network to obtain the information needed to construct the neighbor cell list as soon as possible. If the content required for reporting has been obtained before the timer expires, the terminal device can stop T321 and initiate reporting in advance.
  • the event triggers periodic reporting
  • the terminal device will trigger the sending of the measurement report only after the measurement event entry threshold configured by the network is met and lasts for a period of time. After the measurement report is triggered, the timer between multiple measurements and the counter of the number of measurements will be started, and the process will end when the number of reports reaches the requirement.
  • the reporting configuration corresponding to this criterion is:
  • the trigger type is "event", including a measurement event from A1 to A5 and its threshold parameters;
  • the number of reports is greater than 1;
  • the reporting interval is valid, and the network sets the reporting cycle timer according to the configured interval parameter.
  • the satellite In the NTN system, the satellite is far from the ground, and the signal transmission delay between the terminal equipment and the satellite increases significantly.
  • the measurement report may become invalid.
  • the measurement report reported by the terminal device for the satellite will also become invalid. In this way, effective cell handover cannot be guaranteed.
  • this application provides a cell handover solution, which can obtain more accurate measurement reports and effectively implement cell handover in the NTN system.
  • Fig. 4 is a schematic flowchart of a cell handover method according to an embodiment of the present application.
  • the method shown in FIG. 4 can be executed by a terminal device or a network device.
  • the network device is, for example, the network device 110 in FIG. 1
  • the terminal device is, for example, the terminal device 120 in FIG. 1.
  • the method includes some or all of the following steps.
  • a measurement report for cell measurement is obtained.
  • the measurement report is adjusted according to the information characterizing the change of the communication distance between the terminal device and the network device for cell handover.
  • the terminal device or the network device can adjust the measurement report obtained by the cell measurement based on the information that characterizes the change of the communication distance between the terminal device and the network device, such as the amount of distance change or the amount of time change, so that the The measurement report is applicable to the terminal equipment and network equipment at the current location, so that the network equipment can perform cell handover operations based on the adjusted measurement report, effectively realizing the cell handover in the NTN system.
  • the network device may be a satellite; or a ground station, such as a base station.
  • the communication distance between the terminal device and the network device is the distance between the terminal device and the satellite; when the network device is a ground station, The communication distance between the terminal device and the network device is the sum of the distance between the terminal device and the satellite and the distance between the satellite and the ground station.
  • a satellite can implement the function of a base station, so the network device is a satellite, or in other words, the satellite is used as a network device to communicate with terminal devices.
  • the distance between the terminal equipment and the network equipment is the distance between the terminal equipment and the satellite.
  • the uplink data from the terminal device is sent to the ground station via satellite, and the downlink data from the ground station is sent to the terminal device via satellite, so the network device is the ground station.
  • the distance between the terminal equipment and the network equipment includes the distance between the terminal equipment and the satellite, and the sum of the distance between the satellite and the ground station. After the satellite receives the measurement report reported by the terminal equipment, it will be forwarded to the ground station.
  • the satellite In the case of LEO, the satellite is moving, and the distance between the satellite and the ground station is also changing; in the case of GEO, the satellite is not moving, and the distance between the satellite and the ground station is fixed.
  • the method shown in FIG. 4 can be executed by a terminal device.
  • the flow interaction diagram of the cell handover method in the embodiment of the present application is shown in FIG. 5, where the above step 410 can be replaced by 411.
  • the terminal device performs cell measurement and obtains the measurement report.
  • the terminal device adjusts the measurement report according to the information characterizing the change of the communication distance between the terminal device and the network device.
  • the terminal device sends the adjusted measurement report to the network device.
  • the network device receives the adjusted measurement report sent by the terminal device.
  • the method shown in Figure 4 can also be executed by a network device.
  • the flow interaction diagram of the cell handover method in the embodiment of the present application is shown in FIG. 6, where the above step 410 may be replaced by 412.
  • the terminal device performs cell measurement and obtains a measurement report.
  • the terminal device sends the measurement report to the network device.
  • the network device receives the measurement report sent by the terminal device.
  • the network device adjusts the measurement report according to the information characterizing the change of the communication distance between the terminal device and the network device.
  • the information that characterizes the change of the communication distance between the terminal device and the network device may include, for example, the amount of change in distance or time.
  • the terminal device or the network device may adjust the measurement report based on the amount of change in distance or time.
  • the terminal device or the network device adjusts the measurement report according to the change in the communication distance between the terminal device and the network device.
  • the communication distance may be, for example, the difference between the communication distance at the first time and the communication distance at the second time.
  • the first moment may be the moment when the terminal device generates the measurement report
  • the second moment may be the moment when the network device receives the measurement report.
  • the terminal device or the network device may, for example, determine the change in the communication distance according to at least one of the following information: the round-trip time (RTT) between the terminal device and the network device, The moving distance of the satellite and the moving distance of the terminal device.
  • RTT round-trip time
  • the moving distance of the satellite can be determined based on the satellite ephemeris.
  • the satellite ephemeris includes the satellite's movement trajectory and other information.
  • the moving distance of the terminal device may be determined based on the moving speed and moving trajectory of the terminal device, for example, the trajectory and speed of the high-speed rail in a high-speed rail scenario.
  • the change in the communication distance between the terminal device and the network device can be caused by satellite movement or the movement of the terminal device.
  • the communication distance is the distance between the terminal device and the satellite.
  • the communication distance includes the distance between the terminal device and the satellite, and the sum of the distance between the satellite and the ground station.
  • the network device is satellite 1, and satellite 1 is constantly moving, and the terminal device is not moving.
  • the terminal equipment performs cell measurement and generates a measurement report.
  • the distance between the terminal device and the satellite 1 is D1.
  • the satellite 1 is constantly moving, and the satellite 1 is far from the ground. Therefore, when the satellite 1 receives the measurement report, the distance between the terminal device and the satellite 1 may become D2.
  • the measurement report generated by the terminal device can be adjusted.
  • the terminal device may adjust the measurement report based on D2-D1, and send the adjusted measurement report to the satellite 1.
  • the terminal device sends the measurement report obtained by its measurement to the satellite 1, and the satellite 1 adjusts the measurement report based on D2-D1, and performs the relevant steps of cell handover based on the adjusted measurement report, for example, perform Figure 2 and Figure 3 shows the related operations performed by the source base station to select a suitable target cell for the terminal device.
  • D1 and D2 include not only the distance between the terminal device and the satellite 1, but also the distance between the satellite 1 and the ground station.
  • D2-D1 If D2-D1 is positive, that is, the distance between the satellite 1 and the terminal device becomes larger, the measurement value reflecting the signal quality of the cell in the measurement report, such as Reference Signal Receiving Power (RSRP), The measurement value of Reference Signal Receiving Quality (RSRQ) etc. decreases; if D2-D1 is negative, that is, the distance between satellite 1 and the terminal device becomes smaller, the measurement value in the measurement report can be changed Increase.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the terminal device or the network device may adjust the measurement report according to the time difference between the first time and the second time.
  • the first moment is the moment when the terminal device generates the measurement report
  • the second moment is the moment when the network device receives the measurement report.
  • the measurement report obtained by the terminal device performing cell measurement has a certain timeliness. If the time difference T2-T1 between the first time T1 and the second time T2 is less than the effective duration of the measurement report, that is, the network device receives the measurement At the time of reporting, the measurement report has not expired, so there is no need to adjust the measurement report; if the time difference T2-T1 between the first time T1 and the second time T2 is greater than the effective duration of the measurement report, that is, the network device receives At the time of the measurement report, the measurement report has become invalid, and the measurement report needs to be adjusted.
  • the measurement value reflecting the cell signal quality in the measurement report is adjusted.
  • the greater the time difference the greater the adjustment amount.
  • the terminal device or the network device may determine the adjustment parameter according to the information characterizing the change of the communication distance; and use the adjustment parameter to adjust the measurement report.
  • the adjustment parameter includes, for example, at least one of the following information: at least one of an adjustment factor, an adjustment step size, an adjustment period, and the like.
  • the adjustment period may be a time period or a distance period. For example, every time a period of time or a period of distance elapses, the measurement report is adjusted once.
  • the terminal device adjusts the measured value according to the adjustment parameter.
  • the adjusted measurement value I 1 I 0 ⁇ M.
  • the satellite when D2>D1, the satellite is far away from the terminal equipment, the communication link becomes longer, and the measured value can be reduced, so 0 ⁇ M ⁇ 1.
  • D2 ⁇ D1 the satellite is close to the terminal equipment, the communication link becomes shorter, and the measured value can be increased, so M>1.
  • the value of M is adjusted once in the corresponding direction, and the adjustment amount may be the same or different each time.
  • the adjusted measurement value I 1 I 0 +N.
  • the satellite when D2>D1, the satellite is far away from the terminal equipment, the communication link becomes longer, and the measured value can be reduced, so N ⁇ 0.
  • D2 ⁇ D1 the satellite is close to the terminal equipment, the communication link becomes shorter, and the measured value can be increased, so N>0.
  • the value of N is adjusted once in the corresponding direction, wherein the adjustment amount may be the same or different each time.
  • the terminal device adjusts the measured value according to the adjustment parameter.
  • the effective duration of the measurement report can be determined by the terminal device based on its movement trajectory and speed, satellite ephemeris, etc.; it can also be determined by the network device based on the movement speed and trajectory of the terminal device, satellite ephemeris, etc.; or predetermined.
  • the adjusted measurement value I 1 I 0 ⁇ M.
  • T2-T1 increases by one time period T0 each time, the value of M is adjusted accordingly.
