WO2021045509A1 - 망막전위도 검사용 광원 일체형 콘택트렌즈 및 그의 제조방법 - Google Patents

망막전위도 검사용 광원 일체형 콘택트렌즈 및 그의 제조방법 Download PDF

Info

Publication number
WO2021045509A1
WO2021045509A1 PCT/KR2020/011793 KR2020011793W WO2021045509A1 WO 2021045509 A1 WO2021045509 A1 WO 2021045509A1 KR 2020011793 W KR2020011793 W KR 2020011793W WO 2021045509 A1 WO2021045509 A1 WO 2021045509A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
contact lens
corneal
retinal potential
integrated contact
Prior art date
Application number
PCT/KR2020/011793
Other languages
English (en)
French (fr)
Inventor
우세준
유승협
김태현
송진욱
Original Assignee
서울대학교병원
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교병원, 한국과학기술원 filed Critical 서울대학교병원
Priority claimed from KR1020200111756A external-priority patent/KR102409241B1/ko
Priority to US17/639,382 priority Critical patent/US20220322995A1/en
Publication of WO2021045509A1 publication Critical patent/WO2021045509A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/125Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes with contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/252Means for maintaining electrode contact with the body by suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/297Bioelectric electrodes therefor specially adapted for particular uses for electrooculography [EOG]: for electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6821Eye
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/04Illuminating means
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier

Definitions

  • the present invention is a contact lens capable of testing the retinal potential of an eye and a method for manufacturing the same, and more particularly, by integrating a light source and an electrode used for testing the retinal potential of an eye and wearing it in the form of a contact lens, excellent inspection accuracy is achieved. It relates to a contact lens that can be secured and a method of manufacturing the same.
  • a certain potential exists in the retina of the eye, and this potential changes by stimulation of light, and this change is measured through electroretinography (ERG).
  • ERP electroretinography
  • retinal diseases such as hereditary retinal diseases, inflammatory retinal diseases, diabetic retinopathy, and optic nerve diseases such as glaucoma.
  • the conventional full-field retinal potential test apparatus 1000 uses an external light source and corneal electrodes, and the subject faces a large test machine to measure.
  • Such a conventional retinal potential test device 1000 uses an external light source to measure the retinal potential, and it is possible to make precise measurements, but there is a disadvantage in that a dark room and a large space must be accompanied for this, and cooperation of the test subject is essential. do. Accordingly, it takes a long waiting time to perform a retinal potential test in a hospital.
  • the present invention can greatly save time, place, and manpower in the actual ophthalmic examination room site, and the optical relationship between the object to be examined and the light source is stably maintained to increase the effectiveness of the examination. Also, we want to provide inspection equipment.
  • the present invention provides a light source and electrode-integrated contact lens electroretinal potential test apparatus, so that the test can be simplified, space constraints are much less, and the test cost can be significantly reduced. I want to.
  • a contact lens integrated with a light source for retinal potential diagram inspection comprising: a light source; A scattering material that scatters light from the light source; And an electrode for measuring a change in retinal potential due to stimulation from the light source.
  • the light source-integrated contact lens for testing the retinal potential includes: a corneal junction in contact with the corneal surface of the eyeball; A corneal bonding electrode disposed on the inner surface of the corneal bonding portion, wherein the corneal bonding portion is a scattering layer containing the scattering material, or includes the scattering layer, or the scattering layer is formed on the corneal junction, It may include; a light source disposed on the scattering layer.
  • the light source-integrated contact lens for testing the potential retinal map includes: a corneal junction in contact with the corneal surface of the eyeball; A corneal bonding electrode disposed on the inner surface of the corneal bonding portion; A scattering layer disposed on the outer surface of the corneal junction; And a light source disposed on the scattering layer.
  • the scattering layer of the present invention may contain scattering particles as a scattering material, and the scattering layer may have scattering particles dispersed in an elastomer layer.
  • the thickness of the elastomer layer of the present invention may be 0.8mm to 1.5mm, but is not limited thereto.
  • the elastomer layer may be made of polybutylene adipate terephthalate (PBAT) resin or polydimethylsiloxane (PDMS), but is not limited thereto.
  • PBAT polybutylene adipate terephthalate
  • PDMS polydimethylsiloxane
  • the scattering particles of the elastomer layer of the present invention have an average particle size of 50 nm, and the density of the scattering particles of the elastomer layer may be 1 wt% to 5 wt%, but is not limited thereto.
  • the scattering particles of the elastomer layer of the present invention may include SiO 2 or TiO 2 nanoparticles, but are not limited thereto.
  • the present invention may further include a cable connecting the light source to an external power source.
  • the light source of the present invention may be positioned on the scattering layer or at least partially embedded in the scattering layer.
  • the light source of the present invention may be disposed at a position corresponding to the central point of the corneal junction.
  • the light source may be mounted on an FPCB (flexible printed circuit board).
  • FPCB flexible printed circuit board
  • the light source of the present invention may be an LED device, and the LED device may be included singly or in plurality.
  • the LED device of the present invention when included as a single device, it may be a single white LED device.
  • the current flowing through the single white LED light source may be 7.5x10 -4 mA to 0.0185 mA, but is not limited thereto.
  • LED devices of the present invention when there are a plurality of LED devices of the present invention, three LED devices of red, blue and green, respectively, or a plurality of white LED devices may be included.
  • the amount of light from the light source is 5.4 x 10 -6 cd To 1.2 x 10 -1 cd, but is not limited thereto.
  • the luminous intensity of light scattered from the scattering layer may be 0.03 cd ⁇ s/m 2 to 3.0 cd ⁇ s/m 2 , but is not limited thereto.
  • the corneal bonding electrode of the present invention is, for example, in the shape of a ring, and the size of the diameter of the ring may be larger than the diameter of the iris.
  • the contact lens of the present invention may be used not only to measure retinal potential of humans, but also to measure retinal potential of animals other than humans.
  • a method of manufacturing a contact lens for testing the electroretinal potential comprising: providing a solution containing a scattering material; And providing and curing a light source to the solution.
  • the method may further include providing a corneal junction in contact with the corneal surface of the eyeball, and providing and curing a solution containing the scattering material and a light source on the outer surface of the corneal junction.
  • a scattering layer in which a light source is coupled can be formed on the outer surface of the corneal junction in contact with the corneal surface of the eye.
  • the method may be to provide and cure a solution including the scattering material and a light source in a mold capable of manufacturing a lens shape.
  • the light source and the electrode are integrated and worn on the eye in the form of a contact lens, light stimulation can be given to the retina without looking at the target of the light source.
  • a uniform light stimulus can be transmitted to the retina by the scattering material or scattering layer of the contact lens, so that excellent inspection accuracy can be secured.
  • the test can be performed automatically.
  • FIG. 1 is a conceptual diagram schematically showing a cross-sectional perspective view of a contact lens for an electroretinal diagram inspection according to an embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view of a portion on which a light source is mounted according to an embodiment of the present invention.
  • FIG 3 is a schematic diagram schematically showing that a light source is embedded in a scattering layer according to an embodiment of the present invention.
  • FIG. 4 is an enlarged schematic view of a corneal junction and a scattering layer according to an embodiment of the present invention.
  • FIG. 5A schematically shows a case in which a single LED device is used according to an embodiment of the present invention
  • FIG. 5B is a schematic diagram schematically showing an operation mechanism of the present invention according to this.
  • FIG. 6A schematically shows a case in which three LED devices are used according to an embodiment of the present invention
  • FIG. 6B is a schematic diagram schematically showing an operation mechanism of the present invention according to this.
  • FIG. 7 is a schematic diagram showing a comparison of the size of the corneal bonding electrode with the size of the iris of the eye according to an embodiment of the present invention.
  • FIG. 8A is a graph showing the distribution of each wavelength of a white LED device according to an embodiment of the present invention
  • FIG. 8B is a graph showing luminous intensity according to a voltage change of the white LED device.
  • FIG. 9 is a graph showing evaluation results of a scattering layer manufactured according to an embodiment of the present invention.
  • 10A and 10B show current and luminous intensity according to voltage applied to an LED device using a scattering layer manufactured according to an embodiment of the present invention.
  • 11A and 11B show results of measuring light intensity by varying current and irradiation time for a contact lens according to an embodiment of the present invention.
  • FIG. 12 is a schematic view of a conventional display field electroretinogram inspection device.
  • a contact lens is included in a contact lens as long as it has a shape of a contact lens even if it does not have a function of adjusting vision, as well as a contact lens for vision control, such as a hard contact lens or a soft contact lens, which is commonly used.
  • a contact lens for vision control such as a hard contact lens or a soft contact lens, which is commonly used.
  • the scattering layer itself including the scattering material is a corneal junction
  • the corneal fit is included in the contact lens category even if it does not have a function of controlling vision.
  • the corneal junction is a portion where the ocular cornea is bonded in the contact lens, and is a portion formed to be concave to correspond to the shape of the ocular cornea.
  • the scattering layer may be the corneal junction itself, included in the corneal junction, or formed on the outer surface of the corneal junction.
  • the meaning that the light source is formed in the scattering layer may include that the light source is positioned on the scattering layer or that at least a part of the light source is embedded in the scattering layer.
  • the light source may include not only a light source itself such as an LED, but also a type in which the corresponding LED light source is mounted on an FPCB (flexible printed circuit board), and a type combined with a circuit board.
  • a light source itself such as an LED
  • FPCB flexible printed circuit board
  • a light source-integrated contact lens for retinal potential diagram inspection comprising: a light source; A scattering material that scatters light from the light source; And an electrode for measuring a change in retinal potential due to stimulation from the light source.
  • FIG. 1 is a conceptual diagram schematically showing a cross-sectional perspective view of a light source-integrated contact lens 1 for testing an electroretinal potential according to an embodiment of the present invention.
  • the light source-integrated contact lens 1 for testing the potential retinal diagram is a corneal junction 10 in contact with the corneal surface of the eye, and the inner surface of the corneal junction 10 It is composed of a corneal bonding electrode 11 disposed, a scattering layer 20 disposed on the outer surface of the corneal bonding portion 10, and a light source 30.
  • the scattering layer is disposed on the outer surface of the corneal junction 10, but in other embodiments, the corneal junction 10 itself may be a scattering layer, or the corneal junction 10 It may be in the form of including a scattering layer in at least a portion.
  • the light source-integrated contact lens 1 for electric retinal potential inspection may further include a cable 40 for supplying power to the light source 30 through an external power source (not shown). have.
  • the corneal junction 10 is provided with a corneal bonding electrode 11 on a lenticular concave surface bonded to the corneal surface of the eye, and a scattering layer ( 20) is placed.
