WO2021045174A1 - Method for producing low-carbon ferrochromium - Google Patents

Method for producing low-carbon ferrochromium Download PDF

Info

Publication number
WO2021045174A1
WO2021045174A1 PCT/JP2020/033512 JP2020033512W WO2021045174A1 WO 2021045174 A1 WO2021045174 A1 WO 2021045174A1 JP 2020033512 W JP2020033512 W JP 2020033512W WO 2021045174 A1 WO2021045174 A1 WO 2021045174A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric furnace
raw material
hot water
furnace
producing low
Prior art date
Application number
PCT/JP2020/033512
Other languages
French (fr)
Japanese (ja)
Inventor
博一 杉森
正浩 森
Original Assignee
Jfeマテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeマテリアル株式会社 filed Critical Jfeマテリアル株式会社
Priority to JP2021537965A priority Critical patent/JP7013111B2/en
Priority to BR112022003087A priority patent/BR112022003087A2/en
Publication of WO2021045174A1 publication Critical patent/WO2021045174A1/en
Priority to JP2021195845A priority patent/JP2022019914A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting

Definitions

  • the present invention relates to a method for producing low carbon ferrochrome.
  • Low-carbon ferrochrome is an Fe-Cr alloy having a Cr of 60% by mass or more and a C of 0.1% by mass or less, and is used as a Cr additive for special steels, especially stainless steel.
  • the Peran method has been used for a long time. In the Peran method, chromium ore and quicklime are used as raw materials, and a dissolved raw material obtained by dissolving them in an electric furnace is discharged, and a reducing agent is added to the dissolved raw material to produce low-carbon ferrochrome.
  • a tilting electric furnace is used as the electric furnace, in which the molten raw material is discharged while tilting.
  • the primary slag is discharged using a tilting electric furnace
  • the surface of the molten material is exposed to the atmosphere. Therefore, there is a problem that heat is largely dissipated from the surface of the hot water to the atmosphere and the thermal efficiency is poor.
  • the energization rate is lowered and the heat loss due to the shutdown is increased.
  • the applicant proposes to use a fixed electric furnace instead of the tilting electric furnace (see Patent Document 1).
  • a fixed electric furnace the molten raw material is discharged from the hot water outlet without tilting the furnace. Not all of the dissolved raw material is discharged, but remains as a pool at the bottom of the furnace after the hot water is discharged. If a fixed electric furnace is used, the solubility (thermal efficiency) of the raw material is improved by the effect of the hot water pool. Further, when the dissolved raw material is discharged, the surface of the molten metal can be covered with the undissolved raw material, so that heat dissipation from the surface of the molten metal to the atmosphere can be prevented.
  • the dissolved raw material in which chromium ore and quicklime are dissolved has a high viscosity and a high melting point, and has a problem that it is easy to blow up.
  • the blown-up dissolved raw material is solidified and must be redissolved, resulting in heat loss.
  • the first object of the present invention is to provide a method for producing low-carbon ferrochrome that can suppress the blow-up of the dissolved raw material, increase the solubility, and reduce the electric power intensity.
  • the temperature difference is not as large as that of a tilting electric furnace, so the refractory does not melt as much as the tilting electric furnace.
  • the refractory cannot be easily replaced.
  • the furnace must be stopped, the cooled and solidified primary slag must be dug up, and the refractory must be dismantled and built. Therefore, it is necessary to stop the furnace for a long period of time.
  • a second object of the present invention is to provide a method for producing low carbon ferrochrome that can prevent the refractory of a fixed electric furnace from being melted.
  • the first aspect of the present invention is to use chrome ore and fresh lime as raw materials, melt the dissolved raw material in an electric furnace, and add a reducing agent to the dissolved raw material.
  • a fixed electric furnace that leaves a pool of hot water after hot water is discharged to the electric furnace is used, and the ratio of the set current of the electrode to the set voltage (set current / set voltage) is 30 A / V or more and 150 A /
  • the second aspect of the present invention is to use chrome ore and fresh lime as raw materials, melt the dissolved raw material in an electric furnace, and add a reducing agent to the dissolved raw material.
  • a fixed electric furnace that leaves a pool of hot water after hot water is discharged into the electric furnace is used, and the average power density on the current flow surface of the fixed electric furnace is 500 kW / m 2 or more and 3000 kW / m 2 or less. It is a production method of low carbon ferrochrome set to.
  • the third aspect of the present invention is to use chrome ore and magnesium oxide as raw materials, dissolve them in an electric furnace, and add a reducing agent to the dissolved raw materials.
  • a fixed electric furnace that leaves a pool of hot water in the electric furnace is used, and the mass ratio of MgO and Al 2 O 3 (MgO / Al 2) of the melting raw material of the fixed electric furnace is used.
  • This is a method for producing low carbon ferrochrome in which O 3 ) is adjusted to 0.5 or more and 1.5 or less to form a chromium spinel type self-flying layer inside the refractory of the fixed electric furnace.
  • the phenomenon of blowing up the dissolved raw material is caused by the electrode being immersed in the dissolved raw material.
  • the carbon of the electrode reacts with the dissolved raw material to generate CO gas, and the CO gas blows up the dissolved raw material.
  • the ratio of the set current of the electrode to the set voltage when controlling the ascending / descending of the electrode is determined. It can be set to a small value, that is, a high voltage and a low current. Therefore, the distance between the lower end of the electrode and the surface of the molten material can be increased, and the electrode can be prevented from being immersed in the dissolved raw material.
  • the average power density (power density for melting the raw material) on the current transmission surface is reduced. Can be set. Therefore, the heat concentration and super heat in the core portion can be alleviated, and the sudden boiling-up phenomenon can be prevented from occurring in the molten raw material.
  • a chromium spinel type refractory layer (a refractory equivalent to a Cr 2 O 3 chromate refractory) is formed inside the refractory of a fixed electric furnace, so that the refractory is a fixed type. It is possible to prevent the refractory of the electric furnace from melting and damage it, and it can be left unrepaired for a long period of time.
  • FIG. 1 is a process diagram of a method for producing a low-carbon ferrochrome according to an embodiment of the present invention.
  • the method for producing low-carbon ferrochrome of the present embodiment first, chromium ore and quicklime as a medium solvent are used as raw materials, and these are dissolved in a fixed electric furnace to produce a dissolved raw material. Then, the molten raw material is discharged into the reaction vessel from the outlet of the fixed electric furnace (S1).
  • silicochrome as a reducing agent and chasing chromium ore are added to the reaction vessel from which the dissolved raw material is discharged, and the reaction vessel is stirred by bottom-blowing an inert gas (S2). It should be noted that two pans may be used as reaction vessels, and stirring may be performed by relaying between the two pans.
  • the reduction reaction between chromium oxide and silicon in the chromium ore proceeds as follows. Cr 2 O 3 + 3/2Si ⁇ 2Cr + 3/2SiO 2 ... (1)
  • the liberated SiO 2 reacts with quicklime as described in (2) and (3) below to form slag.
  • slag is generated as in (3), the amount of free SiO 2 in (1) decreases, and the reduction reaction in (1) proceeds from left to right.
  • the molten low-carbon ferrochrome produced by the reduction reaction is cast into a mold to become a product.
  • the low carbon ferrochrome of the product contains 60% by mass or more of Cr, 1.0% by mass or less of Si, and 0.1% by mass or less of C.
  • the slag produced by the reduction reaction is separated from the molten low-carbon ferrochrome.
  • siliconochrome is used as the reducing agent in the above embodiment, a silicon-based reducing agent such as metallic silicon may be used in addition to silicochrome.
  • a silicon-based reducing agent such as metallic silicon
  • an aluminum-based reducing agent such as aluminum or an aluminum alloy
  • a magnesium-based reducing agent such as magnesium or a magnesium alloy
  • a calcium-based reducing agent such as calcium or a calcium alloy
  • a mixture of these reducing agents may be used.
  • FIG. 2 is a vertical sectional view of a fixed electric furnace used in the method of the present embodiment.
  • a fixed electric furnace 1 is used as the electric furnace.
  • Three electrodes (two electrodes 4a and 4b are omitted in FIG. 2 are shown) are inserted into the furnace body.
  • the tips of the electrodes 4a and 4b are embedded in the raw material 11 of chromium ore and quicklime charged from the raw material chute 5.
  • the raw material 11 is melted to form the dissolved raw material 12.
  • the mud material 6 filled in the hot water outlet 2 is removed, and the hot water of the melting raw material 12 is discharged from the hot water outlet 2.
  • the dissolved raw material 12 When the dissolved raw material 12 is discharged, the surface of the dissolved raw material 12 is covered with the undissolved raw material 11. After the hot water is discharged, the level of the dissolved raw material 12 drops to the level of the hot water outlet 2, but the dissolved raw material 12 remains as a hot water pool below the level of the hot water outlet 2.
  • the charging, melting, and hot water discharge of the raw material 11 are repeatedly performed with the electrodes 4a and 4b energized.
  • 7 is the bottom of the furnace and 8 is the iron skin.
  • a refractory material 9 is provided inside the iron skin 8.
  • 9a and 9b are bricks of refractory 9
  • 9c is a stamp of refractory 9.
  • Reference numerals 10a and 10b are electrode holders.
  • the hot water level of the melting raw material 12 after hot water is adjusted to the level of the hot water outlet 2, but the hot water level of the melting raw material 12 after hot water is set to a predetermined level higher than that of the hot water outlet 2. You may match.
  • H1 is the furnace depth, that is, the distance from the furnace bottom 7 to the lower surface of the upper ring 14.
  • h2 is the depth of the hot water pool, that is, the distance from the bottom 7 to the level of the molten metal 12 after hot water is discharged (in the present embodiment, the distance from the bottom 7 to the hot water outlet 2).
  • the ratio (h2 / h1) of the pool depth h2 to the furnace depth h1 is set to 0.2 or more and 0.6 or less. This is because if it exceeds 0.6, the amount of hot water discharged becomes too small. On the other hand, if it is less than 0.2, the amount of residual hot water is too small, and the effect of collecting hot water (the effect of improving the solubility of the raw material 11) is small.
  • FIG. 3 is a circuit diagram of a fixed electric furnace.
  • 21 is a breaker
  • 22 is a transformer
  • 4a, 4b, 4c are electrodes
  • 3 is a furnace body
  • 23 is a current detector that detects the current (actual current) flowing through the electrode 4c
  • 24 is a furnace grounded with the electrode 4c.
