WO2021051286A1 - 用于切换网络设备的方法、终端设备和网络设备 - Google Patents

用于切换网络设备的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021051286A1
WO2021051286A1 PCT/CN2019/106276 CN2019106276W WO2021051286A1 WO 2021051286 A1 WO2021051286 A1 WO 2021051286A1 CN 2019106276 W CN2019106276 W CN 2019106276W WO 2021051286 A1 WO2021051286 A1 WO 2021051286A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
terminal device
rtt
condition
handover
Prior art date
Application number
PCT/CN2019/106276
Other languages
English (en)
French (fr)
Inventor
尤心
Original Assignee
Oppo广东移动通信有限公司
Oppo广东移动通信有限公司深圳分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, Oppo广东移动通信有限公司深圳分公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/106276 priority Critical patent/WO2021051286A1/zh
Priority to CN201980094089.3A priority patent/CN113597784B/zh
Publication of WO2021051286A1 publication Critical patent/WO2021051286A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method for switching network equipment, terminal equipment, and network equipment.
  • mobility management is mainly based on the signal quality measurement of the cell, but the handover mechanism is not suitable for some communication systems, such as NTN. Therefore, a new handover mechanism that can effectively It is suitable for mobility management in various communication systems.
  • the embodiments of the present application provide a method, terminal device, and network device for switching network devices, which are suitable for mobility management in various communication systems.
  • a method for switching network devices includes: a terminal device measures a round-trip transmission time RTT between the terminal device and a first network device, and the first network device includes a source Network equipment and/or target network equipment; in the case that the RTT between the terminal equipment and the first network equipment meets the first condition, the terminal equipment switches the serving network equipment from the source network equipment to all Said target network device, said service network device is a network device that provides services for said terminal device.
  • a method for switching network devices includes: a source network device sends a first condition to a terminal device, where the first condition is used to instruct the terminal device according to the relationship between the terminal device and the first condition.
  • a round-trip transmission time RTT between network devices switches the serving network device from the source network device to the target network device.
  • the first network device includes the source network device and/or the target network device.
  • the serving network The device is a network device that provides services for the terminal device.
  • a terminal device which is used to execute the method in the above-mentioned first aspect or its implementation manner.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or its implementation manner.
  • a network device for executing the method in the second aspect or its implementation manner.
  • the network device includes a functional module for executing the method in the foregoing second aspect or its implementation manner.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or its implementation manner.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or its implementation.
  • a chip is provided, which is used to implement any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each of its implementation manners.
  • mobility management is implemented based on RTT measurement, which can effectively apply mobility management in various communication systems, thereby improving user experience.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a general handover process provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a condition switching process provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the near-far effect in the NR system.
  • Figure 5 is a schematic diagram of the near-far effect in the NTN system.
  • FIG. 6 is a schematic diagram of a method for switching network equipment provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the measurement result in Embodiment 1 provided by the present application.
  • FIG. 8 is a schematic diagram of the measurement result in Embodiment 2 provided by the present application.
  • FIG. 9 is a schematic diagram of the measurement result in Embodiment 3 provided by the present application.
  • Fig. 10 is a schematic diagram of the measurement result in the fourth embodiment provided by the present application.
  • FIG. 11 is a schematic diagram of a method for switching network devices according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution LTE
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • 5G System 5G System
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as sparse code multiple access (SCMA) systems, low-density signatures (Low Density Signature, LDS) system, etc.
  • SCMA sparse code multiple access
  • LDS Low Density Signature
  • SCMA system and LDS system can also be called other names in the communication field; further, the technical solutions of the embodiments of this application can be applied to multi-carriers using non-orthogonal multiple access technology Transmission system, such as non-orthogonal multiple access technology Orthogonal Frequency Division Multiplexing (OFDM), Filter Bank Multi-Carrier (FBMC), Generalized Frequency Division Multiplexing (Generalized Frequency Division Multiplexing) Frequency Division Multiplexing (GFDM), filtered orthogonal frequency division multiplexing (Filtered-OFDM, F-OFDM) systems, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multi-Carrier
  • Generalized Frequency Division Multiplexing Generalized Frequency Division Multiplexing
  • GFDM Frequency Division Multiplexing
  • Filtered-OFDM Frequency Division Multiplexing
  • F-OFDM filtered orthogonal frequency division multiplexing
  • the communication system 100 applied in the embodiment of this application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network equipment gNB in 5G networks, or network equipment in the future evolution of Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device,
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • terminal equipment includes but is not limited to User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE User Equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., are not limited in the embodiment of the present invention.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as a mobility management entity (Mobility Management Entity, MME), a serving gateway (Serving Gateway, S-GW), or a packet data gateway (PDN Gateway, P-GW), etc. This is not limited in the embodiments of this application.
  • MME mobility management entity
  • S-GW serving gateway
  • PDN Gateway Packed Data Gateway
  • the communication system 100 shown in FIG. 1 may also be a non-terrestrial communication network (Non-Terrestrial Network, NTN) system.
  • NTN generally uses satellite communication to provide communication services to ground users.
  • the network device 110 in FIG. 1 may be a satellite.
  • satellite communication has many unique advantages. First of all, satellite communication is not restricted by the user area. For example, general terrestrial communication cannot cover the ocean, mountains, deserts and other areas where communication equipment cannot be installed or because of the sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so in theory every corner of the earth can be covered by satellite communications. Secondly, satellite communication has greater social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost has not increased significantly with the increase of the communication distance; finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO Highly elliptical Orbit
  • the main research at this stage is LEO and GEO.
  • the LEO satellite altitude ranges from 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmission power requirement of the user terminal is not high; the GEO orbit height is 35786km, and the rotation period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • a network device Normally, a network device covers a cell, so switching the cell is also switching the network device.
  • the handover process mainly includes the three processes of handover preparation, handover execution, and handover completion, which specifically includes some or all of the following steps:
  • the source eNB performs measurement configuration on the UE, and the measurement result of the UE will be used to assist the source eNB to make a handover decision.
  • S202 The UE performs a measurement report according to the measurement configuration.
  • the source eNB refers to the measurement report result of the UE, and makes a handover decision according to its own handover algorithm.
  • the source eNB sends a handover request message to the target eNB.
  • the message contains relevant information for handover preparation, mainly including the UE’s X2 and S1 signaling context reference, target cell identifier, security key, and radio resource control (Radio Resource Control, RRC).
  • RRC Radio Resource Control
  • Context Context, Access Stratum (AS) configuration, Evolved-Universal Terrestrial Radio Access (E-UTRAN) Radio Access Bearer (E-UTRAN Radio Access Bearer, E) -RAB) Context, etc.
  • AS Access Stratum
  • E-UTRAN Evolved-Universal Terrestrial Radio Access
  • E-UTRAN Radio Access Bearer E-UTRAN Radio Access Bearer
  • E E-UTRAN Radio Access Bearer
  • the UE's X2 and S1 signaling context reference can help the target eNB find the location of the source eNB.
  • the E-RAB context includes necessary radio network layer (Radio Network Layer, RLN) and Transport Layer (Transport Network Layer, TNL) addressing information, and E-RAB quality of service (Quality of Service, QoS) information, etc.
  • the target eNB performs admission control according to the received E-RAB QoS information to improve the success rate of handover. Admission control should consider reserving corresponding resources, Cell Radio Network Temporary Identifier (C-RNTI), and assigning dedicated random access preamble codes.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the AS configuration used by the target cell can be a complete configuration completely independent of the source cell, or it can be an incremental configuration based on the source cell (incremental configuration means that the same part is not configured, and only reconfiguration is performed through signaling. With different parts, the UE will continue to use the original configuration for the configuration that has not been received).
  • the target eNB prepares for L1/L2 handover, and at the same time sends a handover request ACK message to the source eNB.
  • the message contains an RRC container, and the specific content is a handover command that triggers the UE to perform handover.
  • the source eNB handover command is sent to the UE in a transparent manner (without any modification).
  • the handover command includes the new C-RNTI, the case algorithm identifier of the target eNB, and may also carry the dedicated preamble code for random access, access parameters, system information, and so on. If necessary, the handover request ACK message may also carry RNL/TNL information for data forwarding.
  • the source eNB receives the handover request ACK message or forwards the handover command to the UE, it can start data forwarding.
  • the handover command (the RRC connection reconfiguration message carrying the mobility control information) is generated by the target eNB, and transparently transmitted to the UE through the source eNB.
  • the source eNB performs necessary encryption and integrity protection on this message.
  • the UE receives the message, it will use the relevant parameters in the message to initiate a handover process.
  • the UE does not need to wait for the Hybrid Automatic Repeat Request (HARQ)/Automatic Repeat reQuest (ARQ) response sent by the lower layer to the source eNB, and can initiate the handover process.
  • HARQ Hybrid Automatic Repeat Request
  • ARQ Automatic Repeat reQuest
  • the source eNB sends a sequence number (Sequence Number, SN) status transmission message to the target eNB, and transmits the E-RAB uplink packet data convergence protocol (Packet Data Convergence Protocol, PDCP) SN reception status and downlink PDCP SN transmission status.
  • the uplink PDCP SN reception status includes at least the PDCP SN of the last uplink SDU received in sequence, and may also include the SN of the uplink SDU that caused the loss of the received disorder in the form of bit mapping (if there is such an SDU, These SDUs may require the UE to retransmit in the target cell).
  • the downlink PDCP SN transmission status indicates the next SDU sequence number that should be allocated at the target eNB. If no E-RAB needs to transmit the PDCP status report, the source eNB can omit this message.
  • the UE After receiving the handover command, the UE performs synchronization with the target cell. If the special preamble code for random access is configured in the handover command, it uses the non-contention random access procedure to access the target cell. If the special preamble code is not configured, Then use the competitive random access procedure to access the target cell. The UE calculates the key to be used at the target eNB and configures the security algorithm selected by the network for use at the target eNB, which is used to communicate with the target eNB after a successful handover.
  • S210 The network replies to the uplink resource allocation instruction and timing advance.
  • the UE After the UE successfully accesses the target cell, the UE sends an RRC connection connection reconfiguration complete message to confirm the completion of the handover process to the target eNB. If resources permit, the message may also be accompanied by an upstream buffer status report (Buffer Status Report, BSR) improvement.
  • BSR Buffer Status Report
  • the target eNB confirms the success of the handover by receiving the RRC connection connection reconfiguration complete message. At this point, the target eNB can start sending data to the UE.
  • the target eNB sends a path switch request message to the MME to inform the UE that the cell has been changed. At this time, the handover of the air interface has been successfully completed.
  • the MME sends a user plane update request message to the S-GW.
  • the S-GW switches the downlink data path to the target eNB side.
  • the S-GW sends one or more "end marker (end marker) packets" to the source eNB on the old path, and then can release the user plane resources of the source eNB.
  • the S-GW sends a user plane update response message to the MME.
  • S216 The MME sends a path switch request ACK message to the target eNB.
  • Steps 12-16 complete the path switching process, and the purpose of the process is to transfer the data path of the user plane from the source eNB to the target eNB.
  • the S-GW switches the downlink path
  • the downlink packets of the forward path and the new path may alternately arrive at the target eNB.
  • the target eNB should first transfer all forwarded data packets to the UE, and then transfer the packets received from the new path. Using this method at the target eNB can forcefully ensure the correct transmission sequence.
  • the S-GW In order to assist the rearrangement function at the target eNB, the S-GW immediately sends one or more "end marker packets" on the old path after the E-RAB switches the path.
  • the "end marker package” does not contain user data, which is indicated by the General Data Transfer Platform (GTP) header.
  • GTP General Data Transfer Platform
  • the S-GW should not send any data packets on the old path.
  • the source eNB should send this packet to the target eNB.
  • the target eNB After detecting the "end marker packet”, the target eNB should discard the "end marker packet" and initiate any necessary procedures to maintain the user's orderly delivery. These data are forwarded through the X2 port or transferred from the S-GW after the path is switched. Received through the S1 port.
  • the target eNB sends a UE context release message to the source eNB to notify the source eNB of the success of the handover and trigger the source eNB to release resources.
  • the target eNB sends this message after receiving the path switch ACK message sent back from the MME.