  • the light source 30 may be an LED device, for example, an LED device that emits light of a white light wavelength.
  • the light source 30 must have a sufficiently thin thickness.
  • the light source 30 from 0.01cd / m 2 to facilitate inspection and research have a very low light level resolution of up by 5cd / m 2 can be fine brightness adjustment, and to control the emission time in microseconds (ms) units It is desirable to have.
  • the contact lens 1 of the present invention is useful not only for measuring the retinal potential of a person, but also for measuring the retinal potential of various animals other than humans.
  • Non-human animals include, but are not limited to, mice, rats, rabbits, dogs, cats, pigs, primates, and the like.
  • a white LDE element When a white LDE element is used as the light source 30 according to an embodiment of the present invention, its characteristics are shown in FIGS. 8A and 8B.
  • a white LED device having a thickness of 0.25 mm showed a maximum brightness of 0.2 cd, and a color coordinate (CIE) was measured as (0.28, 0.27).
  • CIE color coordinate
  • the brightness of the light source 30 using such a white LED device was measured in units of 1mV, 5.4 x 10 -6 cd (2.3V) to 1.2 x 10 -1 cd (3V) range.
  • this white LED element light source can measure the LED brightness in 1mV units, and since it increases by a multiple of less than 0.3 log unit at 1mV conversion, it was confirmed that it has an appropriate resolution for ERG inspection.
  • the scattering layer 20 may contain scattering particles, and detailed information related thereto will be described later.
  • FIG. 2 is an enlarged schematic view of a portion on which the light source 30 is mounted according to an embodiment of the present invention
  • FIG. 3 is a light source 30 embedded in the scattering layer 20 according to an embodiment of the present invention. It is a schematic diagram schematically showing what is (embedded).
  • the light source 30 may be positioned above the scattering layer 20, or a part of the light source 30 may be embedded and disposed in the scattering layer 20.
  • FIG 4 is an enlarged schematic view of the corneal junction 10 and the scattering layer 20 according to an embodiment of the present invention.
  • the scattering layer 20 may include scattering particles 21 dispersed therein.
  • the scattering layer 20 of the present invention is such that the scattering particles 21 are dispersed in the elastomer layer. Configurable.
  • the elastomer layer 20 to which the LED element 30 is bonded should be made of a material harmless to the human body, and should have a shape that is easily coupled to the corneal junction 10.
  • the thickness of this elastomer layer 20 is For example, 2 mm or less, or 1.9 mm or less, or 1.8 mm or less, or 1.7 mm or less, or 1.6 mm or less, or 1.5 mm or less, or 1.4 mm or less, or 1.3 mm or less, or 1.2 mm or less, 1.1 mm or less, 1.0 mm May be less than or equal to 0.1 mm, or greater than or equal to 0.2 mm, or greater than or equal to 0.3 mm, or greater than or equal to 0.4 mm, or greater than or equal to 0.5 mm, or greater than or equal to 0.6 mm, or greater than or equal to 0.7 mm, or greater than or equal to 0.8 mm, or greater than or equal to 0.9 mm, or 1.0 It may be mm or more,
  • the light source 30 is integrated, the distance between the light source 30 and the retina is very close, and the light source 30 For example, since a point light source is used like an LED device, a scattering layer is required to solve this problem.
  • the scattering particles 21 of the elastomer layer 20 may include SiO 2 or TiO 2 nanoparticles, and the average particle size is a nano size, that is, 100 nm or less, or 90 nm or less, or 80 nm or less, or 70 nm It may be less than or equal to 60 nm, or less than 50 nm, and may be 10 nm or more, or 20 nm or more, or 30 nm or more, or 40 nm or more or 50 nm or more, for example, 20 nm to 80 nm, or 40 to 60 nm or 50 nm. Not limited.
  • the average particle size can be confirmed through, for example, an SEM image.
  • the density is For example, it may be 10 wt% or less, or 9 wt% or less, or 8 wt% or less, or 7 wt% or less, or 6 wt% or less, or 5 wt% or less, and 1 wt% or more or 2 wt% or more, or 3 wt% or more, or 4 wt% or more, Alternatively, it may be 5wt% or more, for example, 1wt% to 5wt%, but is not limited thereto.
  • These scattering particles 21 may be manufactured by a method of degassing gases that may be included in the elastomer layer using a vacuum pump after being applied to the elastomer layer, and curing them in a lens shape, through which an additional lens or Since the light from the light source 30 can be dispersed only with the contact lens without the dispersion layer, the simplification of equipment and cost reduction effect can be ensured, and accurate measurement can be performed through uniform light irradiation to the retina.
  • FIG. 5A schematically shows a case where, for example, a single LED element is used as the light source 30 according to an embodiment of the present invention
  • FIG. 5B is a schematic diagram schematically showing an operation mechanism according thereto.
  • a single LED element used as the light source 30 is preferably disposed at a position corresponding to the center point 20c of the elastomer layer 20.
  • light is emitted from the light source 30 (31).
  • a single LED device emits white single light as a white LDE device.
  • the divergent light 31 emitted from the light source is scattered by the scattering particles 21 of the scattering layer 20, and finally, the scattered light 32 uniformly scattered throughout the interior of the corneal junction 10 is radiated. It is done. Therefore, the scattered light 32 reaching the eyeball can be uniformly transmitted.
  • FIG. 6A schematically shows a case in which red (30a), blue (30b), and green (30c) are used as three LED devices according to an embodiment of the present invention
  • FIG. 6B schematically shows an operation mechanism according to this. It is a schematic diagram shown.
  • the three LED elements (30a, 30b, 30c) are preferably arranged at the same distance and angle ( ⁇ ) around the center point (20c), using more than three LED elements Even in the case, it is preferable that the arrangement angles between the respective LED elements are the same.
  • the three LED elements (30a, 30b, 30c) emit red single light (31a), blue single light (31b) and green single light (31c), respectively, and the emitted 3
  • the white light 32a is scattered by the scattering particles 21 of the scattering layer 20 and finally uniformly scattered throughout the interior of the corneal junction 10. Will radiate. Accordingly, white light 32a reaching the eyeball can be uniformly transmitted.
  • the LED devices 30, 30a, 30b, 30c are disposed at or around the center of the scattering layer 20, but the interior of the corneal junction 10 through the scattering layer 20 Since it is possible to emit uniform white light throughout, the arrangement position of the LED elements is not limited to the above embodiments.
  • LED devices 30, 30a, 30b, and 30c are used in the above exemplary embodiments, the same effect of the present invention can be expected even when other light sources are used instead of the LED devices.
  • FIG. 7 is a schematic diagram schematically showing a comparison of the size of the corneal bonding electrode 11 with the size of the iris 50 of the eye according to an embodiment of the present invention.
  • the corneal bonding electrode 11 may use a ring-shaped electrode, and the diameter size (D) of the ring-shaped corneal bonding electrode 11 is the diameter (d) of the iris 50 It is preferable to set it larger so as not to interfere with the transmission of light transmitted to the retina of the eyeball.
  • the method comprising: providing a solution containing a scattering material; And providing and curing a light source to the solution.
  • a method of manufacturing a contact lens for retinal potential diagram inspection of the present invention comprises: providing a corneal junction in contact with the corneal surface of the eye; Providing a solution containing a scattering material on the outer surface of the corneal junction; And providing and curing a light source to the solution.
  • a scattering layer in which a light source is coupled can be formed on the outer surface of the corneal junction in contact with the corneal surface of the eye.
  • a corneal bonding electrode may be already disposed on the inner surface of the corneal bonding portion, or a corneal bonding electrode may be formed on the inner surface after corneal bonding after forming the scattering layer to which the light source is combined.
  • a material for curing may be included.
  • the material for curing is not limited as long as it can be used for the human body, but as described above, for example, the scattering layer may include a precursor of the elastomer and a curing agent in order to include the elastomer.
  • 0.9 g and 1.5 g of spherical TiO 2 powder are respectively dispersed in 10 g of a curing agent, mixed with 20 g of a polydimethylsiloxane precursor, and then mixed using a stirrer, and a vacuum pump A degassing process was performed using. After that, the white LED light source was placed so as to be embedded and cured.
  • a solution including the scattering material and a light source may be provided and cured in a mold capable of manufacturing a contact lens shape.
  • the mold capable of manufacturing the contact lens shape is divided into, for example, a lower mold region and an upper mold region, and when the solution is provided and cured in the gap between the lower mold region and the upper mold region, and the lower mold region and the upper mold region are removed, A lens-shaped scattering layer can be made.
  • the light source mounted on the FPCB may be used.
  • a light source in a form in which a light source is mounted on an FPCB (flexible circuit board) is placed in a mold capable of manufacturing the lens shape, and a solution containing a scattering material is provided and cured to the light source mounted on the FPCB.
  • a contact lens having this combined scattering layer can be manufactured.
  • FIG. 9 is a graph showing evaluation results of a scattering layer manufactured according to an embodiment of the present invention.
  • the TiO 2 ratio lowered to about 1 wt%.
  • 10A and 10B show current and luminous intensity according to voltage applied to an LED using a scattering layer manufactured according to an embodiment of the present invention.
  • the white LED light source The flowing current is preferably adjusted to 7.5 ⁇ 10 -4 mA or more and 0.0185 mA or less.
  • 11A and 11B are graphs showing a result of measuring luminous intensity by varying current and irradiation time of the contact lens 1 according to an embodiment of the present invention.
  • the device in order to measure the amount of light of a single white LED device, for example, the device was measured in a state of being inserted into a scattering layer having a thickness of 0.8 mm. In the case of the scattering layer, it was produced at 1 wt% and the thickness was 0.8 mm.
  • the light measured through the photodiode was calculated as cd, and in order to convert it back to cd/m 2 , the aperture was reduced by using the pr-670 device, so that the strongest light among the scattering layers. Measured by focusing on the part.
  • the measured amount of light is inverted and the light of the LED including the scattering layer is calculated in cd/m 2 , and the value derived to convert it to cd*s/m 2 , the standard unit of retinal potential test, is multiplied by 100 ms and 250 ms, respectively. Calculated.
  • the present invention is a contact lens capable of inspecting the retinal potential of an eye and a method for manufacturing the same.
  • a contact lens capable of inspecting the retinal potential of an eye and a method for manufacturing the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Acoustics & Sound (AREA)
  • Eye Examination Apparatus (AREA)
  • Eyeglasses (AREA)

