WO2021049409A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2021049409A1
WO2021049409A1 PCT/JP2020/033427 JP2020033427W WO2021049409A1 WO 2021049409 A1 WO2021049409 A1 WO 2021049409A1 JP 2020033427 W JP2020033427 W JP 2020033427W WO 2021049409 A1 WO2021049409 A1 WO 2021049409A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
region
actuator
predetermined actuator
detection device
Prior art date
Application number
PCT/JP2020/033427
Other languages
French (fr)
Japanese (ja)
Inventor
未路来 山本
寺島 淳
辰雄 山崎
Original Assignee
ヤンマーパワーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマーパワーテクノロジー株式会社 filed Critical ヤンマーパワーテクノロジー株式会社
Priority to KR1020217035573A priority Critical patent/KR20220056156A/en
Publication of WO2021049409A1 publication Critical patent/WO2021049409A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload

Definitions

  • This disclosure relates to construction machinery.
  • Patent Document 1 includes an obstacle detection device that detects an obstacle in a monitoring area set around the machine body, and is configured to stop operation when an obstacle is detected by the obstacle detection device.
  • a hydraulic excavator as a construction machine has been described.
  • Patent Document 2 also describes a hydraulic excavator having a similar function.
  • the present disclosure has focused on the above issues, and an object of the present disclosure is to provide a construction machine capable of reducing the impact given to an operator due to a stoppage due to an intrusion of an obstacle.
  • the construction machine of the present disclosure includes a lower traveling body, an upper swivel body rotatably supported with respect to the lower traveling body, a working machine attached to the upper swivel body, the lower traveling body, and the upper swivel body.
  • a predetermined actuator provided on the body or the work machine, an engine for driving a hydraulic pump for pumping pressure oil to a plurality of actuators including the predetermined actuator, a first region set around the machine body, and the above.
  • an obstacle detection device that detects an obstacle in the monitoring area including the second area set outside the first area and an obstacle in the first area are detected by the obstacle detection device.
  • the hydraulic excavator 1 includes a lower traveling body 2, an upper rotating body 3 rotatably supported by the lower traveling body 2, and a working machine attached to the upper rotating body 3. 4 and.
  • the hydraulic excavator 1 has a so-called boom swing function of swinging the work machine 4 left and right with respect to the upper swing body 3, but is not limited to this.
  • the boom swing function is installed in a mini excavator (small hydraulic excavator) used for construction in a narrow space.
  • the lower traveling body 2 is driven by receiving power from the engine 30 to drive the hydraulic excavator 1.
  • the lower traveling body 2 includes a pair of left and right crawlers 21L and 21R, and traveling motors 22L and 22R for driving them.
  • the traveling motors 22L and 22R are traveling actuators for driving the lower traveling body 2, and are each composed of a hydraulic motor.
  • the lower traveling body 2 is provided with a pair of blade arms 23, 23, a blade 24 as a soil removal plate extending in the left-right direction between the tips thereof, and an actuator for rotating the blade 24 up and down.
  • a certain blade cylinder 25 is provided.
  • the blade cylinder 25 is composed of a hydraulic cylinder.
  • the upper swivel body 3 includes a swivel frame 31 in which a cabin 50 or the like is installed, and a swivel motor 32 that swivels and drives the swivel frame 31.
  • the swivel motor 32 is a swivel actuator that drives the upper swivel body 3, and is composed of a hydraulic motor.
  • the upper swivel body 3 is formed in a substantially disk shape in a plan view that can swivel within the lateral width of the lower traveling body 2 (the distance between the outer edge of the crawler 21L on the left side and the outer edge of the crawler 21R on the right side). ..
  • An engine 30, a hydraulic pump (variable-capacity pump 61 and fixed-capacity pump 62, which will be described later), a counterweight 33, and the like are arranged at the rear of the upper swing body 3.
  • the work machine 4 is driven by receiving power from the engine 30, and excavates earth and sand according to the operation of the control unit 5.
  • the work machine 4 has a boom 41, an arm 42, a bucket 43 which is an attachment for excavation, and a work actuator for driving the work machine 4.
  • the working actuators are a boom cylinder 41c, an arm cylinder 42c, a bucket cylinder 43c and a swing cylinder 45, which will be described later, and these are composed of a hydraulic cylinder.
  • the work machine 4 swings in conjunction with the horizontal rotation of the boom bracket 41b, and moves horizontally relative to the upper swing body 3.
  • the boom 41 extends in the vertical direction from the base end portion supported by the boom bracket 41b, and is bent in a boomerang shape in a side view.
  • the boom 41 is attached to the boom bracket 41b so that it can rotate up and down (rotate back and forth).
  • the base end portion of the boom 41 is supported so as to be rotatable up and down around the pivot pin 41a.
  • a boom cylinder 41c that can be expanded and contracted is provided between the boom bracket 41b and the middle portion of the boom 41.
  • the vertical rotation of the boom 41 with respect to the boom bracket 41b operates according to the expansion and contraction of the boom cylinder 41c.
  • the boom bracket 41b is attached to the front end of the upper swing body 3 so as to be horizontally rotatable (swing) via the boom bracket mounting portion 34.
  • the boom bracket 41b is supported so as to be horizontally rotatable about a pivot pin 34a provided on the boom bracket mounting portion 34.
  • a swing cylinder 45 that expands and contracts in the front-rear direction is provided between the upper swing body 3 and the boom bracket 41b. The horizontal rotation of the boom bracket 41b operates according to the expansion and contraction of the swing cylinder 45.
  • the arm 42 is attached to the boom 41 so that it can rotate up and down (rotate back and forth).
  • the base end portion of the arm 42 is supported so as to be rotatable up and down around the pivot pin 42a.
  • An arm cylinder 42c that can be expanded and contracted is provided between the middle portion of the boom 41 and the base end portion of the arm 42. The vertical rotation of the arm 42 with respect to the boom 41 operates according to the expansion and contraction of the arm cylinder 42c.
  • the bucket 43 is attached to the arm 42 so as to be vertically rotatable.
  • the base end portion of the bucket 43 is supported so as to be freely rotated up and down (rotated back and forth) about the pivot pin 43a.
  • a bucket link 44 that transmits a driving force to the bucket 43 is interposed between the tip of the arm 42 and the bucket 43.
  • a bucket cylinder 43c that can be expanded and contracted is provided between the bucket link 44 and the base end portion of the arm 42.
  • the vertical rotation of the bucket 43 with respect to the arm 42 operates according to the expansion and contraction of the bucket cylinder 43c.
  • the control unit 5 is provided above the upper swivel body 3. In the present embodiment, the control unit 5 is surrounded by the cabin 50, but the present invention is not limited to this. As shown in FIG. 3, the control unit 5 has a driver's seat 51 for the operator to sit on, a traveling lever 52 located in front of the driver's seat 51 (see FIG. 1), and a position on the side of the driver's seat 51. A work operation lever 53 is installed. The operator can control the engine 30 and each actuator by operating the traveling lever 52, the working operation lever 53, and the like while sitting in the driver's seat 51, and can perform traveling, turning, and operating the work machine 4.
  • the work operation lever 53 is attached to the upper part of a pair of console boxes 54 arranged on the left and right sides of the driver's seat 51.
  • a cut-off lever 55 that rotates up and down is provided in the lower front portion of the console box 54.
  • the work operation lever 53 and the cutoff lever 55 are arranged so as to extend forward and prevent the operator from leaving the driver's seat 51.
  • the console box 54 rotates rearward in conjunction with the pulling up, so that the operator can get on and off from the driver's seat 51 without any problem.
  • a link mechanism (not shown) that rotates the console box 54 in conjunction with the pulling operation of the cutoff lever 55, and a cutoff switch 56 that detects the rotation position of the cutoff lever 55. And are provided.
  • the cutoff switch 56 is turned on when the cutoff lever 55 is pushed down (rotated downward), and turned off when the cutoff lever 55 is pulled up (rotated upward). Become in a state.
  • the electromagnetic proportional valve 67 When the cutoff switch 56 is turned on by pushing down the cutoff lever 55, the electromagnetic proportional valve 67, which will be described later, is energized and a predetermined actuator can be driven. On the other hand, when the cutoff switch 56 is turned off by the pulling operation of the cutoff lever 55, the electromagnetic proportional valve 67 is de-energized and the pilot oil passage is shut off. As a result, the operation of the predetermined actuator is restricted, and even if the traveling lever 52 or the like is operated, the operation becomes inoperable. The operator pulls up the cutoff lever 55 to make the actuator inoperable, and then leaves the driver's seat 51.
  • FIG. 4 shows a hydraulic circuit 6 mounted on the hydraulic excavator 1 of the present embodiment.
  • the hydraulic excavator 1 includes a plurality of actuators 60 including predetermined actuators, and an engine 30 for driving a variable displacement pump 61 and a fixed capacitance pump 62, which are hydraulic pumps that pump pressure oil to the plurality of actuators 60.
  • the variable displacement pump 61 pumps pressure oil to the traveling motors 22L and 22R, the boom cylinder 41c, the arm cylinder 42c and the bucket cylinder 43c.
  • the fixed-capacity pump 62 pumps pressure oil to the blade cylinder 25, the swivel motor 32, and the swing cylinder 45.
  • the plurality of actuators 60 are a traveling motor 22L and a traveling motor 22R which are driving hydraulic actuators for driving the lower traveling body 2, a blade cylinder 25 which is a hydraulic actuator for rotating the blade 24 up and down, and a turning for driving the upper rotating body 3. It includes a swivel motor 32 which is a flood control actuator for work, and a boom cylinder 41c, an arm cylinder 42c, a bucket cylinder 43c and a swing cylinder 45 which are hydraulic actuators for work that drive a work machine 4.
  • Each of the plurality of actuators 60 is provided with a corresponding direction switching valve.
  • This directional control valve is a pilot-type directional control valve capable of switching the direction and flow rate of the pressure oil pumped from the variable displacement pump 61 or the fixed capacitance pump 62.
  • the directional switching valves 64a and 64b corresponding to the traveling motors 22L and 22R
  • the directional switching valve 64c corresponding to the boom cylinder 41c
  • the directional switching valve 64d corresponding to the arm cylinder 42c
  • the directional switching corresponding to the bucket cylinder 43c the directional switching valve 64a and 64b corresponding to the traveling motors 22L and 22R
  • the directional switching valve 64c corresponding to the boom cylinder 41c
  • the directional switching valve 64d corresponding to the arm cylinder 42c
  • a valve 64e, a directional switching valve 64f corresponding to the blade cylinder 25, a directional switching valve 64g corresponding to the swivel motor 32, and a directional switching valve 64h corresponding to the swing cylinder 45 are provided. These direction switching valves 64a to 64h are collectively referred to as a control valve 64.
  • the pilot pump 63 discharges pilot oil, which is an input command to the control valve 64.
  • the pilot pump 63 driven by the engine 30 generates pilot pressure in the pilot oil passage by discharging pressure oil.
  • a part of the oil passage from the pilot pump 63 to the control valve 64 is omitted, and in reality, an oil passage from the pilot pump 63 to each of the direction switching valves 64a to 64h is provided.
  • the traveling operation device 65 has a remote control valve 650 for switching the direction and pressure of the pressure oil supplied to the direction switching valve 64a corresponding to the traveling motor 22L.
  • the pressure oil discharged from the pilot pump 63 is supplied to the remote control valve 650.
  • the remote control valve 650 generates a pilot pressure according to the operation direction and the operation amount of the traveling operation device 65.
  • the traveling operation device 65 is composed of a traveling lever 52.
  • the boom operating device 66 has a remote control valve 660 for switching the direction and pressure of the pressure oil supplied to the direction switching valve 64c corresponding to the boom cylinder 41c.
  • the pressure oil discharged from the pilot pump 63 is supplied to the remote control valve 660.
  • the remote control valve 660 generates a pilot pressure according to the operation direction and the operation amount of the boom operation device 66.
  • the boom operation device 66 is composed of a work operation lever 53.
  • the oil passage (not shown) between the pilot pump 63 and the control valve 64 has the same configuration as the above, and a pilot pressure is generated according to the operation of each operating device.
  • An electromagnetic proportional valve 67 as a prohibition device is provided in the oil passage between the pilot pump 63 and each remote control valve.
  • the electromagnetic proportional valve 67 regulates the pilot pressure in response to a control command from the integrated ECU 7.
  • the hydraulic excavator 1 has an integrated ECU (Electronic Control Unit) 7 as a control device and an engine ECU 300 that controls the drive of the engine 30 based on a command from the integrated ECU 7.
  • the integrated ECU 7 controls the control system of the hydraulic excavator 1 and outputs a control instruction to the hydraulic pump and a control instruction to the engine ECU 300 described above.
