WO2021045606A1 - Composición farmacéutica oftálmica, procesos de preparación y usos de las mismas - Google Patents

Composición farmacéutica oftálmica, procesos de preparación y usos de las mismas Download PDF

Info

Publication number
WO2021045606A1
WO2021045606A1 PCT/MX2020/050031 MX2020050031W WO2021045606A1 WO 2021045606 A1 WO2021045606 A1 WO 2021045606A1 MX 2020050031 W MX2020050031 W MX 2020050031W WO 2021045606 A1 WO2021045606 A1 WO 2021045606A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
present
composition
glycero
phosphocholine
Prior art date
Application number
PCT/MX2020/050031
Other languages
English (en)
French (fr)
Inventor
Juan De Dios Quintana Hau
Luciano PESQUEDA PINEDO
Humberto Figueroa Ponce
Addy LIÑAN SEGURA
Original Assignee
Sophia Holdings, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophia Holdings, S.A. De C.V. filed Critical Sophia Holdings, S.A. De C.V.
Priority to BR112022004045A priority Critical patent/BR112022004045A2/pt
Priority to EP20861866.0A priority patent/EP4026538A4/en
Priority to KR1020227007393A priority patent/KR20220059482A/ko
Priority to JP2022515054A priority patent/JP2022547516A/ja
Priority to CA3152637A priority patent/CA3152637A1/en
Priority to US17/636,138 priority patent/US20220354788A1/en
Publication of WO2021045606A1 publication Critical patent/WO2021045606A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L12/00Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
    • A61L12/08Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using chemical substances
    • A61L12/14Organic compounds not covered by groups A61L12/10 or A61L12/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/04Artificial tears; Irrigation solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/202Separating means
    • A61J1/2037Separating means having valve means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2068Venting means
    • A61J1/2075Venting means for external venting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2079Filtering means
    • A61J1/2082Filtering means for gas filtration