  • the source eNB may release the radio bearer and the control plane resources related to the UE context. Any ongoing data forwarding will continue.
  • conditional handover avoids the problem that the handover preparation time is too long and the UE is too late to handover.
  • the HO command (command) can be configured for the UE in advance.
  • the UE’s operating trajectory is specific, so the source base station can allocate the target base station to the UE in advance, and the HO command includes conditions for triggering the UE to switch. When the configured conditions are met, the UE Initiate an access request to the target base station.
  • Figure 3 shows a schematic diagram of part of the conditional switching process.
  • the handover process corresponding to Fig. 2 is referred to as normal handover (normal HO) in this application.
  • S301 measurement report
  • the UE reports the measurement report to the source eNB.
  • This S301 can correspond to S201 and S202 in the ordinary handover process shown in Figure 2 above. For the sake of brevity, it is not here. Go into details again.
  • handover preparation similar to the normal handover process, the handover preparation is performed between the source eNB and the target eNB.
  • the source eNB may perform handover preparation with one or more target eNBs.
  • the source eNB may send a handover request to one or more target eNBs.
  • the handover preparation steps performed between the source eNB and any target eNB in S302 can all correspond to S203 and S204 in the ordinary handover process shown in FIG. 2. For brevity, details are not repeated here.
  • S303. Handover command Multiple target cells or multiple target eNBs can be configured in the handover command sent by the source eNB to the UE.
  • conditions for the UE to perform handover can also be configured.
  • the handover conditions can include information such as cell or beam status, so that the UE can determine which target cell or target eNB to access based on the configured conditions.
  • S304 Random access is performed when the handover condition is met.
  • the UE determines whether the configured multiple target cells or target eNB meet the handover condition according to the configured condition, and performs random access when a certain target cell or target eNB meets the condition.
  • the switching commands in conditional switching can be defined as conditional switching commands
  • the switching commands in ordinary switching can be defined as normal switching commands
  • the network side Before handover, the network side usually configures measurement conditions or handover conditions for the terminal device to determine whether to switch.
  • the so-called measurement refers to the mobility measurement in the connected state.
  • the network device can send the measurement configuration information to the terminal device through a radio resource control (Radio Resource Control, RRC) message, and the terminal device detects the current serving cell and the terminal device according to the measurement object and report configuration parameters indicated in the measurement configuration information. / Or the signal quality status of the neighboring cell, and report the measurement report to the network device according to the trigger mode in the report configuration.
  • RRC Radio Resource Control
  • each measId corresponds to a measObjectId and a reportConfigId.
  • measId is the database measurement configuration item index
  • measObjectId is the measurement object identifier, corresponding to a measurement object configuration item
  • reportConfigId is the measurement report identifier, corresponding to a measurement report configuration item.
  • it also contains the public configuration items quantityConfig, measurement configuration, s-measure, and serving cell quality threshold control that have nothing to do with measId.
  • the measurement object is the basic unit of frequency point. Each configured measurement object is a separate frequency point and has a separate measurement object identifier. For Evolved Universal Terrestrial Radio Access (E-UTRA), the same frequency As with inter-frequency measurement, the measurement object is a single E-UTRA carrier frequency. For the cell related to the carrier frequency, E-UTRA may configure a cell offset list and a blacklist cell list. No operation is performed on the blacklisted cells in the measurement evaluation and measurement report.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Reporting configurations are divided into event-triggered reporting and periodic-triggered reporting according to their types. Each reporting configuration has a separate identification.
  • the event-triggered reporting configuration includes event types and thresholds, as well as the duration (Time to Trigger, TTT) that meets the trigger conditions. TTT can also be called the trigger time.
  • the reporting configuration of the periodic trigger type includes the reporting period and the purpose of the periodic trigger.
  • the measurement events currently supported in the NR system include the following:
  • Event A1 The serving cell is higher than an absolute threshold (serving>threshold);
  • Event A2 The serving cell is below an absolute threshold (serving ⁇ threshold);
  • Event A3 The neighboring cell is higher than the primary cell/primary and secondary cell by an offset
  • Event A4 The neighboring cell is higher than an absolute threshold (Neighbour>threshold);
  • Event A5 the primary cell/primary and secondary cells are lower than absolute threshold 1 and the neighboring cell/secondary cell is higher than another absolute threshold 2;
  • Event A6 The neighboring cell is higher than the secondary cell by an offset
  • Event B1 The neighboring cell is higher than an absolute threshold
  • Event B2 The primary cell is higher than an absolute threshold 1 and the neighboring cell is higher than another absolute threshold 2.
  • a separate measurement identifier associates the measurement object with a specific report configuration. If the terminal device reaches the measurement start threshold, the terminal device will determine whether to perform this type of measurement based on the presence or absence of the measurement identifier.
  • the measurement report is evaluated when a certain trigger condition is met. If the report condition is met, the terminal device will fill in the measurement report and send it to the network device.
  • Measurement reports are mainly divided into three categories:
  • the terminal device triggers the sending of the measurement report only after the measurement event entry threshold configured by the network is met and continues for a period of time, and the process ends after the measurement report is sent once.
  • the reporting configuration corresponding to this criterion is:
  • the trigger type is "event", including A1-A6, B1-B2, one of the measurement events and their threshold parameters;
  • the number of reports is 1;
  • the UE ignores it.
  • the terminal equipment After the network configuration measurement, the terminal equipment measures the corresponding frequency points according to the configuration content, and sends the measurement report according to the specified reporting period and interval:
  • the trigger period is "period", including "reportCGI” and “reportStrongestCell”
  • reportCGI ReportCGI
  • reportStrongestCell the number of reports can be greater than 1;
  • the terminal device Once the terminal device is configured with the "reportCGI" purpose of reporting, it will start the T321 timer. In order for the network to obtain the information required to construct the neighbor cell list as soon as possible, if the content required for reporting has been obtained before the timer expires, the terminal device can stop T321 and initiate reporting in advance.
  • the event triggers periodic reporting
  • the terminal device will trigger the sending of the measurement report only after the measurement event entry threshold of the network configuration is met and lasts for a period of time. After the report is triggered, the timer between multiple measurements and the counter of the number of measurements will be started until the report is reported. The process ends when the number of times reaches the requirement.
  • the reporting configuration corresponding to this criterion is:
  • the trigger type is "event", including a measurement event from A1 to A5 and its threshold parameters;
  • the number of reports is greater than 1;
  • the reporting interval is valid, and the network sets the reporting cycle timer according to the configured interval parameter.
  • the Reference Signal Receiving Power (RSRP) when the UE is in the center of the cell is significantly higher than the RSRP when it is at the edge of the cell. Due to the obvious “near-distance effect", when the UE moves to the edge of the cell, the signal quality of the serving cell becomes worse and the signal quality of the neighboring cell becomes better. Therefore, mobility management can be performed based on the UE's signal quality measurement of the cell, that is, The UE can determine whether it has moved to the edge of the cell through the RSRP measurement, so as to prepare for the handover.
  • Figure 4 shows a schematic diagram of the near-far effect in the NR system.
  • FIG. 6 shows a schematic block diagram of a method 400 for switching a network device according to an embodiment of the present application. As shown in FIG. 6, the method 400 includes some or all of the following contents:
  • the terminal device measures the round-trip transmission time RTT between the terminal device and the first network device, where the first network device includes a source network device and/or a target network device;
  • the terminal device switches the serving network device from the source network device to the target network device, and
  • a serving network device is a network device that provides services for the terminal device.
  • the round trip time (RTT) between the terminal device and the network device also has a near-to-far effect, and can be applied to various communication systems, such as terrestrial NR systems or NTN systems.
  • the terminal device can perform mobility management based on the RTT with the network device. Specifically, the terminal device needs to measure the RTT between it and the source network device and/or the RTT between it and the network device of the neighboring cell (collectively referred to as the RTT between the terminal device and the first network device), and measure the RTT between the terminal device and the first network device. When the measured RTT meets the first condition, the serving network device of the terminal device is switched from the source network device to the target network device.
  • the source network device provides services for the terminal device
  • the target network device provides services for the terminal device.
  • the target network equipment is determined from the network equipment of the neighboring cell. In other words, there may be multiple network devices in the neighboring cell, and the terminal device selects one of the multiple network devices as the target network device.
  • the terminal device can only measure the RTT between it and the source network device, and if the measured RTT meets the first condition, switch the serving network device from the source network device to the terminal device.
  • the neighboring cell network device of the handover is the target network device.
  • the terminal device can also only measure the RTT between its network device and the neighboring cell network device. If the terminal device meets the first condition with the RTT of only one neighboring cell network device, the terminal device can switch the serving network device from the source network device. To the neighboring cell network equipment. If the RTTs of the terminal device and multiple neighboring cell network devices meet the first condition, the terminal device can switch the serving network device from the source network device to one of the multiple neighboring cell network devices, and the switched neighboring cell network device is that It is the target network device.
  • the terminal device can also perform handover by combining the RTT between it and the source network device and the RTT with the neighboring cell network device, that is, when the RTT between it and the source network device and the neighboring cell network device The relationship between the RTTs satisfies the first condition, then the terminal device can switch the serving network device to a certain neighboring cell network device that meets the first condition, and the switched neighboring cell network device is the target network device.
  • the first condition includes a second condition and a first trigger time
  • the terminal device switching the serving network device from the source network device to the target network device includes: the duration of the RTT between the terminal device and the first network device satisfying the second condition
  • the terminal device switches the serving network device from the source network device to the target network device.
  • the RTT between the terminal device and the first network device satisfies the second condition but does not last for a certain period of time (that is, the first trigger time)
  • the terminal device may also use the service network device Switching from the source network device to the target network device.
  • the RTT between the terminal device and the first network device satisfies the second condition, which may be that the RTT between the terminal device and the target network device is smaller than the RTT between the terminal device and the source network device, and the difference between the two
  • the difference can be less than the first RTT threshold (such as the A3 event); or, the RTT between the terminal device and the target network device is less than the second RTT threshold, but the RTT between the terminal device and the source network device is greater than the third RTT threshold (such as A5 event). Or, the RTT between the terminal device and the source network device is greater than the fourth RTT threshold, etc. It should be understood that the embodiment of the present application does not limit the second condition.
  • the first condition in the embodiment of the present application may be a measurement report condition.
  • the terminal device can send the RTT measurement report to the source network device.
  • the measurement report condition is also the trigger condition of the RTT measurement report.
  • the source network device needs to send a handover request to the target network device, and the target network device can then send a handover confirmation message to the source network device.
  • the handover confirmation message can carry a conventional handover command.
  • the source network device can forward the regular handover command to the terminal device, and the terminal device can perform handover after receiving the regular handover command.
  • the source network device Before the terminal device performs the RTT measurement, the source network device needs to send measurement configuration information to the terminal device to configure the relevant parameters of the RTT measurement.
  • at least one measurement object may be configured, and each measurement object in the at least one measurement object is an NTN carrier frequency within one frequency or an NTN carrier frequency between frequencies.
  • the network can configure the cell offset list, blacklist cell list, and whitelist cell list related to the carrier frequency.
  • At least one measurement report may also be configured, and the measurement report type of each measurement report in the at least one measurement report is event trigger.
  • the condition for triggering the event may be: within a period of time (Time to Trigger, TTT), the RTT between the terminal device and the network device of the serving cell, and the terminal device and the network device of the neighboring cell (ie, the source network device)
  • the RTT difference between is less than the first RTT threshold, which is called event X1 trigger.
  • the duration of satisfying the trigger condition and the first RTT threshold may be configured by the network through RRC.
  • the duration of meeting the trigger condition and/or the first RTT threshold corresponding to different measurement report configurations may be different.
  • the condition for triggering the event may also be: within a period of TTT, the RTT between the terminal device and the network device in the serving cell is greater than the second RTT threshold, and the RTT between the terminal device and the network device in the neighboring cell is less than the third RTT.
  • the RTT threshold is called event X2 trigger.
  • the duration of satisfying the trigger condition, the second RTT threshold and the third RTT threshold may be configured by the network through RRC. Different measurement report configurations correspond to different durations and/or second/third RTT thresholds for satisfying the trigger condition. You can also configure measurement identifiers to associate measurement objects with measurement reports. Each measurement object is associated with a measurement report, and different measurement objects can be associated with the same measurement report.
