WO2021047863A1 - Ermitteln eines sensorfehlers eines sensors in einem abgasstrang eines kraftfahrzeugs - Google Patents

Ermitteln eines sensorfehlers eines sensors in einem abgasstrang eines kraftfahrzeugs Download PDF

Info

Publication number
WO2021047863A1
WO2021047863A1 PCT/EP2020/073058 EP2020073058W WO2021047863A1 WO 2021047863 A1 WO2021047863 A1 WO 2021047863A1 EP 2020073058 W EP2020073058 W EP 2020073058W WO 2021047863 A1 WO2021047863 A1 WO 2021047863A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensor signal
iss
error
actual
Prior art date
Application number
PCT/EP2020/073058
Other languages
English (en)
French (fr)
Inventor
Klemens Schuerholz
Daniel Brueckner
Marius Becker
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN202080050433.1A priority Critical patent/CN114096843A/zh
Priority to US17/597,119 priority patent/US12012881B2/en
Publication of WO2021047863A1 publication Critical patent/WO2021047863A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/007Arrangements to check the analyser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0404Methods of control or diagnosing using a data filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method and a device for determining a sensor error of a sensor in an exhaust gas line of a motor vehicle.
  • a first aspect of the invention relates to a method for determining a sensor error of a sensor for an exhaust gas line of a motor vehicle.
  • the sensor is attached in particular within the exhaust gas line, for example downstream exhaust gas flow before or after a catalytic converter.
  • One step of the method is the determination of at least one actual sensor signal of the sensor.
  • the actual sensor signal of the sensor is the signal generated by the sensor, by means of which the sensor provides the physical or chemical properties of its surroundings that it has measured.
  • Another step of the method is the determination of at least one target sensor signal of the sensor by means of a model.
  • the target sensor signal of the sensor is a virtual signal generated by the sensor. Depending on the ambient conditions of the sensor, the target sensor signal indicates which actual sensor signal would be generated by an error-free sensor.
  • the target sensor signal can in particular be generated by an artificial neural network.
  • a neural network is a collection of individual information processing units (neurons) that are arranged in layers in a network architecture. In connection with artificial intelligence, one speaks of artificial neural networks.
  • the neurons of an artificial neural network are arranged in so-called layers and are usually connected to one another in a fixed hierarchy.
  • the neurons are mostly connected between two layers, but in rare cases also within one layer.
  • the input layer is the starting point for the flow of information in an artificial neural network.
  • Input signals are usually received by the neurons at the beginning of this layer and weighted at the end to the neurons of the first Passed intermediate layer.
  • a neuron of the input layer forwards the respective information to the neurons of the first intermediate layer.
  • Activity layer or hidden layer The more intermediate layers there are, the "deeper" the neural network. In English, such cases are also referred to as deep learning. Theoretically, the number of possible hidden layers in an artificial neural network is unlimited. In practice, however, each additional hidden layer also causes an increase in the computing power required for the operation of the network.
  • the output layer lies behind the intermediate layers and forms the last layer in an artificial neural network. Neurons arranged in the output layer are each connected to the neurons in the last intermediate layer.
  • the output layer represents the end point of the information flow in an artificial neural network and contains the result of the information processing by the network.
  • Weights describe the intensity of the flow of information along a connection in a neural network.
  • each neuron assigns a weight to the information flowing through and then passes this on to the neurons of the next layer, weighted and, if necessary, after adding a value for the neurons-specific distortion.
  • the weights and distortions are initialized at the beginning of the training.
  • the result of the weighting and distortion is often passed through a so-called activation function before it is passed on to the neurons of the next layer.
  • the weights and distortions are adjusted during the training process so that the end result meets the requirements as closely as possible.
  • a further step of the method is the determination of the sensor error of the sensor as a function of a deviation between the actual sensor signal of the sensor and the target sensor signal of the sensor.
  • the advantage of the invention is that no active control of the internal combustion engine upstream of the exhaust system is necessary to determine the sensor error of the sensor.
  • the determination of the deviation between the actual sensor signal of the sensor and the target sensor signal of the sensor comprises the provision of at least one
  • Error model for the actual sensor signal of the sensor the determination of at least one error sensor signal of the sensor by linking the target sensor signal of the sensor with the respective error model, and the determination of the sensor error of the sensor as a function of at least one deviation between the actual Sensor signal of the sensor and an error sensor signal of the sensor in each case.
  • the error model is, in particular, a classification of a sensor error that leads to systematic deviations in the actual sensor signal.
  • the estimated parameter of the error model can be determined as a sensor error, so that the sensor error is not only determined as being qualitatively present but is even quantified.
  • the method comprises the provision of at least two error models for the actual sensor signal of the sensor.
  • the method also includes determining at least two error sensor signals from the sensor by linking the target sensor signal from the sensor with an error model in each case and determining the deviation between the actual sensor signal from the sensor and an error sensor signal from the sensor in each case .
  • the method in this advantageous embodiment comprises the selection of one of the error models as a function of the determined deviations between the actual sensor signal of the sensor and the respective error sensor signal of the sensor, and the determination of the sensor error as a function of the selected error model.
  • the at least one error model comprises at least one of the following six error models.
  • a rich mixture is characterized by a "lack of air” with a lambda value of less than 1.
  • a lean mixture is characterized by an "excess of air” with a lambda value greater than 1.
  • Combustion air ratio from a lean mixture to a rich mixture Combustion air ratio from a lean mixture to a rich mixture.
  • the senor is a lambda probe, which is arranged in particular upstream of a catalytic converter in the exhaust line.
  • the model for determining the at least one target sensor signal from the sensor is a neural network.
  • the senor is a lambda probe which is arranged downstream of a catalytic converter in the exhaust gas line.
  • the method in this advantageous embodiment includes the determination of at least one actual sensor signal of the sensor and that Determination of at least two target sensor signals of the sensor by means of a respective model, each model being characteristic of a specific aging condition of the catalytic converter.
  • the method also includes the determination of a deviation between the actual sensor signal of the sensor and one of the target sensor signals of the sensor, as well as the selection of one of the target sensor signals of the sensor as a function of the determined deviations, and the determination of the sensor error as a function of a deviation between the actual sensor signal of the sensor and the selected target sensor signal of the sensor.
  • a second aspect of the invention relates to a device for determining a sensor fault of a sensor in an exhaust system of a motor vehicle, the device being set up to determine at least one actual sensor signal of the sensor, to determine at least one target sensor signal of the sensor by means of a model, and to determine the sensor error of the sensor as a function of a deviation between the actual sensor signal of the sensor and the target sensor signal of the sensor.