  • a voltage detector that detects the voltage (actual voltage) between the body 3 and 25 is a motor of an electrode elevating device that raises and lowers the electrode 4c
  • 26 is an electrode elevating control device that controls the elevating and lowering of the electrode 4c
  • 27 is a motor 25. It is an inverter that supplies power. Note that, in FIG. 3, the current detector 23, the voltage detector 24, the motor 25, the electrode elevating control device 26, and the inverter 27 are actually provided for each of the three phases.
  • the three electrodes 4a, 4b, and 4c are controlled to be raised and lowered one by one.
  • the electrode elevating control device 26 uses the actual current and the actual voltage of the electrodes 4a, 4b, and 4c as input signals, and the ratio of the actual current to the actual voltage (actual current / actual voltage) becomes a set value (set current / set voltage).
  • the electrodes 4a, 4b, and 4c are controlled to move up and down as described above.
  • the electrode elevating control device 26 outputs a speed signal for raising the electrodes 4a, 4b, 4c to the inverter 27.
  • the distance between the electrodes 4a, 4b, 4c and the molten metal surface can be reduced. In some cases, it becomes a heat-concentrated type and the solubility is improved, but on the contrary, the melting efficiency is lowered and the melting zone is reduced by super heat more than necessary.
  • the ratio of the set current to the set voltage (set current / set voltage) is small, that is, high, to 30 A / V or more and 150 A / V or less because the solubility of the raw material is improved by the effect of the hot water pool in the fixed electric furnace. Set to voltage and low current.
  • the distance between the lower ends of the electrodes 4a, 4b, 4c and the molten metal surface of the dissolution raw material 12 is increased, and the electrodes 4a, 4b, 4c are prevented from being immersed in the dissolution raw material 12. If it is less than 30 A / V, the solubility of the raw material 11 decreases. If it exceeds 150 A / V, the ratio of the set current becomes higher than the set voltage, and the electrodes 4a, 4b, and 4c may be immersed in the dissolved raw material 12.
  • Table 1 shows the results of examining the effects of the ratio of the set current to the set voltage (A / V) on the immersiveness of the electrodes and the blow-up phenomenon.
  • a / V exceeds 150 A / V
  • the degree of immersion of the electrode in the dissolved raw material becomes large and the blow-up phenomenon occurs frequently
  • the A / V is 150 A / V or less
  • the immersion of the electrode is conspicuous. And it becomes good without the blow-up phenomenon occurring.
  • it if it is less than 30 A / V, the immersion of the electrode and the blow-up phenomenon do not occur, but the dissolution becomes insufficient.
  • the optimum ratio of the set current to the set voltage is 30 A / V or more and 150 A / V or less.
  • FIG. 4 is a cross-sectional view of the fixed electric furnace 1.
  • 3 is the furnace body
  • 31 is the furnace wall
  • 4a, 4b, 4c are the electrodes
  • 32a, 32b, 32c are the current flow planes (also called reaction zones)
  • R is the inner diameter of the furnace wall
  • d is the diameter of the arrangement circle.
  • D is the diameter of the electrode
  • r is the radius of the current transmission surface.
  • the diameter d of the arrangement circle is set to 1.0 m or more and 2.2 m or less.
  • Three electrodes 4a, 4b, and 4c are arranged at equal intervals on the arrangement circle.
  • the radii r of the three current transmission surfaces 32a, 32b, and 32c are the same.
  • the radius r of the current transmission surfaces 32a, 32b, 32c is set so that the adjacent current transmission surfaces 32a, 32b, 32c are in contact with each other.
  • the average power density (kW / m 2 ) on the current flow surface is represented by power / 3 ⁇ r 2.
  • Electric power (kW) ⁇ 3 ⁇ IV ⁇ cos ⁇ .
  • I is the actual current
  • V is the actual voltage
  • is the power factor.
  • 3 ⁇ r 2 is the area of the current transmission surface. If the average power density on the current transmission surface is large, the solubility of the raw material 11 is improved. However, since the solubility of the raw material 11 is improved by the hot water pooling effect of the fixed electric furnace 1, the average power density on the current transmission surface is set small to 500 kW / m 2 or more and 3000 kW / m 2 or less.
  • the heat concentration and super heat in the core portion can be alleviated, and the sudden boiling-up phenomenon can be prevented from occurring in the molten material 12. If it is less than 500 kW / m 2 , the core portion becomes insufficient in heat, which causes an adverse effect on hot water discharge. When it exceeds 3000 kW / m 2 , heat concentration and super heat are generated in the core portion, and a sudden boiling blow-up phenomenon of the molten raw material 12 occurs.
  • Table 2 shows the results of examining the effect of the average power density on the current transmission surface on the blow-up phenomenon in the A and B furnaces having different diameters.
  • Table 2 shows the results of examining the effect of the average power density on the current transmission surface on the blow-up phenomenon in the A and B furnaces having different diameters.
  • Table 2 shows the results of examining the effect of the average power density on the current transmission surface on the blow-up phenomenon in the A and B furnaces having different diameters.
  • Table 2 shows the results of examining the effect of the average power density on the current transmission surface on the blow-up phenomenon in the A and B furnaces having different diameters.
  • the mass ratio (MgO / Al 2 O 3 ) of MgO and Al 2 O 3 of the melting raw material 12 is 0.5 or more. Adjusted to 5 or less.
  • the composition of the dissolved raw material 12 is analyzed, and the mass ratio of MgO and Al 2 O 3 (MgO / Al 2 O 3 ) of the dissolved raw material 12 is determined.
  • the raw material 11 is adjusted so as to be 0.5 or more and 1.5 or less.
  • the chrome ore of the raw material 11, the content of high content of chromium ore, Al 2 O 3, or the MgO is present a high chrome ore.
  • the mass ratio of MgO and Al 2 O 3 is low, increasing the amount of high content of chromium ore MgO, when the mass ratio of MgO and Al 2 O 3 is high, the content of Al 2 O 3 is high chromium Increase the amount of ore compounded. If that can not be adjusted by chromium ore is charged with MgO source and / or Al 2 O 3 source. Then, a chromium spinel-type self-flying layer 51 shown by diagonal lines in the figure is formed inside the refractory material 9.
  • the self-flying layer 51 prevents the refractory 9 from being melted. If it is less than 0.5, the self-flying layer 51 is severely melted and a sufficient self-flying layer 51 is not formed. If it exceeds 1.5, the raw material is insufficiently dissolved and the dissolution zone becomes small. In addition, the viscosity of the dissolved raw material 12 becomes high, which causes an adverse effect on hot water discharge.
  • a chromium ore having a high MgO content and / or an MgO source is concentrated in the vicinity of the partially melted portion 52. Enter. Then, the mass ratio of MgO and Al 2 O 3 of the melting raw material 12 is adjusted to the above range, and the chromium spinel type self-flying layer 51 is intensively formed in the vicinity of the partially melted portion 52. As a result, the partially melted portion 52 is repaired.
  • FIG. 5 is a state diagram of Cr 2 O 3- Mg O-Al 2 O 3. As shown in FIG. 5, if Cr 2 O 3 : MgO: Al 2 O 3 of the dissolution raw material 12 is adjusted to a molar ratio of 38.5%: 44.7%: 16.8%, a chromium spinel 53 is formed. can do.
  • Table 3 shows the composition of the dissolution raw material 12.
  • MgO raw material for melting 12 the Al 2 O 3 in a weight ratio of 1: be adjusted to 1
  • MgO raw material for melting 12 44.7% of Al 2 O 3 molar ratio: be adjusted to 16.8% it can.
  • the mass of Cr 2 O 3 of the dissolution raw material 12 is sufficiently larger than that of Mg O and Al 2 O 3, and it is easy to adjust the molar ratio as described above.
  • Low carbon ferrochrome was produced according to the production process diagram of FIG. Table 4 shows (1) the amount of raw materials used, (2) the amount of electricity used in the fixed electric furnace, (3) the amount of hot water discharged from the dissolved raw materials, (4) the amount of auxiliary materials used, and (5) the amount of low-carbon ferrochrome. The amount of slag produced and (6) dissolved power intensity are shown.
  • Table 5 shows the operating conditions of fixed electric furnaces (A furnace and B furnace having different diameters).
  • Example 1 the ratio of the set current of the electrode to the set voltage (set current / set voltage) was set to 85 A / V, and the average power density on the current transmission surface was set to 1200 kW / m 2. No noticeable blow-up of the dissolved raw material occurred. As shown in Example 2, even when the set current / set voltage was set to 145 A / V and the average power density on the current transmission surface was set to 1150 kW / m 2 , no noticeable blow-up of the dissolved raw material occurred. .. As shown in Example 3, when the set current / set voltage was set to 60 A / V and the average power density on the current transmission surface was set to 2350 kW / m 2 , no conspicuous blow-up of the dissolved raw material occurred.
  • Adjust the raw material so that the mass ratio of MgO and Al 2 O 3 (MgO / Al 2 O 3 ) of the dissolved raw material is 0.5 or more and 1.5 or less, and chrome spinel type self-flying layer inside the refractory. was formed.
  • temperature sensors 17a, 17b, and 17c were attached to the side wall of the furnace body 3 and the furnace bottom 7, and these temperatures were measured.
  • a plurality of temperature sensors 17a are provided on the upper portion of the side wall of the furnace body 3 at equal intervals in the circumferential direction.
  • a plurality of temperature sensors 17b are provided at the lower part of the side wall of the furnace body 3 at equal intervals in the circumferential direction.
  • FIG. 6A shows the transition of the furnace body temperature. As shown in FIG. 6A, the furnace body temperature was stable on both the side wall and the bottom of the furnace body and maintained a substantially constant value.
  • FIG. 6B shows the transition of the furnace body temperature when a partially melted portion is generated in the refractory.
  • the temperature of the furnace body (particularly the bottom of the furnace) rose due to the occurrence of a partially melted part in the refractory. Therefore, as shown by A and B in FIG. 6B, chromium ore having a high MgO content was intensively charged in the vicinity of the partially melted portion for 2 days, and MgO and Al 2 were charged. the weight ratio of O 3 was adjusted to the above range. The partially melted part was repaired, and the temperature of the furnace body dropped and became stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Provided is a method for producing low-carbon ferrochromium, whereby blowing up of molten raw material can be suppressed. A method for producing low-carbon ferrochromium, the method comprising tapping a molten raw material (12) obtained by melting chromium ore and quicklime as raw materials in an electric furnace, and adding a reducing agent to the molten raw material (12), wherein the method involves using a fixed-type electric furnace (1) in which a basin remains in the electric furnace after tapping. The ratio (set current/set voltage) of the set current and the set voltage of an electrode (4a) is set to 30-150 A/V (inclusive).

