WO2021047074A1 - 换热器组件、蓄能换热装置及电器 - Google Patents

换热器组件、蓄能换热装置及电器 Download PDF

Info

Publication number
WO2021047074A1
WO2021047074A1 PCT/CN2019/123169 CN2019123169W WO2021047074A1 WO 2021047074 A1 WO2021047074 A1 WO 2021047074A1 CN 2019123169 W CN2019123169 W CN 2019123169W WO 2021047074 A1 WO2021047074 A1 WO 2021047074A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
heat exchanger
energy storage
fluid channel
straight pipe
Prior art date
Application number
PCT/CN2019/123169
Other languages
English (en)
French (fr)
Inventor
刘和成
岳宝
大森宏
周宏亮
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2021047074A1 publication Critical patent/WO2021047074A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0069Distributing arrangements; Fluid deflecting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • This application relates to the field of heat exchange components, in particular to a heat exchanger assembly, an energy storage heat exchange device and an electrical appliance.
  • the purpose of this application is to provide a heat exchanger assembly.
  • Another object of the present application is to provide an energy storage heat exchange device having the above heat exchanger assembly.
  • Another object of the present application is to provide an electrical appliance with the above-mentioned energy storage and heat exchange device.
  • an embodiment of the first aspect of the present application provides a heat exchanger assembly, including a shell and a heat exchanger, the heat exchanger is located in the shell, wherein the heat exchanger includes: The first fluid channel is arranged in at least one row, the first fluid channel is configured to allow the first medium to circulate; the second fluid channel is arranged in at least one row, the second fluid channel is independent of the first fluid channel And configured to allow the second medium to circulate; the first fluid channel and the second fluid channel are arranged alternately in the housing, and between the adjacent first fluid channel and the second fluid channel, And a space is left between the first fluid passage and the second fluid passage and the inner wall of the housing, and at least a part of the space is configured to accommodate energy storage materials.
  • the heat exchanger assembly provided by the foregoing embodiment of the present application is used in an energy storage heat exchange device, wherein the heat exchanger is provided with at least one row of first fluid passages and at least one row of second fluid passages for correspondingly
  • the first medium and the second medium circulate, so that the first medium in the process of flowing through the first fluid channel and the second medium in the process of flowing through the second fluid channel respectively exchange heat with the energy storage material in the shell to realize storage
  • the energy material exchanges heat with the first medium and/or the second medium to store and discharge energy to achieve the purpose of energy storage and heat exchange.
  • the first fluid channel and the second fluid channel are arranged alternately in the shell , There are spaces between adjacent first and second fluid channels, and between the first and second fluid channels and the inner wall of the housing, so that the space can be used to contain the energy storage material.
  • the contact between the energy material and the first fluid channel and the second fluid channel is more uniform, which is more conducive to the heat exchange efficiency and uniformity of the energy storage and discharge process of the energy storage material, and improves the energy utilization efficiency of the energy storage material. It has the advantages of simple structure, convenient processing, compactness and small volume.
  • thermoelectric assembly in the foregoing embodiment provided by the present invention may also have the following additional technical features:
  • the first fluid channels are arranged in at least two rows, and a row of the second fluid channels is arranged between two adjacent rows of the first fluid channels; and/or the second fluid channels are arranged There are at least two rows, and a row of the first fluid passages is arranged between two adjacent rows of the second fluid passages.
  • the first fluid passage is formed as a serpentine heat exchange tube, and the first fluid passage in the same row includes a plurality of first straight pipe sections arranged in parallel and connecting two adjacent ones.
  • first elbow section of the first straight pipe section two adjacent rows of the first fluid passages are communicated with each other through a first cross pipe or a first splitter;
  • the second fluid passage is formed as a serpentine heat exchange tube,
  • the second fluid passages located in the same row include a plurality of second straight pipe sections arranged in parallel and a second elbow section connecting two adjacent second straight pipe sections, and two adjacent rows of the second fluid
  • the channels are communicated with each other via a second cross tube or a second splitter.
  • the first straight pipe section has opposite first and second ends, and the first elbow section at the first end is connected to the two first straight pipe sections It is integrally formed, the first elbow section at the second end is welded to the two first straight pipe sections connected to it, and the first cross pipe or the first diverter is located at the second end;
  • the second straight pipe section has opposite third and fourth ends.
  • the second elbow section at the third end and the two second straight pipe sections connected to it are integrally formed.
  • the second elbow pipe section is welded to the two second straight pipe sections connected to it, and the second cross pipe or the second diverter is located at the fourth end.
  • the first straight pipe section and the second straight pipe section are arranged in parallel.
  • the first straight pipe section and the second straight pipe section are vertically distributed in space.
  • the second ends of at least two of the plurality of first straight pipe sections are configured with first medium inlets and outlets suitable for the first fluid channel to enter or drain;
  • the fourth ends of at least two of the second straight pipe sections are configured with a second medium inlet and outlet suitable for feeding or discharging the second fluid channel.
  • the cross section of the heat exchange tube used to construct the first fluid channel is circular or elliptical, or the heat exchange tube used to construct the first fluid channel is flat.
  • the tube section of the heat exchange tube used to construct the second fluid channel is circular or elliptical, or, the heat exchange tube used to construct the second fluid channel is a flat tube.
  • At least one row of the first fluid channel and at least one row of the second fluid channel are arranged adjacent to each other, and between the adjacent first fluid channel and the second fluid channel In between, the first straight pipe section and the second straight pipe section are arranged oppositely or staggered.
  • At least part of the first fluid channel and at least part of the second fluid channel are arranged countercurrently.
  • the heat exchanger further includes fins, wherein each row of at least one row of the first fluid channels is sheathed with the fins, and/or at least one row of the Each row of the second fluid channels is respectively sheathed with the fins; or at least one row of the first fluid channels and at least one row of the second fluid channels are arranged adjacent to each other, and the adjacent ones
  • the first fluid passage and the second fluid passage are sheathed in the same fin; or the fin is an integral fin, the first fluid passage and the second fluid passage of the heat exchanger Wear and sleeve on the same integral fin.
  • the first fluid channel has a single-channel structure or a multi-channel structure; and/or the second fluid channel has a single-channel structure or a multi-channel structure.
  • the embodiment of the second aspect of the present application provides an energy storage heat exchange device, comprising: energy storage material; the heat exchanger assembly described in any of the above technical solutions, the energy storage material is located in the heat exchanger assembly In the shell.
  • the energy storage heat exchange device provided in the foregoing embodiment of the present invention is provided with the heat exchanger assembly described in any of the foregoing technical solutions, thereby having all the above beneficial effects, and will not be repeated here.
  • the energy storage heat exchange device in the foregoing embodiment provided by the present invention may also have the following additional technical features:
  • the energy storage material is a solid-liquid phase change material, wherein the liquid level of the energy storage material in the liquid phase is lower than the inner top surface of the casing, and the energy storage material in the solid phase has a The top surface is higher than the liquid level of the energy storage material in the liquid phase, and lower than or flush with the inner top surface of the casing.
  • the sum of the expansion coefficient ⁇ and 1 of the energy storage material is in inverse proportion to the vertical distance Hp from the liquid level of the energy storage material to the inner bottom surface of the casing.
  • the volume of the energy storage material in the liquid phase accounts for the volume of the energy storage material in the liquid phase and the volume of the part where the heat exchanger is immersed in the energy storage material.
  • the ratio ⁇ of sum is in the range of 0.8 to 0.9.
  • the value of ⁇ is not less than 0.85.
  • the expansion coefficient ⁇ of the energy storage material does not exceed 0.1.
  • the phase transition temperature of the energy storage material ranges from -5°C to 15°C.
  • the heat exchanger has fins, and the fins of the heat exchanger are perpendicular to the inner bottom surface of the shell.
  • the casing includes: an outer shell; an inner bladder, the inner bladder is made of heat-insulating material, the inner bladder is accommodated in the outer shell, and the inner bladder is enclosed to define the shell The inner wall of the body.
  • a partial area of the inner liner or the entire inner liner is configured as a compressible thermal insulation material component.
  • the liner has a peripheral side wall and a bottom wall, the bottom wall is located on the inner bottom surface of the housing, and the peripheral side wall is located on the inner side of the side wall of the housing.
  • the peripheral side wall and the bottom wall are an integral structure.
  • the housing is provided with a filling port communicating with the inside of the housing, wherein an observation window is provided on the wall of the housing, and the observation window is a see-through structure and is suitable for Is configured to display the liquid level of the energy storage material in the housing; and/or the energy storage heat exchange device further includes a reminder element and a liquid level detection element, the liquid level detection element is connected with the reminder element, The liquid level detection element is configured to detect the liquid level of the energy storage material in the housing, and trigger the reminding element to issue a reminder according to the detected liquid level.
  • the embodiment of the third aspect of the present application provides an electrical appliance including the energy storage and heat exchange device described in any of the above technical solutions.
  • the electrical appliance provided in the foregoing embodiment of the present invention is provided with the energy storage and heat exchange device described in any of the foregoing technical solutions, thereby having all of the above beneficial effects, which will not be repeated here.
  • the electrical appliance in the foregoing embodiment provided by the present invention may also have the following additional technical features:
  • the electrical appliance includes a first circulation loop and a second circulation loop; the first fluid channel of the heat exchanger of the energy storage heat exchange device is in communication with the first circulation loop, and the heat exchange The second fluid passage of the device is in communication with the second circulation circuit.
  • the first circulation circuit includes a compressor, a first heat exchanger, and a throttling element, and the compressor, the first heat exchanger, the throttling element, and the first fluid passage are connected by pipelines.
  • a loop is formed; the second circulation loop includes a second heat exchanger, and the second heat exchanger is connected to the second fluid channel via a pipeline to form a loop.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of a heat exchanger according to an embodiment of the present application
  • Figure 1a is a schematic front view of the structure of the heat exchanger of the embodiment shown in Figure 1;
  • Fig. 1b is a left structural schematic diagram of the heat exchanger of the embodiment shown in Fig. 1;
  • Fig. 1c is a right structural schematic diagram of the heat exchanger of the embodiment shown in Fig. 1;
  • Fig. 2 is a schematic diagram of a three-dimensional structure of a heat exchanger according to an embodiment of the present application
  • Fig. 2a is a schematic top view of the structure of the heat exchanger of the embodiment shown in Fig. 2;
  • Figure 2b is a schematic front view of the structure of the heat exchanger of the embodiment shown in Figure 2;
  • Fig. 2c is a schematic bottom view of the structure of the heat exchanger of the embodiment shown in Fig. 2;
  • Fig. 3 is a schematic diagram of a three-dimensional structure of a heat exchanger according to an embodiment of the present application.
  • Fig. 3a is a schematic top view of the structure of the heat exchanger of the embodiment shown in Fig. 3;
  • Figure 3b is a schematic front view of the structure of the heat exchanger of the embodiment shown in Figure 3;
  • Fig. 3c is a schematic bottom view of the structure of the heat exchanger of the embodiment shown in Fig. 3;
  • Fig. 4 is a schematic diagram of a three-dimensional structure of a heat exchanger according to an embodiment of the present application.
  • Fig. 4a is a schematic front view of the structure of the heat exchanger of the embodiment shown in Fig. 4;
  • Fig. 4b is a schematic top view of the structure of the heat exchanger of the embodiment shown in Fig. 4;
  • Fig. 4c is a schematic bottom view of the structure of the heat exchanger of the embodiment shown in Fig. 4;
  • Figure 5 is a cross-sectional view of a heat exchanger provided by an embodiment of the present application.
  • Figure 6 is a cross-sectional view of a heat exchanger provided by another embodiment of the present application.
  • Figure 7 is a cross-sectional view of a heat exchanger provided by another embodiment of the present application.
  • Figure 8a is a schematic structural diagram of a heat exchanger assembly provided by an embodiment of the present application.
  • Figure 8b is a schematic structural diagram of a heat exchanger assembly provided by an embodiment of the present application.
  • Figure 9 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device provided by an embodiment of the present application.
  • Figure 10 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device provided by another embodiment of the present application.
  • Figure 11 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device provided by another embodiment of the present application.
  • Figure 12 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device provided by another embodiment of the present application.
  • Figure 13 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device provided by another embodiment of the present application.
  • Figure 14 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device provided by another embodiment of the present application.
  • FIG. 15 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device provided by another embodiment of the present application.
  • Figure 16 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device according to another embodiment of the present application.
  • Figure 17 is a cross-sectional view of a heat exchanger in an energy storage heat exchange device provided by another embodiment of the present application.
  • Fig. 18 is a schematic diagram of an air conditioner according to an embodiment of the present application.
  • Fig. 19 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • the heat exchanger assembly provided by the embodiment of the first aspect of the present application includes a shell 10 and a heat exchanger 1, and the heat exchanger 1 is located in the shell 10.
  • the heat exchanger 1 includes a first fluid channel 20 and a second fluid channel 30.
  • the first fluid channel 20 is arranged in at least one row, and the first fluid channel 20 is used for the circulation of the first medium;
  • the second fluid channel 30 is arranged in at least one row, the second fluid channel 30 is independent of the first fluid channel 20 and is used for the second medium to circulate;
  • the first fluid channel 20 and the second fluid channel 30 are arranged alternately in the housing 10 Cloth, there is a space between the adjacent first fluid channel 20 and the second fluid channel 30, and between the first fluid channel 20 and the second fluid channel 30 and the inner wall of the housing 10, and at least part of the space is configured as
  • the energy storage material is contained, so that the energy storage material can exchange heat with the first medium and/or the second medium to store and release energy, so as to realize the purpose of energy storage and heat exchange.
  • the first fluid channel 20 is arranged in at least one row
  • the heat exchange tubes used to configure the first fluid channel 20 are arranged in rows, and used to configure the exchange of the first fluid channel 20.
  • the heat pipe is specifically configured as a single-row heat exchange tube or a multi-row heat exchange tube structure.
  • the second fluid channel 30 is arranged in at least one row
  • it can be interpreted as a row of heat exchange tubes for configuring the second fluid channel 30
  • the heat exchange tubes that are arranged at ground level and used to configure the second fluid channel 30 are specifically configured as a single-row heat exchange tube or a multi-row heat exchange tube structure.
  • first fluid passage 20 and the second fluid passage 30 are arranged in a staggered manner in the housing 10. Specifically, it can be understood that the first fluid passage 20 and the second fluid passage 30 are arranged in rows and arranged between the rows. They are arranged alternately, and two adjacent rows of the first fluid passage 20 and the second fluid passage 30 are spaced apart from each other, and are arranged in such a way that the side surfaces thereof face each other.
  • the heat exchanger is provided with 6 rows of tubes, where each row of tubes is configured as a serpentine heat exchange tube, the serpentine heat exchange tube has a bent tube and a straight tube, and the straight tube of each row of tubes is perpendicular to the paper surface. It is arranged that the straight pipes of each row of pipes are arranged at a lateral interval, and the adjacent straight pipes of each row of pipes are connected and conducted through the elbow pipe.
  • the 6 rows of tubes are arranged in a longitudinal direction and are spaced apart from each other. Among them, the two rows of tubes that are adjacent in the longitudinal direction are arranged in such a way that their sides face each other.
  • 3 of the 6 rows of tubes belong to the first fluid channel 20, and the other 3 rows of the 6 rows of tubes belong to the second fluid channel 30, so that the first fluid channel 20 and the second fluid channel 30 are respectively formed in a multi-row structure .
  • the 6 rows of tubes from top to bottom in the longitudinal direction are sequentially numbered from 1 to 6, where the tubes numbered 1, 3, and 5 belong to the first fluid channel 20, and the first row of tubes and the third row of tubes
  • the tubes are connected to each other through a cross tube, and the tubes in the third row and the fifth tube are connected through a cross tube; the tubes numbered in rows 2, 4, and 6 belong to the second fluid channel 30, and the tubes in the second row are connected to the second fluid channel 30.
  • the tubes in the fourth row are connected through the cross-tubes, and the tubes in the fourth row and the sixth row are connected through the cross-tubes.
  • the second row of tubes is inserted and arranged between the first row of tubes and the third row of tubes, and the second row of tubes is arranged in such a way that its side faces the first row of tubes and the third row of tubes.
  • the 4 rows of tubes are inserted and arranged between the 3rd row of tubes and the 5th row of tubes, and the 4th row of tubes are arranged in such a way that their sides are opposite to the third row of tubes and the 5th row of tubes.
  • the 5th row of tubes The inserts are arranged between the fourth row of tubes and the sixth row of tubes, and the fifth row of tubes are arranged in such a way that their sides are opposite to the fourth row of tubes and the sixth row of tubes, thereby forming a multi-row first
  • the fluid channels 20 and the rows of second fluid channels 30 are alternately arranged to improve the uniformity of heat transfer.
  • first fluid channel 20 and the second fluid channel 30 are in a single row in combination with the above example.
  • first row of tubes and the second row of tubes are retained.
  • the situation of the piping can be understood.
  • first fluid channel 20 and the second fluid channel 30 is in a single row and the other is in multiple rows.
  • first fluid passage 20 and the second fluid passage 30 is arranged alternately in the housing 10, the adjacent first fluid passage 20 and the second fluid passage 30, as well as the first fluid passage 20 and the second fluid passage
  • Thermal performance and makes the energy storage material contact with the first fluid channel 20 and the second fluid channel 30 more uniform, which is more conducive to the high efficiency and uniformity of the heat exchange of the energy storage material, and improves the energy storage and discharge efficiency, and the design is also It has the advantages of simple structure, convenient processing, compactness, and small size, which can minimize the overall structure of the heat exchanger 1 and the shell 10, and is convenient for practical application.
  • the energy storage material includes liquid water and/or solid water.