  • the adjusted measurement value I 1 I 0 +N.
  • the value of T2-T1 increases by one time period T0 each time, the value of N is adjusted once, wherein the adjustment amount each time may be the same or different.
  • the value of N adjusts the value of N to a smaller value; if it is judged that the distance between the satellite and the terminal device is gradually increasing, then adjust the value of N to a larger value.
  • the measurement report may also carry the adjustment amount of the measurement value in the measurement report by the terminal device, the first moment when the measurement report is generated, and the location information of the terminal device.
  • the terminal device may continue to adjust the measurement report based on the foregoing method.
  • FIG. 8 is a schematic flowchart of a method for cell handover according to another embodiment of the present application. As shown in Figure 8, the method includes some or all of the following steps.
  • the first satellite receives the measurement report of the cell measurement sent by the terminal device.
  • the first satellite determines the second satellite based on the satellite ephemeris.
  • the first satellite sends the measurement report to the second satellite for cell handover.
  • the first satellite forwards the measurement report to the second satellite, and the second satellite performs cell handover related operations. So as to effectively realize the cell handover in the NTN system.
  • the terminal device may perform cell measurement based on the measurement configuration of the first satellite, and the measurement configuration includes, for example, the measurement object, the measurement threshold, and the measurement event.
  • the terminal device When the measurement result meets the measurement threshold, the terminal device generates a measurement report and reports the measurement report to the first satellite.
  • the first satellite when the first satellite receives the measurement report, the communication distance between the first satellite and the terminal device may change. When the communication distance changes greatly, the link situation may change significantly, and the measurement report may It is no longer applicable to the first satellite, and even the first satellite can no longer cover the cell where the terminal device is located. Therefore, the first satellite cannot select a suitable target cell for the terminal device based on the measurement report. At this time, the first satellite can send the measurement report to the second satellite, and the second satellite will perform cell handover related operations. Wherein, when the first satellite selects the second satellite, a satellite in a suitable position can be selected as the second satellite according to the satellite ephemeris, so that the measurement report is applicable to the second satellite. Wherein, the first satellite may send the measurement report to the second satellite based on the Xn interface.
  • the second satellite uses the measurement report to perform cell handover related operations, which can increase the success rate of cell handover; on the other hand, it also avoids unnecessary signaling interaction between the terminal equipment and the second satellite, saving Air interface resources.
  • the measurement report may also include at least one of the following information: the movement trajectory of the terminal device, the movement speed of the terminal device, the effective duration of the measurement report, etc. information.
  • the first satellite determines the second satellite according to the satellite ephemeris, including: the first satellite determines the second satellite according to the satellite ephemeris and the measurement report.
  • the distance between the first satellite and the terminal device is greater than the distance between the second satellite and the terminal device .
  • the second satellite is located at or near the position where the first satellite was located when the terminal device generated the measurement report.
  • the terminal device performs cell measurement based on the measurement configuration of satellite 1 and performs measurement report.
  • the satellite 1 receives the measurement report sent by the terminal device, the link status changes due to the movement of the satellite 1, so the measurement report may no longer be accurate for the satellite 1, and the measurement report is no longer applicable to the satellite 1.
  • the satellite 1 can send the measurement report to the satellite 2, and the satellite 2 continues to perform the related operations of the cell handover, so as to select a suitable target cell for the terminal device.
  • Figure 9 shows the positions of satellite 1 and satellite 2 when the terminal device generates a measurement report.
  • Figure 10 shows the positions of satellite 1 and satellite 2 when satellite 1 receives the measurement report. Because satellite 1 and satellite 2 keep moving along the orbit. When the satellite 1 receives the measurement report, the distance between the satellite 1 and the terminal device changes, and the measurement report is no longer accurate for the satellite 1. Therefore, satellite 1 forwards the measurement report to satellite 2. When satellite 2 receives the measurement report, satellite 1 and satellite 2 move to the position shown in FIG. 11. At this time, the second satellite performs the corresponding operation of the cell handover according to the measurement report. Since the terminal device performs cell measurement and generates a measurement report based on the measurement configuration of the satellite 1, the measurement report is applicable to the satellite 1 at the position shown in FIG.
  • the measurement report is applied to the satellite 2 at that position.
  • the satellite 1 sends the measurement report to the satellite 2, and the satellite 2 selects the target cell for the terminal device, which effectively improves the performance of the cell handover.
  • the method further includes: the first satellite adjusts the measurement report according to the information that characterizes the change of the communication distance between the terminal device and the first satellite .
  • the first satellite adjusts the measurement report according to the information that characterizes the change of the communication distance between the terminal device and the first satellite .
  • the first satellite adjusts the measurement report according to the information characterizing the change of the communication distance between the terminal device and the satellite, including: the first satellite adjusts the measurement report according to the change of the communication distance To adjust the measurement report.
  • the amount of change in the communication distance is: the communication distance between the terminal device and the first satellite at the first moment, and the communication distance between the terminal device and the second satellite at the second moment The difference between the communication distances.
  • the first moment is the moment when the terminal device generates the measurement report
  • the second moment is the moment when the first satellite receives the measurement report.
  • the method further includes: the first satellite determines the amount of change in the communication distance according to at least one of the following information: the round-trip time RTT between the terminal device and the first satellite, The moving distance of the first satellite, the moving distance of the second satellite, and the moving distance of the terminal device.
  • the first satellite adjusts the measurement report according to the information that characterizes the change of the communication distance between the terminal device and the first satellite, including: the first satellite adjusts the measurement report according to the first time The time difference between the time and the second time is adjusted to the measurement report.
  • the first moment is the moment when the terminal device generates the measurement report
  • the second moment is the moment when the first satellite receives the measurement report.
  • the first satellite adjusts the measurement report according to the information characterizing the change in the communication distance between the terminal device and the first satellite, including: according to the change characterizing the communication distance Information to determine the adjustment parameters; use the adjustment parameters to adjust the measurement report.
  • the adjustment parameter includes, for example, at least one of the following information: at least one of an adjustment factor, an adjustment step size, and an adjustment period.
  • the measurement report sent by the terminal device to the first satellite may also be a measurement report adjusted by the terminal device based on the method shown in FIG. 4.
  • the first satellite directly forwards the measurement report adjusted by the terminal equipment to the second satellite.
  • the first satellite directly forwards the measurement report to the second satellite, and the second satellite adjusts the measurement report based on the foregoing method.
  • the terminal device, the first satellite, and the second satellite can all adjust the measurement report.
  • the measurement report can be adjusted based on the distance between the first satellite and the terminal device when the measurement report is generated, and the change in the distance between the second satellite and the terminal device when the second satellite receives the measurement report. Among them, if the position of the second satellite when it receives the measurement report is the same as the position of the first satellite when the terminal device generates the measurement report, the measurement report may not be adjusted.
  • the measurement report may also carry the adjustment amount of the measurement value in the measurement report by the terminal device, the time when the measurement report is generated, that is, the first moment, and the location information of the terminal device.
  • the terminal device can perform cell handover based on the measurement configuration, that is, the measurement report is performed when the handover condition is met; or the terminal device can also automatically trigger the cell handover, for example, when the terminal device moves to the edge of the current serving cell, it automatically performs Cell measurement and measurement report.
  • the size of the sequence number of the above-mentioned processes does not imply the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • FIG. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the present application. As shown in FIG. 12, the communication device 1200 includes a processing unit 1210 and a transceiver unit 1220.
  • the processing unit 1210 is configured to: obtain a measurement report of cell measurement; and adjust the measurement report according to the information characterizing the change of the communication distance between the terminal device and the network device for cell handover.
  • the measurement report obtained by the cell measurement is adjusted, so that the measurement report is suitable for the terminal device and network device at the current location, so that the network device can be adjusted based on the After the measurement report, perform cell handover related operations, effectively realizing the cell handover in the NTN system.
  • the processing unit 1210 is specifically configured to: adjust the measurement report according to the amount of change in the communication distance.
  • the change in the communication distance is: the difference between the communication distance at the first moment and the communication distance at the second moment, wherein the first moment is generated by the terminal device The time of the measurement report, and the second time is the time when the network device receives the measurement report.
  • the processing unit 1210 is further configured to: determine the amount of change in the communication distance according to at least one of the following information: the round-trip time RTT between the terminal device and the network device, the satellite The moving distance of, and the moving distance of the terminal device.
  • the processing unit 1210 is specifically configured to: adjust the measurement report according to the time difference between the first time and the second time, where the first time is for the terminal device to generate the measurement report The time of the report, and the second time is the time when the network device receives the measurement report.
  • the processing unit 1210 is specifically configured to: determine an adjustment parameter according to the information characterizing the change of the communication distance; use the adjustment parameter to adjust the measurement report.
  • the adjustment parameter includes at least one of the following information: at least one of an adjustment factor, an adjustment step size, and an adjustment period.
  • the communication device is a terminal device, and the processing unit 1210 is specifically configured to: perform cell measurement to obtain the measurement report; wherein, the transceiver unit 1220 is configured to: send the adjusted network device to the network device.
  • the measurement report is a terminal device, and the processing unit 1210 is specifically configured to: perform cell measurement to obtain the measurement report; wherein, the transceiver unit 1220 is configured to: send the adjusted network device to the network device. The measurement report.
  • the communication device is a network device
  • the processing unit 1210 is specifically configured to: control the transceiver unit 1220 to receive the measurement report sent by the terminal device.
  • the network device is a satellite, and the communication distance is the distance between the terminal device and the satellite; or, the network device is a ground station, and the communication distance is the terminal device and the satellite. And the sum of the distance between the satellite and the ground station.