Description

低炭素フェロクロムの製造方法Method for producing low carbon ferrochrome
 本発明は、低炭素フェロクロムの製造方法に関する。 The present invention relates to a method for producing low carbon ferrochrome.
 低炭素フェロクロムは、Cr60質量%以上、C0.1質量%以下のFe-Cr合金であり、特殊鋼、特にステンレス鋼のCr添加材等に用いられている。低炭素フェロクロムの製造方法としては、古くからペラン法が用いられている。ペラン法は、クロム鉱石と生石灰を原料とし、それらを電気炉で溶解した溶解原料を出湯し、溶解原料に還元剤を加えて低炭素フェロクロムを製造するものである。 Low-carbon ferrochrome is an Fe-Cr alloy having a Cr of 60% by mass or more and a C of 0.1% by mass or less, and is used as a Cr additive for special steels, especially stainless steel. As a method for producing low-carbon ferrochrome, the Peran method has been used for a long time. In the Peran method, chromium ore and quicklime are used as raw materials, and a dissolved raw material obtained by dissolving them in an electric furnace is discharged, and a reducing agent is added to the dissolved raw material to produce low-carbon ferrochrome.
 ペラン法において、電気炉には傾動しながら溶解原料を出湯する傾動型電気炉が用いられている。しかし、傾動型電気炉を用いて1次スラグを出湯する際、溶解原料の湯面が大気に露出した状態になる。このため、湯面から大気への熱放散が大きく、熱効率が悪いという課題がある。また、傾動の邪魔になる電極を引き抜いて通電を停止する必要があるので、通電率が低下したり、停炉にともなう熱損失が大きくなったりするという課題がある。 In the Peran method, a tilting electric furnace is used as the electric furnace, in which the molten raw material is discharged while tilting. However, when the primary slag is discharged using a tilting electric furnace, the surface of the molten material is exposed to the atmosphere. Therefore, there is a problem that heat is largely dissipated from the surface of the hot water to the atmosphere and the thermal efficiency is poor. Further, since it is necessary to pull out the electrode that hinders the tilting to stop the energization, there is a problem that the energization rate is lowered and the heat loss due to the shutdown is increased.
 この課題を解決するために、出願人は、傾動型電気炉の替わりに固定型電気炉を用いることを提案している(特許文献1参照)。固定型電気炉では、炉を傾動させることなく、出湯口から溶解原料を出湯する。溶解原料は全量出湯されずに、出湯後に炉の底部に湯溜まりとして残る。固定型電気炉を用いれば、湯溜まり効果によって原料の溶解性(熱効率)が向上する。また、溶解原料を出湯する際、湯面を未溶解の原料によって覆うことができるので、湯面から大気への熱放散を防止することができる。 In order to solve this problem, the applicant proposes to use a fixed electric furnace instead of the tilting electric furnace (see Patent Document 1). In a fixed electric furnace, the molten raw material is discharged from the hot water outlet without tilting the furnace. Not all of the dissolved raw material is discharged, but remains as a pool at the bottom of the furnace after the hot water is discharged. If a fixed electric furnace is used, the solubility (thermal efficiency) of the raw material is improved by the effect of the hot water pool. Further, when the dissolved raw material is discharged, the surface of the molten metal can be covered with the undissolved raw material, so that heat dissipation from the surface of the molten metal to the atmosphere can be prevented.
特開昭64-52013号公報Japanese Unexamined Patent Publication No. 64-52013
 しかし、クロム鉱石と生石灰を溶解させた溶解原料は、高粘性、高融点であり、吹き上げやすいという課題がある。溶解原料が吹き上げると、吹き上げた溶解原料が固化するので、再溶解しなければならず、熱損失となる。 However, the dissolved raw material in which chromium ore and quicklime are dissolved has a high viscosity and a high melting point, and has a problem that it is easy to blow up. When the dissolved raw material is blown up, the blown-up dissolved raw material is solidified and must be redissolved, resulting in heat loss.
 そこで、本発明の第1の課題は、溶解原料の吹き上げを抑制し、溶解性を上げ、電力原単位を低減できる低炭素フェロクロムの製造方法を提供することにある。 Therefore, the first object of the present invention is to provide a method for producing low-carbon ferrochrome that can suppress the blow-up of the dissolved raw material, increase the solubility, and reduce the electric power intensity.
 ところで、傾動型電気炉の場合、原料を溶解した状態と炉内を空にした状態とを繰り返すので、加熱と冷却が繰り返し行われ、温度差が大きく、耐火物がスポーリングにより剥離・溶損するという課題がある。このため、1年に数回程度、炉内を空にした状態で耐火物を張り替える必要がある。 By the way, in the case of a tilting electric furnace, since the state where the raw material is melted and the state where the inside of the furnace is emptied are repeated, heating and cooling are repeated, the temperature difference is large, and the refractory is peeled off and melted by spalling. There is a problem. For this reason, it is necessary to replace the refractory with the furnace empty several times a year.
 固定型電気炉の場合、傾動型電気炉ほど温度差が大きくないので、傾動型電気炉ほど耐火物は溶損しない。しかし、炉内に常時湯溜まりが存在するので、耐火物が一旦溶損すると、簡単には耐火物を張り替えられないという課題がある。耐火物が溶損すると、停炉し、冷却・固化させた1次スラグを掘り上げ、耐火物の解体・築炉をしなければならない。このため、長期に亘って停炉する必要がある。 In the case of a fixed electric furnace, the temperature difference is not as large as that of a tilting electric furnace, so the refractory does not melt as much as the tilting electric furnace. However, since there is always a pool of hot water in the furnace, there is a problem that once the refractory is melted, the refractory cannot be easily replaced. When the refractory is melted, the furnace must be stopped, the cooled and solidified primary slag must be dug up, and the refractory must be dismantled and built. Therefore, it is necessary to stop the furnace for a long period of time.
 そこで、本発明の第2の課題は、固定型電気炉の耐火物が溶損するのを防止できる低炭素フェロクロムの製造方法を提供することにある。 Therefore, a second object of the present invention is to provide a method for producing low carbon ferrochrome that can prevent the refractory of a fixed electric furnace from being melted.
 上記第1の課題を解決するために、本発明の第1の態様は、クロム鉱石と生石灰を原料とし、それらを電気炉で溶解した溶解原料を出湯し、前記溶解原料に還元剤を加えて低炭素フェロクロムを製造する方法において、前記電気炉に出湯後に湯溜まりを残す固定型電気炉を用い、電極の設定電流と設定電圧との比(設定電流/設定電圧)を30A/V以上150A/V以下に設定する低炭素フェロクロムの製造方法である。 In order to solve the first problem, the first aspect of the present invention is to use chrome ore and fresh lime as raw materials, melt the dissolved raw material in an electric furnace, and add a reducing agent to the dissolved raw material. In the method for producing low carbon ferrochrome, a fixed electric furnace that leaves a pool of hot water after hot water is discharged to the electric furnace is used, and the ratio of the set current of the electrode to the set voltage (set current / set voltage) is 30 A / V or more and 150 A / This is a method for producing low carbon ferrochrome set to V or less.
 上記第1の課題を解決するために、本発明の第2の態様は、クロム鉱石と生石灰を原料とし、それらを電気炉で溶解した溶解原料を出湯し、前記溶解原料に還元剤を加えて低炭素フェロクロムを製造する方法において、前記電気炉に出湯後に湯溜まりを残す固定型電気炉を用い、前記固定型電気炉の電流貫流面における平均電力密度を500kW/m以上3000kW/m以下に設定する低炭素フェロクロムの製造方法である。 In order to solve the first problem, the second aspect of the present invention is to use chrome ore and fresh lime as raw materials, melt the dissolved raw material in an electric furnace, and add a reducing agent to the dissolved raw material. In the method for producing low carbon ferrochrome, a fixed electric furnace that leaves a pool of hot water after hot water is discharged into the electric furnace is used, and the average power density on the current flow surface of the fixed electric furnace is 500 kW / m 2 or more and 3000 kW / m 2 or less. It is a production method of low carbon ferrochrome set to.
 上記第2の課題を解決するために、本発明の第3の態様は、クロム鉱石と生石灰を原料とし、それらを電気炉で溶解した溶解原料を出湯し、前記溶解原料に還元剤を加えて低炭素フェロクロムを製造する方法において、前記電気炉に出湯後に湯溜まりを残す固定型電気炉を用い、前記固定型電気炉の前記溶解原料のMgOとAlの質量比(MgO/Al)を0.5以上1.5以下に調整し、前記固定型電気炉の耐火物の内側にクロムスピネル型のセルフライニング層を形成する低炭素フェロクロムの製造方法である。 In order to solve the second problem, the third aspect of the present invention is to use chrome ore and magnesium oxide as raw materials, dissolve them in an electric furnace, and add a reducing agent to the dissolved raw materials. In the method for producing low carbon ferrochrome, a fixed electric furnace that leaves a pool of hot water in the electric furnace is used, and the mass ratio of MgO and Al 2 O 3 (MgO / Al 2) of the melting raw material of the fixed electric furnace is used. This is a method for producing low carbon ferrochrome in which O 3 ) is adjusted to 0.5 or more and 1.5 or less to form a chromium spinel type self-flying layer inside the refractory of the fixed electric furnace.
 溶解原料の吹き上げ現象は、電極が溶解原料に没入することに起因する。電極が溶解原料に没入すると、電極のカーボンと溶解原料が反応してCOガスが発生し、COガスが溶解原料を吹き上げる。本発明の第1の態様によれば、固定型電気炉の湯溜まり効果によって原料の溶解性が向上しているので、電極の昇降を制御する際の電極の設定電流と設定電圧との比を小さく、すなわち高電圧かつ低電流に設定することができる。このため、電極下端と溶解原料の湯面との距離を長くすることができ、電極が溶解原料に没入するのを防止することができる。 The phenomenon of blowing up the dissolved raw material is caused by the electrode being immersed in the dissolved raw material. When the electrode is immersed in the dissolved raw material, the carbon of the electrode reacts with the dissolved raw material to generate CO gas, and the CO gas blows up the dissolved raw material. According to the first aspect of the present invention, since the solubility of the raw material is improved by the hot water pooling effect of the fixed electric furnace, the ratio of the set current of the electrode to the set voltage when controlling the ascending / descending of the electrode is determined. It can be set to a small value, that is, a high voltage and a low current. Therefore, the distance between the lower end of the electrode and the surface of the molten material can be increased, and the electrode can be prevented from being immersed in the dissolved raw material.