  • FIG. 2 exemplary embodiments for error models
  • FIG. 3 further exemplary embodiments for error models.
  • 1 shows a method for determining a sensor error of a sensor for an exhaust gas line of a motor vehicle.
  • One step of the method is the determination of at least one actual sensor signal ISS of the sensor S, in particular by the sensor S itself.
  • a further step of the method is the determination of at least one setpoint sensor signal SSS of the sensor S by means of a model NN1, NN2, in particular as a function of at least one basic motor variable GMG.
  • the at least one basic motor variable GMG is, in particular, a manipulated variable or property variable of the basic motor, for example a manipulated variable or property variable of the crankshaft or flywheel housing,
  • crankshaft or camshaft drive wheels, cylinder head or cylinder head cover, connecting rods, pistons, oil coolers, oil separators, oil filters and / or injection systems.
  • the model NN1, NN2 for determining the at least one setpoint sensor signal SSS of the sensor S is in particular a neural network.
  • a further step of the method is the determination 110 of the sensor error of the sensor S as a function of a deviation between the actual sensor signal ISS of the sensor S and the target sensor signal SSS of the sensor S.
  • the deviation between the actual sensor signal ISS of the sensor and the target sensor signal SSS of the sensor can in particular be ascertained, the ascertaining of the discrepancy between the actual sensor signal ISS of the sensor S and the target sensor signal SSS of the sensor S providing of at least one error model FM for the actual sensor signal ISS of the sensor S.
  • the at least one error model FM is in particular a parameterizable error model and thus has at least one parameter.
  • determining the deviation between the actual sensor signal ISS of the sensor S and the target sensor signal SSS of the sensor S includes determining 100 of at least one error sensor signal FSS of the sensor S by linking the target sensor signal SSS of the sensor S with the respective an error model FM, and the determination 110 of the sensor error of the sensor S as a function of at least one deviation between the actual sensor signal ISS of the sensor S and a respective error sensor signal FSS of the sensor S.
  • the determination 110 of the at least one deviation between the actual sensor signal ISS of the sensor S and the target sensor signal SSS of the sensor S includes determining 100 of at least one error sensor signal FSS of the sensor S by linking the target sensor signal SSS of the sensor S with the respective an error model FM, and the determination 110 of the sensor error of the sensor S as a function of at least one deviation between the actual sensor signal ISS of the sensor S and a respective error sensor signal FSS of the sensor S.
  • Sensor signal ISS of sensor S and an error sensor signal FSS of sensor S in each case include, in particular, estimating 120 of the at least one parameter of error model FM such that the deviation between actual sensor signal ISS of sensor S and an error sensor signal FSS of sensor in each case S is minimized.
  • a conventional method of adjustment calculation can be used, i.e. a mathematical optimization method with the help of which the unknown parameters of your geometrical-physical model or the parameters of a given function are to be determined or estimated for a series of measurement data, for example the method of least squares .
  • the determination 110 of the at least one discrepancy between the actual sensor signal ISS of the sensor S and a respective error sensor signal FSS of the sensor S additionally includes in particular the determination 130 of the Sensor error as a function of the at least one parameter of the error model FM.
  • the method according to the invention comprises the provision of at least two error models FM for the actual sensor signal ISS of the sensor S.
  • the method according to the invention comprises determining 100 of at least two error sensor signals FSS from sensor S by linking the setpoint sensor signal SSS from sensor S with an error model FM in each case, and determining 110 the deviation between the actual sensor signal ISS from sensor S and one error sensor signal FSS of the sensor S, the selection 125 of one of the error models FM as a function of the determined deviations between the actual sensor signal ISS of the sensor S and the respective error sensor signal FSS of the sensor S, and the determination 130 of the sensor error depending on the selected fault model FM.
  • the sensor S is in particular a lambda probe in the exhaust system of the motor vehicle.
  • the sensor S is a lambda probe which is arranged upstream of a catalytic converter in the exhaust line.
  • the senor S is a lambda probe, which is arranged downstream of the catalytic converter in the exhaust gas line.
  • the method also includes, for example, the determination of at least two target sensor signals SSS of the sensor S by means of a model NN1, NN2, each model NN1, NN2 being characteristic of a specific aging condition of the catalytic converter.
  • one step of the method is the determination 110 of a deviation in each case between the actual sensor signal ISS of the sensor S and one of the setpoint sensor signals SSS of the sensor S.
  • a further step of the method is the selection 127 of one of the setpoints.
  • Sensor signals SSS of the sensor S as a function of the determined deviations. In particular, a minimum, that is to say the smallest, deviation can also be determined for this by means of a method of compensation calculation and then that setpoint sensor signal SSS of the sensor S can be selected which has the minimum deviation.
  • the method in this case includes the step of determining 130 the sensor error as a function of a deviation between the actual sensor signal ISS of the sensor S and the selected target sensor signal SSS of the sensor S.
  • FIG. 2 shows exemplary embodiments for error models of a lambda probe, with curves of a setpoint sensor signal SSS and an actual sensor signal ISS being plotted over time.
  • the target sensor signal SSS is drawn as a continuous line. Deviations of the actual sensor signal ISS from the target sensor signal SSS are shown in dotted lines. To simplify the illustration, no separate line is shown for the actual sensor signal ISS for time segments in which the actual sensor signal ISS essentially corresponds to the setpoint sensor signal SSS.
  • the actual sensor signal ISS versus the setpoint sensor signal SSS shows the error model of a time delay of the actual sensor signal ISS compared to the setpoint sensor signal SSS with a change in the combustion air ratio from a rich mixture to a lean mixture and none Time delay of the actual sensor signal ISS compared to the target Sensor signal SSS when the combustion air ratio changes from a lean mixture to a rich mixture.
  • the actual sensor signal ISS versus the setpoint sensor signal SSS shows the error model of a time delay of the actual sensor signal ISS compared to the setpoint sensor signal SSS when the combustion air ratio changes from a lean mixture to a rich mixture and a Time delay of the actual sensor signal ISS compared to the target sensor signal SSS when the combustion air ratio changes from a rich mixture to a lean mixture.
  • FIG. 3 shows further exemplary embodiments for error models of a lambda probe in the same representation as FIG. 2.
  • the actual sensor signal ISS shows the error model of a low-pass filtering of the actual sensor signal ISS compared to the setpoint sensor signal SSS with a change in the combustion air ratio from a rich mixture to a lean mixture and none Low-pass filtering of the actual sensor signal ISS compared to the target sensor signal SSS when the combustion air ratio changes from a lean mixture to a rich mixture.
  • the actual sensor signal ISS shows the error model of a low-pass filtering of the actual sensor signal ISS compared to the setpoint sensor signal SSS with a change in the combustion air ratio from a lean mixture to a rich mixture and a Low-pass filtering of the actual sensor signal ISS compared to the target