  • the communication device 1200 can perform the corresponding operations performed by the terminal device or the network device in the method shown in FIG. 4, which is not repeated here for brevity.
  • FIG. 13 is a schematic block diagram of a satellite 1300 according to an embodiment of the present application. As shown in FIG. 13, the satellite 1300 is a first satellite, and the first satellite includes a transceiver unit 1310 and a processing unit 1320.
  • the transceiver unit 1310 is configured to: receive a measurement report for cell measurement sent by a terminal device;
  • the processing unit 1320 is configured to: determine the second satellite according to the satellite ephemeris;
  • the transceiver unit 1310 is further configured to send the measurement report to the second satellite for cell handover.
  • the first satellite forwards the measurement report to the second satellite, and the second satellite performs cell handover operations, thereby effectively Realize cell handover in NTN system.
  • the measurement report includes the measurement result of the cell measurement, and at least one of the following information: the movement track of the terminal device, the movement speed of the terminal device, and the effective duration of the measurement report; wherein,
  • the processing unit 1320 is specifically configured to determine the second satellite according to the satellite ephemeris and the measurement report.
  • the distance between the first satellite and the terminal device is greater than the distance between the second satellite and the terminal device distance.
  • the processing unit 1320 is further configured to: adjust the measurement report according to the information characterizing the change of the communication distance between the terminal device and the satellite; Sending the measurement report includes: the first satellite sends the adjusted measurement report to the second satellite.
  • the processing unit 1320 is specifically configured to: adjust the measurement report according to the amount of change in the communication distance.
  • the amount of change in the communication distance is: the communication distance between the terminal device and the first satellite at the first moment, and the communication distance between the terminal device and the second satellite at the second moment The difference between the communication distances, wherein the first moment is the moment when the terminal device generates the measurement report, and the second moment is the first satellite receiving the measurement report The moment.
  • the processing unit 1320 is further configured to: determine the amount of change in the communication distance according to at least one of the following information: the round-trip time RTT between the terminal device and the first satellite, the The moving distance of the first satellite, the moving distance of the second satellite, and the moving distance of the terminal device.
  • the processing unit 1320 is specifically configured to: adjust the measurement report according to the time difference between the first time and the second time, where the first time is for the terminal device to generate the measurement report The time of the report, the second time is the time when the first satellite receives the measurement report.
  • the processing unit 1320 is specifically configured to: determine an adjustment parameter according to the information characterizing the change of the communication distance; use the adjustment parameter to adjust the measurement report.
  • the adjustment parameter includes at least one of the following information: at least one of an adjustment factor, an adjustment step size, and an adjustment period.
  • the communication device 1300 can perform the corresponding operations performed by the first satellite in the method shown in FIG. 8, which is not repeated here for brevity.
  • FIG. 14 is a schematic structural diagram of a communication device 1400 according to an embodiment of the present application.
  • the communication device 1400 shown in FIG. 14 includes a processor 1410, and the processor 1410 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 1400 may further include a memory 1420.
  • the processor 1410 can call and run a computer program from the memory 1420 to implement the method in the embodiment of the present application.
  • the memory 1420 may be a separate device independent of the processor 1410, or may be integrated in the processor 1410.
  • the communication device 1400 may further include a transceiver 1430, and the processor 1410 may control the transceiver 1430 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1430 may include a transmitter and a receiver.
  • the transceiver 1430 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1400 may specifically be a terminal device of an embodiment of the present application, and the communication device 1400 may implement corresponding procedures implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 1400 may implement corresponding procedures implemented by the terminal device in each method of the embodiment of the present application. For brevity, details are not described herein again.
  • the communication device 1400 may specifically be a network device of an embodiment of the present application, and the communication device 1400 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the network device may be a satellite or a ground station.
  • FIG. 15 is a schematic structural diagram of an apparatus for cell handover according to an embodiment of the present application.
  • the apparatus 1500 shown in FIG. 15 includes a processor 1510, and the processor 1510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 1500 may further include a memory 1520.
  • the processor 1510 can call and run a computer program from the memory 1520 to implement the method in the embodiment of the present application.
  • the memory 1520 may be a separate device independent of the processor 1510, or may be integrated in the processor 1510.
  • the device 1500 may further include an input interface 1530.