 本発明の第2の態様によれば、固定型電気炉の湯溜まり効果によって原料の溶解性が向上しているので、電流貫流面における平均電力密度(原料を溶解させるための電力密度)を小さく設定することができる。このため、炉心部の熱集中、スーパーヒートを緩和でき、溶解原料に突沸吹き上げ現象が発生するのを防止できる。 According to the second aspect of the present invention, since the solubility of the raw material is improved by the hot water pooling effect of the fixed electric furnace, the average power density (power density for melting the raw material) on the current transmission surface is reduced. Can be set. Therefore, the heat concentration and super heat in the core portion can be alleviated, and the sudden boiling-up phenomenon can be prevented from occurring in the molten raw material.
 本発明の第3の態様によれば、固定型電気炉の耐火物の内側にクロムスピネル型のセルフライニング層(Crクロマイト系耐火物と同等の耐火物)を形成するので、固定型電気炉の耐火物が溶損するのを防止でき、長期にわたって無補修とすることができる。 According to the third aspect of the present invention, a chromium spinel type refractory layer ( a refractory equivalent to a Cr 2 O 3 chromate refractory) is formed inside the refractory of a fixed electric furnace, so that the refractory is a fixed type. It is possible to prevent the refractory of the electric furnace from melting and damage it, and it can be left unrepaired for a long period of time.
本発明の一実施形態の低炭素フェロクロムの製造方法の工程図である。It is a process drawing of the manufacturing method of the low carbon ferrochrome of one Embodiment of this invention. 本実施形態の低炭素フェロクロムの製造方法で用いる固定型電気炉の縦断面図である。It is a vertical sectional view of the fixed electric furnace used in the manufacturing method of low carbon ferrochrome of this embodiment. 上記固定型電気炉の回路図である。It is a circuit diagram of the said fixed type electric furnace. 上記固定型電気炉の横断面図である。It is a cross-sectional view of the fixed type electric furnace. Cr-MgO-Alの状態図である。It is a phase diagram of Cr 2 O 3- Mg O-Al 2 O 3. 炉体温度の推移を示すグラフである。It is a graph which shows the transition of the furnace body temperature.
 以下、添付図面に基づいて、本発明の実施形態の低炭素フェロクロムの製造方法を詳細に説明する。ただし、本発明の低炭素フェロクロムの製造方法は種々の形態で具体化することができ、本明細書に記載される実施形態に限定されるものではない。本実施形態は、明細書の開示を十分にすることによって、当業者が発明の範囲を十分に理解できるようにする意図をもって提供されるものである。 Hereinafter, the method for producing low carbon ferrochrome according to the embodiment of the present invention will be described in detail based on the attached drawings. However, the method for producing a low-carbon ferrochrome of the present invention can be embodied in various forms, and is not limited to the embodiments described in the present specification. The present embodiment is provided with the intention of allowing those skilled in the art to fully understand the scope of the invention by making sufficient disclosure of the specification.
 図1は、本発明の一実施形態の低炭素フェロクロムの製造方法の工程図である。図1に示すように、本実施形態の低炭素フェロクロムの製造方法は、まず、クロム鉱石と媒溶剤である生石灰を原料とし、これらを固定型電気炉内で溶解させて溶解原料を生成する。そして、溶解原料を固定型電気炉の出湯口から反応容器に出湯する(S1)。 FIG. 1 is a process diagram of a method for producing a low-carbon ferrochrome according to an embodiment of the present invention. As shown in FIG. 1, in the method for producing low-carbon ferrochrome of the present embodiment, first, chromium ore and quicklime as a medium solvent are used as raw materials, and these are dissolved in a fixed electric furnace to produce a dissolved raw material. Then, the molten raw material is discharged into the reaction vessel from the outlet of the fixed electric furnace (S1).
 次に、溶解原料を出湯した反応容器に、還元剤としてのシリコクロム、追装クロム鉱石を添加し、反応容器に不活性ガスを底吹きすることにより攪拌する(S2)。なお、反応容器として2基の取鍋を用い、2基の取鍋の間でリレードリングを行うことで攪拌してもよい。 Next, silicochrome as a reducing agent and chasing chromium ore are added to the reaction vessel from which the dissolved raw material is discharged, and the reaction vessel is stirred by bottom-blowing an inert gas (S2). It should be noted that two pans may be used as reaction vessels, and stirring may be performed by relaying between the two pans.
 クロム鉱石中の酸化クロムとシリコンとの還元反応は以下のように進む。
 Cr+3/2Si→2Cr+3/2SiO…(1)
 ここで、遊離したSiOは、以下の(2)(3)のように生石灰と反応し、スラグが生成する。
 CaO+SiO→CaO・SiO…(2)
 2CaO+SiO→2CaO・SiO…(3)
 (2)(3)のようにスラグが生成すると、(1)の遊離のSiOが少なくなり、(1)の還元反応は左から右に進む。
The reduction reaction between chromium oxide and silicon in the chromium ore proceeds as follows.
Cr 2 O 3 + 3/2Si → 2Cr + 3/2SiO 2 … (1)
Here, the liberated SiO 2 reacts with quicklime as described in (2) and (3) below to form slag.
CaO + SiO 2 → CaO ・ SiO 2 … (2)
2CaO + SiO 2 → 2CaO ・ SiO 2 … (3)
(2) When slag is generated as in (3), the amount of free SiO 2 in (1) decreases, and the reduction reaction in (1) proceeds from left to right.
 還元反応によって生成した低炭素フェロクロムの溶湯は、鋳型に鋳込まれて製品となる。製品の低炭素フェロクロムは、Crを60質量%以上、Siを1.0質量%以下、Cを0.1質量%以下含む。一方、還元反応によって生成したスラグは、低炭素フェロクロムの溶湯から分離される。 The molten low-carbon ferrochrome produced by the reduction reaction is cast into a mold to become a product. The low carbon ferrochrome of the product contains 60% by mass or more of Cr, 1.0% by mass or less of Si, and 0.1% by mass or less of C. On the other hand, the slag produced by the reduction reaction is separated from the molten low-carbon ferrochrome.
 なお、上記実施形態では、還元剤にシリコクロムを用いているが、シリコクロムの他に金属ケイ素等のシリコン系還元剤を用いてもよい。また、シリコン系還元剤の他にアルミ若しくはアルミ合金等のアルミニウム系還元剤、マグネシウム若しくはマグネシウム合金等のマグネシウム系還元剤、又はカルシウム若しくはカルシウム合金等のカルシウム系還元剤を用いてもよい。さらに、これらの還元剤の混合物を用いてもよい。 Although siliconochrome is used as the reducing agent in the above embodiment, a silicon-based reducing agent such as metallic silicon may be used in addition to silicochrome. Further, in addition to the silicon-based reducing agent, an aluminum-based reducing agent such as aluminum or an aluminum alloy, a magnesium-based reducing agent such as magnesium or a magnesium alloy, or a calcium-based reducing agent such as calcium or a calcium alloy may be used. Further, a mixture of these reducing agents may be used.
 図2は、本実施形態の方法に使用する固定型電気炉の縦断面図である。電気炉には、固定型電気炉1を用いる。炉体には、3本の電極(図2には省略して2本の電極4a,4bを示す)が挿入される。電極4a,4bの先端は、原料シュート5より装入されたクロム鉱石と生石灰の原料11に埋まる。電極4a,4bの通電によって、原料11を溶解させて溶解原料12を形成する。溶解原料12を形成した後に、出湯口2に充填されたマッド材6を取り除いて、出湯口2から溶解原料12の出湯を行う。溶解原料12を出湯する際、溶解原料12の湯面は未溶解の原料11で覆われる。出湯後、溶解原料12のレベルは出湯口2のレベルまで下がるが、出湯口2のレベル以下には溶解原料12が湯溜まりとして残る。原料11の装入、溶解、出湯は、電極4a,4bに通電した状態で繰り返し行われる。7は炉底、8は鉄皮である。鉄皮8の内側には耐火物9が設けられる。9a,9bは耐火物9のレンガ、9cは耐火物9のスタンプである。10a,10bは電極ホルダである。なお、上記実施形態では、出湯後の溶解原料12の湯面レベルを出湯口2のレベルに合わせているが、出湯後の溶解原料12の湯面レベルを出湯口2よりも高い所定のレベルに合わせてもよい。 FIG. 2 is a vertical sectional view of a fixed electric furnace used in the method of the present embodiment. A fixed electric furnace 1 is used as the electric furnace. Three electrodes (two electrodes 4a and 4b are omitted in FIG. 2 are shown) are inserted into the furnace body. The tips of the electrodes 4a and 4b are embedded in the raw material 11 of chromium ore and quicklime charged from the raw material chute 5. By energizing the electrodes 4a and 4b, the raw material 11 is melted to form the dissolved raw material 12. After forming the melting raw material 12, the mud material 6 filled in the hot water outlet 2 is removed, and the hot water of the melting raw material 12 is discharged from the hot water outlet 2. When the dissolved raw material 12 is discharged, the surface of the dissolved raw material 12 is covered with the undissolved raw material 11. After the hot water is discharged, the level of the dissolved raw material 12 drops to the level of the hot water outlet 2, but the dissolved raw material 12 remains as a hot water pool below the level of the hot water outlet 2. The charging, melting, and hot water discharge of the raw material 11 are repeatedly performed with the electrodes 4a and 4b energized. 7 is the bottom of the furnace and 8 is the iron skin. A refractory material 9 is provided inside the iron skin 8. 9a and 9b are bricks of refractory 9, and 9c is a stamp of refractory 9. Reference numerals 10a and 10b are electrode holders. In the above embodiment, the hot water level of the melting raw material 12 after hot water is adjusted to the level of the hot water outlet 2, but the hot water level of the melting raw material 12 after hot water is set to a predetermined level higher than that of the hot water outlet 2. You may match.
 h1は炉深さ、すなわち炉底7から上部リング14の下面までの距離である。h2は湯溜まり深さ、すなわち炉底7から出湯後の溶解原料12の湯面レベルまでの距離(本実施形態では炉底7から出湯口2までの距離)である。湯溜まり深さh2と炉深さh1との比(h2/h1)は、0.2以上0.6以下に設定される。0.6を超えると、出湯量が少なくなりすぎるからである。また、0.2未満であると、残湯量が少なすぎて、湯溜まり効果(原料11の溶解性向上の効果)が少ないからである。 H1 is the furnace depth, that is, the distance from the furnace bottom 7 to the lower surface of the upper ring 14. h2 is the depth of the hot water pool, that is, the distance from the bottom 7 to the level of the molten metal 12 after hot water is discharged (in the present embodiment, the distance from the bottom 7 to the hot water outlet 2). The ratio (h2 / h1) of the pool depth h2 to the furnace depth h1 is set to 0.2 or more and 0.6 or less. This is because if it exceeds 0.6, the amount of hot water discharged becomes too small. On the other hand, if it is less than 0.2, the amount of residual hot water is too small, and the effect of collecting hot water (the effect of improving the solubility of the raw material 11) is small.