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Ein Aspekt der Erfindung betrifft ein Verfahren zum Ermitteln eines Sensorfehlers eines Sensors in einem Abgasstrang eines Kraftfahrzeugs. Ein Schritt des Verfahrens ist das Bestimmen von zumindest einem Ist-Sensorsignal des Sensors. Ein weiterer Schritt des Verfahrens ist das Bestimmen von zumindest einem Soll-Sensorsignal des Sensors mittels eines Modells. Ein weiterer Schritt des Verfahrens ist das Ermitteln des Sensorfehlers des Sensors in Abhängigkeit von einer Abweichung zwischen dem Ist-Sensorsignal des Sensors und dem Soll-Sensorsignal des Sensors.

Description

Ermitteln eines Sensorfehlers eines Sensors in einem Abgasstrang eines Kraftfahrzeugs
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ermitteln eines Sensorfehlers eines Sensors in einem Abgasstrang eines Kraftfahrzeugs.
Es ist bekannt, Sensorfehler von Sensoren, beispielsweise Lambdasonden, im Abgasstrang eines Kraftfahrzeugs, zu ermitteln, indem der dem Abgasstrang vorgelagerte Verbrennungsmotor in einer vorbestimmten Art und Weise angesteuert wird, so dass sich für einen fehlerfreien Sensor ein ebenfalls vorbestimmtes Sensorsignal ergibt. Weicht das tatsächliche
Sensorssignal von dem vorbestimmten Sensorsignal ab, so wird auf einen Sensorfehler geschlossen.
Die bekannten Ansätze zum Ermitteln eines Sensorfehlers eines Sensors in einem Abgasstrang eines Kraftfahrzeugs haben den Nachteil, dass dabei der dem Abgasstrang vorgeschaltete Verbrennungsmotors aktiv angesteuert werden muss, was zu negativen Auswirkungen auf den Fahrkomfort und/oder zur Erzeugung von unerwünschten Emissionen führt.
Es ist Aufgabe der Erfindung, die genannten Nachteile zumindest zu mindern.
Die Aufgabe wird durch die Merkmale der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen beschrieben. Es wird darauf hingewiesen, dass zusätzliche Merkmale eines von einem unabhängigen Patentanspruch abhängigen Patentanspruchs ohne die Merkmale des unabhängigen Patentanspruchs oder nur in Kombination mit einer Teilmenge der Merkmale des unabhängigen Patentanspruchs eine eigene und von der Kombination sämtlicher Merkmale des unabhängigen Patentanspruchs unabhängige Erfindung bilden können, die zum Gegenstand eines unabhängigen Anspruchs, einer Teilungsanmeldung oder einer Nachanmeldung gemacht werden kann. Dies gilt in gleicher Weise für in der Beschreibung beschriebene technische Lehren, die eine von den Merkmalen der unabhängigen Patentansprüche unabhängige Erfindung bilden können.
Ein erster Aspekt der Erfindung betrifft ein Verfahren zum Ermitteln eines Sensorfehlers eines Sensors für einen Abgasstrang eines Kraftfahrzeugs.
Der Sensor ist insbesondere innerhalb des Abgasstrangs angebracht, beispielsweise abgasstrom abwärts vor oder nach einem Katalysator.
Ein Schritt des Verfahrens ist das Bestimmen von zumindest einem Ist- Sensorsignal des Sensors. Das Ist-Sensorsignal des Sensors ist das von dem Sensor erzeugte Signal, mittels dem der Sensor die von ihm gemessenen physikalischen oder chemischen Eigenschaften seiner Umgebung bereitstellt. Ein weiterer Schritt des Verfahrens ist das Bestimmen von zumindest einem Soll-Sensorsignal des Sensors mittels eines Modells. Das Soll-Sensorsignal des Sensors ist ein virtuelles, von dem Sensor erzeugtes Signal. Das Soll-Sensorsignal zeigt in Abhängigkeit der Umgebungsbedingungen des Sensors an, welches Ist-Sensorsignal ein fehlerfreier Sensor erzeugen würde. Das Soll-Sensorsignal kann insbesondere durch ein künstliches neuronales Netz erzeugt werden.
Ein neuronales Netz ist eine Ansammlung von einzelnen Informationsverarbeitungseinheiten (Neuronen), die schichtweise in einer Netzarchitektur angeordnet sind. Im Zusammenhang mit künstlicher Intelligenz spricht man von künstlichen neuronalen Netzen.
Die Neuronen eines künstlichen neuronalen Netzes sind schichtweise in sogenannten Layern angeordnet und in der Regel in einer festen Hierarchie miteinander verbunden. Die Neuronen sind dabei zumeist zwischen zwei Layern verbunden, in selteneren Fällen aber auch innerhalb eines Layers.
Beginnend mit der Eingabeschicht (Input Layer) fließen Informationen über eine oder mehrere Zwischenschichten (Hidden Layer) bis hin zur Ausgabeschicht (Output Layer). Dabei ist der Output des einen Neurons der Input des nächsten.
Die Eingabeschicht ist der Startpunkt des Informationsflusses in einem künstlichen neuronalen Netz.
Eingangssignale werden üblicherweise von den Neuronen am Anfang dieser Schicht aufgenommen und am Ende gewichtet an die Neuronen der ersten Zwischenschicht weitergegeben. Dabei gibt ein Neuron der Eingabeschicht die jeweilige Information an die Neuronen der ersten Zwischenschicht weiter.
Zwischen der Eingabe- und der Ausgabeschicht befindet sich in jedem künstlichen neuronalen Netz mindestens eine Zwischenschicht (auch
Aktivitätsschicht oder verborgene Schicht von engl.: hidden layer). Je mehr Zwischenschichten es gibt, desto „tiefer“ ist das neuronale Netz, im englischen spricht man in solchen Fällen auch von Deep Learning. Theoretisch ist die Anzahl der möglichen verborgenen Schichten in einem künstlichen neuronalen Netzwerk unbegrenzt. In der Praxis bewirkt jede hinzukommende verborgene Schicht jedoch auch einen Anstieg der benötigten Rechenleistung, die für den Betrieb des Netzes notwendig ist. Die Ausgabeschicht liegt hinter den Zwischenschichten und bildet die letzte Schicht in einem künstlichen neuronalen Netzwerk. In der Ausgabeschicht angeordnete Neuronen sind jeweils mit den Neuronen der letzten Zwischenschicht verbunden. Die Ausgabeschicht stellt den Endpunkt des Informationsflusses in einem künstlichen neuronalen Netz dar und enthält das Ergebnis der Informationsverarbeitung durch das Netzwerk.