  • the processor 1510 can control the input interface 1530 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 1500 may further include an output interface 1540.
  • the processor 1510 can control the output interface 1540 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the apparatus 1500 may be applied to the network equipment in the embodiments of the present application, and the communication apparatus may implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the network device may be a satellite or a ground station.
  • the apparatus 1500 may be applied to the terminal equipment in the embodiments of the present application, and the communication apparatus may implement the corresponding procedures implemented by the terminal equipment in the various methods of the embodiments of the present application.
  • the communication apparatus may implement the corresponding procedures implemented by the terminal equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device 1500 may be a chip, for example.
  • the chip may be a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), and synchronous Dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic Random access memory (Synch Link DRAM, SLDRAM) and Direct Rambus RAM (DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. Go into details.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the network device may be a satellite or a ground station.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the sake of brevity it is not here. Go into details again.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the network device may be a satellite or a ground station.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program may be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the network device may be a satellite or a ground station.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding (corresponding) to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种小区切换的方法和设备,能够在NTN系统中实现有效的小区切换。所述方法包括:获取小区测量的测量报告;根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,以用于小区切换。

Description

小区切换的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及小区切换的方法和设备。
背景技术
在蜂窝网络中,终端设备可以基于网络配置的测量事件,进行小区测量,并在满足条件时向网络设备发送测量报告。源基站可以基于测量报告选择待切换的目标基站。但是,对于非地面通信网络(Non Terrestrial Network,NTN)系统,由于其采用卫星通信的方式向地面用户提供通信服务,终端设备与卫星之间的信号传输时延大幅增加,并且由于卫星不断移动,上述的测量报告可能失效。因此,NTN系统中终端设备如何实现有效的小区切换成为亟待解决的问题。
发明内容
本申请提供一种小区切换的方法和设备,能够在NTN系统中实现有效的小区切换。
第一方面,提供了一种小区切换的方法,包括:获取小区测量的测量报告;根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,以用于小区切换。
该方案中,通过表征终端设备与网络设备之间通信距离的变化情况的信息,对小区测量得到的测量报告进行调整,使得该测量报告适用于当前位置的终端设备与网络设备,从而网络设备能够基于调整后的测量报告,执行小区切换的相关操作,有效地实现了NTN系统中的小区切换。
第二方面,提供了一种小区切换的方法,包括:第一卫星接收终端设备发送的小区测量的测量报告;所述第一卫星根据卫星星历,确定第二卫星;所述第一卫星向所述第二卫星发送所述测量报告,以用于小区切换。
该方案中,第一卫星与终端设备之间的距离变远而导致测量报告不再适用时,第一卫星通过将测量报告转发给第二卫星,由第二卫星执行小区切换的相关操作,从而有效地实现了NTN系统中的小区切换。
第三方面,提供了一种通信设备,所述通信设备可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,所述通信设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种卫星,所述卫星可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,所述卫星包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种通信设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行该存储器中存储的计算机程序,以执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种卫星,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行该存储器中存储的计算机程序,以执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种用于小区切换的装置,用于实现上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,所述装置包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如上述第一方面或第一方面的任意可能的实现方式中的方法。所述装置例如可以是芯片。
第八方面,提供了一种用于小区切换的装置,用于实现上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,所述装置包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如上述第二方面或第二方面的任意可能的实现方式中的方法。所述装置例如可以是芯片。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序。所述计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序。所述计算机程序使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令。所述计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令。所述计算机程序指令使得计算机 执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1是本申请实施例应用的一种可能的无线通信系统的示意图。
图2是小区切换的流程交互图。
图3是条件切换的流程交互图。
图4是本申请实施例的小区切换的方法的示意性流程图。
图5是基于图4所示的方法的一种可能的实现方式的示意图。
图6是基于图4所示的方法的一种可能的实现方式的示意图。
图7是卫星与终端设备的位置示意图。
图8是本申请另一实施例的小区切换的方法的示意性流程图。
图9是卫星与终端设备的位置示意图。
图10是卫星沿轨道移动的示意图。
图11是卫星沿轨道移动的示意图。
图12是本申请实施例的通信设备的示意性框图。
图13是本申请实施例的卫星的示意性结构图。
图14是本申请实施例的通信设备的示意性结构图。
图15是本申请实施例的用于小区切换的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、5G系统或其他通信系统等。
通常,传统的通信系统支持的连接数有限,也易于实现。然而,随着通信技术的发展,移动通信系统不仅支持传统的通信,还将支持例如设备到设备(Device to Device,D2D)通信、机器到机器(Machine to Machine,M2M)通信、机器类型通信(Machine Type Communication,MTC)、以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可应用于这些通信系统。
另外,本申请实施例的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景、双连接(Dual Connectivity,DC)场景、独立(Standalone,SA)布网场景等。
示例性的,本申请实施例应用的通信系统100如图1所示。通信系统100包括网络设备110。网络设备110可以是与终端设备120进行通信的设备。网络设备110可以为特定地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
本申请实施例中,网络设备110例如可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS);WCDMA系统中的基站(NodeB,NB);LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB);云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器。或者,网络设备110可以是移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。或者,网络设备110也可以是NTN系统中的卫星。
通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。终端设备120例如可以是用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装 置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备、未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。此外,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
网络设备110可以为小区提供服务,终端设备120通过该小区对应的传输资源与网络设备110进行通信。该小区可以是网络设备110对应的小区。小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站。这里的小小区可以包括城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等。这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,但本申请并不限于此。通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备。此外,通信系统100还可以包括网络控制器、移动性管理实体等其他网络实体。
本申请实施例可以应用于非地面通信网络(Non Terrestrial Network,NTN)系统。这时,图1中的网络设备110可以通过卫星与终端设备之间进行通信,或者网络设备110本身为卫星。
NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大时通讯成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。目前阶段主要研究的是LEO卫星和GEO卫星。其中,LEO卫星的高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间为20分钟,信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。GEO卫星的轨道高度为35786km,围绕地球旋转周期为24小时,用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