  • the first fluid channels 20 are arranged in at least two rows, and a row of second fluid channels 30 is arranged between two adjacent rows of first fluid channels 20; and the second fluid channels 30 It is arranged in at least two rows, and a row of first fluid passages 20 is arranged between two adjacent rows of second fluid passages 30.
  • FIG. 2a and 2c there are multiple dashed and dotted lines and multiple dashed lines.
  • the multiple dashed and dotted lines respectively indicate multiple rows of first fluid channels 20, and the multiple dashed lines respectively indicate A plurality of rows of second fluid passages 30 are shown.
  • the reference numeral 20 recorded at the end of the dashed line indicates that the row of passages corresponding to the dashed line is the first fluid passage, and the end of the dashed line is recorded
  • the reference numeral 30 indicates that the row of channels corresponding to the dashed line is the second fluid channel.
  • first fluid passage 20 and the second fluid passage 30 are arranged alternately, so that a row of second fluid passages 30 are provided between two adjacent rows of first fluid passages 20, and two adjacent rows of second fluid passages are provided.
  • a row of first fluid channels 20 is arranged between 30.
  • the heat exchanger 1 can also be provided with the first fluid channel 20 having two rows and more than two rows, and the number of rows and the distribution form of the second fluid channel 30 may not be limited, so that the first fluid channel 20 and The second fluid passages 30 meet the requirement that there is a row of second fluid passages 30 between two adjacent rows of first fluid passages 20.
  • the second fluid passages 30 are arranged to have multiple rows, one of which is the second row.
  • the fluid channel 30 is located between two adjacent rows of the first fluid channel 20, and the remaining one or more rows of the second fluid channel 30 are set according to specific requirements, for example, it can be alternately distributed with the first fluid channel 20, or it can be The remaining one or more rows of second fluid channels 30 are arranged in sequence.
  • the heat exchanger 1 can also be provided with two or more rows of the second fluid channels 30, and the number and distribution of the first fluid channels 20 may not be limited, so that the first fluid channels 20 and The second fluid passages 30 meet the requirement that there is a row of first fluid passages 20 between two adjacent rows of second fluid passages 30.
  • the first fluid passages 20 are arranged to have multiple rows, one of which is the first row.
  • the fluid passage 20 is located between two adjacent rows of second fluid passages 30, and the remaining one or more rows of first fluid passages 20 are set according to specific requirements, such as alternately distributed with the second fluid passages 30, or alternatively
  • the remaining one or more rows of first fluid channels 20 are arranged in sequence.
  • the first fluid channel 20 is formed as a serpentine heat exchange tube, and the first fluid channel 20 is provided with at least two Row, the first fluid channel 20 in the same row includes a plurality of first straight pipe sections 21 arranged in parallel and a first elbow section 22 connecting two adjacent first straight pipe sections 21, two adjacent rows of first fluid
  • the channels 20 are in communication via the first cross tube 23;
  • the second fluid channel 30 is formed as a serpentine heat exchange tube, and the second fluid channels 30 are arranged in at least two rows, and the second fluid channels 30 located in the same row include a plurality of The second straight pipe section 31 and the second bent pipe section 32 connecting two adjacent second straight pipe sections 31 are arranged in parallel, and two adjacent rows of second fluid passages 30 are communicated with each other through the second cross pipe 33.
  • the first fluid passage 20 is arranged as a serpentine heat exchange tube, and two adjacent rows of first fluid passages 20 are connected through the first cross pipe 23, and the second fluid passage 30 is arranged in a serpentine shape.
  • Heat exchange tubes and connect two adjacent rows of second fluid passages 30 through the second cross-pipe 33, so that multiple rows of first fluid passages 20 are connected via the first cross-pipe 23, and multiple rows
  • the second fluid passages 30 are conducted through the second cross tube 33, and the design of the second cross tube 33 and the first cross tube 23 for conduction has the advantages of convenient and flexible pipe layout, which can be more convenient and flexible. It meets the design requirement that the first fluid passage 20 and the second fluid passage 30 are arranged alternately in the housing 10.
  • At least two of the plurality of first straight pipe sections 21 are configured with a first medium inlet and outlet 25 (which may be specifically the nozzle of the first straight pipe section 21) suitable for feeding or discharging the first fluid channel 20. ); At least two of the plurality of second straight pipe sections 31 are configured with a second medium inlet and outlet 35 suitable for feeding or discharging the second fluid channel 30 (which may be specifically the nozzle of the second straight pipe section 31) .
  • the first fluid channel 20 is formed as a serpentine heat exchange tube, and the first fluid channels 20 in the same row It includes a plurality of first straight pipe sections 21 arranged in parallel and a first elbow section 22 connecting two adjacent first straight pipe sections 21, and two adjacent rows of first fluid passages 20 are communicated with each other through a first diverter 24;
  • the second fluid passage 30 is formed as a serpentine heat exchange tube, and the second fluid passage 30 in the same row includes a plurality of second straight pipe sections 31 arranged in parallel and a second bend pipe connecting two adjacent second straight pipe sections 31 In section 32, two adjacent rows of second fluid passages 30 are communicated with each other through a second diverter 34.
  • the number of rows of the first fluid channel 20 is multiple, and the first diverter 24 is provided with multiple first medium inlets and outlets 25, and one of the first medium inlets and outlets 25 is used for One medium enters, and the remaining one or more first medium inlets and outlets 25 are used to communicate with one or more rows of first fluid channels 20, so that the first medium will enter after the first diverter 24 enters the liquid Evenly distributed to the plurality of first fluid channels 20, which not only simplifies the connection and assembly, but also facilitates the design of multiple flow paths of the first fluid channels 20.
  • the number of rows of the second fluid channels 30 is multiple, and the second diverter 34 is provided with multiple second medium inlets and outlets 35, and one of the second medium inlets and outlets 35 is used for The second medium enters, and the remaining one or more second medium inlets and outlets 35 are used to communicate with one or more rows of second fluid channels 30, so that the second medium will enter after the second diverter 34 enters the liquid Evenly distributed to the plurality of second fluid channels 30, which not only simplifies the connection and assembly, but also facilitates the design of multiple flow paths of the second fluid channels 30.
  • the two axial ends of the first straight pipe section 21 correspond to the first end and the second end, and the first elbow section 22 located at the first end of the first straight pipe section 21 is connected to it.
  • the two first straight pipe sections 21 are integrally formed, the first elbow section 22 located at the second end of the first straight pipe section 21 is welded to the two first straight pipe sections 21 connected to it, and the first cross pipe 23 (or first branch The device 24) is located at the second end of the first straight pipe section 21.
  • first cross pipe 23 or the first diverter 24 and the first elbow section 22 connected by welding are located on the same side of the first straight pipe section 21 in the axial direction.
  • One side of the straight pipe section 21 is uniformly welded, and the product processing and production are more efficient, and it is also more conducive to improving the yield of the product.
  • the two axial ends of the second straight pipe section 31 are the third end and the fourth end respectively, and the second elbow section 32 at the third end of the second straight pipe section 31 is integrally formed with the two second straight pipe sections 31 connected to it.
  • the second elbow section 32 located at the fourth end of the second straight pipe section 31 is welded to the two second straight pipe sections 31 connected to it, and the second cross pipe 33 (or the second diverter 34) is located at the second straight pipe section 31 The fourth end.
  • the second cross pipe 33 or the second diverter 34 and the second elbow section 32 connected by welding are located on the same side of the second straight pipe section 31 in the axial direction.
  • One side of the straight pipe section 31 is uniformly welded, and the product processing and production are more efficient, and it is also more conducive to improving the yield of the product.
  • first straight pipe section 21 and the second straight pipe section 31 are arranged in parallel, and the second end of the first straight pipe section 21 and the fourth end of the second straight pipe section 31 are located in the first straight pipe section 21 and the second straight pipe section 31.
  • the two axial sides are on the same side, so that the first elbow section 22 and the first cross pipe 23 (or the first splitter 24) at the other end of the first straight pipe section 21 and the second straight pipe section 31 at the other end are
  • the two bent pipe sections 32 and the second cross pipe 33 (or the second diverter 34) are distributed on the same axial side of the first straight pipe section 21 and the second straight pipe section 31.
  • first straight pipe section 21 and the second straight pipe section 31 may be arranged in parallel, and the second end of the first straight pipe section 21 and the second straight pipe section 31
  • the fourth ends are located on opposite sides of the two axial directions, so that the first elbow section 22 and the first cross pipe 23 at the second end of the first straight pipe section 21 or the fourth diverter 24 and the second straight pipe section 31
  • the second elbow section 32 and the second cross pipe 33 or the second diverter 34 at the end are distributed on opposite sides of the first straight pipe section 21 and the second straight pipe section 31 in the axial direction. It also has the advantages of compact product structure and small volume.
  • the first fluid passage 20 and the second fluid passage 30 are arranged countercurrently. That is, the flow directions of the first medium and the second medium are different. In other words, the flow directions of the first medium and the second medium are opposite, as shown in FIGS. 5 to 7, where the arrow indicates the first medium. Compared with the flow direction of the second medium, it can be seen that the flow directions of the first medium and the second medium are opposite to form a countercurrent, which can further improve the heat exchange efficiency of the heat exchanger 1. Specifically, the adjacent first fluid passage 20 and the second fluid passage 30 are arranged countercurrently.
  • first straight pipe section 21 is integrally formed with the first elbow section 22
  • first straight pipe section 21 is welded to the other side of the axial direction with the first elbow section 22
  • the first cross pipe 23 (or the first diverter 24) has a second elbow section 32 integrally formed along one side of the second straight pipe section 31 in the axial direction, and is welded along the other side of the second straight pipe section 31 in the axial direction.
  • the first straight pipe section 21 and the second straight pipe section 31 are spatially vertically distributed. In this way, the first straight pipe section 21 is welded to the first straight pipe section.
  • the second elbow section 32 and the second cross pipe 33 (or the second diverter 34) welded on the second straight pipe section 31 and the first elbow section 22 and the first cross pipe 23 (or the first diverter 24) are changing
  • the entire adjacent two sides of the heat exchanger 1 are welded and connected from the adjacent two sides of the heat exchanger 1.
  • first medium and the second medium are distributed in a cross-flow pattern, that is, the flow direction of the first medium and the second medium They are arranged perpendicularly or intersecting at a certain angle.
  • the heat exchange efficiency between the energy storage material and the first medium and the second medium can be further improved.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular, the structure is simple, and the processing and manufacturing are more convenient and faster.
  • FIGS. 9 to 16 there are multiple solid lines (straight line segments) and multiple dashed lines (straight line segments) in the figure, and one of the multiple solid lines and the multiple dashed lines is intended to indicate multiple rows.
  • the first fluid channel 20 and the other is intended to illustrate multiple rows of second fluid channels 30, wherein the specific corresponding relationship between the dashed or solid line and the first fluid channel 20 or the second fluid channel 30 can be further referred to the dashed or solid line
  • the reference numerals 20 and 30 described at the end should be understood.
  • the reference numeral 20 described at the end of the dashed or solid line indicates that the row of channels corresponding to the dashed or solid line is the first fluid channel, and the dashed or solid line is the first fluid channel.
  • the reference numeral 30 described at the end of the line indicates that the row of channels corresponding to the dashed or solid line is the second fluid channel.
  • the solid line (straight line section) and the dashed line (straight line section) as shown are only used as an auxiliary reference to facilitate the processing of multiple rows of first fluid channels 20 and multiple rows of second fluid channels 30.
  • the distinction and understanding shall not be taken as a special instruction and limitation of the entity structure. Of course, this solution is not limited to this.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is an elliptical ring, the structure is simple, and the processing and manufacturing are more convenient.
  • the heat exchange tube used to construct the first fluid channel 20 is a flat tube, specifically, for example, a hollow flat tube or a microchannel flat tube.
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular, the structure is simple, and the processing and manufacturing are more convenient and faster.
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is an elliptical ring, the structure is simple, and the processing and manufacturing are more convenient. Fast.
  • the heat exchange tube used to construct the second fluid channel 30 may be a flat tube, for example, a hollow flat tube or a micro-channel flat tube.
  • At least one row of first fluid channels 20 and at least one row of second fluid channels 30 are arranged adjacently, and the adjacent first fluid channels Between the fluid passage 20 and the second fluid passage 30, the first straight pipe section 21 and the second straight pipe section 31 are arranged opposite to each other. It is more convenient for product processing and setting.
  • first fluid channels 20 and at least one row of second fluid channels 30 are arranged adjacent to each other, and between adjacent first fluid channels 20 and second fluid channels 30 ,
  • the first straight pipe section 21 and the second straight pipe section 31 are arranged in a staggered arrangement.
  • the first fluid passage 20 and the second fluid passage 30 are arranged obliquely, so that an insertion is formed between the first straight pipe section 21 and the second straight pipe section 31.
  • Vacant distribution that is, the vacancies between the first straight pipe section 21 and the second straight pipe section 31 are arranged oppositely, or the vacancies between the second straight pipe section 31 and the first straight pipe section 21 are arranged oppositely, taking into account the energy storage material and the first straight pipe section.
  • the heat exchange uniformity of the medium and the second medium improves the utilization rate of the phase change latent heat of the energy storage material, and improves the energy storage and discharge efficiency of the energy storage heat exchange device 100 and the product energy efficiency.
  • the heat exchanger 1 includes a first fluid channel 20 and a second fluid channel 30, the first fluid channel 20 and the second fluid channel 30 respectively
  • first fluid channels 20 and the second fluid channel 30 respectively
  • An alternating arrangement of rows of first fluid passages 20 is arranged between the two rows of second fluid passages 30.
  • the first straight pipe sections 21 of the first fluid passages 20 in the same row are communicated with each other through the first elbow section 22, and the adjacent first fluid passages 20 are communicated with each other through the first cross pipe 23.
  • the second straight pipe sections 31 of the second fluid passages 30 in the same row are communicated with each other through the second elbow section 32, and the adjacent second fluid passages 30 are communicated with each other through the second cross pipe 33.
  • the energy material enables the energy storage material to exchange heat with the first medium and/or the second medium to store and release energy, so as to achieve the purpose of energy storage and heat exchange.
  • the heat exchanger 1 further includes fins 40, each of the rows of first fluid channels 20 is covered with fins 40, and each of the rows of second fluid channels 30 is covered with fins. 40. More specifically, for two adjacent rows of the first fluid passage 20 and the second fluid passage 30, the fins 40 worn by each are the same component, that is, the adjacent first fluid passage 20 and the second fluid passage The two fluid channels 30 pass through the same fin 40.
  • the first fluid channel 20 and the second fluid channel 30 are respectively arranged in a three-row structure, and the three rows of the first fluid channel 20 are arranged in a three-row structure.
  • the three rows of second fluid passages 30 are arranged in sequence from top to bottom.
  • a row of second fluid passages 30 are arranged between the row of first fluid passages 20 on the upper side and the row of first fluid passages 20 in the middle.
  • a row of second fluid passages 30 (middle) is provided between the row of first fluid passages 20 in the middle and the row of first fluid passages 20 on the lower side (middle), and the row of first fluid passages 20 on the lower side
  • the lower side is provided with a row of second fluid channels 30 (lower side) to form an alternating arrangement.
  • the heat exchanger 1 includes three groups of upper, middle and lower fins 40, and the number of each group of fins 40 is one or more.
  • the first fluid channel 20 on the side and the second fluid channel 30 on the upper side pass through a set of fins 40 on the upper side, and the first fluid channel 20 on the middle side and the second fluid channel 30 on the middle side pass through the middle side.
  • a set of fins 40 on the lower side, the first fluid channel 20 on the lower side and the second fluid channel 30 on the lower side pass through a set of fins 40 on the lower side.
  • the relative orientation reference provided for the convenience of description in conjunction with FIG. 5 does not limit the arrangement orientation relationship of the heat exchanger 1.
  • first fluid channel 20 and the second fluid channel 30 have a single flow path structure respectively, and the first medium in the first fluid channel 20 and the second medium in the second fluid channel 30 are along the line in FIG. 5
  • the arrow points to a counter-current setting.
  • the first fluid channel 20 is provided with at least two first media inlets and outlets 25, and the second fluid channel 30 is provided with at least two second media.
  • Inlet and outlet 35 the first medium flows in from one first medium inlet and outlet 25 in the first fluid channel 20 and flows out from another first medium inlet and outlet 25.
  • the first medium flows from top to bottom as a whole;
  • the second medium flows in
  • the second fluid channel 30 flows in from one second medium inlet and outlet 35 and flows out from another second medium inlet and outlet 35.
  • the second medium flows from bottom to top as a whole, which is opposite to the flow direction of the first medium.
  • first straight pipe section 21 of the first fluid passage 20 and the second straight pipe section 31 of the second fluid passage 30 are arranged in a staggered arrangement. That is, the space between the first straight pipe section 21 of the first fluid passage 20 and the second straight pipe section 31 of the second fluid passage 30 is arranged opposite to each other.
  • the number of rows of the first fluid channels 20 can also be designed as 1, 2, 4, or more than 4 rows, and the number of rows of the second fluid channels 30 can also be designed as 1. Rows, 2 rows, 4 rows or more than 4 rows, and the number of rows of the first fluid channel 20 and the number of rows of the second fluid channel 30 may be the same or different.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger assembly provided by this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the heat exchanger 1 includes a first fluid channel 20 and a second fluid channel 30, the first fluid channel 20 and the second fluid channel 30 respectively
  • first fluid channels 20 and the second fluid channel 30 respectively
  • An alternating arrangement of rows of first fluid passages 20 is arranged between the two rows of second fluid passages 30.