  • the obstacle detection signal output from the obstacle detection device 8 is input to the integrated ECU 7.
  • the obstacle detection device 8 detects obstacles (including people) in the monitoring area set around the hydraulic excavator 1.
  • the obstacle detection device 8 is composed of one or more obstacle sensors 80 (see FIGS. 1 and 2) installed on the hydraulic excavator 1. In this embodiment, four obstacle sensors 80 are installed, but FIG. 2 shows only three obstacle sensors 80. As long as obstacles can be detected within the required range, the number of obstacle sensors, the installation location, and the installation method are not particularly limited.
  • a known distance measuring device capable of acquiring distance information of an obstacle can be applied to the obstacle sensor 80. For example, a millimeter-wave radar that uses radio waves in the millimeter-wave band, a LIDER that measures scattered light from laser irradiation to determine the distance, and multiple camera functions that are integrated into the camera to determine the distance from the captured image to the object. A stereo camera or the like for measurement is used as the obstacle sensor 80.
  • the hydraulic excavator 1 of the present embodiment includes a reach detection device 9 that detects the reach of the work machine 4 that changes according to the operation.
  • the reach of the working machine 4 is determined as, for example, a horizontal distance from the turning center of the upper turning body 3 to the tip of the bucket 43 (or the arm 42 or the boom 41).
  • the reach can be detected by using a plurality of position sensors (not shown) installed in the work machine 4.
  • An inertial sensor such as an acceleration sensor is used as the position sensor, but the position sensor is not limited to this, and for example, a gyro sensor, an angle sensor (tilt sensor), and a cylinder sensor (stroke sensor) can also be used.
  • the reach detection signal output from the reach detection device 9 is input to the integrated ECU 7.
  • FIG. 5 schematically shows the monitoring area Am by the obstacle detection device 8, and the hydraulic excavator 1 is in a state where the reach of the work machine 4 is maximized.
  • the monitoring area Am includes a first area A1 set around the aircraft and a second area A2 set outside the first area A1.
  • the second region A2 is set to a ring shape having the turning locus of the tip of the working machine 4 having the maximum reach as the outer edge.
  • the first region A1 has a circular shape having an outer edge separated from the outer edge of the second region A2 by a certain distance D (for example, 2 m) inward.
  • the first region A1 is set to a size including the upper swivel body 3.
  • the outer edges of the first region A1 and the second region A2 are not limited to a circular shape, but may be a rectangular shape or the like.
  • the size of the first region A1 and the second region A2 (size in a plan view) is not particularly limited, and can be appropriately set according to the model of the construction machine, the type of the construction site, and the like. .. Therefore, for example, in order to further enhance safety, the second region A2 shown in FIG. 5 may be set as the first region, and the second region may be set outside the second region A2.
  • the size of one or both of the first region A1 and the second region A2 may be changed according to the reach of the working machine 4.
  • the size of the second region A2 may be changed according to the expansion and contraction of the working machine 4. In this case, if the reach of the working machine 4 is shortened, the second region A2 becomes smaller accordingly, which is convenient for the worker to work in the surrounding area. It is also possible to change the size of the first region A1 in place of or in addition to the second region A2. Such resizing of each region is performed by the integrated ECU 7 based on the reach detection signal from the reach detection device 9.
  • the hydraulic excavator 1 is provided by an electromagnetic proportional valve 67 as a prohibition device for prohibiting the driving of a predetermined actuator when an obstacle in the first region A1 is detected by the obstacle detection device 8, and an obstacle detection device 8. It includes an integrated ECU 7 as a control device that performs speed reduction control for reducing the speed of a predetermined actuator when an obstacle in the second region A2 is detected. Therefore, the first region A1 is set as a stop region for stopping the predetermined actuator, and the second region A2 is set as the speed reduction region for slowing down the predetermined actuator.
  • a predetermined actuator that is subject to drive prohibition or speed reduction is provided in the lower traveling body 2, the upper turning body 3, or the working machine 4.
  • the predetermined actuators include traveling motors 22L and 22R, a swivel motor 32, a boom cylinder 41c, an arm cylinder 42c, and a bucket cylinder 43c. Some of these may not be included, but from the viewpoint of enhancing safety, it is preferable that the traveling motors 22L and 22R are included as predetermined actuators, and in addition, the swivel motor 32 is more likely to be included.
  • a boom cylinder 41c, an arm cylinder 42c and a bucket cylinder 43c are more preferably included.
  • FIG. 7 is a flowchart showing an example of processing related to obstacle detection.
  • a worker working in the vicinity of the hydraulic excavator 1 invades the monitoring area Am, it is detected as an obstacle, and an obstacle detection signal including the distance information of the obstacle is input to the integrated ECU 7. .. Then, when the worker invades the second region A2, the integrated ECU 7 performs speed reduction control (steps S1 and S2). Further, when the worker invades the first region A1, the predetermined actuator whose drive is prohibited by the electromagnetic proportional valve 67 is stopped (steps S3 and S4).
  • the operation by the predetermined actuator is stopped, so that contact with the worker is avoided.
  • the speed of the predetermined actuator is reduced when the operator enters the second region A2, the sudden stop can be suppressed and the actuator can be stopped quickly. Therefore, it is possible to reduce the impact given to the operator due to the stoppage due to the intrusion of an obstacle.
  • the obstacle detected by the obstacle detection device 8 is not limited to the operator.
  • the integrated ECU 7 sends a command to lower the target rotation speed of the engine 30 to the engine ECU 300 as shown in FIG.
  • the pump flow rate of the hydraulic pump can be reduced and the speed of a predetermined actuator can be reduced.
  • the integrated ECU 7 controls the speed reduction by lowering the target rotation speed of the engine 30.
  • the integrated ECU 7 controls the speed reduction by setting the target rotation speed of the engine 30 to a value lower than the rated rotation speed.
  • the speed reduction system is performed by lowering the target rotation speed of the engine 30, but the speed is not limited to this.
  • a signal for lowering the pump flow rate may be transmitted from the integrated ECU 7 to the swash plate control unit of the variable displacement pump 61 constituting the hydraulic pump, thereby lowering the driving speed of a predetermined actuator.
  • the drive speed of the predetermined actuator may be reduced by sending a command to reduce the pilot pressure from the integrated ECU 7 to the electromagnetic proportional valve 67.
  • the integrated ECU 7 sends a command to shut off the current of the electromagnetic proportional valve 67 as shown in FIG.
  • the electromagnetic proportional valve 67 shuts off the pilot pressure input to the directional control valve corresponding to the predetermined actuator based on the command.
  • the solenoid proportional valve 67 is used as the prohibition device, but a solenoid valve can be used instead.
  • FIG. 10 is a flowchart showing an example of the process of canceling the speed reduction control
  • FIG. 11 is a block diagram showing the process.
  • the hydraulic excavator 1 is provided with a cut-off lever 55 that limits the operation of a predetermined actuator, and in this release process, the cut-off lever 55 is used to enhance safety.
  • step S11 the operation of the predetermined actuator is not restricted, and the cutoff lever 55 is pushed down (step S11). Then, when an obstacle in the second region A2 is detected, the integrated ECU 7 performs speed reduction control (steps S12 and S13). Further, when an obstacle in the first region A1 is detected, the electromagnetic proportional valve 67 prohibits the driving of predetermined actuators, and their operation is stopped (steps S16 and S17).
  • step S13 When the operator pulls up the cutoff lever 55 after the speed reduction control is performed (that is, after step S13), the cutoff switch 56 is turned off as shown in FIG. 11, and the target rotation speed of the engine 30 is restored.
  • a command is sent from the integrated ECU 7 to the engine ECU 300, and the speed reduction control is released (steps S14 and S15). That is, the speed reduction control can be released on condition that the operation of the predetermined actuator is restricted by the pulling operation of the cutoff lever 55.
  • the speed reduction control is released, the operation of the predetermined actuator is temporarily stopped, so that the operator can be urged to confirm the safety of the surroundings.
  • FIG. 12 is a flowchart showing an example of the process of releasing the drive prohibition of the actuator
  • FIG. 13 is a block diagram showing the process. Since the process of FIG. 12 is substantially the same as the process of FIG. 10 except for steps S24 and S29 to S31, duplicate description will be omitted.
  • FIG. 12 when the operator pulls up the cutoff lever 55 after the predetermined actuator is stopped (that is, after step S28) and no obstacles in the first region A1 and the second region A2 are detected, FIG. 13 As described above, the cutoff switch 56 is turned off, a command for returning the target rotation speed of the engine 30 is sent from the integrated ECU 7 to the engine ECU 300, and the actuator stop is released (steps S29 to S31).
  • the operation of a predetermined actuator is restricted by the pulling operation of the cutoff lever 55, and the obstacle detection device 8 causes obstacles in the first region A1 and the second region A2. It is configured so that the prohibition of driving a predetermined actuator can be lifted on condition that it is not detected. As a result, when the prohibition of driving the predetermined actuator is released and the speed of the actuator is restored, the operation of the predetermined actuator is temporarily stopped and the safety is confirmed by the obstacle detection device 8, so that the safety is improved. It can be further enhanced.
  • the construction machine of the present disclosure includes a lower traveling body, an upper swivel body rotatably supported with respect to the lower traveling body, a working machine attached to the upper swivel body, and the lower traveling body.
  • a predetermined actuator provided on the body, the upper swing body or the working machine, an engine for driving a hydraulic pump for pumping pressure oil to a plurality of actuators including the predetermined actuator, and a third set around the machine body.
  • An obstacle detection device that detects an obstacle in a monitoring area including one area and a second area set outside the first area, and an obstacle detection device that detects an obstacle in the first area.
  • a prohibition device that prohibits the driving of the predetermined actuator when detected, and a low speed that reduces the speed of the predetermined actuator when an obstacle in the second region is detected by the obstacle detection device. It is provided with a control device for performing chemical control.
  • control device performs the speed reduction control by setting the target rotation speed of the engine to a value lower than the rated rotation speed. According to this configuration, the operator and surrounding workers can intuitively recognize the danger of contact by the sound of the change in engine speed.
  • the construction machine of the present disclosure includes a cut-off lever that limits the operation of the predetermined actuator, and the speed reduction control is provided on the condition that the operation of the predetermined actuator is restricted by the pulling operation of the cut-off lever. It is preferable that the configuration is such that the above can be released. As a result, when the speed reduction control is released and the speed of the actuator is restored, the operation of the predetermined actuator is temporarily stopped, so that the operator can be urged to confirm the safety of the surroundings.
  • the construction machine of the present disclosure includes a cut-off lever that limits the operation of the predetermined actuator, the operation of the predetermined actuator is restricted by the pulling operation of the cut-off lever, and the obstacle detection device causes the first.
  • the structure is such that the prohibition of driving the predetermined actuator can be released on condition that no obstacle is detected in the first region and the second region.
  • It may be configured so that the size of one or both of the first region and the second region changes according to the reach of the working machine. Thereby, the size of the first region and / or the second region can be easily changed according to the work situation and the like.
  • the present invention can be used for construction machines such as hydraulic excavators.
  • Hydraulic excavator 2 Lower traveling body 3 Upper swivel body 4 Working machine 7 Integrated ECU (an example of control device) 22L traveling motor (example of actuator) 22R traveling motor (an example of actuator) 30 engine 32 swivel motor (example of actuator) 41c boom cylinder (an example of actuator) 42c arm cylinder (an example of actuator) 43c bucket cylinder (an example of actuator) 55 Cut-off lever 60 Multiple actuators 61 Variable displacement pump (example of hydraulic pump) 62 Fixed-capacity pump (example of hydraulic pump) 67 Electromagnetic proportional valve (example of prohibited device)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