Gewichte beschreiben die Intensität des Informationsflusses entlang einer Verbindung in einem neuronalen Netzwerk. Jedes Neuron vergibt dazu ein Gewicht für die durchfließende Information und gibt diese dann gewichtet und gegebenenfalls nach der Addition eines Wertes für die Neuronen spezifische Verzerrung an die Neuronen der nächsten Schicht weiter. Üblicherweise werden die Gewichte und Verzerrungen zum Beginn des Trainings initialisiert. Das Ergebnis der Gewichtung und Verzerrung wird oft durch eine sogenannte Aktivierungsfunktion geleitet, bevor es an die Neuronen der nächsten Schicht weitergeleitet wird. Die Gewichte und Verzerrungen werden während des Trainingsprozesses so angepasst, dass das Endresultat möglichst genau den Anforderungen entspricht. Ein weiterer Schritt des Verfahrens ist das Ermitteln des Sensorfehlers des Sensors in Abhängigkeit von einer Abweichung zwischen dem Ist- Sensorsignal des Sensors und dem Soll-Sensorsignal des Sensors.
Vorteil der Erfindung ist, dass zum Ermitteln des Sensorfehlers des Sensors keine aktive Ansteuerung des dem Abgasstrang vorgelagerten Verbrennungsmotors notwendig ist.
In einer vorteilhaften Ausführungsform der Erfindung umfasst das Ermitteln der Abweichung zwischen dem Ist-Sensorsignal des Sensors und dem Soll- Sensorsignal des Sensors das Bereitstellen von zumindest einem
Fehlermodell für das Ist-Sensorsignal des Sensors, das Bestimmen von zumindest einem Fehler-Sensorsignal des Sensors durch Verknüpfung des Soll-Sensorsignals des Sensors mit dem jeweils einem Fehlermodell, und das Ermitteln des Sensorfehlers des Sensors in Abhängigkeit von zumindest einer Abweichung zwischen dem Ist-Sensorsignal des Sensors und jeweils einem Fehler-Sensorsignal des Sensors.
Das Fehlermodell ist insbesondere eine Klassifikation eines Sensorfehlers, der zu systematischen Abweichungen des Ist-Sensorsignals führt.
In einerweiteren vorteilhaften Ausführungsform ist das zumindest eine Fehlermodell ein parametrierbares Fehlermodell, das zumindest einen Parameter aufweist. Das Ermitteln der zumindest einen Abweichung zwischen dem Ist-Sensorsignal des Sensors und jeweils einem Fehler- Sensorsignal des Sensors umfasst dabei das Schätzen des zumindest eines Parameters des Fehlermodells derart, dass die Abweichung zwischen dem Ist-Sensorsignal des Sensors und jeweils einem Fehler-Sensorsignal des Sensor minimiert wird, und das Ermitteln des Sensorfehlers in Abhängigkeit von dem zumindest einen Parameter des Fehlermodells. Beispielsweise kann der geschätzte Parameter des Fehlermodells als Sensorfehler ermittelt werden, so dass der Sensorfehler nicht nur als qualitativ vorliegend bestimmt wird sondern sogar quantifiziert wird.
In einerweiteren vorteilhaften Ausführungsform umfasst das Verfahren das Bereitstellen von zumindest zwei Fehlermodellen für das Ist-Sensorsignal des Sensors.
Außerdem umfasst das Verfahren in dieser vorteilhaften Ausführungsform das Bestimmen von zumindest zwei Fehler-Sensorsignalen des Sensors durch Verknüpfung des Soll-Sensorsignals des Sensors mit jeweils einem Fehlermodell und das Ermitteln der Abweichung zwischen dem Ist- Sensorsignal des Sensors und jeweils einem Fehler-Sensorsignal des Sensors.
Zusätzlich umfasst das Verfahren in dieser vorteilhaften Ausführungsform das Auswählen eines der Fehlermodelle in Abhängigkeit von den ermittelten Abweichungen zwischen dem Ist-Sensorsignal des Sensors und dem jeweiligen Fehler-Sensorsignal des Sensors, und das Ermitteln des Sensorfehlers in Abhängigkeit von dem ausgewählten Fehlermodell.
Dieser vorteilhaften Ausführungsform liegt die Erkenntnis zu Grunde, dass es vorteilhaft sein kann, das Ist-Sensorsignal des Sensors mit mehreren Fehler- Sensorsignalen zu vergleichen, da ein Sensor von verschiedenen Fehlermodellen betroffen sein kann. Somit lässt sich beispielsweise im Betrieb ohne aktive Ansteuerung des dem Abgasstrang vorgelagerten Verbrennungsmotors das wahrscheinlichste vorliegende Fehlermodell bestimmen. In einerweiteren vorteilhaften Ausführungsform umfasst das zumindest eine Fehlermodell zumindest eines der folgenden sechs Fehlermodelle.
1. Eine Zeitverzögerung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch und keine Zeitverzögerung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch.
Ein fettes Gemisch ist dabei durch einen „Luftmangel“ mit einem Lambdawert kleiner 1 gekennzeichnet. Ein mageres Gemisch ist demgegenüber durch einen „Luftüberschuss“ mit einem Lambdawert größer 1 gekennzeichnet.
2. Eine Zeitverzögerung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und keine Zeitverzögerung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch.
3. Eine Tiefpassfilterung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch und keine Tiefpassfilterung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal (SSS) bei einer Änderung des
Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch.
4. Eine Tiefpassfilterung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und keine Tiefpassfilterung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch. 5. Eine Zeitverzögerung des Ist-Sensorsignals gegenüber dem Soll-
Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und Zeitverzögerung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch.
6. Eine Tiefpassfilterung des Ist-Sensorsignals gegenüber dem Soll- Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und Tiefpassfilterung des Ist-Sensorsignals gegenüber dem Soll-
Sensorsignal bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch.
In einerweiteren vorteilhaften Ausführungsform der Erfindung ist der Sensor eine Lambdasonde, die insbesondere abgasstromaufwärts vor einem Katalysator im Abgasstrang angeordnet ist.
In einerweiteren vorteilhaften Ausführungsform der Erfindung ist das Modell zum Bestimmen von dem zumindest einen Soll-Sensorsignal des Sensors ein neuronales Netz.
In einerweiteren vorteilhaften Ausführungsform der Erfindung ist der Sensor eine Lambdasonde, die abgasstrom abwärts nach einem Katalysator im Abgasstrang angeordnet ist.
Zusätzlich umfasst das Verfahren in dieser vorteilhaften Ausführungsform das Bestimmen von zumindest einem Ist-Sensorsignal des Sensors und das Bestimmen von zumindest zwei Soll-Sensorsignalen des Sensors mittels jeweils eines Modells, wobei jedes Modell für einen spezifischen Alterungszustand des Katalysators charakteristisch ist.
Außerdem umfasst das Verfahren in dieser vorteilhaften Ausführungsform das Ermitteln von jeweils einer Abweichung zwischen dem Ist-Sensorsignal des Sensors und einem der Soll-Sensorsignale des Sensors, sowie das Auswahlen eines der Soll-Sensorsignale des Sensors in Abhängigkeit von den ermittelten Abweichungen, und das Ermitteln des Sensorfehlers in Abhängigkeit von einer Abweichung zwischen dem Ist-Sensorsignal des Sensors und dem ausgewählten Soll-Sensorsignal des Sensors.
Ein zweiter Aspekt der Erfindung betrifft eine Vorrichtung zum Ermitteln eines Sensorfehlers eines Sensors in einem Abgasstrang eines Kraftfahrzeugs, wobei die Vorrichtung eingerichtet ist, zumindest ein Ist-Sensorsignal des Sensors zu bestimmen, zumindest ein Soll-Sensorsignal des Sensors mittels eines Modells zu bestimmen, und den Sensorfehlers des Sensors in Abhängigkeit von einer Abweichung zwischen dem Ist-Sensorsignal des Sensors und dem Soll-Sensorsignal des Sensors zu ermitteln.
Die vorstehenden Ausführungen zum erfindungsgemäßen Verfahren nach dem ersten Aspekt der Erfindung gelten in entsprechender weise auch für die erfindungsgemäße Vorrichtung nach dem zweiten Aspekt der Erfindung. An dieser Stelle und in den Patentansprüchen nicht explizit beschriebene vorteilhafte Ausführungsbeispiele der erfindungsgemäßen Vorrichtung entsprechen den vorstehend beschriebenen oder in den Patentansprüchen beschriebenen vorteilhaften Ausführungsbeispielen des erfindungsgemäßen Verfahrens.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Zuhilfenahme der beigefügten Zeichnungen beschrieben. In diesen zeigen: Fig. 1 ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens,
Fig. 2 Ausführungsbeispiele für Fehlermodelle, und Fig. 3 weitere Ausführungsbeispiele für Fehlermodelle. Fig. 1 zeigt ein Verfahren zum Ermitteln eines Sensorfehlers eines Sensors für einen Abgasstrang eines Kraftfahrzeugs.
Ein Schritt des Verfahrens ist das Bestimmen von zumindest einem Ist- Sensorsignal ISS des Sensors S, insbesondere durch den Sensor S selbst.
Ein weiterer Schritt des Verfahrens ist das Bestimmen von zumindest einem Soll-Sensorsignal SSS des Sensors S mittels eines Modells NN1, NN2, insbesondere in Abhängigkeit von zumindest einer grundmotorischen Größe GMG. Die zumindest eine grundmotorische Größe GMG ist insbesondere eine Stell- oder Eigenschaftsgröße des Grundmotors, beispielsweise eine Stell- oder Eigenschaftsgröße von Kurbel- oder Schwungradgehäuse,
Kurbel- oder Nockenwelle, Antriebsräder, Zylinderkopf oder Zylinderkopfhaube, Pleuel, Kolben, Ölkühler, Ölabscheider, Ölfilter und/oder Einspritzsystem.
Das Modell NN1, NN2 zum Bestimmen von dem zumindest einen Soll- Sensorsignal SSS des Sensors S ist insbesondere ein neuronales Netz.
Ein weiterer Schritt des Verfahrens ist das Ermitteln 110 des Sensorfehlers des Sensors S in Abhängigkeit von einer Abweichung zwischen dem Ist- Sensorsignal ISS des Sensors S und dem Soll-Sensorsignal SSS des Sensors S.
Die Abweichung zwischen dem Ist-Sensorsignal ISS des Sensors und dem Soll-Sensorsignal SSS des Sensors kann insbesondere ermittelt werden, wobei das Ermitteln der Abweichung zwischen dem Ist-Sensorsignal ISS des Sensors S und dem Soll-Sensorsignal SSS des Sensors S das Bereitstellen von zumindest einem Fehlermodell FM für das Ist-Sensorsignal ISS des Sensor S umfasst. Das zumindest eine Fehlermodell FM ist insbesondere ein parametrierbares Fehlermodell und weist somit zumindest einen Parameter auf.
Außerdem umfasst das Ermitteln der Abweichung zwischen dem Ist- Sensorsignal ISS des Sensors S und dem Soll-Sensorsignal SSS des Sensors S das Bestimmen 100 von zumindest einem Fehler-Sensorsignal FSS des Sensors S durch Verknüpfung des Soll-Sensorsignals SSS des Sensors S mit dem jeweils einem Fehlermodell FM, und das Ermitteln 110 des Sensorfehlers des Sensors S in Abhängigkeit von zumindest einer Abweichung zwischen dem Ist-Sensorsignal ISS des Sensors S und jeweils einem Fehler-Sensorsignal FSS des Sensors S. Das Ermitteln 110 der zumindest einen Abweichung zwischen dem Ist-
Sensorsignal ISS des Sensors S und jeweils einem Fehler-Sensorsignal FSS des Sensors S umfasst insbesondere das Schätzen 120 des zumindest eines Parameters des Fehlermodells FM derart, dass die Abweichung zwischen dem Ist-Sensorsignal ISS des Sensors S und jeweils einem Fehler- Sensorsignal FSS des Sensor S minimiert wird.