  • the first straight pipe sections 21 of the first fluid passages 20 in the same row are communicated with each other through the first elbow section 22, and the adjacent first fluid passages 20 are communicated with each other through the first cross pipe 23.
  • the second straight pipe sections 31 of the second fluid passages 30 in the same row are communicated with each other through the second elbow section 32, and the adjacent second fluid passages 30 are communicated with each other through the second cross pipe 33.
  • the energy material enables the energy storage material to exchange heat with the first medium and/or the second medium to store and release energy, so as to achieve the purpose of energy storage and heat exchange.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger 1 also includes fins 40.
  • the fins 40 are integral fins.
  • the first fluid passage 20 and the second fluid passage 30 of the heat exchanger 1 are sheathed in the same whole. Type fins.
  • the first fluid channel 20 and the second fluid channel 30 are respectively arranged in a three-row structure, and the three rows of the first fluid channel 20 are The three rows of second fluid passages 30 are arranged in sequence from top to bottom. A row of second fluid passages 30 are arranged between the row of first fluid passages 20 on the upper side and the row of first fluid passages 20 in the middle.
  • a row of second fluid passages 30 (middle) is provided between the row of first fluid passages 20 in the middle and the row of first fluid passages 20 on the lower side (middle), and the row of first fluid passages 20 on the lower side
  • the lower side is provided with a row of second fluid passages 30 (lower side), which are arranged alternately.
  • the heat exchanger 1 includes an integral fin group, and the upper, middle and lower three rows of first fluid passages 20 and the upper, middle and lower second The fluid channel 30 passes through the integral fin group.
  • first fluid channel 20 and the second fluid channel 30 have a single flow path structure respectively, and the first medium in the first fluid channel 20 and the second medium in the second fluid channel 30 are along the line in FIG. 6
  • the arrow points to a counter-current setting.
  • the arrows indicate the flow direction of the first medium and the second medium.
  • the first fluid channel 20 is provided with at least two first media inlets and outlets 25, and the second fluid channel 30 is provided with at least two second media.
  • Inlet and outlet 35 the first medium flows in from one first medium inlet and outlet 25 in the first fluid channel 20 and flows out from another first medium inlet and outlet 25.
  • the first medium flows from top to bottom as a whole; the second medium flows in
  • the second fluid channel 30 flows in from one second medium inlet and outlet 35 and flows out from another second medium inlet and outlet 35.
  • the second medium flows from bottom to top as a whole, which is opposite to the flow direction of the first medium.
  • first straight pipe section 21 of the first fluid passage 20 and the second straight pipe section 31 of the second fluid passage 30 are arranged in a staggered arrangement. That is, the space between the first straight pipe section 21 of the first fluid passage 20 and the second straight pipe section 31 of the second fluid passage 30 is arranged opposite to each other.
  • the number of rows of the first fluid channels 20 can also be designed as 1, 2, 4, or more than 4 rows, and the number of rows of the second fluid channels 30 can also be designed as 1. Rows, 2 rows, 4 rows or more than 4 rows, and the number of rows of the first fluid channel 20 and the number of rows of the second fluid channel 30 may be the same or different.
  • the heat exchanger assembly provided by this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the difference from the tenth embodiment described above is that, as shown in FIG. 7, in this embodiment, the first fluid channel 20 and the second fluid channel 30 respectively have a multi-flow path structure.
  • the first fluid channel 20 forms two flow paths
  • the second fluid channel 30 forms two flow paths
  • one of the flow paths formed by the first fluid channel 20 specifically includes two rows of first fluid channels. 20.
  • the other flow path formed by the first fluid channel 20 specifically includes two rows of first fluid channels 20, and one of the flow paths formed by the second fluid channel 30 specifically includes two rows of second fluid channels 30, and the second fluid channel 30
  • the formed other flow path specifically includes the other two rows of second fluid channels 30.
  • first straight pipe sections 21 of the first fluid passages 20 in the same row are connected through the first elbow section 22, and the adjacent first fluid passages 20 are connected through the first straight pipe section 22.
  • the cross pipe 23 is connected.
  • the first straight pipe sections 21 of the second fluid passages 30 in the same row are connected through the second elbow section 32, and the adjacent second fluid passages 30 pass through the second straight pipe section.
  • the cross pipe 33 communicates.
  • the two rows of first fluid channels 20 in one of the flow paths formed by the first fluid channel 20 and the two rows of second fluid channels 30 in one of the flow paths formed by the second fluid channel 30 are alternately arranged and arranged countercurrently.
  • the two rows of first fluid channels 20 of the other flow path formed by the first fluid channel 20 and the two rows of second fluid channels 30 of the other flow path formed by the second fluid channel 30 are alternately arranged and arranged countercurrently.
  • the arrows indicate the flow direction of the first medium and the second medium.
  • the first fluid channel 20 forms four first medium inlets and outlets 25, and the second fluid channel 30 forms four second medium inlets and outlets 35.
  • the first medium flows in from one first medium inlet and outlet 25 in one of the flow paths of the first fluid channel 20 and flows out from the other first medium inlet and outlet 25.
  • the first medium flows along one of the first fluid channels 20.
  • the second medium flows from top to bottom; the second medium flows in from one second medium inlet and outlet 35 in one of the flow paths of the second fluid channel 30, and flows out from the other second medium inlet and outlet 35, and the second medium flows along the second medium inlet and outlet 35.
  • One of the flow paths of the fluid channel 30 flows from bottom to top, which is opposite to the flow direction of the first medium flowing along one of the flow paths of the first fluid channel 20.
  • the flow patterns of the first medium in the other flow path of the first fluid channel 20 and the second medium in the other flow path of the second fluid channel 30 form a counter flow with reference to the above, and will not be repeated here.
  • first fluid passage 20 and second fluid passage 30 There is a space between any adjacent first fluid passage 20 and second fluid passage 30, and between the first fluid passage 20 and second fluid passage 30 and the inner wall of the housing 10, and at least part of the space is configured to accommodate
  • the energy storage material enables the energy storage material to exchange heat with the first medium and/or the second medium to store and release energy, so as to achieve the purpose of energy storage and heat exchange.
  • the heat exchanger assembly provided in this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the heat exchanger 1 includes multiple rows of first fluid passages 20 and multiple rows of second fluid passages 30.
  • the rows of first fluid passages 20 and the rows of second fluid passages 30 are alternately arranged, and the adjacent first fluid passages are arranged alternately.
  • the heat exchanger 1 further includes fins 40, which are integral fins with multiple rows The first fluid channel 20 and the multiple rows of second fluid channels 30 pass through the integral fin.
  • the first straight pipe sections 21 of the first fluid passage 20 and the second straight pipe sections 31 of the second fluid passage 30 are arranged in a row.
  • the first straight pipe sections 21 of the first fluid passage 20 and the second straight pipe sections 31 of the second fluid passage 30 are arranged in a row along the longitudinal direction.
  • this solution is not limited to this.
  • between the first straight pipe section 21 of the first fluid channel 20 and between the second straight pipe section 31 of the second fluid channel 30 It can also be arranged in an oblique row.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger assembly provided in this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the heat exchanger 1 includes a first fluid passage 20 and a second fluid passage 30.
  • the first fluid channel 20 has a multi-row or single-row structure
  • the second fluid channel 30 has a multi-row or single-row structure, wherein each row of the first fluid channel 20 and each row of the second fluid channel 20 have a multi-row or single-row structure.
  • the fluid channels 30 are respectively sheathed with fins 40, and the fins 40 sheathed on any row of the first fluid passage 20 are independent of the fins 40 sheathed on any row of the second fluid passage 30.
  • the fins 40 sheathed on the first fluid channel 20 of any row are also independent of the fins 40 sheathed on the first fluid channel 20 of any other row.
  • any The fins 40 sheathed on the second row of fluid passages 30 are independent of the fins 40 sheathed on any row of the first fluid passages 30, and for the case where the second fluid passages 30 are in multiple rows, the second row of fins 40
  • the fin 40 pierced on the fluid channel 30 is also independent of the fin 40 pierced on the second fluid channel 30 in any other row.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger assembly provided in this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the heat exchanger 1 includes a first fluid passage 20 and a second fluid passage 30.
  • the first fluid passage 20 and the second fluid passage 30 are respectively two rows of structures, wherein two rows of first fluid passages 20 are arranged up and down, two rows of second fluid passages 30 are arranged up and down, and two rows of first fluid passages are arranged up and down. 20 and two rows of second fluid passages 30 are alternately distributed, wherein the upper first fluid passage 20 is adjacent to and close to the upper second fluid passage 30.
  • the upper first fluid passage 20 is adjacent to and in contact with the second fluid channel 30 on the upper side
  • the first fluid channel 20 on the lower side is adjacent to and located close to the second fluid channel 30 on the lower side.
  • the first fluid channel on the lower side 20 is adjacent to and in contact with the second fluid channel 30 on the lower side.
  • the first fluid channel 20 on the upper side is adjacent to and close to or in contact with the second fluid channel 30 on the upper side
  • the first fluid channel 20 on the lower side is adjacent to and close to or in contact with the second fluid channel 30 on the lower side, In this way, the first fluid channel 20 and the second fluid channel 30 arranged adjacently and closely can transfer heat more efficiently or even directly, so as to reduce the heat transfer loss or hysteresis of the energy storage material between the two.
  • the first fluid channel 20 and the second fluid channel 30 arranged adjacently and in contact can further improve the heat transfer efficiency between the first medium and the second medium, and there is no need to wait for the heat to be transferred to the energy storage material before use , To achieve the effect of ready-to-use energy, at the same time, it further reduces heat transfer loss and improves product energy efficiency.
  • the second fluid channel 30 on the upper side and the first fluid channel 20 on the lower side are adjacently and spaced apart, so that the two rows of first fluid communication and the two rows of second fluid communication are between the housing 10 and the upper side.
  • a space is formed between the second fluid channel 30 and the first fluid channel 20 on the lower side, and the space is used to accommodate the energy storage material, so that the energy storage material can exchange heat with the first medium and/or the second medium.
  • the heat exchanger 1 further includes a fin 40, which is an integral fin, and two rows of first fluid passages 20 and two rows of second fluid passages 30 pass through the integral fin.
  • the number of rows of the first fluid channels 20 can also be designed to be 3 rows, 4 rows, 5 rows or more than 5 rows, and the number of rows of the second fluid channels 30 can also be designed to be 3. Rows, 4 rows, 5 rows or more than 5 rows, and the number of rows of the first fluid channel 20 and the number of rows of the second fluid channel 30 may be the same or different.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger assembly provided by this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the heat exchanger 1 includes fins 40, wherein the first fluid passage 20 on the upper side and the second fluid on the upper side The channel 30 passes through the same fin 40, and the lower first fluid passage 20 and the lower second fluid passage 30 pass through the other fin 40.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger assembly provided by this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the heat exchanger 1 includes two rows of first fluid passages 20 and three rows of second fluid passages 30, and the two rows of first fluid passages 20 and three rows of second fluid passages 30 form a three-in-two form The alternate arrangement.
  • the heat exchanger 1 further includes a fin 40, which is an integral fin, and two rows of first fluid passages 20 and three rows of second fluid passages 30 pass through the integral fin.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger assembly provided by this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the heat exchanger 1 includes three rows of first fluid passages 20 and two rows of second fluid passages 30, and three rows of first fluid passages 20 and two rows of second fluid passages 30 form a three-in-two form The alternate arrangement.
  • the heat exchanger 1 further includes a fin 40, which is an integral fin, and two rows of first fluid passages 20 and three rows of second fluid passages 30 pass through the integral fin.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger assembly provided by this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the heat exchanger 1 includes two rows of first fluid passages 20 and two rows of second fluid passages 30, and two rows of first fluid passages 20 and two rows of second fluid passages 30 are alternately arranged.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 has an elliptical ring shape
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 has an elliptical ring shape.
  • the heat exchanger assembly provided by this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.
  • the energy storage heat exchange device 100 includes: energy storage material and the heat exchanger assembly described in any of the above embodiments, the energy storage material is located in the shell 10 of the heat exchanger assembly, and Filling the spaces between the adjacent first and second fluid channels 20 and 30, and between the first and second fluid channels 20 and 30 and the inner wall of the housing 10, the energy storage material is configured to accumulate at least part of the Heat released by heat exchanger 1.
  • the energy storage heat exchange device 100 provided in the foregoing embodiment of the present application is provided with the heat exchanger assembly described in any of the foregoing technical solutions, thereby having all the above beneficial effects, which will not be repeated here.
  • the energy storage material is a solid-liquid phase change material to improve the energy storage and heat exchange capacity of the energy storage heat exchange device 100.
  • the liquid level of the energy storage material in the liquid phase is lower than the inner top surface of the housing 10, which on the one hand can help avoid leakage of the energy storage material in the liquid phase, and on the other hand, can provide a phase change space for the liquid phase energy storage material Prevent the problem of box explosion.
  • the top surface of the solid-phase energy storage material is higher than the liquid level of the liquid-phase energy storage material, and is lower than or flush with the inner top surface of the casing 10 As many solid-phase energy storage materials as possible are placed in the space range of, so as to improve the energy storage and heat exchange capacity of the energy storage heat exchange device 100 and prevent the problem of box explosion.
  • the expansion coefficient ⁇ of the energy storage material does not exceed 0.1. In this way, the volume change of the energy storage material due to heat can be effectively controlled. On the one hand, the volume change of the energy storage material is reduced under the same heat transfer, and on the other hand, more heat is achieved under the same volume change. The transfer and storage of the energy to enhance the energy storage and heat exchange capacity of the energy storage heat exchange device 100.
  • phase transition temperature of the energy storage material ranges from -5°C to 15°C.
  • the phase change temperature of the energy storage material can be set reasonably, and the energy storage and heat exchange capacity of the energy storage heat exchange device 100 can be guaranteed.
  • the energy storage material may be ice, paraffin wax, etc., for example.
  • the sum of the expansion coefficient ⁇ of the energy storage material and 1 is inversely proportional to the vertical distance Hp from the liquid level of the energy storage material to the inner bottom surface of the housing 10 relationship.
  • the expansion coefficient ⁇ is determined by the properties of the energy storage material itself, and the vertical distance Hp from the liquid level of the energy storage material to the inner bottom surface of the housing 10 reflects the amount of the energy storage material in the liquid phase.
  • the sum of the expansion coefficient ⁇ and 1 of the energy storage material and the vertical distance Hp from the liquid level of the energy storage material to the inner bottom surface of the casing 10 satisfy:
  • Hp/ ⁇ [(1- ⁇ ) ⁇ H+ ⁇ Hw]/( ⁇ + ⁇ ), where,
  • is the proportional coefficient whose value is less than or equal to 1;
  • is the ratio of the sum of the volume of the energy storage material in the liquid phase to the volume of the part where the heat exchanger 1 is immersed in the energy storage material;
  • ⁇ H is the vertical distance from the top of the heat exchanger 1 to the inner top surface of the shell 10;
  • Hw is the vertical distance between the inner bottom surface and the inner top surface of the housing 10.
  • the maximum amount of energy storage material in the liquid phase can be accurately calculated, and the most liquid energy storage material can be selected under the premise of not affecting the normal operation of the energy storage heat exchange device 100 to obtain the best Energy storage and heat exchange capacity, and avoid the problem of excessive stress on the shell 10 caused by the expansion of the energy storage material, so as to achieve both the heat exchange performance and use reliability of the product.
  • the ratio ⁇ of the volume of the energy storage material in the liquid phase to the sum of the volume of the energy storage material in the liquid phase and the volume of the part where the heat exchanger 1 is immersed in the energy storage material ranges from 0.8 to 0.9.
  • the energy storage capacity of the energy storage material can be made sufficient, and the energy storage material can better fill the space around the heat exchanger 1, so that the energy storage material contacts the heat exchanger 1 more fully.
  • the heat exchange is more sufficient and efficient, and the energy storage and heat exchange capacity of the energy storage heat exchange device 100 is more secure, while taking into account the small size and compactness of the product; making ⁇ less than or equal to 0.9, so as to meet the sufficiency of the energy storage capacity At the same time, it can be ensured that the heat exchanger 1 is approximately in the middle of the solid/liquid energy storage material, and the energy storage material exchanges heat more uniformly.
  • the range of ⁇ is limited to be between 0.8 and 0.9, which can make the energy storage material more stable.
  • the energy storage capacity is more matched with the heat exchange area and efficiency of the heat exchanger 1, to obtain the best energy storage heat exchange capacity within a safe range, and comprehensively improve the energy efficiency of the product.
  • the value of ⁇ is greater than or equal to 0.85 and less than or equal to 0.9. It can ensure the coordination between the energy storage heat exchange capacity and the safety of use.
  • the fin 40 of the heat exchanger 1 is perpendicular to the inner bottom surface of the shell 10.
  • the position of the heat exchanger 1 inside the shell 10 can be arranged more reasonably, and the natural convection formed in the vertical direction during the phase change of the energy storage material due to the density difference between the solid and the liquid phase can be used to enhance the heat exchange effect and enhance the heat exchange of the energy storage.
  • the energy storage and heat exchange capacity of the device 100, and this design makes the mutual stress between the energy storage material and the fin 40 smaller during the deformation process of the energy storage material, thereby avoiding the deformation of the fin 40, reducing the expansion resistance of the energy storage material, and improving the phase Variable efficiency and energy storage efficiency.
  • the fins 40 are vertically distributed on the heat exchanger 1
  • the first straight pipe section 21 of the first fluid channel 20 and the second straight pipe section of the second fluid channel 30 31 are vertically distributed so that the fins 40 worn on the first fluid channel 20 are perpendicular to the fins 40 worn on the second fluid channel 30, and a part of the fins 40 and the inner part of the housing 10 are designed.
