WO2021056159A1 - 一种信息处理方法、通信设备、卫星 - Google Patents

一种信息处理方法、通信设备、卫星 Download PDF

Info

Publication number
WO2021056159A1
WO2021056159A1 PCT/CN2019/107366 CN2019107366W WO2021056159A1 WO 2021056159 A1 WO2021056159 A1 WO 2021056159A1 CN 2019107366 W CN2019107366 W CN 2019107366W WO 2021056159 A1 WO2021056159 A1 WO 2021056159A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
terminal device
target terminal
measurement information
target
Prior art date
Application number
PCT/CN2019/107366
Other languages
English (en)
French (fr)
Inventor
付喆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980095374.7A priority Critical patent/CN113785507B/zh
Priority to PCT/CN2019/107366 priority patent/WO2021056159A1/zh
Publication of WO2021056159A1 publication Critical patent/WO2021056159A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/328Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by altitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data

Definitions

  • the present invention relates to the field of information processing technology, in particular to an information processing method, communication equipment, satellites, chips, computer-readable storage media, computer program products, and computer programs.
  • NTN Non Terrestrial Network
  • satellite communication network the terminal equipment needs to interact frequently with the source base station and the target base station in the process of handover, and finally complete the handover.
  • NTN Non Terrestrial Network
  • satellite communication network the problem of frequent measurement and reporting by terminal equipment will occur, and a large amount of air interface signals will be generated accordingly. Order overhead.
  • embodiments of the present invention provide an information processing method, communication equipment, satellite, chip, computer readable storage medium, computer program product, and computer program.
  • an information processing method includes:
  • the communication device obtains the measurement information of the target terminal device
  • the communication device sends measurement information of the target terminal device to a first satellite running to a target spatial position, where the measurement information is used to instruct the first satellite to manage the target terminal device, and the target
  • the space position includes: part of the trajectory of the satellite trajectory where multiple different satellites operating on the same satellite trajectory are located.
  • an information processing method includes:
  • the first satellite running to the target space position receives the measurement information of the target terminal device sent by the communication device, where the target space position includes: part of the satellite running trajectory where multiple different satellites running on the same satellite running trajectory are located Trajectory
  • the first satellite manages the target terminal device according to the correction result of the measurement information.
  • a communication device including:
  • the first processing unit obtains measurement information of the target terminal device
  • the first communication unit sends measurement information of the target terminal device to a first satellite running to a target spatial position, where the measurement information is used to instruct the first satellite to manage the target terminal device, and
  • the target space position includes: part of the trajectory of the satellites where multiple different satellites running on the same satellite trajectory are located.
  • a satellite including: a first satellite; wherein, the first satellite includes:
  • the second communication unit receives the measurement information of the target terminal device sent by the communication device when it runs to the target space position, where the target space position includes: satellite operation trajectories where multiple different satellites operating on the same satellite operation trajectory are located Part of the trajectory in;
  • the second processing unit manages the target terminal device according to the correction result of the measurement information.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a satellite including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • a chip is provided to implement the methods in the foregoing implementation manners.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the methods in the first aspect to the second aspect or each implementation manner thereof.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the methods in the first aspect to the second aspect or each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute the methods in the first aspect to the second aspect or each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute the methods in the first aspect to the second aspect or each of the implementations thereof.
  • the target terminal device only needs to report once in the process of a measurement report, and it can be used by the satellite located in the target space position, and the terminal device will not report the measurement result again due to the change of the satellite transmission of the target space position. In this way, frequent reporting by the target terminal device is avoided, thereby avoiding the problem of a large amount of air interface signaling overhead caused by the frequent reporting by the target terminal device.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram 1 of the flow of an information processing method according to an embodiment of the present invention.
  • FIG. 3 is a second schematic diagram of the flow of an information processing method provided by an embodiment of the present invention.
  • Figure 4 is a schematic diagram of a handover process
  • 5 to 8 are schematic flowcharts of four examples of information processing methods provided by embodiments of the present invention.
  • FIG. 9 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 10 is a second schematic diagram of the satellite composition structure provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 13 is a second schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a UE 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with UEs located in the coverage area.
  • the network equipment 110 may be a network equipment (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a network equipment (NodeB, NB) in a WCDMA system, or an evolution in an LTE system Type network equipment (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment may be a mobile switching center, a relay station, an access point, In-vehicle devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB network equipment
  • Evolutional Node B eNodeB
  • eNodeB LTE system Type network equipment
  • CRAN Cloud Radio Access Network
  • the network equipment may be a mobile switching center, a relay station, an access point, In-
  • the communication system 100 also includes at least one UE 120 located within the coverage area of the network device 110.
  • UE as used herein includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another UE's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a UE set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a "mobile terminal”.
  • direct terminal connection (Device to Device, D2D) communication may be performed between the UEs 120.
  • Step 21 The communication device obtains the measurement information of the target terminal device
  • Step 22 The communication device sends the measurement information of the target terminal device to the first satellite running to the target spatial position, where the measurement information is used to instruct the first satellite to manage the target terminal device,
  • the target spatial position includes: a part of the trajectory of the satellite where a plurality of different satellites running on the same satellite trajectory are located.
  • this embodiment provides an information processing method, as shown in FIG. 3, including:
  • Step 31 The first satellite running to the target space position receives the measurement information of the target terminal device sent by the communication device, where the target space position includes: satellite operation trajectories where multiple different satellites operating on the same satellite operation trajectory are located Part of the trajectory in;
  • Step 32 According to the correction result of the measurement information, the first satellite manages the target terminal device.
  • Non Terrestrial Network non-terrestrial communication network
  • the NTN uses satellite communication to provide communication services to ground users.
  • satellite communication Compared with terrestrial cellular network communication, satellite communication has many unique advantages. First of all, satellite communication is not restricted by the user area. For example, general terrestrial communication cannot cover the ocean, mountains, deserts and other areas where communication equipment cannot be installed or because of the sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so in theory every corner of the earth can be covered by satellite communications. Secondly, satellite communication has greater social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost has not increased significantly with the increase of the communication distance; finally, the satellite communication has high stability and is not restricted by natural disasters.
  • LEO Low-Earth Orbit, low earth orbit
  • MEO Medium-Earth Orbit, medium earth orbit
  • GEO Geographical Earth Orbit, geosynchronous orbit
  • HEO High Elliptical Orbit (highly elliptical orbit) satellites and so on. among them,
  • the altitude range of low-orbit satellites is 500km ⁇ 1500km, and the corresponding orbit period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • GEO a geosynchronous orbit satellite
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure the coverage of satellites and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • the base station configures the UE for measurement, the UE reports the measurement result, and the related measurement result is used for the base station configuring the measurement for the UE to determine whether to perform handover for the UE. That is to say, the base station's decision after receiving the existing measurement report is for a certain UE. And after the base station receives the measurement result, the measurement result can only be used by the base station.
  • Figure 4 which mainly includes:
  • the handover preparation phase includes steps 1-6 in the figure: the first network device (that is, the source base station) sends measurement control to the terminal device; after the terminal device performs measurement on multiple network devices or cells, it sends the measurement to the first network device Report; the first network device makes a handover decision based on the measurement report (or combined with RRM information); the first network device sends a handover request to the second network device (that is, the target base station) so that the second network device is ready to switch; the second network The device performs switching permission control according to the switching request; when the second network device determines to perform the switching, it sends a switching request confirmation to the first network device.
  • the second network device generates a handover request confirmation, and sends the handover request confirmation message to the first network device, which is sent by the first network device through the RRC connection reconfiguration message To the terminal device; after receiving the RRC connection reconfiguration information, the terminal device performs handover processing according to the connection reconfiguration information; then the first network device sends the SN status to the second network device; the terminal device synchronizes with the second network device, and then Receive the UL resource allocated by the second network device, and send the RRC connection reconfiguration complete message to the second network device.
  • the second network device sends a path switch request to the MME to notify the MME terminal device to change the cell; the MME sends a bearer adjustment request to the serving gateway, and the MME switches the downlink path Processing; After the serving gateway completes the processing, it sends the bearer adjustment completion processing to the MME, and the MME sends a path switch request confirmation message to the second network device; the second network device notifies the first network device that the terminal device context is released by the first network The device releases resources.
  • the terminal device may frequently interact with the satellite side due to changes in the position of the satellite.
  • the solution provided by this embodiment is operated by the second satellite originally located at the target space position (that is, the satellite runs from the target space position to outside the target space position on the trajectory of the satellite), or is operated by a network device or a satellite.
  • One or more different satellites on the trajectory other than the first satellite and the second satellite transmit the measurement information to the first satellite that later runs to the target space position, and then the first satellite performs subsequent follow-ups based on the measurement information of the terminal equipment management. This reduces the number of measurement reports performed by the terminal equipment, and reduces air interface signaling overhead.
  • the communication device may include one of the following:
  • a network device that communicates with the multiple different satellites and/or the target terminal device
  • a second satellite wherein the second satellite includes: a satellite that moves from within a target space position to outside the target space position on the satellite's orbit;
  • One or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite are one or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite.
  • the method further includes:
  • the communication device notifies the satellites on the orbit of the satellite of the information of the configured at least one spatial position, and/or notifies the satellites of the mapping relationship between the configured at least one spatial position and the satellite;
  • the at least one spatial position includes the target spatial position.
  • the following processing may also be included:
  • the at least one spatial position includes the target spatial position.
  • one or more satellites located in the orbit of the satellite can obtain information about at least one spatial position configured in advance, and/or the mapping relationship between the at least one spatial position and the satellite.
  • the information of the aforementioned at least one spatial position and/or the mapping relationship between the at least one spatial position and the satellite may be transmitted by a network device, or may be one or more satellites sharing the same satellite trajectory.
  • one or more satellites of the plurality of satellites may be any one, or, any more, or one or more satellites selected by the network side.
  • each of the at least one spatial position can be understood as a target spatial position.
  • the information of the spatial location includes at least one of the following: an identifier of the spatial location, and a spatial coordinate of the spatial location.
  • each satellite can determine its corresponding spatial location according to its location.
  • the satellite can determine its own spatial position according to the coordinates of the spatial position and its own coordinates.
  • the satellite can further determine the identification of the spatial location corresponding to its own location.
  • the satellite can directly determine its own spatial location based on the spatial location information sent by the network device.
  • each spatial position may be sent the information of the spatial position.
  • the network device can only send the target spatial location information to the satellite located at the target spatial location, and furthermore, the satellite located at the target spatial location can determine its own spatial coordinates and spatial location.
  • all satellites that have received the information of the target spatial position can be used as the second satellite in the target spatial position.
  • mapping relationship between the space position and the satellite includes: at least one of the information about the space position, and the identification of at least one satellite corresponding to the space position.
  • the satellites may be notified of the mapping relationship between all the spatial positions and the satellites, or the communication device may notify the mapping relationship between the target spatial positions and the satellites only for the second satellite at the target spatial position.
  • the target spatial position is one of all spatial positions.
  • each satellite determines the corresponding mapping relationship according to its own spatial position. For example, if satellite 1 is in the mapping relationship between spatial position 1 and satellite, then you can Make sure you are in space position 1. If a satellite of a certain spatial position only sends the mapping relationship between the spatial position and the satellite, the satellite can directly determine its own spatial position according to the mapping relationship between the spatial position and the satellite sent by the network device.
  • each spatial position can be understood as the target spatial position, and the satellite located at each spatial position can be understood as the second satellite of the spatial position.
  • each spatial position may be understood as a target spatial position, and one or more of the plurality of satellites located at each spatial position may be understood as the second satellite of the spatial position.
  • the communication device In the case that the communication device is the second satellite, the communication device, that is, the second satellite, will also perform measurement configuration for the terminal device, and accept the measurement result sent by the target terminal device, based on the measurement result Obtain the measurement information of the target terminal device.
  • the communication device obtains the target terminal device
  • the measurement information includes: the communication device receives the measurement information of the target terminal device sent by the second satellite.
  • the second satellite sends the measurement information of the terminal device to the network device, or one or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite
  • the network equipment or one or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite send measurement information to the first satellite, and the measurement information is corrected by the first satellite.
  • the correction result of the measurement information is to the network device, or one or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite.
  • the first satellite, the second satellite, and the communication equipment are taken as examples of network equipment for detailed description; it should be pointed out that in this example, the network equipment can also be replaced by the operation trajectory of the satellite.
  • One or more different satellites other than the first satellite and the second satellite Specifically, including:
  • Step 1 The network device configures the target space position, where the target space position is an absolute area relative to the ground and corresponds to at least a part of the satellite motion track.
  • the network equipment is a satellite on the satellite's orbit, and the target space position is configured.
  • the network device may be an operation and maintenance management (OAM, Operation Administration and Maintenance) device.
  • OAM Operation Administration and Maintenance
  • the network device in this step can be replaced with any one that shares the same motion track, or a specific one or more satellites.
  • specific refers to a certain satellite pre-configured in the satellite trajectory, which can be configured by the administrator through the network device, or can be configured by the network device according to the actual situation, for example, a certain data processing or data transmission can be selected A satellite with a smaller amount is used as the specific satellite.
  • any one of the aforementioned satellites refers to one of all satellites in the orbit of the satellite, which can be randomly selected.
  • Any satellite can include the aforementioned second satellite, of course, it may also include the aforementioned first satellite, or it can be Any satellite on the trajectory of the satellite except the first satellite and the second satellite. I won't repeat it here.
  • the network device notifies at least one satellite of the configured target space position (which may include a position identifier, space coordinates, etc.), and/or the mapping relationship between the target space position and the satellite. Further, the network device may also notify at least one satellite of all configured spatial positions and the mapping relationship between the spatial positions and the satellites.
  • the configured target space position which may include a position identifier, space coordinates, etc.
  • the network device may also notify at least one satellite of all configured spatial positions and the mapping relationship between the spatial positions and the satellites.
  • Step 2 When the second satellite is located at the target space position, the second satellite performs measurement configuration to the target terminal device;
  • the target terminal device is:
  • One of one or more terminal devices determined by the second satellite is
  • one or more terminal devices located within the coverage area of the second satellite.
  • the second satellite determines one or more terminal devices as the target terminal device according to the location information and positioning information reported by the terminal device.
  • the one or more terminal devices determined by the second satellite may be a specific terminal device determined by the second satellite, or may be multiple specific terminal devices.
  • the specific terminal device may be one or more terminal devices within a certain ground coordinate or range.
  • the measurement configuration is used for the second satellite to obtain channel quality information of the neighboring cell of the target terminal device, or for the second satellite to perform handover judgment on the target terminal device.
  • the second satellite corresponding to the target space position at different times can be the same or different, that is, the satellite/base station identifiers of the target space position at different times are different; for example, the target space position is a satellite in a period of time 3. At this time, the satellite 3 is the second satellite; in another period of time, the target space position is the satellite 6. At this time, the satellite 6 is the first satellite, that is, the second satellite after the replacement.
  • Step 3 According to the measurement configuration, the target terminal equipment meets the measurement report conditions, such as the third satellite and the fourth satellite (that is, the movement track is the same as that of the second satellite, and only the same target space position satellite arrives at the same time as the second satellite.
  • the RSRP Reference Signal Receiving Power
  • the target terminal device reports the measurement result to the second satellite; or, if the RSRP of the third satellite is less than the threshold B, the target terminal device will The measurement results are reported to the second satellite.
  • the measurement result may include: the identifier of the satellite measured by the target terminal device, and the communication quality parameter value of the satellite measured by the target terminal device.
  • the communication quality parameter may be RSRP, RSRQ (Reference Signal Receiving Quality, reference signal reception quality), SINR (Signal to Interference plus Noise Ratio, Signal to Interference plus Noise Ratio) and the like.
  • Step 4 The second satellite receives the measurement result sent by the target terminal device, and determines the measurement information of the target terminal device; the second satellite sends the measurement information of the target terminal device to the network device.
  • the aforementioned measurement information can be the same as or different from the measurement result.
  • the measurement information of the target terminal device may include: the identifier of the satellite measured by the target terminal device, and the communication quality parameter value of the satellite measured by the target terminal device.
  • the measurement information of the target terminal device may also carry the identification of the target spatial location and/or the second satellite identification.
  • the network device can self-confirm the satellite identification corresponding to the measurement information, or the identification of the corresponding location.
  • the network device can determine whether the target terminal device corresponds to the second terminal device from at least one terminal device managed by the satellite. Satellites, and then based on the space position and the satellite mapping relationship to determine the target space position identification.
  • Step 5 When the first satellite moves to the target space position and moves from within the target space position to outside the target space position, the network device sends the measurement information to the first satellite.
  • the first satellite running to the target spatial position receives the measurement information of the target terminal device sent by the communication device.
  • the second satellite is replaced with the first satellite, that is, the first satellite runs to the target space position and moves from the target space position to outside the target space position, which can be determined by the network device, or can be determined by the second satellite Alternatively, it may be determined by one or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite.
  • One or more different satellites other than the first satellite and the second satellite directly send the measurement information of the terminal equipment sent by the second satellite to the first satellite;
  • the second satellite can notify the network device of the change information, or one or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite, Furthermore, the measurement information of the terminal device is sent to the first satellite by a network device or one or more different satellites on the satellite's orbit other than the first satellite and the second satellite.
  • the specific way of updating the satellite for determining the target space position from the second satellite to the first satellite can be based on the ephemeris. For example, based on the ephemeris, multiple satellites located on the same satellite orbit can be known, and since the satellite moving speed is known in advance, Then the time when the second satellite moves out of the target space position can be determined, and the time when a certain satellite moves into the target space position can also be determined; thus, the first satellite that moves into the target space position when the second satellite moves out of the target space position can be determined.
  • Step 6 The first satellite receives the measurement information sent by the network device, and the first satellite corrects the measurement information corresponding to the target terminal device to obtain a correction result of the measurement information; the first satellite corrects the measurement information according to the The correction result of the measurement information is used to manage the target terminal device.
  • said correcting the measurement information corresponding to the target terminal device includes:
  • the first satellite corrects the communication quality measurement value and the corresponding satellite identifier in the measurement information of the target terminal device.
  • the aforementioned correction processing may be performed according to the mapping relationship between the target spatial position and the satellite, and/or the ephemeris and other information.
  • each satellite needs to know the information of multiple satellites sharing the same satellite motion track, if there are several satellites, what is the ephemeris.
  • the advantage is to avoid the complexity of network equipment.
  • the first satellite changes the satellite identification according to the satellite motion trajectory (ephemeris). For example, there are three satellites sharing a satellite motion trajectory, and the order of the three satellites moving to the target space position is ID1,2,3.
  • the measurement results reported by the first terminal device are RSRP1, RSRP2, and RSRP3.
  • the second satellite is changed from satellite ID1 to satellite ID2, the first network device changes the measurement information to, satellite ID1 corresponds to RSRP3, satellite ID2 corresponds to RSRP1, and satellite ID3 corresponds to RSRP2.
  • the first satellite to manage the target terminal device according to the correction result of the measurement information includes:
  • the first satellite obtains the communication quality information of the neighboring cell of the cell where the target terminal device is located according to the correction result of the measurement information, or performs handover judgment on the target terminal device.
  • the first satellite can perform the foregoing steps, and the specific processing is the same as the foregoing, and will not be repeated here.
  • the third satellite may move into the target space position. Then the third satellite can be understood as the aforementioned first satellite.
  • the corresponding processing can be referred to the aforementioned first satellite, and so on, and will not be repeated.
  • Example 1 The difference from Example 1 is that the communication device in this example sends the measurement information of the target terminal device to the first satellite running to the target space position, including:
  • the communication device sends the correction result of the measurement information of the target terminal device to the first satellite running to the target space position.
  • the solution provided in this example can send the measurement information of the terminal device to the network device by the second satellite.
  • the network device When the first satellite runs to the target space position and the second satellite moves out of the target space position, the network device The measurement information is corrected, and the network device sends the correction result of the measurement information to the first satellite.
  • Steps 1-4 of Example 2 are the same as Steps 1-4 of Example 1, except for steps 5 and 6, specifically:
  • Step 5 When the first satellite moves to the target space position and moves from the target space position to outside the target space position, the network device corrects the measurement information of the target terminal device, and sends the correction result of the measurement information to the first satellite .
  • Correcting the measurement information of the target terminal device can be:
  • the communication quality measurement value and the corresponding satellite identifier in the measurement information of the target terminal device are corrected.
  • the aforementioned correction processing may be performed according to the mapping relationship between the target spatial position and the satellite, and/or the ephemeris and other information.
  • each satellite needs to know the information of multiple satellites sharing the same satellite motion track, if there are several satellites, what is the ephemeris.
  • the advantage is to avoid the complexity of network equipment.
  • the network equipment changes the satellite identification according to the satellite's motion trajectory (ephemeris). For example, there are three satellites sharing a satellite motion trajectory, and the order of the three satellites moving to the target space position is ID1,2,3.
  • the measurement results reported by the first terminal device are RSRP1, RSRP2, and RSRP3.
  • the first network device changes the measurement information to, satellite ID1 corresponds to RSRP3, satellite ID2 corresponds to RSRP1, and satellite ID3 corresponds to RSRP2.
  • the second satellite is replaced with the first satellite, that is, the first satellite runs to the target space position and moves from the target space position to outside the target space position, which can be determined by the network device, or can be determined by the second satellite Alternatively, it may be determined by one or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite.
  • One or more different satellites other than the first satellite and the second satellite directly send the measurement information of the terminal equipment sent by the second satellite to the first satellite;
  • the second satellite can notify the network device of the change information, or one or more different satellites other than the first satellite and the second satellite on the trajectory of the satellite, Furthermore, the measurement information of the terminal device is sent to the first satellite by a network device or one or more different satellites on the satellite's orbit other than the first satellite and the second satellite.
  • Step 6 The first satellite manages the target terminal device according to the correction result of the measurement information.
  • the first satellite to manage the target terminal device according to the correction result of the measurement information includes:
  • the first satellite obtains the communication quality information of the neighboring cell of the cell where the target terminal device is located according to the correction result of the measurement information, or performs handover judgment on the target terminal device.
  • the first satellite can perform the foregoing steps, and the specific processing is the same as the foregoing, and will not be repeated here.
  • the third satellite may move to the target space position. Then the third satellite can be understood as the aforementioned For the first satellite, the corresponding processing can be referred to the aforementioned first satellite, and so on, and will not be repeated.
  • this example is for the case where the communication device is the second satellite.
  • the solution provided in this example is: when the first satellite moves to the target space position and the second satellite moves from the target space position to outside the target space position, the second satellite sends the measurement information of the target terminal device To the first satellite, the measurement information of the target terminal device is corrected by the first satellite to obtain the correction result of the measurement information.
  • steps 1-3 in this example are the same as steps 1-3 of example 1. After the processing of steps 1-3 is completed, it includes:
  • Step 4 When the first satellite moves to the target space position and the second satellite moves from the target space position to outside the target space position, the second satellite sends the target terminal device's information to the first satellite. Measurement information;
  • determining that the first satellite runs to the target spatial position and the second satellite runs from the target spatial position to outside the target spatial position may be determined by a network device or may be determined by a second satellite. If it is determined by the network device, when the network device determines that the satellite at the target space position is replaced with the first satellite, the network device sends a satellite update notification to the second satellite, so that the second satellite knows the switching situation, and then The second satellite sends the measurement information of the target terminal device to the first satellite.
  • the specific way of updating the satellite for determining the target space position from the second satellite to the first satellite can be based on the ephemeris. For example, based on the ephemeris, multiple satellites located on the same satellite orbit can be known, and since the satellite moving speed is known in advance, Then the time when the second satellite moves out of the target space position can be determined, and the time when a certain satellite moves into the target space position can also be determined; thus, the first satellite that moves into the target space position when the second satellite moves out of the target space position can be determined.
  • Step 5 The first satellite corrects the measurement information of the target terminal device to obtain the correction result of the measurement information; the first satellite can determine the channel quality information of the neighboring cell of the target terminal device according to the correction result of the measurement information, or to The target terminal device performs handover judgment.
  • said correcting the measurement information corresponding to the target terminal device includes:
  • the communication quality measurement value and the corresponding satellite identifier in the measurement information of the target terminal device are corrected.