Flierzu kann beispielsweise ein herkömmliches Verfahren der Ausgleichungsrechnung angewendet werden, also eine mathematische Optimierungsmethode, mit deren Hilfe für eine Reihe von Messdaten die unbekannten Parameter ihres geometrisch-physikalischen Modells oder die Parameter einer vorgegebenen Funktion bestimmt oder geschätzt werden sollen, beispielsweise die Methode der kleinsten Quadrate.
Das Ermitteln 110 der zumindest einen Abweichung zwischen dem Ist- Sensorsignal ISS des Sensors S und jeweils einem Fehler-Sensorsignal FSS des Sensors S umfasst insbesondere zusätzlich das Ermitteln 130 des Sensorfehlers in Abhängigkeit von dem zumindest einen Parameter des Fehlermodells FM.
Alternativ umfasst das erfindungsgemäße Verfahren das Bereitstellen von zumindest zwei Fehlermodellen FM für das Ist-Sensorsignal ISS des Sensor S.
In diesem Fall umfasst das erfindungsgemäße Verfahren das Bestimmen 100 von zumindest zwei Fehler-Sensorsignalen FSS des Sensors S durch Verknüpfung des Soll-Sensorsignals SSS des Sensors S mit jeweils einem Fehlermodell FM, das Ermitteln 110 der Abweichung zwischen dem Ist- Sensorsignal ISS des Sensors S und jeweils einem Fehler-Sensorsignal FSS des Sensors S, das Auswählen 125 eines der Fehlermodelle FM in Abhängigkeit von den ermittelten Abweichungen zwischen dem Ist- Sensorsignal ISS des Sensors S und dem jeweiligen Fehler-Sensorsignal FSS des Sensors S, und das Ermitteln 130 des Sensorfehlers in Abhängigkeit von dem ausgewählten Fehlermodell FM.
Der Sensor S ist insbesondere eine Lambdasonde im Abgasstrang des Kraftfahrzeugs. Beispielsweise ist der der Sensor S eine Lambdasonde ist, die abgasstromaufwärts vor einem Katalysator im Abgasstrang angeordnet ist.
Alternativ ist der Sensor S eine Lambdasonde, die abgasstrom abwärts nach dem Katalysator im Abgasstrang angeordnet ist.
In diesem Fall umfasst das Verfahren beispielsweise zusätzlich das Bestimmen von zumindest zwei Soll-Sensorsignalen SSS des Sensors S mittels jeweils eines Modells NN1 , NN2, wobei jedes Modell NN1 , NN2 für einen spezifischen Alterungszustand des Katalysators charakteristisch ist. Ein Schritt des Verfahrens ist in diesem Fall das Verfahren das Ermitteln 110 von jeweils einer Abweichung zwischen dem Ist-Sensorsignal ISS des Sensors S und einem der Soll-Sensorsignale SSS des Sensors S. Ein weiterer Schritt des Verfahrens ist das Auswahlen 127 eines der Soll- Sensorsignale SSS des Sensors S in Abhängigkeit von den ermittelten Abweichungen. Insbesondere kann auch hierfür mittels einer Methode der Ausgleichungsrechnung eine minimale, also geringste, Abweichung bestimmt werden und dann dasjenige Soll-Sensorsignal SSS des Sensors S ausgewählt werden, das die minimale Abweichung aufweist.
Außerdem umfasst das Verfahren in diesem Fall den Schritt des Ermittelns 130 des Sensorfehlers in Abhängigkeit von einer Abweichung zwischen dem Ist-Sensorsignal ISS des Sensors S und dem ausgewählten Soll- Sensorsignal SSS des Sensors S.
Fig. 2 zeigt Ausführungsbeispiele für Fehlermodelle einer Lambdasonde, wobei Verläufe eines Soll-Sensorsignals SSS und eines Ist-Sensorsignals ISS über der Zeit aufgetragen sind. Das Soll-Sensorsignal SSS ist dabei als durchgehende Linie gezeichnet. Abweichungen des Ist-Sensor-Signals ISS vom Soll-Sensorsignal SSS sind gepunktet dargestellt. Zur vereinfachten Darstellung wird für Zeitabschnitte, in denen das Ist-Sensorsignal ISS im Wesentlichen dem Soll-Sensorsignal SSS entspricht für das Ist-Sensorsignal ISS keine separate Linie gezeigt.
Zwischen dem Zeitpunkt tO und dem Zeitpunkt t1 zeigt das Ist-Sensorsignal ISS gegenüber dem Soll-Sensorsignal SSS das Fehlermodell einer Zeitverzögerung des Ist-Sensorsignals ISS gegenüber dem Soll- Sensorsignal SSS bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch und keiner Zeitverzögerung des Ist-Sensorsignals ISS gegenüber dem Soll- Sensorsignal SSS bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch.
Zwischen dem Zeitpunkt t1 und dem Zeitpunkt t2 zeigt das Ist-Sensorsignal ISS gegenüber dem Soll-Sensorsignal SSS das Fehlermodell einer Zeitverzögerung des Ist-Sensorsignals ISS gegenüber dem Soll- Sensorsignal SSS bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und einer Zeitverzögerung des Ist-Sensorsignals ISS gegenüber dem Soll- Sensorsignal SSS bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch.
Fig. 3 zeigt weitere Ausführungsbeispiele für Fehlermodelle einer Lambdasonde in der gleichen Darstellung wie Fig. 2.
Zwischen dem Zeitpunkt tO und dem Zeitpunkt t1 zeigt das Ist-Sensorsignal ISS gegenüber dem Soll-Sensorsignal SSS das Fehlermodell einer Tiefpassfilterung des Ist-Sensorsignals ISS gegenüber dem Soll- Sensorsignal SSS bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch und keiner Tiefpassfilterung des Ist-Sensorsignals ISS gegenüber dem Soll- Sensorsignal SSS bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch. Zwischen dem Zeitpunkt t1 und dem Zeitpunkt t2 zeigt das Ist-Sensorsignal ISS gegenüber dem Soll-Sensorsignal SSS das Fehlermodell einer Tiefpassfilterung des Ist-Sensorsignals ISS gegenüber dem Soll- Sensorsignal SSS bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und einer Tiefpassfilterung des Ist-Sensorsignals ISS gegenüber dem Soll-
Sensorsignal SSS bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch.