  • the bottom surface needs to be vertical, and the other part of the fin 40 and the inner bottom surface of the housing 10 can be arranged in parallel or form a certain angle.
  • the housing 10 is further defined to include: an outer shell 11 and an inner liner 12.
  • the bladder 12 is a thermal insulation material component, the inner bladder 12 is accommodated in the outer shell 11, and the inner bladder 12 encloses the inner wall of the housing 10.
  • the outer shell 11 provides protection for the inner tank 12 and the heat exchanger 1; the inner tank 12 is made of thermal insulation material to prevent the heat stored in the energy storage material from being dissipated and improve the energy storage capacity of the energy storage heat exchange device 100.
  • the inner container 12 has a peripheral side wall 121 and a bottom wall 122, the bottom wall 122 is located on the inner bottom surface of the housing 11, and the peripheral side wall 121 is located inside the side wall of the housing 11, wherein , The peripheral side wall 121 and the bottom wall 122 are integrally formed.
  • the bottom wall 122 is located on the inner bottom surface of the housing 11, and the peripheral side wall 121 is located on the inner side of the side wall of the housing 11, so that the inner bladder 12 and the housing 11 are closely attached to ensure the usable volume of the housing 10;
  • the 121 and the bottom wall 122 are integrally formed with a simple structure, convenient and efficient processing, and can avoid the use of gaps and connecting parts, improve the sealing performance of the housing 10, and thereby avoid heat loss.
  • the inner liner 12 is a foam member.
  • the housing 10 includes an outer shell 11 and an inner liner 12, and a part of the inner liner 12 or the whole of the inner liner 12 is configured as a compressible thermal insulation material component.
  • the compressible thermal insulation material component may be, for example, an elastic thermal insulation material component, specifically, for example, aerogel or thermal insulation cotton.
  • the liner 12 has a peripheral side wall 121 and a bottom wall 122.
  • the bottom wall 122 is connected to the bottom of the peripheral side wall 121 and encloses a cavity with the peripheral side wall 121.
  • the cavity defines an accommodation space to accommodate the replacement.
  • Heater 1 and energy storage materials are set as a compressible thermal insulation material component, so that at least a partial area of the inner liner 12 has Compressibility to absorb the phase change expansion compressive stress of the energy storage material.
  • the inner container 12 has a peripheral side wall 121, a bottom wall 122, and a top wall 123
  • the bottom wall 122 is connected to the bottom of the peripheral side wall 121
  • the top wall 123 is connected to the top of the peripheral side wall 121
  • the wall 122 and the top wall 123 enclose an accommodation space to accommodate the heat exchanger 1 and the energy storage material.
  • the accommodating space enclosed by the peripheral side wall 121, the bottom wall 122, and the top wall 123 is a closed space.
  • a partial area or the whole of one of the peripheral side wall 121, the bottom wall 122, and the top wall 123, or the partial area or the whole of many of them is set as a compressible thermal insulation material component, so that the inner container 12 At least part of the area has compressibility to absorb the phase change expansion compressive stress of the energy storage material.
  • peripheral side wall 121 and the bottom wall 122 are integrally formed.
  • the casing 10 is provided with a filling port communicating with the space in the casing 10 for users and assemblers to fill the casing 10 with energy storage materials.
  • the housing 10 includes an outer shell 11 and an inner liner 12, and the filling port includes a first channel formed on the outer shell 11 and a second channel formed on the inner liner 12, the first channel corresponds to and communicates with the second channel,
  • the energy storage material is injected into the housing 10 along the first channel and the second channel in sequence.
  • the housing 10 is provided with an observation window, which has a see-through structure and is suitable for displaying the liquid level of the energy storage material in the housing 10.
  • an observation window which has a see-through structure and is suitable for displaying the liquid level of the energy storage material in the housing 10.
  • the whole or part of the side wall or the top wall 123 of the housing 10 is designed to be composed of transparent materials (such as glass), the user or assembling and maintenance personnel can check the liquid level of the energy storage material through the observation window.
  • the operation of charging the energy storage material in the casing 10 is more convenient, and the product use, maintenance and production are more convenient.
  • a liquid level reference mark is provided on the observation window.
  • the liquid level reference mark is multiple reference lines drawn on the inner wall of the housing 10, or the liquid level reference mark is multiple reference lines drawn on the observation window, and each reference line represents its corresponding liquid level.
  • the user or assembling and maintenance personnel determine the current liquid level of the energy storage material by reading the reference mark, so that the charging amount of the energy storage material into the housing 10 can be controlled more accurately, and the product use, maintenance, and production are more convenient.
  • the housing 10 includes an outer shell 11 and an inner container 12, a partial area of the outer shell 11 is configured as an observation window, and the position of the inner container 12 corresponding to the observation window is set as a vacancy, so that the user can observe the internal storage through the observation window and the vacancy.
  • the level of energy material is configured to be used to determine the location of the inner container 12 corresponding to the observation window.
  • the energy storage heat exchange device 100 further includes a reminder element and a liquid level detection element.
  • the liquid level detection element is connected to the reminder element.
  • the liquid level detection element is configured to detect the liquid level of the energy storage material in the housing 10, and according to the detected The liquid level triggers the reminder component to send out a reminder. For example, when the charged energy storage material reaches the target liquid level, the reminder component automatically sends out a reminder to prevent the problem of overcharging, and has the advantages of simple and convenient use.
  • the liquid level detection element includes a water level sensor
  • the reminder element includes an alarm.
  • the alarm is connected to the water level sensor and receives the detection signal of the water level sensor.
  • the detection element detects that the liquid level reaches the target level, it sends a detection signal to the alarm, so that the alarm sends an alarm based on the detection signal, reminding the user to stop adding energy storage materials, and avoid overcharging.
  • This embodiment provides an electrical appliance, which includes the energy storage and heat exchange device 100 described in any of the foregoing embodiments.
  • the electrical appliance provided in the foregoing embodiment of the present application is provided with the energy storage and heat exchange device 100 described in any of the foregoing technical solutions, thereby having all of the above beneficial effects, which will not be repeated here.
  • the electrical appliance includes a first circulation loop and a second circulation loop; the first fluid channel 20 of the heat exchanger 1 of the energy storage heat exchange device 100 is in communication with the first circulation loop, and the second fluid channel 30 of the heat exchanger 1 is connected with The second circulation loop is connected.
  • the first circulation circuit includes a compressor 506, a first heat exchanger 508, and a throttling element 516, a compressor 506, a first heat exchanger 508, a throttling element 516, and
  • the first fluid channel 20 is connected via pipelines to form a loop;
  • the second circulation loop includes a second heat exchanger 512, and the second heat exchanger 512 and the second fluid channel 30 are connected via pipelines to form a loop.
  • the use of the first circulation loop to perform work on the first medium can make the first medium release cold or heat to the energy storage material in the energy storage heat exchange device 100, so that the energy storage material absorbs the cold released by the first medium Or heat for energy storage, the use of the second circulation loop allows the cold or heat stored in the energy storage material to be released into the environment through the second heat exchanger 512 to achieve cooling or heating, and realize the energy storage operation of the product. It is more convenient and flexible to use.
  • the electrical appliance is a refrigeration device, such as an air conditioner, a refrigerator, a cold storage, etc., more specifically, a portable air conditioner, or an integrated window machine, a split air conditioner, and the like.
  • a refrigeration device such as an air conditioner, a refrigerator, a cold storage, etc., more specifically, a portable air conditioner, or an integrated window machine, a split air conditioner, and the like.
  • the electrical appliance of this embodiment is specifically a mobile air conditioner.
  • the air conditioner includes an air conditioning system.
  • the air conditioning system includes an energy storage heat exchange device 100, a first circulation loop and a second circulation loop, and the energy storage exchange
  • the thermal device 100 is provided with a heat exchanger assembly.
  • the heat exchanger assembly includes a housing 10, a first fluid channel 20, a second fluid channel 30, and fins 40, etc., a first fluid channel 20, a second fluid channel 30, and fins. 40 is located in the housing 10, the energy storage heat exchange device 100 is also provided with energy storage material, the energy storage material is accommodated in the housing 10 and fills the adjacent first fluid channel 20 and the second fluid channel 30, And the space between the housing 10 and the first fluid passage 20 and the second fluid passage 30.
  • the first circulation loop includes a compressor 506, a first heat exchanger 508, a throttling element 516, etc.
  • the compressor 506, the first heat exchanger 508, the throttling element 516, and the first fluid passage 20 are connected in series to form a loop through pipelines;
  • the second circulation loop includes a second heat exchanger 512, and the second heat exchanger 512 and the second fluid channel 30 are connected in series to form a loop through a pipeline.
  • a first medium circulates in the first circulation loop, and a second medium circulates in the second circulation loop.
  • the first medium and the second medium may be the same medium or different kinds of media.
  • a pump 518 is provided in the second circulation loop to drive the flow of the second medium.
  • the first heat exchanger 508 is provided with a first fan 510 for driving the air flow to exchange heat therewith.
  • the second heat exchanger 512 is provided with a second fan 514 for driving the airflow to exchange heat therewith.
  • the second medium is water, refrigerant, etc.
  • the first medium is refrigerant or refrigerant.
  • the first medium When the cold storage mode is running, in the first circulation loop, the first medium enters the compressor 506. After the compressor 506 compresses the first medium, the first medium is sent to the first heat exchanger 508. The first medium exchanges heat in the first heat exchanger. The inside of the vessel 508 exchanges heat with the environment through the first heat exchanger 508 to achieve condensation. The condensed first medium enters the throttling element 516 for throttling treatment, and then the throttling treated first medium enters the first fluid channel 20 for throttling treatment. Evaporation, in which the cold energy released by the evaporation is stored in the energy storage material, and finally, the first medium that has completed the evaporation returns to the compressor 506 to realize the circulation.
  • the second medium releases heat to the energy storage material in the second fluid channel 30, and the second medium after the completion of the heat release enters the second heat exchanger 512, and then enters the second heat exchanger 512.
  • the heat exchanger 512 absorbs the heat of the environment through the second heat exchanger 512 to provide cooling to the environment, and the second medium that has completed the heat absorption returns to the second fluid channel 30 to complete the cycle.
  • the first medium discharged from the compressor 506 enters the first fluid passage 20, so that the first medium releases heat to the energy storage material through the first fluid passage 20, so that the energy is stored
  • the material absorbs heat and stores it.
  • the first medium is condensed through heat release.
  • the condensed first medium enters the throttling element 516 for throttling treatment, and then the throttling treated first medium enters the first heat exchange
  • the evaporator 508 performs evaporation, wherein the cold energy released by the evaporation is released into the environment, and finally, the first medium that has completed the evaporation returns to the compressor 506 to realize the circulation.
  • the second medium When the heating mode is running, in the second circulation loop, the second medium absorbs heat from the energy storage material in the second fluid channel 30, and the second medium after the heat absorption enters the second heat exchanger 512, and then enters the second heat exchanger 512. In the heat exchanger 512, heat is released to the environment via the second heat exchanger 512 to realize heat supply to the environment, and the second medium that has completed the heat release returns to the second fluid channel 30 to complete the cycle.
  • a four-way valve 520 is provided in the first circulation circuit, and the cold storage mode and the heat storage mode can be switched via the four-way valve 520.
  • the four-way valve 520 may not be provided.
  • the heat exchanger 1 includes a first fluid channel 20 and a second fluid channel 30.
  • the first fluid channel 20 and the second fluid channel 30 are in multiple rows.
  • multiple rows of first fluid passages 20 and multiple rows of second fluid passages 30 form two adjacent rows of first fluid passages 20, and there is a row of second fluid passages 30, and two adjacent rows
  • An alternating arrangement of a row of first fluid passages 20 is arranged between the second fluid passages 30.
  • the first straight pipe sections 21 of the first fluid passages 20 in the same row are communicated with each other through the first elbow section 22, and the adjacent first fluid passages 20 are communicated with each other through the first cross pipe 23.
  • the second straight pipe sections 31 of the second fluid passages 30 in the same row are communicated with each other through the second elbow section 32, and the adjacent second fluid passages 30 are communicated with each other through the second cross pipe 33.
  • the energy material enables the energy storage material to exchange heat with the first medium and/or the second medium to store and release energy, so as to achieve the purpose of energy storage and heat exchange.
  • the first straight pipe section 21 and the second straight pipe section 31 are vertically distributed in space.
  • the first straight pipe section 21 of the first fluid passage 20 extends along the x direction
  • the second straight pipe section 31 of the second fluid passage 30 extends along the y direction
  • the x direction and the y direction It is the spatial vertical relationship.
  • the energy storage material exchanges uniform heat with the first medium and the second medium at the same time, improves the phase change latent heat utilization rate of the energy storage material, improves the energy utilization efficiency of the energy storage and discharge process, and realizes the compactness of the energy storage unit.
  • the heat exchanger 1 further includes fins 40, each of the rows of first fluid channels 20 is covered with fins 40, and each of the rows of second fluid channels 30 is covered with fins 40.
  • the fins 40 as shown in Figures 4 and 4a, the fins 40 worn on the first fluid channel 20 in each row are arranged at intervals along the x direction, as shown in Figures 4, 4a, 4b, and As shown in 4c, the fins 40 pierced on the second fluid channel 30 in each row are arranged at intervals along the y direction, so that the fins 40 pierced on the first fluid channel 20 and the second fluid channel 30 are arranged at intervals.
  • the fins 40 worn by the sleeve also form a spatially vertical distribution relationship.
  • the energy storage material has a higher circulation between the fins 40, which is more conducive to the energy storage material's heat exchange with the first medium and the second medium at the same time, and further improves the phase change latent heat utilization rate of the energy storage material, and improves the storage The energy utilization efficiency of the energy discharging process, so as to realize the compactness of the energy storage unit.
  • the first fluid channel 20 and the second fluid channel 30 are arranged in two rows respectively, and a first fluid channel 20 is sandwiched between the two rows.
  • One row of second fluid channels 30, another row of second fluid channels 30 are arranged on the side of any one of the two rows of first fluid channels 20, thereby forming a distribution form alternately arranged between the rows.
  • the first The first straight pipe section 21 of the fluid channel 20 extends in the x direction, and the first straight pipe sections 21 are arranged in parallel, the first cross pipe 23 and the first medium inlet and outlet 25 are located on the upper side of the first straight pipe section 21 in the x direction, The first straight pipe section 21 of the second fluid channel 30 extends in the y direction, and the second straight pipe sections 31 are arranged in parallel.
  • the second cross pipe 33 and the second medium inlet and outlet 35 are located on the left of the second straight pipe section 31 in the y direction.
  • the first cross tube 23 and the second cross tube 33 are formed in two adjacent lateral directions of the entire heat exchanger 1. It can be understood that the above-mentioned upper and lower sides are only a relative orientation reference provided for the convenience of description in conjunction with FIG. 4, and do not limit the arrangement orientation relationship of the heat exchanger 1.
  • the number of rows of the first fluid channel 20 can also be designed as 3 rows, 4 rows, 5 rows or more than 5 rows
  • the number of rows of 30 can also be designed to be 3 rows, 4 rows, 5 rows or more than 5 rows, and the number of rows of the first fluid channel 20 and the number of rows of the second fluid channel 30 can be the same or different.
  • the first fluid channel 20 and the second fluid channel 30 have a single flow path structure, and the first medium flows into the first fluid channel 20 through one of the two first medium inlets and outlets 25, and the first fluid The first medium in the channel 20 flows out through the other of the two first medium inlets and outlets 25, the second medium flows into the second fluid channel 30 through one of the two second media inlets and outlets 35, and the second fluid channel The second medium in 30 flows out through the other of the two second medium inlets and outlets 35.
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 is circular
  • the tube cross section of the heat exchange tube used to construct the second fluid channel 30 is circular
  • the tube cross section of the heat exchange tube used to construct the first fluid channel 20 and/or the second fluid channel 30 can also be set to an elliptical ring shape, or a flat tube.