  • the aforementioned correction processing may be performed according to the mapping relationship between the target spatial position and the satellite, and/or the ephemeris and other information.
  • each satellite needs to know the information of multiple satellites sharing the same satellite motion track, if there are several satellites, what is the ephemeris.
  • the advantage is to avoid the complexity of network equipment.
  • the first satellite changes the satellite identification according to the satellite motion trajectory (ephemeris). For example, there are three satellites sharing a satellite motion trajectory, and the order of the three satellites moving to the target space position is ID1,2,3.
  • the measurement results reported by the first terminal device are RSRP1, RSRP2, and RSRP3.
  • the second satellite is changed from satellite ID1 to satellite ID2, the first network device changes the measurement information to, satellite ID1 corresponds to RSRP3, satellite ID2 corresponds to RSRP1, and satellite ID3 corresponds to RSRP2.
  • it may also include: the second satellite sending the measurement information of the target terminal device to the network device.
  • the second satellite sending the measurement information of the target terminal device to the network device.
  • the network device can save the measurement information for a period of time for later analysis and use.
  • the first satellite can perform the foregoing steps, and the specific processing is the same as the foregoing, and will not be repeated here.
  • the third satellite may move into the target space position. Then the third satellite can be understood as the aforementioned first satellite.
  • the corresponding processing can be referred to the aforementioned first satellite, and so on, and will not be repeated here.
  • This example is different from Example 3 in that this example uses the second satellite to correct the measurement information.
  • steps 1-3 in this example are the same as steps 1-3 of example 1. After completing steps 1-3, it includes:
  • Step 4 When the first satellite moves to the target space position and the second satellite moves from the target space position to outside the target space position, the second satellite communicates with the measurement information of the target terminal device The quality measurement value and the identification of the corresponding satellite are corrected, and the second satellite sends the correction result of the measurement information to the first satellite;
  • the network device determines that the first satellite moves to the target spatial position and the second satellite moves from the target spatial position to outside the target spatial position, which may be determined by a network device or may be determined by a second satellite . If it is determined by the network device, when the network device determines that the satellite at the target space position is replaced with the first satellite, the network device sends a satellite update notification to the second satellite, so that the second satellite knows the switching situation, and then The second satellite sends the measurement information of the target terminal device to the first satellite.
  • the specific way of updating the satellite for determining the target space position from the second satellite to the first satellite can be based on the ephemeris. For example, based on the ephemeris, multiple satellites located on the same satellite orbit can be known, and since the satellite moving speed is known in advance, Then the time when the second satellite moves out of the target space position can be determined, and the time when a certain satellite moves into the target space position can also be determined; thus, the first satellite that moves into the target space position when the second satellite moves out of the target space position can be determined.
  • said correcting the measurement information corresponding to the target terminal device includes:
  • the communication quality measurement value and the corresponding satellite identifier in the measurement information of the target terminal device are corrected.
  • the aforementioned correction processing may be performed according to the mapping relationship between the target spatial position and the satellite, and/or the ephemeris and other information.
  • each satellite needs to know the information of multiple satellites sharing the same satellite motion track, if there are several satellites, what is the ephemeris.
  • the advantage is to avoid the complexity of network equipment.
  • the second satellite changes the satellite identification according to the satellite motion trajectory (ephemeris). For example, there are three satellites sharing a satellite motion trajectory, and the order of the three satellites moving to the target space position is ID1,2,3.
  • the measurement results reported by the first terminal device are RSRP1, RSRP2, and RSRP3.
  • the first network device changes the measurement information to, satellite ID1 corresponds to RSRP3, satellite ID2 corresponds to RSRP1, and satellite ID3 corresponds to RSRP2.
  • Step 5 The first satellite may determine the channel quality information of the neighboring cell of the target terminal device according to the correction result of the measurement information, or perform handover judgment on the target terminal device.
  • the first satellite can perform the foregoing steps, and the specific processing is the same as the foregoing, and will not be repeated here.
  • the first satellite when the first satellite is processed as the updated second satellite, if the first satellite also moves out of the target space position, the first satellite may move into the target space position. Then the first satellite can be understood as the aforementioned first satellite.
  • the corresponding processing can be referred to the aforementioned first satellite, and so on, and will not be repeated here.
  • the first satellite performs handover judgment on the target terminal device.
  • the network device can also perform processing such as handover judgment. It can also be judged by the second satellite. For example, before the satellite in the target space position is changed from the second satellite to the first satellite, if the second satellite determines that the terminal device can be switched, the second satellite can directly control the target terminal based on the measurement information. The device performs switching processing.
  • the target terminal device only needs to report once in the process of a measurement report, and it can be used by the satellite located in the target space position, and the terminal device will not report the measurement result again due to the change of the satellite transmission of the target space position. In this way, frequent reporting by the target terminal device is avoided, thereby avoiding the problem of a large amount of air interface signaling overhead caused by the frequent reporting by the target terminal device.
  • a communication device provided by the present invention includes:
  • the first processing unit 61 obtains measurement information of the target terminal device
  • the first communication unit 62 sends the measurement information of the target terminal device to the first satellite running to the target spatial position, where the measurement information is used to instruct the first satellite to manage the target terminal device, so
  • the target space position includes: part of the trajectory of the satellite trajectory where multiple different satellites running on the same satellite trajectory are located.
  • this embodiment provides a satellite, including a first satellite.
  • the first satellite includes:
  • the second communication unit 71 receives the measurement information of the target terminal device sent by the communication device when it runs to the target space position, where the target space position includes: the satellite operation where multiple different satellites running on the same satellite orbit are located. Part of the trajectory;
  • the second processing unit 72 manages the target terminal device according to the correction result of the measurement information.
  • the first communication unit 62 of the communication device notifies the satellite of information about the configured at least one spatial position, and/or notifies the satellite of the mapping relationship between the configured at least one spatial position and the satellite;
  • the at least one spatial position includes the target spatial position.
  • Each of the at least one spatial position can be understood as a target spatial position.
  • the information of the spatial location includes at least one of the following: an identifier of the spatial location, and a spatial coordinate of the spatial location.
  • the second satellite sends the measurement information of the terminal device to the network device, the network device sends the measurement information to the first satellite, and the first satellite corrects the measurement information to obtain a correction result of the measurement information.
  • the first communication unit 62 of the communication device configures a target space position, where the target space position is an absolute area relative to the ground and corresponds to at least a part of the satellite motion track.
  • the network device may be an operation and maintenance management (OAM, Operation Administration and Maintenance) device, or may be any one or a specific one or more satellites that share the same motion track.
  • OAM Operation Administration and Maintenance
  • the first communication unit 62 performs measurement configuration to the target terminal device
  • the target terminal device is:
  • One of one or more terminal devices determined by the second satellite is
  • one or more terminal devices located within the coverage area of the second satellite.
  • the target terminal equipment satisfies the measurement report conditions, such as the first satellite and the fourth satellite (that is, the movement track is the same as the second satellite, and only the same target space position satellite arrives at a different time from the second satellite.
  • RSRP Reference Signal Receiving Power
  • threshold A the target terminal device reports the measurement result to the second satellite; or, if the RSRP of the second satellite is less than threshold B, the target terminal device reports the measurement result Give the second satellite.
  • the measurement result may include: the identifier of the satellite measured by the target terminal device, and the communication quality parameter value of the satellite measured by the target terminal device.
  • the communication quality parameter may be RSRP, RSRQ (Reference Signal Receiving Quality, reference signal reception quality), SINR (Signal to Interference plus Noise Ratio, Signal to Interference plus Noise Ratio) and the like.
  • the first communication unit 62 receives the measurement result sent by the target terminal device to determine the measurement information of the target terminal device; the first communication unit 62 sends the measurement information of the target terminal device to Network equipment.
  • the aforementioned measurement information can be the same as or different from the measurement result.
  • the first communication unit 62 sends the measurement information to the first satellite.
  • the first satellite running to the target spatial position receives the measurement information of the target terminal device sent by the communication device.
  • the second communication unit 71 of the first satellite receives measurement information sent by a network device
  • the second processing unit 72 of the first satellite corrects the measurement information corresponding to the target terminal device to obtain a correction result of the measurement information, and performs handover processing on the target terminal device according to the correction result of the measurement information.
  • the second processing unit 72 corrects the communication quality measurement value and the corresponding satellite identifier in the measurement information of the target terminal device.
  • the aforementioned correction processing may be performed according to the mapping relationship between the target spatial position and the satellite, and/or the ephemeris and other information.
  • Example 1 The difference from Example 1 is that the first processing unit 61, when the satellite of the target space position of the second satellite is updated from the second satellite to the first satellite, the network corrects the measurement information of the target terminal device through the first communication The unit 62 sends the correction result of the measurement information to the first satellite.
  • the second satellite sends the measurement information of the target terminal device to the first satellite, and the first satellite corrects the measurement information of the target terminal device to obtain the correction result of the measurement information .
  • This example is different from the foregoing example 1 in that the first communication unit 62 sends the measurement information of the target terminal device to the first satellite;
  • the second processing unit 72 of the first satellite corrects the measurement information of the target terminal device to obtain the correction result of the measurement information; the first satellite can determine the channel quality information of the neighboring cell of the target terminal device according to the correction result of the measurement information , Or perform handover judgment on the target terminal device.
  • the second processing unit 72 of the first satellite corrects the communication quality measurement value and the corresponding satellite identifier in the measurement information of the target terminal device.
  • the aforementioned correction processing may be performed according to the mapping relationship between the target spatial position and the satellite, and/or the ephemeris and other information.
  • the second satellite corrects the measurement information of the target terminal device, and sends the correction result of the measurement information to the first satellite.
  • the difference between this example and example 3 is that the first processing unit 61 corrects the communication quality measurement value and the identification of the corresponding satellite in the measurement information of the target terminal device, and the first communication unit 62 sends the measurement to the first satellite. The result of the correction of the information.
  • the first processing unit 61 corrects the communication quality measurement value and the corresponding satellite identifier in the measurement information of the target terminal device.
  • the aforementioned correction processing may be performed according to the mapping relationship between the target spatial position and the satellite, and/or the ephemeris and other information.
  • the second processing unit 72 of the first satellite may determine the channel quality information of the neighboring cell of the target terminal device according to the correction result of the measurement information, or perform handover judgment on the target terminal device.
  • the target terminal device only needs to report once in the process of a measurement report, and it can be used by the satellite located in the target space position, and the terminal device will not report the measurement result again due to the change of the satellite transmission of the target space position. In this way, frequent reporting by the target terminal device is avoided, thereby avoiding the problem of a large amount of air interface signaling overhead caused by the frequent reporting by the target terminal device.
  • FIG. 11 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present invention.
  • the communication device in this embodiment may be specifically the network device or the satellite in the foregoing embodiment.
  • the communication device 900 shown in FIG. 11 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the communication device 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present invention.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device in an embodiment of the present invention, and the communication device 900 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present invention. For brevity, details are not repeated here. .
  • the communication device 900 may specifically be a satellite or a network device according to the embodiment of the present invention, and the communication device 900 may implement the corresponding procedures implemented by the mobile terminal/satellite in each method of the embodiment of the present invention. For the sake of brevity, I won't repeat them here.
  • Fig. 12 is a schematic structural diagram of a chip according to an embodiment of the present invention.
  • the chip 1000 shown in FIG. 12 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present invention.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the satellite in each method of the embodiment of the present invention.
  • the chip can implement the corresponding process implemented by the satellite in each method of the embodiment of the present invention.
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present invention may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on.
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • synchronous connection Dynamic random access memory switch link DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • FIG. 13 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 13, the communication system 800 includes a satellite 810 and a network device 820.
  • the satellite 810 can be used to implement the corresponding function implemented by the UE in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or satellite in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the embodiment of the present invention also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or satellite in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the embodiment of the present invention also provides a computer program.
  • the computer program can be applied to the network device or satellite in the embodiment of the present invention.
  • the computer program runs on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • I will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本发明公开了一种信息处理方法、卫星、通信设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:通信设备获取目标终端设备的测量信息;所述通信设备向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息,其中,所述测量信息用于指示所述第一卫星对所述目标终端设备进行管理,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹。