Definitions

  • the present invention is directed to ophthalmic pharmaceutical compositions, more specifically to ophthalmic compositions in the form of emulsions of the oil-in-water (O / W) type; more specifically the present invention is in the form of nanoemuslions comprising propylene glycol.
  • the present invention is also directed to ophthalmic compositions that do not generate a high viscosity due to the emulsification process and that do not contain preservatives within their formulation.
  • the present invention is also directed to the processes for preparing the same and its use as a composition that, among other benefits, provides lubrication to the ocular surface by stabilizing the tear film, while avoiding the evaporation of said film that is formed. during his administration.
  • the present invention is directed to a system that allows preservative-free ophthalmic compositions to be contained, as well as for their administration.
  • a natural tear is made up of a lipid phase (triglycerides, fatty acids, cholesterol, phospholipids and glycolipids); an aqueous serous phase (proteins, electrolytes (sodium, magnesium, calcium, chlorine, bicarbonate ions)); and a mucin phase (proteins, hydrocarbons and enzymes).
  • a lipid phase triglycerides, fatty acids, cholesterol, phospholipids and glycolipids
  • aqueous serous phase proteins, electrolytes (sodium, magnesium, calcium, chlorine, bicarbonate ions)
  • a mucin phase proteins, hydrocarbons and enzymes
  • an artificial tear essentially consists of a lipid phase and an aqueous phase (lubricant, electrolytes, glycerin, polymers).
  • Nanoparticle technologies in general have several benefits, for example, the solubilization of hydrophobic and poorly soluble drugs; improvement of bioavailability and pharmacokinetic properties; coupled with drug protection against physical, chemical and biological degradation. Furthermore, the submicron size of these systems allows efficient transport and the crossing of biological barriers that protect the eye, thus allowing the appropriate administration of drugs to the target site.
  • nanometric emulsions also known in the literature as miniemulsions, ultrafine emulsions and submicron emulsions, are emulsions with nano-sized droplets (less than 100 nm).
  • nano emulsions are thermodynamically stable, requiring energy to their training.
  • the source of the required energy can be external (dispersion or high energy methods) or internal (condensation or low energy methods).
  • High energy emulsion methods use mechanical devices to generate strong disruptive forces that break up the oil and water phases to produce small droplets.
  • the most used devices to produce nanoemulsions are rotor stator systems, high pressure systems and ultrasound.
  • Other high-energy emulsification methods which have been intensively developed in recent years, are microfluidic methods, which provide practically mono-dispersed droplets and are characterized by relatively low energy consumption, and membrane methods.
  • the application US 2016/0101050 refers to an ophthalmic nano emulsion which allows to increase the solubility of an active principle such as cyclosporine, at the same time that it achieves an improved stability of the entire composition.
  • an active principle such as cyclosporine
  • the particle size distribution is not entirely homogeneous.
  • application CN 101391111 discloses solutions for the care of contact lenses and drops to moisten the eyes, essentially using polyoxylated castor oil (modified to be soluble in water) and bactericidal agents.
  • there is a need for artificial tear compositions that promote lubrication of the ocular surface avoiding any disadvantage mentioned above.
  • compositions that maintain the integrity and efficacy of contact lenses intact Furthermore, there is a need for preservative-free artificial tear compositions.
  • ophthalmic compositions in the form of nano emulsions that comprise, in one of the embodiments of the present invention, an organic compound formed by a diol, a stable polymer, preferably a polymer of the glycosaminoglycan type, acids fatty or phospholipids and other pharmaceutically acceptable excipients.
  • the organic compound comprising a diol is propylene glycol.
  • the glycosaminoglycan-type polymer is preferably sodium hyaluronate.
  • the phospholipids comprise 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and castor oil.
  • a further objective of the present invention is to provide artificial tear compositions that also do not cause damage to contact lenses and allow the relief of non-bacterial conjunctivitis.
  • ophthalmic compositions where the use of sodium hyaluronate does not generate a high viscosity.
  • the sodium hyaluronate is subjected to a high impact emulsification process, which results in the fragmentation of this polymer into monomers dispersed in the formula, thus allowing the active principles to migrate more effectively to the corneal epithelium and help it in its recovery.
  • ophthalmic compositions are provided, which provide lubrication to the ocular surface by stabilizing the tear film, while avoiding the evaporation of said film that forms during its administration.
  • processes are provided for the preparation of ophthalmic compositions.
  • Figures 1A and IB show comparative electron microscopy images between the commercial product Systane Balance® (1A) and the ophthalmic composition of the present invention (IB).
  • Figures 2A and 2B show comparative graphs of the particle size distribution exhibited by the commercial product Systane Balance® (2A) and the ophthalmic composition of the present invention (2B).
  • Figures 3A and 3B show comparative graphs of the zeta potential for the commercial product Systane Balance® (3A) and the ophthalmic composition of the present invention (3B).
  • Figures 4A and 4B show comparative graphs of electrophoretic mobility for the commercial product Systane Balance® (4A) and for the ophthalmic composition of the present invention (4B).
  • Figures 5A and 5B show comparative graphs regarding homogeneity tests for the commercial product Systane Balance® ( Figure 5A) and for the ophthalmic composition of the present invention (5B).
  • Figure 6 shows a tolerance graph for the diameter present in Type I contact lenses (monthly replacement soft contact lens, made up of 67% Polymer (Lotraficon B) and 33% water) diopter 1.0.
  • Figure 7 shows a tolerance graph for the thickness present in Type I contact lenses, 1.0 diopter.
  • Figure 8 shows a tolerance graph for the diameter present in Type I contact lenses, 6.0 diopter.
  • Figure 9 shows a tolerance graph for the transmittance of UV light present in a Type IV contact lens (Soft contact lens for biweekly replacement, made up of 42% Polymer (Etafilcon) and 58% water) diopter
  • Figure 10 shows a tolerance graph for diopters present in Type IV contact lenses, diopter
  • Figure 11 shows a diagram of the mechanism of action or function of the container comprised in the system of the present invention. Detailed description of the invention
  • aspects of the present invention refer to ophthalmic compositions, preferably in the form of oil-in-water (O / W) nano-emulsions, which are evidently administered via the ophthalmic route.
  • O / W oil-in-water
  • compositions are intended to encompass products that comprise the specified compounds in the specified amounts, as well as any product that results, directly or indirectly, from a combination of the specified compounds in the specified amounts.
  • the ophthalmic compositions are essentially homogeneous, sterile, isotonic nano emulsions containing polyols such as propylene glycol, polyethylene glycol 300, Sorbitol.
  • the present composition comprises propylene glycol at a concentration, preferably between 0.1 to 0.6%.
  • the ophthalmic compositions may also contain a stable polymer, of the glycosaminoglycan type, such as Guar gum, gellan gum, Hydroxypropylmethylcellulose, hyaluronate of sodium, hydroxyethyl cellulose, methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol; fatty acids and other pharmaceutically acceptable excipients.
  • a stable polymer of the glycosaminoglycan type, such as Guar gum, gellan gum, Hydroxypropylmethylcellulose, hyaluronate of sodium, hydroxyethyl cellulose, methyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol; fatty acids and other pharmaceutically acceptable excipients.
  • the stable polymer is sodium hyaluronate.
  • the fatty acids or phospholipids comprise DPPC (1,2-dipalmitol-sn-glycero-3-phosphocholine), DSPC (1,2-distearol-sn-glycero-3-phosphocholine, DOPC (1,2-Dioleol -sn-glycero-3-phosphocholine, DEPC (1,2-dierucyl-sn-glycero-3-phosphocholine), but they are not limited, the fatty acid used being 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and castor oil.
  • DMPC 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
  • propylene glycol is a colorless, tasteless and odorless organic compound (an alcohol, more precisely a diol) that promotes lubrication at the ocular surface level by stabilizing the tear film and decreasing the evaporation of the tear film.
  • the DMPC compound is a phospholipid (fatty acid) which occurs as an amphiphilic molecule, which is a structural part of the lipid bilayer of the cell membrane.
  • Castor oil acts as a co-solvent agent, providing the incorporation of the surfactant agent into the nano emulsion, also, it integrates lipid compounds present in the formulation to the system (or emulsion), for example, fatty acids. Likewise, this component constitutes the oily phase of the present oil-in-water (O / W) nano emulsion.
  • the ophthalmic compositions comprise approximately: Propylene glycol in an amount of 0.1 to 0.6%
  • Polysorbate 80 from 0.2 to 4.0%
  • the mixture of these components is subjected to homogenization by a physical method (high energy emulsion) to obtain the emulsion.
  • a physical method high energy emulsion
  • the emulsions are subjected to homogenization by a physical method (high energy emulsion) to obtain the emulsion.
  • the micelle formed by the fatty acids or phospholipids has a particle size distribution ranging from approximately 30 nm to approximately 260 nm; more preferably a particle size distribution ranging from about 32 nm to about 255 nm.
  • the composition of the present invention has a distribution particle size from about 82.5 nm to about 92.5 nm
  • the composition in addition to functioning as an artificial tear the inventors have found that the formulation achieves a completely unexpected first technical effect, that is, the compositions of the present invention provide lubrication to the ocular surface by stabilizing the tear film and at the same time prevent the evaporation of said film. Also preventing any effect of blurred vision. This has been achieved by the migration of the components, as well as the particles or micelles made up of castor oil and DMPC that are integrated into the lipophilic layer of the natural tear.
  • the inventors of the present invention have also surprisingly found that in ophthalmic compositions, when sodium hyaluronate is subjected to a high impact emulsification process, the fragmentation of this polymer is obtained into monomers dispersed in the formula, thus allowing that the active principles migrate more effectively to the corneal epithelium and thus help it in its recovery.
  • the sodium salt of hyaluronic acid is incorporated into the emulsion to give body or viscous consistency, due to its polymeric structure which is made up of repeating disaccharide units of N-acetylglucosamine and D-glucuronic acid, linked by glucosidic bonds' 1 - '4.
  • the long chains of sodium hyaluronate present are fragmented into small chains, by the cutting action and pressure generated during the process of three cycle mechanical emulsification in a pressure range of 10,000 psi to 30,000 psi.
  • a process for the manufacture of the ophthalmic compositions is provided.
  • the development of the manufacturing process is carried out considering that the pharmaceutical form is an emulsion, likewise, the characteristics of the components of the formula and their route of administration of the product (ophthalmic) are taken into account.
  • the process seeks to obtain a stable homogeneous emulsion.
  • a sterile product is required, according to the characteristics of the formula developed and the type of primary packaging, it is possible to apply terminal sterilization to the product. For this reason, a sterilization of the product by means of filtration is included, placing this filtered product in the sterile container-closure system, in a sterile environment.
  • the process described in the present application consists essentially of two stages in its formulation.
  • a tank is identified in which the preparation is carried out, starting with the addition of between 60 and 65% grade water for the manufacture of injectables to the tank with a temperature in the order of 20 to 30 ° C and a constant stirring is applied inside the tank, in which the following components are added, maintaining a constant stirring and temperature range: Polysorbate 80, Dimiristil Phosphatadyl choline (DMPC), Boric Acid, Dehydrated Sodium Borate, Disodium Edetate dihydrate, Glycerin, Propylene Glycol, Sodium Hyaluronate, and finally Castor Oil, the latter component being the oily phase of the system or emulsion (O / W).
  • DMPC Dimiristil Phosphatadyl choline
  • DMPC Dimiristil Phosphatadyl choline
  • Boric Acid Dehydrated Sodium Borate
  • Disodium Edetate dihydrate Glycerin
  • this oily-aqueous preparation mixture is added with the grade water for the manufacture of injectables necessary to reach the predetermined volume or volume, being subjected to homogenization prior to the emulsification of this mixture.
  • this mixture of oily-aqueous preparations is subjected to the mechanical emulsification process.
  • This emulsification must be carried out at a controlled pressure and temperature.
  • the addition for the formulation process, as well as the temperature conditions can be the following:
  • Castor Oil in addition to serving as a co-solvent to incorporate 1,2-Dmyristoyl-SN-glycero-3-phosphocholine (DMPC or Dmyristyl phosphatidyl choline) into the formulation, because this excipient is a fatty acid, it also represents in the formulation the oily phase (or internal phase) of the emulsion, representing 1.0% of the total concentration of the components present in artificial tear compositions.
  • DMPC 1,2-Dmyristoyl-SN-glycero-3-phosphocholine
  • Dmyristyl phosphatidyl choline 1,2-Dmyristoyl-SN-glycero-3-phosphocholine
  • this 1.0% of Castor Oil is incorporated into the formulation, forming a mixture of the oil phase with the aqueous phase, which is subjected to a homogenization process of 60 minutes and finally to a mechanical emulsification process of three cycles at a pressure in a pressure range of 10,000 psi to 30,000 psi, thereby obtaining a homogenization of both phases of the emulsion.
  • the stirring speed is in an interval of 78 rpm - 840 rpm that generates a flow inside the tank when solubilizing the raw materials will not present turbulence, which generates the incorporation of air into the emulsion, taking care for the same reason the speed of homogenization prior to the emulsification process through the equipment.
  • the sterilization step is carried out by filtration using two sterilizing membranes, preferably Polyethylsulfone, with pore size of 0.2mpi.
  • the filters used are subjected to a membrane integrity test as a control.
  • the indicated compounds are included in their respective proportions, taking care that the number of stirring revolutions is in a range of 78 rpm - 840 rpm, the solubilization time and the temperature of the product:
  • DMPC 1,2-dimyristoyl-SN-glycero-3-phosphocholine
  • a system that allows preservative-free artificial tear compositions to be contained and the administration thereof.
  • the system includes artificial tear compositions to promote lubrication of the ocular surface.
  • the system also comprises low-density polyethylene containers with an assembled high-density polyethylene closure device, which has a system of silicone and low-density polyethylene valves; it is also compatible with a wide range of viscosities, is easy to use and requires little force to operate the mechanism.
  • the mechanism of action or function of this multi-dose container consists of dosing the product inside the bottle, preventing the entry of air and / or contaminated product from the outside by means of a non-return valve, compensating the internal air by means of a vent valve that filters the entry of contaminated air, and preventing the entry of contaminated liquids from outside (Figure 11).
  • the system provides all of the components necessary for the administration of the artificial tear compositions in a safe and convenient manner.
  • the artificial tear compositions can be administered while preserving the solution sterile without the need for additives, such as antimicrobials and battery packs.
  • the system allows the preservation and administration of the artificial tear compositions of the present invention, at an ideal pH of between 6.5 to 7.5 and an osmolality of 200 to 400 mOsmol / kg.
  • the system also comprises a borate-based buffer solution in a range no greater than 0.1%.
  • system further comprises sodium hyaluronate in a corresponding ratio with the borate buffer, where greater stability of the sodium hyaluronate is observed, for example:
  • both the artificial tear system and compositions also allow to maintain contact lens integrity and commonly used parameters, such as overall diameter, thickness, UV light transmittance, and diopters.
  • the artificial tear compositions of the present invention were characterized with respect to the microscopic morphology of micelles (oil particles); particle size distribution, conductivity, zeta potential, electrophoretic mobility, contact lens compatibility, and emulsion homogeneity.
  • a) Microscopic characterization The initial objective of the study was based on establishing the differences and / or morphological similarities between the composition of the present invention (referred to here as PRO-176) and the commercial product Systane Balance®. To carry out this study, the established in the article published in the journal Micron No. 43 of 2012 called "Electron microscopy of nanoemulsions: An essential tool for characterization and stability assessment.” Klang et al., 2011 was taken as a basis. which establishes the use of a transmission electron microscope (electron transfer microscopy, MTE), using the cryo-plung technique for the treatment of the sample. This study was carried out in conjunction with the National Polytechnic Institute of Mexico City.
  • the electrophoretic mobility for the Systane Balance® product is -0.3696 pm cm / Vs and the value of PRO-176 ( Figure 4B) is -1.029 pm cm / Vs, both values are close to zero on the scale. negative, indicating that the two products have an anionic charge modifier.
  • the conductivity present in the Systane Balance® product (2.47 mS / cm) is higher compared to that obtained in the PRO-176 (0.379 mS / cm), this marks a benchmark in the ionic charge present in a formulation, being higher in Systane Balance®, due to the number of components and their quantity present in this formula.
  • the same equipment was used to characterize the present composition compared to the commercial product Systane Balance® and in terms of the fatty acid used in each formulation.
  • PRO-176 and Systane Balance® product when used in conjunction with soft contact lenses.
  • Systane Balance® product affects the transmittance of UV light, total diameter and thickness of the contact lens.
  • Diameter Lens Type I diopter 1.0 Number of cases: 180
  • Figure 6 shows contact lenses with out-of-specification diameters. Both the contact lenses submitted with the control solution (NaCl 0.9%) and the commercial product Systane Balance®. However, the contact lenses subjected to PRO-176 remained within the established specifications.
  • Figure 7 shows contact lenses with thicknesses outside of specifications. Both in contact lenses subjected to the NaCl 0.9% control solution and the commercial product Systane Balance®. However, the contact lenses submitted with PRO-176 remained within the established specifications.
  • Diameter Lens Type I diopter 6.0 Number of cases: 180
  • Figure 9 shows contact lenses with UV light transmittance values with a trend towards the upper and lower limits, and with out-of-specification data in the contact lenses inserted with the NaCl 0.9 control solution.
  • PRO-176 and the commercial product data is kept within specification established, although, in the case of the commercial product, data with a tendency to the lower limit are shown.
  • Figure 10 shows contact lenses tested with the 0.9% NaCl control solution and the commercial product showing out-of-specification values. In the case of contact lenses treated with PRO-176, no out-of-specification diopters were presented during the study.
  • O / W type emulsion One of the main properties of an O / W type emulsion is the oil particle size distribution, since this property is strongly related to the stability and maintenance of its physicochemical characteristics. This is due to the fact that, when there is a greater number in the variability of oil particle size, these flocculate with each other, thereby causing the separation of the lipid phases from the aqueous one.
  • the way or form in which this distribution is established is known as polydispersity.
  • PRO-176 has a polydispersity index (0.215 Pdi), and an average particle size (83.03 d. Nm) lower compared to the commercial product (0.247 Pdi and 110.63 d. Nm). Considering this product with a less homogeneous population of particle sizes, than that presented by PRO-176 (Propylene glycol 0.6%). This is due to the differences between both formulations regarding the quantity and type of dispersed oil, as well as the surfactant agents and dispersing agent used in each formula.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La presente invención se refiere a composiciones oftálmicas que se encuentran en forma de nano emulsiones del tipo aceite en agua (O/W) y que comprenden principalmente propilenglicol y hialuronato de sodio. Asimismo, la presente invención se refiere a los procesos de preparación y usos de dichas composiciones de lágrima artificial.