  • the terminal device After receiving the measurement configuration information, the terminal device can measure the RTT between it and the network device of the serving cell and the network devices of each neighboring cell based on the measurement configuration of the network. If there is at least one neighboring cell network device that meets the configured trigger condition of the measurement event, the terminal device can perform a corresponding RTT measurement report to the serving cell network device.
  • the source network device determines the reported neighboring cell network device as the target network device; if the source network device receives the terminal device For RTT measurement reports of multiple neighboring cell network devices, the source network device selects one network device from the reported multiple neighboring cell network devices as the target network device. How the source network device selects a target network device from multiple network devices may depend on the network implementation.
  • the first condition in the embodiment of the present application may be a switching condition. That is, when the RTT between the terminal device and the first network device meets the switching condition, the terminal device can switch the serving network device from the source network device to the target network device.
  • the switching condition is also the trigger condition for performing the switching.
  • the source network device needs to send a condition switching command to the terminal device.
  • the conditional switching command also includes the switching condition generated by the source network device. Specifically, the following information may be included: a list of candidate network devices for UE handover.
  • the conditions that the terminal device needs to meet to switch to the network device for example, within a period of time (Time to Trigger, TTT), the RTT between the terminal device and the serving cell network device, and the terminal
  • TTT Time to Trigger
  • the RTT difference between the device and the candidate network device is less than the first RTT threshold, which is called event X1 trigger.
  • the duration of satisfying the trigger condition and the first RTT threshold may be configured by the network through RRC.
  • the duration of meeting the trigger condition and/or the first RTT threshold corresponding to different candidate network devices may be the same or different.
  • the duration of meeting the trigger condition and/or the first RTT threshold corresponding to different candidate network devices may be different.
  • the RTT between the terminal device and the serving cell network device is greater than the second RTT threshold, and the RTT between the terminal device and the candidate network device is less than the third RTT threshold, which is called event X2 trigger.
  • the duration of satisfying the trigger condition, the second RTT threshold and the third RTT threshold may be configured by the network through RRC. Different candidate network devices correspond to different durations and/or second/third RTT thresholds for satisfying the trigger condition.
  • the terminal device After receiving the conditional handover command, the terminal device can measure the RTT between it and the serving cell network device and each candidate network device. If there is at least one candidate network device that satisfies the switching condition in the conditional switching, the terminal device can switch the serving network device from the source network device to a network device selected from the at least one candidate network device.
  • the terminal device determines that the candidate network devices that meet the handover condition are the target network devices. If the number of candidate network devices that meet the handover condition is greater than 1, the terminal device selects one of the multiple candidate network devices that meet the handover condition as the target network device.
  • the terminal device may also indicate to the source network device that it has a positioning function.
  • an RRC message can be used to indicate to the source network device that it has a positioning function.
  • the indication information may also be carried in the UE capability message.
  • the embodiments of the present application are especially suitable for NTN. Because the near-far effect based on RTT in NTN is relatively obvious, the terminal device can switch in time when leaving the serving cell and enter a new cell, thereby preventing the UE from being served by the UE. The problem of interruption improves the user experience.
  • the serving cell of the UE is cell1, and the serving base station is gNB1.
  • the UE informs gNB1 that it has positioning capability through the RRC message.
  • the UE receives the RTT measurement configuration from gNB1, and instructs the UE to perform RTT measurement on neighboring cells cell2 and cell3. At the same time, configure the measurement report type as event X1 trigger, the duration of the event X1 that satisfies the trigger condition is TTT, and the first RTT threshold is RTT_th1.
  • the UE measures the RTT1 of the signal transmission between itself and the serving cell base station gNB1, and at the same time measures the RTT2 of the signal transmission between itself and the neighboring cell cell2 base station gNB2, and the signal between itself and the neighboring cell cell3 base station gNB3 RTT3 transmitted.
  • the measurement results are shown in Figure 7.
  • the RTT2 measured by the UE is less than the threshold RTT_th1 than RTT1, that is, the trigger condition of event X is met.
  • the UE makes an RTT measurement report to gNB1 .
  • gNB1 determines that the target base station for UE handover is gNB2.
  • gNB1 sends a handover request to gNB2.
  • gNB2 sends a handover confirmation message to gNB1, which also contains a handover command.
  • gNB1 forwards the handover command from gNB2 to the UE, and the UE performs handover after receiving it.
  • the UE disconnects from gNB1 and establishes a connection with gNB2.
  • the serving cell of the UE is cell1, and the serving base station is gNB1.
  • the UE informs gNB1 that it has positioning capability through the RRC message.
  • the UE receives the RTT measurement configuration from gNB1, and instructs the UE to perform RTT measurement on neighboring cells cell2 and cell3. At the same time, configure the measurement report type to be triggered by event X2, the duration corresponding to the trigger condition for event X2 is TTT, and the second and third RTT thresholds are RTT_th2 and RTT_th3, respectively.
  • the UE measures the RTT1 of the signal transmission between itself and the serving cell base station gNB1, and at the same time measures the RTT2 of the signal transmission between itself and the neighboring cell cell2 base station gNB2, and the signal between itself and the neighboring cell cell3 base station gNB3 RTT3 transmitted.
  • the measurement result is shown in Figure 8.
  • the UE measured RTT1 is greater than the threshold RTT_th2 and RTT2 is less than the threshold RTT_th3, that is, the trigger condition of event X2 is met.
  • the UE proceeds to gNB1 RTT measurement report.
  • gNB1 determines that the target base station for UE handover is gNB2.
  • gNB1 sends a handover request to gNB2.
  • gNB2 sends a handover confirmation message to gNB1, which also contains a handover command.
  • gNB1 forwards the handover command from gNB2 to the UE, and the UE performs handover after receiving it.
  • the UE disconnects from gNB1 and establishes a connection with gNB2.
  • the serving cell of the UE is cell1, and the serving base station is gNB1.
  • the UE informs gNB1 that it has positioning capability through the RRC message.
  • the UE receives the conditional handover command from gNB1, indicating that the candidate target cells for the UE to handover are cell2 and cell3, and at the same time instructing the UE to perform handover.
  • the conditions that need to be met are: within a duration of TTT, between the UE and the candidate target cell base station
  • the signal transmission RTT is smaller than the fourth RTT threshold RTT_th4 than the signal transmission RTT between the UE and the serving cell base station.
  • the UE measures the RTT1 of the signal transmission between itself and the serving cell base station gNB1, and at the same time measures the RTT2 of the signal transmission between itself and the cell2 base station gNB2, and the RTT3 of the signal transmission between itself and the cell3 base station gNB3.
  • the measurement results are shown in Figure 9.
  • the UE determines that gNB2 is the target base station for handover.
  • the UE performs handover according to the determined target base station.
  • the UE disconnects from gNB1 and establishes a connection with gNB2.
  • the serving cell of the UE is cell1, and the serving base station is gNB1.
  • the UE informs gNB1 that it has positioning capability through the RRC message.
  • the UE receives the conditional handover command from gNB1, indicating that the candidate target cells for the UE handover are cell2 and cell3, and at the same time instructing the UE to perform handover.
  • the conditions that need to be met are: signal transmission between the UE and the serving base station within a duration of TTT
  • the RTT of is greater than the fifth RTT threshold RTT_th5, and the RTT of the signal transmission between the UE and the candidate target cell base station is less than the sixth RTT threshold RTT_th6.
  • the UE measures the RTT1 of the signal transmission between itself and the serving cell base station gNB1, and at the same time measures the RTT2 of the signal transmission between itself and the cell2 base station gNB2, and the RTT3 of the signal transmission between itself and the cell3 base station gNB3.
  • the measurement results are shown in Figure 10.
  • the UE determines that gNB2 is the target base station for handover.
  • the UE performs handover according to the determined target base station.
  • the UE disconnects from gNB1 and establishes a connection with gNB2.
  • FIG. 11 is a schematic block diagram of a method 500 for transmitting data according to an embodiment of the application. As shown in FIG. 11, the method 500 includes some or all of the following contents:
  • the source network device sends a first condition to the terminal device, where the first condition is used to instruct the terminal device to transfer the serving network device from the terminal device to the first network device according to the round-trip transmission time RTT between the terminal device and the first network device.
  • the source network device is switched to a target network device, the first network device includes the source network device and/or the target network device, and the serving network device is a network device that provides a service for the terminal device.
  • the first condition is a measurement report condition
  • the method further includes: the RTT between the terminal device and the first network device satisfies the measurement report condition
  • the source network device receives the RRT measurement report sent by the terminal device; the source network device sends a handover request to the target network device according to the RTT measurement report; the source network device receives the target A handover confirmation message sent by a network device, where the handover confirmation message includes a regular handover command, and the regular handover command is used to instruct the terminal device to perform handover; the source network device sends the regular handover command to the terminal device.
  • the first condition includes a second condition and a first trigger time
  • the RTT between the terminal device and the first network device satisfies the first condition
  • the source network device receives the RRT measurement report sent by the terminal device, it includes: the duration of the RTT between the terminal device and the first network device that satisfies the second condition reaches the In the case of the first trigger time, the source network device receives the RRT measurement report sent by the terminal device.
  • the RTT between the terminal device and the first network device satisfies the second condition, including: the RTT between the terminal device and the source network device, The RTT difference between the terminal device and the target network device is less than the first RTT threshold; or the RTT between the terminal device and the source network device is greater than the second RTT threshold, and the terminal device is The RTT between the target network devices is less than the third RTT threshold.
  • the measurement report condition is carried in measurement configuration information.
  • the method further includes: in a case where the source network device receives multiple RTT measurement reports, the source network device corresponds to the multiple RTT measurement reports one-to-one Among the multiple network devices in the, the target network device is determined.
  • the first condition is a handover condition
  • the handover condition is used to trigger the terminal device to perform handover.
  • the switching condition is carried in a conditional switching command.
  • the method further includes: the source network device receives instruction information sent by the terminal device, where the instruction information is used to indicate that the terminal device has a positioning capability.
  • the indication information is carried in a user equipment UE capability message of the terminal device.
  • the method is applied to a non-terrestrial communication network NTN.
  • the first condition in the conditional handover and the ordinary handover can be similar. That is, in the condition switching, the first condition configured for the terminal device on the network side may also include the second condition and the first trigger time, and the first condition is specifically used to indicate that the terminal device and the first trigger time In the case that the duration of the RTT between network devices satisfying the second condition reaches the first trigger time, the terminal device directly switches the serving network device from the source network device to the target network device.
  • the RTT between the terminal device and the first network device satisfies the second condition, which may include: the RTT between the terminal device and the source network device, and the RTT between the terminal device and the The difference in RTT between the target network devices is less than the first RTT threshold; or the RTT between the terminal device and the source network device is greater than the second RTT threshold, and the difference between the terminal device and the target network device The RTT is less than the third RTT threshold.
  • the terminal device may select one of them as the target network device.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • FIG. 12 shows a schematic block diagram of a terminal device 600 according to an embodiment of the present application. As shown in FIG. 12, the terminal device 600 includes:
  • the processing unit 610 is configured to measure the round-trip transmission time RTT between the terminal device and the first network device, where the first network device includes a source network device and/or a target network device, and
  • the serving network device is switched from the source network device to the target network device, and the serving network device is The network equipment provided by the terminal equipment.
  • the first condition includes a second condition and a first trigger time
  • the processing unit is specifically configured to: RTT between the terminal device and the first network device In a case where the duration that satisfies the second condition reaches the first trigger time, the serving network device is switched from the source network device to the target network device.
  • the RTT between the terminal device and the first network device satisfies the second condition, including: the RTT between the terminal device and the source network device, The RTT difference between the terminal device and the target network device is less than the first RTT threshold; or the RTT between the terminal device and the source network device is greater than the second RTT threshold, and the terminal device is The RTT between the target network devices is less than the third RTT threshold.
  • the first condition is a measurement report condition
  • the terminal device further includes: a transceiver unit, configured to satisfy the RTT between the terminal device and the first network device
  • the processing unit is specifically configured to: according to the conventional handover command generated by the target network device, transfer the serving network device from the source The network device switches to the target network device.