Description

一种信息处理方法、通信设备、卫星 技术领域
本发明涉及信息处理技术领域,尤其涉及一种信息处理方法、通信设备、卫星、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在地面蜂窝通信网中,终端设备进行切换的处理中,需要与源基站以及目标基站进行频繁的交互,最终完成切换。但是,若同样的处理方式在Non Terrestrial Network(NTN,非地面通信网络)中使用,比如卫星通信网络中使用,就会出现终端设备频繁进行测量上报的问题,相应的就会产生大量的空口信令开销。
发明内容
为解决上述技术问题,本发明实施例提供了一种信息处理方法、通信设备、卫星、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种信息处理方法,所述方法包括:
通信设备获取目标终端设备的测量信息;
所述通信设备向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息,其中,所述测量信息用于指示所述第一卫星对所述目标终端设备进行管理,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹。
第二方面,提供了一种信息处理方法,所述方法包括:
运行至目标空间位置的第一卫星接收通信设备发送的目标终端设备的测量信息,其中,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹;
所述第一卫星根据所述测量信息的修正结果,对所述目标终端设备进行管理。
第三方面,提供了一种通信设备,包括:
第一处理单元,获取目标终端设备的测量信息;
第一通信单元,向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息,其中,所述测量信息用于指示所述第一卫星对所述目标终端设备进行管理,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹。
第四方面,提供了一种卫星,包括:第一卫星;其中,所述第一卫星包括:
第二通信单元,运行至目标空间位置时,接收通信设备发送的目标终端设备的测量信息,其中,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹;
第二处理单元,根据所述测量信息的修正结果,对所述目标终端设备进行管理。
第五方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其 各实现方式中的方法。
第六方面,提供了一种卫星,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面或其各实现方式中的方法。
通过采用上述方案,位于目标空间位置的第二卫星获取到测量结果之后,若发生目标空间位置的卫星的变更时,可以将测量结果传至变更后的卫星。这样,目标终端设备在一次测量上报的过程中仅需要上报一次,就可以由位于目标空间位置的卫星使用,而不会出现由于目标空间位置的卫星发送更换就由终端设备再上报测量结果的情况,从而避免了目标终端设备的频繁上报,进而避免了由于目标终端设备的频繁上报所带来的大量的空口信令开销的问题。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图一;
图2为本发明实施例提供的一种信息处理方法流程示意图一;
图3为本发明实施例提供的一种信息处理方法流程示意图二;
图4为一种切换流程示意图;
图5~图8为本发明实施例提供的信息处理方法四种示例的流程示意图;
图9为本发明实施例提供的通信设备组成结构示意图;
图10为本发明实施例提供的卫星组成结构示意图二;
图11为本发明实施例提供的一种通信设备组成结构示意图;
图12是本申请实施例提供的一种芯片的示意性框图;
图13是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动 通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与UE120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个UE120。作为在此使用的“UE”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一UE的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的UE可以被称为“无线通信终端”、“无线终端”或“移动终端”。
可选地,UE120之间可以进行终端直连(Device to Device,D2D)通信。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明提供的一种实施例中提供的一种信息处理方法,如图2所示,所述方法包括:
步骤21:通信设备获取目标终端设备的测量信息;
步骤22:所述通信设备向运行至目标空间位置的第一卫星发送所述目标终端设备的 测量信息,其中,所述测量信息用于指示所述第一卫星对所述目标终端设备进行管理,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹。
相应的,本实施例提供一种信息处理方法,如图3所示,包括:
步骤31:运行至目标空间位置的第一卫星接收通信设备发送的目标终端设备的测量信息,其中,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹;
步骤32:根据所述测量信息的修正结果,所述第一卫星对所述目标终端设备进行管理。
本申请提供的实施例,可以应用于Non Terrestrial Network(NTN,非地面通信网络)中。其中,所述NTN采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为LEO(Low-Earth Orbit,低地球轨道)卫星、MEO(Medium-Earth Orbit,中地球轨道)卫星、GEO(Geostationary Earth Orbit,地球同步轨道)卫星、HEO(High Elliptical Orbit,高椭圆轨道)卫星等等。其中,
LEO,低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
GEO,地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
相关技术中,地面蜂窝网通信比如5G通信系统中,由基站为UE配置测量,UE上报测量结果,相关的测量结果用于为UE配置测量的基站,判断是否对该UE执行切换。可就是说,基站收到现有的测量上报后的决策是针对某一个UE的。且基站收到测量结果后,该测量结果仅能由本基站使用。
其中,切换的主要流程如图4所示,主要包括了:
切换准备阶段,包含图中步骤1-6:第一网络设备(也就是源基站)向终端设备发送测量控制;终端设备进行针对多个网络设备或小区的测量之后,向第一网络设备发送测量报告;第一网络设备根据测量报告(或者结合RRM信息)进行切换决策;第一网络设备向第二网络设备(也就是目标基站)发送切换请求以使得第二网络设备准备进行切换;第二网络设备根据切换请求进行切换许可控制;第二网络设备确定进行切换时,向第一网络设备发送切换请求确认。
然后进行执行切换阶段,包含图中步骤7-11,具体的:第二网络设备生成切换请求确认,将切换请求确认信息发送至第一网络设备,由第一网络设备通过RRC连接重配 置信息发送至终端设备;终端设备接收到RRC连接重配置信息后,根据连接重配置信息执行切换处理;然后第一网络设备发送SN状态传输至第二网络设备;终端设备与第二网络设备进行同步,然后接收第二网络设备分配的UL资源,向第二网络设备发送RRC连接重配置完成信息。
最后进入切换完成阶段,包含图中12-18,具体的:第二网络设备向MME发送路径切换请求,以通知MME终端设备改变小区;MME向服务网关发送调整承载请求,由MME进行切换下行路径处理;服务网关完成处理后,向MME发送承载调整完成处理,并由MME向第二网络设备发送路径切换请求的确认消息;第二网络设备向第一网络设备通知终端设备上下文释放由第一网络设备释放资源。
而本实施例应用的NTN场景中,如果也采用前述相关技术中类似的切换管理方案,就可能会由于卫星的位置改变,而频繁的由终端设备向卫星侧进行测量上报等内容的交互。
因此,本实施例提供的方案通过由原位于目标空间位置的第二卫星(即所述卫星运行轨迹上由目标空间位置内运行至目标空间位置之外)、或者由网络设备、或者位于卫星运行轨迹上的除第一卫星以及第二卫星之外的一个或多个不同卫星,将测量信息传至后来运行至目标空间位置的第一卫星,进而第一卫星基于终端设备的测量信息进行后续的管理。从而减少终端设备进行测量上报的次数,并且减少空口信令开销。
本发明提供的实施例中,所述通信设备可以包括以下之一:
与所述多个不同卫星和/或所述目标终端设备通信的网络设备;
第二卫星,其中,所述第二卫星包括:在所述卫星运行轨迹上由目标空间位置内运行至目标空间位置之外的卫星;
在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星。
本实施例提供的方案中,所述方法还包括:
所述通信设备向在所述卫星运行轨迹上的卫星通知配置的至少一个空间位置的信息,和/或,向卫星通知配置的至少一个空间位置与卫星的映射关系;
其中,所述至少一个空间位置中包含所述目标空间位置。
针对第一卫星以及第二卫星,或者其他任意一个在卫星运行轨迹上的卫星,还可以包括以下处理:
获取配置的至少一个空间位置的信息,和/或,至少一个空间位置与卫星的映射关系;
其中,所述至少一个空间位置中包含所述目标空间位置。
换句话说,位于卫星运行轨迹中的一个或多个卫星,均可以预先获取配置的至少一个空间位置的信息,和/或,至少一个空间位置与卫星的映射关系。
另外,发送前述至少一个空间位置的信息,和/或,至少一个空间位置与卫星的映射关系的,可以为网络设备,或者可以为共享同一个卫星运行轨迹的一个或多个卫星。其中,所述多个卫星中的一个或多个卫星,可以是任一个,或者,任多个,或者,被网络侧选择的一个或多个卫星。
其中,所述至少一个空间位置中每一个空间位置均可以理解为目标空间位置。
所述空间位置的信息包括以下至少之一:所述空间位置的标识,所述空间位置的空间坐标。
此时,每一个卫星可以根据自身所处的位置,确定自身所对应的空间位置。
比如,当空间位置的信息中包含空间位置的空间坐标时,卫星可以根据空间位置的坐标以及自身的坐标,确定自身所处的空间位置。空间位置的信息中进一步包含空间位置的标识的时候,卫星可以进一步确定自身所在位置所对应的空间位置的标识。
又或者,可以向处于不同空间位置的卫星分别发送不同的空间位置的信息。相应的, 卫星可以直接根据网络设备发来的空间位置的信息来确定自身所处的空间位置。
比如,可以仅为每一个空间位置中包含的卫星发送该空间位置的信息。以将每一个空间位置理解为一个目标空间位置,网络设备可以仅向位于目标空间位置的卫星发送目标空间位置的信息,进而,位于目标空间位置的卫星可以确定自身所处空间的坐标以及空间位置。相应的,接收到目标空间位置的信息的卫星均可以作为目标空间位置中的第二卫星。
进一步地,所述空间位置与卫星的映射关系,包括:所述空间位置的信息中至少之一、所述空间位置所对应的至少一个卫星的标识。
比如,空间位置的标识、以及至少一个卫星的标识之间的映射关系;或者,空间位置的空间坐标以及至少一个卫星的标识之间的映射关系;又或者,可以为空间位置的空间坐标、标识、以及至少一个卫星的标识之间的映射关系。
可以为卫星通知全部的空间位置与卫星的映射关系,或者,通信设备可以仅为处于目标空间位置的第二卫星通知目标空间位置与卫星的映射关系。其中,目标空间位置为全部空间位置中的一个。
如果为全部卫星均发送全部的空间位置与卫星的映射关系的时候,每一个卫星根据自身位于的空间位置确定对应的映射关系,比如,卫星1在空间位置1与卫星的映射关系中,那么可以确定自身位于空间位置1中。如果为某一个空间位置的卫星仅发送该空间位置与卫星的映射关系,那么该卫星可以根据网络设备发送的空间位置与卫星的映射关系直接确定自身所处的空间位置。
本实施例中,可以将每一空间位置均可以理解为目标空间位置,位于每一个空间位置的卫星均可以理解为该空间位置的第二卫星。又或者,本实施例中,可以将每一空间位置均可以理解为目标空间位置,位于每一个空间位置的多个卫星中的一个或多个可以理解为该空间位置的第二卫星。
下面结合多种示例对本实施例提供的方案进行详细说明:
示例1、
在所述通信设备为第二卫星的情况下,所述通信设备,也就是第二卫星,还会为终端设备进行测量配置,并接受所述目标终端设备发送的测量结果,基于所述测量结果获取所述目标终端设备的测量信息。
在所述通信设备为网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星的情况下,所述通信设备获取目标终端设备的测量信息包括:所述通信设备接收所述第二卫星发送的目标终端设备的测量信息。
也就是说,本示例由第二卫星将终端设备的测量信息发送至网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星,由网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星向第一卫星发送测量信息,由第一卫星对测量信息进行修正得到测量信息的修正结果。