Description

COMPOSICIÓN FARMACÉUTICA OFTÁLMICA, PROCESOS DE PREPARACIÓN
Y USOS DE LAS MISMAS
Campo de la Invención
La presente invención está dirigida a composiciones farmacéuticas oftálmicas, más específicamente a composiciones oftálmicas en forma de emulsiones del tipo aceite en agua (O/W); más específicamente la presente invención está en forma de nanoemusliones que comprenden propilenglicol. La presente invención también está dirigida a composiciones oftálmicas que no generan una alta viscosidad debido al proceso de emulsificación y que no contienen conservadores dentro de su formulación. Además, la presente invención también está dirigida a los procesos de preparación de la misma y su uso como composición que, entre otros beneficios, proporciona lubricación a la superficie ocular estabilizando la película lagrimal, evitando al mismo tiempo la evaporación de dicha película que se forma durante su administración. De igual forma, la presente invención está dirigida a un sistema que permite contener las composiciones oftálmicas libre de conservadores, asi como para su administración.
Antecedentes de la Invención
Se conocen en el estado de la técnica diferentes composiciones de lágrimas artificiales que permiten el tratamiento de anomalías en la capa lagrimal del ojo. Dichas afecciones son comúnmente causadas por la falla del ojo para producir ya sea una cantidad adecuada o mantener un equilibrio adecuado de los componentes lagrimales de la mucosa.
En términos generales, una lágrima natural se compone de una fase lipidica (triglicéridos, ácidos grasos, colesterol, fosfolipidos y glucolipidos); una fase serosa acuosa (proteínas, electrolitos (iones de sodio, magnesio, calcio, cloro, bicarbonato)); y una fase mucina (proteínas, hidrocarburos y enzimas). Por el contrario, una lágrima artificial esencialmente se compone de una fase lipídica y una fase acuosa (lubricante, electrolitos, glicerina, polímeros).
En este sentido, las composiciones actuales de lágrimas artificiales diseñadas para reducir o aliviar el ojo seco moderado a severo contienen polímeros que actúan para imitar las capas mucosa, acuosa y/o lipídica de la película lagrimal para mantener la estabilidad de la película y disminuir la rápida evaporación (Horn et al, 2017).
No obstante, la biodisponibilidad ocular de los fármacos de aplicación tópica es muy limitada debido a los mecanismos de protección eficientes que garantizan el correcto funcionamiento del ojo. Estas barreras son difíciles de superar por los fármacos instilados. Otro problema que se debe tener en cuenta es alcanzar una concentración óptima del fármaco en el sitio de acción (Souto et al., 2010).
Las estrategias para mejorar la eficacia de los tratamientos tópicos y superar las barreras oculares siguen siendo un objetivo importante para el suministro de fármacos oculares. En general, la mayoría de los sistemas de administración exitosos están presentes en la superficie ocular durante un período prolongado de tiempo, y estos sistemas generalmente mejoran la biodisponibilidad del fármaco en la cámara anterior (Rawas-Qalaji y Williams, 2012).
Durante las últimas décadas, varios sistemas de administración de fármacos, como liposomas, nanoemulsiones, microemulsiones, nanoparticulas y dendrimeros, se han convertido en estrategias novedosas para mejorar la biodisponibilidad de los fármacos oculares (Souto et al., 2010). Las tecnologías de nanoparticulas en general reúnen varios beneficios, por ejemplo, la solubilización de fármacos hidrófobos y poco solubles; mejora de la biodisponibilidad y propiedades farmacocinéticas; aunado a la protección de drogas contra la degradación física, química y biológica. Además, el tamaño del submicrométrico de estos sistemas permite un transporte eficiente y el cruce de barreras biológicas que protegen el ojo, permitiendo asi la administración apropiada de medicamentos al sitio objetivo.
Respecto a lo anterior, las emulsiones nanométricas, también denominadas en la literatura como miniemulsiones, emulsiones ultrafinas y emulsiones submicrónicas, son emulsiones con gotitas de tamaño nanométrico (menor 100 nm).
A pesar de la apariencia similar entre ambos tipos de dispersiones coloidales, es importante destacar que, a diferencia de las micro emulsiones, que son sistemas termodinámicamente estables (es decir, que se forman espontáneamente), las nano emulsiones son termodinámicamente inestables, requiriendo energia para su formación.
La fuente de la energia requerida puede ser externa (métodos de dispersión o de alta energia) o interna (métodos de condensación o de baja energia). Los métodos de emulsión de alta energia utilizan dispositivos mecánicos para generar fuertes fuerzas disruptivas que rompen las fases de aceite y agua para producir pequeñas gotitas. Los dispositivos más utilizados para producir nanoemulsiones, son los sistemas rotor estator, sistemas de alta presión y ultrasonidos. Otros métodos de emulsificación de alta energía, que se han desarrollado intensamente en los últimos años, son los métodos microfluídicos, que proporcionan gotitas prácticamente mono dispersas y se caracterizan por un consumo relativamente bajo de energía, y métodos de membrana.
En este sentido, por ejemplo, la solicitud internacional No. de publicación WO/2018/071619 describe composiciones de lágrima artificial y de almacenaje de lentes de contacto que comprenden uno o más surfactantes no iónicos, así como agentes viscosantes, un poliol y un electrolito, tal como cloruro de sodio. En dicho documento se muestra un efecto de "atrapamiento de la humedad" o Moísture-Lock que radica en una acción meramente mecánica derivada de la interacción que existe durante la instilación de una gota con alto grado de viscosidad (300-400 cps), no obstante, el uso de gotas muy viscosas eventualmente ocasiona visión borrosa en el usuario.
Por otro lado, la solicitud US 2016/0101050 se refiere a una nano emulsión oftálmica la cual permite incrementar la solubilidad de un principio activo tal como la ciclosporina, al mismo tiempo que alcanza una estabilidad mejorada de toda la composición. Aunque, en comparación con otras composiciones, la distribución del tamaño de partícula no resulta del todo homogénea. Por su parte, la solicitud CN 101391111 revela soluciones para el cuidado de lentes de contacto y gotas para humedecer los ojos, utilizando esencialmente aceite de ricino polioxilado (modificado para ser soluble en agua) y agentes bactericidas. En vista de lo descrito, existe la necesidad de composiciones de lágrima artificial que promuevan la lubricación de la superficie ocular, evitando cualquier desventaja mencionada anteriormente. Asimismo, existe la necesidad de contar con composiciones que mantengan intacta la integrad y eficacia de lentes de contacto.Más aún, existe la necesidad de contar con composiciones de lágrima artificial libres de conservadores.
Sumario de la Invención
Es por tanto un objetivo de la presente invención brindar composiciones oftálmicas en forma de nano emulsiones que comprenden, en una de las modalidades de la presente invención, un compuesto orgánico formado por un diol, un polímero estable, preferentemente un polímero del tipo glucosaminoglicanos, ácidos grasos o fosfolipidos y otros excipientes farmacéuticamente aceptables.
En otras modalidades preferentes de la presente invención, el compuesto orgánico que comprende un diol, es propilenglicol.
Más aún, en otra de las modalidades de la presente invención, el polímero del tipo glucosaminoglicanos es preferentemente hialuronato de sodio. Además, en otras de las modalidades preferentes, los fosfolipidos comprenden 1,2-dimiristoil-sn-glicero-3- fosfocolina (DMPC) y aceite de ricino.
Un objetivo adicional de la presente invención es brindar composiciones de lágrima artificial que además no provoquen daño a los lentes de contacto y permitan el alivio de conjuntivitis no bacteriana.
En otro objetivo de la presente invención, se brindan composiciones oftálmicas en donde el uso de hialuronato de sodio no genera una alta viscosidad. En una modalidad preferente de la presente invención, el hialuronato de sodio es sometido a un proceso de emulsificación por alto impacto, lo cual da como resultado la fragmentación de este polímero en monómeros dispersados en la formula, permitiendo así que los principios activos migren más efectivamente al epitelio corneal y ayudarlo en su recuperación. En un objetivo más de la presente invención, se proporcionan composiciones oftálmicas, que brindan lubricación a la superficie ocular estabilizando la película lagrimal, evitando al mismo tiempo la evaporación de dicha película que se forma durante su administración. En otro objetivo de la presente invención, se proporcionan procesos para la preparación de las composiciones oftálmicas.
En otro objetivo, se proporciona un sistema que permite contener las composiciones oftálmicas libre de conservadores, así como para la administración de la misma. Breve descripción de las Figuras de la Invención
Las Figuras 1A y IB muestran imágenes de microscopía electrónica comparativa entre el producto comercial Systane Balance® (1A) y la composición oftálmica de la presente invención (IB).
Las Figuras 2A y 2B muestran gráficos comparativos de la distribución del tamaño de partícula que presenta el producto comercial Systane Balance® (2A) y la composición oftálmica de la presente invención (2B). Las Figuras 3A y 3B muestran gráficos comparativos del potencial zeta para el producto comercial Systane Balance® (3A) y la composición oftálmica de la presente invención (3B).
Las Figuras 4A y 4B muestran gráficos comparativos de movilidad electroforética para el producto comercial Systane Balance® (4A) y para la composición oftálmica de la presente invención (4B). Las Figuras 5A y 5B muestran gráficos comparativos respecto a pruebas de homogeneidad para el producto comercial Systane Balance® (Figura 5A) y para la composición oftálmica de la presente invención (5B). La Figura 6 muestra un gráfico de tolerancia para el diámetro presente en lentes de contacto del Tipo I (Lente de contacto blando de reemplazo mensual, constituido por 67% Polímero (Lotraficon B) y 33% agua) dioptría 1.0.
La Figura 7 muestra un gráfico de tolerancia para el espesor presente en lentes de contacto Tipo I, dioptría 1.0.