Abstract

본 명세서는 망막 전위도 검사용 광원 일체형 콘택트렌즈로서, 광원; 상기 광원으로부터의 빛을 산란하는 산란 물질; 및 상기 광원으로부터의 자극에 의한 망막 전위도 변화를 측정하기 위한 전극;을 포함하는 망막전위도 검사용 광원 일체형 콘택트렌즈 및 그 제조 방법에 관한 것이다.

Description

망막전위도 검사용 광원 일체형 콘택트렌즈 및 그의 제조방법
본 발명은 안구의 망막 전위도를 검사할 수 있는 콘택트렌즈 및 그 제조방법으로서, 더욱 상세하게는, 망막전위도 검사에 사용되는 광원과 전극을 일체화하여 콘택트렌즈 형태로 착용함으로써, 우수한 검사 정밀도를 확보할 수 있는 콘택트렌즈 및 그 제조방법에 관한 것이다.
[이 발명을 지원한 국가연구개발사업]
[과제고유번호] N11190165
[부처명] 과학기술정보통신부
[연구관리전문기관] 한국과학기술원
[연구사업명] 한국과학기술원 자체연구사업
[연구과제명] 망막전위도용 광원집적형 각막 콘택트렌즈 전극 개발
[기여율] 1/1
[주관기관] 한국과학기술원
[연구기간] 2019.04.01 ~ 2019.12.31
안구의 망막에는 일정한 전위(망막 전위)가 존재하고, 이러한 전위는 빛의 자극에 의해 변화하며, 이러한 변화는 망막전위도 검사(electroretinography: ERG) 를 통해 측정되고 있다.
이러한 망막전위도 검사를 통해, 유전성 망막질환, 염증성 망막질환, 당뇨망막병증 등의 망막질환 및 녹내장 등의 시신경질환에서 스크리닝 및 확진이 가능하다.
한편, 망막전위도 검사는 빛 자극의 세기 및 빛 노출 시간 등이 표준화 되어 있어 이를 만족시키기 위한 검사실의 구성은 고가의 검사 장비 비용 및 검사 공간, 숙련된 검사자 등이 요구된다.
예를 들어, 도 12에 도시된 바와 같이, 종래의 전시야 망막전위도 검사기기(1000)는 외부광원과 각막전극을 이용하고 있으며, 피검사자가 큰 검사 기계에 얼굴을 대고 측정하게 된다.
이러한 종래의 망막전위도 검사기기(1000)는 망막 전위도를 측정하기 위해 외부광원을 이용하는 것으로서, 정밀한 측정이 가능하지만, 이를 위해서는 암실과 넓은 공간이 수반되어야 하며 피검사자의 협조가 필수적이라는 단점이 존재한다. 이에 따라, 병원에서 망막전위도 검사를 실시하기 위해서는 긴 대기시간이 걸리게 된다.
또한, 망막전위도 검사에 필요한 기계의 넓은 설치 공간이 있어야 하며, 전극과 광원이 분리되어 있어, 검사 대상자가 광원의 중심부를 검사 시간 동안 계속 주시해야 하는 등 불편함이 크다.
이러한 단점을 해결하기 위하여 상대적으로 검사 대상자의 협조를 필요로 하지 않고 적은 공간에서 자동으로 검사를 시행할 수 있는 망막전위도 검사가 필요하다.
전술한 종래 기술들의 문제점들을 해결하기 위해, 본 발명은 실제 안과 검사실 현장에서 시간과 장소, 인력을 크게 절감할 수 있고, 검사대상자와 광원간의 광학적 관계가 안정적으로 유지되어 검사의 유효성을 높이는 망막전위도 검사기기를 제공하고자 한다.
또한, 본 발명은 광원 및 전극 일체형 콘택트렌즈 망막전위도 검사기기를 제공하여, 검사가 간소화될 수 있고, 공간 제약을 훨씬 덜 받으며, 검사 비용 또한 현저히 저감될 수 있는, 망막전위도 검사 방법을 제공하고자 한다.
전술한 기술적 과제를 달성하기 위해, 본 발명의 예시적인 구현예들에서는 망막 전위도 검사용 광원 일체형 콘택트렌즈로서, 광원; 상기 광원으로부터의 빛을 산란하는 산란 물질; 및 상기 광원으로부터의 자극에 의한 망막 전위도 변화를 측정하기 위한 전극;을 포함하는 망막전위도 검사용 광원 일체형 콘택트렌즈를 제공한다.
예시적인 일 구현예에서, 상기 망막전위도 검사용 광원 일체형 콘택트렌즈는, 안구의 각막 표면에 접하는 각막접합부; 상기 각막접합부의 내면에 배치되는 각막 접합 전극;을 포함하고, 상기 각막접합부는 상기 산란 물질을 포함하는 산란층이거나, 또는 상기 산란층을 포함하거나, 또는 상기 각막 접합부에 상기 산란층이 형성되고, 상기 산란층에 배치되는 광원;을 포함할 수 있다.
또한, 예시적인 일 구현예에서, 상기 망막전위도 검사용 광원 일체형 콘택트렌즈는, 안구의 각막 표면에 접하는 각막접합부; 각막접합부의 내면에 배치되는 각막 접합 전극; 각막접합부의 외면에 배치되는 산란층; 및 산란층에 배치되는 광원;을 포함할 수 있다.
또한, 예시적인 일 구현예에서, 본 발명의 산란층에는 산란 물질로서 산란 입자가 포함될 수 있으며, 산란층은 엘라스토머 층에 산란 입자가 분산될 수 있다.
또한, 예시적인 일 구현예에서, 본 발명의 엘라스토머 층의 두께는 0.8mm 내지 1.5mm일 수 있지만, 이에 제한되지 않는다. 또한, 엘라스토머 층은 폴리부틸렌아디페이트테레프탈레이트 (PBAT) 수지 또는 폴리다이메틸실록산 (PDMS)로 이루어질 수 있지만, 이에 제한되지 않는다.
또한, 예시적인 일 구현예에서, 본 발명의 엘라스토머 층의 산란 입자는 평균 입자 사이즈가 50nm이고, 엘라스토머 층의 산란 입자의 밀도는 1wt% 내지 5wt%일 수 있지만, 이에 제한되지 않는다.
또한, 예시적인 일 구현예에서, 본 발명의 엘라스토머 층의 산란 입자는 SiO 2 또는 TiO 2 나노 입자를 포함할 수 있지만, 이에 제한되지 않는다.
또한, 예시적인 일 구현예에서, 본 발명은 광원을 외부의 전원과 연결하는 케이블을 더 포함할 수 있다.
또한, 예시적인 일 구현예에서, 본 발명의 광원은 산란층 상에 위치하거나 또는 산란층에 적어도 일부가 내장(embedded)될 수 있다.
또한, 예시적인 일 구현예에서, 본 발명의 광원은 각막 접합부의 중심점에 대응되는 위치에 배치될 수 있다.
또한, 예시적인 일 구현예에서, 상기 광원은 FPCB (연성인쇄회로기판)에 실장된 형태일 수 있다.
또한, 예시적인 일 구현예에서, 본 발명의 광원은 LED소자가 될 수 있으며, LED소자는 단일 또는 복수로 포함될 수 있다.
또한, 예시적인 일 구현예에서, 본 발명의 LED소자가 단일로 포함되는 경우, 단일의 백색 LED소자가 될 수 있다.
또한, 예시적인 일 구현예에서, 상기 단일의 백색 LED 광원에 흐르는 전류는 7.5x10 -4 mA 내지 0.0185mA 일 수 있지만, 이에 제한되지 않는다.
또한, 예시적인 일 구현예에서, 본 발명의 LED소자가 복수개인 경우, 각각 적색, 청색 및 녹색의 3개의 LED소자이거나, 복수개의 백색 LED 소자를 포함할 수 있다.
또한, 예시적인 일 구현예에서, 상기 광원으로부터 광량은 5.4 x 10 -6cd 내지 1.2 x 10 -1cd 일 수 있지만, 이에 제한되지 않는다.
또한, 예시적인 일 구현예에서, 상기 산란층으로부터 산란되는 광의 광도는 0.03cd·s/m 2 내지 3.0cd·s/m 2일 수 있지만, 이에 제한되지 않는다.
또한, 예시적인 일 구현예에서, 본 발명의 각막 접합 전극은 예컨대 링의 형상이고, 링의 직경의 크기는 홍체의 직경보다 클 수 있다.
또한, 예시적인 일 구현예에서, 본 발명의 콘택트 렌즈는 사람의 망막 전위도 측정뿐만 아니라, 사람 외 동물의 망막 전위도 측정에도 사용될 수 있다.
한편, 본 발명의 예시적인 구현예들에서는, 전술한 망막전위도 검사용 콘택트렌즈의 제조방법으로서, 산란물질을 포함하는 용액을 제공하는 단계; 및 상기 용액에 광원을 제공하고 경화하는 단계;를 포함하는 망막전위도 검사용 광원 일체형 콘택트렌즈의 제조방법을 제공한다.
예시적인 일 구현예에서, 상기 방법은, 안구의 각막 표면에 접하는 각막접합부를 제공하는 단계;를 더 포함하고, 상기 각막 접합부 외면에 상기 산란물질을 포함하는 용액 및 광원을 제공하고 경화하는 것일 수 있다. 이에 따라 안구의 각막 표면에 접하는 각막접합부의 외면에 광원이 결합된 산란층을 형성할 수 있다.
또한, 예시적인 일 구현예에서, 상기 방법은, 렌즈 형상을 제조할 수 있는 몰드에 상기 산란 물질을 포함하는 용액 및 광원을 제공하고 경화하는 것일 수 있다.
본 발명의 예시적인 구현예들에 따르면, 광원과 전극을 일체화하여 콘택트렌즈 형태로 눈에 착용함으로써, 광원의 표적을 주시하지 않아도 망막에 빛 자극을 줄 수 있게 된다.
또한, 콘택트렌즈의 산란물질 또는 산란층에 의해 균일한 빛 자극을 망막에 전달할 수 있어 우수한 검사 정밀도를 확보 할 수 있고, 이를 통하여, 광원을 따로 설치하지 않아도 되고, 내부광원을 사용하기 때문에, 검사 대상자의 눈을 외부로부터 차단하면 암실을 만들지 않아도 적은 공간에서 검사를 시행할 수 있다.
또한, 검사 대상자의 협조가 크게 중요치 않아 자동으로 검사를 시행할 수 있다.
도 1은 본 발명의 일 실시 형태에서 망막전위도 검사용 콘택트렌즈의 단면 사시도를 개략적으로 나타낸 개념도이다.
도 2는 본 발명의 일 실시 형태에 따라 광원이 장착된 부분을 확대하여 개략적으로 나타낸 것이다.
도 3은 본 발명의 일 실시 형태에 따라 광원이 산란층에 내장되는 것을 개략적으로 나타낸 모식도이다.
도 4는 본 발명의 일 실시 형태에 따라 각막 접합부와 산란층을 확대하여 개략적으로 나타낸 것이다.
도 5a는 본 발명의 일 실시 형태에 따라 단일의 LED소자를 사용한 경우를 개략적으로 나타내고, 도 5b는 이에 따른 본 발명의 작동 메커니즘을 개략적으로 나타낸 모식도이다.
도 6a는 본 발명의 일 실시 형태에 따라 3개의 LED소자를 사용한 경우를 개략적으로 나타내고, 도 6b는 이에 따른 본 발명의 작동 메커니즘을 개략적으로 나타낸 모식도이다.
도 7은 본 발명의 일 실시 형태에 따라 각막 접합 전극의 크기를 안구의 홍채 크기와 비교한 것을 개략적으로 나타낸 모식도이다.
도 8a은 본 발명의 일 실시 형태에 따른 백색 LED 소자의 각 파장의 분포를 나타내는 그래프이고, 도 8b는 백색 LED 소자의 전압 변화에 따른 광도를 나타내는 그래프이다.
도 9은 본 발명의 일 실시 형태에 따라 제작된 산란층의 평가 결과를 나타내는 그래프이다.