  • the processing unit is specifically configured to: measure the RTT between the terminal device and the first network device according to the measurement configuration information sent by the source network device.
  • the measurement configuration information includes the measurement report condition.
  • the first condition is a handover condition
  • the handover condition is used to trigger the terminal device to perform handover.
  • the processing unit is specifically configured to: measure the RTT between the terminal device and the first network device according to a conditional switching command sent by the source network device.
  • condition switching command includes the switching condition.
  • conditional switching command includes configuration information of multiple candidate network devices
  • processing unit is further configured to determine the target network device from the multiple candidate network devices.
  • the terminal device further includes: a transceiving unit, configured to send instruction information to the source network device, where the instruction information is used to indicate that the terminal device has a positioning capability.
  • the indication information is carried in a user equipment UE capability message of the terminal device.
  • the terminal device is applied to a non-terrestrial communication network NTN.
  • terminal device 600 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 600 are to implement the terminal device in the method of FIG. 6 respectively.
  • the corresponding process of the equipment will not be repeated here.
  • FIG. 13 shows a schematic block diagram of a network device 700 according to an embodiment of the present application.
  • the network device is a source network device, and the network device 700 includes:
  • the transceiving unit 710 is configured to send a first condition to the terminal device, where the first condition is used to instruct the terminal device to transfer the serving network device from the terminal device according to the round-trip transmission time RTT between the terminal device and the first network device.
  • the source network device is switched to a target network device, the first network device includes the source network device and/or the target network device, and the serving network device is a network device that provides a service for the terminal device.
  • the first condition is a measurement report condition
  • the transceiving unit is further configured to: the RTT between the terminal device and the first network device satisfies the measurement report
  • receive the RRT measurement report sent by the terminal device send a handover request to the target network device according to the RTT measurement report; receive a handover confirmation message sent by the target network device, the handover confirmation message It includes a regular handover command, which is used to instruct the terminal device to perform handover; and sends the regular handover command to the terminal device.
  • the first condition includes a second condition and a first trigger time
  • the transceiving unit is specifically configured to: RTT between the terminal device and the first network device In a case where the duration that satisfies the second condition reaches the first trigger time, receiving the RRT measurement report sent by the terminal device.
  • the RTT between the terminal device and the first network device satisfies the second condition, including: the RTT between the terminal device and the source network device, The RTT difference between the terminal device and the target network device is less than the first RTT threshold; or the RTT between the terminal device and the source network device is greater than the second RTT threshold, and the terminal device is The RTT between the target network devices is less than the third RTT threshold.
  • the measurement report condition is carried in measurement configuration information.
  • the network device further includes: a processing unit, configured to, in a case where the transceiver unit receives multiple RTT measurement reports, one-to-one correspondence from the multiple RTT measurement reports Among the multiple network devices in the, the target network device is determined.
  • a processing unit configured to, in a case where the transceiver unit receives multiple RTT measurement reports, one-to-one correspondence from the multiple RTT measurement reports Among the multiple network devices in the, the target network device is determined.
  • the first condition is a handover condition
  • the handover condition is used to trigger the terminal device to perform handover.
  • the switching condition is carried in a conditional switching command.
  • the transceiving unit is further configured to: receive instruction information sent by the terminal device, where the instruction information is used to indicate that the terminal device has a positioning capability.
  • the indication information is carried in a user equipment UE capability message of the terminal device.
  • the network device is applied to a non-terrestrial communication network NTN.
  • the network device 700 may correspond to the source network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 700 are to implement the method in FIG. 11, respectively.
  • the corresponding process of the network device will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 14 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device in an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 800 may specifically be a terminal device of an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • FIG. 15 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 900 shown in FIG. 15 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the chip 900 may further include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 16 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application. As shown in FIG. 16, the communication system 1000 includes a terminal device 1010 and a network device 1020.
  • the terminal device 1010 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding function implemented by the network device in the above method.
  • the terminal device 1010 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding function implemented by the network device in the above method.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the foregoing processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种用于切换网络设备的方法、终端设备和网络设备,该方法包括:终端设备对所述终端设备与第一网络设备之间的往返传输时间RTT进行测量,所述第一网络设备包括源网络设备和/或目标网络设备;在所述终端设备与所述第一网络设备之间的RTT满足第一条件的情况下,所述终端设备将服务网络设备从所述源网络设备切换到所述目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。本申请实施例的方法、终端设备和网络设备,有利于适用于各种通信系统中的移动性管理。

Description

用于切换网络设备的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种用于切换网络设备的方法、终端设备和网络设备。
背景技术
在目前的通信系统中,主要是基于小区的信号质量测量来进行移动性管理的,但该切换机制并不适用某些通信系统,如NTN,因此,亟待一种新的切换机制,能够有效地适用于各个通信系统中的移动性管理。
发明内容
本申请实施例提供一种用于切换网络设备的方法、终端设备和网络设备,有利于适用于各种通信系统中的移动性管理。