La Figura 8 muestra un gráfico de tolerancia para el diámetro presente en lentes de contacto Tipo I, dioptría 6.0.
La Figura 9 muestra un gráfico de tolerancia para la transmitancia de luz UV presente en lente de contacto del Tipo IV (Lente de contacto blando de reemplazo quincenal, constituido por 42% Polímero (Etafilcon) y 58% agua) dioptría
6.0.
La Figura 10 muestra un gráfico de tolerancia para las dioptrías presentes en lentes de contacto Tipo IV, dioptría
6.0.
La Figura 11 muestra un esquema del mecanismo de acción o función del contenedor comprendido en el sistema de la presente invención. Descripción detallada de la Invención
Algunos aspectos de la presente invención se describirán ahora más detalladamente utilizando además referencia a los dibujos adjuntos, en los que se muestran algunas, pero no todas, las ventajas de la presente invención. En realidad, varias modalidades de la invención pueden expresarse de muchas formas diferentes y no deben interpretarse como limitadas a las modalidades aqui descritas; más bien, estas modalidades ejemplares se proporcionan para que esta invención sea exhaustiva y completa, y transmita completamente el alcance de la invención a los expertos en la materia. Por ejemplo, a menos que se indique lo contrario, algo que se describe como primero, segundo o similar no debe interpretarse como un orden particular. Tal como se utiliza en la descripción y en las reivindicaciones adjuntas, las formas singulares "un, uno", "una", "el, la", incluyen referentes plurales a menos que el contexto indique claramente lo contrario.
Los aspectos de la presente invención se refieren a composiciones oftálmicas, preferentemente en forma de nano emulsiones tipo aceite en agua (O/W), las cuales de forma evidente son administradas via oftálmica. Como se usa en este documento, el término
"composiciones" pretende abarcar productos que comprenden los compuestos especificados en las cantidades especificadas, asi como cualquier producto que resulte, directa o indirectamente, de una combinación de los compuestos especificados en las cantidades especificadas.
De esta forma, en una modalidad de la presente invención, las composiciones oftálmicas se tratan esencialmente de nano emulsiones isotónicas, estériles y homogéneas conteniendo polioles tal como propilenglicol, polietilenglicol 300, Sorbitol.
En una modalidad preferente, la presente composición comprende propilenglicol a una concentración, preferentemente de entre 0.1 a 0.6%.
En otra modalidad de la presente invención, las composiciones oftálmicas pueden contener además un polimero estable, del tipo glucosaminoglicanos, tal como, Goma guar, goma gellan, Hidroxipropilmetilcelulosa, hialuronato de sodio, hidroxietilcelulosa, metilcelulosa, polivinilpirrolidona, alcohol polivinilico; ácidos grasos y otros excipientes farmacéuticamente aceptables.
En modalidades preferentes, el polímero estable es hialuronato de sodio. En modalidades preferentes los ácidos grasos o fosfolipidos comprenden el DPPC (1,2- dipalmitol- sn-glycero-3-fosfocolina), DSPC (1,2-distearol-sn-glicero- 3-fosfocolina, DOPC (1,2-Dioleol-sn-glicero-3-fosfocolina, DEPC (1,2-dierucil-sn-glicero-3-fosfocolina), pero no están limitados, siendo el ácido graso utilizado el 1,2- dimiristoil-sn-glicero-3-fosfatidilcolina (DMPC) y aceite de ricino.
En el contexto de la presente invención el propilenglicol es un compuesto orgánico (un alcohol, más precisamente un diol) incoloro e insípido e inodoro que promueve la lubricación a nivel de superficie ocular estabilizando la película lagrimal y disminuye la evaporación de la película lagrimal.
El compuesto DMPC, es un fosfolipido (ácido graso) el cual se presenta como una molécula anfifilica, que forma parte estructural de la bicapa lipidica de la membrana celular.
El aceite de ricino actúa como agente co-solvente, proporcionando la incorporación a la nano emulsión del agente surfactante, asimismo, integra al sistema (o emulsión) los compuestos de naturaleza lipidica presentes en la formulación, por ejemplo, a los ácidos grasos. De igual manera, este componente constituye la fase oleosa de la presente nano emulsión aceite en agua (O/W). En una modalidad más preferente de la presente invención, las composiciones oftálmicas comprenden aproximadamente: Propilenglicol en una cantidad de 0.1 a 0.6%
Ácido bórico en una cantidad de 0.01 a 0.1%
Borato de sodio decahidratado de 0.01 a 0.5% Dimiristoil fosfatidil colina (DMPC) de 0.001 a 0.01% Edetato disódico dihidratado de 0.01 a 0.1%
Hialuronato de sodio de 0.1 a 0.5 %
Aceite de ricino de 1.0 a 5.0%
Polisorbato 80 de 0.2 a 4.0%
Glicerina de 0.5 a 2.2% Agua de grado para preparación de inyectables c.b.p.
En el contexto de la presente invención, la mezcla de estos componentes se somete a una homogeneización mediante un método físico (emulsión de alta energía) para obtener la emulsión. En otro aspecto de la presente invención, las emulsiones
O/W tienen como una de sus principales propiedades, relacionadas la estabilidad y el mantenimiento de las características fisicoquímicas, el tamaño de partícula de aceite presente de manera dispersa en el medio. De acuerdo con técnicas conocidas por el experto en la materia, la técnica más utilizada para determinar lo anterior es la dispersión dinámica de la luz, en la cual se establece una correlación del tamaño de partícula con respecto a su movimiento. De esta forma, en una modalidad preferente, en la presente invención la micela formada por los ácidos grasos o fosfolipidos tiene una distribución de tamaño de partícula que va desde aproximadamente 30 nm hasta aproximadamente 260 nm; más preferentemente una distribución de tamaño de partícula que va desde aproximadamente 32 nm hasta aproximadamente 255 nm. En una modalidad más preferente la composición de la presente invención tiene una distribución de tamaño de partícula de aproximadamente 82.5 nm hasta aproximadamente 92.5 nm
En otro aspecto de la presente invención, la composición además de funcionar como una lágrima artificial, los inventores han encontrado que la formulación alcanza un primer efecto técnico completamente inesperado, es decir, las composiciones de la presente invención brindan lubricación a la superficie ocular estabilizando la película lagrimal y al mismo tiempo evitan la evaporación de dicha película. Impidiendo además cualquier efecto de visión borrosa. Esto se ha logrado por la migración de los componentes, así como de las partículas o de las micelas conformadas por el aceite de ricino y el DMPC que se integran a la capa lipofílica de la lágrima natural. Los inventores de la presente invención además han encontrado de manera sorprendente que en las composiciones oftálmicas, al someter a un proceso de emulsificación por alto impacto al hialuronato de sodio, se obtiene la fragmentación de este polímero en monómeros dispersados en la formula, permitiendo así que los principios activos migren más efectivamente al epitelio corneal y ayudarlo así en su recuperación.
En este sentido, la sal sódica del ácido hialurónico se incorpora a la emulsión para dar cuerpo o consistencia viscosa, debido a su estructura polimérica la cual está constituida por unidades de disacáridos repetidos de N- acetilglucosamina y ácido D glucurónico, ligados por enlaces glucosídicos '1 - '4.
Durante el proceso de manufactura de las composiciones de la presente invención, las cadenas largas de hialuronato de sodio presente son fragmentadas en pequeñas cadenas, por la acción de corte y presión generado durante el proceso de emulsificación mecánica de tres ciclos en un rango de presión de 10,000 psi a 30,000 psi.
En otro aspecto de la presente invención, se proporciona un proceso para la fabricación de las composiciones oftálmicas. El desarrollo del proceso de fabricación se realiza considerando que la forma farmacéutica es una emulsión, asimismo, se toman en cuenta las características de los componentes de la fórmula y su via de administración del producto (oftálmica). El proceso busca obtener una emulsión homogénea estable.
Cabe señalar que, en vista de la via de administración preferente, se exige un producto estéril, conforme a las características de la fórmula desarrollada y el tipo de envase primario, es posible aplicar esterilización terminal al producto. Por esto, se incluye una esterilización del producto por medio de filtración, disponiendo este producto filtrado en el sistema contendor-cierre estéril, en un ambiente también estéril
En una modalidad preferente, el proceso de formulación se ejecuta en un tanque de acero inoxidable utilizando para la agitación una propela de acero inoxidable.
De forma más preferente, el proceso descrito en la presente solicitud consta esencialmente de dos etapas en su formulación. En la primera etapa de formulación se identifica un tanque en el cual se realiza la preparación, iniciando con la adición de entre el 60 y 65 % de agua de grado para la fabricación de inyectables al tanque con una temperatura en el orden de los 20 a los 30°C y se aplica una agitación constante en el interior del tanque, en el cual se agregan los siguientes componentes, manteniendo una agitación y rango de temperatura constantes: Polisorbato 80, Dimiristil fosfatadil colina (DMPC), Ácido Bórico, Borato de Sodio decahidratado, Edetato Disódico dihidratado, Glicerina, Propilenglicol, Hialuronato de Sodio, y por último Aceite de ricino, siendo este último componente la fase oleosa del sistema o emulsión (O/W).
En este punto esta mezcla de preparación oleosa -acuosa, se adiciona el agua de grado para la fabricación de inyectables necesaria para llegar al afore o volumen predeterminado, sometiéndose a una homogenización previa a la emulsificación de esta mezcla.
En la segunda etapa, esta mezcla de preparaciones oleosa-acuosa se somete al proceso de emulsificación mecánica. Esta emulsificación deberá realizarse a una presión y temperatura controlada. En una modalidad preferente, la adición para el proceso de formulación, asi como las condiciones de temperatura pueden ser las siguientes:
Figure imgf000014_0001
Figure imgf000015_0001
De acuerdo con la presente invención el Aceite de Ricino, además de fungir como un co-solvente para incorporar a la formulación al 1,2-Dimiristoil-SN-glicero-3-fosfocolina (DMPC o Dimiristil fosfatidil colina), debido a que este excipiente es un ácido graso, también representa en la formulación a la fase oleosa (o fase interna) de la emulsión, representando el 1.0% de la concentración total de los componentes presentes en las composiciones de lágrima artificial.