  • the heat exchanger assembly provided by this embodiment has the advantages of simple structure, convenient processing, high heat exchange efficiency, uniform heat exchange, etc., which can help improve energy storage and discharge efficiency while taking into account product costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请提供了一种换热器组件、一种蓄能换热装置及一种电器,换热器组件包括壳体和换热器,换热器位于壳体内,换热器包括:供第一介质流通的第一流体通道,其设置为至少一排;供第二介质流通的第二流体通道,其设置为至少一排;第一流体通道和第二流体通道在壳体内交错排布,相邻的第一流体通道和第二流体通道之间、以及第一流体通道和第二流体通道与壳体的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料。本方案提供的换热器组件,其第一流体通道及第二流体通道可与蓄能材料更均匀地接触,更利于蓄能材料换热的高效性和均匀性,提升蓄能、放能效率。

Description

换热器组件、蓄能换热装置及电器
本申请要求于2019年09月11日提交中国专利局、申请号为“201910860685X”、发明名称为“换热器组件、蓄能换热装置及电器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及换热部件领域,具体而言,涉及一种换热器组件、一种蓄能换热装置及一种电器。
背景技术
目前,随着蓄冷蓄热式电器的普及,产品的蓄能效率及蓄冷蓄热过程中的换热能力日益受到用户的关注。现有电器的蓄冷蓄热过程中的换热能力效率低,导致蓄能、放能效率低。
发明内容
为了解决上述技术问题至少之一,本申请的目的在于提供一种换热器组件。
本申请的另一个目的在于提供一种具有上述换热器组件的蓄能换热装置。
本申请的再一个目的在于提供一种具有上述蓄能换热装置的电器。
为实现上述目的,本申请第一方面的实施例提供了一种换热器组件,包括壳体和换热器,所述换热器位于所述壳体内,其中,所述换热器包括:第一流体通道,设置为至少一排,所述第一流体通道配置为供第一介质流通;第二流体通道,设置为至少一排,所述第二流体通道独立于所述第一流体通道且配置为供第二介质流通;所述第一流体通道和所述第二流体通道在所述壳体内交错排布,相邻的所述第一流体通道和所述第二流体通道之间、以及所述第一流体通道和所述第二流体通道与所述壳体的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料。
本申请上述实施例提供的换热器组件,其用于蓄能换热装置,其中,换热器设有至少一排的第一流体通道以及至少一排的第二流体通道,以相应供第一介质和第二介质流通,使得第一介质在流经第一流体通道的过程中以及第二介质在流经第二流体通道的过程中,分别与壳体内的蓄能材料换热,实现蓄能材料与第一介质和/或第二介质换热以进行储能和放能,实现蓄能换热目的,且本结构中通过设置第一流体通道和第二流体通道在壳体内交错排布,相邻的第一流体通道和第二流体通道之间、以及第一流体通道和第二流体通道与壳体的内壁之间分别留有空间,以利用该空间容纳蓄能材料,这样,蓄能材料与第一流体通道及第二流体通道的接触更加均匀,更利于蓄能材料蓄能和放能过程的换热高效性和均匀性,提升蓄能材料的能量利用效率,且本设计也具有结构简单、加工方便,紧凑、体积小巧的优点。
另外,本发明提供的上述实施例中的换热器组件还可以具有如下附加技术特征:
上述技术方案中,所述第一流体通道设置为至少两排,相邻的两排所述第一流体通道之间设置有一排所述第二流体通道;和/或所述第二流体通道设置为至少两排,相邻的两排所述第二流体通道之间设置有一排所述第一流体通道。
上述任一技术方案中,所述第一流体通道形成为蛇形换热管,位于相同一排的所述第一流体通道包括多个平行设置的第一直管段以及连接相邻两个所述第一直管段的第一弯管段,相邻的两排所述第一流体通道之间经第一跨管或第一分流器连通;所述第二流体通道形成为蛇形换热管,位于相同一排的所述第二流体通道包括多个平行设置的第二直管段以及连接相邻两个所述第二直管段的第二弯管段,相邻的两排所述第二流体通道之间经第二跨管或第二分流器连通。
上述任一技术方案中,所述第一直管段具有相对的第一端和第二端,位于所述第一端的所述第一弯管段与其相连接的两个所述第一直管段一体成型,位于所述第二端的所述第一弯管段与其相连接的两个所述第一直管段焊接,且所述第一跨管或第一分流器位于所述第二端;所述第二直管段 具有相对的第三端和第四端,位于所述第三端的所述第二弯管段与其相连接的两个所述第二直管段一体成型,位于所述第四端的所述第二弯管段与其相连接的两个所述第二直管段焊接,且所述第二跨管或第二分流器位于所述第四端。
上述任一技术方案中,所述第一直管段与所述第二直管段平行设置。
上述任一技术方案中,所述第一直管段与所述第二直管段空间垂直分布。
上述任一技术方案中,多个所述第一直管段中至少有两者的所述第二端构造有适于供所述第一流体通道进液或排液的第一介质进出口;多个所述第二直管段中至少有两者的所述第四端构造有适于供所述第二流体通道进液或排液的第二介质进出口。
上述任一技术方案中,用于构造出所述第一流体通道的换热管的管截面呈圆环形或椭圆环形,或者,用于构造出所述第一流体通道的换热管为扁管;和/或用于构造出所述第二流体通道的换热管的管截面呈圆环形或椭圆环形,或者,用于构造出所述第二流体通道的换热管为扁管。
上述任一技术方案中,至少有一排所述第一流体通道与至少一排所述第二流体通道之间相邻布置,且相邻的所述第一流体通道与所述第二流体通道之间,所述第一直管段与所述第二直管段相对设置或错位设置。
上述任一技术方案中,所述第一流体通道的至少部分与所述第二流体通道的至少部分之间逆流设置。
上述任一技术方案中,所述换热器还包括翅片,其中,至少一排所述第一流体通道中的每排上分别穿套有所述翅片,和/或至少一排所述第二流体通道中的每排上分别穿套有所述翅片;或至少有一排所述第一流体通道与至少一排所述第二流体通道之间相邻布置,且相邻的所述第一流体通道和所述第二流体通道穿套于同一所述翅片;或所述翅片为整体式翅片,所述换热器的所述第一流体通道及所述第二流体通道穿套于同一所述整体式翅片。
上述任一技术方案中,所述第一流体通道为单流路结构或为多流路结构;和/或所述第二流体通道为单流路结构或为多流路结构。
本申请第二方面的实施例提供了一种蓄能换热装置,包括:蓄能材料;上述任一技术方案中所述的换热器组件,所述蓄能材料位于所述换热器组件的壳体内。
本发明上述实施例提供的蓄能换热装置,通过设置有上述任一技术方案中所述的换热器组件,从而具有以上全部有益效果,在此不再赘述。
另外,本发明提供的上述实施例中的蓄能换热装置还可以具有如下附加技术特征:
上述技术方案中,所述蓄能材料为固液相变材料,其中,液相的所述蓄能材料的液面低于所述壳体的内顶面,固相的所述蓄能材料的顶面高于液相的所述蓄能材料的液面,并低于所述壳体的内顶面或与所述壳体的内顶面平齐。
上述任一技术方案中,所述蓄能材料的膨胀系数α与1之和与液相的所述蓄能材料的液面至所述壳体的内底面的竖直距离Hp成反比例关系。
上述任一技术方案中,所述蓄能材料的膨胀系数α与1之和与液相的所述蓄能材料的液面至所述壳体的内底面的垂直距离Hp满足:Hp/λ=[(1-γ)×ΔH+γ×Hw]/(γ+α×γ);其中,λ为取值小于等于1的比例系数;γ为液相的所述蓄能材料的体积量与所述换热器浸泡于所述蓄能材料中的部位的体积量之和的比例;ΔH为所述换热器的顶端至所述壳体的内顶面的竖直距离;Hw为所述壳体的内底面与其内顶面的竖直距离。
上述任一技术方案中,液相的所述蓄能材料的体积量占液相的所述蓄能材料的体积量与所述换热器浸泡于所述蓄能材料中的部位的体积量之和的比例γ的范围为0.8~0.9。
上述任一技术方案中,所述λ的不小于0.85。
上述任一技术方案中,所述蓄能材料的膨胀系数α不超过0.1。
上述任一技术方案中,所述蓄能材料的相变温度的范围为-5℃~15℃。
上述任一技术方案中,所述换热器具有翅片,且所述换热器的所述翅片与所述壳体的内底面垂直。
上述任一技术方案中,所述壳体包括:外壳;内胆,所述内胆为保温材质部件,所述内胆容置于所述外壳内,且所述内胆合围限定出所述壳体 的内壁。
上述任一技术方案中,所述内胆的部分区域或所述内胆整体设置为具有可压缩性的保温材质部件。
上述任一技术方案中,所述内胆具有周侧壁和底壁,所述底壁位于所述外壳的内底面上,所述周侧壁位于所述外壳的侧壁的内侧,其中,所述周侧壁与所述底壁为一体成型结构。
在上述任一技术方案中,所述壳体设有与所述壳体内部连通的充注口,其中,所述壳体的壁上设有观察窗,所述观察窗为透视结构,并适配为显示所述壳体内的所述蓄能材料的液位;和/或所述蓄能换热装置还包括提醒元件及液位检测元件,所述液位检测元件与所述提醒元件相连,所述液位检测元件配置为检测所述壳体内的所述蓄能材料的液位,并根据所检测的液位触发所述提醒元件发出提醒。
本申请第三方面的实施例提供了一种电器,包括上述任一技术方案中所述的蓄能换热装置。
本发明上述实施例提供的电器,通过设置有上述任一技术方案中所述的蓄能换热装置,从而具有以上全部有益效果,在此不再赘述。
另外,本发明提供的上述实施例中的电器还可以具有如下附加技术特征:
上述任一技术方案中,所述电器包括第一循环回路和第二循环回路;所述蓄能换热装置的换热器的第一流体通道与所述第一循环回路连通,所述换热器的第二流体通道与所述第二循环回路连通。
上述任一技术方案中,所述第一循环回路包括压缩机、第一换热器及节流元件,所述压缩机、第一换热器、节流元件及第一流体通道经由管路连接形成回路;所述第二循环回路包括第二换热器,所述第二换热器与第二流体通道经由管路连接形成回路。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描 述中将变得明显和容易理解,其中:
图1是本申请一个实施例的换热器的立体结构示意图;
图1a为图1所示实施例的换热器的主视结构示意图;
图1b为图1所示实施例的换热器的左视结构示意图;
图1c为图1所示实施例的换热器的右视结构示意图;
图2是本申请一个实施例的换热器的立体结构示意图;
图2a为图2所示实施例的换热器的俯视结构示意图;
图2b为图2所示实施例的换热器的主视结构示意图;
图2c为图2所示实施例的换热器的仰视结构示意图;
图3是本申请一个实施例的换热器的立体结构示意图;
图3a为图3所示实施例的换热器的俯视结构示意图;
图3b为图3所示实施例的换热器的主视结构示意图;
图3c为图3所示实施例的换热器的仰视结构示意图;
图4是本申请一个实施例的换热器的立体结构示意图;
图4a为图4所示实施例的换热器的主视结构示意图;
图4b为图4所示实施例的换热器的俯视结构示意图;
图4c为图4所示实施例的换热器的仰视结构示意图;
图5是本申请一个实施例提供的换热器的剖视图;
图6是本申请又一个实施例提供的换热器的剖视图;
图7是本申请又一个实施例提供的换热器的剖视图;
图8a是本申请一个实施例提供的换热器组件的结构示意图;
图8b是本申请一个实施例提供的换热器组件的结构示意图;
图9是本申请一个实施例提供的蓄能换热装置中换热器的剖视图;
图10是本申请又一个实施例提供的蓄能换热装置中换热器的剖视图;
图11是本申请又一个实施例提供的蓄能换热装置中换热器的剖视图;
图12是本申请又一个实施例提供的蓄能换热装置中换热器的剖视图;
图13是本申请又一个实施例提供的蓄能换热装置中换热器的剖视图;
图14是本申请又一个实施例提供的蓄能换热装置中换热器的剖视图;
图15是本申请又一个实施例提供的蓄能换热装置中换热器的剖视图;
图16是本申请又一个实施例提供的蓄能换热装置中换热器的剖视图;
图17是本申请又一个实施例提供的蓄能换热装置中换热器的剖视图;
图18是本申请一个实施例的空调的原理图;
图19是本申请一个实施例的空调的结构示意图。
其中,图1至图19中的附图标记与部件名称之间的对应关系为:
1换热器,10壳体,11外壳,12内胆,121周侧壁,122底壁,123顶壁,20第一流体通道,21第一直管段,22第一弯管段,23第一跨管,24第一分流器,25第一介质进出口,30第二流体通道,31第二直管段,32第二弯管段,33第二跨管,34第二分流器,35第二介质进出口,40翅片,100蓄能换热装置,506压缩机,508第一换热器,510第一风机,512第二换热器,514第二风机,516节流元件,518泵,520四通阀。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图19描述根据本申请一些实施例所述换热器组件、蓄能换热装置和空调。
实施例一
如图8a和图8b所示,本申请第一方面的实施例提供的换热器组件,包括壳体10和换热器1,换热器1位于壳体10内。
如图1至图3c所示,换热器1包括第一流体通道20和第二流体通道30,第一流体通道20设置为至少一排,第一流体通道20用于供第一介质流通;第二流体通道30设置为至少一排,第二流体通道30独立于第一流体通道20且用于供第二介质流通;第一流体通道20和第二流体通道30在壳体10内交错排布,相邻的第一流体通道20和第二流体通道30之间、以 及第一流体通道20和第二流体通道30与壳体10的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料,使得蓄能材料能够与第一介质和/或第二介质进行换热进行储能和放能,实现蓄能换热目的。
值得说明的是,关于“第一流体通道20设置为至少一排”,可以解读为用于配置第一流体通道20的换热管成排地设置,且用于配置第一流体通道20的换热管具体构造为单排换热管或多排换热管的结构,关于“第二流体通道30设置为至少一排”,可以解读为用于配置第二流体通道30的换热管成排地设置,且用于配置第二流体通道30的换热管具体构造为单排换热管或多排换热管的结构。
值得说明的是,第一流体通道20和第二流体通道30在壳体10内交错排布,具体可以理解为,第一流体通道20与第二流体通道30之间成排地设置并且排间交替地排列,且第一流体通道20与第二流体通道30的相邻两排之间彼此间隔,并以其侧面相互对置的方式来配置。
为方便理解,以下结合附图5对上述内容进一步举例说明:
如图5所示,换热器设置有6排管,其中,每排管构造为蛇形换热管,蛇形换热管具有弯管和直管,每排管的直管垂直于纸面设置,每排管的直管之间横向间隔地排列,每排管的相邻直管之间经由弯管衔接导通。6排管沿纵向排列设置,且彼此之间相互间隔,其中,沿纵向相邻的两排管之间以其侧面相互对置的方式来配置。
其中,6排管中的其中3排属于第一流体通道20,6排管中的另外3排属于第二流体通道30,使得第一流体通道20和第二流体通道30分别形成为多排结构。
进一步地,沿纵向从上向下对6排管按顺序编号为1~6,其中,编号为1、3、5排的管属于第一流体通道20,且第1排管与第3排管之间经由跨管衔接导通,第3排管与第5排管之间经由跨管衔接导通;编号为2、4、6排的管属于第二流体通道30,且第2排管与第4排管之间经由跨管衔接导通,第4排管与第6排管之间经由跨管衔接导通。其中,第2排管插空排布于第1排管与第3排管之间,且第2排管以其侧面与第1排管及第3排管相互对置的方式来配置,第4排管插空排布于第3排管与第5排管之 间,且第4排管以其侧面与第3排管及第5排管相互对置的方式来配置,第5排管插空排布于第4排管与第6排管之间,且第5排管以其侧面与第4排管及第6排管相互对置的方式来配置,从而形成多排的第一流体通道20与多排第二流体通道30之间交错地排布,提升传热均匀性。
且本领域技术人员结合上述示例不难对第一流体通道20与第二流体通道30分别为单排的情况进行理解,例如,在上述示例的内容中,以仅保留第1排管和第2排管的情况进行理解即可。
且本领域技术人员结合上述示例不难对第一流体通道20与第二流体通道30中一者为单排,另一者为多排的情况进行理解,例如,在上述示例的内容中,以仅保留第1排管、第2排管和第3排管的情况进行理解即可。其中,通过设置第一流体通道20和第二流体通道30在壳体10内交错排布,相邻的第一流体通道20和第二流体通道30之间、以及第一流体通道20和第二流体通道30与壳体10的内壁之间分别留有空间,以利用该空间容纳蓄能材料,这样,可以大幅度提升换热器1的有效换热面积,进而提升换热器1的整体换热性能,并使得蓄能材料与第一流体通道20及第二流体通道30的接触更加均匀,更利于蓄能材料换热的高效性和均匀性,提升蓄能放能效率,且本设计也具有结构简单、加工方便,紧凑、体积小巧的优点,可实现换热器1及壳体10整体结构的最小化,便于实际应用。
例如,蓄能材料包括液态的水和/或固态的水。
实施例二
如图2、图2a和图2c所示,第一流体通道20设置为至少两排,相邻的两排第一流体通道20之间设置有一排第二流体通道30;且第二流体通道30设置为至少两排,相邻的两排第二流体通道30之间设置有一排第一流体通道20。
更详细地,如图2、图2a和图2c所示,图中具有多条点划线和多条虚线,多条点划线分别示意了多排第一流体通道20,多条虚线分别示意了多排第二流体通道30,进一步地,该点划线端部所记载的附图标记20,指代该点划线所对应的一排通道为第一流体通道,该虚线端部所记载的附图标记30,指代该虚线所对应的一排通道为第二流体通道。其中,值得说明的是,对于所 示意的点划线(直线段)和虚线(直线段),仅起到辅助参考的作用以方便对多排第一流体通道20与多排第二流体通道30进行区分和理解,并不作为实体结构的特殊指示和限定。
其中,第一流体通道20与第二流体通道30形成交替排布,实现相邻的两排第一流体通道20之间设置有一排第二流体通道30,且相邻的两排第二流体通道30之间设置有一排第一流体通道20。
这样,相邻两排第一流体通道20与两者间的第二流体通道30,以及与相邻的第一流体通道20与第二流体通道30之间的蓄能材料形成三夹二的布局形式,且相邻两排第二流体通道30与两者间的第一流体通道20,以及与相邻的第二流体通道30与第一流体通道20之间的蓄能材料形成三夹二的布局形式,蓄能材料与第一流体通道20及第二流体通道30的接触更加均匀,更利于蓄能材料换热的高效性和均匀性,提升蓄能放能效率,且本设计也具有结构简单、加工方便,紧凑、体积小巧的优点。