参见图5,以第一卫星、第二卫星、以及通信设备为网络设备为例进行详细说明;需要指出的是,本示例中,所述网络设备还可以替换为在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星。具体的,包括:
步骤1:网络设备配置目标空间位置,所述目标空间位置为一个相对地面的绝对区域,且对应卫星运动轨迹中的至少部分区域。
具体为,网络设备为卫星运行轨迹上的卫星,配置目标空间位置。
所述网络设备可以为操作维护管理(OAM,Operation Administration and Maintenance)设备。
或者,本步骤中所述网络设备可以替换为共享相同运动轨迹的任一个,或者特定的 一个或多个卫星。其中,特定指的是预先配置的在卫星运行轨迹中的某一个卫星,可以由管理人员通过网络设备进行配置,或者可以由网络设备根据实际情况配置,比如,可以选择某一个数据处理或数据传输量较小的卫星作为所述特定的卫星。另外,前述任意一个卫星,则指的是卫星运行轨迹中全部卫星中的某一个,可以随机选取,任意卫星可以包含有前述第二卫星,当然,还有可能包括前述第一卫星,还可以为除第一卫星、第二卫星之外的所述卫星运行轨迹上的任意一个卫星。这里不再赘述。
可选的,网络设备将配置好的目标空间位置(可以包括位置标识,空间坐标等),和/或,目标空间位置和卫星的映射关系,通知给至少一个卫星。进一步的,网络设备也可以将配置好的所有空间位置,以及该空间位置和卫星的映射关系,通知给至少一个卫星。
本示例中,仅针对目标空间位置中的一个第二卫星进行后续说明。
步骤2:第二卫星位于目标空间位置时,所述第二卫星向目标终端设备进行测量配置;
所述目标终端设备为:
第二卫星确定的一个或多个终端设备中的一个;
或者,位于第二卫星覆盖范围内的一个或多个终端设备。
具体的,第二卫星根据终端设备上报的位置信息、定位信息等,确定一个或多个终端设备作为所述目标终端设备。
其中,第二卫星确定的一个或多个终端设备,可以为第二卫星确定的一个特定的终端设备,也可以是多个特定的终端设备。所述特定的终端设备,可以为确定地面坐标或范围内的一个或多个终端设备。
所述测量配置用于第二卫星获取对目标终端设备的邻区的信道质量信息,或者用于第二卫星对目标终端设备执行切换判断。
由于卫星是运动的,不同时刻对应目标空间位置的第二卫星,可以相同或者不同,也就是在不同时刻目标空间位置的卫星/基站的标识不同;比如,在一段时间内目标空间位置中为卫星3,此时卫星3为第二卫星;在另一段时间内,目标空间位置中为卫星6,此时卫星6即为第一卫星,也就是更换后的第二卫星。
步骤3:目标终端设备根据测量配置,在满足测量上报条件时,如第三卫星、第四卫星(即运动轨迹与第二卫星相同,仅对同一个目标空间位置卫星到达的时刻与第二卫星不同的卫星)的RSRP(Reference Signal Receiving Power,参考信号接收功率)大于门限A,目标终端设备将测量结果上报给第二卫星;或者,如第三卫星的RSRP小于门限B时,目标终端设备将测量结果上报给第二卫星。
其中,该测量结果可以包括:所述目标终端设备测量到的卫星的标识、所述目标终端设备测量到的卫星的通信质量参数值。所述通信质量参数至可以为RSRP、RSRQ(Reference Signal Receiving Quality,参考信号接收质量)、SINR(信号与干扰加噪声比,Signal to Interference plus Noise Ratio)等值。
步骤4:第二卫星接收目标终端设备发送的测量结果,确定所述目标终端设备的测量信息;所述第二卫星将所述目标终端设备的测量信息发送至网络设备。
前述测量信息可以与测量结果相同,也可以不同。
其中,所述目标终端设备的测量信息可以包括:所述目标终端设备测量到的卫星的标识、所述目标终端设备测量到的卫星的通信质量参数值。
可选的,第二卫星在通知网络设备所述目标终端设备的测量信息时,所述目标终端设备的测量信息中还可以同时携带目标空间位置的标识,和/或第二卫星标识。
又或者,若所述目标终端设备的测量信息中未携带该标识信息,则网络设备可以自 行确认测量信息对应的卫星标识,或对应的位置的标识。其中,网络设备自行确定目标终端设备的测量信息所对应的卫星信息或目标空间位置的标识的时候,可以由网络设备从卫星所管理的至少一个终端设备来判断所述目标终端设备是否对应第二卫星,进而基于空间位置以及卫星的映射关系来确定目标空间位置的标识。
步骤5:第一卫星运行至目标空间位置、且由目标空间位置内运行至目标空间位置之外时,网络设备将测量信息发送至第一卫星。相应的,运行至目标空间位置的第一卫星接收通信设备发送的目标终端设备的测量信息。
这里,确定第二卫星更换为第一卫星,也就是第一卫星运行至目标空间位置、且由目标空间位置内运行至目标空间位置之外,可以由网络设备来确定、或者可以由第二卫星来确定、或者,可以由在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星来确定。
如果是网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星确定的,可以由网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星直接将第二卫星发来的终端设备的测量信息发送至第一卫星;
如果是第二卫星确定的,可以由第二卫星将变更信息通知给网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星,进而由网络设备或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星将终端设备的测量信息发送至第一卫星。
具体的确定目标空间位置的卫星由第二卫星更新为第一卫星的方式可以根据星历,比如,基于星历可以获知位于同一个卫星运行轨迹的多个卫星,并且由于预先知道卫星移动速度,那么可以确定第二卫星移出目标空间位置的时间,也可以确定某一个卫星移入目标空间位置的时间;从而可以确定在第二卫星移出目标空间位置的时候,移入目标空间位置的第一卫星。
步骤6:所述第一卫星接收网络设备发来的测量信息,所述第一卫星对所述目标终端设备对应的测量信息进行修正,得到测量信息的修正结果;所述第一卫星根据所述测量信息的修正结果,对所述目标终端设备进行管理。
其中,所述对所述目标终端设备对应的测量信息进行修正,包括:
所述第一卫星对所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
具体的,前述修正处理可以根据目标空间位置与卫星的映射关系、和/或星历等信息来进行。
此时,需要每个卫星知道共享同一卫星运动轨迹的多个卫星的信息,如有几个卫星,星历如何。其好处在于避免网络设备的复杂度。
举例来说,第一卫星,如根据卫星运动轨迹(星历),将卫星标识进行变更。如共享一个卫星运动轨迹的有三个卫星,这三个卫星运动到目标空间位置的卫星的顺序为ID1,2,3。第一终端设备上报的测量结果为RSRP1,RSRP2,RSRP3。当第二卫星由卫星ID1变更为卫星ID2,则第一网络设备将测量信息变更为,卫星ID1对应RSRP3,卫星ID2对应RSRP1,卫星ID3对应RSRP2。
所述第一卫星根据所述测量信息的修正结果,对所述目标终端设备进行管理包括:
所述第一卫星根据测量信息的修正结果,获取所述目标终端设备所处小区的相邻小区的通信质量信息,或者对所述目标终端设备执行切换判断。
最后需要说明的是,第一卫星作为更新后的第二卫星,可以执行前述各个步骤,具体的处理与前述相同,这里不再进行赘述。另外,当第一卫星作为更新后的第二卫星进 行处理时,若第一卫星也运行出目标空间位置的时候,可能移入目标空间位置的为第三卫星,那么第三卫星可以理解为前述第一卫星,相应的处理可以参见前述第一卫星,以此类推,不再赘述。
示例2、
与示例1不同在于,本示例所述通信设备向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息,包括:
所述通信设备向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息的修正结果。
也就是说,本示例提供的方案,可以由第二卫星将终端设备的测量信息发送至网络设备,当第一卫星运行至目标空间位置、且第二卫星由目标空间位置移出时,由网络设备对测量信息进行修正,网络设备将测量信息的修正结果发送给第一卫星。
同样的,以第一卫星、第二卫星、以及通信设备为网络设备为例进行详细说明;需要指出的是,本示例中,所述网络设备还可以替换为在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星。参见图6,示例2的步骤1-4与示例1的步骤1-4相同,不同在于步骤5、6,具体的:
步骤5:第一卫星运行至目标空间位置、且由目标空间位置内运行至目标空间位置之外时,网络设备对目标终端设备的测量信息进行修正,将测量信息的修正结果发送至第一卫星。
对目标终端设备的测量信息进行修正,可以为:
将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
具体的,前述修正处理可以根据目标空间位置与卫星的映射关系、和/或星历等信息来进行。
此时,需要每个卫星知道共享同一卫星运动轨迹的多个卫星的信息,如有几个卫星,星历如何。其好处在于避免网络设备的复杂度。
如网络设备根据卫星运动轨迹(星历),将卫星标识进行变更。如共享一个卫星运动轨迹的有三个卫星,这三个卫星运动到目标空间位置的卫星的顺序为ID1,2,3。第一终端设备上报的测量结果为RSRP1,RSRP2,RSRP3。当第二卫星由卫星ID1变更为卫星ID2,则第一网络设备将测量信息变更为,卫星ID1对应RSRP3,卫星ID2对应RSRP1,卫星ID3对应RSRP2。
这里,确定第二卫星更换为第一卫星,也就是第一卫星运行至目标空间位置、且由目标空间位置内运行至目标空间位置之外,可以由网络设备来确定、或者可以由第二卫星来确定、或者,可以由在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星来确定。
如果是网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星确定的,可以由网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星直接将第二卫星发来的终端设备的测量信息发送至第一卫星;
如果是第二卫星确定的,可以由第二卫星将变更信息通知给网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星,进而由网络设备或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星将终端设备的测量信息发送至第一卫星。
步骤6:所述第一卫星根据所述测量信息的修正结果,对所述目标终端设备进行管理。
所述第一卫星根据所述测量信息的修正结果,对所述目标终端设备进行管理包括:
所述第一卫星根据测量信息的修正结果,获取所述目标终端设备所处小区的相邻小区的通信质量信息,或者对所述目标终端设备执行切换判断。
最后需要说明的是,第一卫星作为更新后的第二卫星,可以执行前述各个步骤,具体的处理与前述相同,这里不再进行赘述。另外,当第一卫星作为更新后的第二卫星进行处理时,若第一卫星也运动出目标空间位置的时候,可能运动到目标空间位置的为第三卫星,那么第三卫星可以理解为前述第一卫星,相应的处理可以参见前述第一卫星,以此类推,不再赘述。
示例3、
与前述示例1、2不同在于,本示例不再通过网络设备进行测量信息或测量信息的修正结果进行转发,而是由第二卫星直接向第一卫星进行发送。
也就是说,本示例针对所述通信设备为所述第二卫星的情况。
本示例提供的方案为:所述第一卫星运行至目标空间位置、且所述第二卫星由目标空间位置内运行至目标空间位置之外时,由第二卫星将目标终端设备的测量信息发送至第一卫星,由第一卫星对目标终端设备的测量信息进行修正,得到测量信息的修正结果。
如图7所示,本示例中步骤1-3与示例1的步骤1-3相同,在步骤1-3处理完成后,包括:
步骤4:所述第一卫星运行至目标空间位置、且所述第二卫星由目标空间位置内运行至目标空间位置之外时,所述第二卫星向第一卫星发送所述目标终端设备的测量信息;
可选的,确定第一卫星运行至目标空间位置、且所述第二卫星由目标空间位置内运行至目标空间位置之外,可以由网络设备来确定、或者可以由第二卫星来确定。如果为网络设备确定的,可以在网络设备确定位于目标空间位置的卫星更换为第一卫星的时候,网络设备向第二卫星发送卫星更新的通知,以使得第二卫星得知该切换情况,进而第二卫星向第一卫星发送所述目标终端设备的测量信息。
具体的确定目标空间位置的卫星由第二卫星更新为第一卫星的方式可以根据星历,比如,基于星历可以获知位于同一个卫星运行轨迹的多个卫星,并且由于预先知道卫星移动速度,那么可以确定第二卫星移出目标空间位置的时间,也可以确定某一个卫星移入目标空间位置的时间;从而可以确定在第二卫星移出目标空间位置的时候,移入目标空间位置的第一卫星。
步骤5:第一卫星对所述目标终端设备的测量信息进行修正,得到测量信息的修正结果;第一卫星可以根据测量信息的修正结果,确定目标终端设备的邻区的信道质量信息,或者对目标终端设备执行切换判断。
其中,所述对所述目标终端设备对应的测量信息进行修正,包括:
将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
具体的,前述修正处理可以根据目标空间位置与卫星的映射关系、和/或星历等信息来进行。