De acuerdo con el proceso descrito en las etapas 10 al 12, este 1.0% de Aceite de Ricino se incorpora a la formulación formándose una mezcla de fase oleosa con la fase acuosa, la cual es sometida a un proceso de homogenización de 60 minutos y finalmente a un proceso de emulsificación mecánica de tres ciclos a una presión en un rango de presión de 10,000 psi a 30,000 psi, obteniendo con esto una homogenización de ambas fases de la emulsión.
Durante el desarrollo del proceso de formulación se verifica que, la velocidad de agitación se encuentre en un intervalo de 78 rpm - 840 rpm que genera un caudal en el interior del tanque al solubilizar las materias primas no presentará turbulencia, la cual genera la incorporación de aire al interior de la emulsión, cuidando por esta misma razón la velocidad de la homogenización previo al proceso de emulsificado a través del equipo.
Finalmente, la etapa de esterilización se lleva a cabo mediante filtración utilizando dos membranas esterilizantes, de manera preferente de Polietilsulfona, con tamaño de poro de 0.2mpi. Los filtros utilizados son sometidos a una prueba de integridad de membrana como control.
En una modalidad preferente, los compuestos señalados se incluyen en sus proporciones respectivas, cuidando que el número de revoluciones de agitación se encuentre en un intervalo de 78 rpm - 840 rpm, el tiempo de solubilización y la temperatura del producto:
Polisorbato 80 0.75%
1,2-dimiristoil-SN-glicero- 3-fosfocolina (DMPC) 0.005%
Ácido bórico 0.100%
Borato de sodio 10 H20 0.32%
Edetato disódico 2 H20 0.020%
Glicerina 1.660% Propilenglicol 0.600%
Hialuronato de sodio 0.100%
Aceite de ricino 1.000%
En otro aspecto de la presente invención se proporciona un sistema que permite contener las composiciones de lágrima artificial libre de conservadores y la administración de las mismas.
Un aspecto del sistema incluye las composiciones de lágrima artificial para promover la lubricación de la superficie ocular. El sistema comprende, además, contenedores de polietileno de baja densidad con un dispositivo-cierre de polietileno de alta densidad, ensamblado, que cuenta con un sistema de válvulas de silicón y polietileno de baja densidad; asimismo es compatible con un amplio rango de viscosidades, de uso sencillo y que requiere de poca fuerza para hacer funcionar el mecanismo. El mecanismo de acción o función de este contenedor multidosis consiste en dosificar el producto en el interior del frasco, impidiendo la entrada de aire y/o producto contaminado del exterior por medio de una válvula de no retorno, compensando el aire interno por medio de una válvula de venteo que filtra la entrada de aire contaminado, e impidiendo la entrada de líquidos del exterior contaminados (Figura 11).
Teniendo como antecedente el daño causado a las córneas por el uso frecuente de los conservadores, y el que algunas personas pueden desarrollar una hipersensibilidad a ciertos conservadores como el cloruro de benzalconio (que es el conservador más comúnmente utilizado); el uso de un sistema como el que se describe en la presente invención ayuda a minimizar riesgos, principalmente si son medicamentos de uso prolongado. En este sentido, se ha demostrado que el uso frecuente de conservadores debilita la capa externa del ojo, dejándola muy frágil.
En una modalidad relacionada, el sistema proporciona todos los componentes necesarios para la administración de las composiciones de lágrima artificial en una manera segura y convenientes.
En otra modalidad del sistema, las composiciones de lágrima artificial pueden ser administradas preservando la solución estéril sin necesidad de aditivos, tales como antimicrobianos y bateriostáticos.
En otra modalidad relacionada, el sistema permite la conservación y administración de las composiciones de lágrima artificial de la presente invención, a un pH ideal de entre 6.5 a 7.5 y una osmolalidad de 200 a 400 mOsmol/kg. En otra modalidad relacionada, el sistema comprende además una solución amortiguadora a base boratos en un rango no mayor a 0.1%.
En otra modalidad relacionada, el sistema comprende además hialuronato de sodio en una relación correspondiente con la solución amortiguadora de boratos, en donde se observa mayor estabilidad del hialuronato de sodio, por ejemplo:
Figure imgf000018_0001
En otro aspecto de la presente invención, tanto el sistema como las composiciones de lágrima artificial también permiten mantener la integridad de lentes contacto y los parámetros de uso común, tal como el diámetro total, espesor, transmitancia de la luz UV y dioptrías.
EJEMPLOS A continuación, se describe la invención por medio de ejemplos específicos, que únicamente buscan ilustrar las características y ventajas de la misma; sin que esto represente una limitación en cuanto al alcance y modalidades de la presente invención.
Ejemplo 1
Composición de lágrima artificial
CANTIDAD
PRINCIPIO ACTIVO FUNCIÓN mg / mL
Principio Activo
Propilenglicol 6.000 (Lubricante)
ADITIVOS Ácido Bórico 1.000 Agente Amortiguador Borato de Sodio 0.320 Agente Amortiguador Decahidratado Dimiristoil fosfatidil
0.050 Ácido Graso colina (DMPC) Edetato disódico
0.200 Agente Quelante dihidratado Hialuronato de Sodio 1.000 Agente Dispersante Aceite de Ricino 10.000 Agente Cosolvente Agente Estabilizante
Polisorbato 80 7.500 / Tensoactivo
Glicerina 16.600 Agente Osmótico
Agua del grado para preparación de 1.00 mL Vehículo inyectables c.b.p
Ejemplo 2
Las composiciones de lágrima artificial de la presente invención fueron caracterizadas respecto a la morfología microscópica de micelas (partículas de aceite); distribución de tamaño de partícula, conductividad, potencial zeta, movilidad electroforética, compatibilidad con lentes de contacto y homogeneidad de la emulsión. a)Caracterización microscópica El objetivo inicial del estudio se basó en establecer las diferencias y/o similitudes morfológicas entre la composición de la presente invención (referida aqui como PRO-176) y el producto comercial Systane Balance®. Para realizar este estudio se tomó como base lo establecido en el articulo publicado en la revista Micron No. 43 del año 2012 llamado "Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. " Klang et al., 2011.En el cual se establece el uso de un microscopio electrónico de transmisión (microscopía de transferencia electrónica, MTE), utilizando la técnica de cryo-plung para el tratamiento de la muestra. Este estudio se realizó en conjunto con el Instituto Politécnico Nacional de la Ciudad de México.
Con base a los resultados obtenidos, se puede observar en imágenes de MTE una diferencia en el contraste de la capa alrededor de la partícula de aceite de ricino, tanto para PRO-176 (Figura IB), como para Systane Balance® (Figura 1A). Esto debido a que, en el caso del Systane Balance®, el Dimiristil fosfatidil glicerol (DMPG), presenta una menor densidad eléctrica, que se observa como una capa más obscura; en comparación con el PRO- 176, en donde el Dimiristil fosfatidil colina (DMPC), al presentarse una mayor densidad eléctrica, muestra una capa más clara. b)Distribución del tamaño de partícula Se caracterizó la distribución del tamaño de partícula que presenta PRO-176, y el del producto Systane Balance®; utilizando el equipo Zetasizer Modelo Nano ZSP (Red badge) Marca Malvern.
En relación con la distribución del tamaño de partícula, para el Systane Balance® (Figura 2A), se obtuvo una media poblacional de 110.3 d. nm con una distribución que va desde los 28.21 d. nm hasta los 531.2 d. nm, dentro de este rango, se presenta en mayor porcentaje un tamaño de partícula de 141.8 d.nm. En el caso del PRO-176 (Figura 2B), se obtuvo una media poblacional de 83.11 d. nm con una distribución que va desde los 32.67 d. nm hasta los 255.0 d. nm, dentro de este rango se presenta en mayor porcentaje un tamaño de partícula de 91.28 d.nm. Comparando estos resultados para los dos productos, se puede concluir que la distribución del tamaño de partícula para el PRO-176 es más más homogénea en comparación con el Systane Balance®. c)Potencial Zeta
Esta prueba tuvo la finalidad de caracterizar el aporte de carga electrostática o potencial zeta, que proporciona el DMPC a la fórmula del PRO-176, y verificar si existe diferencia y/o similitud con el aporte de carga o potencial zeta que presenta el DMPG presente en la fórmula del producto de referencia Systane Balance®. Utilizando el equipo Zetasizer Modelo Nano ZSP (Red badge) Marca Malvern.
En este sentido, debido a que la viscosidad de la muestra es un parámetro necesario para determinar el potencial zeta en el equipo Zetasizer Modelo Nano ZSP (Red badge) Marca Malvern, fue necesario realizar esta determinación de acuerdo con el procedimiento del
Viscosimetro Brookfield DVT Extra. Con estos resultados fue posible la edición de los métodos para determinar el potencial zeta, siguiendo los pasos establecidos en el procedimiento del equipo Zetasizer Modelo Nano ZSP (Red badge) Marca Malvern. La siguiente Tabla muestra los resultados obtenidos:
Figure imgf000021_0001
El resultado de potencial Zeta para el PRO-176 Lote
031740 (Figura 3B) es de -32.6mV y para el producto Systane Balance® (Figura 3A) Lote 263865F, su resultado es de - 10.7mV.
Considerando que el potencial Zeta refiere la estabilidad de la nano emulsión basado en la interacción de cargas presentes entre las partículas de grasa (liposoma), y el medio circundante (sistema); la escala de clasificación de nanoemulsiones de acuerdo con el valor de potencial zeta, se considera que los valores que están más cercanos a 0 mV (punto isoeléctrico) son menos estables, y los valores que están por arriba de +/- 30 mV, son más estables. De acuerdo con los resultados obtenidos, y tomando en cuenta la escala anterior, es posible establecer que la composición del PRO-176 (Potencial Zeta = -32.6 mV), tiene mayor estabilidad con respecto al producto de referencia Systane Balance® (Potencial Zeta = -10.7 mV). d)Movilidad electroforética