 図3は、固定型電気炉の回路図である。21は遮断器、22は変圧器、4a,4b,4cは電極、3は炉体、23は電極4cに流れる電流(実電流)を検出する電流検出器、24は電極4cと接地された炉体3との間の電圧(実電圧)を検出する電圧検出器、25は電極4cを昇降させる電極昇降装置のモータ、26は電極4cの昇降を制御する電極昇降制御装置、27はモータ25に電力を供給するインバータである。なお、図3では簡略化されており、実際には電流検出器23、電圧検出器24、モータ25、電極昇降制御装置26、インバータ27は、3相の相毎に設けられる。3本の電極4a,4b,4cは、1本毎に昇降制御される。 FIG. 3 is a circuit diagram of a fixed electric furnace. 21 is a breaker, 22 is a transformer, 4a, 4b, 4c are electrodes, 3 is a furnace body, 23 is a current detector that detects the current (actual current) flowing through the electrode 4c, and 24 is a furnace grounded with the electrode 4c. A voltage detector that detects the voltage (actual voltage) between the body 3 and 25 is a motor of an electrode elevating device that raises and lowers the electrode 4c, 26 is an electrode elevating control device that controls the elevating and lowering of the electrode 4c, and 27 is a motor 25. It is an inverter that supplies power. Note that, in FIG. 3, the current detector 23, the voltage detector 24, the motor 25, the electrode elevating control device 26, and the inverter 27 are actually provided for each of the three phases. The three electrodes 4a, 4b, and 4c are controlled to be raised and lowered one by one.
 電極昇降制御装置26は、電極4a,4b,4cの実電流と実電圧を入力信号とし、実電流と実電圧の比(実電流/実電圧)が設定値(設定電流/設定電圧)になるように電極4a,4b,4cを昇降制御する。実電圧に比して実電流の割合が設定値より大きくなったとき、すなわちインピーダンスが低下したとき、電極昇降制御装置26は、電極4a,4b,4cを上昇させる速度信号をインバータ27に出力し、逆に実電圧に比して実電流の割合が設定値より小さくなったとき、すなわちインピーダンスが大きくなったとき、電極4a,4b,4cを下降させる速度信号をインバータ27に出力する。このように、実電流と実電圧の比、すなわちインピーダンスが一定になるように制御することを、一般にインピーダンス一定制御と呼んでいる。 The electrode elevating control device 26 uses the actual current and the actual voltage of the electrodes 4a, 4b, and 4c as input signals, and the ratio of the actual current to the actual voltage (actual current / actual voltage) becomes a set value (set current / set voltage). The electrodes 4a, 4b, and 4c are controlled to move up and down as described above. When the ratio of the actual current to the actual voltage becomes larger than the set value, that is, when the impedance drops, the electrode elevating control device 26 outputs a speed signal for raising the electrodes 4a, 4b, 4c to the inverter 27. On the contrary, when the ratio of the actual current to the actual voltage becomes smaller than the set value, that is, when the impedance becomes large, the speed signal for lowering the electrodes 4a, 4b, 4c is output to the inverter 27. Controlling the ratio of the actual current to the actual voltage, that is, the impedance to be constant in this way is generally called constant impedance control.
 電極4a,4b,4cの昇降を制御する際の設定値、すなわち設定電流と設定電圧の比(設定電流/設定電圧)を大きくすれば、電極4a,4b,4cと湯面の距離を小さくでき、熱集中型となり、溶解性が向上する場合もあるが、必要以上のスーパーヒートにより、逆に溶解効率が低下し、溶解帯が小さくなる。固定型電気炉の湯溜まり効果によって原料の溶解性が向上していることからも、設定電流と設定電圧の比(設定電流/設定電圧)を30A/V以上150A/V以下に小さく、すなわち高電圧かつ低電流に設定する。これにより、電極4a,4b,4cの下端と溶解原料12の湯面との距離を長くし、電極4a,4b,4cが溶解原料12に没入するのを防止する。30A/V未満では、原料11の溶解性が低下する。150A/Vを超えると、設定電圧に比して設定電流の割合が高くなり、電極4a,4b,4cが溶解原料12に没入するおそれがある。 By increasing the set value when controlling the ascent and descent of the electrodes 4a, 4b, 4c, that is, the ratio of the set current to the set voltage (set current / set voltage), the distance between the electrodes 4a, 4b, 4c and the molten metal surface can be reduced. In some cases, it becomes a heat-concentrated type and the solubility is improved, but on the contrary, the melting efficiency is lowered and the melting zone is reduced by super heat more than necessary. The ratio of the set current to the set voltage (set current / set voltage) is small, that is, high, to 30 A / V or more and 150 A / V or less because the solubility of the raw material is improved by the effect of the hot water pool in the fixed electric furnace. Set to voltage and low current. As a result, the distance between the lower ends of the electrodes 4a, 4b, 4c and the molten metal surface of the dissolution raw material 12 is increased, and the electrodes 4a, 4b, 4c are prevented from being immersed in the dissolution raw material 12. If it is less than 30 A / V, the solubility of the raw material 11 decreases. If it exceeds 150 A / V, the ratio of the set current becomes higher than the set voltage, and the electrodes 4a, 4b, and 4c may be immersed in the dissolved raw material 12.
 表1は、設定電流と設定電圧の比(A/V)が電極の没入度及び吹き上げ現象に及ぼす影響を検討した結果を示す。表1に示すように、A/Vが150A/Vを超えると、溶解原料への電極の没入度が大きくなり、吹き上げ現象が多発するのに対し、150A/V以下では、目立った電極の没入及び吹き上げ現象が発生せずに良好となる。また、30A/V未満では、電極の没入及び吹き上げ現象は発生しないが、溶解不十分となる。最適な設定電流と設定電圧の比は、30A/V以上150A/V以下である。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the results of examining the effects of the ratio of the set current to the set voltage (A / V) on the immersiveness of the electrodes and the blow-up phenomenon. As shown in Table 1, when the A / V exceeds 150 A / V, the degree of immersion of the electrode in the dissolved raw material becomes large and the blow-up phenomenon occurs frequently, whereas when the A / V is 150 A / V or less, the immersion of the electrode is conspicuous. And it becomes good without the blow-up phenomenon occurring. Further, if it is less than 30 A / V, the immersion of the electrode and the blow-up phenomenon do not occur, but the dissolution becomes insufficient. The optimum ratio of the set current to the set voltage is 30 A / V or more and 150 A / V or less.
Figure JPOXMLDOC01-appb-T000001
 図4は、固定型電気炉1の横断面図である。3は炉体、31は炉壁、4a,4b,4cは電極、32a,32b,32cは電流貫流面(反応帯とも呼ばれる)、Rは炉壁の内法の直径、dは配置円の直径、Dは電極の直径、rは電流貫流面の半径である。配置円の直径dは1.0m以上2.2m以下に設定される。配置円上には、3本の電極4a,4b,4cが等間隔で配置される。3つの電流貫流面32a,32b,32cの半径rは同一である。電流貫流面32a,32b,32cの半径rは、隣接する電流貫流面32a,32b,32cが接するように設定される。 FIG. 4 is a cross-sectional view of the fixed electric furnace 1. 3 is the furnace body, 31 is the furnace wall, 4a, 4b, 4c are the electrodes, 32a, 32b, 32c are the current flow planes (also called reaction zones), R is the inner diameter of the furnace wall, and d is the diameter of the arrangement circle. , D is the diameter of the electrode, and r is the radius of the current transmission surface. The diameter d of the arrangement circle is set to 1.0 m or more and 2.2 m or less. Three electrodes 4a, 4b, and 4c are arranged at equal intervals on the arrangement circle. The radii r of the three current transmission surfaces 32a, 32b, and 32c are the same. The radius r of the current transmission surfaces 32a, 32b, 32c is set so that the adjacent current transmission surfaces 32a, 32b, 32c are in contact with each other.
 電流貫流面における平均電力密度(kW/m)は、電力/3πrで表される。電力(kW)=√3・I・V・cosψで表される。ここで、Iは実電流、Vは実電圧、ψは力率である。3πrは、電流貫流面の面積である。電流貫流面における平均電力密度が大きければ、原料11の溶解性が向上する。しかし、固定型電気炉1の湯溜まり効果によって原料11の溶解性が向上しているので、電流貫流面における平均電力密度を500kW/m以上3000kW/m以下に小さく設定する。これにより、炉心部の熱集中、スーパーヒートを緩和でき、溶解原料12に突沸吹き上げ現象が発生するのを防止できる。500kW/m未満では、炉心部が熱不足となり、出湯に弊害が生じる。3000kW/mを越えると、炉心部に熱集中、スーパーヒートが発生し、溶解原料12の突沸吹き上げ現象が発生する。 The average power density (kW / m 2 ) on the current flow surface is represented by power / 3πr 2. Electric power (kW) = √3 ・ IV ・ cosψ. Here, I is the actual current, V is the actual voltage, and ψ is the power factor. 3πr 2 is the area of the current transmission surface. If the average power density on the current transmission surface is large, the solubility of the raw material 11 is improved. However, since the solubility of the raw material 11 is improved by the hot water pooling effect of the fixed electric furnace 1, the average power density on the current transmission surface is set small to 500 kW / m 2 or more and 3000 kW / m 2 or less. As a result, the heat concentration and super heat in the core portion can be alleviated, and the sudden boiling-up phenomenon can be prevented from occurring in the molten material 12. If it is less than 500 kW / m 2 , the core portion becomes insufficient in heat, which causes an adverse effect on hot water discharge. When it exceeds 3000 kW / m 2 , heat concentration and super heat are generated in the core portion, and a sudden boiling blow-up phenomenon of the molten raw material 12 occurs.
 表2は、直径が互いに異なるA炉とB炉において、電流貫流面における平均電力密度が吹き上げ現象に及ぼす影響を検討した結果を示す。表2に示すように、平均電力密度が3000kW/mを越えると、吹き上げ現象が多発するのに対し、3000kW/m未満では、目立った吹き上げ現象が発生せずに良好となる。また、500kW/m未満では、吹き上げ現象は発生しないが、溶解不十分となる。最適な平均電力密度は、500kW/m以上3000kW/m以下である。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the results of examining the effect of the average power density on the current transmission surface on the blow-up phenomenon in the A and B furnaces having different diameters. As shown in Table 2, when the average power density exceeds 3000 kW / m 2 , the blow-up phenomenon frequently occurs, whereas when the average power density is less than 3000 kW / m 2 , no noticeable blow-up phenomenon occurs and the power density is good. Further, if it is less than 500 kW / m 2 , the blowing-up phenomenon does not occur, but the dissolution becomes insufficient. The optimum average power density is 500 kW / m 2 or more and 3000 kW / m 2 or less.
Figure JPOXMLDOC01-appb-T000002