在目前的NR系统中,当正在使用网络服务的终端从一个小区移动到另一个小区,或由于无线传输业务负荷量调整、激活操作维护、设备故障等原因,为了保证通信的连续性和服务的质量,系统要将该终端与源小区的通信链路转移到新小区上,即执行小区切换过程。应理解,切换小区可以理解为切换网络设备,例如终端设备从源基站(Source gNB)切换至目标基站(TargegNB)。
为了便于理解,下面以基于Xn接口的切换过程为例,描述小区切换的流程。如图2所示,所述切换流程主要包括切换准备、执行切换、以及切换完成这三个过程,具体包括以下部分或全部步骤:
在201中,终端设备进行测量控制和测量上报(Measurement Control and Report)。
在202中,源基站进行切换判决(Handover Decision)。
在203中,源基站向目标基站发送切换请求(Handover Request)消息。
其中,切换请求消息中包括切换准备的相关信息。
在204中,目标基站进行接纳控制(Admission Request),以提高切换的成功率。
在205中,目标基站向源基站发送切换请求确认(Handover Request Acknowledge)消息。
其中,切换请求确认消息包括目标基站生成的切换命令,源基站不允许对目标基站生成的切换命令进行任何修改,而是直接将切换命令转发给终端设备。
在206中,无线接入网(Wireless Access Network,RAN)切换开始(Handover Initiation)。
终端设备接收到切换命令后立即执行切换过程,即断开源基站并与目标基站连接,例如发起随机接入、发送RRC切换完成消息给目标基站等。
在207中,SN状态转移(SN Status Transfer)。
源基站向目标基站发送序列号(Sequence Number,SN)状态。
在208中,切换完成。
在209中,目标基站向AMF发送路径转换请求(Path Switch Request)消息,以告知其终端设备更换了小区。
此时空口的切换已经成功完成。
在210中,在用户面功能(User Plane Function,UPF)进行路径切换(Path Switch in UPF(s))。
在211中,接入与移动性管理功能(Access and Mobility Management Function,AMF)向目标基站发送路径转换请求确认(Path Switch Request Acknowledge)消息。
步骤209至211中,目标基站与AMF和UPF完成路径转换过程,该过程的目的是将用户面的数据路径从源基站转换到目标基站。
在转换了路径以后,前转路径和新路径的数据包在目标基站处可能会交替到达。目标基站可以先传递所有的前转数据包给终端设备,然后再传递从新路径接收的包。这样可以保证正确的传输顺序。为了辅助在目标基站处的重排功能,在转换路径以后,AMF可以立即在旧路径发送一个或者多个“结束标识(end marker)”,其中不包括用户数据。在发送含有结束标识的包以后,AMF不应该在旧路径发送任何数据包。在收到含有结束标识的包以后,如果前转对这个承载是激活的,源基站应该将此包发送给目标基站。在察觉了含有结束标识的包以后,目标基站应该将其丢弃并发起任何必要的流程来维持用户的按序递交。
在212中,目标基站向源基站发送UE上下文释放消息。
目标基站在收到路径转换确认消息以后,通知源基站上述切换成功,并触发源基站的资源释放。源基站收到UE上下文释放消息后,可以释放无线承载和与UE上下文相关的控制面资源。
另外,对于某些特殊场景,比如终端设备在高速移动或者高频条件下,需要终端设备频繁地进行切换(Handover,HO)。因此,可以采用条件切换(Conditional handover)。条件切换避免了切换准备时间过长,导致终端设备需要切换的时候已经过晚的问题,可以为终端设备提前配置HO命令(HOcommand)。另一方面,对于高铁场景,终端设备的运行轨迹是特定的,所以源基站可以提前把目标基站配置给终端设备,并且在HO command中携带用于触发终端设备进行切换的条件。当满足所配置的条件时,终端设备向目标基站发起接入请求。
例如图3所示,在301中,终端设备向源基站发送测量报告。
在302中,源基站与目标基站之间执行切换准备。
在303中,源基站向终端设备发送切换命令。
在304中,满足切换条件时,终端设备与目标基站之间执行随机接入。
与测量上报、切换准备、切换命令相关的过程可以参考前述图2中的相应描述,为了简洁,这里不再赘述。
在进行小区切换之前,需要进行测量配置,网络设备可以向终端设备配置测量对象、测量条件或者切换条件等,以用于终端设备判断是否需要进行小区切换。所述的测量指连接状态下的移动性测量。
测量对象是以频点为基本单位,每个被配置的测量对象为一个单独频点,拥有单独的测量对象标识,对于演进通用陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)同频和异频测量,测量对象是一个单一的E-UTRA载波频率。与该载波频率相关的小区,E-UTRA可能配置小区偏移量(Offset)列表和黑名单小区列表。在测量评估及测量报告中不对黑名单的小区进行任何操作。
上报配置按照类型分为事件触发上报和周期触发上报,每个上报配置拥有单独的标识。事件触发上报配置包括事件种类及门限值,以及满足触发条件的持续时间(Time to Trigger,TTT),TTT也可以称为触发时间。周期性触发类型的上报配置包括上报周期,以及周期性触发的目的。
目前NR系统中支持的测量事件包括以下几种:
事件A1:服务小区高于一个绝对门限(serving>threshold);
事件A2:服务小区低于一个绝对门限(serving<threshold);
事件A3:邻小区比主小区/主辅小区高于一个偏移量;
事件A4:邻小区高于一个绝对门限(Neighbour>threshold);
事件A5:主小区/主辅小区低于一个绝对门限1,且邻小区/辅小区高于另一个绝对门限2;
事件A6:邻小区比辅小区高于一个偏移量;
事件B1:邻小区高于一个绝对门限;
事件B2:主小区高于一个绝对门限1,且邻小区高于另一个绝对门限2。
单独的测量标识将测量对象与特定的上报配置进行关联,如果终端设备达到了测量开启门限,终端设备会根据测量标识的有无判断是否进行该测量。
当终端设备完成测量之后,当满足一定触发条件时进行测量上报的评估,如果满足上报条件,终端 设备则将进行测量报告的填写,并发送给网络设备。
测量上报主要分为三类:
1、事件触发
终端设备仅当满足了网络配置的测量事件进入门限并持续一段时间后,才会触发测量报告的发送,测量报告发送一次后流程结束。此准则对应的上报配置为:
触发类型为“事件”包含A1-A6,B1-B2中得一种测量事件及其门限参数;
上报次数为1;
上报间隔无论配为何值,UE均忽略。
2、周期性上报
网络配置测量后,终端设备按照配置内容进行相应频点的测量,并按照规定的上报周期及间隔发送测量报告。
触发周期为“周期”,包含“reportCGI”、“reportStrongestCell”。
如果上报目的为“reportCGI”上报次数等于1,如果上报目的为“reportStrongestCell”,上报次数可以大于1。
终端设备一旦被配置了“reportCGI”目的的上报后将开启T321定时器。为了网络能够尽快获得组建邻小区列表所需信息。如果在定时器超时前已经获得了上报所需的内容,终端设备可以停止T321并提前发起上报。
3、事件触发周期上报
终端设备仅当满足了网络配置的测量事件进入门限并持续一段时间后,才会触发测量报告的发送。测量上报被触发后,会开启多次测量之间的定时器以及测量次数的计数器,直至上报次数达到要求后流程结束。此准则对应的上报配置为:
触发类型为“事件”,包含A1~A5中的一种测量事件及其门限参数;
上报次数大于1;
上报间隔有效,网络按照配置的间隔参数设置上报周期定时器。
在NTN系统中,卫星距离地面较远,终端设备与卫星之间的信号传输时延大幅增加,源基站在接收到测量报告时,该测量报告则可能失效。另外,由于卫星的不断移动,终端设备针对该卫星上报的测量报告也会失效。这样就无法保证有效的小区切换。
为此,本申请提供一种小区切换方案,能够获得更准确的测量报告,有效地实现了NTN系统中的小区切换。
图4是本申请实施例的小区切换的方法的示意性流程图。图4所示的方法可以由终端设备或网络设备执行。该网络设备例如为图1中的网络设备110,该终端设备例如为图1中的终端设备120。如图4所示,所述方法包括以下步骤中的部分或全部。
在410中,获取小区测量的测量报告。
在420中,根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,以用于小区切换。
该实施例中,终端设备或者网络设备可以根据表征终端设备与网络设备之间通信距离的变化情况的信息,例如距离变化量或者时间变化量等,对小区测量得到的测量报告进行调整,使得该测量报告适用于当前位置的终端设备与网络设备,从而网络设备能够基于调整后的测量报告,执行小区切换的相关操作,有效地实现了NTN系统中的小区切换。
所述网络设备可以是卫星;或者是地面站,例如基站等。
其中,所述网络设备为卫星时,所述终端设备与所述网络设备之间的所述通信距离为所述终端设备与所述卫星之间的距离;所述网络设备为地面站时,所述终端设备与所述网络设备之间的所述通信距离为所述终端设备与卫星之间的距离,以及所述卫星与所述地面站之间的距离之和。
举例来说,对于透明(transparent)GEO/LEO的情况,卫星可以实现基站的功能,因此网络设备即为卫星,或者说,该卫星作为网络设备与终端设备进行通信。这时,终端设备与网络设备之间的即为终端设备与卫星之间的距离。又例如,对于再生(regenerative)GEO/LEO的情况,来自终端设备的上行数据通过卫星发送给地面站,而来自地面站的下行数据通过卫星发送给终端设备,因此网络设备即为地面站。这时,终端设备与网络设备之间的距离包括终端设备与卫星之间的距离,以及卫星与地面站之间的距离之和。卫星接收到终端设备上报的测量报告后,会转发给地面站。
对于LEO的情况,卫星是在移动的,卫星与地面站之间的距离也在变化;而对于GEO的情况,卫星是不动的,卫星与地面站之间的距离是固定的。
图4所示的方法可以由终端设备执行。所述方法由终端设备执行时,本申请实施例的小区切换的方 法的流程交互图例如图5所示,其中,上述步骤410可以由411代替。
在411中,终端设备进行小区测量,得到所述测量报告。
在420中,终端设备根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整。
在430中,终端设备向网络设备发送调整后的所述测量报告。
在440中,网络设备接收终端设备发送的调整后的所述测量报告。
图4所示的方法也可以由网络设备执行。所述方法由网络设备执行时,本申请实施例的小区切换的方法的流程交互图例如图6所示,其中,上述步骤410可以由412代替。
在450中,终端设备进行小区测量,得到测量报告。
在460中,终端设备向网络设备发送所述测量报告。
在412中,网络设备接收终端设备发送的所述测量报告。
在420中,网络设备根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整。
本申请实施例中,表征终端设备与网络设备之间通信距离的变化情况的信息,例如可以包括距离或者时间的变化量。在420中,终端设备或网络设备可以基于距离或者时间的变化量,对所述测量报告进行调整。
在一种实现方式中,在420中,终端设备或网络设备根据终端设备与网络设备之间通信距离的变化量,对所述测量报告进行调整。
所述通信距离例如可以是第一时刻的所述通信距离,与第二时刻的所述通信距离之间的差值。
其中,所述第一时刻可以是所述终端设备生成所述测量报告的时刻,所述第二时刻可以是所述网络设备接收到所述测量报告的时刻。
其中,终端设备或者网络设备例如可以根据以下信息中的至少一种,确定所述通信距离的变化量:所述终端设备与所述网络设备之间的往返时间(Round-Trip Time,RTT)、所述卫星的移动距离、以及所述终端设备的移动距离。
其中,所述卫星的移动距离可以基于卫星星历来确定。卫星星历中包括卫星的移动轨迹等信息。所述终端设备的移动距离可以基于终端设备的移动速度和移动轨迹来确定,例如高铁场景下高铁的轨迹和速度。
终端设备与网络设备之间的通信距离的变化,可以是卫星移动或者终端设备移动导致的。网络设备为卫星时,所述通信距离为终端设备与卫星之间的距离。网络设备为地面站时,所述通信距离包括终端设备与卫星之间的距离,以及卫星与地面站之间的距离之和。
例如图7所示,假设所述网络设备为卫星1,且卫星1不断移动,终端设备不移动。终端设备进行小区测量,并生成测量报告。终端设备生成测量报告时,终端设备与卫星1之间的距离为D1。但是卫星1在不断移动,并且卫星1距离地面较远,因此,卫星1接收到测量报告时,终端设备与卫星1之间的距离可能变为D2。根据D2与D1之间的差值,可以对终端设备生成的测量报告进行调整。其中,可以是终端设备基于D2-D1对测量报告进行调整,并将调整后的测量报告发送给卫星1。也可以是终端设备将其测量得到的测量报告发送给卫星1,而由卫星1基于D2-D1对测量报告进行调整,并基于调整后的测量报告执行小区切换的相关步骤,例如执行图2和图3中由源基站执行的相关操作,从而为终端设备选择合适的目标小区。
当所述网络设备为地面站时,D1和D2不仅包括终端设备与卫星1之间的距离,还包括卫星1与地面站之间的距离。
如果D2-D1为正,即卫星1与终端设备之间的距离变大了,则可以将测量报告中的反映小区信号质量的测量值,例如参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)等的测量值减小;如果D2-D1为负,即卫星1与终端设备之间的距离变小了,则可以将测量报告中的该测量值增大。
在另一种实现方式中,在420中,终端设备或网络设备可以根据第一时刻与第二时刻之间的时间差,对所述测量报告进行调整。
其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述网络设备接收到所述测量报告的时刻。
终端设备进行小区测量得到的所述测量报告具有一定的时效性,如果第一时刻T1与第二时刻T2之间的时间差T2-T1,小于该测量报告的有效时长,即网络设备接收到该测量报告时,该测量报告还未失效,则无需对该测量报告进行调整;如果第一时刻T1与第二时刻T2之间的时间差T2-T1,大于该测量报告的有效时长,即网络设备接收到该测量报告时,该测量报告已经失效,则需要对该测量报告进行 调整。