Esta prueba tuvo como finalidad conocer el valor de la movilidad electroforética que proporciona el DMPC a la presente composición. De igual manera, se verificó el aporte del DMPG presente en la fórmula del producto Systane Balance®. Utilizando el equipo Zetasizer Modelo Nano ZSP (Red badge) Marca Malvern. En esta medición también se adquiere el dato de conductividad para ambas formulas.
En este sentido la movilidad electroforética es la velocidad de migración de las partículas con carga positiva o negativa hacia el electrodo con carga opuesta. Por tanto, el valor de movilidad electroforética está representado en unidades de velocidad (pm cm/Vs).
La movilidad electroforética para el producto Systane Balance® (Figura 4A) es de -0.3696 pm cm/Vs y el valor de PRO-176 (Figura 4B) es de -1.029 pm cm/Vs, ambos valores están cercanos a cero en la escala negativa, lo que indica que los dos productos tienen un modificador de carga aniónica. Sin embargo, la conductividad presente en el producto Systane Balance® (2.47 mS/cm) es mayor en comparación al obtenido en el PRO-176 (0.379 mS/cm), esto marca un referente en la carga iónica presente en una formulación, siendo mayor en el Systane Balance®, debido al número de componentes y su cantidad presente en esta fórmula. En otro estudio llevado a cabo para la conductividad, se utilizó el mismo equipo a fin de caracterizar la presente composición en comparación con el producto comercial Systane Balance® y en términos del ácido graso utilizado en cada formulación.
El medidor de conductividad es SEVEN Go Mettler Toledo. La realización de la metodología consistió en etapas conocidas por el experto en la materia, se utilizaron dos lotes, uno de cada una de las formulaciones (PRO-176 y Systane Balance®). Se consideró la viscosidad de las muestras a temperatura de 25°C, empleando el indice de refracción y constante dieléctrica del agua (1.33/78.50 respectivamente). Los resultados fueron los siguientes:
Figure imgf000023_0001
Debido a que la conductividad es un parámetro inversamente proporcional a la resistividad que presenta el medio en relación con las partículas circundantes en este. Valores de conductividad alta reflejan una menor resistividad entre las partículas de aceite cargadas; provocando asi la unión entre ellas, lo cual con lleva a la coalescencia de las mismas, dando como resultado la separación entre las fases oleosa y acuosa. En consecuencia, a menor conductividad, mayor es la estabilidad del producto, e) Compatibilidad con lentes de contacto El uso de lentes de contacto está relacionado con la irritación ocular, debido al tiempo de permanencia en la superficie del ojo. Por tal motivo es necesario para algunos usuarios de este tipo de lentes, mantener una lubricación óptima en el ojo, evitando asi el efecto mecánico ocasionado por el roce producido por el lente en la superficie ocular Esta prueba se llevó a cabo para evaluar la composición
PRO-176 y el producto Systane Balance®, al utilizarse en conjunto con lentes de contacto blandos.
En la prueba se evaluaron dos marcas de lentes de contacto, con dos dioptrías diferentes cada uno. En ellas se valoraron los cambios físicos al ser sometidos con ambas formulaciones. Esta prueba se realizó de acuerdo con la guia ISO 11981: 2009 evaluando los siguientes parámetros: diámetro total, espesor, transmisión de luz U.V. y dioptría. Los resultados se muestran en las siguientes dos tablas, una por cada marca de lente de contacto. En ellas se expresa en que parámetros se presentó daño por efecto en el uso de cada producto. Se considera un daño en el lente de contacto al presentarse en el parámetro analizado.
Figure imgf000024_0001
Figure imgf000025_0001
Se observa de las Tablas anteriores que el producto Systane Balance® afecta la transmitancia de la luz UV, diámetro total y espesor del lente de contacto.
Figure imgf000025_0002
Figure imgf000026_0001
En la Tabla anterior, se observa para el Lente Tipo IV de dioptría 1.0, el producto de Systane Balance® afecta el diámetro total en este lente de contacto. En conclusión, para la composición PRO-176, no se presentó alguna modificación en ambos tipos de lentes de contacto en las dos dioptrías analizadas (1.0 y 6.0), en comparación con los cambios y alteraciones que sufrieron estos lentes al ser expuestos con el producto Systane Balance®. f)Homogeneidad de la emulsión
De acuerdo con lo establecido en el marbete del producto comercial Systane Balance®, este necesita agitarse "bien" antes de su instilación. En el caso del PRO-176, el uso de esta leyenda no es necesario ya que, con relación al estudio de "Distribución del Tamaño de partícula", el rango del tamaño de partícula va de los 32.67 d. nm hasta los 255.0 d. nm, lo cual es menor en comparación con el producto comercial (28.21 d.nm a 531.2 d. nm).
Esta diferencia se logra apreciar de manera macroscópica al someter el producto comercial (Figura 5A) a 60°C por 21 dias en un tubo vidrio (esto para acelerar la separación de fases en la emulsión), en donde se forma una capa cerosa adherida a las paredes del tubo.
Por el contrario, en el caso de la composición PRO-176 (Figura 5B), al realizarse esta prueba, la capa se presenta en menor intensidad, manteniendo una apariencia a simple vista más homogénea.
Por otra parte, se realizó un análisis de Tolerancia utilizando una solución control (NaCl), la composición de la presente invención y el producto comercial. Esto con el fin de detectar el comportamiento de los lentes de contacto durante el ensayo. Se graficaron cada uno de los atributos analizados y se compararon con los limites establecidos. Diámetro Lente Tipo I dioptría 1.0 Número de casos: 180
Variable dependiente: diámetro (mm)
Limites: superior 14.7; central 14.5; inferior 14.3 Tiempo de uso 30 dias
La Figura 6 muestra lentes de contacto con diámetros fuera de especificaciones. Tanto los lentes de contacto sometidos con la solución control (NaCl 0.9%) y el producto comercial Systane Balance®. No obstante, los lentes de contacto sometidos con PRO-176 se mantuvieron dentro de las especificaciones establecidas. Espesor Lente Tipo I dioptría 1.0 Número de casos: 180 Variable dependiente: espesor (mm) Limites: superior 0.19; central 0.17; inferior 0.15 Tiempo de uso 30 dias
La Figura 7 muestra lentes de contacto con espesores fuera de especificaciones. Tanto en los lentes de contacto sometidos con la solución control de NaCl 0.9% y el producto comercial Systane Balance®. No obstante, los lentes de contacto sometidos con el PRO-176 se mantuvieron dentro de las especificaciones establecidas.
Diámetro Lente Tipo I dioptría 6.0 Número de casos: 180
Variable dependiente: Diámetro (mm)
Limites: superior 14.7; central 14.5; inferior 14.3 Tiempo de uso 30 dias
La Figura 8 muestra datos de diámetro de lentes de contacto sometidos a prueba con la solución control de NaCl 0.9% y con el producto comercial Systane Balance®, los cuales presentan valores fuera de especificación. No obstante, el diámetro presente en los lentes de contacto sometidos con el PRO-176, se mantuvieron dentro de las especificaciones establecidas.
Transmitancia de luz UV Lente Tipo IV dioptría 6.0 Número de casos: 180
Variable dependiente: Transmitancia de luz UV (%)
Limites: superior 35; central 30; inferior 25 Tiempo de uso 30 dias
La Figura 9 se muestran lentes de contacto con valores de transmitancia de luz UV con tendencia hacia el limite superior e inferior, y con datos fuera de especificaciones en los lentes de contacto metidos con la solución control de NaCl 0.9. En el caso del PRO-176 y el producto comercial, los datos se mantienen dentro de las especificaciones establecidas, aunque, en el caso del producto comercial se muestran datos con tendencia al limite inferior.
Dioptria Lente Tip IV dioptría 6.0 Número de casos: 180 Variable dependiente: dioptrías
Limites: superior 6.25; central 6.00; inferior 5.75 Tiempo de uso 30 dias
La Figura 10 muestra lentes de contacto sometidos a prueba con la solución control de NaCl 0.9% y el producto comercial presentando valore fuera de especificaciones. En el caso de los lentes de contacto tratados con PRO-176, no se presentaron dioptrías fuera de especificaciones durante el estudio.
Ejemplo 3 índice de polidispersidad
Una de las principales propiedades de una emulsión del tipo O/W es la distribución del tamaño de partícula de aceite, ya que esta propiedad está fuertemente relacionada con la estabilidad y el mantenimiento de sus características fisicoquímicas. Esto debido que, al presentarse un mayor número en la variabilidad de tamaño de partícula de aceite, estas floculan entre si, causando con esto la separación de las fases lipidica de la acuosa. A la manera o forma en la que esta distribución se establece se conoce como polidispersidad.
De tal forma que se realizó la determinación del índice de polidispersidad (Pdi), para la composición de la presente invención (PRO-176), realizando un comparativo con el producto comercial antes referido, utilizando un equipo Zetasizer Modelo Nano ZSP. Se consideró la viscosidad de las muestras a temperatura de 25°C, empleando el indice de refracción y constante dieléctrica del agua (1.33/78.50 respectivamente).
Los resultados se muestran a continuación:
Figure imgf000030_0001
De acuerdo con los resultados descritos en la Tabla anterior, se observa que el PRO-176 cuenta con un indice de polidispersidad (0.215 Pdi), y un promedio en el tamaño de partícula (83.03 d. nm) menor en comparación con el producto comercial (0.247 Pdi y 110.63 d. nm). Considerando este producto con una población de tamaños de partícula menos homogénea, que la presentada por el PRO-176 (Propilenglicol 0.6%). Esto se debe a las diferencias entre ambas formulaciones respecto a la cantidad y tipo de aceite disperso, asi como a los agentes surfactantes y agente dispersante utilizados en cada formula.
Muchas modificaciones y otras modalidades de la invención le vendrán a la mente a un experto en la técnica a la que pertenece la invención, que tiene el beneficio de las enseñanzas presentadas en las descripciones anteriores y los dibujos asociados. Por lo tanto, debe entenderse que la invención no debe limitarse a las modalidades especificas descritas, sino que se pretende que las modificaciones y otras modalidades estén incluidas dentro del alcance de las reivindicaciones adjuntas. Aunque los términos específicos se emplean aquí, se usan solo en un sentido genérico y descriptivo y no con fines limitativos.