A construction machine comprising: hydraulic pumps (61, 62) that pressure feed pressurized oil to a plurality of actuators (60) including a prescribed actuator; an engine (30) that drives the hydraulic pumps (61, 62); an obstacle detection device (8) that detects obstacles in a monitored area including a first area set around the machine body and a second area set on the outside of the first area; a proportional solenoid valve (67) as a prohibition device that prohibits driving the prescribed actuator when an obstacle is detected in the first area by the obstacle detection device (8); and an integrated ECU (7) as a control device that performs speed reduction control for decreasing the speed of the prescribed actuator when an obstacle is detected in the second area by the obstacle detection device (8).

Description

建設機械Construction machinery
 本開示は、建設機械に関する。 This disclosure relates to construction machinery.
 特許文献1には、機体の周囲に設定された監視領域内の障害物を検出する障害物検出装置を備え、その障害物検出装置によって障害物が検出されたときに作動を停止するように構成された建設機械としての油圧ショベルが記載されている。特許文献2にも、これと同様の機能を有する油圧ショベルが記載されている。 Patent Document 1 includes an obstacle detection device that detects an obstacle in a monitoring area set around the machine body, and is configured to stop operation when an obstacle is detected by the obstacle detection device. A hydraulic excavator as a construction machine has been described. Patent Document 2 also describes a hydraulic excavator having a similar function.
 上記の建設機械によれば、監視領域に障害物(人を含む)が侵入した際に、その障害物との接触を回避できる。しかし、監視領域の境界付近で作業をしている作業者が立ち入るなど、監視領域に障害物が突如侵入した場合には、建設機械が急停止することになり、運転しているオペレータに強い衝撃を与えてしまう。 According to the above construction machine, when an obstacle (including a person) invades the monitoring area, contact with the obstacle can be avoided. However, if an obstacle suddenly enters the monitoring area, such as when a worker working near the boundary of the monitoring area enters, the construction machine will suddenly stop, which will have a strong impact on the operating operator. Will be given.
特開2019-19522号公報Japanese Unexamined Patent Publication No. 2019-19522 特開2018-91135号公報Japanese Unexamined Patent Publication No. 2018-91135
 本開示は、上記課題に着目してなされたものであり、その目的は、障害物の侵入に伴う停止によりオペレータに与える衝撃を軽減できる建設機械を提供することにある。 The present disclosure has focused on the above issues, and an object of the present disclosure is to provide a construction machine capable of reducing the impact given to an operator due to a stoppage due to an intrusion of an obstacle.
 本開示の建設機械は、下部走行体と、前記下部走行体に対して旋回可能に支持された上部旋回体と、前記上部旋回体に取り付けられた作業機と、前記下部走行体、前記上部旋回体または前記作業機に備えられた所定のアクチュエータと、前記所定のアクチュエータを含む複数のアクチュエータに圧油を圧送する油圧ポンプを駆動させるエンジンと、機体の周囲に設定された第1領域と、前記第1領域の外側に設定された第2領域とを含む監視領域内の障害物を検出する障害物検出装置と、前記障害物検出装置によって前記第1領域内の障害物が検出されたときに、前記所定のアクチュエータの駆動を禁止する禁止装置と、前記障害物検出装置によって前記第2領域内の障害物が検出されたときに、前記所定のアクチュエータの速度を低下させる低速化制御を行う制御装置と、を備える。 The construction machine of the present disclosure includes a lower traveling body, an upper swivel body rotatably supported with respect to the lower traveling body, a working machine attached to the upper swivel body, the lower traveling body, and the upper swivel body. A predetermined actuator provided on the body or the work machine, an engine for driving a hydraulic pump for pumping pressure oil to a plurality of actuators including the predetermined actuator, a first region set around the machine body, and the above. When an obstacle detection device that detects an obstacle in the monitoring area including the second area set outside the first area and an obstacle in the first area are detected by the obstacle detection device. , A prohibition device for prohibiting the driving of the predetermined actuator, and a control for reducing the speed of the predetermined actuator when an obstacle in the second region is detected by the obstacle detection device. It is equipped with a device.
 上記の構成によれば、障害物の侵入に伴う停止によりオペレータに与える衝撃を軽減できる。 According to the above configuration, the impact given to the operator due to the stoppage due to the intrusion of an obstacle can be reduced.
建設機械の一例である油圧ショベルの左側面図である。It is a left side view of a hydraulic excavator which is an example of a construction machine. 油圧ショベルの平面図である。It is a top view of the hydraulic excavator. 運転席の周辺を示す斜視図である。It is a perspective view which shows the periphery of a driver's seat. 油圧ショベルに搭載される油圧回路の一例を示す図である。It is a figure which shows an example of the hydraulic circuit mounted on the hydraulic excavator. 障害物検出装置による監視領域を概略的に示す平面図である。It is a top view which shows typically the monitoring area by an obstacle detection apparatus. 作業機のリーチに応じて大きさが変化する監視領域を概略的に示す平面図である。It is a top view which shows roughly the monitoring area whose size changes according to the reach of a work machine. 障害物の検出に関する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which concerns on the detection of an obstacle. 低速化制御に関する処理の一例を表すブロック図である。It is a block diagram which shows an example of the process which concerns on speed-down control. アクチュエータの駆動禁止に関する処理の一例を表すブロック図である。It is a block diagram which shows an example of the process which concerns on driving prohibition of an actuator. 低速化制御を解除する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of canceling the speed reduction control. 低速化制御を解除する処理の一例を表すブロック図である。It is a block diagram which shows an example of the process which releases the speed reduction control. アクチュエータの駆動の禁止を解除する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which releases the prohibition of driving of an actuator. アクチュエータの駆動の禁止を解除する処理の一例を表すブロック図である。It is a block diagram which shows an example of the process which releases the prohibition of driving of an actuator.
 本発明の実施形態について図面を参照しながら説明する。本開示では、建設機械の一例として油圧ショベル(バックホー)を例示するが、これに限られるものではない。 An embodiment of the present invention will be described with reference to the drawings. In the present disclosure, a hydraulic excavator (backhoe) is illustrated as an example of a construction machine, but the present invention is not limited to this.
 図1及び図2に示すように、油圧ショベル1は、下部走行体2と、下部走行体2に対して旋回可能に支持された上部旋回体3と、上部旋回体3に取り付けられた作業機4とを備える。本実施形態において、油圧ショベル1は、上部旋回体3に対して作業機4を左右にスイングさせる、所謂ブームスイング機能を有しているが、これに限られるものではない。一般に、ブームスイング機能は、狭隘な場所での施工に供されるミニショベル(小型油圧ショベル)に装備される。 As shown in FIGS. 1 and 2, the hydraulic excavator 1 includes a lower traveling body 2, an upper rotating body 3 rotatably supported by the lower traveling body 2, and a working machine attached to the upper rotating body 3. 4 and. In the present embodiment, the hydraulic excavator 1 has a so-called boom swing function of swinging the work machine 4 left and right with respect to the upper swing body 3, but is not limited to this. Generally, the boom swing function is installed in a mini excavator (small hydraulic excavator) used for construction in a narrow space.
 下部走行体2は、エンジン30からの動力を受けて駆動し、油圧ショベル1を走行させる。下部走行体2は、左右一対のクローラ21L,21Rと、それらを駆動させる走行モータ22L,22Rとを備える。走行モータ22L,22Rは、下部走行体2を駆動させる走行用アクチュエータであり、それぞれ油圧モータで構成されている。また、下部走行体2には、一対のブレードアーム23,23と、それらの先端部の間で左右方向に延びた排土板としてのブレード24と、ブレード24を上下回動させるためのアクチュエータであるブレードシリンダ25とが設けられている。ブレードシリンダ25は、油圧シリンダで構成されている。 The lower traveling body 2 is driven by receiving power from the engine 30 to drive the hydraulic excavator 1. The lower traveling body 2 includes a pair of left and right crawlers 21L and 21R, and traveling motors 22L and 22R for driving them. The traveling motors 22L and 22R are traveling actuators for driving the lower traveling body 2, and are each composed of a hydraulic motor. Further, the lower traveling body 2 is provided with a pair of blade arms 23, 23, a blade 24 as a soil removal plate extending in the left-right direction between the tips thereof, and an actuator for rotating the blade 24 up and down. A certain blade cylinder 25 is provided. The blade cylinder 25 is composed of a hydraulic cylinder.
 上部旋回体3は、キャビン50などが設置される旋回フレーム31と、旋回フレーム31を旋回駆動させる旋回モータ32とを備える。旋回モータ32は、上部旋回体3を駆動させる旋回用アクチュエータであり、油圧モータで構成されている。上部旋回体3は、下部走行体2の横幅(左側のクローラ21Lの外側端縁と右側のクローラ21Rの外側端縁との間隔)内で旋回可能な平面視略円板状に形成されている。上部旋回体3の後部には、エンジン30や油圧ポンプ(後述する可変容量型ポンプ61及び固定容量型ポンプ62)、カウンターウェイト33などが配置されている。 The upper swivel body 3 includes a swivel frame 31 in which a cabin 50 or the like is installed, and a swivel motor 32 that swivels and drives the swivel frame 31. The swivel motor 32 is a swivel actuator that drives the upper swivel body 3, and is composed of a hydraulic motor. The upper swivel body 3 is formed in a substantially disk shape in a plan view that can swivel within the lateral width of the lower traveling body 2 (the distance between the outer edge of the crawler 21L on the left side and the outer edge of the crawler 21R on the right side). .. An engine 30, a hydraulic pump (variable-capacity pump 61 and fixed-capacity pump 62, which will be described later), a counterweight 33, and the like are arranged at the rear of the upper swing body 3.
 作業機4は、エンジン30からの動力を受けて駆動し、操縦部5での操作に応じて土砂の掘削作業などを行う。作業機4は、ブーム41と、アーム42と、掘削用のアタッチメントであるバケット43と、作業機4を駆動させる作業用アクチュエータとを有する。作業用アクチュエータは、具体的には、後述するブームシリンダ41c、アームシリンダ42c、バケットシリンダ43c及びスイングシリンダ45であり、これらは油圧シリンダで構成されている。作業機4は、ブームブラケット41bの水平回動に連動してスイング動作を行い、上部旋回体3に対して相対的に水平移動する。 The work machine 4 is driven by receiving power from the engine 30, and excavates earth and sand according to the operation of the control unit 5. The work machine 4 has a boom 41, an arm 42, a bucket 43 which is an attachment for excavation, and a work actuator for driving the work machine 4. Specifically, the working actuators are a boom cylinder 41c, an arm cylinder 42c, a bucket cylinder 43c and a swing cylinder 45, which will be described later, and these are composed of a hydraulic cylinder. The work machine 4 swings in conjunction with the horizontal rotation of the boom bracket 41b, and moves horizontally relative to the upper swing body 3.
 ブーム41は、ブームブラケット41bに支持された基端部から上下方向に延在し、側面視ブーメラン形状をなして屈曲している。ブーム41は、ブームブラケット41bに上下回動(前後回動)可能に取り付けられている。ブーム41の基端部は、枢軸ピン41aを中心にして上下回動自在に支持されている。ブームブラケット41bとブーム41の中途部との間には、伸縮自在に可動するブームシリンダ41cが設けられている。ブームブラケット41bに対するブーム41の上下回動は、ブームシリンダ41cの伸縮に応じて作動する。 The boom 41 extends in the vertical direction from the base end portion supported by the boom bracket 41b, and is bent in a boomerang shape in a side view. The boom 41 is attached to the boom bracket 41b so that it can rotate up and down (rotate back and forth). The base end portion of the boom 41 is supported so as to be rotatable up and down around the pivot pin 41a. A boom cylinder 41c that can be expanded and contracted is provided between the boom bracket 41b and the middle portion of the boom 41. The vertical rotation of the boom 41 with respect to the boom bracket 41b operates according to the expansion and contraction of the boom cylinder 41c.
 ブームブラケット41bは、上部旋回体3の前端部にブームブラケット取付部34を介して水平回動(スイング)可能に取り付けられている。ブームブラケット41bは、ブームブラケット取付部34に設けられた枢軸ピン34aを中心にして水平回動自在に支持されている。上部旋回体3とブームブラケット41bとの間には、前後方向に伸縮作動するスイングシリンダ45が設けられている。ブームブラケット41bの水平回動は、そのスイングシリンダ45の伸縮に応じて作動する。 The boom bracket 41b is attached to the front end of the upper swing body 3 so as to be horizontally rotatable (swing) via the boom bracket mounting portion 34. The boom bracket 41b is supported so as to be horizontally rotatable about a pivot pin 34a provided on the boom bracket mounting portion 34. A swing cylinder 45 that expands and contracts in the front-rear direction is provided between the upper swing body 3 and the boom bracket 41b. The horizontal rotation of the boom bracket 41b operates according to the expansion and contraction of the swing cylinder 45.