例如,如果第一时刻T1与第二时刻T2之间的时间差大于该有效时长,则对该测量报告中反映小区信号质量的测量值,例如RSRP、RSRQ等的测量值进行调整。其中,该时间差越大,调整量也越大。
本申请实施例中,在420中,终端设备或者网络设备可以根据表征所述通信距离的变化情况的信息,确定调整参数;并使用所述调整参数,对所述测量报告进行调整。
所述调整参数例如包括以下信息中的至少一种:调整因子、调整步长、调整周期等中的至少一种。
其中,该调整周期可以是时间周期或者距离周期。例如,每经历一个时间周期或者距离周期,对该测量报告进行一次调整。
采用距离变化量对测量报告进行调整时,D2-D1=0时对应的调整量为0,即不需要调整测量报告中的测量值。当D2-D1≠0时,终端设备根据调整参数对该测量值进行调整。
举例来说,假设终端设备进行小区测量得到的测量值为I 0,调整因子为M,则调整后的测量值I 1=I 0×M。
其中,D2>D1时,卫星远离终端设备,通信链路变长,可以将测量值减小,因此0<M<1。D2<D1时,卫星靠近终端设备,通信链路变短,可以将测量值增加,因此M>1。进一步地,在终端设备与卫星之间的距离每次增加或减小一个距离周期D0时,朝相应的方向调整一次M值,其中每次的调整量可以相同或者不同。
又例如,假设终端设备进行小区测量得到的测量值为I 0,调整步长为N,则调整后的测量值I 1=I 0+N。
其中,D2>D1时,卫星远离终端设备,通信链路变长,可以将测量值减小,因此N<0。D2<D1时,卫星靠近终端设备,通信链路变短,可以将测量值增加,因此N>0。进一步地,在终端设备与卫星之间的距离每次增加或减小一个距离周期D0时,朝相应的方向调整一次N值,其中每次的调整量可以相同或者不同。
类似地,采用时间差对测量报告进行调整时,T2-T1≤T0时对应的调整量为0,即不需要调整测量报告中的测量值,其中,T0为测量报告的有效时长。当T2-T1>T0时,终端设备根据调整参数对该测量值进行调整。
测量报告的有效时长可以是终端设备基于其移动轨迹和速度、卫星星历等确定的;也可以是网络设备基于终端设备的移动速度和轨迹、卫星星历等确定;或者是预先约定的。
例如,假设终端设备进行小区测量得到的测量值为I 0,调整因子为M,则调整后的测量值I 1=I 0×M。其中,在T2-T1的值每次增加一个时间周期T0时,相应地调整一次M值。
又例如,假设终端设备进行小区测量得到的测量值为I 0,调整步长为N,则调整后的测量值I 1=I 0+N。其中,在T2-T1的值每次增加一个时间周期T0时,相应地调整一次N值,其中每次的调整量可以相同或者不同。另外,如果判断卫星与终端设备之间的距离是逐渐增大的,则将N值往小调整;如果判断卫星与终端设备之间的距离是逐渐增大的,则将N值往大调整。
另外,本申请实施例中,所述测量报告中还可以携带终端设备对测量报告中的测量值的调整量、生成测量报告的时间即第一时刻、以及终端设备的位置信息等。
并且,如果终端设备向网络设备发送测量报告后,如果收到了网络设备针对所述测量报告发送的NACK,则终端设备可以基于前述方式,继续对所述测量报告进行调整。
图8是本申请另一实施例的小区切换的方法的示意性流程图。如图8所示,所述方法包括以下步骤中的部分或全部。
在810中,第一卫星接收终端设备发送的小区测量的测量报告。
在820中,第一卫星根据卫星星历,确定第二卫星。
在830中,第一卫星向第二卫星发送所述测量报告,以用于小区切换。
该实施例中,第一卫星与终端设备之间的距离变远而导致测量报告不再适用时,第一卫星通过将测量报告转发给第二卫星,由第二卫星执行小区切换的相关操作,从而有效地实现了NTN系统中的小区切换。
终端设备可以基于第一卫星的测量配置进行小区测量,该测量配置例如包括测量对象、测量门限、测量事件等。当测量结果满足该测量门限时,终端设备生成测量报告,并向第一卫星上报该测量报告。
但是,第一卫星接收该测量报告时,第一卫星与终端设备之间的通信距离可能会发生变化,当该通信距离的改变较大时,链路情况会发生较大改变,该测量报告可能已经不再适用于第一卫星,甚至第一卫星已经无法覆盖终端设备所在的小区。因此第一卫星基于该测量报告无法为终端设备选择的合适的目标小区。这时,第一卫星可以将该测量报告发送给第二卫星,由第二卫星执行小区切换的相关操作。其中,第一卫星在选择第二卫星时,可以根据卫星星历,选择处于合适位置的卫星作为该第二卫星,使得该测量报告适用于该第二卫星。其中,第一卫星可以基于Xn接口,向第二卫星发送该测量报告。
一方面,第二卫星利用该测量报告执行小区切换的相关操作,能够增加小区切换的成功率;另一方面,也避免了终端设备与第二卫星之间的不必要的信令交互,节省了空口资源。
其中,所述测量报告中除了包括小区测量的测量结果,还可以包括以下信息中的至少一种:所述终端设备的移动轨迹、所述终端设备的移动速度、所述测量报告的有效时长等信息。
这时,在820中,所述第一卫星根据卫星星历,确定第二卫星,包括:所述第一卫星根据卫星星历和所述测量报告,确定所述第二卫星。
该实施例中,在所述第二卫星接收到所述测量报告的时刻,所述第一卫星与所述终端设备之间的距离,大于所述第二卫星与所述终端设备之间的距离。优选地,第二卫星位于第一卫星在终端设备生成该测量报告时所处的位置或该位置附近。
例如图9至图11所示,终端设备基于卫星1的测量配置进行小区测量,并进行测量上报。卫星1在接收到终端设备发送的测量报告时,由于卫星1的移动,链路状态发生改变,因此该测量报告对卫星1而言可能不再准确,该测量报告不再适用于卫星1。这时,卫星1可以将测量报告发送给卫星2,由卫星2继续执行小区切换的相关操作,从而为终端设备选择合适的目标小区。
其中,图9为终端设备生成测量报告时,卫星1和卫星2所处的位置。图10所示为卫星1接收到测量报告时,卫星1和卫星2所处的位置。由于卫星1和卫星2沿轨道不断运行。卫星1接收到测量报告时,卫星1与终端设备之间的距离改变,该测量报告对于卫星1而言已经不再准确。因此,卫星1将该测量报告转发给卫星2。卫星2接收到测量报告时,卫星1和卫星2运行至图11所示的位置。这时,由第二卫星根据该测量报告执行小区切换的相应操作。由于终端设备是基于卫星1的测量配置进行小区测量并生成测量报告,即该测量报告适用于图9中所示的位置处的卫星1。因此,当卫星2移动至图9中所示的卫星1的位置时,该测量报告适用于处于该位置的卫星2。卫星1通过将测量报告发送给卫星2,并由卫星2为终端设备选择目标小区,有效地提高了小区切换的性能。
在该实施例中,可选地,所述方法还包括:所述第一卫星根据表征所述终端设备与所述第一卫星之间通信距离的变化情况的信息,对所述测量报告进行调整。这时,在430中,所述第一卫星向所述第二卫星发送的是调整后的所述测量报告。
可选地,所述第一卫星根据表征所述终端设备与卫星之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:所述第一卫星根据所述通信距离的变化量,对所述测量报告进行调整。
可选地,所述通信距离的变化量为:第一时刻的所述终端设备与所述第一卫星之间的所述通信距离,与第二时刻的所述终端设备与所述第二卫星之间的所述通信距离之间的差值。
其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述第一卫星接收到所述测量报告的时刻。
可选地,所述方法还包括:所述第一卫星根据以下信息中的至少一种,确定所述通信距离的变化量:所述终端设备与所述第一卫星之间的往返时间RTT、所述第一卫星的移动距离、所述第二卫星的移动距离、以及所述终端设备的移动距离。
可选地,所述第一卫星根据表征所述终端设备与所述第一卫星之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:所述第一卫星根据第一时刻与第二时刻之间的时间差,对所述测量报告进行调整。
其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述第一卫星接收到所述测量报告的时刻。
可选地,所述第一卫星根据表征所述终端设备与所述第一卫星之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:根据表征所述通信距离的变化情况的信息,确定调整参数;使用所述调整参数,对所述测量报告进行调整。
所述调整参数例如包括以下信息中的至少一种:调整因子、调整步长、调整周期中的至少一种。
应理解,第一卫星根据表征所述终端设备与所述第一卫星之间通信距离的变化情况的信息,对所述测量报告进行调整的过程,可以参考前述图4中对所述测量报告进行调整的相关描述,为了简洁,这里不再赘述。
该实施例中,终端设备向第一卫星发送的测量报告,也可以是终端设备基于图4所示的方式调整过的测量报告。第一卫星直接将终端设备调整过的测量报告转发给第二卫星。
或者,终端设备向第一卫星发送的测量报告,第一卫星直接将测量报告转发给第二卫星,并由第二卫星基于前述方式对该测量报告进行调整。
也就是说,终端设备、第一卫星以及第二卫星均可以对该测量报告进行调整。其中,可以基于生成测量报告时第一卫星与终端设备之间的距离,以及第二卫星收到测量报告时第二卫星与终端设备之间的距变化情况,对该测量报告进行调整。其中,如果第二卫星收到测量报告时其所处的位置,与终端设备 生成测量报告时第一卫星所处的位置相同,则可以不对测量报告进行调整。
另外,所述测量报告中还可以携带终端设备对测量报告中的测量值的调整量、生成测量报告的时间即第一时刻、以及终端设备的位置信息等。
本申请实施例中,终端设备可以基于测量配置进行小区切换,即满足切换条件时进行测量上报;或者,终端设备也可以自动触发小区切换,例如终端设备移动至当前的服务小区边缘时,自动进行小区测量并进行测量上报。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的下行信号传输的方法,下面将结合图12至图15,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图12是根据本申请实施例的通信设备1200的示意性框图。如图12所示,该通信设备1200包括处理单元1210和收发单元1220。
其中,所述处理单元1210用于:获取小区测量的测量报告;根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,以用于小区切换。
因此,通过表征终端设备与网络设备之间通信距离的变化情况的信息,对小区测量得到的测量报告进行调整,使得该测量报告适用于当前位置的终端设备与网络设备,从而网络设备能够基于调整后的测量报告,执行小区切换的相关操作,有效地实现了NTN系统中的小区切换。
可选地,所述处理单元1210具体用于:根据所述通信距离的变化量,对所述测量报告进行调整。
可选地,所述通信距离的变化量为:第一时刻的所述通信距离,与第二时刻的所述通信距离之间的差值,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述网络设备接收到所述测量报告的时刻。
可选地,所述处理单元1210还用于:根据以下信息中的至少一种,确定所述通信距离的变化量:所述终端设备与所述网络设备之间的往返时间RTT、所述卫星的移动距离、以及所述终端设备的移动距离。
可选地,所述处理单元1210具体用于:根据第一时刻与第二时刻之间的时间差,对所述测量报告进行调整,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述网络设备接收到所述测量报告的时刻。
可选地,所述处理单元1210具体用于:根据表征所述通信距离的变化情况的信息,确定调整参数;使用所述调整参数,对所述测量报告进行调整。
可选地,所述调整参数包括以下信息中的至少一种:调整因子、调整步长、调整周期中的至少一种。
可选地,所述通信设备为终端设备,所述处理单元1210具体用于:进行小区测量,得到所述测量报告;其中,所述收发单元1220用于:向所述网络设备发送调整后的所述测量报告。
可选地,所述通信设备为网络设备,所述处理单元1210具体用于:控制收发单元1220接收所述终端设备发送的所述测量报告。
可选地,所述网络设备为卫星,所述通信距离为所述终端设备与所述卫星之间的距离;或者,所述网络设备为地面站,所述通信距离为所述终端设备与卫星之间的距离,以及所述卫星与所述地面站之间的距离之和。
应理解,通信设备1200可以执行图4所示的方法中由终端设备或网络设备执行的相应操作,为了简洁,在此不再赘述。
图13是根据本申请实施例的卫星1300的示意性框图。如图13所示,该卫星1300为第一卫星,所述第一卫星包括收发单元1310和处理单元1320。
收发单元1310用于:接收终端设备发送的小区测量的测量报告;
处理单元1320用于:根据卫星星历,确定第二卫星;
收发单元1310还用于:向所述第二卫星发送所述测量报告,以用于小区切换。
因此,第一卫星与终端设备之间的距离变远而导致测量报告不再适用时,第一卫星通过将测量报告转发给第二卫星,由第二卫星执行小区切换的相关操作,从而有效地实现了NTN系统中的小区切换。
可选地,所述测量报告包括小区测量的测量结果,以及以下信息中的至少一种:所述终端设备的移动轨迹、所述终端设备的移动速度、所述测量报告的有效时长;其中,所述处理单元1320具体用于:根据卫星星历和所述测量报告,确定所述第二卫星。
可选地,在所述第二卫星接收到所述测量报告的第二时刻,所述第一卫星与所述终端设备之间的距 离,大于所述第二卫星与所述终端设备之间的距离。
可选地,所述处理单元1320还用于:根据表征所述终端设备与卫星之间通信距离的变化情况的信息,对所述测量报告进行调整;所述第一卫星向所述第二卫星发送所述测量报告,包括:所述第一卫星向所述第二卫星发送调整后的所述测量报告。
可选地,所述处理单元1320具体用于:根据所述通信距离的变化量,对所述测量报告进行调整。
可选地,所述通信距离的变化量为:第一时刻的所述终端设备与所述第一卫星之间的所述通信距离,与第二时刻的所述终端设备与所述第二卫星之间的所述通信距离之间的差值,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述第一卫星接收到所述测量报告的时刻。