 再び図2に示すように、固定型電気炉1で原料11を溶解する際、溶解原料12のMgOとAlの質量比(MgO/Al)は、0.5以上1.5以下に調整される。具体的には、固定型電気炉1から溶解原料12を出湯する際、溶解原料12の組成を分析し、溶解原料12のMgOとAlの質量比(MgO/Al)が0.5以上1.5以下になるように原料11を調整する。原料11のクロム鉱石には、MgOの含有量が高いクロム鉱石やAlの含有量が高いクロム鉱石が存在する。MgOとAlの質量比が低い場合、MgOの含有量が高いクロム鉱石の配合量を増やし、MgOとAlの質量比が高い場合、Alの含有量が高いクロム鉱石の配合量を増やす。クロム鉱石だけで調整しきれない場合、MgO源及び/又はAl源を装入する。そして、耐火物9の内側に図中斜線で示すクロムスピネル型のセルフライニング層51を形成する。このセルフライニング層51により耐火物9の溶損を防止する。0.5未満であると、セルフライニング層51の溶損が激しくなり、十分なセルフライニング層51が形成されない。1.5を超えると、原料の溶解が不十分となり、溶解帯が小さくなる。また、溶解原料12の粘性が高くなり、出湯に弊害が生じる。 As shown in FIG. 2 again, when the raw material 11 is melted in the fixed electric furnace 1, the mass ratio (MgO / Al 2 O 3 ) of MgO and Al 2 O 3 of the melting raw material 12 is 0.5 or more. Adjusted to 5 or less. Specifically, when the molten raw material 12 is discharged from the fixed electric furnace 1, the composition of the dissolved raw material 12 is analyzed, and the mass ratio of MgO and Al 2 O 3 (MgO / Al 2 O 3 ) of the dissolved raw material 12 is determined. The raw material 11 is adjusted so as to be 0.5 or more and 1.5 or less. The chrome ore of the raw material 11, the content of high content of chromium ore, Al 2 O 3, or the the MgO is present a high chrome ore. When the mass ratio of MgO and Al 2 O 3 is low, increasing the amount of high content of chromium ore MgO, when the mass ratio of MgO and Al 2 O 3 is high, the content of Al 2 O 3 is high chromium Increase the amount of ore compounded. If that can not be adjusted by chromium ore is charged with MgO source and / or Al 2 O 3 source. Then, a chromium spinel-type self-flying layer 51 shown by diagonal lines in the figure is formed inside the refractory material 9. The self-flying layer 51 prevents the refractory 9 from being melted. If it is less than 0.5, the self-flying layer 51 is severely melted and a sufficient self-flying layer 51 is not formed. If it exceeds 1.5, the raw material is insufficiently dissolved and the dissolution zone becomes small. In addition, the viscosity of the dissolved raw material 12 becomes high, which causes an adverse effect on hot water discharge.
 部分的な過電力等により、耐火物9に部分的溶損部52が発生した場合、MgOの含有量が高いクロム鉱石及び/又はMgO源を部分的溶損部52の近傍に集中的に装入する。そして、溶解原料12のMgOとAlの質量比を上記の範囲に調整し、部分的溶損部52の近傍に集中的にクロムスピネル型のセルフライニング層51を形成する。これにより、部分的溶損部52を補修する。 When a partially melted portion 52 is generated in the refractory due to partial overpower or the like, a chromium ore having a high MgO content and / or an MgO source is concentrated in the vicinity of the partially melted portion 52. Enter. Then, the mass ratio of MgO and Al 2 O 3 of the melting raw material 12 is adjusted to the above range, and the chromium spinel type self-flying layer 51 is intensively formed in the vicinity of the partially melted portion 52. As a result, the partially melted portion 52 is repaired.
 図5は、Cr-MgO-Alの状態図である。図5に示すように、溶解原料12のCr:MgO:Alをモル比で38.5%:44.7%:16.8%に調整すれば、クロムスピネル53を形成することができる。 FIG. 5 is a state diagram of Cr 2 O 3- Mg O-Al 2 O 3. As shown in FIG. 5, if Cr 2 O 3 : MgO: Al 2 O 3 of the dissolution raw material 12 is adjusted to a molar ratio of 38.5%: 44.7%: 16.8%, a chromium spinel 53 is formed. can do.
 表3には、溶解原料12の組成を示す。溶解原料12のMgO:Alを質量比で1:1に調整すれば、溶解原料12のMgO:Alをモル比で44.7%:16.8%に調整することができる。なお、溶解原料12のCrの質量はMgOやAlに比べて十分に大きく、モル比を上記のように調整するのは容易である。 Table 3 shows the composition of the dissolution raw material 12. MgO raw material for melting 12: the Al 2 O 3 in a weight ratio of 1: be adjusted to 1, MgO raw material for melting 12: 44.7% of Al 2 O 3 molar ratio: be adjusted to 16.8% it can. The mass of Cr 2 O 3 of the dissolution raw material 12 is sufficiently larger than that of Mg O and Al 2 O 3, and it is easy to adjust the molar ratio as described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図1の製造工程図に従って低炭素フェロクロムを製造した。表4には、(1)原料の使用量、(2)固定型電気炉の電力使用量、(3)溶解原料の出湯量、(4)副原料の使用量、(5)低炭素フェロクロムとスラグの製造量、(6)溶解電力原単位を示す。 Low carbon ferrochrome was produced according to the production process diagram of FIG. Table 4 shows (1) the amount of raw materials used, (2) the amount of electricity used in the fixed electric furnace, (3) the amount of hot water discharged from the dissolved raw materials, (4) the amount of auxiliary materials used, and (5) the amount of low-carbon ferrochrome. The amount of slag produced and (6) dissolved power intensity are shown.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表5には、固定型電気炉(直径が互いに異なるA炉とB炉)の操業条件を示す。 Table 5 shows the operating conditions of fixed electric furnaces (A furnace and B furnace having different diameters).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1に示すように、電極の設定電流と設定電圧との比(設定電流/設定電圧)を85A/Vに設定し、電流貫流面における平均電力密度を1200kW/mに設定したところ、目立った溶解原料の吹き上げが発生しなかった。実施例2に示すように、設定電流/設定電圧を145A/Vに設定し、電流貫流面における平均電力密度を1150kW/mに設定した場合も、目立った溶解原料の吹き上げが発生しなかった。実施例3に示すように、設定電流/設定電圧を60A/Vに設定し、電流貫流面における平均電力密度を2350kW/mに設定したところ、目立った溶解原料の吹き上げが発生しなかった。 As shown in Example 1, the ratio of the set current of the electrode to the set voltage (set current / set voltage) was set to 85 A / V, and the average power density on the current transmission surface was set to 1200 kW / m 2. No noticeable blow-up of the dissolved raw material occurred. As shown in Example 2, even when the set current / set voltage was set to 145 A / V and the average power density on the current transmission surface was set to 1150 kW / m 2 , no noticeable blow-up of the dissolved raw material occurred. .. As shown in Example 3, when the set current / set voltage was set to 60 A / V and the average power density on the current transmission surface was set to 2350 kW / m 2 , no conspicuous blow-up of the dissolved raw material occurred.
 一方、比較例1に示すように、電極の設定電流と設定電圧との比(設定電流/設定電圧)を160A/Vに設定したところ、電極が溶解原料に没入し、COガスが発生し、溶解原料の吹き上げが多発した。 On the other hand, as shown in Comparative Example 1, when the ratio of the set current of the electrode to the set voltage (set current / set voltage) was set to 160 A / V, the electrode was immersed in the dissolved raw material and CO gas was generated. Blow-up of dissolved raw material occurred frequently.
 比較例2に示すように、電流貫流面における平均電力密度を3100kW/mに設定したところ、炉心部に熱集中が発生し、溶解原料の吹き上げが多発した。 As shown in Comparative Example 2, when the average power density on the current transmission surface was set to 3100 kW / m 2 , heat concentration occurred in the core portion, and the molten raw material was blown up frequently.
 比較例3に示すように、傾動型電気炉を用いた場合、湯面から大気への熱放散が大きく、また、通電率が低下するので、溶解電力原単位kWh/tが1350という大きい値であった。 As shown in Comparative Example 3, when a tilting electric furnace is used, heat is largely dissipated from the molten metal surface to the atmosphere and the energization rate is lowered, so that the dissolved power basic unit kWh / t is as large as 1350. there were.
 溶解原料のMgOとAlの質量比(MgO/Al)が0.5以上1.5以下になるように原料を調整し、耐火物の内側にクロムスピネル型のセルフライニング層を形成した。図2に示すように、炉体3の側壁と炉底7に温度センサ17a,17b,17cを取り付け、これらの温度を測定した。温度センサ17aは、炉体3の側壁の上部に円周方向に均等間隔を開けて複数設けた。温度センサ17bは、炉体3の側壁の下部に円周方向に均等間隔を開けて複数設けた。 Adjust the raw material so that the mass ratio of MgO and Al 2 O 3 (MgO / Al 2 O 3 ) of the dissolved raw material is 0.5 or more and 1.5 or less, and chrome spinel type self-flying layer inside the refractory. Was formed. As shown in FIG. 2, temperature sensors 17a, 17b, and 17c were attached to the side wall of the furnace body 3 and the furnace bottom 7, and these temperatures were measured. A plurality of temperature sensors 17a are provided on the upper portion of the side wall of the furnace body 3 at equal intervals in the circumferential direction. A plurality of temperature sensors 17b are provided at the lower part of the side wall of the furnace body 3 at equal intervals in the circumferential direction.
 図6(a)は、炉体温度の推移を示す。図6(a)に示すように、炉体温度は、炉体の側壁と炉底いずれも安定していて、略一定値を保った。 FIG. 6A shows the transition of the furnace body temperature. As shown in FIG. 6A, the furnace body temperature was stable on both the side wall and the bottom of the furnace body and maintained a substantially constant value.
 図6(b)は、耐火物に部分的溶損部が発生した場合の炉体温度の推移を示す。耐火物に部分的溶損部が発生することにより、炉体(特に炉底)の温度が上昇した。このため、図6(b)中A,Bで示すように、2日に亘ってMgOの含有量が高いクロム鉱石を部分的溶損部の近傍に集中的に装入し、MgOとAlの質量比を上記の範囲に調整した。部分的溶損部が補修され、炉体の温度が低下して安定した。 FIG. 6B shows the transition of the furnace body temperature when a partially melted portion is generated in the refractory. The temperature of the furnace body (particularly the bottom of the furnace) rose due to the occurrence of a partially melted part in the refractory. Therefore, as shown by A and B in FIG. 6B, chromium ore having a high MgO content was intensively charged in the vicinity of the partially melted portion for 2 days, and MgO and Al 2 were charged. the weight ratio of O 3 was adjusted to the above range. The partially melted part was repaired, and the temperature of the furnace body dropped and became stable.
 本明細書は、2019年9月6日出願の特願2019-162550に基づく。この内容はすべてここに含めておく。 This specification is based on Japanese Patent Application No. 2019-162550 filed on September 6, 2019. All this content is included here.
1…固定型電気炉
2…出湯口
4a,4b,4c…電極
7…炉底
8…鉄皮
9…耐火物
11…原料
12…溶解原料
51…セルフライニング層
h1…炉深さ
h2…湯溜まり深さ
1 ... Fixed electric furnace 2 ... Hot water outlets 4a, 4b, 4c ... Electrodes 7 ... Furnace bottom 8 ... Iron skin 9 ... Refractory 11 ... Raw material 12 ... Melting raw material 51 ... Self-flying layer h1 ... Furnace depth h2 ... Hot water pool depth