当然,在其他实施例中,换热器1也可设置第一流体通道20具有两排及两排以上,第二流体通道30的排数及分布形式可不做限定,使得第一流体通道20与第二流体通道30之间满足相邻的两排第一流体通道20之间设置有一排第二流体通道30即可,举例地,设置第二流体通道30具有多排,其中的一排第二流体通道30位于相邻的两排第一流体通道20之间,剩余的一排或多排第二流体通道30根据具体需求设定,如可以与第一流体通道20交替地分布,或者也可使剩余的一排或多排第二流体通道30依次排列。
当然,在其他实施例中,换热器1也可设置第二流体通道30具有两排及两排以上,第一流体通道20的排数及分布形式可不做限定,使得第一流体通道20与第二流体通道30之间满足相邻的两排第二流体通道30之间设置有一排第一流体通道20即可,举例地,设置第一流体通道20具有多排,其中的一排第一流体通道20位于相邻的两排第二流体通道30之间,剩余的一排或多排第一流体通道20根据具体需求设定,如可以与第二流体通道30交替地分布,或者也可使剩余的一排或多排第一流体通道20依次排列。
实施例三
如图1、图1a、图1b、图1c及图2、图2a、图2b、图2c所示,第一流 体通道20形成为蛇形换热管,且第一流体通道20设置为至少两排,位于相同一排的第一流体通道20包括多个平行设置的第一直管段21以及连接相邻两个第一直管段21的第一弯管段22,相邻的两排第一流体通道20之间经第一跨管23连通;第二流体通道30形成为蛇形换热管,且第二流体通道30设置为至少两排,位于相同一排的第二流体通道30包括多个平行设置的第二直管段31以及连接相邻两个第二直管段31的第二弯管段32,相邻的两排第二流体通道30之间经第二跨管33连通。
在本方案中,将第一流体通道20设置成蛇形换热管,并使相邻两排第一流体通道20之间经第一跨管23连通,将第二流体通道30设置成蛇形换热管,并使相邻两排第二流体通道30之间经第二跨管33连通,这样,实现了多排第一流体通道20之间经由第一跨管23导通,以及多排第二流体通道30之间经由第二跨管33导通,且利用第二跨管33及第一跨管23进行导通的设计具有布管方便、灵活的优点,可更方便也更灵活地满足第一流体通道20和第二流体通道30在壳体10内交错排布的设计需求。
进一步地,多个第一直管段21中至少有两者上构造有适于供第一流体通道20进液或排液的第一介质进出口25(可以具体为第一直管段21的管口);多个第二直管段31中至少有两者上构造有适于供第二流体通道30进液或排液的第二介质进出口35(可以具体为第二直管段31的管口)。
实施例四
不同于上述实施例三,如图3、图3a、图3b和图3c所示,本实施例中,第一流体通道20形成为蛇形换热管,位于相同一排的第一流体通道20包括多个平行设置的第一直管段21以及连接相邻两个第一直管段21的第一弯管段22,相邻的两排第一流体通道20之间经第一分流器24连通;第二流体通道30形成为蛇形换热管,位于相同一排的第二流体通道30包括多个平行设置的第二直管段31以及连接相邻两个第二直管段31的第二弯管段32,相邻的两排第二流体通道30之间经第二分流器34连通。
举例地,如图3所示,第一流体通道20的排数为多个,第一分流器24上设有多个第一介质进出口25,其中一个第一介质进出口25用于供第一介质进入,剩下的一个或多个第一介质进出口25用于与一排或多排的第一流体通 道20的导通,使得第一分流器24进液后将进入的第一介质均匀地分配给多个第一流体通道20,这样不仅连接装配简单化,也可便于第一流体通道20多个流路的设计。
举例地,如图3所示,第二流体通道30的排数为多个,第二分流器34上设有多个第二介质进出口35,其中一个第二介质进出口35用于供第二介质进入,剩下的一个或多个第二介质进出口35用于与一排或多排的第二流体通道30的导通,使得第二分流器34进液后将进入的第二介质均匀地分配给多个第二流体通道30,这样不仅连接装配简单化,也可便于第二流体通道30多个流路的设计。
实施例五
除上述实施例三或实施例四的特征以外,如图1、图1a、图1b、图1c、图2、图2a、图2b、图2c以及图3、图3a、图3b和图3c所示,在本实施例中,第一直管段21轴向的两端相应为其第一端和第二端,位于第一直管段21的第一端的第一弯管段22与其相连接的两个第一直管段21一体成型,位于第一直管段21的第二端的第一弯管段22与其相连接的两个第一直管段21焊接,且第一跨管23(或第一分流器24)位于第一直管段21的第二端。这样,第一跨管23或第一分流器24与该通过焊接连接的第一弯管段22位于第一直管段21沿轴向的同一侧,这样,进行穿管连接后,可从第一直管段21的一侧统一施焊,产品加工生产更加高效,且也更利于提升产品的良品率。
第二直管段31轴向的两端相应为其第三端和第四端,位于第二直管段31的第三端的第二弯管段32与其相连接的两个第二直管段31一体成型,位于第二直管段31的第四端的第二弯管段32与其相连接的两个第二直管段31焊接,且第二跨管33(或第二分流器34)位于第二直管段31的第四端。这样,第二跨管33或第二分流器34与该通过焊接连接的第二弯管段32位于第二直管段31沿轴向的同一侧,这样,进行穿管连接后,可从第二直管段31的一侧统一施焊,产品加工生产更加高效,且也更利于提升产品的良品率。
更进一步地,第一直管段21与第二直管段31平行设置,且第一直管 段21的第二端与第二直管段31的第四端位于第一直管段21和第二直管段31这两者轴向的同一侧,使得第一直管段21的另一端的第一弯管段22及第一跨管23(或第一分流器24)与第二直管段31的另一端的第二弯管段32及第二跨管33(或第二分流器34)分布于第一直管段21及第二直管段31的轴向的同一侧。这样,进行穿管连接后,可从第一直管段21及第二直管段31的同一侧统一施焊,产品加工生产更加高效,且也更利于提升产品的良品率,并且也利于产品结构的紧凑性,利于产品的体积小型化设计。
当然,本方案并不局限于此,在其他实施例中,也可设计第一直管段21与第二直管段31平行设置,且第一直管段21的第二端与第二直管段31的第四端位于两者轴向的相对两侧,使得第一直管段21的第二端的第一弯管段22及第一跨管23或第一分流器24与第二直管段31的第四端的第二弯管段32及第二跨管33或第二分流器34分布于第一直管段21及第二直管段31的轴向的相对两侧。同样具有产品结构的紧凑,体积小的优点。
更进一步地,如图5、图6和图7所示,第一流体通道20与第二流体通道30之间逆流设置。也即,第一介质与第二介质的流向是不同的,换而言之,第一介质与第二介质的流向是相反的,如图5至图7所示,其中,箭头表示第一介质和第二介质的流动方向,可见第一介质与第二介质的流向相反形成逆流,可进一步提升换热器1的换热效率。具体地,相邻的第一流体通道20与第二流体通道30之间逆流设置。
可以理解的是,由于沿第一直管段21的轴向的一侧一体成型有第一弯管段22,沿第一直管段21的轴向的另一侧焊接有第一弯管段22及第一跨管23(或第一分流器24),沿第二直管段31的轴向的一侧一体成型有第二弯管段32,沿第二直管段31的轴向的另一侧焊接有第二弯管段32及第二跨管33(或第二分流器34),通过设置第一直管段21与第二直管段31空间垂直分布,这样,第一直管段21上焊接的第一弯管段22及第一跨管23(或第一分流器24)与第二直管段31上焊接的第二弯管段32及第二跨管33(或第二分流器34)在换热器1整体的相邻两侧,从换热器1的相邻两侧进行施焊连接。
当然,可以理解的是,对于第一直管段21与第二直管段31空间垂直 分布的情况,第一介质与第二介质相应形式错流分布,也即,第一介质与第二介质的流向相垂直或呈一定角度地交叉设置。可以进一步提升蓄能材料与第一介质及第二介质的换热效率。
实施例六
除上述任一实施例的特征以外,如图9至图16所示,用于构造出第一流体通道20的换热管的管截面呈圆环形,结构简单,加工制造更加方便、快捷。
更详细地,如图9至图16所示,图中具有多条实线(直线段)和多条虚线(直线段),多条实线和多条虚线中的一者旨在示意多排第一流体通道20,另一者旨在示意多排第二流体通道30,其中,虚线或实线与第一流体通道20或第二流体通道30的具体对应关系可进一步参照虚线或实线的端部所记载的附图标记20和30进行理解,虚线或实线的端部所记载的附图标记20指代该虚线或实线所对应的一排通道为第一流体通道,虚线或实线的端部所记载的附图标记30指代该虚线或实线所对应的一排通道为第二流体通道。其中,值得说明的是,对于所示意的实线(直线段)和虚线(直线段),仅起到辅助参考的作用以方便对多排第一流体通道20与多排第二流体通道30进行区分和理解,并不作为实体结构的特殊指示和限定。当然,本方案并不局限于此,在其他实施例中,如图17所示,用于构造出第一流体通道20的换热管的管截面呈椭圆环形,结构简单,加工制造更加方便、快捷。用于构造出第一流体通道20的换热管为扁管,具体例如为空心扁管或为微通道扁管等。
实施例七
除上述任一实施例的特征以外,如图9至图16所示,用于构造出第二流体通道30的换热管的管截面呈圆环形,结构简单,加工制造更加方便、快捷。
当然,本方案并不局限于此,在其他实施例中,如图17所示,用于构造出第二流体通道30的换热管的管截面呈椭圆环形,结构简单,加工制造更加方便、快捷。或者,在其他实施例中,也可设计用于构造出第二流体通道30的换热管为扁管,具体例如为空心扁管或为微通道扁管等。
实施例八
除上述任一实施例的特征以外,本实施例中,如图9所示,至少有一排第一流体通道20与至少一排第二流体通道30之间相邻布置,且相邻的第一流体通道20与第二流体通道30之间,第一直管段21与第二直管段31相对设置。更方便产品的加工和设置。
或者,例如,如图10所示,至少有一排第一流体通道20与至少一排第二流体通道30之间相邻布置,且相邻的第一流体通道20与第二流体通道30之间,第一直管段21与第二直管段31错位设置,举例地,第一流体通道20与第二流体通道30分别斜排设置,使得第一直管段21与第二直管段31之间形成插空分布,也即,第一直管段21与第二直管段31之间的空位相对设置,或第二直管段31与第一直管段21之间的空位相对设置,兼顾蓄能材料与第一介质及第二介质的换热均匀性,提高蓄蓄能材料的相变潜热利用率,提升蓄能换热装置100的储能和放能效率以及产品能效。
实施例九
如图1、图1a、图1b、图1c及图5所示,换热器1包括第一流体通道20和第二流体通道30,第一流体通道20和第二流体通道30这两者分别为多排,且多排的第一流体通道20与多排的第二流体通道30之间,形成相邻的两排第一流体通道20之间设置有一排第二流体通道30,且相邻的两排第二流体通道30之间设置有一排第一流体通道20的交替布置形式。
同一排的第一流体通道20的第一直管段21之间经第一弯管段22连通,相邻第一流体通道20之间经第一跨管23连通。同一排的第二流体通道30的第二直管段31之间经第二弯管段32连通,相邻第二流体通道30之间经第二跨管33连通。
相邻的第一流体通道20和第二流体通道30之间、以及第一流体通道20和第二流体通道30与壳体10的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料,使得蓄能材料能够与第一介质和/或第二介质进行换热进行储能和放能,实现蓄能换热目的。
其中,换热器1还包括翅片40,多排第一流体通道20中的每排上分别穿套有翅片40,多排第二流体通道30中的每排上分别穿套有翅片40, 更具体地,对于相邻分布的两排第一流体通道20和第二流体通道30,各自所穿套的翅片40为同一部件,也即,相邻的第一流体通道20与第二流体通道30穿套于同一翅片40。
详细举例地,如图1、图1a、图1b、图1c及图5所示,第一流体通道20和第二流体通道30,分别设置为三排结构,且三排第一流体通道20呈上中下依次排列,三排第二流体通道30呈上中下依次排列,上侧的一排第一流体通道20与中间的一排第一流体通道20之间设有一排第二流体通道30(上侧),中间的一排第一流体通道20与下侧的一排第一流体通道20之间设有一排第二流体通道30(中间),下侧的一排第一流体通道20的下侧设有一排第二流体通道30(下侧),形成交替排布,其中,换热器1包括上中下三组翅片40,每组翅片40的数量为一个或多个,上侧的第一流体通道20与上侧的第二流体通道30穿套于上侧的一组翅片40,中侧的第一流体通道20与中侧的第二流体通道30穿套于中侧的一组翅片40,下侧的第一流体通道20与下侧的第二流体通道30穿套于下侧的一组翅片40,可以理解的是,所述的上中下仅是为了结合附图5描述方便所提供的相对方位参照,并不对换热器1的布置方位关系进行限定。
本实施例中,第一流体通道20和第二流体通道30分别为单流路结构,且第一流体通道20内的第一介质与第二流体通道30内的第二介质沿图5中的箭头指向形成逆流设置。
具体如图5,其中,箭头表示第一介质和第二介质的流动方向,第一流体通道20设有至少两个第一介质进出口25,第二流体通道30设有至少两个第二介质进出口35,第一介质在第一流体通道20中,从一个第一介质进出口25流入,从另一第一介质进出口25流出,第一介质整体自上到下流动;第二介质在第二流体通道30中,从一个第二介质进出口35流入,从另一第二介质进出口35流出,第二介质整体自下到上流动,与第一介质的流动方向相反。
本实施例中,第一流体通道20的第一直管段21与第二流体通道30的第二直管段31之间错位排列。也即,第一流体通道20的第一直管段21与第二流体通道30的第二直管段31之间的空位相对设置。
当然,本实施例并不局限于此,第一流体通道20的排数也可设计为1排、2排、4排或多于4排,第二流体通道30的排数也可设计为1排、2排、4排或多于4排,且第一流体通道20的排数与第二流体通道30的排数可以相同也可以不同。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十
如图2、图2a、图2b、图2c及图6所示,换热器1包括第一流体通道20和第二流体通道30,第一流体通道20和第二流体通道30这两者分别为多排,且多排的第一流体通道20与多排的第二流体通道30之间,形成相邻的两排第一流体通道20之间设置有一排第二流体通道30,且相邻的两排第二流体通道30之间设置有一排第一流体通道20的交替布置形式。
同一排的第一流体通道20的第一直管段21之间经第一弯管段22连通,相邻第一流体通道20之间经第一跨管23连通。同一排的第二流体通道30的第二直管段31之间经第二弯管段32连通,相邻第二流体通道30之间经第二跨管33连通。
相邻的第一流体通道20和第二流体通道30之间、以及第一流体通道20和第二流体通道30与壳体10的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料,使得蓄能材料能够与第一介质和/或第二介质进行换热进行储能和放能,实现蓄能换热目的。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
与实施例九的不同之处在于,换热器1还包括翅片40,翅片40为整体式翅片,换热器1的第一流体通道20及第二流体通道30穿套于同一整体式翅片。
详细举例地,如图2、图2a、图2b、图2c及图6所示,第一流体通道20和第二流体通道30,分别设置为三排结构,且三排第一流体通道20呈上中下依次排列,三排第二流体通道30呈上中下依次排列,上侧的一排第一流体通道20与中间的一排第一流体通道20之间设有一排第二流体通道30(上侧),中间的一排第一流体通道20与下侧的一排第一流体通道20之间设有一排第二流体通道30(中间),下侧的一排第一流体通道20的下侧设有一排第二流体通道30(下侧),形成交替排布,其中,换热器1包括整体式的翅片组,上中下三排第一流体通道20与上中下第二流体通道30穿套于该整体式的翅片组。
本实施例中,第一流体通道20和第二流体通道30分别为单流路结构,且第一流体通道20内的第一介质与第二流体通道30内的第二介质沿图6中的箭头指向形成逆流设置。
具体如图6,其中,箭头表示第一介质和第二介质的流动方向,第一流体通道20设有至少两个第一介质进出口25,第二流体通道30设有至少两个第二介质进出口35,第一介质在第一流体通道20中,从一个第一介质进出口25流入,从另一第一介质进出口25流出,第一介质整体自上到下流动;第二介质在第二流体通道30中,从一个第二介质进出口35流入,从另一第二介质进出口35流出,第二介质整体自下到上流动,与第一介质的流动方向相反。
本实施例中,第一流体通道20的第一直管段21与第二流体通道30的第二直管段31之间错位排列。也即,第一流体通道20的第一直管段21与第二流体通道30的第二直管段31之间的空位相对设置。
当然,本实施例并不局限于此,第一流体通道20的排数也可设计为1排、2排、4排或多于4排,第二流体通道30的排数也可设计为1排、2排、4排或多于4排,且第一流体通道20的排数与第二流体通道30的排数可以相同也可以不同。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十一
与上述实施例十的不同之处在于,如图7所示,本实施例中,第一流体通道20和第二流体通道30分别为多流路结构。
具体地,如图7所示,第一流体通道20形成两个流路,第二流体通道30形成两个流路,第一流体通道20形成的其中一个流路具体包括两排第一流体通道20,第一流体通道20形成的另一个流路具体包括另两排第一流体通道20,第二流体通道30形成的其中一个流路具体包括两排第二流体通道30,第二流体通道30形成的另一个流路具体包括另两排第二流体通道30。
同一流路的两排第一流体通道20中,同一排的第一流体通道20的第一直管段21之间经第一弯管段22连通,相邻第一流体通道20之间经第一跨管23连通。
同一流路的两排第二流体通道30中,同一排的第二流体通道30的第一直管段21之间经第二弯管段32连通,相邻第二流体通道30之间经第二跨管33连通。
其中,第一流体通道20形成的其中一个流路的两排第一流体通道20与第二流体通道30形成的其中一个流路的两排第二流体通道30交替地排列,并且逆流设置。
第一流体通道20形成的另一个流路的两排第一流体通道20与第二流体通道30形成的另一个流路的两排第二流体通道30交替地排列,并且逆流设置。
具体如图7,其中,箭头表示第一介质和第二介质的流动方向,第一流体通道20形成四个第一介质进出口25,第二流体通道30形成四个第二介质进出口35,第一介质在第一流体通道20的其中一个流路中,从一个第一介质进出口25流入,从另一第一介质进出口25流出,第一介质沿第一流体通道20的其中一个流路自上到下流动;第二介质在第二流体通道30 的其中一个流路中,从一个第二介质进出口35流入,从另一第二介质进出口35流出,第二介质沿第二流体通道30的其中一个流路自下到上流动,与沿第一流体通道20的其中一个流路流动的第一介质的流动方向相反。
另外,第一介质在第一流体通道20的另一个流路中与第二介质在第二流体通道30的另一个流路中的流动形式参照上述形成逆流,此处不再赘述。