此时,需要每个卫星知道共享同一卫星运动轨迹的多个卫星的信息,如有几个卫星,星历如何。其好处在于避免网络设备的复杂度。
举例来说,第一卫星,如根据卫星运动轨迹(星历),将卫星标识进行变更。如共享一个卫星运动轨迹的有三个卫星,这三个卫星运动到目标空间位置的卫星的顺序为ID1,2,3。第一终端设备上报的测量结果为RSRP1,RSRP2,RSRP3。当第二卫星由卫星ID1变更为卫星ID2,则第一网络设备将测量信息变更为,卫星ID1对应RSRP3,卫星ID2对应RSRP1,卫星ID3对应RSRP2。
本示例中,还可以包括:所述第二卫星将所述目标终端设备的测量信息发送至网络设备。本示例中,不需要网络设备向其他卫星(比如第一卫星)发送测量信息。相应的,可以由网络设备保存测量信息一段时长以进行后期分析使用。
最后需要说明的是,第一卫星作为更新后的第二卫星,可以执行前述各个步骤,具体的处理与前述相同,这里不再进行赘述。另外,当第一卫星作为更新后的第二卫星进行处理时,若第一卫星也移出目标空间位置的时候,可能移入目标空间位置的为第三卫星,那么第三卫星可以理解为前述第一卫星,相应的处理可以参见前述第一卫星,以此类推,不再赘述。
示例4、
本示例与示例3不同在于,本示例由第二卫星进行测量信息的修正。
如图8所示,本示例中步骤1-3与示例1的步骤1-3相同,完成步骤1-3之后,包括:
步骤4:所述第一卫星运行至目标空间位置、且所述第二卫星由目标空间位置内运行至目标空间位置之外时,所述第二卫星对所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正,所述第二卫星向第一卫星发送测量信息的修正结果;
可选的,确定所述第一卫星运行至目标空间位置、且所述第二卫星由目标空间位置内运行至目标空间位置之外,可以由网络设备来确定、或者可以由第二卫星来确定。如果为网络设备确定的,可以在网络设备确定位于目标空间位置的卫星更换为第一卫星的时候,网络设备向第二卫星发送卫星更新的通知,以使得第二卫星得知该切换情况,进而第二卫星向第一卫星发送所述目标终端设备的测量信息。
具体的确定目标空间位置的卫星由第二卫星更新为第一卫星的方式可以根据星历,比如,基于星历可以获知位于同一个卫星运行轨迹的多个卫星,并且由于预先知道卫星移动速度,那么可以确定第二卫星移出目标空间位置的时间,也可以确定某一个卫星移入目标空间位置的时间;从而可以确定在第二卫星移出目标空间位置的时候,移入目标空间位置的第一卫星。
其中,所述对所述目标终端设备对应的测量信息进行修正,包括:
将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
具体的,前述修正处理可以根据目标空间位置与卫星的映射关系、和/或星历等信息来进行。
此时,需要每个卫星知道共享同一卫星运动轨迹的多个卫星的信息,如有几个卫星,星历如何。其好处在于避免网络设备的复杂度。
举例来说,第二卫星,如根据卫星运动轨迹(星历),将卫星标识进行变更。如共享一个卫星运动轨迹的有三个卫星,这三个卫星运动到目标空间位置的卫星的顺序为ID1,2,3。第一终端设备上报的测量结果为RSRP1,RSRP2,RSRP3。当第二卫星由卫星ID1变更为卫星ID2,则第一网络设备将测量信息变更为,卫星ID1对应RSRP3,卫星ID2对应RSRP1,卫星ID3对应RSRP2。
步骤5:第一卫星可以根据测量信息的修正结果,确定目标终端设备的邻区的信道质量信息,或者对目标终端设备执行切换判断。
最后需要说明的是,第一卫星作为更新后的第二卫星,可以执行前述各个步骤,具体的处理与前述相同,这里不再进行赘述。另外,当第一卫星作为更新后的第二卫星进行处理时,若第一卫星也移出目标空间位置的时候,可能移入目标空间位置的为第一卫星,那么第一卫星可以理解为前述第一卫星,相应的处理可以参见前述第一卫星,以此 类推,不再赘述。
前述多种示例中,均提到由第一卫星对所述目标终端设备执行切换判断。实际上,当网络设备获取到测量结果、或者测量信息的修正结果的情况下,还可以由网络设备来进行切换判断等处理。还可以由第二卫星来进行判断,比如在目标空间位置的卫星由第二卫星更换为第一卫星之前,如果第二卫星确定终端设备可以切换,那么第二卫星可以根据测量信息直接对目标终端设备进行切换处理。
可见,通过采用上述方案,位于目标空间位置的第二卫星获取到测量结果之后,若发生目标空间位置的卫星的变更时,可以将测量结果传至变更后的卫星。这样,目标终端设备在一次测量上报的过程中仅需要上报一次,就可以由位于目标空间位置的卫星使用,而不会出现由于目标空间位置的卫星发送更换就由终端设备再上报测量结果的情况,从而避免了目标终端设备的频繁上报,进而避免了由于目标终端设备的频繁上报所带来的大量的空口信令开销的问题。
本发明提供的一种通信设备,如图9所示,包括:
第一处理单元61,获取目标终端设备的测量信息;
第一通信单元62,向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息,其中,所述测量信息用于指示所述第一卫星对所述目标终端设备进行管理,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹。
相应的,本实施例提供一种卫星,包括第一卫星,如图10所示,所述第一卫星包括:
第二通信单元71,运行至目标空间位置时,接收通信设备发送的目标终端设备的测量信息,其中,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹;
第二处理单元72,根据所述测量信息的修正结果,对所述目标终端设备进行管理。
本发明提供的实施例,均需要包括以下处理:
通信设备的第一通信单元62向卫星通知配置的至少一个空间位置的信息,和/或,向卫星通知配置的至少一个空间位置与卫星的映射关系;
其中,所述至少一个空间位置中包含所述目标空间位置。
至少一个空间位置中每一个空间位置均可以理解为目标空间位置。
所述空间位置的信息包括以下至少之一:所述空间位置的标识,所述空间位置的空间坐标。
下面结合多种示例对本实施例提供的方案进行详细说明:
示例1、
由第二卫星将终端设备的测量信息发送至网络设备,由网络设备向第一卫星发送测量信息,由第一卫星对测量信息进行修正得到测量信息的修正结果。
具体的:
通信设备的第一通信单元62配置目标空间位置,所述目标空间位置为一个相对地面的绝对区域,且对应卫星运动轨迹中的至少部分区域。
其中,所述网络设备可以为操作维护管理(OAM,Operation Administration and Maintenance)设备,或者,可以为共享相同运动轨迹的任一个,特定的一个或多个卫星。
通信设备为第二卫星时,所述第一通信单元62,向目标终端设备进行测量配置;
所述目标终端设备为:
第二卫星确定的一个或多个终端设备中的一个;
或者,位于第二卫星覆盖范围内的一个或多个终端设备。
目标终端设备根据测量配置,在满足测量上报条件时,如第一卫星、第四卫星(即运动轨迹与第二卫星相同,仅对同一个目标空间位置卫星到达的时刻与第二卫星不同的卫星)的RSRP(Reference Signal Receiving Power,参考信号接收功率)大于门限A,目标终端设备将测量结果上报给第二卫星;或者,如第二卫星的RSRP小于门限B时,目标终端设备将测量结果上报给第二卫星。
其中,该测量结果可以包括:所述目标终端设备测量到的卫星的标识、所述目标终端设备测量到的卫星的通信质量参数值。所述通信质量参数至可以为RSRP、RSRQ(Reference Signal Receiving Quality,参考信号接收质量)、SINR(信号与干扰加噪声比,Signal to Interference plus Noise Ratio)等值。
通信设备为第二卫星时,第一通信单元62接收目标终端设备发送的测量结果,确定所述目标终端设备的测量信息;所述第一通信单元62将所述目标终端设备的测量信息发送至网络设备。
前述测量信息可以与测量结果相同,也可以不同。
第一卫星运行至目标空间位置、且由目标空间位置内运行至目标空间位置之外时,第一通信单元62将测量信息发送至第一卫星。相应的,运行至目标空间位置的第一卫星接收通信设备发送的目标终端设备的测量信息。
所述第一卫星的第二通信单元71接收网络设备发来的测量信息;
所述第一卫星的第二处理单元72,对所述目标终端设备对应的测量信息进行修正,得到测量信息的修正结果,根据测量信息的修正结果,对所述目标终端设备进行切换处理。
其中,所述第二处理单元72将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
具体的,前述修正处理可以根据目标空间位置与卫星的映射关系、和/或星历等信息来进行。
示例2、
与示例1不同在于,所述第一处理单元61,第二卫星的当目标空间位置的卫星由第二卫星更新为第一卫星时,网对目标终端设备的测量信息进行修正,通过第一通信单元62将测量信息的修正结果发送至第一卫星。
示例3、
当目标空间位置的卫星变更为第一卫星时,由第二卫星将目标终端设备的测量信息发送至第一卫星,由第一卫星对目标终端设备的测量信息进行修正,得到测量信息的修正结果。
本示例与前述示例1不同之处在于,第一通信单元62向第一卫星发送所述目标终端设备的测量信息;
第一卫星的第二处理单元72对所述目标终端设备的测量信息进行修正,得到测量信息的修正结果;第一卫星可以根据测量信息的修正结果,确定目标终端设备的邻区的信道质量信息,或者对目标终端设备执行切换判断。
其中,所述第一卫星的第二处理单元72将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
具体的,前述修正处理可以根据目标空间位置与卫星的映射关系、和/或星历等信息来进行。
示例4、
当目标空间位置的卫星变更为第一卫星时,由第二卫星对目标终端设备的测量信息进行修正,将测量信息的修正结果发送至第一卫星。
本示例与示例3不同之处在于,第一处理单元61将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正,第一通信单元62向第一卫星发送测量信息的修正结果。
其中,所述第一处理单元61将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
具体的,前述修正处理可以根据目标空间位置与卫星的映射关系、和/或星历等信息来进行。
所述第一卫星的第二处理单元72可以根据测量信息的修正结果,确定目标终端设备的邻区的信道质量信息,或者对目标终端设备执行切换判断。
可见,通过采用上述方案,位于目标空间位置的第二卫星获取到测量结果之后,若发生目标空间位置的卫星的变更时,可以将测量结果传至变更后的卫星。这样,目标终端设备在一次测量上报的过程中仅需要上报一次,就可以由位于目标空间位置的卫星使用,而不会出现由于目标空间位置的卫星发送更换就由终端设备再上报测量结果的情况,从而避免了目标终端设备的频繁上报,进而避免了由于目标终端设备的频繁上报所带来的大量的空口信令开销的问题。
图11是本发明实施例提供的一种通信设备900示意性结构图,本实施例中的通信设备可以具体为前述实施例中的网络设备或卫星。图11所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,图11所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图11所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本发明实施例的网络设备,并且该通信设备900可以实现本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本发明实施例的卫星、或者网络设备,并且该通信设备900可以实现本发明实施例的各个方法中由移动终端/卫星实现的相应流程,为了简洁,在此不再赘述。
图12是本发明实施例的芯片的示意性结构图。图12所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图12所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本发明实施例中的网络设备,并且该芯片可以实现本发明实施例的各个方法中由卫星实现的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本发明实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本发明实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图13是本申请实施例提供的一种通信系统800的示意性框图。如图13所示,该通信系统800包括卫星810和网络设备820。
其中,该卫星810可以用于实现上述方法中由UE实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘 述。
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本发明实施例中的网络设备或卫星,并且该计算机程序使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本发明实施例中的网络设备或卫星,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本发明实施例中的网络设备或卫星,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (43)