Claims

REIVINDICACIONES
1. Una composición farmacéutica oftálmica en forma de emulsión del tipo aceite en agua (O/W) caracterizada porque comprende: a)un compuesto orgánico formado por un diol; b)un polímero del tipo glucosaminoglicanos; c) por lo menos un fosfolipido sintético del tipo fosfatidilcolinas y d)por lo menos un excipiente farmacéuticamente aceptable.
2. La composición de acuerdo con la reivindicación 1, caracterizada porque el compuesto orgánico formado por un diol es seleccionado del grupo que consiste en propilenglicol, poilietilenglicol 300 y sorbitol.
3. La composición de acuerdo con la reivindicación 1, caracterizada porque el polímero es seleccionado del grupo que consiste en Goma guar, goma gellan, hidroxipropilmetilcelulosa, hialuronato de sodio, hidroxietilcelulosa, metilcelulosa, polivinilpirrolidona y alcohol polivinilico.
4. La composición de acuerdo con la reivindicación 1, caracterizada porque el fosfolipido es seleccionado del grupo que consiste en DPPC (1,2- dipalmitol-sn-glicero-3- fosfocolina), DSPC (1,2-distearol-sn-glicero-3-fosfocolina, DOPC (1,2-Dioleol-sn-glicero-3-fosfocolina), DEPC (1,2- dierucil-sn-glicero-3-fosfocolina), DPMC (1,2-dimiristoil- sn-glicero-3-fosfocolina) y aceite de ricino.
5. La composición de acuerdo con la reivindicación 1, caracterizada porque los excipientes farmacéuticamente aceptables se seleccionan del grupo que consiste en surfactantes, ácido bórico, borato de sodio decahidratado, edetato disódico dihidratado, glicerina, y mezclas de los mismos.
6. La composición de acuerdo con la reivindicación 1, caracterizada porque el compuesto orgánico es propilenglicol.
7. La composición de acuerdo con la reivindicación 1, caracterizada porque el polímero es hialuronato de sodio.
8. La composición de acuerdo con la reivindicación 1, caracterizada porque el fosfolipido es 1,2-dimiristoil-sn- glicero-3-fosfocolina (DMPC) y aceite de ricino.
9. La composición de acuerdo con las reivindicaciones 1 a 8, caracterizada además porque: el propilengicol se encuentra en una proporción de entre 0.1 a 0.6% p/v; el hialuronato de sodio se encuentra se encuentra en una proporción de 0.1 a 0.5% p/v; el DMPC se encuentra en una proporción de entre 0.001 a 0.01% p/v; y el aceite de ricino se encuentra en una proporción de entre 1.0 a 5.0% p/v.
10. La composición de acuerdo con la reivindicación 1, caracterizada porque el hialuronato de sodio se encuentra fragmentado en forma de monómeros dispersados en la composición.
11. La composición de acuerdo con la reivindicación 1, caracterizada porque la distribución del tamaño de partícula en la micela formada por los fosfolipidos es de entre 30 hasta 260 nm, preferentemente de entre 32 hasta 255 nm, más preferentemente de entre 82.5 a 92.5 nm.
12. Un proceso para la fabricación de la composición de lágrima artificial como la que se reclama en cualquiera de las reivindicaciones 1 a 11, caracterizado porque comprende las siguientes etapas:
- adicionar de entre 60 y 65% de agua grado inyectable en un tanque de acero inoxidable, a una temperatura de entre 20 a 30°C;
- agitar constantemente mientras se adicionan surfactantes, DMPC, ácido bórico, borato de sodio decahidratado, edetato disódico dihidratado, glicerina, propilenglicol, hialuronato de sodio y aceite de ricino;
- llevar a cabo el proceso de emulsificación mecánica hasta obtener un producto completamente homogéneo; y
- esterilizar la emulsión mediante filtración con membranas esterilizantes con tamaño de poro de 0.2 mpi.
13. El proceso de acuerdo con la reivindicación 12, caracterizado además porque el aceite de ricino se incorpora a la formulación formándose una mezcla de fase oleosa con la fase acuosa.
14. El proceso de acuerdo con la reivindicación 12, caracterizado además porque la mezcla resultante se somete a un proceso de homogenización de 60 minutos y a un proceso de emulsificación mecánica de tres ciclos en un rango de presión de 10,000 psi a 30,000 psi.
15. Un sistema farmacéutico caracterizado porque comprende:
- un contenedor de polietileno de baja densidad con un dispositivo-cierre de polietileno de alta densidad, ensamblado, que cuenta con un sistema de válvulas de Silicon y polietileno de baja densidad;
- una composición oftálmica de acuerdo con cualquiera de las reivindicaciones 1 a 11; y - una solución amortiguadora a base de boratos en una proporción no mayor a 0.1%.
16. El sistema de acuerdo con la reivindicación 15, caracterizado porque está adaptado para la conservación y administración de la composición descrita en las reivindicaciones 1 a 11, a un pH de entre 6.5 a 7.5 y una osmolalidad de 200 a 400 mOsmol/kg.
17. El sistema de acuerdo con la reivindicación 15, caracterizado además porque el contenedor permite dosificar la composición oftálmica en el interior del frasco, impidiendo la entrada de aire y/o producto contaminado del exterior por medio de una válvula de no retorno, compensando el aire interno por medio de una válvula de venteo que filtra la entrada de aire contaminado, e impidiendo la entrada de líquidos del exterior contaminados.
18. Un proceso caracterizado porque comprende envasar la composición farmacéutica de acuerdo con las reivindicaciones 1 a 11 en el sistema de las reivindicaciones 15 a 17.
19. La composición de acuerdo con cualquiera de las reivindicaciones 1 a 11, caracterizada porque está adaptada para ser administrable con el sistema farmacéutico como el que se reclama en cualquiera de las reivindicaciones 15 a 17 libre de conservadores u otro tipo de aditivos, tales como antimicrobianos y bacteriostáticos.
20. La composición de acuerdo con cualquiera de las reivindicaciones 1 a 11, caracterizado porque está adaptada para conservar el diámetro de un lente de contacto blando, en un porcentaje de entre 1.5% y 2.0 %; conservar el espesor de lentes de contacto blandos en un porcentaje de 10.0%; presentar valores de transmitancia de luz UV en un rango de +/- 5.0% con respecto a su valor inicial en lentes de contacto blandos, y conservar las dioptrías indicadas en un porcentaje de +/- 25% en lentes de contacto blandos.
21. Uso de la composición de acuerdo con las reivindicaciones 1 a 11 para preparar un sistema farmacéutico para tratar y aliviar ojo seco y conjuntivitis no bacteriana.
22 . Un sistema farmacéutico como el de las reivindicaciones 15 a 17 para usarse en el tratamiento de ojo seco y conjuntivitis no bacteriana.
PCT/MX2020/050031 2019-09-06 2020-09-04 Composición farmacéutica oftálmica, procesos de preparación y usos de las mismas WO2021045606A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112022004045A BR112022004045A2 (pt) 2019-09-06 2020-09-04 Composição farmacêutica oftálmica, processo para fabricação da composição de lágrima artificial, sistemas farmacêutico, processo e uso da composição
EP20861866.0A EP4026538A4 (en) 2019-09-06 2020-09-04 OPHTHALMIC PHARMACEUTICAL COMPOSITION, METHOD FOR PREPARATION THEREOF AND USE THEREOF
KR1020227007393A KR20220059482A (ko) 2019-09-06 2020-09-04 안과용 약제학적 조성물, 이의 제조방법 및 용도
JP2022515054A JP2022547516A (ja) 2019-09-06 2020-09-04 眼科用医薬組成物、その調製法及び使用法
CA3152637A CA3152637A1 (en) 2019-09-06 2020-09-04 Ophthalmic pharmaceutical composition, preparation methods and uses of same
US17/636,138 US20220354788A1 (en) 2019-09-06 2020-09-04 Ophthalmic pharmaceutical composition, preparation methods and uses of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2019/010618 2019-09-06
MX2019010618A MX2019010618A (es) 2019-09-06 2019-09-06 Composicion farmacéutica oftálmica, procesos de preparación y usos de las mismas.