第一方面,提供了一种用于切换网络设备的方法,该方法包括:终端设备对所述终端设备与第一网络设备之间的往返传输时间RTT进行测量,所述第一网络设备包括源网络设备和/或目标网络设备;在所述终端设备与所述第一网络设备之间的RTT满足第一条件的情况下,所述终端设备将服务网络设备从所述源网络设备切换到所述目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
第二方面,提供了一种用于切换网络设备的方法,该方法包括:源网络设备向终端设备发送第一条件,所述第一条件用于指示所述终端设备根据所述终端设备与第一网络设备之间的往返传输时间RTT,将服务网络设备从所述源网络设备切换到目标网络设备,所述第一网络设备包括所述源网络设备和/或目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
第三方面,提供了一种终端设备,用于执行上述第一方面或其实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,通过基于RTT测量来实现移动性管理,能够有效适用各种通信系统中的移动性管理,从而能够提高用户体验。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种普通切换流程的示意性图。
图3是本申请实施例提供的一种条件切换流程的示意性图。
图4是NR系统中的远近效应示意图。
图5是NTN系统中的远近效应示意图。
图6是本申请实施例提供的一种用于切换网络设备的方法的示意性图。
图7是本申请提供的实施例一中的测量结果的示意图。
图8是本申请提供的实施例二中的测量结果的示意图。
图9是本申请提供的实施例三中的测量结果的示意图。
图10是本申请提供的实施例四中的测量结果的示意图。
图11是本申请实施例提供的一种用于切换网络设备的方法的示意性图。
图12是本申请实施例提供的一种终端设备的示意性框图。
图13是本申请实施例提供的一种网络设备的示意性框图。
图14是本申请实施例提供的一种通信设备的示意性框图。
图15是本申请实施例提供的一种芯片的示意性框图。
图16是本申请实施例提供的一种通信系统的示意性图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备gNB或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本发明实施例并不限定。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以 包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如移动性管理实体(Mobility Management Entity,MME),服务网关(Serving Gateway,S-GW)或分组数据网关(PDN Gateway,P-GW)等,本申请实施例中对此不做限定。
还应理解,图1示出的通信系统100还可以是非地面通信网络(Non-Terrestrial Network,NTN)系统,具体地,NTN一般采用卫星通信的方式向地面用户提供通信服务。也就是说,图1中的网络设备110可以是卫星。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。其中,LEO卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高;GEO轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在目前的NR系统中,当正在使用网络服务的终端从一个小区移动到另一个小区,或由于无线传输业务负荷量调整、激活操作维护、设备故障等原因,为了保证通信的连续性和服务的质量,系统要将该终端与源小区的通信链路转移到新小区上,即执行切换过程。
通常情况下,一个网络设备覆盖一个小区,那么切换小区也就是切换网络设备。
为了便于理解,下面以Xn接口切换过程为例,描述一下整个切换流程。如图2所示,该切换流程主要包括切换准备、执行切换以及切换完成这三个过程,具体包括以下部分或全部步骤:
S201,源eNB对UE进行测量配置,UE的测量结果将用于辅助源eNB进行切换判决。
S202,UE根据测量配置,进行测量上报。
S203,源eNB参考UE的测量上报结果,根据自身的切换算法,进行切换判决。
S204,源eNB向目标eNB发送切换请求消息,该消息包含切换准备的相关信息,主要有UE的X2和S1信令上下文参考、目标小区标识、安全秘钥、无线资源控制(Radio Resource Control,RRC)上下文、接入层(Access Stratum,AS)配置、演进的通用移动通信系统陆地无线接入网(Evolved-Universal Terrestrial Radio Access,E-UTRAN)无线接入承载(E-UTRAN Radio Access Bearer,E-RAB)上下文等。同时也包含源小区物理层标识和消息鉴权验证码,用于可能的切换失败后的恢复过程。UE的X2和S1信令上下文参考可以帮助目标eNB找到源eNB的位置。E-RAB上下文包括必要的无线网络层(Radio Network Layer,RLN)和传输层(Transport Network Layrer,TNL)寻址信息以及E-RAB的服务质量 (Quality of Service,QoS)信息等。
S205:目标eNB根据收到的E-RAB QoS信息进行接纳控制,以提高切换的成功率。接纳控制要考虑预留相应的资源、小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)以及分配专用随机接入Preamble码等。目标小区所使用的AS配置可以是完全独立于源小区的完全配置,也可以是在源小区基础之上的增量配置(增量配置是指对相同的部分不进行配置,只通过信令重配不同的部分,UE对于没有收到的配置,将继续使用原配置)。
S206:目标eNB进行L1/L2的切换准备,同时向源eNB发送切换请求ACK消息。该消息中包含一个RRC容器,具体内容是触发UE进行切换的切换命令。源eNB切换命令采用透传的方式(不做任何修改),发送给UE。切换命令中包含新的C-RNTI、目标eNB的案例算法标识,有可能还携带随机接入专用Preamble码、接入参数、系统信息等。如果有必要,切换请求ACK消息中还有可能携带RNL/TNL信息,用于数据前转。当源eNB收到切换请求ACK消息或者是向UE转发了切换命令之后,就可以开始数据前转了。
S207:切换命令(携带了移动性控制信息的RRC连接重配置消息)是由目标eNB生成的,通过源eNB将其透传给UE。源eNB对这条消息进行必要的加密和完整性保护。当UE收到该消息之后,就会利用该消息中的相关参数发起切换过程。UE不需要等待低层向源eNB发送的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)/自动重传请求(Automatic Repeat reQuest,ARQ)响应,就可以发起切换过程。
S208:源eNB发送序列号(Sequence Number,SN)状态传输消息到目标eNB,传送E-RAB的上行分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)SN接收状态和下行PDCP SN发送状态。上行PDCP SN接收状态至少包含了按序接收的最后一个上行SDU的PDCP SN,也可能包含以比特映射的形式表示的那些造成接收乱序的丢失的上行SDU的SN(如果有这样的SDU的话,这些SDU可能需要UE在目标小区进行重传)。下行PDCP SN发送状态指示了在目标eNB应该分配的下一个SDU序号。如果没有E-RAB需要传送PDCP的状态报告,源eNB可以省略这条消息。
S209:UE收到切换命令以后,执行与目标小区的同步,如果在切换命令中配置了随机接入专用Preamble码,则使用非竞争随机接入流程接入目标小区,如果没有配置专用Preamble码,则使用竞争随机接入流程接入目标小区。UE计算在目标eNB所需使用的密钥并配置网络选择好的在目标eNB使用的安全算法,用于切换成功之后与目标eNB进行通信。
S210:网络回复上行资源分配指示和定时提前。
S211:当UE成功接入目标小区后,UE发送RRC连接连接重配置完成消息,向目标eNB确认切换过程完成。如果资源允许,该消息也可能伴随着一个上行缓存状态报告(Buffer Status Report,BSR)的改善。目标eNB通过接收RRC连接连接重配置完成消息,确认切换成功。至此,目标eNB可以开始向UE发送数据。
S212:目标eNB向MME发送一个路径转换请求消息来告知UE更换了小区。此时空口的切换已经成功完成。
S213:MME向S-GW发送用户平面更新请求消息。
S214:S-GW将下行数据路径切换到目标eNB侧。S-GW在旧路径上发送一个或多个“结束标识(end marker)包”到源eNB,然后就可以释放源eNB的用户平面资源。
S215:S-GW向MME发送用户平面更新响应消息。
S216:MME向目标eNB发送路径转换请求ACK消息。步骤12~16就完成了路径转换过程,该过程的目的是将用户平面的数据路径从源eNB转到目标eNB。在S-GW转换了下行路径以后,前转路径和新路径的下行包在目标eNB可能会交替到达。目标eNB应该首先传递所有的前转数据包给UE,然后再传递从新路径接收的包。在目标eNB使用这一方法可以强制性保证正确的传输顺序。为了辅助在目标eNB的重排功能,S-GW在E-RAB转换路径以后,立即在旧路径发送一个或者多个“end marker包”。“end marker包”内不含用户数据,由通用数据传输平台(General Data Transfer Platform,GTP)头指示。在完成发送含有标志符的包以后,S-GW不应该在旧路径发送任何数据包。在收到“end marker包”以后,如果前转对这个承载是激活的,源eNB应该将此包发送给目标eNB。在察觉了“end marker包”以后,目标eNB应该丢弃“end marker包”并发起任何必要的流程来维持用户的按序递交,这些数据是通过X2口前转的或者路径转换以后从S-GW通过S1口接收的。
S217:目标eNB向源eNB发送UE上下文释放消息,通知源eNB切换的成功并触发源eNB的资源释放。目标eNB在收到从MME发回的路径转换ACK消息以后发送这 条消息。
S218:收到UE上下文释放消息之后,源eNB可以释放无线承载和与UE上下文相关的控制平面资源。任何正在进行的数据前传(data forwarding)将继续进行。
然而,对于某些特殊场景,比如UE高速移动或者高频条件下,需要UE频繁的进行切换(handover,HO),因此,提出了一种新的切换流程,即条件切换(Conditional handover)。条件切换避免了切换准备时间过长,导致UE要切换的时候已经过晚的问题,可以为UE提前配置HO命令(command)。另一方面,对于高铁场景,UE的运行轨迹是特定的,所以源基站可以提前把目标基站配给UE,并且在HO command中包含用于触发UE进行切换的条件,当满足所配条件时,UE向目标基站发起接入请求。
具体地,3GPP RAN2#104次会议已经同意了这种条件切换,并且支持在条件切换的流程中的HO command中配置多个目标小区。例如,图3示出了部分条件切换过程的示意图。为了与上述图2中所示的切换区别,本申请中将上述图2对应的切换过程称为普通切换(normal HO)。
如图3所示,S301,测量报告,与普通切换过程类似,UE向源eNB上报测量报告,该S301可以对应上述图2示出的普通切换过程中的S201和S202,为了简洁,在此不再赘述。
S302,切换准备,与普通切换过程类似,源eNB与目标eNB之间执行切换准备。具体地,源eNB可以与一个或者多个目标eNB之间执行切换准备,例如,源eNB可以向一个或者多个目标eNB发送切换请求。其中,对于该S302中源eNB与任意一个目标eNB之间执行的切换准备步骤均可以对应上述图2示出的普通切换过程中的S203和S204,为了简洁,在此不再赘述。
S303,切换命令,源eNB向UE发送的切换命令中可以配置多个目标小区或多个目标eNB。可选的,还可以配置该UE执行切换的条件,例如该切换的条件可以包括小区或者波束的状态等信息,以便于UE基于所配置的条件(condition)判断接入哪个目标小区或目标eNB。
S304,满足切换条件时,随机接入。UE根据所配置的条件(condition),确定配置的多个目标小区或目标eNB是否满足切换条件,并在某个目标小区或者目标eNB满足条件的情况下,执行随机接入。
为了区分普通切换与条件切换中的切换命令,可以将条件切换中的切换命令定义为条件切换命令,而将普通切换中的切换命令定义为常规(normal)切换命令。
在切换之前,网络侧通常要向终端设备配置测量条件或者切换条件,以用于判断是否要进行切换。所谓测量就是指连接状态下的移动性测量。
在普通切换中,网络设备可以通过无线资源控制(Radio Resource Control,RRC)消息将测量配置信息发送给终端设备,终端设备根据测量配置信息中指示的测量对象、上报配置等参数检测当前服务小区和/或邻小区的信号质量状态,并按照上报配置中的触发方式将测量报告上报给网络设备。
通常在终端设备侧会维护一个测量配置数据库VarMeasConfig,在VarMeasConfig中,每个measId对应一个measObjectId和一个reportConfigId。其中,measId是数据库测量配置条目索引;measObjectId是测量对象标识,对应一个测量对象配置项;reportConfigId是测量报告标识,对应一个测量报告配置项。此外还包含了与measId无关的公共配置项quantityConfig、测量量配置、s-measure和服务小区质量门限控制等。
测量对象是以频点为基本单位,每个被配置的测量对象为一个单独频点,拥有单独的测量对象标识,对于演进通用陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)同频和异频测量,测量对象是一个单一的E-UTRA载波频率。与该载波频率相关的小区,E-UTRA可能配置小区偏移量(Offset)列表和黑名单小区列表。在测量评估及测量报告中不对黑名单的小区进行任何操作。
上报配置按照类型分为事件触发上报和周期触发上报,每个上报配置拥有单独的标识,事件触发上报配置包括事件种类及门限值,以及满足触发条件的持续时间(Time to Trigger,TTT),TTT也可以称为触发时间。周期性触发类型的上报配置包括上报周期,以及周期性触发的目的。
目前NR系统中支持的测量事件包括以下几种:
事件A1:服务小区高于一个绝对门限(serving>threshold);
事件A2:服务小区低于一个绝对门限(serving<threshold);
事件A3:邻小区比主小区/主辅小区高于一个偏移量;
事件A4:邻小区高于一个绝对门限(Neighbour>threshold);
事件A5:主小区/主辅小区低于绝对门限1并且邻小区/辅小区高于另一绝对门限2;
事件A6:邻小区比辅小区高于一个偏移量;
事件B1:邻小区高于一个绝对门限;
事件B2:主小区高于一个绝对门限1以及邻小区高于另一个绝对门限2。
单独的测量标识将测量对象与特定的上报配置进行关联,如果终端设备达到了测量开启门限,终端设备会根据测量标识的有无判断是否进行该种测量。
当终端设备完成测量之后,当满足一定触发条件时进行测量上报的评估,如果满足上报条件,终端设备则将进行测量报告的填写,并发送给网络设备。
测量上报主要分为三类:
1、事件触发
终端设备仅当满足了网络配置的测量事件进入门限并持续一段时间后,才会触发测量报告的发送,测量报告发送一次后流程结束。此准则对应的上报配置为:
触发类型为“事件”包含A1-A6,B1-B2中得一种测量事件及其门限参数;
上报次数为1;
上报间隔无论配为何值,UE均忽略。
2、周期性上报
网络配置测量后,终端设备按照配置内容进行相应频点的测量,并按照规定的上报周期及间隔发送测量报告:
触发周期为“周期”,包含“reportCGI”、“reportStrongestCell”
如果上报目的为“reportCGI”上报次数等于1,如果上报目的为“reportStrongestCell”,上报次数可以大于1;
终端设备一旦被配置了“reportCGI”目的的上报后将开启T321定时器。为了网络能够尽快获得组建邻小区列表所需信息,如果在定时器超时前已经获得了上报所需的内容,终端设备可以停止T321并提前发起上报。
3、事件触发周期上报