 アーム42は、ブーム41に上下回動(前後回動)可能に取り付けられている。アーム42の基端部は、枢軸ピン42aを中心にして上下回動自在に支持されている。ブーム41の中途部とアーム42の基端部との間には、伸縮自在に可動するアームシリンダ42cが設けられている。ブーム41に対するアーム42の上下回動は、アームシリンダ42cの伸縮に応じて作動する。 The arm 42 is attached to the boom 41 so that it can rotate up and down (rotate back and forth). The base end portion of the arm 42 is supported so as to be rotatable up and down around the pivot pin 42a. An arm cylinder 42c that can be expanded and contracted is provided between the middle portion of the boom 41 and the base end portion of the arm 42. The vertical rotation of the arm 42 with respect to the boom 41 operates according to the expansion and contraction of the arm cylinder 42c.
 バケット43は、アーム42に上下回動可能に取り付けられている。バケット43の基端部は、枢軸ピン43aを中心にして上下回動(前後回動)自在に支持されている。アーム42の先端部とバケット43との間には、バケット43に駆動力を伝達するバケットリンク44が介在している。バケットリンク44とアーム42の基端部との間には、伸縮自在に可動するバケットシリンダ43cが設けられている。アーム42に対するバケット43の上下回動は、バケットシリンダ43cの伸縮に応じて作動する。 The bucket 43 is attached to the arm 42 so as to be vertically rotatable. The base end portion of the bucket 43 is supported so as to be freely rotated up and down (rotated back and forth) about the pivot pin 43a. A bucket link 44 that transmits a driving force to the bucket 43 is interposed between the tip of the arm 42 and the bucket 43. A bucket cylinder 43c that can be expanded and contracted is provided between the bucket link 44 and the base end portion of the arm 42. The vertical rotation of the bucket 43 with respect to the arm 42 operates according to the expansion and contraction of the bucket cylinder 43c.
 操縦部5は、上部旋回体3の上方に設けられている。本実施形態では、操縦部5がキャビン50で取り囲まれているが、これに限られない。図3に示すように、操縦部5には、オペレータが着座するための運転席51、運転席51の前方に位置する走行レバー52(図1参照)、及び、運転席51の側方に位置する作業操作レバー53が設置されている。オペレータは、運転席51に着座しながら走行レバー52や作業操作レバー53などを操作することにより、エンジン30や各アクチュエータの制御を行い、走行や旋回、作業機4の操作を行うことができる。 The control unit 5 is provided above the upper swivel body 3. In the present embodiment, the control unit 5 is surrounded by the cabin 50, but the present invention is not limited to this. As shown in FIG. 3, the control unit 5 has a driver's seat 51 for the operator to sit on, a traveling lever 52 located in front of the driver's seat 51 (see FIG. 1), and a position on the side of the driver's seat 51. A work operation lever 53 is installed. The operator can control the engine 30 and each actuator by operating the traveling lever 52, the working operation lever 53, and the like while sitting in the driver's seat 51, and can perform traveling, turning, and operating the work machine 4.
 作業操作レバー53は、運転席51の左右に配置された一対のコンソールボックス54の上部に取り付けられている。コンソールボックス54の前方下部には、上下に回動するカットオフレバー55が設けられている。作業操作レバー53及びカットオフレバー55は、それぞれ前方に向かって延び、運転席51から退座するオペレータの動きを妨げるように配置されている。カットオフレバー55を引き上げると、それに連動してコンソールボックス54が後方に回動し、運転席51からオペレータが差支えなく乗り降りできるように構成されている。 The work operation lever 53 is attached to the upper part of a pair of console boxes 54 arranged on the left and right sides of the driver's seat 51. A cut-off lever 55 that rotates up and down is provided in the lower front portion of the console box 54. The work operation lever 53 and the cutoff lever 55 are arranged so as to extend forward and prevent the operator from leaving the driver's seat 51. When the cutoff lever 55 is pulled up, the console box 54 rotates rearward in conjunction with the pulling up, so that the operator can get on and off from the driver's seat 51 without any problem.
 コンソールボックス54の内部には、カットオフレバー55の引き上げ操作に連動してコンソールボックス54を回動させるリンク機構(図示せず)と、カットオフレバー55の回動位置を検知するカットオフスイッチ56とが設けられている。カットオフスイッチ56は、カットオフレバー55が押し下げられている(下方に回動されている)とオン状態になり、カットオフレバー55が引き上げられている(上方に回動されている)とオフ状態になる。 Inside the console box 54, there is a link mechanism (not shown) that rotates the console box 54 in conjunction with the pulling operation of the cutoff lever 55, and a cutoff switch 56 that detects the rotation position of the cutoff lever 55. And are provided. The cutoff switch 56 is turned on when the cutoff lever 55 is pushed down (rotated downward), and turned off when the cutoff lever 55 is pulled up (rotated upward). Become in a state.
 カットオフレバー55の押し下げ操作によりカットオフスイッチ56がオン状態になると、後述する電磁比例弁67が通電状態となり、所定のアクチュエータを駆動させることができる。一方、カットオフレバー55の引き上げ操作によりカットオフスイッチ56がオフ状態になると、電磁比例弁67は非通電状態となり、パイロット油路が遮断される。これにより、所定のアクチュエータの操作が制限され、走行レバー52などを操作しても作動しない操作不能状態となる。オペレータは、カットオフレバー55を引き上げてアクチュエータを操作不能にしたうえで運転席51から退座する。 When the cutoff switch 56 is turned on by pushing down the cutoff lever 55, the electromagnetic proportional valve 67, which will be described later, is energized and a predetermined actuator can be driven. On the other hand, when the cutoff switch 56 is turned off by the pulling operation of the cutoff lever 55, the electromagnetic proportional valve 67 is de-energized and the pilot oil passage is shut off. As a result, the operation of the predetermined actuator is restricted, and even if the traveling lever 52 or the like is operated, the operation becomes inoperable. The operator pulls up the cutoff lever 55 to make the actuator inoperable, and then leaves the driver's seat 51.
 図4は、本実施形態の油圧ショベル1に搭載される油圧回路6を示す。油圧ショベル1は、所定のアクチュエータを含む複数のアクチュエータ60と、複数のアクチュエータ60に圧油を圧送する油圧ポンプである可変容量型ポンプ61及び固定容量型ポンプ62を駆動させるエンジン30とを備える。可変容量型ポンプ61は、走行モータ22L,22R、ブームシリンダ41c、アームシリンダ42c及びバケットシリンダ43cに圧油を圧送する。固定容量型ポンプ62は、ブレードシリンダ25、旋回モータ32及びスイングシリンダ45に圧油を圧送する。 FIG. 4 shows a hydraulic circuit 6 mounted on the hydraulic excavator 1 of the present embodiment. The hydraulic excavator 1 includes a plurality of actuators 60 including predetermined actuators, and an engine 30 for driving a variable displacement pump 61 and a fixed capacitance pump 62, which are hydraulic pumps that pump pressure oil to the plurality of actuators 60. The variable displacement pump 61 pumps pressure oil to the traveling motors 22L and 22R, the boom cylinder 41c, the arm cylinder 42c and the bucket cylinder 43c. The fixed-capacity pump 62 pumps pressure oil to the blade cylinder 25, the swivel motor 32, and the swing cylinder 45.
 複数のアクチュエータ60は、下部走行体2を駆動させる走行用油圧アクチュエータである走行モータ22L及び走行モータ22R、ブレード24を上下回動させる油圧アクチュエータであるブレードシリンダ25、上部旋回体3を駆動させる旋回用油圧アクチュエータである旋回モータ32、並びに、作業機4を駆動させる作業用油圧アクチュエータであるブームシリンダ41c、アームシリンダ42c、バケットシリンダ43c及びスイングシリンダ45を含む。 The plurality of actuators 60 are a traveling motor 22L and a traveling motor 22R which are driving hydraulic actuators for driving the lower traveling body 2, a blade cylinder 25 which is a hydraulic actuator for rotating the blade 24 up and down, and a turning for driving the upper rotating body 3. It includes a swivel motor 32 which is a flood control actuator for work, and a boom cylinder 41c, an arm cylinder 42c, a bucket cylinder 43c and a swing cylinder 45 which are hydraulic actuators for work that drive a work machine 4.
 複数のアクチュエータ60には、それぞれ対応する方向切換弁が設けられている。この方向切換弁は、可変容量型ポンプ61または固定容量型ポンプ62から圧送された圧油の方向と流量を切り換え可能なパイロット式の方向切換弁である。本実施形態では、走行モータ22L,22Rに対応する方向切換弁64a,64b、ブームシリンダ41cに対応する方向切換弁64c、アームシリンダ42cに対応する方向切換弁64d、バケットシリンダ43cに対応する方向切換弁64e、ブレードシリンダ25に対応する方向切換弁64f、旋回モータ32に対応する方向切換弁64g、及び、スイングシリンダ45に対応する方向切換弁64hが設けられている。これらの方向切換弁64a~64hは、まとめてコントロールバルブ64と呼ばれる。 Each of the plurality of actuators 60 is provided with a corresponding direction switching valve. This directional control valve is a pilot-type directional control valve capable of switching the direction and flow rate of the pressure oil pumped from the variable displacement pump 61 or the fixed capacitance pump 62. In the present embodiment, the directional switching valves 64a and 64b corresponding to the traveling motors 22L and 22R, the directional switching valve 64c corresponding to the boom cylinder 41c, the directional switching valve 64d corresponding to the arm cylinder 42c, and the directional switching corresponding to the bucket cylinder 43c. A valve 64e, a directional switching valve 64f corresponding to the blade cylinder 25, a directional switching valve 64g corresponding to the swivel motor 32, and a directional switching valve 64h corresponding to the swing cylinder 45 are provided. These direction switching valves 64a to 64h are collectively referred to as a control valve 64.
 パイロットポンプ63は、コントロールバルブ64に対する入力指令となるパイロット油を吐出する。エンジン30によって駆動されたパイロットポンプ63は、圧油を吐出することによりパイロット油路内にパイロット圧を発生させる。図4では、パイロットポンプ63からコントロールバルブ64に至る油路の一部が省略されており、実際には、パイロットポンプ63から方向切換弁64a~64hの各々に至る油路が設けられている。 The pilot pump 63 discharges pilot oil, which is an input command to the control valve 64. The pilot pump 63 driven by the engine 30 generates pilot pressure in the pilot oil passage by discharging pressure oil. In FIG. 4, a part of the oil passage from the pilot pump 63 to the control valve 64 is omitted, and in reality, an oil passage from the pilot pump 63 to each of the direction switching valves 64a to 64h is provided.
 走行用操作装置65は、走行モータ22Lに対応する方向切換弁64aに供給される圧油の向きと圧力を切り換えるためのリモコン弁650を有する。リモコン弁650には、パイロットポンプ63から吐出された圧油が供給される。リモコン弁650は、走行用操作装置65の操作方向と操作量に応じてパイロット圧を生成する。走行用操作装置65は、走行レバー52によって構成される。 The traveling operation device 65 has a remote control valve 650 for switching the direction and pressure of the pressure oil supplied to the direction switching valve 64a corresponding to the traveling motor 22L. The pressure oil discharged from the pilot pump 63 is supplied to the remote control valve 650. The remote control valve 650 generates a pilot pressure according to the operation direction and the operation amount of the traveling operation device 65. The traveling operation device 65 is composed of a traveling lever 52.
 ブーム用操作装置66は、ブームシリンダ41cに対応する方向切換弁64cに供給される圧油の向きと圧力を切り換えるためのリモコン弁660を有する。リモコン弁660には、パイロットポンプ63から吐出された圧油が供給される。リモコン弁660は、ブーム用操作装置66の操作方向と操作量に応じてパイロット圧を生成する。ブーム用操作装置66は、作業操作レバー53によって構成される。 The boom operating device 66 has a remote control valve 660 for switching the direction and pressure of the pressure oil supplied to the direction switching valve 64c corresponding to the boom cylinder 41c. The pressure oil discharged from the pilot pump 63 is supplied to the remote control valve 660. The remote control valve 660 generates a pilot pressure according to the operation direction and the operation amount of the boom operation device 66. The boom operation device 66 is composed of a work operation lever 53.
 パイロットポンプ63とコントロールバルブ64との間の図示しない油路においても、上記と同様の構成であり、各操作装置の操作に応じてパイロット圧が生成される。パイロットポンプ63と各リモコン弁との間の油路には、禁止装置としての電磁比例弁67が設けられている。電磁比例弁67は、統合ECU7からの制御指令に応じてパイロット圧を調圧する。パイロットポンプ63からのパイロット圧を調整することにより、複数の油圧アクチュエータ60の駆動を一斉に停止したり、それらの速度を一律に制御したりできる。 The oil passage (not shown) between the pilot pump 63 and the control valve 64 has the same configuration as the above, and a pilot pressure is generated according to the operation of each operating device. An electromagnetic proportional valve 67 as a prohibition device is provided in the oil passage between the pilot pump 63 and each remote control valve. The electromagnetic proportional valve 67 regulates the pilot pressure in response to a control command from the integrated ECU 7. By adjusting the pilot pressure from the pilot pump 63, the driving of the plurality of hydraulic actuators 60 can be stopped all at once, and their speeds can be uniformly controlled.
 図4のように、油圧ショベル1は、制御装置としての統合ECU(Electronic Control  Unit)7と、統合ECU7からの指令に基づいてエンジン30の駆動を制御するエンジンECU300とを有する。統合ECU7は、油圧ショベル1の制御システムを司り、上述した油圧ポンプへの制御指示やエンジンECU300への制御指示を出力する。統合ECU7には、障害物検出装置8から出力された障害物検出信号が入力される。障害物検出装置8は、油圧ショベル1の周囲に設定された監視領域内の障害物(人を含む)を検出する。 As shown in FIG. 4, the hydraulic excavator 1 has an integrated ECU (Electronic Control Unit) 7 as a control device and an engine ECU 300 that controls the drive of the engine 30 based on a command from the integrated ECU 7. The integrated ECU 7 controls the control system of the hydraulic excavator 1 and outputs a control instruction to the hydraulic pump and a control instruction to the engine ECU 300 described above. The obstacle detection signal output from the obstacle detection device 8 is input to the integrated ECU 7. The obstacle detection device 8 detects obstacles (including people) in the monitoring area set around the hydraulic excavator 1.