Publications (1)

Publication Number Publication Date
WO2021045606A1 true WO2021045606A1 (es) 2021-03-11

Family

ID=74853393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2020/050031 WO2021045606A1 (es) 2019-09-06 2020-09-04 Composición farmacéutica oftálmica, procesos de preparación y usos de las mismas

Country Status (8)

Country Link
US (1) US20220354788A1 (es)
EP (1) EP4026538A4 (es)
JP (1) JP2022547516A (es)
KR (1) KR20220059482A (es)
BR (1) BR112022004045A2 (es)
CA (1) CA3152637A1 (es)
MX (1) MX2019010618A (es)
WO (1) WO2021045606A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230190672A1 (en) * 2021-12-21 2023-06-22 Sophia Holdings, S.A. De C.V. Pharmaceutical ophthalmic compositions for protection against blue light

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132751A (en) * 1995-08-04 2000-10-17 Wakamoto Pharmaceutical Co., Ltd. O/W emulsion composition for eye drops
CN101391111A (zh) 2008-10-31 2009-03-25 广州科甫眼镜有限公司 含有聚氧乙烯氢化蓖麻油的隐形眼镜护理液或保湿润眼液
WO2011138228A1 (en) * 2010-05-04 2011-11-10 Trb Chemedica Ag Aqueous composition for ophthalmic or dermal use
EP2664330A1 (de) * 2012-05-15 2013-11-20 F. Holzer GmbH Zusammensetzung und Arzneimittel enthaltend Omega-3-Fettsäuren sowie einen Glucosaminoglucan
DE102014203152A1 (de) * 2014-02-21 2015-08-27 Ursapharm Arzneimittel Gmbh Mikro- oder Nanoemulsion zur ophthalmologischen Anwendung
US20160101050A1 (en) 2013-05-20 2016-04-14 Taejoon Pharm. Co., Ltd. Ophthalmic nanoemulsion composition containing cyclosporine and method for preparing same
WO2018071619A1 (en) 2016-10-12 2018-04-19 Ps Therapies Ltd Artificial tear, contact lens and drug vehicle compositions and methods of use thereof
US20190255096A1 (en) * 2018-02-21 2019-08-22 Novartis Ag Lipid-based ophthalmic emulsion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962044B1 (fr) * 2010-04-21 2013-02-22 Horus Pharma Emulsion lacrymimetique

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132751A (en) * 1995-08-04 2000-10-17 Wakamoto Pharmaceutical Co., Ltd. O/W emulsion composition for eye drops
CN101391111A (zh) 2008-10-31 2009-03-25 广州科甫眼镜有限公司 含有聚氧乙烯氢化蓖麻油的隐形眼镜护理液或保湿润眼液
WO2011138228A1 (en) * 2010-05-04 2011-11-10 Trb Chemedica Ag Aqueous composition for ophthalmic or dermal use
EP2664330A1 (de) * 2012-05-15 2013-11-20 F. Holzer GmbH Zusammensetzung und Arzneimittel enthaltend Omega-3-Fettsäuren sowie einen Glucosaminoglucan
US20160101050A1 (en) 2013-05-20 2016-04-14 Taejoon Pharm. Co., Ltd. Ophthalmic nanoemulsion composition containing cyclosporine and method for preparing same
DE102014203152A1 (de) * 2014-02-21 2015-08-27 Ursapharm Arzneimittel Gmbh Mikro- oder Nanoemulsion zur ophthalmologischen Anwendung
WO2018071619A1 (en) 2016-10-12 2018-04-19 Ps Therapies Ltd Artificial tear, contact lens and drug vehicle compositions and methods of use thereof
US20190255096A1 (en) * 2018-02-21 2019-08-22 Novartis Ag Lipid-based ophthalmic emulsion

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Systane® Balance GOTAS OFTALMICAS LUBRICANTES 10 ML", FARMACIAVENCE, 5 March 2019 (2019-03-05), XP055799502, Retrieved from the Internet <URL:http://www.farmaciavence.com//vistas/producto/systane-balance-gotas-oftalmicas-lubricantes-10-ml.aspx> *
ANONYMOUS: "SYSTANE® COMPLETE LUBRICANT EYE DROPS INGREDIENTS AND USAGE", SYSTANE, 2019, XP055799389, Retrieved from the Internet <URL:https://systane.myalcon.com/eye-care/systane/products/systane-complete/ingredients> *
PMFARMA: "Alcon presenta en España Systane Complete, la lágrima artificial de última generación para el ojo seco", PMFARMA, 4 March 2019 (2019-03-04), XP055799511, Retrieved from the Internet <URL:http://www.pmfarma.es/noticias/26861-alcon-presenta-en-espana-systane-complete-la-lagrima-artificial-de-ultima-generacion-para-el-ojo-seco.html> *
See also references of EP4026538A4

Also Published As

Publication number Publication date
KR20220059482A (ko) 2022-05-10
JP2022547516A (ja) 2022-11-14
BR112022004045A2 (pt) 2022-05-24
EP4026538A1 (en) 2022-07-13
MX2019010618A (es) 2021-11-30
EP4026538A4 (en) 2023-11-22
US20220354788A1 (en) 2022-11-10
CA3152637A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
Liu et al. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production
Hegde et al. Microemulsion: new insights into the ocular drug delivery
ES2319129T3 (es) Emulsiones oftalmicas que contienen prostaglandinas.
Kouchak et al. Designing of a pH-triggered Carbopol®/HPMC in situ gel for ocular delivery of dorzolamide HCl: in vitro, in vivo, and ex vivo evaluation
Badawi et al. Chitosan based nanocarriers for indomethacin ocular delivery
Li et al. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery
Hathout et al. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies
Gallarate et al. Development of O/W nanoemulsions for ophthalmic administration of timolol
Li et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate
EP2978409B1 (en) Ophthalmic composition, method for preparing the same, and use of the same
Pepic et al. Polymeric micelles in ocular drug delivery: rationale, strategies and challenges
Gautam et al. Development of microemulsions for ocular delivery
ES2638868T3 (es) Emulsión lacrimomimética
US20120064123A1 (en) Composition for a topical ophthalmic clear colloidal liquid which undergoes a liquid-gel phase transition in the eye
Shukr et al. Design and evaluation of mucoadhesive in situ liposomal gel for sustained ocular delivery of travoprost using two steps factorial design
Wang et al. A novel phytantriol-based lyotropic liquid crystalline gel for efficient ophthalmic delivery of pilocarpine nitrate
Gupta et al. Formulation and evaluation of brinzolamide encapsulated niosomal in-situ gel for sustained reduction of IOP in rabbits
CN112516084A (zh) 含有环孢素胶束的原位凝胶作为缓释眼科药物递送系统
WO2011006079A2 (en) Ophthalmic formulations of reversed liquid crystalline phase materials and methods of using
WO2021045606A1 (es) Composición farmacéutica oftálmica, procesos de preparación y usos de las mismas
Acharya et al. Development and characterization of prolonged release timolol maleate cubosomal gel for Ocular Drug Delivery
Vallejo et al. Acetazolamide encapsulation in elastin like recombinamers using a supercritical antisolvent (SAS) process for glaucoma treatment
Mehetre et al. Rationalized approach for formulation and optimization of ebastine microemulsion using design expert for solubility enhancement
Acharya et al. Determination of Mucoadhesive behaviour of Timolol maleate liquid crystalline cubogel by different Techniques
CN115919759A (zh) 一种低聚集体眼用纳米制剂及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3152637

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022515054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004045

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020861866

Country of ref document: EP

Effective date: 20220406

ENP Entry into the national phase

Ref document number: 112022004045

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220304