Claims

Patentansprüche
1. Verfahren zum Ermitteln eines Sensorfehlers eines Sensors (S) für einen Abgasstrang eines Kraftfahrzeugs mit den folgenden Schritten:
• Bestimmen von zumindest einem Ist-Sensorsignal (ISS) des Sensors (S),
• Bestimmen von zumindest einem Soll-Sensorsignal (SSS) des Sensors (S) mittels eines Modells (NN1, NN2), und
• Ermitteln (110) des Sensorfehlers des Sensors (S) in Abhängigkeit von einer Abweichung zwischen dem Ist- Sensorsignal (ISS) des Sensors (S) und dem Soll-Sensorsignal (SSS) des Sensors (S).
2. Verfahren nach Anspruch 1 , wobei das Ermitteln der Abweichung zwischen dem Ist-Sensorsignal (ISS) des Sensors (S) und dem Soll- Sensorsignal (SSS) des Sensors (S) die folgenden Schritte umfasst:
• Bereitstellen von zumindest einem Fehlermodell (FM) für das Ist-Sensorsignal (ISS) des Sensor (S),
• Bestimmen (100) von zumindest einem Fehler-Sensorsignal (FSS) des Sensors (S) durch Verknüpfung des Soll- Sensorsignals (SSS) des Sensors (S) mit dem jeweils einem Fehlermodell (FM), und
• Ermitteln (110) des Sensorfehlers des Sensors (S) in Abhängigkeit von zumindest einer Abweichung zwischen dem Ist-Sensorsignal (ISS) des Sensors (S) und jeweils einem Fehler-Sensorsignal (FSS) des Sensors (S).
3. Verfahren nach Anspruch 2, wobei das zumindest eine Fehlermodell (FM) ein parametrierbares Fehlermodell ist und zumindest einen Parameter aufweist, und das Ermitteln (110) der zumindest einen Abweichung zwischen dem Ist-Sensorsignal (ISS) des Sensors (S) und jeweils einem Fehler-Sensorsignal (FSS) des Sensors (S) die folgenden Schritte umfasst:
• Schätzen (120) des zumindest eines Parameters des Fehlermodells (FM) derart, dass die Abweichung zwischen dem Ist-Sensorsignal (ISS) des Sensors (S) und jeweils einem Fehler-Sensorsignal (FSS) des Sensor (S) minimiert wird, und
• Ermitteln (130) des Sensorfehlers in Abhängigkeit von dem zumindest einen Parameter des Fehlermodells (FM).
4. Verfahren nach Anspruch 2 oder 3, wobei das Verfahren die folgenden Schritte umfasst:
• Bereitstellen von zumindest zwei Fehlermodellen (FM) für das Ist-Sensorsignal (ISS) des Sensor (S),
• Bestimmen (100) von zumindest zwei Fehler-Sensorsignalen (FSS) des Sensors (S) durch Verknüpfung des Soll- Sensorsignals (SSS) des Sensors (S) mit jeweils einem Fehlermodell (FM),
• Ermitteln (110) der Abweichung zwischen dem Ist-Sensorsignal (ISS) des Sensors (S) und jeweils einem Fehler-Sensorsignal (FSS) des Sensors (S);
• Auswahlen (125) eines der Fehlermodelle (FM) in Abhängigkeit von den ermittelten Abweichungen zwischen dem Ist- Sensorsignal (ISS) des Sensors (S) und dem jeweiligen Fehler- Sensorsignal (FSS) des Sensors (S), und
• Ermitteln (130) des Sensorfehlers in Abhängigkeit von dem ausgewählten Fehlermodell (FM).
5. Verfahren nach einem der Ansprüche 2, 3 oder 4, wobei das zumindest eine Fehlermodell (FM) zumindest eines der folgenden Fehlermodelle umfasst:
• Zeitverzögerung des Ist-Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des
Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch und keine Zeitverzögerung des Ist- Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch,
• Zeitverzögerung des Ist-Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und keine Zeitverzögerung des Ist- Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch,
• Tiefpassfilterung des Ist-Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch und keine Tiefpassfilterung des Ist- Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch, · Tiefpassfilterung des Ist-Sensorsignals (ISS) gegenüber dem
Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und keine Tiefpassfilterung des Ist- Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch, • Zeitverzögerung des Ist-Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und Zeitverzögerung des Ist- Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch, und/oder
• Tiefpassfilterung des Ist-Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem mageren Gemisch zu einem fetten Gemisch und Tiefpassfilterung des Ist- Sensorsignals (ISS) gegenüber dem Soll-Sensorsignal (SSS) bei einer Änderung des Verbrennungsluftverhältnisses von einem fetten Gemisch zu einem mageren Gemisch.
6. Verfahren nach einem der vorherigen Ansprüche, wobei der Sensor (S) eine Lambdasonde ist, die insbesondere abgasstrom aufwärts vor einem Katalysator im Abgasstrang angeordnet ist.
7. Verfahren nach einem der vorherigen Ansprüche, wobei das Modell
(NN1 , NN2) zum Bestimmen von dem zumindest einen Soll- Sensorsignal (SSS) des Sensors (S) ein neuronales Netz ist.
8. Verfahren nach einem der vorherigen Ansprüche, wobei der Sensor (S) eine Lambdasonde ist, die abgasstrom abwärts nach einem
Katalysator im Abgasstrang angeordnet ist, wobei das Verfahren die folgenden Schritte umfasst:
• Bestimmen von zumindest einem Ist-Sensorsignal (ISS) des Sensors (S), · Bestimmen von zumindest zwei Soll-Sensorsignalen (SSS) des
Sensors (S) mittels jeweils eines Modells (NN1, NN2), wobei jedes Modell (NN1 , NN2) für einen spezifischen Alterungszustand des Katalysators charakteristisch ist,
• Ermitteln (110) von jeweils einer Abweichung zwischen dem Ist- Sensorsignal (ISS) des Sensors (S) und einem der Soll- Sensorsignale (SSS) des Sensors (S),
• Auswahlen (127) eines der Soll-Sensorsignale (SSS) des Sensors (S) in Abhängigkeit von den ermittelten Abweichungen, und
• Ermitteln (130) des Sensorfehlers in Abhängigkeit von einer Abweichung zwischen dem Ist-Sensorsignal (ISS) des Sensors (S) und dem ausgewählten Soll-Sensorsignal (SSS) des Sensors (S).
9. Vorrichtung zum Ermitteln eines Sensorfehlers eines Sensors (S) in einem Abgasstrang eines Kraftfahrzeugs, wobei die Vorrichtung eingerichtet ist,
• zumindest ein Ist-Sensorsignal (ISS) des Sensors (S) zu bestimmen,
• zumindest ein Soll-Sensorsignal (SSS) des Sensors (S) mittels eines Modells (NN1, NN2) zu bestimmen, und
• den Sensorfehlers des Sensors (S) in Abhängigkeit von einer Abweichung zwischen dem Ist-Sensorsignal (ISS) des Sensors (S) und dem Soll-Sensorsignal (SSS) des Sensors (S) zu ermitteln (110).
PCT/EP2020/073058 2019-09-10 2020-08-18 Ermitteln eines sensorfehlers eines sensors in einem abgasstrang eines kraftfahrzeugs WO2021047863A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080050433.1A CN114096843A (zh) 2019-09-10 2020-08-18 查明机动车排气系统中的传感器的传感器误差
US17/597,119 US12012881B2 (en) 2019-09-10 2020-08-18 Determining a sensor error of a sensor in an exhaust gas system of a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019124259.2 2019-09-10
DE102019124259.2A DE102019124259A1 (de) 2019-09-10 2019-09-10 Ermitteln eines Sensorfehlers eines Sensors in einem Abgasstrang eines Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
WO2021047863A1 true WO2021047863A1 (de) 2021-03-18

Family

ID=72234813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/073058 WO2021047863A1 (de) 2019-09-10 2020-08-18 Ermitteln eines sensorfehlers eines sensors in einem abgasstrang eines kraftfahrzeugs

Country Status (4)

Country Link
US (1) US12012881B2 (de)
CN (1) CN114096843A (de)
DE (1) DE102019124259A1 (de)
WO (1) WO2021047863A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016277A1 (de) * 1992-02-07 1993-08-19 Robert Bosch Gmbh Verfahren und vorrichtung zum beurteilen der funktionsfähigkeit einer lambdaregelung
DE102005032456A1 (de) * 2005-07-12 2007-01-25 Robert Bosch Gmbh Verfahren zur Dynamikdiagnose einer Abgassonde
DE102008004221A1 (de) * 2008-01-14 2009-07-16 Robert Bosch Gmbh Bestimmung einer während des Betriebs einer Brennkraftmaschine auftretenden NOx- und Rußemission
WO2013045522A1 (de) * 2011-09-29 2013-04-04 Continental Automotive Gmbh Verfahren und vorrichtung zum erkennen unterschiedlicher abgassondenfehler beim betrieb einer brennkraftmaschine
DE102013214541A1 (de) * 2012-08-03 2014-02-06 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) System und verfahren zur diagnose eines defekts in einem sauerstoffsensor auf grundlage einer motordrehzahl
DE102014202101A1 (de) * 2013-02-11 2014-08-14 Ford Global Technologies, Llc Abschwächung des fehlertrends zur verschlechterung von luft-kraftstoff-verhältnissensoren