可选地,所述处理单元1320还用于:根据以下信息中的至少一种,确定所述通信距离的变化量:所述终端设备与所述第一卫星之间的往返时间RTT、所述第一卫星的移动距离、所述第二卫星的移动距离、以及所述终端设备的移动距离。
可选地,所述处理单元1320具体用于:根据第一时刻与第二时刻之间的时间差,对所述测量报告进行调整,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述第一卫星接收到所述测量报告的时刻。
可选地,所述处理单元1320具体用于:根据表征所述通信距离的变化情况的信息,确定调整参数;使用所述调整参数,对所述测量报告进行调整。
可选地,所述调整参数包括以下信息中的至少一种:调整因子、调整步长、调整周期中的至少一种。
应理解,通信设备1300可以执行图8所示的方法中由第一卫星执行的相应操作,为了简洁,在此不再赘述。
图14是本申请实施例的一种通信设备1400的示意性结构图。图14所示的通信设备1400包括处理器1410,处理器1410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备1400还可以包括存储器1420。其中,处理器1410可以从存储器1420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1420可以是独立于处理器1410的一个单独的器件,也可以集成在处理器1410中。
可选地,如图14所示,通信设备1400还可以包括收发器1430,处理器1410可以控制该收发器1430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1430可以包括发射机和接收机。收发器1430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,通信设备1400具体可为本申请实施例的终端设备,并且该通信设备1400可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,通信设备1400具体可为本申请实施例的网络设备,并且该通信设备1400可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。所述网络设备可以是卫星或者地面站。
图15是本申请实施例的用于小区切换的装置的示意性结构图。图15所示的装置1500包括处理器1510,处理器1510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,装置1500还可以包括存储器1520。其中,处理器1510可以从存储器1520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1520可以是独立于处理器1510的一个单独的器件,也可以集成在处理器1510中。
可选地,装置1500还可以包括输入接口1530。其中,处理器1510可以控制该输入接口1530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,装置1500还可以包括输出接口1540。其中,处理器1510可以控制该输出接口1540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,装置1500可应用于本申请实施例中的网络设备,并且该通信装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。所述网络设备可以是卫星或者地面站。
可选地,装置1500可应用于本申请实施例中的终端设备,并且该通信装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
装置1500例如可以为芯片。所述芯片可为系统级芯片、系统芯片、芯片系统、或者片上系统芯片等。
本申请实施例中的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific  Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
其中,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,不再赘述。所述网络设备可以是卫星或者地面站。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。所述网络设备可以是卫星或者地面站。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。所述网络设备可以是卫星或者地面站。
在本申请实施例中,术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清除地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种小区切换的方法,其特征在于,所述方法包括:
    获取小区测量的测量报告;
    根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,以用于小区切换。
  2. 根据权利要求1所述的方法,其特征在于,所述根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:
    根据所述通信距离的变化量,对所述测量报告进行调整。
  3. 根据权利要求2所述的方法,其特征在于,所述通信距离的变化量为:
    第一时刻的所述通信距离,与第二时刻的所述通信距离之间的差值,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述网络设备接收到所述测量报告的时刻。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    根据以下信息中的至少一种,确定所述通信距离的变化量:所述终端设备与所述网络设备之间的往返时间RTT、所述卫星的移动距离、以及所述终端设备的移动距离。
  5. 根据权利要求1所述的方法,其特征在于,所述根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:
    根据第一时刻与第二时刻之间的时间差,对所述测量报告进行调整,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述网络设备接收到所述测量报告的时刻。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:
    根据表征所述通信距离的变化情况的信息,确定调整参数;
    使用所述调整参数,对所述测量报告进行调整。
  7. 根据权利要求6所述的方法,其特征在于,所述调整参数包括以下信息中的至少一种:
    调整因子、调整步长、调整周期中的至少一种。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法由终端设备执行,所述获取小区测量的测量报告,包括:
    所述终端设备进行小区测量,得到所述测量报告;
    其中,所述方法还包括:
    所述终端设备向所述网络设备发送调整后的所述测量报告。
  9. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法由网络设备执行,所述获取小区测量的测量报告,包括:
    所述网络设备接收所述终端设备发送的所述测量报告。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,
    所述网络设备为卫星,所述通信距离为所述终端设备与所述卫星之间的距离;或者,
    所述网络设备为地面站,所述通信距离为所述终端设备与卫星之间的距离,以及所述卫星与所述地面站之间的距离之和。
  11. 一种小区切换的方法,其特征在于,所述方法包括:
    第一卫星接收终端设备发送的小区测量的测量报告;
    所述第一卫星根据卫星星历,确定第二卫星;
    所述第一卫星向所述第二卫星发送所述测量报告,以用于小区切换。
  12. 根据权利要求11所述的方法,其特征在于,所述测量报告包括小区测量的测量结果,以及以下信息中的至少一种:
    所述终端设备的移动轨迹、所述终端设备的移动速度、所述测量报告的有效时长;
    其中,所述第一卫星根据卫星星历,确定第二卫星,包括:
    所述第一卫星根据卫星星历和所述测量报告,确定所述第二卫星。
  13. 根据权利要求11或12所述的方法,其特征在于,在所述第二卫星接收到所述测量报告的时刻,所述第一卫星与所述终端设备之间的距离,大于所述第二卫星与所述终端设备之间的距离。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一卫星根据表征所述终端设备与卫星之间通信距离的变化情况的信息,对所述测量报告进行调整;
    所述第一卫星向所述第二卫星发送所述测量报告,包括:
    所述第一卫星向所述第二卫星发送调整后的所述测量报告。
  15. 根据权利要求14所述的方法,其特征在于,所述第一卫星根据表征所述终端设备与卫星之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:
    所述第一卫星根据所述通信距离的变化量,对所述测量报告进行调整。
  16. 根据权利要求15所述的方法,其特征在于,所述通信距离的变化量为:
    第一时刻的所述终端设备与所述第一卫星之间的所述通信距离,与第二时刻的所述终端设备与所述第二卫星之间的所述通信距离之间的差值,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述第二卫星接收到所述测量报告的时刻。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    所述第一卫星根据以下信息中的至少一种,确定所述通信距离的变化量:所述终端设备与所述第一卫星之间的往返时间RTT、所述第一卫星的移动距离、所述第二卫星的移动距离、以及所述终端设备的移动距离。
  18. 根据权利要求14所述的方法,其特征在于,所述第一卫星根据表征所述终端设备与卫星之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:
    所述第一卫星根据第一时刻与第二时刻之间的时间差,对所述测量报告进行调整,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述第二卫星接收到所述测量报告的时刻。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述第一卫星根据表征所述终端设备与卫星之间通信距离的变化情况的信息,对所述测量报告进行调整,包括:
    根据表征所述通信距离的变化情况的信息,确定调整参数;
    使用所述调整参数,对所述测量报告进行调整。
  20. 根据权利要求19所述的方法,其特征在于,所述调整参数包括以下信息中的至少一种:
    调整因子、调整步长、调整周期中的至少一种。
  21. 一种通信设备,其特征在于,包括:
    处理单元,用于获取小区测量的测量报告;
    所述处理单元还用于,根据表征终端设备与网络设备之间通信距离的变化情况的信息,对所述测量报告进行调整,以用于小区切换。
  22. 根据权利要求21所述的通信设备,其特征在于,所述处理单元具体用于:
    根据所述通信距离的变化量,对所述测量报告进行调整。
  23. 根据权利要求22所述的通信设备,其特征在于,所述通信距离的变化量为:
    第一时刻的所述通信距离,与第二时刻的所述通信距离之间的差值,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述网络设备接收到所述测量报告的时刻。
  24. 根据权利要求22或23所述的通信设备,其特征在于,所述处理单元还用于:
    根据以下信息中的至少一种,确定所述通信距离的变化量:所述终端设备与所述网络设备之间的往返时间RTT、所述卫星的移动距离、以及所述终端设备的移动距离。
  25. 根据权利要求21所述的通信设备,其特征在于,所述处理单元具体用于:
    根据第一时刻与第二时刻之间的时间差,对所述测量报告进行调整,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述网络设备接收到所述测量报告的时刻。
  26. 根据权利要求21至25中任一项所述的通信设备,其特征在于,所述处理单元具体用于:
    根据表征所述通信距离的变化情况的信息,确定调整参数;
    使用所述调整参数,对所述测量报告进行调整。
  27. 根据权利要求26所述的通信设备,其特征在于,所述调整参数包括以下信息中的至少一种:
    调整因子、调整步长、调整周期中的至少一种。
  28. 根据权利要求21至27中任一项所述的通信设备,其特征在于,所述通信设备为终端设备,所述处理单元具体用于:
    进行小区测量,得到所述测量报告;
    其中,所述终端设备还包括:
    收发单元,用于向所述网络设备发送调整后的所述测量报告。
  29. 根据权利要求21至27中任一项所述的通信设备,其特征在于,所述通信设备为网络设备,所述处理单元具体用于:
    控制收发单元接收所述终端设备发送的所述测量报告。
  30. 根据权利要求21至29中任一项所述的通信设备,其特征在于,
    所述网络设备为卫星,所述通信距离为所述终端设备与所述卫星之间的距离;或者,
    所述网络设备为地面站,所述通信距离为所述终端设备与卫星之间的距离,以及所述卫星与所述地面站之间的距离之和。
  31. 一种卫星,其特征在于,所述卫星为第一卫星,所述第一卫星包括:
    收发单元,用于接收终端设备发送的小区测量的测量报告;
    处理单元,用于根据卫星星历,确定第二卫星;
    收发单元,用于向所述第二卫星发送所述测量报告,以用于小区切换。
  32. 根据权利要求31所述的卫星,其特征在于,所述测量报告包括小区测量的测量结果,以及以下信息中的至少一种:
    所述终端设备的移动轨迹、所述终端设备的移动速度、所述测量报告的有效时长;
    其中,所述处理单元具体用于:
    根据卫星星历和所述测量报告,确定所述第二卫星。
  33. 根据权利要求31或32所述的卫星,其特征在于,在所述第二卫星接收到所述测量报告的第二时刻,所述第一卫星与所述终端设备之间的距离,大于所述第二卫星与所述终端设备之间的距离。
  34. 根据权利要求31至33中任一项所述的卫星,其特征在于,所述处理单元还用于:
    根据表征所述终端设备与卫星之间通信距离的变化情况的信息,对所述测量报告进行调整;
    所述第一卫星向所述第二卫星发送所述测量报告,包括:
    所述第一卫星向所述第二卫星发送调整后的所述测量报告。
  35. 根据权利要求34所述的卫星,其特征在于,所述处理单元具体用于:
    根据所述通信距离的变化量,对所述测量报告进行调整。
  36. 根据权利要求35所述的卫星,其特征在于,所述通信距离的变化量为:
    第一时刻的所述终端设备与所述第一卫星之间的所述通信距离,与第二时刻的所述终端设备与所述第二卫星之间的所述通信距离之间的差值,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述第一卫星接收到所述测量报告的时刻。
  37. 根据权利要求35或36所述的卫星,其特征在于,所述处理单元还用于:
    根据以下信息中的至少一种,确定所述通信距离的变化量:所述终端设备与所述第一卫星之间的往返时间RTT、所述第一卫星的移动距离、所述第二卫星的移动距离、以及所述终端设备的移动距离。
  38. 根据权利要求34所述的卫星,其特征在于,所述处理单元具体用于:
    根据第一时刻与第二时刻之间的时间差,对所述测量报告进行调整,其中,所述第一时刻为所述终端设备生成所述测量报告的时刻,所述第二时刻为所述第一卫星接收到所述测量报告的时刻。
  39. 根据权利要求34至38中任一项所述的卫星,其特征在于,所述处理单元具体用于:
    根据表征所述通信距离的变化情况的信息,确定调整参数;
    使用所述调整参数,对所述测量报告进行调整。
  40. 根据权利要求39所述的卫星,其特征在于,所述调整参数包括以下信息中的至少一种:
    调整因子、调整步长、调整周期中的至少一种。
  41. 一种通信设备,其特征在于,所述通信设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至10中任一项所述的方法。
  42. 一种卫星,其特征在于,所述卫星包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求11至20中任一项所述的方法。
  43. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求1至10中任一项所述的方法。
  44. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求11至20中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求1至10中任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求11至20中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求1至10中任一项所述的方法。
  48. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求11至20中任一项所述的方法。
  49. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1至10中任一项所述的方法。
  50. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求11至20中任一项所述的方法。
PCT/CN2019/107001 2019-09-20 2019-09-20 小区切换的方法和设备 WO2021051388A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980100325.8A CN114402545A (zh) 2019-09-20 2019-09-20 小区切换的方法和设备
PCT/CN2019/107001 WO2021051388A1 (zh) 2019-09-20 2019-09-20 小区切换的方法和设备
US17/555,074 US20220110028A1 (en) 2019-09-20 2021-12-17 Method for Cell Handover, Communication Device, and Satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107001 WO2021051388A1 (zh) 2019-09-20 2019-09-20 小区切换的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/555,074 Continuation US20220110028A1 (en) 2019-09-20 2021-12-17 Method for Cell Handover, Communication Device, and Satellite

Publications (1)

Publication Number Publication Date
WO2021051388A1 true WO2021051388A1 (zh) 2021-03-25

Family

ID=74884113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107001 WO2021051388A1 (zh) 2019-09-20 2019-09-20 小区切换的方法和设备

Country Status (3)

Country Link
US (1) US20220110028A1 (zh)
CN (1) CN114402545A (zh)
WO (1) WO2021051388A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828113A (zh) * 2021-05-17 2022-07-29 银河航天(北京)网络技术有限公司 星座通信系统用户移动性管理的方法
WO2022207066A1 (en) * 2021-03-29 2022-10-06 Nokia Technologies Oy Measurement triggering for networks with moving network nodes

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111641977B (zh) * 2019-03-01 2022-01-07 大唐移动通信设备有限公司 一种小区切换处理方法、装置及设备
CN113852408B (zh) * 2021-09-26 2024-04-30 中国电子科技集团公司第五十四研究所 实现TtT通信模式的低轨卫星移动通信系统及实现方法
WO2023197151A1 (zh) * 2022-04-12 2023-10-19 北京小米移动软件有限公司 一种传输测量能力的方法、装置及可读存储介质
CN117014926A (zh) * 2022-04-29 2023-11-07 展讯通信(上海)有限公司 一种邻区测量方法、装置、芯片及模组设备
WO2023243931A1 (en) * 2022-06-15 2023-12-21 Lg Electronics Inc. Method and apparatus for handling measurement prediction in a wireless communication system
WO2024000602A1 (zh) * 2022-07-01 2024-01-04 深圳传音控股股份有限公司 测量启动方法、通信设备及存储介质
US20240049082A1 (en) * 2022-09-29 2024-02-08 Sharp Kabushiki Kaisha Triggering of cell reselection evaluation process in non-terrestrial network
CN117674949A (zh) * 2022-08-30 2024-03-08 华为技术有限公司 通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103561422A (zh) * 2009-11-19 2014-02-05 索尼公司 无线电通信终端、通信方法和无线电通信系统
CN104303557A (zh) * 2012-05-11 2015-01-21 英特尔公司 用于使用参考信号接收质量(rsrq)的切换增强的用户设备和方法
CN108112281A (zh) * 2015-05-01 2018-06-01 高通股份有限公司 用于卫星通信的切换
CN110072264A (zh) * 2019-05-28 2019-07-30 重庆邮电大学 一种低轨卫星系统切换方法
WO2019170866A1 (en) * 2018-03-09 2019-09-12 Ipcom Gmbh & Co. Kg Predictive measurement for non-terrestrial communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103561422A (zh) * 2009-11-19 2014-02-05 索尼公司 无线电通信终端、通信方法和无线电通信系统
CN104303557A (zh) * 2012-05-11 2015-01-21 英特尔公司 用于使用参考信号接收质量(rsrq)的切换增强的用户设备和方法
CN108112281A (zh) * 2015-05-01 2018-06-01 高通股份有限公司 用于卫星通信的切换
WO2019170866A1 (en) * 2018-03-09 2019-09-12 Ipcom Gmbh & Co. Kg Predictive measurement for non-terrestrial communication
CN110072264A (zh) * 2019-05-28 2019-07-30 重庆邮电大学 一种低轨卫星系统切换方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022207066A1 (en) * 2021-03-29 2022-10-06 Nokia Technologies Oy Measurement triggering for networks with moving network nodes
CN114828113A (zh) * 2021-05-17 2022-07-29 银河航天(北京)网络技术有限公司 星座通信系统用户移动性管理的方法
CN114828113B (zh) * 2021-05-17 2023-10-20 银河航天(北京)网络技术有限公司 星座通信系统用户移动性管理的方法

Also Published As

Publication number Publication date
CN114402545A (zh) 2022-04-26
US20220110028A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2021051388A1 (zh) 小区切换的方法和设备
US10064111B2 (en) Configuring a discard timer
WO2021082009A1 (zh) 小区测量的方法、终端设备和网络设备
WO2021062729A1 (zh) 一种切换处理方法、通信设备、终端设备
WO2020164018A1 (zh) 用于小区切换的方法及设备
CN113170367B (zh) 用于切换网络设备的方法和终端设备
WO2021051286A1 (zh) 用于切换网络设备的方法、终端设备和网络设备
WO2020220309A1 (zh) 用于小区切换的方法及设备
WO2022143564A1 (zh) 一种小区选择方法及装置
WO2021022442A1 (zh) 无线通信方法、终端设备和网络设备
WO2019237763A1 (zh) 一种rlf的处理方法及装置、通信设备
WO2020154994A1 (zh) 小区切换方法、终端设备和网络设备
CN112738825A (zh) 上报测量信息的方法、配置终端设备的方法和设备
WO2020220321A1 (zh) 无线通信方法、终端设备和网络设备
JP2023525201A (ja) セルハンドオーバー方法、電子デバイス及び記憶媒体
WO2021056561A1 (zh) 小区切换的方法和设备
WO2020220238A1 (zh) 用于小区切换的方法及设备
WO2020155120A1 (zh) 无线通信的方法和设备
US20240015634A1 (en) Method and apparatus for transmitting and receiving signal and communication system
WO2021168627A1 (zh) 一种传输控制方法、终端设备、网络设备
WO2021022430A1 (zh) 随机接入的方法和通信设备
JP7312846B2 (ja) 無線通信の方法、端末装置及びネットワーク装置
WO2021056159A1 (zh) 一种信息处理方法、通信设备、卫星
WO2020029275A1 (zh) 一种无线通信方法、终端设备和网络设备
US20240022988A1 (en) Method and apparatus for conditional reconfiguration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946109

Country of ref document: EP

Kind code of ref document: A1