도 10a 및 도 10b는 본 발명의 일 실시 형태에 따라 제작된 산란층을 이용하여 LED 소자에 가해진 전압에 따른 전류와 광도를 각각 나타낸 것이다.
도 11a 및 도 11b는 본 발명의 일 실시 형태에 따른 콘택트 렌즈를 전류와 조사 시간을 달리하여 광도를 측정한 결과를 각각 나타낸 것이다.
도 12은 종래의 전시야 망막전위도 검사 기기를 개략적으로 나타낸 것이다.
[부호의 설명]
1 망막전위도 검사용 콘택트렌즈
10 각막 접합부
11 각막 접합 전극
20 산란층
21 산란 입자
30 광원
30a 적색 LED소자
30b 청색 LED소자
30c 녹색 LED소자
31 발산광
31a 적색광
31b 청색광
31c 녹색광
32, 32a 산란광 또는 산란된 백색광
50 홍채
D 각막 접합 전극의 직경
d 홍채 직경
이하, 첨부된 도면을 기준으로 본 발명의 바람직한 실시 형태를 통하여, 본 발명의 일 실시 형태에 따른 망막전위도 검사용 콘택트렌즈에 대하여 설명하기로 한다.
여러 실시 형태에 있어서, 동일한 구성을 가지는 구성 요소에 대해서는 동일 부호를 사용하여 대표적으로 일 실시 형태에서 설명하고, 그 외의 실시 형태에서는 다른 구성 요소에 대해서만 설명하기로 한다.
본 명세서에서 콘택트렌즈는 통상 사용되는 시력조절을 위한 콘택트렌즈 예컨대 하드 콘택트렌즈나 소프트 콘택트 렌즈뿐만 아니라 시력 조절의 기능을 가지지 않더라도 콘택트 렌즈의 형상을 가지는 것이면 콘택트 렌즈에 포함한다. 예컨대, 산란물질을 포함하는 산란층 자체가 각막 접합부인 경우 해당 각막적합부는 시력 조절의 기능이 없더라도 콘택트렌즈의 범주에 포함된다.
본 명세서에서 각막접합부는 콘택트렌즈에서 안구 각막이 접합하는 부위로서 안구 각막 형상에 대응되도록 오목하게 형성된 부위이다.
본 명세서에서 산란층은 각막접합부 자체이거나, 각막접합부에 포함되거나, 각막접합부 외면에 형성되는 것일 수 있다.
본 명세서에서 산란층에 광원이 형성된다는 의미는 광원이 산란층 상에 위치하거나 또는 산란층에 적어도 일부가 내장(embedded)되는 것을 포함할 수 있다.
본 명세서에서 광원은 LED와 같은 광원 그 자체뿐만 아니라, 예컨대 해당 LED 광원이 FPCB (연성인쇄회로기판)에 실장된 형태와 같이 회로 기판과 결합된 형태의 것도 포함할 수 있다.
망막전위도 검사용 광원 일체형 콘택트 렌즈
본 발명의 예시적인 구현예들에서는 망막 전위도 검사용 광원 일체형 콘택트렌즈로서, 광원; 상기 광원으로부터의 빛을 산란하는 산란 물질; 및 상기 광원으로부터의 자극에 의한 망막 전위도 변화를 측정하기 위한 전극;을 포함하는 망막전위도 검사용 광원 일체형 콘택트렌즈를 제공한다.
도 1은 본 발명의 일 실시 형태에서 망막전위도 검사용 광원 일체형 콘택트렌즈(1)의 단면 사시도를 개략적으로 나타낸 개념도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시 형태에 따른 망막전위도 검사용 광원 일체형 콘택트렌즈(1)는 안구의 각막 표면에 접하는 각막접합부(10), 이러한 각막접합부(10)의 내면에 배치되는 각막 접합 전극(11), 각막접합부(10)의 외면에 배치되는 산란층(20) 및 광원(30)으로 구성된다.
상기 일 실시 형태에서는, 각막접합부(10)의 외면에 산란층이 배치되는 것을 기술하지만, 다른 실시 형태들에서는 각막접합부(10) 자체가 산란층이 되도록 할 수 있으며, 또는 각막접합부(10)가 적어도 일부에 산란층을 포함하는 형태일 수 있다.
추가적으로, 본 발명의 일 실시 형태에 따른 망막전위도 검사용 광원 일체형 콘택트렌즈(1)는 광원(30)에 외부의 전원(도시되지 않음)으로 전력을 공급하는 케이블(40)을 더 포함할 수 있다.
구체적으로, 각막접합부(10)는 안구의 각막 표면에 접합되는 렌즈형의 오목면에 각막 접합 전극(11)이 설치되어 있으며, 이러한 각막 접합 전극(11)의 오목면의 반대면에 산란층(20)이 배치된다.
광원(30)은 LED 소자가 될 수 있으며, 예컨대 백색광 파장의 빛을 발광하는 LED소자가 될 수 있다. 또한, 광원(30)은 충분히 얇은 두께를 가져야 한다. 또한, 광원(30)은 원활한 검사 및 연구를 위해 0.01cd/m 2부터 5cd/m 2까지 매우 저조도차의 분해능을 갖고 미세한 밝기 조절이 가능하고, 발광 시간을 마이크로초(ms) 단위로 조절할 수 있는 것이 바람직하다.
이러한 본 발명의 콘택트렌즈(1)는 사람의 망막 전위도 측정에 유용할 뿐만 아니라, 사람 외 다양한 동물의 망막 전위도 측정에도 유용하다. 사람 외 동물은 예컨대 마우스(mouse), 랫(rat), 토끼(rabbit), 개(dog), 고양시(cat), 돼지(pig), 영장류(primate) 등을 포함하지만 이에 제한되지 않는다.
본 발명의 일 실시 형태에 따른 광원(30)으로서 백색 LDE 소자를 사용하는 경우, 그 특성을 도 8a 및 도 8b에 도시하였다.
도 8a 및 도 8b에 도시된 바와 같이, 예컨대 0.25mm 두께의 백색 LED 소자는 최대 밝기가 0.2cd로 나타났고, 색좌표(CIE)는 (0.28, 0.27)로 측정되었다. 또한, 이러한 백색 LED소자를 이용하는 광원(30)을 1mV 단위로 밝기를 측정하였을 때, 5.4 x 10 -6cd (2.3V) 내지 1.2 x 10 -1cd (3V) 범위까지 측정할 수 있었다.
따라서, 이러한 백색 LED 소자 광원은 1mV 단위로 LED 밝기를 측정할 수 있고, 1mV 변환시 0.3 log unit보다 낮은 배수로 증가하기 때문에, ERG 검사용으로 적절한 분해능을 갖는 것을 확인할 수 있었다.
한편, 산란층(20)에는 산란 입자가 포함될 수 있으며, 이와 관련한 구체적인 내용은 후술하기로 한다.
도 2는 본 발명의 일 실시 형태에 따라 광원(30)이 장착된 부분을 확대하여 개략적으로 나타낸 것이고, 도 3은 본 발명의 일 실시 형태에 따라 광원(30)이 산란층(20)에 내장(embedded)되는 것을 개략적으로 나타낸 모식도이다.
도 2 및 도 3에 도시된 바와 같이, 광원(30)은 산란층(20)의 상부에 위치되거나, 산란층(20)에 광원(30)의 일부가 내장되어 배치될 수 있다.
도 4는 본 발명의 일 실시 형태에 따라 각막 접합부(10)와 산란층(20)을 확대하여 개략적으로 나타낸 것이다.
도 4에 도시된 바와 같이, 산란층(20)에는 산란 입자(21)가 분산되어 포함될 수 있으며, 예를 들어, 본 발명의 산란층(20)은 엘라스토머층에 산란 입자(21)가 분산되도록 구성할 수 있다.
LED 소자(30)가 결합되는 엘라스토머층(20)은 인체에 무해한 소재로 제작되어야 하며, 각막접합부(10)와의 결합이 용이한 형태를 가져야 한다. 이러한 엘라스토머층(20)의 두께는 예컨대 2mm 이하, 또는 1.9mm 이하, 또는 1.8mm 이하, 또는 1.7mm 이하, 또는 1.6mm 이하, 또는 1.5mm 이하, 또는 1.4mm 이하, 또는 1.3mm 이하, 또는 1.2mm 이하, 1.1mm 이하, 1.0mm 이하일 수 있고, 0.1mm 이상, 또는 0.2mm 이상, 또는 0.3mm 이상, 또는 0.4mm 이상, 또는 0.5mm 이상, 또는 0.6mm 이상, 또는 0.7mm 이상, 또는 0.8mm 이상, 또는 0.9mm 이상, 또는 1.0mm 이상일 수 있으며, 예컨대 0.8mm 내지 1.5mm일 수 있지만, 이에 제한되지 않는다. 엘라스토머층(20)은 예컨대 폴리부틸렌아디페이트테레프탈레이트(PBAT) 수지 또는 폴리다이메틸실록산 (PDMS)로 이루어질 수 있지만, 이에 제한되지 않는다.
한편, 망막전위도의 정확한 측정을 위해 망막에 균일한 빛을 조사할 수 있어야 하는데, 광원(30)이 일체된 형태이기 때문에, 광원(30)과 망막간 거리가 매우 가까우며, 광원(30)으로 예컨대 LED소자와 같이 점광원을 사용하기 때문에, 이를 해결하기 위해 산란층이 필요하다.
또한, 산란현상을 충분히 하기 위해 산란 입자(21)의 농도를 너무 증대시키면, 궁극적으로 전달되는 빛의 양이 줄어드는 문제가 발생할 수 있으므로, 균일도를 충분히 확대하되 빛이 전달되는 양을 일정 수준 이상 유지하는 것이 필요하다.
예를 들어, 엘라스토머층(20)의 산란 입자(21)는 SiO 2 또는 TiO 2 나노 입자를 포함할 수 있으며, 평균 입자 사이즈가 나노 사이즈 즉, 100nm 이하, 또는 90nm 이하, 또는 80nm 이하, 또는 70nm 이하, 또는 60nm 이하, 또는 50nm 이하일 수 있고, 10nm 이상, 또는 20nm 이상, 또는 30nm 이상, 또는 40 nm 이상 또는 50nm 이상일 수 있으며, 예컨대, 20nm~80nm, 또는 40~60nm 또는 50nm일 수 있지만, 이에 제한되지 않는다. 참고로, 평균 입자 사이즈는 예컨대 SEM 사진을 통해 확인할 수 있다.
밀도(농도)는 예컨대 10wt% 이하, 또는 9wt% 이하, 또는 8wt% 이하, 또는 7wt% 이하, 또는 6wt% 이하, 또는 5wt% 이하일 수 있고, 1wt% 이상 또는 2wt% 이상, 또는 3wt% 이상, 또는 4wt% 이상, 또는 5wt% 이상일 수 있으며, 예컨대 1wt% 내지 5wt%가 될 수 있지만, 이에 제한되지 않는다.
이러한 산란 입자(21)는 엘라스토머층에 도포 후 진공펌프를 이용하여 엘라스토머층에 포함될 수 있는 가스를 제거(degas)하고, 이를 렌즈 형태로 경화시키는 방법으로 제조될 수 있으며, 이를 통해, 추가적인 렌즈 혹은 분산층없이 콘택트렌즈만으로 광원(30)의 빛을 분산시켜 줄 수 있기 때문에, 장비의 간소화 및 비용 절감 효과를 확보할 수 있고, 망막에 균일한 빛 조사를 통해 정확한 측정이 가능하다.
도 5a는 본 발명의 일 실시 형태에 따라 광원(30)으로서 예컨대 단일의 LED소자를 사용한 경우를 개략적으로 나타내고, 도 5b는 이에 따른 작동 메커니즘을 개략적으로 나타낸 모식도이다.