 障害物検出装置8は、油圧ショベル1に設置された一つ以上の障害物センサ80(図1,図2参照)で構成される。本実施形態では四つの障害物センサ80が設置されているが、図2では三つの障害物センサ80のみを示している。所要の範囲内で障害物を検出できる限り、障害物センサの個数や設置箇所、設置方法は特に限定されない。障害物センサ80には、障害物の距離情報を取得可能な公知の測距装置を適用できる。例えば、ミリ波帯の電波を用いたミリ波レーダ、レーザー照射に対する散乱光を測定して距離を求めるライダー(LIDER)、複数台のカメラ機能を一体に備え、撮影画像から対象物までの距離を測定するステレオカメラなどが、障害物センサ80として用いられる。 The obstacle detection device 8 is composed of one or more obstacle sensors 80 (see FIGS. 1 and 2) installed on the hydraulic excavator 1. In this embodiment, four obstacle sensors 80 are installed, but FIG. 2 shows only three obstacle sensors 80. As long as obstacles can be detected within the required range, the number of obstacle sensors, the installation location, and the installation method are not particularly limited. A known distance measuring device capable of acquiring distance information of an obstacle can be applied to the obstacle sensor 80. For example, a millimeter-wave radar that uses radio waves in the millimeter-wave band, a LIDER that measures scattered light from laser irradiation to determine the distance, and multiple camera functions that are integrated into the camera to determine the distance from the captured image to the object. A stereo camera or the like for measurement is used as the obstacle sensor 80.
 本実施形態の油圧ショベル1は、作動に応じて変化する作業機4のリーチを検出するリーチ検出装置9を備える。作業機4のリーチは、例えば、上部旋回体3の旋回中心からバケット43(またはアーム42もしくはブーム41)の先端までの水平距離として求められる。リーチは、作業機4に設置された複数の位置センサ(図示せず)を用いて検出できる。位置センサとしては、加速度センサなどの慣性センサが用いられるが、これに限定されず、例えばジャイロセンサや角度センサ(傾斜センサ)、シリンダセンサ(ストロークセンサ)を用いることも可能である。統合ECU7には、リーチ検出装置9から出力されたリーチ検出信号が入力される。 The hydraulic excavator 1 of the present embodiment includes a reach detection device 9 that detects the reach of the work machine 4 that changes according to the operation. The reach of the working machine 4 is determined as, for example, a horizontal distance from the turning center of the upper turning body 3 to the tip of the bucket 43 (or the arm 42 or the boom 41). The reach can be detected by using a plurality of position sensors (not shown) installed in the work machine 4. An inertial sensor such as an acceleration sensor is used as the position sensor, but the position sensor is not limited to this, and for example, a gyro sensor, an angle sensor (tilt sensor), and a cylinder sensor (stroke sensor) can also be used. The reach detection signal output from the reach detection device 9 is input to the integrated ECU 7.
 図5は、障害物検出装置8による監視領域Amを概略的に示しており、油圧ショベル1は作業機4のリーチを最大にした状態にある。監視領域Amは、機体の周囲に設定された第1領域A1と、その第1領域A1の外側に設定された第2領域A2とを含む。本実施形態では、第2領域A2が、リーチを最大にした作業機4の先端の旋回軌跡を外縁とするリング形状に設定されている。第1領域A1は、その第2領域A2の外縁から内側に一定の距離D(例えば2m)で離れた外縁を有する円形状をなす。第1領域A1は、上部旋回体3を含む大きさで設定されている。 FIG. 5 schematically shows the monitoring area Am by the obstacle detection device 8, and the hydraulic excavator 1 is in a state where the reach of the work machine 4 is maximized. The monitoring area Am includes a first area A1 set around the aircraft and a second area A2 set outside the first area A1. In the present embodiment, the second region A2 is set to a ring shape having the turning locus of the tip of the working machine 4 having the maximum reach as the outer edge. The first region A1 has a circular shape having an outer edge separated from the outer edge of the second region A2 by a certain distance D (for example, 2 m) inward. The first region A1 is set to a size including the upper swivel body 3.
 第1領域A1及び第2領域A2の外縁は、円形状に限られず、矩形状などでも構わない。第1領域A1及び第2領域A2の大きさ(平面視のサイズ)は、特に限定されるものではなく、建設機械の機種や工事現場の種類などに応じて適宜に設定することが可能である。したがって、例えば、より安全性を高めるために、図5で示した第2領域A2を第1領域として設定し、その外側に第2領域を設定しても構わない。 The outer edges of the first region A1 and the second region A2 are not limited to a circular shape, but may be a rectangular shape or the like. The size of the first region A1 and the second region A2 (size in a plan view) is not particularly limited, and can be appropriately set according to the model of the construction machine, the type of the construction site, and the like. .. Therefore, for example, in order to further enhance safety, the second region A2 shown in FIG. 5 may be set as the first region, and the second region may be set outside the second region A2.
 また、作業機4のリーチに応じて第1領域A1及び第2領域A2の一方または両方の大きさが変化するように構成してもよい。例えば、図6に示すように、作業機4の伸縮に応じて第2領域A2の大きさを変化させてもよい。この場合、作業機4のリーチを縮めると、それに応じて第2領域A2が小さくなるので、周辺で作業者が作業するのに都合がよい。第2領域A2に代えて、または加えて、第1領域A1の大きさを変化させることも可能である。このような各領域のサイズ変更は、リーチ検出装置9からのリーチ検出信号に基づき統合ECU7によって行われる。 Further, the size of one or both of the first region A1 and the second region A2 may be changed according to the reach of the working machine 4. For example, as shown in FIG. 6, the size of the second region A2 may be changed according to the expansion and contraction of the working machine 4. In this case, if the reach of the working machine 4 is shortened, the second region A2 becomes smaller accordingly, which is convenient for the worker to work in the surrounding area. It is also possible to change the size of the first region A1 in place of or in addition to the second region A2. Such resizing of each region is performed by the integrated ECU 7 based on the reach detection signal from the reach detection device 9.
 油圧ショベル1は、障害物検出装置8によって第1領域A1内の障害物が検出されたときに、所定のアクチュエータの駆動を禁止する禁止装置としての電磁比例弁67と、障害物検出装置8によって第2領域A2内の障害物が検出されたときに、所定のアクチュエータの速度を低下させる低速化制御を行う制御装置としての統合ECU7とを備える。したがって、第1領域A1は、所定のアクチュエータを停止させる停止領域として設定され、第2領域A2は、所定のアクチュエータを低速化させる低速化領域として設定される。 The hydraulic excavator 1 is provided by an electromagnetic proportional valve 67 as a prohibition device for prohibiting the driving of a predetermined actuator when an obstacle in the first region A1 is detected by the obstacle detection device 8, and an obstacle detection device 8. It includes an integrated ECU 7 as a control device that performs speed reduction control for reducing the speed of a predetermined actuator when an obstacle in the second region A2 is detected. Therefore, the first region A1 is set as a stop region for stopping the predetermined actuator, and the second region A2 is set as the speed reduction region for slowing down the predetermined actuator.
 駆動禁止や低速化の対象となる所定のアクチュエータは、下部走行体2、上部旋回体3または作業機4に備えられている。本実施形態では、所定のアクチュエータとして、走行モータ22L,22R、旋回モータ32、ブームシリンダ41c、アームシリンダ42c、及び、バケットシリンダ43cが含まれる。これらの一部が含まれなくても構わないが、安全性を高める観点から、所定のアクチュエータとして、走行モータ22L,22Rが含まれることが好ましく、それに加えて旋回モータ32が含まれることがより好ましく、それらに加えてブームシリンダ41c、アームシリンダ42c及びバケットシリンダ43cが含まれることが更に好ましい。 A predetermined actuator that is subject to drive prohibition or speed reduction is provided in the lower traveling body 2, the upper turning body 3, or the working machine 4. In the present embodiment, the predetermined actuators include traveling motors 22L and 22R, a swivel motor 32, a boom cylinder 41c, an arm cylinder 42c, and a bucket cylinder 43c. Some of these may not be included, but from the viewpoint of enhancing safety, it is preferable that the traveling motors 22L and 22R are included as predetermined actuators, and in addition, the swivel motor 32 is more likely to be included. Preferably, in addition to them, a boom cylinder 41c, an arm cylinder 42c and a bucket cylinder 43c are more preferably included.
 図7は、障害物の検出に関する処理の一例を示すフローチャートである。油圧ショベル1の作業中、その周辺で作業をしている作業者が監視領域Amに侵入すると、障害物として検出され、その障害物の距離情報を含む障害物検出信号が統合ECU7に入力される。そして、作業者が第2領域A2に侵入した場合には、統合ECU7によって低速化制御が行われる(ステップS1,S2)。更に、その作業者が第1領域A1に侵入した場合には、電磁比例弁67によって駆動を禁止された所定のアクチュエータが停止する(ステップS3,S4)。 FIG. 7 is a flowchart showing an example of processing related to obstacle detection. When a worker working in the vicinity of the hydraulic excavator 1 invades the monitoring area Am, it is detected as an obstacle, and an obstacle detection signal including the distance information of the obstacle is input to the integrated ECU 7. .. Then, when the worker invades the second region A2, the integrated ECU 7 performs speed reduction control (steps S1 and S2). Further, when the worker invades the first region A1, the predetermined actuator whose drive is prohibited by the electromagnetic proportional valve 67 is stopped (steps S3 and S4).
 上記のように、障害物としての作業者が第1領域A1に侵入すると、所定のアクチュエータによる作動が停止するため、作業者との接触が回避される。しかも、作業者が第2領域A2に侵入したときに所定のアクチュエータの速度を低下させているので、急激な停止を抑えて、速やかに停止できる。そのため、障害物の侵入に伴う停止によりオペレータに与える衝撃を軽減することができる。無論、障害物検出装置8で検出される障害物は作業者に限られない。 As described above, when a worker as an obstacle invades the first area A1, the operation by the predetermined actuator is stopped, so that contact with the worker is avoided. Moreover, since the speed of the predetermined actuator is reduced when the operator enters the second region A2, the sudden stop can be suppressed and the actuator can be stopped quickly. Therefore, it is possible to reduce the impact given to the operator due to the stoppage due to the intrusion of an obstacle. Of course, the obstacle detected by the obstacle detection device 8 is not limited to the operator.
 第2領域A2に障害物が存在する場合、統合ECU7は、図8に示すようにエンジン30の目標回転数を下げる指令をエンジンECU300に送る。これにより油圧ポンプのポンプ流量を低下させ、所定のアクチュエータを低速化できる。このように、統合ECU7は、エンジン30の目標回転数を下げることにより低速化制御を行う。より好ましい態様として、統合ECU7は、エンジン30の目標回転数を定格回転数よりも低い値に設定することにより低速化制御を行う。これにより、エンジン回転数の変化音によってオペレータや周囲の作業者に接触の危険性を直感的に認知させることができる。 When an obstacle exists in the second region A2, the integrated ECU 7 sends a command to lower the target rotation speed of the engine 30 to the engine ECU 300 as shown in FIG. As a result, the pump flow rate of the hydraulic pump can be reduced and the speed of a predetermined actuator can be reduced. In this way, the integrated ECU 7 controls the speed reduction by lowering the target rotation speed of the engine 30. As a more preferable embodiment, the integrated ECU 7 controls the speed reduction by setting the target rotation speed of the engine 30 to a value lower than the rated rotation speed. As a result, the operator and surrounding workers can intuitively recognize the danger of contact by the sound of the change in engine speed.
 上記の通り、本実施形態では、エンジン30の目標回転数を下げることにより低速化制を行うが、これに限られない。例えば、油圧ポンプを構成する可変容量型ポンプ61の斜板制御部にポンプ流量を下げる信号を統合ECU7から発信し、それによって所定のアクチュエータの駆動速度を低下させてもよい。或いは、パイロット圧を減圧させる指令を統合ECU7から電磁比例弁67に送ることにより、所定のアクチュエータの駆動速度を低下させてもよい。 As described above, in the present embodiment, the speed reduction system is performed by lowering the target rotation speed of the engine 30, but the speed is not limited to this. For example, a signal for lowering the pump flow rate may be transmitted from the integrated ECU 7 to the swash plate control unit of the variable displacement pump 61 constituting the hydraulic pump, thereby lowering the driving speed of a predetermined actuator. Alternatively, the drive speed of the predetermined actuator may be reduced by sending a command to reduce the pilot pressure from the integrated ECU 7 to the electromagnetic proportional valve 67.
 第1領域A1に障害物が存在する場合、統合ECU7は、図9に示すように電磁比例弁67の電流を遮断する指令を送る。電磁比例弁67は、その指令に基づき、所定のアクチュエータに対応する方向切換弁に入力されるパイロット圧を遮断する。これにより所定のアクチュエータの駆動が禁止され、走行レバー52や作業操作レバー53を操作しても作動しない状態となる。本実施形態では、禁止装置として電磁比例弁67を用いているが、これに代えて電磁弁を使用することも可能である。 When an obstacle exists in the first region A1, the integrated ECU 7 sends a command to shut off the current of the electromagnetic proportional valve 67 as shown in FIG. The electromagnetic proportional valve 67 shuts off the pilot pressure input to the directional control valve corresponding to the predetermined actuator based on the command. As a result, the driving of the predetermined actuator is prohibited, and even if the traveling lever 52 or the work operation lever 53 is operated, the operation is not performed. In the present embodiment, the solenoid proportional valve 67 is used as the prohibition device, but a solenoid valve can be used instead.