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240343B1 (en) * 1998-12-28 2001-05-29 Caterpillar Inc. Apparatus and method for diagnosing an engine using computer based models in combination with a neural network
US6092016A (en) * 1999-01-25 2000-07-18 Caterpillar, Inc. Apparatus and method for diagnosing an engine using an exhaust temperature model
US6880532B1 (en) * 2000-01-07 2005-04-19 Ford Global Technologies, Llc Engine operation parameter estimation method
US6609036B1 (en) * 2000-06-09 2003-08-19 Randall L. Bickford Surveillance system and method having parameter estimation and operating mode partitioning
US6917839B2 (en) * 2000-06-09 2005-07-12 Intellectual Assets Llc Surveillance system and method having an operating mode partitioned fault classification model
US7181334B2 (en) * 2003-05-14 2007-02-20 General Motors Corporation Method and apparatus to diagnose intake airflow
JP4320778B2 (ja) * 2004-08-23 2009-08-26 株式会社デンソー 空燃比センサの異常診断装置
DE102005019017B4 (de) 2005-04-21 2007-01-18 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Vorrichtung zur Fehlerdiagnose für Verbrennungsmotoren
DE102006047190B3 (de) * 2006-10-05 2008-04-10 Siemens Ag Verfahren und Vorrichtung zum Überwachen einer Abgassonde
JP4340676B2 (ja) * 2006-10-11 2009-10-07 本田技研工業株式会社 制御装置
CN101657624B (zh) * 2007-04-26 2013-06-12 Fev有限公司 利用氮氧化物传感器的废气反馈率控制系统
DE102013017799A1 (de) * 2013-10-25 2015-04-30 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Bestimmung des effektiven Kraftstoff-Luftverhältnisses einer aufgeladenen Verbrennungskraftmaschine mit Spülluftanteil
DE102016102219A1 (de) 2015-02-20 2016-08-25 Fev Gmbh Verfahren zur Untersuchung einer Ursache einer Fehlfunktion einer Komponente einer Antriebsmaschine
DE102017221624B3 (de) * 2017-12-01 2018-12-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Abgleich einer von einem Luftmassensensor eines Verbrennungsmotors erfassten Messgröße sowie Steuereinrichtung zum Durchführen eines solchen Verfahrens
JP6501018B1 (ja) * 2018-04-20 2019-04-17 トヨタ自動車株式会社 未燃燃料量の機械学習装置
JP6702380B2 (ja) * 2018-09-14 2020-06-03 トヨタ自動車株式会社 内燃機関の制御装置
US10872584B2 (en) * 2019-03-14 2020-12-22 Curious Company, LLC Providing positional information using beacon devices
JP7222363B2 (ja) * 2020-01-07 2023-02-15 トヨタ自動車株式会社 エアフロメータの異常診断装置
DE102020119379A1 (de) * 2020-07-22 2022-01-27 Samson Aktiengesellschaft Stellungsregler Selbstbewertung für digitalen Zwilling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016277A1 (de) * 1992-02-07 1993-08-19 Robert Bosch Gmbh Verfahren und vorrichtung zum beurteilen der funktionsfähigkeit einer lambdaregelung
DE102005032456A1 (de) * 2005-07-12 2007-01-25 Robert Bosch Gmbh Verfahren zur Dynamikdiagnose einer Abgassonde
DE102008004221A1 (de) * 2008-01-14 2009-07-16 Robert Bosch Gmbh Bestimmung einer während des Betriebs einer Brennkraftmaschine auftretenden NOx- und Rußemission
WO2013045522A1 (de) * 2011-09-29 2013-04-04 Continental Automotive Gmbh Verfahren und vorrichtung zum erkennen unterschiedlicher abgassondenfehler beim betrieb einer brennkraftmaschine
DE102013214541A1 (de) * 2012-08-03 2014-02-06 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) System und verfahren zur diagnose eines defekts in einem sauerstoffsensor auf grundlage einer motordrehzahl
DE102014202101A1 (de) * 2013-02-11 2014-08-14 Ford Global Technologies, Llc Abschwächung des fehlertrends zur verschlechterung von luft-kraftstoff-verhältnissensoren

Also Published As

Publication number Publication date
US12012881B2 (en) 2024-06-18
DE102019124259A1 (de) 2021-03-11
US20220243636A1 (en) 2022-08-04
CN114096843A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
DE112006002343B4 (de) Verfahren und Vorrichtung zur Regelung des Schalls eines Motors durch Schaltfrequenzanalyse
AT512977B1 (de) Methode zur Ermittlung eines Modells einer Ausgangsgröße eines technischen Systems
EP2812551B1 (de) Verfahren zur dynamiküberwachung von gas-sensoren
DE102019127482B4 (de) Steuereinrichtung
DE102011088296A1 (de) Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102007009689B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasrückführung
DE102008001569A1 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
DE102008057092A1 (de) Steuervorrichtung für einen Verbrennungsmotor
DE102007039691A1 (de) Modellierungsverfahren und Steuergerät für einen Verbrennungsmotor
DE102005018980A1 (de) Verfahren und Vorrichtung zur Fehlerdiagnose mechatronischer Systeme
EP3929421A1 (de) Verfahren zum betreiben einer brennkraftmaschine, steuergerät und brennkraftmaschine
DE19547496C2 (de) Verfahren zur Regelung von Verbrennungsmotoren
DE102012207655A1 (de) Verfahren zur Diagnose eines Ventils einer Fluidzuleitung
DE102019124267A1 (de) Steuerungsvorrichtung einer Brennkraftmaschine und Steuerungsverfahren derselben sowie Lernmodell zur Steuerung einer Brennkraftmaschine und Lernverfahren desselben
DE102020216145A1 (de) Verfahren zum Schätzen einer Rußmasse und Steuereinrichtung
DE102018126692A1 (de) Verfahren zur Erkennung einer Verkokung im Einlasstrakt eines Verbrennungsmotors mit Kraftstoffdirekteinspritzung
DE10015172A1 (de) Tankentlüftungsventil für großen Regenerierluftstrom
EP1364111B2 (de) Verfahren zur on-board ermittlung einer temperaturgrösse
EP0818619A2 (de) Verfahren und Vorrichtung zur Überwachung der Stellung einer variablen Ventilsteuerung
WO2021047863A1 (de) Ermitteln eines sensorfehlers eines sensors in einem abgasstrang eines kraftfahrzeugs
DE102014004460A1 (de) Sensorsteuerungs-vorrichtung, sensorsteuerungs-system und sensorsteuerungs-verfahren
DE112008001102T5 (de) Fahrzeugsteuervorrichtung und Steuerverfahren
DE102008004218B4 (de) Verfahren zur Bestimmung der dynamischen Rußemission
EP0711908A2 (de) Regelungsverfahren zur Optimierung der Schadstoffemission einer Verbrennungsanlage
DE102012200032A1 (de) Verfahren und Vorrichtung zur Dynamik-Diagnose von Sensoren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20761168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20761168

Country of ref document: EP

Kind code of ref document: A1