任意相邻的第一流体通道20和第二流体通道30之间、以及第一流体通道20和第二流体通道30与壳体10的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料,使得蓄能材料能够与第一介质和/或第二介质进行换热进行储能和放能,实现蓄能换热目的。
实施例十一中除上述以外的特征均与实施例十相同,并可参照实施例十的内容进行理解,在此不在赘述。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十二
换热器1包括多排的第一流体通道20及多排的第二流体通道30,多排第一流体通道20与多排第二流体通道30交替地排列,并且相邻的第一流体通道20和第二流体通道30之间、以及第一流体通道20和第二流体通道30与壳体10的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料,使得蓄能材料能够与第一介质和/或第二介质进行换热进行储能和放能,实现蓄能换热目的。
其中,第一流体通道20的第一直管段21与第二流体通道30的第二直管段31相对设置,换热器1还包括翅片40,该翅片40为整体式翅片,多排第一流体通道20及多排第二流体通道30穿套于该整体式翅片。
进一步地,如图9所示,本实施例中,第一流体通道20的第一直管段21之间,以及第二流体通道30的第二直管段31之间为顺排布置。具体如,第一流体通道20的第一直管段21之间,以及第二流体通道30的第二直管段31之间沿纵向顺排布置。当然,本方案并不局限于此,在其他实施例中, 如图10所示,第一流体通道20的第一直管段21之间,以及第二流体通道30的第二直管段31之间也可设置为斜排布置。或者,如图11所示,也可设计第一流体通道20的第一直管段21之间,以及第二流体通道30的第二直管段31之间沿横向顺排布置。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十三
与上述实施例九、十、十一及十二的不同之处在于,本实施例中,换热器1包括第一流体通道20和第二流体通道30。
进一步地,如图12所示,第一流体通道20为多排或单排结构,第二流体通道30为多排或单排结构,其中,每排第一流体通道20上和每排第二流体通道30上分别穿套有翅片40,且任一排第一流体通道20上穿套的翅片40独立于任意一排第二流体通道30上所穿套的翅片40,且对于第一流体通道20为多排的情况,任一排第一流体通道20上穿套的翅片40还独立于任何另一排第一流体通道20上穿套的翅片40,同样地,任一排第二流体通道30上穿套的翅片40独立于任意一排第一流体通道30上所穿套的翅片40,且对于第二流体通道30为多排的情况,任一排第二流体通道30上穿套的翅片40还独立于任何另一排第二流体通道30上穿套的翅片40。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成 本。
实施例十四
如图13所示,换热器1包括第一流体通道20和第二流体通道30。第一流体通道20和第二流体通道30分别为两排结构,其中,两排第一流体通道20之间上下排列,两排第二流体通道30之间上下排列,且两排第一流体通道20与两排第二流体通道30交替地分布,其中,上侧的第一流体通道20与上侧的第二流体通道30相邻并靠近设置,具体实施例中,上侧的第一流体通道20与上侧的第二流体通道30相邻并接触,下侧的第一流体通道20与下侧的第二流体通道30相邻并靠近设置,具体实施例中,下侧的第一流体通道20与下侧的第二流体通道30相邻并接触。通过设置上侧的第一流体通道20与上侧的第二流体通道30相邻并靠近或接触,下侧的第一流体通道20与下侧的第二流体通道30相邻并靠近或接触,这样,相邻并靠近地设置的第一流体通道20与第二流体通道30之间可以更高效地传热甚至直接热传导,以减少蓄能材料在两者间的热传递损耗或滞后性,对于相邻并接触地设置的第一流体通道20与第二流体通道30,可更进一步提升第一介质与第二介质之间的传热效率,且不需要等待热量传递给蓄能材料后再使用,实现能量即用即取的效果,同时也更进一步地降低了热传递损失,提升产品能效。
其中,上侧的第二流体通道30与下侧的第一流体通道20相邻且间隔地设置,使得两排第一流体通及两排第二流体通与壳体10之间、以及上侧的第二流体通道30与下侧的第一流体通道20之间分别形成空间,该空间用于容纳蓄能材料,使得蓄能材料能够与第一介质和/或第二介质进行换热。
进一步地,换热器1还包括翅片40,该翅片40为整体式翅片,两排第一流体通道20与两排第二流体通道30穿套于该整体式翅片。
当然,本实施例并不局限于此,第一流体通道20的排数也可设计为3排、4排、5排或多于5排,第二流体通道30的排数也可设计为3排、4排、5排或多于5排,且第一流体通道20的排数与第二流体通道30的排数可以相同也可以不同。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十五
与上述实施例十四的不同之处在于,如图14所示,在本实施例中,换热器1包括翅片40,其中,上侧的第一流体通道20与上侧的第二流体通道30穿套于同一翅片40,下侧的第一流体通道20与下侧的第二流体通道30穿套于另一翅片40。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十六
如图15所示,换热器1包括两排的第一流体通道20和三排的第二流体通道30,并且两排第一流体通道20和三排第二流体通道30形成三夹二形式的交替排列。
进一步地,换热器1还包括翅片40,该翅片40为整体式翅片,两排第一流体通道20与三排第二流体通道30穿套于该整体式翅片。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十七
如图16所示,换热器1包括三排的第一流体通道20和两排的第二流体通道30,并且三排第一流体通道20和两排第二流体通道30形成三夹二形式的交替排列。
进一步地,换热器1还包括翅片40,该翅片40为整体式翅片,两排第一流体通道20与三排第二流体通道30穿套于该整体式翅片。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十八
如图17所示,换热器1包括两排的第一流体通道20和两排的第二流体通道30,并且两排第一流体通道20和两排第二流体通道30交替地排列。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈椭圆环形,且用于构造出第二流体通道30的换热管的管截面呈椭圆环形。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
实施例十九
如图8a和图8b所示,蓄能换热装置100包括:蓄能材料和上述任一实施例中所述的换热器组件,蓄能材料位于换热器组件的壳体10内,并且填充相邻的第一流体通道20和第二流体通道30之间、以及第一流体通道20和第二流体通道30与壳体10的内壁之间的空间,蓄能材料配置为积蓄 至少部分由换热器1放出的热量。
本申请上述实施例提供的蓄能换热装置100,通过设置有上述任一技术方案中所述的换热器组件,从而具有以上全部有益效果,在此不再赘述。
实施例二十
蓄能材料为固液相变材料,以提升蓄能换热装置100的蓄能换热能力。
其中,液相的蓄能材料的液面低于壳体10的内顶面,一方面可利于避免液相的蓄能材料泄漏,另一方面,可提供液相蓄能材料的相变空间,防止爆箱问题。另外,设置固相的蓄能材料的顶面高于液相的蓄能材料的液面,并低于壳体10的内顶面或与壳体10的内顶面平齐,这样,在有限的空间范围内尽可能放置更多的固相的蓄能材料,以提升蓄能换热装置100的蓄能换热能力,并防止爆箱问题。
进一步地,蓄能材料的膨胀系数α不超过0.1。这样,可有效控制蓄能材料因热量而产生的体积变化,一方面,在相同热量传递的情况下减小蓄能材料的体积变化,另一方面,在相同体积变化的情况下实现更多热量的传递及积蓄,提升蓄能换热装置100的蓄能换热能力。
进一步地,蓄能材料的相变温度的范围为-5℃~15℃。可实现合理设置蓄能材料的相变温度,保证蓄能换热装置100的蓄能换热能力。
举例地,蓄能材料可例如为冰、石蜡等。
实施例二十一
在实施例十九或二十的基础上,进一步限定,蓄能材料的膨胀系数α与1之和与液相的蓄能材料的液面至壳体10的内底面的竖直距离Hp成反比例关系。其中,膨胀系数α由蓄能材料自身性质决定,液相的蓄能材料的液面至壳体10的内底面的竖直距离Hp则反映了液相的蓄能材料的多少。因此,通过上述限定,可在蓄能材料的种类已知的前提下,尽可能在壳体10内放置更多的液相的蓄能材料,以提升蓄能换热装置100的蓄能换热能力,并避免蓄能材料膨胀导致壳体10过多地受力的问题,从而实现兼顾产品的换热性能和使用可靠性。
举例而言,蓄能材料的膨胀系数α与1之和与液相的蓄能材料的液面至壳体10的内底面的垂直距离Hp满足:
Hp/λ=[(1-γ)×ΔH+γ×Hw]/(γ+α×γ),其中,
λ为取值小于等于1的比例系数;
γ为液相的蓄能材料的体积量与换热器1浸泡于蓄能材料中的部位的体积量之和的比例;
ΔH为换热器1的顶端至壳体10的内顶面的竖直距离;
Hw为壳体10的内底面与其内顶面的竖直距离。
通过上述限定,可以准确计算得出液相的蓄能材料的最大用量,进而在不会影响蓄能换热装置100正常工作的前提下选用最多的液相的蓄能材料,以得到最佳的蓄能换热能力,并避免蓄能材料膨胀导致壳体10过多地受力的问题,从而实现兼顾产品的换热性能和使用可靠性。
进一步地,液相的蓄能材料的体积量占液相的蓄能材料的体积量与换热器1浸泡于蓄能材料中的部位的体积量之和的比例γ的范围为0.8~0.9。其中,通过使γ大于等于0.8,可以使得蓄能材料的蓄能能力充足,并确保蓄能材料更好地填充换热器1周围的空间,使得蓄能材料与换热器1接触更充分,换热更充分和高效,且使得蓄能换热装置100的蓄能换热能力更有保障,同时兼顾产品的体积小巧性和紧凑性;使γ小于等于0.9,这样,满足蓄能能力充分性的同时,可保证换热器1大致处于固/液蓄能材料的中部位置,蓄能材料换热更均匀,总体来讲,限定γ的范围在0.8至0.9之间,可以使得蓄能材料的蓄能能力与换热器1的换热面积及效率更加匹配,在安全范围内获得最佳的蓄能换热能力,综合地提升产品的能效。
较优地,λ的取值大于等于0.85小于等于0.9。可保证蓄能换热能力与使用安全的协调。
实施例二十二
在实施例十九、实施例二十或实施例二十一的基础上,进一步限定,换热器1的翅片40与壳体10的内底面垂直。可更合理地布置换热器1在壳体10内部的位置,充分利用蓄能材料相变过程因固液相的密度差而在垂直方向形成的自然对流强化换热效果,提升蓄能换热装置100的蓄能换热能力,且这样的设计使得蓄能材料变形过程中与翅片40的相互应力更小,从而可避免翅片40变形,同时减小蓄能材料的膨胀阻力,提升相变效率和 蓄能效率。
当然,对于换热器1上存在翅片40之间垂直分布的情况,例如图4至图4c所示,第一流体通道20的第一直管段21与第二流体通道30的第二直管段31之间垂直分布,使得第一流体通道20上所穿套的翅片40相应垂直于第二流体通道30上所穿套的翅片40的情况,设计部分翅片40与壳体10的内底面垂直即可,另一部分翅片40与壳体10的内底面之间可以平行设置,也可形成一定的夹角。
实施例二十三
如图8a和图8b所示,在实施例十九、实施例二十、实施例二十一或实施例二十二的基础上,进一步限定壳体10包括:外壳11和内胆12,内胆12为保温材质部件,内胆12容置于外壳11内,且内胆12合围限定出壳体10的内壁。外壳11为内胆12及换热器1提供保护;内胆12为保温材质部件,避免积蓄于蓄能材料的热量散失,提升蓄能换热装置100的蓄能能力。
进一步地,如图8a和图8b所示,内胆12具有周侧壁121和底壁122,底壁122位于外壳11的内底面上,周侧壁121位于外壳11的侧壁的内侧,其中,周侧壁121与底壁122为一体成型结构。其中,通过底壁122位于外壳11的内底面上,周侧壁121位于外壳11的侧壁的内侧,使得内胆12与外壳11紧密贴合,保证壳体10的可使用体积;周侧壁121与底壁122为一体成型结构,结构简单,加工方便高效,且可避免缝隙及连接部件的使用,提升壳体10的密封性,进而避免热量的散失。
举例地,内胆12为泡沫件。
实施例二十四
如图8a和图8b所示,壳体10包括外壳11和内胆12,内胆12的部分区域或内胆12的整体设置为具有可压缩性的保温材质部件。
具有可压缩性的保温材质部件可例如为弹性保温材质部件,具体例如为气凝胶或保温棉。
举例而言,内胆12具有周侧壁121和底壁122,底壁122连接于周侧壁121的底部,并与周侧壁121合围出凹腔,该凹腔限定出容纳空间以容 纳换热器1及蓄能材料。其中,周侧壁121和底壁122中的一者的局部区域或整体,或者,两者的局部区域或整体设置为具有可压缩性的保温材质部件,以使得内胆12的至少部分区域具有可压缩性以吸收蓄能材料的相变膨胀压应力。
或者,内胆12具有周侧壁121、底壁122和顶壁123,底壁122连接于周侧壁121的底部,顶壁123连接于周侧壁121的顶部,且周侧壁121、底壁122及顶壁123合围出容纳空间以容纳换热器1及蓄能材料。优选该周侧壁121、底壁122及顶壁123合围出的容纳空间为密闭空间。其中,周侧壁121、底壁122和顶壁123中的一者的局部区域或整体,或者,多者的局部区域或整体设置为具有可压缩性的保温材质部件,以使得内胆12的至少部分区域具有可压缩性以吸收蓄能材料的相变膨胀压应力。
例如,周侧壁121与底壁122一体成型。
实施例二十五
上述任一实施例中,壳体10设有与壳体10内的空间相连通的充注口,以供用户和组装人员向壳体10内加注蓄能材料。
举例地,壳体10包括外壳11和内胆12,充注口包括形成在外壳11上的第一通道和形成在内胆12上的第二通道,第一通道与第二通道对应并且连通,蓄能材料依次沿第一通道和第二通道注入壳体10内。
例如,壳体10上设有观察窗,观察窗为透视结构,并适于显示壳体10内的蓄能材料的液位。例如,将壳体10的侧壁或顶壁123的整体或部分设计由透明材质(例如玻璃)组成,用户或组装、检修人员在外侧就可以通过该观察窗查看蓄能材料的液位,向壳体10内充注蓄能材料的操作更方便地,产品使用、检修和生产更加便捷。
举例地,观察窗上设有液位参照标识。
举例而言,液位参照标识为刻画在壳体10内壁上的多条参考线,或者液位参照标识为刻画在观察窗上的多条参考线,每一条参考线代表其对应的液位,用户或组装、检修人员通过读取参照标识确定当前蓄能材料的液位,从而可以更加精确地控制向壳体10内充注蓄能材料的充注量,产品使用、检修和生产更加便捷。
举例地,壳体10包括外壳11和内胆12,外壳11的局部区域构造为观察窗,内胆12上对应观察窗的位置设置为空缺,以供用户经由观察窗和空缺观察到内部的蓄能材料的液位。
例如,蓄能换热装置100还包括提醒元件及液位检测元件,液位检测元件与提醒元件相连,液位检测元件配置为检测壳体10内的蓄能材料的液位,并根据所检测的液位触发提醒元件发出提醒。如当充注蓄能材料到达目标液位时,提醒元件自动发出提醒,防止充注过量的问题,且具有使用简单方便的优点。
举例而言,液位检测元件包括水位传感器,提醒元件包括报警器,报警器与水位传感器相连并接收水位传感器的检测信号,为避免壳体10内的蓄能材料的液位过高,可使检测元件当检测到液位达到目标液位时,向报警器发出检测信号,使报警器根据检测信号发出警报,提醒用户停止继续添加蓄能材料,避免充注过量的问题。
实施例二十六
本实施例提供了一种电器,其包括上述任一实施例中所述的蓄能换热装置100。
本申请上述实施例提供的电器,通过设置有上述任一技术方案中所述的蓄能换热装置100,从而具有以上全部有益效果,在此不再赘述。
进一步地,电器包括第一循环回路和第二循环回路;蓄能换热装置100的换热器1的第一流体通道20与第一循环回路连通,换热器1的第二流体通道30与第二循环回路连通。
更进一步地,如图18和图19所示,第一循环回路包括压缩机506、第一换热器508及节流元件516,压缩机506、第一换热器508、节流元件516及第一流体通道20经由管路连接形成回路;第二循环回路包括第二换热器512,第二换热器512及第二流体通道30经由管路连接形成回路。
在本方案中,利用第一循环回路对第一介质做功可以使第一介质向蓄能换热装置100内的蓄能材料释放冷量或热量,使蓄能材料吸收第一介质释放的冷量或热量进行蓄能,利用第二循环回路可使得蓄能材料内储存的冷量或热量经过第二换热器512释放到环境中实现制冷或制热,实现产品 的蓄能式运作,产品的使用更加方便灵活。
例如,所述电器为制冷设备,例如空调器、冰箱、冷库等,更具体例如,可移动空调,或者为一体式窗机、分体空调等。
实施例二十七
如图18和图19所示,本实施例的电器具体为移动空调,举例地,空调包括空调系统,空调系统包括蓄能换热装置100、第一循环回路和第二循环回路,蓄能换热装置100设有换热器组件,换热器组件包括壳体10、第一流体通道20、第二流体通道30和翅片40等,第一流体通道20、第二流体通道30及翅片40位于壳体10内,蓄能换热装置100还设有蓄能材料,蓄能材料容置于壳体10内,并填充相邻的第一流体通道20与第二流体通道30之间、以及壳体10与第一流体通道20及第二流体通道30之间的空间。
第一循环回路包括压缩机506、第一换热器508、节流元件516等,压缩机506、第一换热器508、节流元件516及第一流体通道20经由管路串联形成回路;第二循环回路包括第二换热器512,第二换热器512及第二流体通道30经由管路串联形成回路。
第一循环回路中流通有第一介质,第二循环回路中流通有第二介质,第一介质与第二介质可为同种介质,也可为不同种类的介质。
进一步地,第二循环回路中设有泵518用于驱动第二介质流动。
进一步地,如图18所示,第一换热器508设有第一风机510用于驱动气流与之换热。第二换热器512设有第二风机514用于驱动气流与之换热。
例如,第二介质为水、载冷剂等。
例如,第一介质为制冷剂或冷媒。
运行蓄冷模式时,在第一循环回路中,第一介质进入压缩机506,压缩机506压缩第一介质后,将第一介质送入第一换热器508,第一介质在第一换热器508内经由第一换热器508与环境换热实现冷凝,冷凝后的第一介质进入节流元件516进行节流处理,然后,节流处理后的第一介质进入第一流体通道20进行蒸发,其中,蒸发所释放的冷量储存到蓄能材料中,最后,完成蒸发的第一介质回到压缩机506实现循环。
运行供冷模式时,在第二循环回路中,第二介质在第二流体通道30中向 蓄能材料放热,完成放热后的第二介质进入第二换热器512,并在第二换热器512中经由第二换热器512吸收环境的热量,实现对环境供冷,完成吸热的第二介质重新回到第二流体通道30完成循环。