 作業者が第2領域A2に侵入した後、第1領域A1に侵入せずに第2領域A2から退出すると、障害物が存在しないのに低速化制御が行われた状態となる。かかる場合、通常の速度で油圧ショベル1を作動するために、低速化制御を解除する必要がある。図10は、低速化制御を解除する処理の一例を示すフローチャートであり、図11は、その処理を表すブロック図である。既述の通り、油圧ショベル1は、所定のアクチュエータの操作を制限するカットオフレバー55を備えており、この解除処理ではカットオフレバー55を利用することで安全性を高めている。 If the worker invades the second area A2 and then exits from the second area A2 without invading the first area A1, the speed reduction control is performed even though there are no obstacles. In such a case, it is necessary to release the speed reduction control in order to operate the hydraulic excavator 1 at a normal speed. FIG. 10 is a flowchart showing an example of the process of canceling the speed reduction control, and FIG. 11 is a block diagram showing the process. As described above, the hydraulic excavator 1 is provided with a cut-off lever 55 that limits the operation of a predetermined actuator, and in this release process, the cut-off lever 55 is used to enhance safety.
 図10では、まず、所定のアクチュエータの操作が制限されていない状態にあり、カットオフレバー55は押し下げられている(ステップS11)。そして、第2領域A2内の障害物が検出されると、統合ECU7によって低速化制御が行われる(ステップS12,S13)。更に、第1領域A1内の障害物が検出されると、電磁比例弁67によって所定のアクチュエータの駆動が禁止され、それらの作動が停止する(ステップS16,S17)。これらの処理については、図7を参照して既に説明した通りである。 In FIG. 10, first, the operation of the predetermined actuator is not restricted, and the cutoff lever 55 is pushed down (step S11). Then, when an obstacle in the second region A2 is detected, the integrated ECU 7 performs speed reduction control (steps S12 and S13). Further, when an obstacle in the first region A1 is detected, the electromagnetic proportional valve 67 prohibits the driving of predetermined actuators, and their operation is stopped (steps S16 and S17). These processes have already been described with reference to FIG.
 低速化制御が行われた後(即ち、ステップS13の後)、オペレータがカットオフレバー55を引き上げると、図11のようにカットオフスイッチ56はオフ状態となり、エンジン30の目標回転数を復帰させる指令が統合ECU7からエンジンECU300に送られ、低速化制御が解除される(ステップS14,S15)。即ち、カットオフレバー55の引き上げ操作により所定のアクチュエータの操作が制限されていることを条件として、低速化制御を解除できるように構成されている。これにより、低速化制御を解除する際には、所定のアクチュエータの作動が一旦停止するので、オペレータに周辺の安全確認を喚起させることができる。 When the operator pulls up the cutoff lever 55 after the speed reduction control is performed (that is, after step S13), the cutoff switch 56 is turned off as shown in FIG. 11, and the target rotation speed of the engine 30 is restored. A command is sent from the integrated ECU 7 to the engine ECU 300, and the speed reduction control is released (steps S14 and S15). That is, the speed reduction control can be released on condition that the operation of the predetermined actuator is restricted by the pulling operation of the cutoff lever 55. As a result, when the speed reduction control is released, the operation of the predetermined actuator is temporarily stopped, so that the operator can be urged to confirm the safety of the surroundings.
 図12は、アクチュエータの駆動禁止を解除する処理の一例を示すフローチャートであり、図13は、その処理を表すブロック図である。図12の処理は、ステップS24及びステップS29~S31を除いて、図10の処理と実質的に同じであるため、重複した説明を省略する。図12では、所定のアクチュエータの停止後(即ち、ステップS28の後)、第1領域A1及び第2領域A2内の障害物が検出されない状態で、オペレータがカットオフレバー55を引き上げると、図13のようにカットオフスイッチ56はオフ状態となり、エンジン30の目標回転数を復帰させる指令が統合ECU7からエンジンECU300に送られ、アクチュエータの停止が解除される(ステップS29~S31)。 FIG. 12 is a flowchart showing an example of the process of releasing the drive prohibition of the actuator, and FIG. 13 is a block diagram showing the process. Since the process of FIG. 12 is substantially the same as the process of FIG. 10 except for steps S24 and S29 to S31, duplicate description will be omitted. In FIG. 12, when the operator pulls up the cutoff lever 55 after the predetermined actuator is stopped (that is, after step S28) and no obstacles in the first region A1 and the second region A2 are detected, FIG. 13 As described above, the cutoff switch 56 is turned off, a command for returning the target rotation speed of the engine 30 is sent from the integrated ECU 7 to the engine ECU 300, and the actuator stop is released (steps S29 to S31).
 上記のように、この油圧ショベル1は、カットオフレバー55の引き上げ操作により所定のアクチュエータの操作が制限され、且つ、障害物検出装置8によって第1領域A1及び第2領域A2内の障害物が検出されないことを条件として、所定のアクチュエータの駆動の禁止を解除できるように構成されている。これにより、所定のアクチュエータの駆動の禁止を解除してアクチュエータの速度を復帰させる際には、所定のアクチュエータの作動が一旦停止するとともに、障害物検出装置8による安全確認を経るので、安全性を一層高めることができる。 As described above, in this hydraulic excavator 1, the operation of a predetermined actuator is restricted by the pulling operation of the cutoff lever 55, and the obstacle detection device 8 causes obstacles in the first region A1 and the second region A2. It is configured so that the prohibition of driving a predetermined actuator can be lifted on condition that it is not detected. As a result, when the prohibition of driving the predetermined actuator is released and the speed of the actuator is restored, the operation of the predetermined actuator is temporarily stopped and the safety is confirmed by the obstacle detection device 8, so that the safety is improved. It can be further enhanced.
 以上のように、本開示の建設機械は、下部走行体と、前記下部走行体に対して旋回可能に支持された上部旋回体と、前記上部旋回体に取り付けられた作業機と、前記下部走行体、前記上部旋回体または前記作業機に備えられた所定のアクチュエータと、前記所定のアクチュエータを含む複数のアクチュエータに圧油を圧送する油圧ポンプを駆動させるエンジンと、機体の周囲に設定された第1領域と、前記第1領域の外側に設定された第2領域とを含む監視領域内の障害物を検出する障害物検出装置と、前記障害物検出装置によって前記第1領域内の障害物が検出されたときに、前記所定のアクチュエータの駆動を禁止する禁止装置と、前記障害物検出装置によって前記第2領域内の障害物が検出されたときに、前記所定のアクチュエータの速度を低下させる低速化制御を行う制御装置と、を備える。 As described above, the construction machine of the present disclosure includes a lower traveling body, an upper swivel body rotatably supported with respect to the lower traveling body, a working machine attached to the upper swivel body, and the lower traveling body. A predetermined actuator provided on the body, the upper swing body or the working machine, an engine for driving a hydraulic pump for pumping pressure oil to a plurality of actuators including the predetermined actuator, and a third set around the machine body. An obstacle detection device that detects an obstacle in a monitoring area including one area and a second area set outside the first area, and an obstacle detection device that detects an obstacle in the first area. A prohibition device that prohibits the driving of the predetermined actuator when detected, and a low speed that reduces the speed of the predetermined actuator when an obstacle in the second region is detected by the obstacle detection device. It is provided with a control device for performing chemical control.
 この建設機械では、機体の周囲に設定された第1領域内の障害物が検出されると、所定のアクチュエータの駆動が禁止され、そのアクチュエータによる作動が停止する。また、第1領域内の障害物が検出されなくても、その外側に設定された第2領域内の障害物が検出されると、所定のアクチュエータの速度を低下させる制御(低速化制御)が行われる。このため、障害物の侵入に伴う停止によりオペレータに与える衝撃を軽減することができる。 In this construction machine, when an obstacle in the first area set around the machine body is detected, the driving of a predetermined actuator is prohibited and the operation by the actuator is stopped. Further, even if an obstacle in the first region is not detected, if an obstacle in the second region set outside the obstacle is detected, a control for reducing the speed of a predetermined actuator (speed reduction control) is performed. Will be done. Therefore, it is possible to reduce the impact given to the operator due to the stoppage due to the intrusion of an obstacle.
 前記制御装置は、前記エンジンの目標回転数を定格回転数よりも低い値に設定することにより前記低速化制御を行うことが好ましい。かかる構成によれば、エンジン回転数の変化音によって、オペレータや周囲の作業者に接触の危険性を直感的に認知させることができる。 It is preferable that the control device performs the speed reduction control by setting the target rotation speed of the engine to a value lower than the rated rotation speed. According to this configuration, the operator and surrounding workers can intuitively recognize the danger of contact by the sound of the change in engine speed.
 本開示の建設機械は、前記所定のアクチュエータの操作を制限するカットオフレバーを備え、前記カットオフレバーの引き上げ操作により前記所定のアクチュエータの操作が制限されていることを条件として、前記低速化制御を解除できるように構成されていることが好ましい。これにより、低速化制御を解除してアクチュエータの速度を復帰させる際には、所定のアクチュエータの作動が一旦停止するので、オペレータに周辺の安全確認を喚起させることができる。 The construction machine of the present disclosure includes a cut-off lever that limits the operation of the predetermined actuator, and the speed reduction control is provided on the condition that the operation of the predetermined actuator is restricted by the pulling operation of the cut-off lever. It is preferable that the configuration is such that the above can be released. As a result, when the speed reduction control is released and the speed of the actuator is restored, the operation of the predetermined actuator is temporarily stopped, so that the operator can be urged to confirm the safety of the surroundings.
 本開示の建設機械は、前記所定のアクチュエータの操作を制限するカットオフレバーを備え、前記カットオフレバーの引き上げ操作により前記所定のアクチュエータの操作が制限され、且つ、前記障害物検出装置によって前記第1領域及び前記第2領域内の障害物が検出されないことを条件として、前記所定のアクチュエータの駆動の禁止を解除できるように構成されていることが好ましい。これにより、所定のアクチュエータの駆動の禁止を解除してアクチュエータの速度を復帰させる際には、所定のアクチュエータの作動が一旦停止するとともに、障害物検出装置による安全確認を経るので、安全性を一層高めることができる。 The construction machine of the present disclosure includes a cut-off lever that limits the operation of the predetermined actuator, the operation of the predetermined actuator is restricted by the pulling operation of the cut-off lever, and the obstacle detection device causes the first. It is preferable that the structure is such that the prohibition of driving the predetermined actuator can be released on condition that no obstacle is detected in the first region and the second region. As a result, when the prohibition of driving the predetermined actuator is released and the speed of the actuator is restored, the operation of the predetermined actuator is temporarily stopped and the safety is confirmed by the obstacle detection device, so that the safety is further improved. Can be enhanced.
 前記作業機のリーチに応じて前記第1領域及び前記第2領域の一方または両方の大きさが変化するように構成されているものでもよい。これにより、作業の状況などに応じて、第1領域及び/または第2領域の大きさを簡便に変化させることができる。 It may be configured so that the size of one or both of the first region and the second region changes according to the reach of the working machine. Thereby, the size of the first region and / or the second region can be easily changed according to the work situation and the like.
 以上、本開示の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本開示の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present disclosure have been described above based on the drawings, it should be considered that the specific configuration is not limited to these embodiments. The scope of the present disclosure is shown not only by the description of the above-described embodiment but also by the scope of claims, and further includes all modifications within the meaning and scope equivalent to the scope of claims.
 上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本開示の趣旨を逸脱しない範囲で種々変形が可能である。 It is possible to adopt the structure adopted in each of the above embodiments in any other embodiment. The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure.
 本発明は、油圧ショベル等の建設機械に利用可能である。 The present invention can be used for construction machines such as hydraulic excavators.
  1   油圧ショベル
  2   下部走行体
  3   上部旋回体
  4   作業機
  7   統合ECU(制御装置の一例)
  22L 走行モータ(アクチュエータの一例)
  22R 走行モータ(アクチュエータの一例)
  30  エンジン
  32  旋回モータ(アクチュエータの一例)
  41c ブームシリンダ(アクチュエータの一例)
  42c アームシリンダ(アクチュエータの一例)
  43c バケットシリンダ(アクチュエータの一例)
  55  カットオフレバー
  60  複数のアクチュエータ
  61  可変容量型ポンプ(油圧ポンプの一例)
  62  固定容量型ポンプ(油圧ポンプの一例)
  67  電磁比例弁(禁止装置の一例)
1 Hydraulic excavator 2 Lower traveling body 3 Upper swivel body 4 Working machine 7 Integrated ECU (an example of control device)
22L traveling motor (example of actuator)
22R traveling motor (an example of actuator)
30 engine 32 swivel motor (example of actuator)
41c boom cylinder (an example of actuator)
42c arm cylinder (an example of actuator)
43c bucket cylinder (an example of actuator)
55 Cut-off lever 60 Multiple actuators 61 Variable displacement pump (example of hydraulic pump)
62 Fixed-capacity pump (example of hydraulic pump)
67 Electromagnetic proportional valve (example of prohibited device)