Claims (4)

  1.  クロム鉱石と生石灰を原料とし、それらを電気炉で溶解した溶解原料を出湯し、前記溶解原料に還元剤を加えて低炭素フェロクロムを製造する方法において、
     前記電気炉に出湯後に湯溜まりを残す固定型電気炉を用い、
     電極の設定電流と設定電圧との比(設定電流/設定電圧)を30A/V以上150A/V以下に設定する低炭素フェロクロムの製造方法。
    In a method of producing low-carbon ferrochrome by using chromium ore and quicklime as raw materials, hot water is prepared by dissolving them in an electric furnace, and a reducing agent is added to the dissolved raw materials.
    Using a fixed electric furnace that leaves a pool of hot water in the electric furnace after hot water is discharged,
    A method for producing low carbon ferrochrome in which the ratio of the set current of the electrode to the set voltage (set current / set voltage) is set to 30 A / V or more and 150 A / V or less.
  2.  クロム鉱石と生石灰を原料とし、それらを電気炉で溶解した溶解原料を出湯し、前記溶解原料に還元剤を加えて低炭素フェロクロムを製造する方法において、
     前記電気炉に出湯後に湯溜まりを残す固定型電気炉を用い、
     前記固定型電気炉の電流貫流面における平均電力密度を500kW/m以上3000kW/m以下に設定する低炭素フェロクロムの製造方法。
    In a method of producing low-carbon ferrochrome by using chromium ore and quicklime as raw materials, hot water is prepared by dissolving them in an electric furnace, and a reducing agent is added to the dissolved raw materials.
    Using a fixed electric furnace that leaves a pool of hot water in the electric furnace after hot water is discharged,
    A method for producing low-carbon ferrochrome, in which the average power density on the current-through surface of the fixed electric furnace is set to 500 kW / m 2 or more and 3000 kW / m 2 or less.
  3.  前記固定型電気炉の湯溜まり深さと炉深さとの比(湯溜まり深さ/炉深さ)を0.2以上0.6以下に設定することを特徴とする請求項1又は2に記載の低炭素フェロクロムの製造方法。 The invention according to claim 1 or 2, wherein the ratio of the pool depth of the fixed electric furnace to the furnace depth (pool depth / furnace depth) is set to 0.2 or more and 0.6 or less. A method for producing low carbon ferrochrome.
  4.  クロム鉱石と生石灰を原料とし、それらを電気炉で溶解した溶解原料を出湯し、前記溶解原料に還元剤を加えて低炭素フェロクロムを製造する方法において、
     前記電気炉に出湯後に湯溜まりを残す固定型電気炉を用い、
     前記固定型電気炉の前記溶解原料のMgOとAlの質量比(MgO/Al)を0.5以上1.5以下に調整し、前記固定型電気炉の耐火物の内側にクロムスピネル型のセルフライニング層を形成する低炭素フェロクロムの製造方法。
    In a method of producing low-carbon ferrochrome by using chromium ore and quicklime as raw materials, hot water is prepared by dissolving them in an electric furnace, and a reducing agent is added to the dissolved raw materials.
    Using a fixed electric furnace that leaves a pool of hot water in the electric furnace after hot water is discharged,
    The mass ratio of MgO and Al 2 O 3 (MgO / Al 2 O 3 ) of the melting raw material of the fixed electric furnace is adjusted to 0.5 or more and 1.5 or less, and the inside of the refractory of the fixed electric furnace is adjusted. A method for producing low-carbon ferrochrome that forms a chrome spinel-type self-flying layer.
PCT/JP2020/033512 2019-09-06 2020-09-04 Method for producing low-carbon ferrochromium WO2021045174A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021537965A JP7013111B2 (en) 2019-09-06 2020-09-04 Method for manufacturing low carbon ferrochrome
BR112022003087A BR112022003087A2 (en) 2019-09-06 2020-09-04 Method for producing low carbon ferrochrome
JP2021195845A JP2022019914A (en) 2019-09-06 2021-12-02 Method for producing low carbon ferrochrome