  1. 一种信息处理方法,所述方法包括:
    通信设备获取目标终端设备的测量信息;
    所述通信设备向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息,其中,所述测量信息用于指示所述第一卫星对所述目标终端设备进行管理,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述通信设备对所述目标终端设备的测量信息进行修正,得到所述测量信息的修正结果。
  3. 根据权利要求2所述的方法,其中,所述通信设备向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息,包括:
    所述通信设备向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息的修正结果。
  4. 根据权利要求2所述的方法,其中,所述通信设备对所述目标终端设备的测量信息进行修正,包括:
    所述通信设备将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
  5. 根据权利要求1-4任一项所述的方法,其中,所述通信设备,包括以下之一:
    与所述多个不同卫星和/或所述目标终端设备通信的网络设备;
    第二卫星,其中,所述第二卫星包括:在所述卫星运行轨迹上由目标空间位置内运行至目标空间位置之外的卫星;
    在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星。
  6. 根据权利要求5所述的方法,其中,在所述通信设备为所述第二卫星的情况下,所述获取目标终端设备的测量信息,包括:
    接收所述目标终端设备发送的测量结果,并基于所述测量结果获取所述目标终端设备的测量信息。
  7. 根据权利要求5所述的方法,其中,在所述通信设备为网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星的情况下,所述通信设备获取目标终端设备的测量信息包括:
    所述通信设备接收所述第二卫星发送的目标终端设备的测量信息。
  8. 根据权利要求1-7任一项所述的方法,其中,所述目标终端设备的测量结果,包括:
    所述目标终端设备测量到的卫星的标识、所述目标终端设备测量到的卫星的通信质量参数值。
  9. 根据权利要求1-7任一项所述的方法,其中,所述目标终端设备的测量信息,包括:
    所述目标终端设备测量到的卫星的标识、所述目标终端设备测量到的卫星的通信质量参数值。
  10. 根据权利要求9所述的方法,其中,所述目标终端设备的测量信息,还包括:
    目标空间位置的标识和/或所述第二卫星的标识。
  11. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述通信设备向在所述卫星运行轨迹上的卫星通知配置的至少一个空间位置的信 息,和/或,向卫星通知配置的至少一个空间位置与卫星的映射关系;
    其中,所述至少一个空间位置中包含所述目标空间位置。
  12. 根据权利要求11所述的方法,其中,所述空间位置的信息,包括以下至少之一:所述空间位置的标识,所述空间位置的空间坐标;
    所述空间位置与卫星的映射关系,包括:所述空间位置的信息中至少之一、所述空间位置所对应的至少一个卫星的标识。
  13. 一种信息处理方法,所述方法包括:
    运行至目标空间位置的第一卫星接收通信设备发送的目标终端设备的测量信息,其中,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹;
    所述第一卫星根据所述测量信息的修正结果,对所述目标终端设备进行管理。
  14. 根据权利要求13所述的方法,其中,所述通信设备,包括以下之一:
    与所述多个不同卫星和/或所述目标终端设备通信的网络设备;
    第二卫星,其中,所述第二卫星包括:在所述卫星运行轨迹上由目标空间位置内运行至目标空间位置之外的卫星;
    在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星。
  15. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述第一卫星对接收到的所述目标终端设备的测量信息进行修正,并获取所述测量信息的修正结果。
  16. 根据权利要求15所述的方法,其中,所述对所述目标终端设备对应的测量信息进行修正,包括:
    所述第一卫星对所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
  17. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述第一卫星接收所述通信设备发送的所述测量信息的修正结果。
  18. 根据权利要求13-16任一项所述的方法,其中,所述第一卫星根据所述测量信息的修正结果,对所述目标终端设备进行管理包括:
    所述第一卫星根据测量信息的修正结果,获取所述目标终端设备所处小区的相邻小区的通信质量信息,或者对所述目标终端设备执行切换判断。
  19. 一种通信设备,包括:
    第一处理单元,获取目标终端设备的测量信息;
    第一通信单元,向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息,其中,所述测量信息用于指示所述第一卫星对所述目标终端设备进行管理,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹。
  20. 根据权利要求19所述的通信设备,其中,所述第一处理单元,对所述目标终端设备的测量信息进行修正,得到所述测量信息的修正结果。
  21. 根据权利要求20所述的通信设备,其中,所述第一通信单元,所向运行至目标空间位置的第一卫星发送所述目标终端设备的测量信息的修正结果。
  22. 根据权利要求20所述的通信设备,其中,所述第一处理单元,将所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
  23. 根据权利要求19-22任一项所述的通信设备,其中,所述通信设备,包括以下之一:
    与所述多个不同卫星和/或所述目标终端设备通信的网络设备;
    第二卫星,其中,所述第二卫星包括:在所述卫星运行轨迹上由目标空间位置内运行至目标空间位置之外的卫星;
    在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星。
  24. 根据权利要求23所述的通信设备,其中,在所述通信设备为所述第二卫星的情况下,
    所述第一通信单元,接收所述目标终端设备发送的测量结果;
    所述第一处理单元,基于所述测量结果获取所述目标终端设备的测量信息。
  25. 根据权利要求23所述的通信设备,其中,在所述通信设备为网络设备、或者在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星的情况下,
    所述第一通信单元,接收所述第二卫星发送的目标终端设备的测量信息。
  26. 根据权利要求19-25任一项所述的通信设备,其中,所述目标终端设备的测量结果,包括:
    所述目标终端设备测量到的卫星的标识、所述目标终端设备测量到的卫星的通信质量参数值。
  27. 根据权利要求19-25任一项所述的通信设备,其中,所述目标终端设备的测量信息,包括:
    所述目标终端设备测量到的卫星的标识、所述目标终端设备测量到的卫星的通信质量参数值。
  28. 根据权利要求27所述的通信设备,其中,所述目标终端设备的测量信息,还包括:
    目标空间位置的标识和/或所述第二卫星的标识。
  29. 根据权利要求23所述的通信设备,其中,所述第一通信单元,向在所述卫星运行轨迹上的卫星通知配置的至少一个空间位置的信息,和/或,向卫星通知配置的至少一个空间位置与卫星的映射关系;
    其中,所述至少一个空间位置中包含所述目标空间位置。
  30. 根据权利要求29所述的通信设备,其中,所述空间位置的信息,包括以下至少之一:所述空间位置的标识,所述空间位置的空间坐标;
    所述空间位置与卫星的映射关系,包括:所述空间位置的信息中至少之一、所述空间位置所对应的至少一个卫星的标识。
  31. 一种卫星,包括:第一卫星,其中,所述第一卫星包括:
    第二通信单元,运行至目标空间位置时,接收通信设备发送的目标终端设备的测量信息,其中,所述目标空间位置包括:在相同的卫星运行轨迹运行的多个不同卫星所在的卫星运行轨迹中的部分轨迹;
    第二处理单元,根据所述测量信息的修正结果,对所述目标终端设备进行管理。
  32. 根据权利要求31所述的卫星,其中,所述通信设备,包括以下之一:
    与所述多个不同卫星和/或所述目标终端设备通信的网络设备;
    第二卫星,其中,所述第二卫星包括:在所述卫星运行轨迹上由目标空间位置内运行至目标空间位置之外的卫星;
    在所述卫星运行轨迹上除所述第一卫星和所述第二卫星外的一个或多个不同卫星。
  33. 根据权利要求31所述的卫星,其中,所述第二处理单元,所述第一卫星对接收到的所述目标终端设备的测量信息进行修正,并获取所述测量信息的修正结果。
  34. 根据权利要求33所述的卫星,其中,所述第二处理单元,对所述目标终端设备的测量信息中通信质量测量值及其对应的卫星的标识进行修正。
  35. 根据权利要求33所述的卫星,其中,所述第二通信单元,接收所述通信设备发送的所述测量信息的修正结果。
  36. 根据权利要求31-34任一项所述的卫星,其中,所述第二处理单元,根据测量信息的修正结果,获取所述目标终端设备所处小区的相邻小区的通信质量信息,或者对所述目标终端设备执行切换判断。
  37. 一种通信设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-12任一项所述方法的步骤。
  38. 一种卫星,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求13-18任一项所述方法的步骤。
  39. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-12中任一项所述的方法。
  40. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求13-18中任一项所述的方法。
  41. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-18任一项所述方法的步骤。
  42. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-18中任一项所述的方法。
  43. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-18中任一项所述的方法。
PCT/CN2019/107366 2019-09-23 2019-09-23 一种信息处理方法、通信设备、卫星 WO2021056159A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980095374.7A CN113785507B (zh) 2019-09-23 2019-09-23 一种信息处理方法、通信设备、卫星
PCT/CN2019/107366 WO2021056159A1 (zh) 2019-09-23 2019-09-23 一种信息处理方法、通信设备、卫星