Claims (5)

  1.  下部走行体と、
     前記下部走行体に対して旋回可能に支持された上部旋回体と、
     前記上部旋回体に取り付けられた作業機と、
     前記下部走行体、前記上部旋回体または前記作業機に備えられた所定のアクチュエータと、
     前記所定のアクチュエータを含む複数のアクチュエータに圧油を圧送する油圧ポンプを駆動させるエンジンと、
     機体の周囲に設定された第1領域と、前記第1領域の外側に設定された第2領域とを含む監視領域内の障害物を検出する障害物検出装置と、
     前記障害物検出装置によって前記第1領域内の障害物が検出されたときに、前記所定のアクチュエータの駆動を禁止する禁止装置と、
     前記障害物検出装置によって前記第2領域内の障害物が検出されたときに、前記所定のアクチュエータの速度を低下させる低速化制御を行う制御装置と、を備える建設機械。
    With the lower running body,
    An upper swivel body that is rotatably supported with respect to the lower traveling body,
    The work machine attached to the upper swing body and
    A predetermined actuator provided in the lower traveling body, the upper rotating body, or the working machine,
    An engine that drives a hydraulic pump that pumps pressure oil to a plurality of actuators including the predetermined actuator.
    An obstacle detection device that detects an obstacle in a monitoring area including a first area set around the aircraft and a second area set outside the first area.
    When an obstacle in the first region is detected by the obstacle detection device, a prohibition device that prohibits driving of the predetermined actuator and a prohibition device.
    A construction machine including a control device that performs speed reduction control for reducing the speed of the predetermined actuator when an obstacle in the second region is detected by the obstacle detection device.
  2.  前記制御装置は、前記エンジンの目標回転数を定格回転数よりも低い値に設定することにより前記低速化制御を行う請求項1に記載の建設機械。 The construction machine according to claim 1, wherein the control device controls the speed reduction by setting the target rotation speed of the engine to a value lower than the rated rotation speed.
  3.  前記所定のアクチュエータの操作を制限するカットオフレバーを備え、
     前記カットオフレバーの引き上げ操作により前記所定のアクチュエータの操作が制限されていることを条件として、前記低速化制御を解除できるように構成されている請求項1または2に記載の建設機械。
    A cut-off lever that limits the operation of the predetermined actuator is provided.
    The construction machine according to claim 1 or 2, wherein the speed reduction control can be released on condition that the operation of the predetermined actuator is restricted by the pulling operation of the cutoff lever.
  4.  前記所定のアクチュエータの操作を制限するカットオフレバーを備え、
     前記カットオフレバーの引き上げ操作により前記所定のアクチュエータの操作が制限され、且つ、前記障害物検出装置によって前記第1領域及び前記第2領域内の障害物が検出されないことを条件として、前記所定のアクチュエータの駆動の禁止を解除できるように構成されている請求項1~3のいずれか1項に記載の建設機械。
    A cut-off lever that limits the operation of the predetermined actuator is provided.
    The predetermined condition is that the operation of the predetermined actuator is restricted by the pulling operation of the cutoff lever, and the obstacle detection device does not detect the obstacles in the first region and the second region. The construction machine according to any one of claims 1 to 3, which is configured so that the prohibition of driving the actuator can be lifted.
  5.  前記作業機のリーチに応じて前記第1領域及び前記第2領域の一方または両方の大きさが変化するように構成されている請求項1~4のいずれか1項に記載の建設機械。 The construction machine according to any one of claims 1 to 4, which is configured so that the size of one or both of the first region and the second region changes according to the reach of the working machine.
PCT/JP2020/033427 2019-09-09 2020-09-03 Construction machine WO2021049409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217035573A KR20220056156A (en) 2019-09-09 2020-09-03 construction machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019163967A JP2021042548A (en) 2019-09-09 2019-09-09 Construction machine
JP2019-163967 2019-09-09