도 5a에 도시된 바와 같이, 광원(30)으로 사용된 단일의 LED소자는 엘라스토머층(20)의 중심점(20c)에 대응되는 위치에 배치되는 것이 바람직하다. 또한, 도 5b에 도시된 바와 같이, 상기 광원(30)으로부터 광이 발산하게 된다(31). 예컨대, 단일의 LED소자는 백색의 LDE소자로서 백색의 단일광을 발산하게 된다.
이와 같이 광원으로부터 발산된 발산광(31)들이 산란층(20)의 산란 입자(21)들에 의해 산란되어, 최종적으로 각막 접합부(10)의 내부 전역으로 균일하게 산란된 산란광(32)을 발산하게 된다. 따라서, 안구에 이르는 산란광(32)을 균일하게 전달할 수 있다.
도 6a는 본 발명의 일 실시 형태에 따라 3개의 LED소자로서, 각각 적색(30a), 청색(30b) 및 녹색(30c)를 사용한 경우를 개략적으로 나타내고, 도 6b는 이에 따른 작동 메커니즘을 개략적으로 나타낸 모식도이다.
도 6a에 도시된 바와 같이, 3개의 LED소자(30a, 30b, 30c)는 중심점(20c)의 주위에 동일한 거리 및 각도(α)로 배치되는 것이 바람직하고, 3개 초과의 LED소자를 사용하는 경우에도 각 LED소자들 사이의 배치 각도가 서로 동일한 것이 바람직하다.
또한, 도 6b에 도시된 바와 같이, 3개의 LED소자(30a, 30b, 30c)는 각각 적색 단일광(31a), 청색 단일광(31b) 및 녹색 단일광(31c)을 발산하고, 발산된 3개의 단일광들(31a, 31b, 31c)이 산란층(20)의 산란 입자(21)들에 의해 산란되어, 최종적으로 각막 접합부(10)의 내부 전역으로 균일하게 산란된 백색의 광(32a)을 발산하게 된다. 따라서, 안구에 이르는 백색의 광(32a)을 균일하게 전달할 수 있다.
한편, 위 예시적인 실시 형태들에서는 LED소자들(30, 30a, 30b, 30c)을 산란층(20)의 중심 또는 그 주위에 배치하였으나, 산란층(20)을 통해 각막 접합부(10)의 내부 전역에 균일한 백색의 광을 발산하는 것이 가능하기 때문에, LED 소자들의 배치 위치가 위 실시 형태들에 한정되는 것은 아니다.
또한, 위 예시적인 실시 형태들에서는 복수의 LED소자들(30, 30a, 30b, 30c)소자를 사용하는 경우, 각각 적색, 청색 및 녹색의 3개의 LED소자들을 사용하였으나, 색의 차이를 두지 않고 복수개의 백색 LED 소자들을 사용하는 것이 가능하기 때문에, LED 소자들의 색이 위 실시 형태에 한정되는 것은 아니다.
또한, 위 예시적인 실시 형태들에서 LED소자들(30, 30a, 30b, 30c)을 사용하였으나, LED소자 대신 다른 광원을 사용하는 경우에도 본 발명의 동일한 효과를 기대할 수 있다.
도 7은 본 발명의 일 실시 형태에 따라 각막 접합 전극(11)의 크기를 안구의 홍채(50) 크기와 비교한 것을 개략적으로 나타낸 모식도이다.
도 7에 도시된 바와 같이, 각막 접합 전극(11)은 링 형상의 전극을 사용할 수 있고, 이러한 링 형상의 각막 접합 전극(11)의 직경 크기(D)는 홍채(50)의 직경(d)보다 크게 설정하여, 안구의 망막으로 전달되는 빛을 전달을 방해하지 않는 것이 바람직하다.
망막전위도 검사용 광원 일체형 콘택트 렌즈의 제조 방법
한편, 본 발명의 예시적인 구현예들에서는, 전술한 망막전위도 검사용 콘택트렌즈의 제조방법으로서, 산란 물질을 포함하는 용액을 제공하는 단계; 및 상기 용액에 광원을 제공하고 경화하는 단계;를 포함하는 망막전위도 검사용 광원 일체형 콘택트렌즈의 제조방법을 제공한다.
구체적으로, 일 구현예에서, 본 발명의 망막 전위도 검사용 콘택트렌즈의 제조방법은, 안구의 각막 표면에 접하는 각막 접합부를 제공하는 단계; 상기 각막 접합부 외면에 산란물질을 포함하는 용액을 제공하는 단계; 및 상기 용액에 광원을 제공하고 경화하는 단계;를 포함할 수 있다. 이에 따라, 안구의 각막 표면에 접하는 각막접합부의 외면에 광원이 결합된 산란층을 형성할 수 있다. 여기서, 각막 접합부 내면에는 이미 각막 접합 전극이 배치된 것을 사용할 수도 있고, 광원이 결합된 산란층 형성 후 각막 접합 전극을 각막 접합후 내면에 형성할 수 도 있다.
일 구현예에서, 상기 산란물질을 포함하는 용액은 이 후 경화되므로 경화를 위한 물질을 포함할 수 있다. 경화를 위한 물질은, 인체에 사용 가능하면 제한되지 않지만, 전술한 바와 같이 예컨대 산란층이 엘라스토머를 포함하기 위하여 해당 엘라스토머의 전구체와 경화제를 포함할 수 있다.
일 실시예에서, 산란층을 제작하기 위해, 예컨대, 경화제 10g에 구형 TiO 2 분말 0.9g과 1.5g을 각각 분산시키고, 이를 폴리다이메틸실록산 전구체 20g에 섞은 후 교반기를 이용하여 배합하고, 진공펌프를 이용하여 가스 제거 공정을 실시하였다. 그 후, 백색 LED 광원이 내장되도록 배치하고 경화하였다.
한편, 다른 예시적인 일 구현예에서, 각막 접합부를 산란층 자체가 되도록 하기 위하여, 콘택트 렌즈 형상을 제조할 수 있는 몰드에 상기 산란 물질을 포함하는 용액 및 광원을 제공하고 경화하는 것일 수 있다.
상기 콘택트 렌즈 형상을 제조할 수 있는 몰드는 예컨대 하부 몰드 영역 및 상부 몰드 영역으로 나뉘며, 하부 몰드 영역 및 상부 몰드 영역 사이 틈에 상기 용액을 제공하고 경화하고 하부 몰드 영역 및 상부 몰드 영역을 제거하면, 렌즈 형상의 산란층이 만들어질 수 있다.
한편, 일 예시에서, 광원을 FPCB (연성인쇄회로기판) 위에 실장한 후, FPCB에 실장된 광원을 이용할 수 있다. 예컨대, FPCB (연성회로기판)에 광원이 실장된 형태의 광원을 상기 렌즈 형상을 제조할 수 있는 몰드에 배치하고, 여기에 산란 물질을 포함하는 용액을 제공하고 경화하여 FPCB에 실장된 형태의 광원이 결합된 산란층을 가지는 콘택트 렌즈를 제조할 수 있다.
도 9은 본 발명의 일 실시 형태에 따라 제작된 산란층의 평가 결과를 나타내는 그래프이다.
전술한 도 8a의 백색 LED 광원의 파장 분포와 비교하면, TiO 2가 파장이 짧은 청색 계통의 파장을 흡수하기 때문에, TiO 2의 wt%가 증가할수록 청색 계통의 파장의 피크가 감소하고, 상대적으로 황색 계통의 파장이 증가하여, 타겟 색좌표(CIE)가 (0.3, 0.3)로 근접하는 것을 확인할 수 있었다.
즉, TiO 2의 비율이 증가한다하더라도 큰 산란효과를 보이지 않고 오히려 두께에 민감한 것으로 확인할 수 있다. 따라서, 3wt%의 TiO 2를 포함하는 1mm 산란층을 이용하여 렌즈를 제작한다고 가정하면, 3개 내지 4개의 LED 광원을 이용하여 빛 자극을 주는 것이 바람직하다.
또한, 타겟 색좌표(CIE)인 (0.31, 0.31)에 맞추기 위해서는, TiO 2의 비율을 1wt% 정도로 낮추어 사용하는 것이 바람직하다.
도 10a 및 도 10b는 본 발명의 일 실시 형태에 따라 제작된 산란층을 이용하여 LED에 가해진 전압에 따른 전류와 광도를 각각 나타낸 것이다.
도 10a 및 도 10b에 도시된 바와 같이, 전압을 증가시켜 2.5V를 초과하였을 때, 전류 반응이 나타나는 것을 확인할 수 있으며, 그에 따라 광도가 증가하는 것을 확인할 수 있었다.
본 발명의 일 실시 형태에 따른 렌즈의 산란층(20)에서 산란되는 빛의 광도는 최소 0.03 cd·s/m 2, 최대 3.0 cd·s/m 2가 되는 것이 바람직하기 때문에, 백색 LED 광원에 흐르는 전류는 7.5·10 -4 mA 이상, 0.0185mA 이하로 조절하는 것이 바람직하다.
도 11a 및 도 11b는 본 발명의 일 실시 형태에 따른 콘택트 렌즈(1)를 전류와 조사 시간을 달리하여 광도를 측정한 결과를 나타낸 그래프이다.
구체적으로, 백색 LED 단일 소자의 광량을 측정하기 위해, 예컨대 0.8mm 두께의 산란층에 소자를 삽입된 상태로 측정하였다. 산란층의 경우 1 wt%로 제작하였으며 두께는 0.8mm이다.
광도의 측정은, 포토다이오드를 통해 측정한 광을 cd로 계산하였고, 이를 다시 cd/m 2로 변환하기 위하여 pr-670장비를 이용하여 조리개(aperture)를 작게하여, 산란층 중 가장 빛이 강한 부분에 초점을 두어 측정하였다.
측정한 광량을 역산하여 산란층이 포함된 LED의 광을 cd/m 2로 계산하고, 망막전위도 검사 표준 단위인 cd*s/m 2로 변환하기 위해 도출한 값에 100ms, 250ms를 곱하여 각각 계산하였다.
도 11a에 도시된 바와 같이, 0.03 ERG에 필요한 광량을 만족하기 위해 100ms 동안 광을 조사할 때에는 1.13X10 -3 mA의 전류가 필요하며 250ms의 광을 조사할 때에는 5.17X10 -4 mA의 전류가 필요한 것을 확인할 수 있었다.
또한, 도 11b에 도시된 바와 같이, 3.0 ERG에 필요한 광량을 만족하기 위해서는 100ms 동안 광을 조사할 때에는 4.34X10 -3 mA의 전류가 필요하며 250ms의 광을 조사할 때에는 2.59X10 -3 mA의 전류가 필요한 것을 확인할 수 있었다.
전술한 설명들을 참고하여, 본 발명이 속하는 기술 분야의 종사자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있음을 이해할 수 있을 것이다.
그러므로, 지금까지 전술한 실시 형태는 모든 면에서 예시적인 것으로서, 본 발명을 실시 형태들에 한정하기 위한 것이 아님을 이해하여야만 하고, 본 발명의 범위는 전술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 균등한 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 안구의 망막 전위도를 검사할 수 있는 콘택트렌즈 및 그 제조방법으로서, 망막전위도 검사에 사용되는 광원과 전극을 일체화하여 콘택트렌즈 형태로 착용함으로써, 우수한 검사 정밀도를 확보할 수 있다.