终端设备仅当满足了网络配置的测量事件进入门限并持续一段时间后,才会触发测量报告的发送,上报被触发后,会开启多次测量之间的定时器以及测量次数的计数器,直至上报次数达到要求后流程结束。此准则对应的上报配置为:
触发类型为“事件”,包含A1~A5中的一种测量事件及其门限参数;
上报次数大于1;
上报间隔有效,网络按照配置的间隔参数设置上报周期定时器。
在目前的通信系统中,UE处于小区中心时的参考信号接收功率(Reference Signal Receiving Power,RSRP)要明显高于其处于小区边缘时的RSRP。由于存在明显的“远近效应”,当UE移动到小区边缘时,服务小区的信号质量变差,邻小区的信号质量变好,因此可以基于UE对小区的信号质量测量来进行移动性管理,即UE可以通过RSRP测量来判断自己是否移动到小区边缘,从而为切换做准备。图4示出了NR系统中的远近效应示意图。
而在某些通信系统中,如NTN,对于处于小区中心的UE和处于小区边缘的UE,他们对应的RSRP差异并不明显,如果使用目前的基于RSRP测量的切换机制,UE难以通过RSRP测量来辨别自己是否处于小区边缘,也难以通过RSRP测量来寻找比当前服务小区的信道质量更好的邻小区,因此会出现终端已经离开原来的服务小区进入另一个小区,却没有及时切换到新的小区,从而导致该UE的服务被中断的问题,影响用户体验。图5示出了NTN系统中的远近效应示意图。
因此,亟待一种新的切换机制,来有效地适用于各种通信系统中。
图6示出了本申请实施例的用于切换网络设备的方法400的示意性框图。如图6所示,该方法400包括以下部分或全部内容:
S410,终端设备对所述终端设备与第一网络设备之间的往返传输时间RTT进行测量,所述第一网络设备包括源网络设备和/或目标网络设备;
S420,在所述终端设备与所述第一网络设备之间的RTT满足第一条件的情况下,所述终端设备将服务网络设备从所述源网络设备切换到所述目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
经过研究,终端设备与网络设备之间的往返传输时间(Round Trip Time,RTT)同样具有远近效应,并且可以适用于各种通信系统,例如,陆地NR系统或NTN系统等。与基于接收信号强度来进行移动性管理类似,终端设备可以基于与网络设备之间的RTT进行移动性管理。具体地,终端设备需要对其与源网络设备之间的RTT和/或其与邻小区 网络设备之间的RTT(统称为终端设备与第一网络设备之间的RTT)进行测量,并且在所测量的RTT满足第一条件的情况下,将终端设备的服务网络设备从源网络设备切换到目标网络设备。也就是说,切换之前,由源网络设备为终端设备提供服务,切换之后,则由目标网络设备为终端设备提供服务。其中,目标网络设备是从邻小区网络设备中确定的。也就是说,邻小区网络设备可能具有多个,终端设备从多个中选择一个作为目标网络设备。
例如,终端设备可以只对其与源网络设备之间的RTT进行测量,并且在所测得的RTT满足第一条件的情况下,将服务网络设备从源网络设备切换到终端设备所获取到的某个邻小区网络设备,该切换的邻小区网络设备即为目标网络设备。
再例如,终端设备也可以只对其与邻小区网络设备的RTT进行测量,若终端设备只与一个邻小区网络设备的RTT满足第一条件,那么终端设备可以将服务网络设备从源网络设备切换到该邻小区网络设备。若终端设备与多个邻小区网络设备的RTT均满足第一条件,终端设备可以将服务网络设备从源网络设备切换到该多个邻小区网络设备中的一个,该切换的邻小区网络设备即为目标网络设备。
再例如,终端设备也可以结合其与源网络设备之间的RTT以及与邻小区网络设备的RTT来执行切换,也就是说,当其与源网络设备之间的RTT以及与邻小区网络设备的RTT之间的关系满足第一条件,那么终端设备就可以将服务网络设备切换到满足第一条件的某个邻小区网络设备,该切换的邻小区网络设备即为目标网络设备。
可选地,在本申请实施例中,所述第一条件包括第二条件和第一触发时间,所述在所述终端设备与所述第一网络设备之间的RTT满足切换条件的情况下,所述终端设备将服务网络设备从所述源网络设备切换到所述目标网络设备,包括:在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到第一触发时间的情况下,所述终端设备将所述服务网络设备从所述源网络设备切换到所述目标网络设备。
可选地,在本申请实施例中,终端设备与第一网络设备之间的RTT满足第二条件但并没有持续一定时间(即第一触发时间),终端设备也可以将所述服务网络设备从所述源网络设备切换到所述目标网络设备。
可选地,终端设备与第一网络设备之间的RTT满足第二条件,可以是,终端设备与目标网络设备之间的RTT比终端设备与源网络设备之间的RTT小,并且二者的差值可以小于第一RTT门限(如A3事件);或者,终端设备与目标网络设备之间的RTT小于第二RTT门限,但终端设备与源网络设备之间的RTT大于第三RTT门限(如A5事件)。或者,终端设备与源网络设备之间的RTT大于第四RTT门限等。应理解,本申请实施例对第二条件不作限定。
下面将分别从普通切换和条件切换两方面介绍本申请实施例。
在普通切换中,本申请实施例中的第一条件可以是测量上报条件。也就是说,在终端设备与第一网络设备之间的RTT满足测量上报条件的情况下,终端设备就可以向源网络设备发送RTT测量报告。该测量上报条件也就是RTT测量报告的触发条件。当源网络设备接收到RTT测量报告后,源网络设备需要向目标网络设备发送切换请求,目标网络设备进而可以向源网络设备发送切换确认消息,该切换确认消息中可以携带常规切换命令。源网络设备可以向终端设备转发该常规切换命令,而终端设备在接收到该常规切换命令之后,可以执行切换。
而终端设备在进行RTT测量之前,源网络设备需要向终端设备发送测量配置信息,用来配置RTT测量的相关参数。具体地,可以配置至少一个测量对象,所述至少一个测量对象中的每个测量对象为一个频率内的NTN载波频率或一个频率间的NTN载波频率。对于每个配置了测量的NTN载波频率,网络可以配置与该载波频率相关的小区偏移量列表,黑名单小区列表和白名单小区列表。还可以配置至少一个测量上报,所述至少一个测量上报中的每个测量上报的测量上报类型为事件触发。例如,所述事件触发的条件可以为:在一段持续时间(Time to Trigger,TTT)内,终端设备与服务小区网络设备之间的RTT,与终端设备与邻小区网络设备(即源网络设备)之间的RTT之差小于第一RTT门限,称为事件X1触发。所述满足触发条件的持续时间以及所述第一RTT门限可以由网络通过RRC配置。不同的测量上报配置对应的满足触发条件的持续时间和/或第一RTT门限可以不同。再例如,所述事件触发的条件还可以为:在一段TTT内,终端设备与服务小区网络设备之间的RTT大于第二RTT门限,并且终端设备与邻小区网络设备之间的RTT小于第三RTT门限,称为事件X2触发。所述满足触发条件的持续时间,所述第二RTT门限和所述第三RTT门限可以由网络通过RRC配置。不同的测量上报配置对应的满足触发条件的持续时间和/或第二/三RTT门限不同。还可以配置测量标识,用来将测量对象 与测量上报关联起来,每个测量对象关联一个测量上报,不同的测量对象可以与同一个测量上报相关联。
终端设备在接收到该测量配置信息之后,可以基于网络的测量配置,对其与服务小区网络设备以及各个邻小区网络设备之间的RTT进行测量。如果存在至少一个邻小区网络设备满足所配置的测量事件的触发条件,则终端设备就可以向服务小区网络设备进行相应的RTT测量上报。
可选地,若源网络设备收到终端设备针对一个邻小区网络设备的RTT测量报告,则源网络设备就将该上报的邻小区网络设备确定为目标网络设备;若源网络设备收到终端设备针对多个邻小区网络设备的RTT测量报告,则源网络设备就从上报的多个邻小区网络设备中选择一个网络设备作为目标网络设备。源网络设备如何从多个网络设备中选择一个目标网络设备可以取决于网络实现。
在条件切换中,本申请实施例中的第一条件可以是切换条件。也就是说,在终端设备与第一网络设备之间的RTT满足切换条件的情况下,终端设备就可以将服务网络设备从源网络设备切换到目标网络设备。该切换条件也就是执行切换的触发条件。而终端设备在进行RTT测量之前,源网络设备需要向终端设备发送条件切换命令。该条件切换命令中除了包括候选网络设备提前生成的用于切换的配置信息之外,还包括由源网络设备生成的切换条件。具体地,可以包括以下各种信息:UE切换的候选网络设备列表。以及对于每个候选网络设备,终端设备切换到该网络设备所需要满足的条件,例如,在一段持续时间(Time to Trigger,TTT)内,终端设备与服务小区网络设备之间的RTT,与终端设备与候选网络设备(即源网络设备)之间的RTT之差小于第一RTT门限,称为事件X1触发。所述满足触发条件的持续时间以及所述第一RTT门限可以由网络通过RRC配置。不同的候选网络设备对应的满足触发条件的持续时间和/或第一RTT门限可以相同也可以不同。不同的候选网络设备对应的满足触发条件的持续时间和/或第一RTT门限可以不同。再例如,在一段TTT内,终端设备与服务小区网络设备之间的RTT大于第二RTT门限,并且终端设备与候选网络设备之间的RTT小于第三RTT门限,称为事件X2触发。所述满足触发条件的持续时间,所述第二RTT门限和所述第三RTT门限可以由网络通过RRC配置。不同的候选网络设备对应的满足触发条件的持续时间和/或第二/三RTT门限不同。
终端设备在接收到该条件切换命令之后,可以对其与服务小区网络设备以及各个候选网络设备之间的RTT进行测量。如果存在至少一个候选网络设备满足条件切换中的切换条件,则终端设备就可以将服务网络设备从源网络设备切换到从该至少一个候选网络设备中选择的一个网络设备。
可选地,如果满足切换条件的候选网络设备的个数为1,则终端设备确定所述满足切换条件的候选网络设备为目标网络设备。如果满足切换条件的候选网络设备的个数大于1,则终端设备从所述满足切换条件的多个候选网络设备中选择一个作为目标网络设备。
可选地,在本申请实施例中,终端设备还可以向源网络设备指示其具有定位功能。具体地,可以通过RRC消息向源网络设备指示其具有定位功能。该指示信息也可以承载在UE能力消息中。
可选地,本申请实施例尤其适用于NTN中,由于NTN中基于RTT的远近效应比较明显,使得终端设备在离开服务小区进入到新的小区时能够及时进行切换,从而可以避免UE的服务被中断的问题,提高用户体验。
下面将结合四个实施例详细描述本申请技术方案。
实施例一:
1、UE的服务小区为cell1,服务基站为gNB1。UE通过RRC消息告知gNB1自己具有定位能力。
2、UE接收来自gNB1的RTT测量配置,指示UE对邻小区cell2和cell3进行RTT测量。同时配置测量上报类型为事件X1触发,事件X1对应的满足触发条件的持续时间为TTT,第一RTT门限为RTT_th1。
3、UE根据网络的测量配置,测量自己与服务小区基站gNB1之间信号传输的RTT1,同时测量自己与邻小区cell2基站gNB2之间信号传输的RTT2,以及自己与邻小区cell3基站gNB3之间信号传输的RTT3。测量结果如图7所示。
4、在T1时刻,UE测量的RTT2比RTT1小于门限RTT_th1,即满足事件X的触发条件,在cell2的测量结果满足事件X1的触发条件持续时间TTT之后的T2时刻,UE向gNB1进行RTT测量报告。
5、gNB1根据来自UE的RTT测量报告,确定UE切换的目标基站为gNB2。
6、gNB1向gNB2发送切换请求。
7、gNB2向gNB1发送切换确认消息,同时包含切换命令。
8、gNB1将来自gNB2的切换命令转发给UE,UE收到后执行切换。UE断开与gNB1的连接,与gNB2建立连接。
实施例二:
1、UE的服务小区为cell1,服务基站为gNB1。UE通过RRC消息告知gNB1自己具有定位能力。
2、UE接收来自gNB1的RTT测量配置,指示UE对邻小区cell2和cell3进行RTT测量。同时配置测量上报类型为事件X2触发,事件X2对应的满足触发条件的持续时间为TTT,第二RTT门限和第三RTT门限分别为RTT_th2和RTT_th3。
3、UE根据网络的测量配置,测量自己与服务小区基站gNB1之间信号传输的RTT1,同时测量自己与邻小区cell2基站gNB2之间信号传输的RTT2,以及自己与邻小区cell3基站gNB3之间信号传输的RTT3。测量结果如图8所示。
4、在T1时刻,UE测量的RTT1大于门限RTT_th2并且RTT2小于门限RTT_th3,即满足事件X2的触发条件,在cell2的测量结果满足事件X2的触发条件持续时间TTT之后的T2时刻,UE向gNB1进行RTT测量报告。
5、gNB1根据来自UE的RTT测量报告,确定UE切换的目标基站为gNB2。
6、gNB1向gNB2发送切换请求。
7、gNB2向gNB1发送切换确认消息,同时包含切换命令。
8、gNB1将来自gNB2的切换命令转发给UE,UE收到后执行切换。UE断开与gNB1的连接,与gNB2建立连接。
实施例三:
1、UE的服务小区为cell1,服务基站为gNB1。UE通过RRC消息告知gNB1自己具有定位能力。
2、UE接收来自gNB1的条件切换命令,指示UE切换的候选目标小区为cell2和cell3,同时指示UE执行切换所需要满足的条件为:在一段持续时间TTT内,UE与候选目标小区基站之间信号传输的RTT比UE与服务小区基站之间信号传输的RTT小于第四RTT门限RTT_th4。
3、UE测量自己与服务小区基站gNB1之间信号传输的RTT1,同时测量自己与cell2基站gNB2之间信号传输的RTT2,以及自己与cell3基站gNB3之间信号传输的RTT3。测量结果如图9所示。
4、在T1时刻,UE测量的RTT2比RTT1小于门限RTT_th4,在cell2的测量结果满足切换条件持续时间TTT之后的T2时刻,UE确定gNB2为切换的目标基站。
5、UE根据确定的目标基站执行切换。UE断开与gNB1的连接,与gNB2建立连接。
实施例四:
1、UE的服务小区为cell1,服务基站为gNB1。UE通过RRC消息告知gNB1自己具有定位能力。
2、UE接收来自gNB1的条件切换命令,指示UE切换的候选目标小区为cell2和cell3,同时指示UE执行切换所需要满足的条件为:在一段持续时间TTT内,UE与服务基站之间信号传输的RTT大于第五RTT门限RTT_th5,并且UE与候选目标小区基站之间信号传输的RTT小于第六RTT门限RTT_th6。
3、UE测量自己与服务小区基站gNB1之间信号传输的RTT1,同时测量自己与cell2基站gNB2之间信号传输的RTT2,以及自己与cell3基站gNB3之间信号传输的RTT3。测量结果如图10所示。
4、在T1时刻,UE测量的RTT1大于门限RTT_th5,并且RTT2小于门限RTT_th6,在cell2的测量结果满足切换条件持续时间TTT之后的T2时刻,UE确定gNB2为切换的目标基站。
5、UE根据确定的目标基站执行切换。UE断开与gNB1的连接,与gNB2建立连接。
图11为本申请实施例提供的一种用于传输数据的方法500的示意性框图。如图11所示,该方法500包括以下部分或全部内容:
S510,源网络设备向终端设备发送第一条件,所述第一条件用于指示所述终端设备根据所述终端设备与第一网络设备之间的往返传输时间RTT,将服务网络设备从所述源 网络设备切换到目标网络设备,所述第一网络设备包括所述源网络设备和/或目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
可选地,在本申请实施例中,所述第一条件为测量上报条件,所述方法还包括:在所述终端设备与所述第一网络设备之间的RTT满足所述测量上报条件的情况下,所述源网络设备接收所述终端设备发送的RRT测量报告;所述源网络设备根据所述RTT测量报告,向所述目标网络设备发送切换请求;所述源网络设备接收所述目标网络设备发送的切换确认消息,所述切换确认消息包括常规切换命令,所述常规切换命令用于指示所述终端设备执行切换;所述源网络设备向所述终端设备发送所述常规切换命令。
可选地,在本申请实施例中,所述第一条件包括第二条件和第一触发时间,所述在所述终端设备与所述第一网络设备之间的RTT满足所述第一条件的情况下,所述源网络设备接收所述终端设备发送的RRT测量报告,包括:在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到所述第一触发时间的情况下,所述源网络设备接收所述终端设备发送的RRT测量报告。
可选地,在本申请实施例中,所述终端设备与所述第一网络设备之间的RTT满足所述第二条件,包括:所述终端设备与所述源网络设备之间的RTT,与所述终端设备与所述目标网络设备之间的RTT之差小于第一RTT门限;或所述终端设备与所述源网络设备之间的RTT大于第二RTT门限,且所述终端设备与所述目标网络设备之间的RTT小于第三RTT门限。