Publications (1)

Publication Number Publication Date
WO2021049409A1 true WO2021049409A1 (en) 2021-03-18

Family

ID=74864556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033427 WO2021049409A1 (en) 2019-09-09 2020-09-03 Construction machine

Country Status (3)

Country Link
JP (1) JP2021042548A (en)
KR (1) KR20220056156A (en)
WO (1) WO2021049409A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023004180A (en) * 2021-06-25 2023-01-17 コベルコ建機株式会社 Monitoring system
JP2023050808A (en) * 2021-09-30 2023-04-11 株式会社小松製作所 Starting system for work machine, method for starting work machine, and work machine
JP2024004570A (en) 2022-06-29 2024-01-17 ヤンマーホールディングス株式会社 Work machine control method, work machine control program, work machine control system, and work machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269998A (en) * 1995-03-31 1996-10-15 Hitachi Constr Mach Co Ltd Area limit control device for construction machine
JPH08311934A (en) * 1995-05-17 1996-11-26 Hitachi Constr Mach Co Ltd Swivel hydraulic circuit of construction machinery
JPH09217387A (en) * 1996-02-08 1997-08-19 Kubota Corp Hydraulic circuit of construction equipment
JP2017097640A (en) * 2015-11-25 2017-06-01 株式会社Ihiエアロスペース Remote control image acquisition device, remote control image acquisition method and remote control device
JP2018199989A (en) * 2017-05-30 2018-12-20 コベルコ建機株式会社 Work machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589945B2 (en) 2017-07-14 2019-10-16 コベルコ建機株式会社 Construction machinery
JP6483302B2 (en) 2018-02-28 2019-03-13 住友建機株式会社 Excavator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269998A (en) * 1995-03-31 1996-10-15 Hitachi Constr Mach Co Ltd Area limit control device for construction machine
JPH08311934A (en) * 1995-05-17 1996-11-26 Hitachi Constr Mach Co Ltd Swivel hydraulic circuit of construction machinery
JPH09217387A (en) * 1996-02-08 1997-08-19 Kubota Corp Hydraulic circuit of construction equipment
JP2017097640A (en) * 2015-11-25 2017-06-01 株式会社Ihiエアロスペース Remote control image acquisition device, remote control image acquisition method and remote control device
JP2018199989A (en) * 2017-05-30 2018-12-20 コベルコ建機株式会社 Work machine

Also Published As

Publication number Publication date
JP2021042548A (en) 2021-03-18
KR20220056156A (en) 2022-05-04

Similar Documents

Publication Publication Date Title
WO2021049409A1 (en) Construction machine
CN104963373B (en) Shovel and control method thereof
JP7289232B2 (en) Work machines and work machine control systems
WO2021085500A1 (en) Work machine and surrounding monitoring system
WO2021010250A1 (en) Work machine
JP6625575B2 (en) Construction machinery
WO2022080025A1 (en) Construction machine
JP6966418B2 (en) Wireless excavator
CN113924396B (en) Working machine and method for controlling working machine
JP6539630B2 (en) Small turning type hydraulic shovel
CN114423911B (en) Work machine
WO2020218308A1 (en) Work machine
JP6695288B2 (en) Construction machinery
WO2021049418A1 (en) Construction machine
JP2023146900A (en) Work machine
JP2024004570A (en) Work machine control method, work machine control program, work machine control system, and work machine
JP2023074759A (en) Construction machine
JP2023047506A (en) Control system for work machine, work machine, control method for work machine, and control program for work machine
JP2021059878A (en) Intrusion monitoring control system, and work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863179

Country of ref document: EP

Kind code of ref document: A1