Claims (20)

  1. 망막 전위도 검사용 광원 일체형 콘택트렌즈로서,
    광원;
    상기 광원으로부터의 빛을 산란하는 산란 물질; 및
    상기 광원으로부터의 자극에 의한 망막 전위도 변화를 측정하기 위한 전극;을 포함하는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  2. 제1항에 있어서,
    안구의 각막 표면에 접하는 각막접합부;
    상기 각막접합부의 내면에 배치되는 각막 접합 전극;을 포함하고,
    상기 각막접합부는 상기 산란 물질을 포함하는 산란층이거나, 또는 상기 산란층을 포함하거나, 또는 상기 각막 접합부에 상기 산란층이 형성되고,
    상기 산란층에 배치되는 광원;을 포함하는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  3. 제1항에 있어서,
    안구의 각막 표면에 접하는 각막접합부;
    상기 각막접합부의 내면에 배치되는 각막 접합 전극;
    상기 각막접합부의 외면에 배치되는 산란층; 및
    상기 산란층에 배치되는 광원;을 포함하는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  4. 제2항에 있어서,
    상기 산란층에는 산란 물질로서 산란 입자가 포함되어 있는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  5. 제4항에 있어서,
    상기 산란층은 엘라스토머 층에 산란 입자가 분산된 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  6. 제5항에 있어서,
    상기 엘라스토머 층은 폴리부틸렌아디페이트테레프탈레이트 (PBAT) 수지 또는 폴리다이메틸실록산 (PDMS) 로 이루어지는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  7. 제5항에 있어서,
    상기 엘라스토머 층의 산란 입자는 SiO 2 또는 TiO 2 나노 입자인 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  8. 제1항에 있어서,
    상기 광원을 외부의 전원과 연결하는 케이블;을 더 포함하는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  9. 제2항에 있어서,
    상기 광원은 산란층 상에 위치하거나 또는 산란층에 적어도 일부가 내장(embedded)되는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  10. 제2항에 있어서,
    상기 광원은 각막 접합부의 중심점에 대응되는 위치에 배치되는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  11. 제1항에 있어서,
    상기 광원은 FPCB (연성인쇄회로기판)에 실장된 형태인 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  12. 제1항에 있어서,
    상기 광원은 LED소자인 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  13. 제12항에 있어서,
    상기 LED소자는 단일 또는 복수로 포함되는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  14. 제13항에 있어서,
    상기 LED소자는 단일의 백색 LED소자인 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  15. 제13항에 있어서,
    상기 LED소자는 복수의 백색 LED소자인 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  16. 제13항에 있어서,
    상기 LED소자는 복수 개이고, 각각 적색, 청색 및 녹색의 3개의 LED소자로 포함되는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서,
    상기 콘택트렌즈는 사람의 망막 전위도 측정 또는 사람 외 동물의 망막 전위도 측정에 사용되는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈.
  18. 제1항 내지 제16항 중 어느 한 항의 망막전위도 검사용 광원 일체형 콘택트렌즈의 제조방법으로서,
    산란 물질을 포함하는 용액을 제공하는 단계; 및
    상기 용액에 광원을 제공하고 경화하는 단계;를 포함하는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈의 제조방법.
  19. 제18항에 있어서,
    안구의 각막 표면에 접하는 각막접합부를 제공하는 단계;를 더 포함하고,
    상기 각막 접합부 외면에 상기 산란물질을 포함하는 용액 및 광원을 제공하고 경화하는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈의 제조방법.
  20. 제18항에 있어서,
    렌즈 형상을 제조할 수 있는 몰드에 상기 산란 물질을 포함하는 용액 및 광원을 제공하고 경화하는 것을 특징으로 하는 망막전위도 검사용 광원 일체형 콘택트렌즈의 제조방법.
PCT/KR2020/011793 2019-09-02 2020-09-02 망막전위도 검사용 광원 일체형 콘택트렌즈 및 그의 제조방법 WO2021045509A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/639,382 US20220322995A1 (en) 2019-09-02 2020-12-02 Contact lens having integrated light source for electroretinography and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190108355 2019-09-02
KR10-2019-0108355 2019-09-02
KR10-2020-0111756 2020-09-02
KR1020200111756A KR102409241B1 (ko) 2019-09-02 2020-09-02 망막전위도 검사용 광원 일체형 콘택트렌즈 및 그의 제조방법