可选地,在本申请实施例中,所述测量上报条件承载于测量配置信息中。
可选地,在本申请实施例中,所述方法还包括:在所述源网络设备接收到多个RTT测量报告的情况下,所述源网络设备从所述多个RTT测量报告一一对应的多个网络设备中,确定所述目标网络设备。
可选地,在本申请实施例中,所述第一条件为切换条件,所述切换条件用于触发所述终端设备执行切换。
可选地,在本申请实施例中,所述切换条件承载于条件切换命令中。
可选地,在本申请实施例中,所述方法还包括:所述源网络设备接收所述终端设备发送的指示信息,所述指示信息用于指示所述终端设备具有定位能力。
可选地,在本申请实施例中,所述指示信息携带在所述终端设备的用户设备UE能力消息中。
可选地,在本申请实施例中,所述方法应用于非地面通信网络NTN中。
需要说明的是,条件切换与普通切换中的第一条件可以是类似的。也就是说,在条件切换中,网络侧为终端设备配置的第一条件也可以包括第二条件和第一触发时间,所述第一条件具体用于指示在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到所述第一触发时间的情况下,所述终端设备直接将服务网络设备从源网络设备切换到目标网络设备。进一步地,所述终端设备与所述第一网络设备之间的RTT满足所述第二条件,可以包括:所述终端设备与所述源网络设备之间的RTT,与所述终端设备与所述目标网络设备之间的RTT之差小于第一RTT门限;或所述终端设备与所述源网络设备之间的RTT大于第二RTT门限,且所述终端设备与所述目标网络设备之间的RTT小于第三RTT门限。可选地,当满足第一条件的候选网络设备为至少一个时,终端设备可以从中选择一个作为目标网络设备。
应理解,网络侧描述的源网络设备与终端设备之间的交互及相关特性、功能等与终端设备的相关特性、功能相应。并且相关内容在上述方法400中已经作了详尽描述,为了简洁,在此不再赘述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的用于切换网络设备的方法,下面将结合图12至图14,描述根据本申请实施例的用于切换网络设备的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图12示出了本申请实施例的终端设备600的示意性框图。如图12所示,所述终端设备600包括:
处理单元610,用于对所述终端设备与第一网络设备之间的往返传输时间RTT进行测量,所述第一网络设备包括源网络设备和/或目标网络设备,以及
在所述终端设备与所述第一网络设备之间的RTT满足第一条件的情况下,将服务网络设备从所述源网络设备切换到所述目标网络设备,所述服务网络设备是为所述终端设 备提供服务的网络设备。
可选地,在本申请实施例中,所述第一条件包括第二条件和第一触发时间,所述处理单元具体用于:在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到第一触发时间的情况下,将所述服务网络设备从所述源网络设备切换到所述目标网络设备。
可选地,在本申请实施例中,所述终端设备与所述第一网络设备之间的RTT满足所述第二条件,包括:所述终端设备与所述源网络设备之间的RTT,与所述终端设备与所述目标网络设备之间的RTT之差小于第一RTT门限;或所述终端设备与所述源网络设备之间的RTT大于第二RTT门限,且所述终端设备与所述目标网络设备之间的RTT小于第三RTT门限。
可选地,在本申请实施例中,所述第一条件为测量上报条件,所述终端设备还包括:收发单元,用于在所述终端设备与所述第一网络设备之间的RTT满足所述测量上报条件的情况下,向所述源网络设备发送RTT测量报告;所述处理单元具体用于:根据所述目标网络设备生成的常规切换命令,将所述服务网络设备从所述源网络设备切换到所述目标网络设备。
可选地,在本申请实施例中,所述处理单元具体用于:根据所述源网络设备发送的测量配置信息,对所述终端设备与所述第一网络设备之间的RTT进行测量。
可选地,在本申请实施例中,所述测量配置信息包括所述测量上报条件。
可选地,在本申请实施例中,所述第一条件为切换条件,所述切换条件用于触发所述终端设备执行切换。
可选地,在本申请实施例中,所述处理单元具体用于:根据所述源网络设备发送的条件切换命令,对所述终端设备与所述第一网络设备之间的RTT进行测量。
可选地,在本申请实施例中,所述条件切换命令包括所述切换条件。
可选地,在本申请实施例中,所述条件切换命令包括多个候选网络设备的配置信息,所述处理单元还用于:从所述多个候选网络设备中确定所述目标网络设备。
可选地,在本申请实施例中,所述终端设备还包括:收发单元,用于向所述源网络设备发送指示信息,所述指示信息用于指示所述终端设备具有定位能力。
可选地,在本申请实施例中,所述指示信息携带在所述终端设备的用户设备UE能力消息中。
可选地,在本申请实施例中,所述终端设备应用于非地面通信网络NTN中。
应理解,根据本申请实施例的终端设备600可对应于本申请方法实施例中的终端设备,并且终端设备600中的各个单元的上述和其它操作和/或功能分别为了实现图6方法中终端设备的相应流程,为了简洁,在此不再赘述。
图13示出了本申请实施例的网络设备700的示意性框图。如图13所示,所述网络设备为源网络设备,所述网络设备700包括:
收发单元710,用于向终端设备发送第一条件,所述第一条件用于指示所述终端设备根据所述终端设备与第一网络设备之间的往返传输时间RTT,将服务网络设备从所述源网络设备切换到目标网络设备,所述第一网络设备包括所述源网络设备和/或目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
可选地,在本申请实施例中,所述第一条件为测量上报条件,所述收发单元还用于:在所述终端设备与所述第一网络设备之间的RTT满足所述测量上报条件的情况下,接收所述终端设备发送的RRT测量报告;根据所述RTT测量报告,向所述目标网络设备发送切换请求;接收所述目标网络设备发送的切换确认消息,所述切换确认消息包括常规切换命令,所述常规切换命令用于指示所述终端设备执行切换;向所述终端设备发送所述常规切换命令。
可选地,在本申请实施例中,所述第一条件包括第二条件和第一触发时间,所述收发单元具体用于:在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到所述第一触发时间的情况下,接收所述终端设备发送的RRT测量报告。
可选地,在本申请实施例中,所述终端设备与所述第一网络设备之间的RTT满足所述第二条件,包括:所述终端设备与所述源网络设备之间的RTT,与所述终端设备与所述目标网络设备之间的RTT之差小于第一RTT门限;或所述终端设备与所述源网络设备之间的RTT大于第二RTT门限,且所述终端设备与所述目标网络设备之间的RTT小于第三RTT门限。
可选地,在本申请实施例中,所述测量上报条件承载于测量配置信息中。
可选地,在本申请实施例中,所述网络设备还包括:处理单元,用于在所述收发单 元接收到多个RTT测量报告的情况下,从所述多个RTT测量报告一一对应的多个网络设备中,确定所述目标网络设备。
可选地,在本申请实施例中,所述第一条件为切换条件,所述切换条件用于触发所述终端设备执行切换。
可选地,在本申请实施例中,所述切换条件承载于条件切换命令中。
可选地,在本申请实施例中,所述收发单元还用于:接收所述终端设备发送的指示信息,所述指示信息用于指示所述终端设备具有定位能力。
可选地,在本申请实施例中,所述指示信息携带在所述终端设备的用户设备UE能力消息中。
可选地,在本申请实施例中,所述网络设备应用于非地面通信网络NTN中。
应理解,根据本申请实施例的网络设备700可对应于本申请方法实施例中的源网络设备,并且网络设备700中的各个单元的上述和其它操作和/或功能分别为了实现图11方法中网络设备的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例提供的一种通信设备800示意性结构图。图14所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图14所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例的芯片的示意性结构图。图15所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图16是本申请实施例提供的一种通信系统1000的示意性框图。如图16所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者 软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术 人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (58)

  1. 一种用于切换网络设备的方法,其特征在于,包括:
    终端设备对所述终端设备与第一网络设备之间的往返传输时间RTT进行测量,所述第一网络设备包括源网络设备和/或目标网络设备;
    在所述终端设备与所述第一网络设备之间的RTT满足第一条件的情况下,所述终端设备将服务网络设备从所述源网络设备切换到所述目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一条件包括第二条件和第一触发时间,所述在所述终端设备与所述第一网络设备之间的RTT满足第一条件的情况下,所述终端设备将服务网络设备从所述源网络设备切换到所述目标网络设备,包括:
    在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到第一触发时间的情况下,所述终端设备将所述服务网络设备从所述源网络设备切换到所述目标网络设备。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备与所述第一网络设备之间的RTT满足所述第二条件,包括:
    所述终端设备与所述源网络设备之间的RTT,与所述终端设备与所述目标网络设备之间的RTT之差小于第一RTT门限;或
    所述终端设备与所述源网络设备之间的RTT大于第二RTT门限,且所述终端设备与所述目标网络设备之间的RTT小于第三RTT门限。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一条件为测量上报条件,在所述终端设备与所述第一网络设备之间的RTT满足第一条件的情况下,所述终端设备将服务网络设备从所述源网络设备切换到所述目标网络设备,包括:
    在所述终端设备与所述第一网络设备之间的RTT满足所述测量上报条件的情况下,所述终端设备向所述源网络设备发送RTT测量报告;
    所述终端设备根据所述目标网络设备生成的常规切换命令,将所述服务网络设备从所述源网络设备切换到所述目标网络设备。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备对所述终端设备与第一网络设备之间的往返传输时间RTT进行测量,包括:
    所述终端设备根据所述源网络设备发送的测量配置信息,对所述终端设备与所述第一网络设备之间的RTT进行测量。
  6. 根据权利要求5所述的方法,其特征在于,所述测量配置信息包括所述测量上报条件。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一条件为切换条件,所述切换条件用于触发所述终端设备执行切换。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备对所述终端设备与第一网络设备之间的往返传输时间RTT进行测量,包括:
    所述终端设备根据所述源网络设备发送的条件切换命令,对所述终端设备与所述第一网络设备之间的RTT进行测量。
  9. 根据权利要求8所述的方法,其特征在于,所述条件切换命令包括所述切换条件。
  10. 根据权利要求9所述的方法,其特征在于,所述条件切换命令包括至少一个候选网络设备的配置信息,所述方法还包括:
    所述终端设备从所述至少一个候选网络设备中确定所述目标网络设备。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述源网络设备发送指示信息,所述指示信息用于指示所述终端设备具有定位能力。
  12. 根据权利要求11所述的方法,其特征在于,所述指示信息携带在所述终端设备的用户设备UE能力消息中。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN中。
  14. 一种用于切换网络设备的方法,其特征在于,包括:
    源网络设备向终端设备发送第一条件,所述第一条件用于指示所述终端设备根据所述终端设备与第一网络设备之间的往返传输时间RTT,将服务网络设备从所述源网络设备切换到目标网络设备,所述第一网络设备包括所述源网络设备和/或目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
  15. 根据权利要求14所述的方法,其特征在于,所述第一条件为测量上报条件,所述方法还包括:
    在所述终端设备与所述第一网络设备之间的RTT满足所述测量上报条件的情况下,所述源网络设备接收所述终端设备发送的RRT测量报告;
    所述源网络设备根据所述RTT测量报告,向所述目标网络设备发送切换请求;
    所述源网络设备接收所述目标网络设备发送的切换确认消息,所述切换确认消息包括常规切换命令,所述常规切换命令用于指示所述终端设备执行切换;
    所述源网络设备向所述终端设备发送所述常规切换命令。
  16. 根据权利要求15所述的方法,其特征在于,所述第一条件包括第二条件和第一触发时间,所述在所述终端设备与所述第一网络设备之间的RTT满足所述第一条件的情况下,所述源网络设备接收所述终端设备发送的RRT测量报告,包括:
    在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到所述第一触发时间的情况下,所述源网络设备接收所述终端设备发送的RRT测量报告。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备与所述第一网络设备之间的RTT满足所述第二条件,包括:
    所述终端设备与所述源网络设备之间的RTT,与所述终端设备与所述目标网络设备之间的RTT之差小于第一RTT门限;或
    所述终端设备与所述源网络设备之间的RTT大于第二RTT门限,且所述终端设备与所述目标网络设备之间的RTT小于第三RTT门限。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述测量上报条件承载于测量配置信息中。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述方法还包括:
    在所述源网络设备接收到多个RTT测量报告的情况下,所述源网络设备从所述多个RTT测量报告一一对应的多个网络设备中,确定所述目标网络设备。
  20. 根据权利要求14所述的方法,其特征在于,所述第一条件为切换条件,所述切换条件用于触发所述终端设备执行切换。
  21. 根据权利要求20所述的方法,其特征在于,所述切换条件承载于条件切换命令中。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述方法还包括:
    所述源网络设备接收所述终端设备发送的指示信息,所述指示信息用于指示所述终端设备具有定位能力。
  23. 根据权利要求22所述的方法,其特征在于,所述指示信息携带在所述终端设备的用户设备UE能力消息中。
  24. 根据权利要求14至23中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN中。
  25. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于对所述终端设备与第一网络设备之间的往返传输时间RTT进行测量,所述第一网络设备包括源网络设备和/或目标网络设备,以及
    在所述终端设备与所述第一网络设备之间的RTT满足第一条件的情况下,将服务网络设备从所述源网络设备切换到所述目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