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-162550 2019-09-06
JP2019162550 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021045174A1 true WO2021045174A1 (en) 2021-03-11

Family

ID=74853260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033512 WO2021045174A1 (en) 2019-09-06 2020-09-04 Method for producing low-carbon ferrochromium

Country Status (3)

Country Link
JP (2) JP7013111B2 (en)
BR (1) BR112022003087A2 (en)
WO (1) WO2021045174A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293315A (en) * 2021-04-29 2021-08-24 包头洪盛化工有限责任公司 Method for improving quality and reducing consumption of low-micro-carbon ferrochrome smelting by supplementing silicon outside furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452013A (en) * 1987-08-20 1989-02-28 Nippon Kokan Kk Production of low carbon ferro-chromium
JPH02203189A (en) * 1989-01-30 1990-08-13 Nkk Corp Sprue part of fixed type electric furnace for low-carbon ferrochrome
JP2016114272A (en) * 2014-12-12 2016-06-23 K2システム有限会社 Application method for electric resistance furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452013A (en) * 1987-08-20 1989-02-28 Nippon Kokan Kk Production of low carbon ferro-chromium
JPH02203189A (en) * 1989-01-30 1990-08-13 Nkk Corp Sprue part of fixed type electric furnace for low-carbon ferrochrome
JP2016114272A (en) * 2014-12-12 2016-06-23 K2システム有限会社 Application method for electric resistance furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293315A (en) * 2021-04-29 2021-08-24 包头洪盛化工有限责任公司 Method for improving quality and reducing consumption of low-micro-carbon ferrochrome smelting by supplementing silicon outside furnace

Also Published As

Publication number Publication date
BR112022003087A2 (en) 2022-05-17
JPWO2021045174A1 (en) 2021-11-18
JP2022019914A (en) 2022-01-27
JP7013111B2 (en) 2022-01-31

Similar Documents

Publication Publication Date Title
JP5541423B1 (en) Steelmaking slag reduction treatment device and steelmaking slag reduction treatment system
JP6458531B2 (en) Stirring method in arc type bottom blowing electric furnace
WO2021045174A1 (en) Method for producing low-carbon ferrochromium
JP2009102697A (en) Method for producing molten steel
CN104152632B (en) The method of extra furnace dephosphorization smelted by a kind of intermediate frequency furnace
JP3721154B2 (en) Method for refining molten metal containing chromium
CN102634634A (en) Method for producing high-alloy low-phosphorous steel used for boiler tube by adopting electric-arc furnace
JP2002339014A (en) Method for producing extra low sulfur steel
JP2011084811A (en) Method for producing molten pig iron
JP2008274387A (en) Method for melting cr-containing low alloy steel
Dutta et al. Electric Furnace Processes
JP5135846B2 (en) Operation method of storage furnace
TW202039868A (en) Method for producing chromium-containing molten steel
WO2021241538A1 (en) Operation method of stationary electric furnace
JP7028366B2 (en) Method for manufacturing chromium-containing molten iron
JP2003253322A (en) Method for melting stainless steel in electric furnace
JPS62274020A (en) Method and apparatus for producing high-chromium alloy
JP2023093079A (en) Method for charging reduced iron to electric furnace
CN116900641A (en) High-strength steel cylindrical barrel for underwater pressure-resistant equipment and integrated forging manufacturing method thereof
JP2783894B2 (en) Iron bath smelting reduction method
JP2000111270A (en) Method for melting cold iron source
JP2000146452A (en) Fixed smelting furnace
JP4211631B2 (en) Method for preventing melting of metal hearth of converter reactor
RU2197536C2 (en) Method of making rail steel
JP2010248585A (en) Method and apparatus for refining cast iron

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537965

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003087

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022003087

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220218

122 Ep: pct application non-entry in european phase

Ref document number: 20861742

Country of ref document: EP

Kind code of ref document: A1