Publications (1)

Publication Number Publication Date
WO2021045509A1 true WO2021045509A1 (ko) 2021-03-11

Family

ID=74852602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011793 WO2021045509A1 (ko) 2019-09-02 2020-09-02 망막전위도 검사용 광원 일체형 콘택트렌즈 및 그의 제조방법

Country Status (2)

Country Link
US (1) US20220322995A1 (ko)
WO (1) WO2021045509A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220004026A1 (en) * 2020-07-02 2022-01-06 Purdue Research Foundation Contact lens having sensors and methods for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359688B2 (ko) * 1985-03-07 1991-09-11 Nippon Oil Co Ltd
JPH08154897A (ja) * 1994-12-01 1996-06-18 Kyoto Contact Lens Kk 光源一体型コンタクトレンズ電極
JP2006230799A (ja) * 2005-02-25 2006-09-07 Oita Univ 全視野光刺激装置
JP2006320372A (ja) * 2005-05-17 2006-11-30 Meiyoo:Kk 網膜電位計用角膜電極
KR20170117591A (ko) * 2015-03-31 2017-10-23 사빅 글로벌 테크놀러지스 비.브이. Oled 조명 적용을 위한 다기능성 기판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359688B2 (ko) * 1985-03-07 1991-09-11 Nippon Oil Co Ltd
JPH08154897A (ja) * 1994-12-01 1996-06-18 Kyoto Contact Lens Kk 光源一体型コンタクトレンズ電極
JP2006230799A (ja) * 2005-02-25 2006-09-07 Oita Univ 全視野光刺激装置
JP2006320372A (ja) * 2005-05-17 2006-11-30 Meiyoo:Kk 網膜電位計用角膜電極
KR20170117591A (ko) * 2015-03-31 2017-10-23 사빅 글로벌 테크놀러지스 비.브이. Oled 조명 적용을 위한 다기능성 기판

Also Published As

Publication number Publication date
US20220322995A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2021045509A1 (ko) 망막전위도 검사용 광원 일체형 콘택트렌즈 및 그의 제조방법
WO2016204432A1 (ko) 전자 디바이스
US10598840B1 (en) Light modules and devices incorporating light modules
WO2020197314A1 (ko) 피부용 광 마스크 장치
WO2022108042A1 (ko) 서브형 인공망막 장치, 이의 구동방법 및 제조방법
EP3157625B1 (en) Implantable optrode with a controller configured for operation in a stimulation mode and in a diagnostic mode
WO2021133090A2 (ko) 구강스캐너에 내장된 광학요소 검사 방법 및 이를 이용한 시스템
WO2020213797A1 (ko) 도광형 엘이디 마스크 장치
Miura et al. Artificial retina using thin-film transistors driven by wireless power supply
WO2013051755A1 (ko) 안압 센서 및 그 제조 방법
WO2019164375A2 (ko) 블루라이트에 의한 피부 변화 측정 장치, 방법 및 블루라이트 조사 장치
WO2019004656A1 (ko) 발광 장치
KR20210027220A (ko) 망막전위도 검사용 광원 일체형 콘택트렌즈 및 그의 제조방법
WO2021242077A1 (ko) 조명 장치 및 그 제어 방법
WO2019074201A1 (ko) 엑스선 영상 촬영 장치, 엑스선 디텍터 및 엑스선 영상 촬영 시스템
WO2020162678A1 (ko) 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
WO2018062756A1 (ko) 피부 관리 장치
WO2023043290A1 (ko) 실험동물의 다중 인지행동 훈련 또는 측정을 위한 자동화 시스템 및 방법
WO2021172861A1 (ko) 안구건조증 진단 및 치료용 스마트 콘택트렌즈
WO2022225275A1 (ko) 관심 영역 확인을 위한 의료 영상 제공 방법 및 장치
WO2018105940A1 (ko) 인공 망막 시스템
WO2019009660A1 (ko) 내부 반사를 효과적으로 억제하기 위한 편광 안저카메라
Manning Eye-movement-dependent loss in vision and its time course during vergence
WO2017061704A1 (ko) 조명 장치
WO2020197325A1 (ko) 두피 관리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860198

Country of ref document: EP

Kind code of ref document: A1