  26. 根据权利要求25所述的终端设备,其特征在于,所述第一条件包括第二条件和第一触发时间,所述处理单元具体用于:
    在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到第一触发时间的情况下,将所述服务网络设备从所述源网络设备切换到所述目标网络设备。
  27. 根据权利要求26所述的终端设备,其特征在于,所述终端设备与所述第一网络设备之间的RTT满足所述第二条件,包括:
    所述终端设备与所述源网络设备之间的RTT,与所述终端设备与所述目标网络设备之间的RTT之差小于第一RTT门限;或
    所述终端设备与所述源网络设备之间的RTT大于第二RTT门限,且所述终端设备与所述目标网络设备之间的RTT小于第三RTT门限。
  28. 根据权利要求25至27中任一项所述的终端设备,其特征在于,所述第一条件为测量上报条件,所述终端设备还包括:
    收发单元,用于在所述终端设备与所述第一网络设备之间的RTT满足所述测量上报 条件的情况下,向所述源网络设备发送RTT测量报告;
    所述处理单元具体用于:
    根据所述目标网络设备生成的常规切换命令,将所述服务网络设备从所述源网络设备切换到所述目标网络设备。
  29. 根据权利要求28所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述源网络设备发送的测量配置信息,对所述终端设备与所述第一网络设备之间的RTT进行测量。
  30. 根据权利要求29所述的终端设备,其特征在于,所述测量配置信息包括所述测量上报条件。
  31. 根据权利要求25至27中任一项所述的终端设备,其特征在于,所述第一条件为切换条件,所述切换条件用于触发所述终端设备执行切换。
  32. 根据权利要求31所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述源网络设备发送的条件切换命令,对所述终端设备与所述第一网络设备之间的RTT进行测量。
  33. 根据权利要求32所述的终端设备,其特征在于,所述条件切换命令包括所述切换条件。
  34. 根据权利要求33所述的终端设备,其特征在于,所述条件切换命令包括至少一个候选网络设备的配置信息,所述处理单元还用于:
    从所述至少一个候选网络设备中确定所述目标网络设备。
  35. 根据权利要求25至34中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    收发单元,用于向所述源网络设备发送指示信息,所述指示信息用于指示所述终端设备具有定位能力。
  36. 根据权利要求35所述的终端设备,其特征在于,所述指示信息携带在所述终端设备的用户设备UE能力消息中。
  37. 根据权利要求25至36中任一项所述的终端设备,其特征在于,所述终端设备应用于非地面通信网络NTN中。
  38. 一种网络设备,其特征在于,所述网络设备为源网络设备,所述网络设备包括:
    收发单元,用于向终端设备发送第一条件,所述第一条件用于指示所述终端设备根据所述终端设备与第一网络设备之间的往返传输时间RTT,将服务网络设备从所述源网络设备切换到目标网络设备,所述第一网络设备包括所述源网络设备和/或目标网络设备,所述服务网络设备是为所述终端设备提供服务的网络设备。
  39. 根据权利要求38所述的网络设备,其特征在于,所述第一条件为测量上报条件,所述收发单元还用于:
    在所述终端设备与所述第一网络设备之间的RTT满足所述测量上报条件的情况下,接收所述终端设备发送的RRT测量报告;
    根据所述RTT测量报告,向所述目标网络设备发送切换请求;
    接收所述目标网络设备发送的切换确认消息,所述切换确认消息包括常规切换命令,所述常规切换命令用于指示所述终端设备执行切换;
    向所述终端设备发送所述常规切换命令。
  40. 根据权利要求39所述的网络设备,其特征在于,所述第一条件包括第二条件和第一触发时间,所述收发单元具体用于:
    在所述终端设备与所述第一网络设备之间的RTT满足所述第二条件的持续时间达到所述第一触发时间的情况下,接收所述终端设备发送的RRT测量报告。
  41. 根据权利要求40所述的网络设备,其特征在于,所述终端设备与所述第一网络设备之间的RTT满足所述第二条件,包括:
    所述终端设备与所述源网络设备之间的RTT,与所述终端设备与所述目标网络设备之间的RTT之差小于第一RTT门限;或
    所述终端设备与所述源网络设备之间的RTT大于第二RTT门限,且所述终端设备与所述目标网络设备之间的RTT小于第三RTT门限。
  42. 根据权利要求39至41中任一项所述的网络设备,其特征在于,所述测量上报条件承载于测量配置信息中。
  43. 根据权利要求39至42中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    处理单元,用于在所述收发单元接收到多个RTT测量报告的情况下,从所述多个 RTT测量报告一一对应的多个网络设备中,确定所述目标网络设备。
  44. 根据权利要求38所述的网络设备,其特征在于,所述第一条件为切换条件,所述切换条件用于触发所述终端设备执行切换。
  45. 根据权利要求44所述的网络设备,其特征在于,所述切换条件承载于条件切换命令中。
  46. 根据权利要求38至45中任一项所述的网络设备,其特征在于,所述收发单元还用于:
    接收所述终端设备发送的指示信息,所述指示信息用于指示所述终端设备具有定位能力。
  47. 根据权利要求46所述的网络设备,其特征在于,所述指示信息携带在所述终端设备的用户设备UE能力消息中。
  48. 根据权利要求38至47中任一项所述的网络设备,其特征在于,所述网络设备应用于非地面通信网络NTN中。
  49. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法。
  50. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求14至24中任一项所述的方法。
  51. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  52. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求14至24中任一项所述的方法。
  53. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  54. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求14至24中任一项所述的方法。
  55. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  56. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求14至24中任一项所述的方法。
  57. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  58. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求14至24中任一项所述的方法。
PCT/CN2019/106276 2019-09-17 2019-09-17 用于切换网络设备的方法、终端设备和网络设备 WO2021051286A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/106276 WO2021051286A1 (zh) 2019-09-17 2019-09-17 用于切换网络设备的方法、终端设备和网络设备
CN201980094089.3A CN113597784B (zh) 2019-09-17 2019-09-17 用于切换网络设备的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106276 WO2021051286A1 (zh) 2019-09-17 2019-09-17 用于切换网络设备的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2021051286A1 true WO2021051286A1 (zh) 2021-03-25

Family

ID=74883437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106276 WO2021051286A1 (zh) 2019-09-17 2019-09-17 用于切换网络设备的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN113597784B (zh)
WO (1) WO2021051286A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784408A (zh) * 2021-11-11 2021-12-10 荣耀终端有限公司 一种网络切换方法及电子设备
CN114451001A (zh) * 2021-12-28 2022-05-06 北京小米移动软件有限公司 信息上报方法、装置、设备及存储介质
WO2024051701A1 (zh) * 2022-09-05 2024-03-14 展讯通信(上海)有限公司 调度优化方法、装置、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023077328A1 (zh) * 2021-11-03 2023-05-11 Oppo广东移动通信有限公司 Ntn中终端设备上报定时提前的方法、终端设备及存储介质
KR20240052817A (ko) * 2022-04-15 2024-04-23 지티이 코포레이션 네트워크 기반 포지셔닝을 위한 시스템 및 방법
WO2024000106A1 (zh) * 2022-06-27 2024-01-04 Oppo广东移动通信有限公司 条件切换的控制方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019011398A1 (en) * 2017-07-10 2019-01-17 Motorola Mobility Llc CONNECTING MULTIPLE ACCESS DATA IN A MOBILE NETWORK
WO2019019825A1 (zh) * 2017-07-27 2019-01-31 华为技术有限公司 一种拥塞控制方法及相关设备
CN109309937A (zh) * 2017-07-26 2019-02-05 华为技术有限公司 切换接入点的方法、控制器、网络设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2117170A1 (en) * 2008-05-07 2009-11-11 Nokia Siemens Networks Oy Optimizing a transmission path between a mobile terminal and a core network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019011398A1 (en) * 2017-07-10 2019-01-17 Motorola Mobility Llc CONNECTING MULTIPLE ACCESS DATA IN A MOBILE NETWORK
CN109309937A (zh) * 2017-07-26 2019-02-05 华为技术有限公司 切换接入点的方法、控制器、网络设备和存储介质
WO2019019825A1 (zh) * 2017-07-27 2019-01-31 华为技术有限公司 一种拥塞控制方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Connected mode mobility aspects for NTN GEO", 3GPP DRAFT; R2-1907158 MOBILITY FOR GEO NTN, vol. RAN WG2, 2 May 2019 (2019-05-02), Reno, Nevada, US, pages 1 - 9, XP051711449 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113784408A (zh) * 2021-11-11 2021-12-10 荣耀终端有限公司 一种网络切换方法及电子设备
CN114451001A (zh) * 2021-12-28 2022-05-06 北京小米移动软件有限公司 信息上报方法、装置、设备及存储介质
WO2023123002A1 (zh) * 2021-12-28 2023-07-06 北京小米移动软件有限公司 信息上报方法、装置、设备及存储介质
CN114451001B (zh) * 2021-12-28 2024-03-19 北京小米移动软件有限公司 信息上报方法、装置、设备及存储介质
WO2024051701A1 (zh) * 2022-09-05 2024-03-14 展讯通信(上海)有限公司 调度优化方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113597784A (zh) 2021-11-02
CN113597784B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2021051286A1 (zh) 用于切换网络设备的方法、终端设备和网络设备
KR101637137B1 (ko) 이기종 셀룰러 네트워크들에서의 핸드오버를 위한 방법 및 장치
WO2021051388A1 (zh) 小区切换的方法和设备
CN108886725B (zh) 用于促进终端设备的切换的网络设备、终端设备和方法
CN113170367B (zh) 用于切换网络设备的方法和终端设备
US10064111B2 (en) Configuring a discard timer
WO2021159283A1 (zh) 非地面通信网络ntn切换方法、设备及存储介质
RU2741324C1 (ru) Способ переключения, устройство доступа к сети и оконечное устройство
US20130201904A1 (en) Handover of Connection of User Equipment
EP3028501B1 (en) Methods and apparatus for dual connectivity
KR20110071688A (ko) 이동통신 시스템에서 핸드오버 처리 방법
US20220070747A1 (en) Method for switching between access network devices, terminal device, and network device
CN113678475B (zh) 小区切换的方法和设备
CN108243470B (zh) 一种小区切换方法及基站
WO2021168627A1 (zh) 一种传输控制方法、终端设备、网络设备
WO2020164026A1 (zh) 随机接入的方法、终端设备和网络设备
CN107318136B (zh) 一种终端信息的传输方法及装置
EP4304247A1 (en) Communication method and communication apparatus
WO2023093373A1 (zh) 一种用于建立连接的方法和通信装置
WO2020252709A1 (zh) 无线通信的方法、网络设备和终端设备
CN117939547A (zh) 条件切换方法、通信节点及存储介质
CN112753249A (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946230

Country of ref document: EP

Kind code of ref document: A1