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107366 WO2021056159A1 (zh) 2019-09-23 2019-09-23 一种信息处理方法、通信设备、卫星

Publications (1)

Publication Number Publication Date
WO2021056159A1 true WO2021056159A1 (zh) 2021-04-01

Family

ID=75165392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107366 WO2021056159A1 (zh) 2019-09-23 2019-09-23 一种信息处理方法、通信设备、卫星

Country Status (2)

Country Link
CN (1) CN113785507B (zh)
WO (1) WO2021056159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267797A (zh) * 2021-05-18 2021-08-17 中国联合网络通信集团有限公司 一种定位方法和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017189862A1 (en) * 2016-04-28 2017-11-02 Qualcomm Incorporated Handoff for satellite communication
CN109890057A (zh) * 2017-12-06 2019-06-14 中国电信股份有限公司 网络切换方法、装置、终端以及计算机可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104735738B (zh) * 2015-04-21 2018-03-06 重庆邮电大学 一种gmr‑1卫星移动通信系统中的切换方法
US9888426B2 (en) * 2015-05-01 2018-02-06 Qualcomm Incorporated Handoff for satellite communication
US10425865B2 (en) * 2016-02-11 2019-09-24 Qualcomm Incorporated Channel quality feedback in satellite communication systems
GB2576203B (en) * 2018-08-09 2021-02-17 Samsung Electronics Co Ltd Method and apparatus for signalling for group handover or cell re-selection in non-terrestrial networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017189862A1 (en) * 2016-04-28 2017-11-02 Qualcomm Incorporated Handoff for satellite communication
CN109890057A (zh) * 2017-12-06 2019-06-14 中国电信股份有限公司 网络切换方法、装置、终端以及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Considerations on NTN mobility", 3GPP DRAFT; R3-190242, vol. RAN WG3, 15 February 2019 (2019-02-15), Athens Greece, pages 1 - 6, XP051604185 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267797A (zh) * 2021-05-18 2021-08-17 中国联合网络通信集团有限公司 一种定位方法和电子设备
CN113267797B (zh) * 2021-05-18 2023-02-24 中国联合网络通信集团有限公司 一种定位方法和电子设备

Also Published As

Publication number Publication date
CN113785507B (zh) 2024-02-06
CN113785507A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
ES2887048T3 (es) Arquitectura de red, métodos y dispositivos para una red de comunicaciones inalámbricas
WO2021062729A1 (zh) 一种切换处理方法、通信设备、终端设备
US9521605B2 (en) Method and apparatus for handover
CN107836086B (zh) 支持移动性的方法以及用户设备
RU2617435C2 (ru) Подавление помех гетерогенным сетям от мобильного ретрансляционного узла
US20220353714A1 (en) Cell measurement method, terminal device, and network device
US20220110028A1 (en) Method for Cell Handover, Communication Device, and Satellite
US11956682B2 (en) Handover method and apparatus
EP3944516A1 (en) Method and device for processing data packets
US20220386200A1 (en) Network resource configuration method and apparatus
US20220417822A1 (en) Cell handover method, electronic device, and storage medium
WO2022152000A1 (zh) 应用于非地面通信网络中的定位的方法和通信装置
EP4135216A1 (en) Communication method and apparatus
US8515439B2 (en) Determining location of a mobile station in a cellular communication coverage zone using time sequence correlation
WO2022082757A1 (zh) 通信方法和装置
CN116250277A (zh) 一种通信方法及装置
CN116235540A (zh) 通信方法及装置
CN113347621A (zh) 一种用于组切换的方法和装置
WO2021056159A1 (zh) 一种信息处理方法、通信设备、卫星
WO2021168627A1 (zh) 一种传输控制方法、终端设备、网络设备
CN116250279A (zh) 通信方法及装置
Yun et al. Main features of 5G new radio for non-terrestrial networks
WO2023050361A1 (zh) 辅目标的配置方法、装置、设备及存储介质
CN114071616B (zh) 通信方法、装置及设备
WO2024031232A1 (en) Systems and methods for handover signaling reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946773

Country of ref document: EP

Kind code of ref document: A1