反之,运行蓄热模式时,在第一循环回路中,压缩机506排出的第一介质进入第一流体通道20,使得第一介质经由第一流体通道20向蓄能材料放热,使得蓄能材料吸热热量进行储存,相应地,第一介质通过放热实现冷凝,冷凝后的第一介质进入节流元件516进行节流处理,然后,节流处理后的第一介质进入第一换热器508进行蒸发,其中,蒸发所释放的冷量释放到环境中,最后,完成蒸发的第一介质回到压缩机506实现循环。
运行供热模式时,在第二循环回路中,第二介质在第二流体通道30中从蓄能材料吸热,完成吸热后的第二介质进入第二换热器512,并在第二换热器512中经由第二换热器512向环境的放热,实现对环境供热,完成放热的第二介质重新回到第二流体通道30完成循环。
例如,如图18所示,第一循环回路中设有四通阀520,蓄冷模式和蓄热模式可经由四通阀520进行切换。当然,根据需求,也可不设置四通阀520。
实施例二十八
如图4、图4a、图4b、图4c所示,换热器1包括第一流体通道20和第二流体通道30,第一流体通道20和第二流体通道30这两者分别为多排,且多排的第一流体通道20与多排的第二流体通道30之间,形成相邻的两排第一流体通道20之间设置有一排第二流体通道30,且相邻的两排第二流体通道30之间设置有一排第一流体通道20的交替布置形式。
同一排的第一流体通道20的第一直管段21之间经第一弯管段22连通,相邻第一流体通道20之间经第一跨管23连通。同一排的第二流体通道30的第二直管段31之间经第二弯管段32连通,相邻第二流体通道30之间经第二跨管33连通。
相邻的第一流体通道20和第二流体通道30之间、以及第一流体通道20和第二流体通道30与壳体10的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料,使得蓄能材料能够与第一介质和/或第二介质进行换热进行储能和放能,实现蓄能换热目的。
其中,第一直管段21与第二直管段31空间垂直分布。更详细地,如图4和图4a所示,第一流体通道20的第一直管段21沿x方向延伸,第二流体通道30的第二直管段31沿y方向延伸,x方向与y方向为空间垂直关系。这样,蓄能材料同时与第一介质及第二介质换热均匀,提高蓄能材料的相变潜热利用率,提升储能放能过程的能量利用效率,从而实现蓄能单元的体积紧凑性。
更进一步地,换热器1还包括翅片40,多排第一流体通道20中的每排上分别穿套有翅片40,多排第二流体通道30中的每排上分别穿套有翅片40,其中,如图4和图4a所示,每排第一流体通道20上所穿套的翅片40之间沿x方向间隔地排列,如图4、图4a、图4b、图4c所示,每排第二流体通道30上所穿套的翅片40之间沿y方向间隔地排列,这样,第一流体通道20上所穿套的翅片40与第二流体通道30上所穿套的翅片40之间也相应形成空间垂直分布的关系。蓄能材料在翅片40之间的流通性更高,更利于蓄能材料同时与第一介质及第二介质换热更均匀,更进一步提高了蓄能材料的相变潜热利用率,提升储能放能过程的能量利用效率,从而实现蓄能单元的体积紧凑性。
详细举例地,如图4、图4a、图4b、图4c所示,第一流体通道20和第二流体通道30,分别设置为两排结构,两排第一流体通道20之间夹设有一排第二流体通道30,另一排第二流体通道30设于两排第一流体通道20中任意一排的侧方,从而形成排间交替排列的分布形式,在附图4中,第一流体通道20的第一直管段21沿x方向延伸,且第一直管段21之间平行设置,第一跨管23及第一介质进出口25位于第一直管段21沿x方向的上侧,第二流体通道30的第一直管段21沿y方向延伸,且第二直管段31之间平行设置,第二跨管33及第二介质进出口35位于第二直管段31沿y方向的左侧,第一跨管23与第二跨管33形成在换热器1整体的相邻两个侧向方位。可以理解的是,所述的上下仅是为了结合附图4描述方便所提供的相对方位参照,并不对换热器1的布置方位关系进行限定。
当然,本实施例并不局限于所列举的情况,在其他实施例中,第一流体通道20的排数也可设计为3排、4排、5排或多于5排,第二流体通道 30的排数也可设计为3排、4排、5排或多于5排,且第一流体通道20的排数与第二流体通道30的排数可以相同也可以不同。
本实施例中,第一流体通道20和第二流体通道30分别为单流路结构,且第一介质经由两个第一介质进出口25中的一者流入第一流体通道20,第一流体通道20内的第一介质经由两个第一介质进出口25中的另一者流出,第二介质经由两个第二介质进出口35中的一者流入第二流体通道30,第二流体通道30内的第二介质经由两个第二介质进出口35中的另一者流出。
具体实施例中,用于构造出第一流体通道20的换热管的管截面呈圆环形,且用于构造出第二流体通道30的换热管的管截面呈圆环形。当然,用于构造出第一流体通道20和/或第二流体通道30的换热管的管截面也可设置为椭圆环形,或设置为扁管。
总体而言,本实施例提供的换热器组件,具有结构简单、加工方便,换热效率高、换热均匀等优点,可利于提升蓄能放能效率,并兼顾产品成本。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特 点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种换热器组件,其中,所述换热器组件包括壳体和换热器,所述换热器位于所述壳体内,其中,所述换热器包括:
    第一流体通道,设置为至少一排,所述第一流体通道配置为供第一介质流通;
    第二流体通道,设置为至少一排,所述第二流体通道独立于所述第一流体通道且配置为供第二介质流通;
    所述第一流体通道和所述第二流体通道在所述壳体内交错排布,相邻的所述第一流体通道和所述第二流体通道之间、以及所述第一流体通道和所述第二流体通道与所述壳体的内壁之间留有空间,该空间的至少部分配置为容纳蓄能材料。
  2. 根据权利要求1所述的换热器组件,其中,
    所述第一流体通道设置为至少两排,相邻的两排所述第一流体通道之间设置有一排所述第二流体通道;和/或
    所述第二流体通道设置为至少两排,相邻的两排所述第二流体通道之间设置有一排所述第一流体通道。
  3. 根据权利要求1所述的换热器组件,其中,
    所述第一流体通道形成为蛇形换热管,位于相同一排的所述第一流体通道包括多个平行设置的第一直管段以及连接相邻两个所述第一直管段的第一弯管段,相邻的两排所述第一流体通道之间经第一跨管或第一分流器连通;
    所述第二流体通道形成为蛇形换热管,位于相同一排的所述第二流体通道包括多个平行设置的第二直管段以及连接相邻两个所述第二直管段的第二弯管段,相邻的两排所述第二流体通道之间经第二跨管或第二分流器连通。
  4. 根据权利要求3所述的换热器组件,其中,
    所述第一直管段具有相对的第一端和第二端,位于所述第一端的所述第一弯管段与其相连接的两个所述第一直管段一体成型,位于所述第二端 的所述第一弯管段与其相连接的两个所述第一直管段焊接,且所述第一跨管或第一分流器位于所述第二端;
    所述第二直管段具有相对的第三端和第四端,位于所述第三端的所述第二弯管段与其相连接的两个所述第二直管段一体成型,位于所述第四端的所述第二弯管段与其相连接的两个所述第二直管段焊接,且所述第二跨管或第二分流器位于所述第四端。
  5. 根据权利要求3所述的换热器组件,其中,
    所述第一直管段与所述第二直管段平行设置。
  6. 根据权利要求3所述的换热器组件,其中,
    所述第一直管段与所述第二直管段空间垂直分布。
  7. 根据权利要求4所述的换热器组件,其中,
    多个所述第一直管段中至少有两者的所述第二端构造有适于供所述第一流体通道进液或排液的第一介质进出口;
    多个所述第二直管段中至少有两者的所述第四端构造有适于供所述第二流体通道进液或排液的第二介质进出口。
  8. 根据权利要求3至7中任一项所述的换热器组件,其中,
    至少有一排所述第一流体通道与至少一排所述第二流体通道之间相邻布置,且相邻的所述第一流体通道与所述第二流体通道之间,所述第一直管段与所述第二直管段相对设置或错位设置。
  9. 根据权利要求3至7中任一项所述的换热器组件,其中,
    所述第一流体通道的至少部分与所述第二流体通道的至少部分之间逆流设置。
  10. 根据权利要求1至7中任一项所述的换热器组件,其中,所述换热器还包括翅片,其中,
    至少一排所述第一流体通道中的每排上分别穿套有所述翅片,和/或至少一排所述第二流体通道中的每排上分别穿套有所述翅片;或
    至少有一排所述第一流体通道与至少一排所述第二流体通道之间相邻布置,且相邻的所述第一流体通道和所述第二流体通道穿套于同一所述翅片;或
    所述翅片为整体式翅片,所述换热器的所述第一流体通道及所述第二流体通道穿套于同一所述整体式翅片。
  11. 根据权利要求1至7中任一项所述的换热器组件,其中,
    所述第一流体通道为单流路结构或为多流路结构;和/或
    所述第二流体通道为单流路结构或为多流路结构。
  12. 一种蓄能换热装置,其中,包括:
    蓄能材料;
    如权利要求1至11中任一项所述的换热器组件,所述蓄能材料位于所述换热器组件的壳体内。
  13. 根据权利要求12所述的蓄能换热装置,其中,
    所述蓄能材料为固液相变材料。
  14. 根据权利要求12或13所述的蓄能换热装置,其中,
    所述蓄能材料的膨胀系数α不超过0.1。
  15. 根据权利要求12或13所述的蓄能换热装置,其中,
    所述蓄能材料的相变温度的范围为-5℃~15℃。
  16. 根据权利要求12或13所述的蓄能换热装置,其中,
    所述换热器具有翅片,且所述换热器的所述翅片与所述壳体的内底面垂直。
  17. 根据权利要求12或13所述的蓄能换热装置,其中,所述壳体包括:
    外壳;
    内胆,所述内胆为保温材质部件,所述内胆容置于所述外壳内,且所述内胆合围限定出所述壳体的内壁。
  18. 根据权利要求17所述的蓄能换热装置,其中,
    所述内胆的部分区域或所述内胆整体设置为具有可压缩性的保温材质部件。
  19. 一种电器,其中,包括如权利要求12至18中的任一项所述的蓄能换热装置。
  20. 根据权利要求19所述的电器,其中,
    所述电器包括第一循环回路和第二循环回路;
    所述蓄能换热装置的换热器的第一流体通道与所述第一循环回路连通,所述换热器的第二流体通道与所述第二循环回路连通。
  21. 根据权利要求20所述的电器,其中,
    所述第一循环回路包括压缩机、第一换热器及节流元件,所述压缩机、第一换热器、节流元件及第一流体通道经由管路连接形成回路;
    所述第二循环回路包括第二换热器,所述第二换热器与第二流体通道经由管路连接形成回路。
PCT/CN2019/123169 2019-09-11 2019-12-05 换热器组件、蓄能换热装置及电器 WO2021047074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910860685.XA CN112484549A (zh) 2019-09-11 2019-09-11 换热器组件、蓄能换热装置及电器
CN201910860685.X 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021047074A1 true WO2021047074A1 (zh) 2021-03-18

Family

ID=74866897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123169 WO2021047074A1 (zh) 2019-09-11 2019-12-05 换热器组件、蓄能换热装置及电器

Country Status (2)

Country Link
CN (1) CN112484549A (zh)
WO (1) WO2021047074A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390152A1 (en) * 2021-06-03 2022-12-08 Steven Bauman Thermal Storage System for Buildings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624057A (zh) * 2021-08-06 2021-11-09 浙江酷灵信息技术有限公司 耐积灰换热器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596877A (en) * 1995-08-16 1997-01-28 Baltimore Aircoil Company, Inc. Header and coil arrangement for cooling apparatus
CN205027185U (zh) * 2015-08-09 2016-02-10 大连理工大学 相变蓄放热一体式换热器
CN206177112U (zh) * 2016-11-04 2017-05-17 上海电力学院 一种相变蓄热式换热器装置
CN107741070A (zh) * 2017-10-18 2018-02-27 上海交通大学 一种空气源热泵热水器高密度储热一体机
CN109073327A (zh) * 2016-04-22 2018-12-21 三菱电机株式会社 蓄热热交换装置
CN209371854U (zh) * 2018-12-31 2019-09-10 瑨祥(宜昌)机电设备有限公司 一种新型的废气换热器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214881B2 (ja) * 2003-01-21 2009-01-28 三菱電機株式会社 気泡ポンプ型熱輸送機器
CN103512415A (zh) * 2013-09-02 2014-01-15 太原理工大学 一种低温相变蓄热器
CN103954160B (zh) * 2014-05-05 2015-03-11 山东省能源与环境研究院 一种双管束余热利用换热器
CN104728974B (zh) * 2015-03-20 2018-04-27 云南师范大学 一种分布式风能/光伏独立能源驱动的冷热双效蓄能空调系统
CN108253664A (zh) * 2017-12-19 2018-07-06 珠海格力电器股份有限公司 一种换热器、空调室内机和空调器
CN210601993U (zh) * 2019-09-10 2020-05-22 广东美的制冷设备有限公司 移动空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596877A (en) * 1995-08-16 1997-01-28 Baltimore Aircoil Company, Inc. Header and coil arrangement for cooling apparatus
CN205027185U (zh) * 2015-08-09 2016-02-10 大连理工大学 相变蓄放热一体式换热器
CN109073327A (zh) * 2016-04-22 2018-12-21 三菱电机株式会社 蓄热热交换装置
CN206177112U (zh) * 2016-11-04 2017-05-17 上海电力学院 一种相变蓄热式换热器装置
CN107741070A (zh) * 2017-10-18 2018-02-27 上海交通大学 一种空气源热泵热水器高密度储热一体机
CN209371854U (zh) * 2018-12-31 2019-09-10 瑨祥(宜昌)机电设备有限公司 一种新型的废气换热器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390152A1 (en) * 2021-06-03 2022-12-08 Steven Bauman Thermal Storage System for Buildings

Also Published As

Publication number Publication date
CN112484549A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN100587383C (zh) 一种蓄热换热器
CN205425506U (zh) 吸收式制冷单元
CN217357660U (zh) 换热器及空调器
WO2021047074A1 (zh) 换热器组件、蓄能换热装置及电器
JP4657226B2 (ja) 蓄熱装置
EP2551626A1 (en) Plate heat exchanger, plate heat exchanger producing method, and heat pump apparatus
CN103604254B (zh) 一种内置气液两相流分流结构
KR20140083335A (ko) 열전소자가 구비된 열교환기
CN204154153U (zh) 一种经纬交错管换热器
CN103983043A (zh) 饮水机
CN104896803B (zh) 一种多系统满液式蒸发器
CN104896985B (zh) 用于空调器的翅片式换热器
CN103925695A (zh) 热泵热水器
GB2467812A (en) Fluid conditioning arrangement
CN106288522B (zh) 换热装置和具有它的热泵系统
KR20110083019A (ko) 이중관 열 교환기용 커넥터 및 이를 갖는 열 교환기
CN212720082U (zh) 一种集装箱数据中心空调系统
CN103322732B (zh) 热泵用喷淋式换热器
KR20120043916A (ko) 열교환 장치
CN208832731U (zh) 换热器、换热水箱及换热系统
KR101440777B1 (ko) 히트펌프를 이용한 온수생산장치
KR101564346B1 (ko) 축냉 열교환기
US4289197A (en) Heat exchanger
CN114526626B (zh) 蓄能换热装置和电器设备
CN212870851U (zh) 一种新型热交换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944979

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19944979

Country of ref document: EP

Kind code of ref document: A1