JP2000111270A - Method for melting cold iron source - Google Patents

Method for melting cold iron source

Info

Publication number
JP2000111270A
JP2000111270A JP27990298A JP27990298A JP2000111270A JP 2000111270 A JP2000111270 A JP 2000111270A JP 27990298 A JP27990298 A JP 27990298A JP 27990298 A JP27990298 A JP 27990298A JP 2000111270 A JP2000111270 A JP 2000111270A
Authority
JP
Japan
Prior art keywords
iron source
cold iron
molten steel
chamber
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27990298A
Other languages
Japanese (ja)
Inventor
Ryuji Yamaguchi
隆二 山口
Hideaki Mizukami
秀昭 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27990298A priority Critical patent/JP2000111270A/en
Publication of JP2000111270A publication Critical patent/JP2000111270A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To melt a cold iron source with high efficiency which cannot be achieved by a conventional preheating method using exhaust gas. SOLUTION: In a method for melting a cold iron source in an arc furnace 1, a melting chamber 2 and a shaft type preheat chamber 3 directly connected to the melting chamber to preheat and melt a cold iron source 13 in the preheat chamber by generated exhaust gas. While the cold iron source is supplied to the preheat chamber so that the cold iron source is kept present continuously in the preheat chamber and the melting chamber, a projection surface area in which the cold iron source comes into contact with molten steel in the melting chamber and cold iron melting speed are controlled so as to satisfy an expression S<=2W/(T-TL) and the cold iron source in the melting chamber is melted by an arc. When the molten steel for at least one heat is stored in the melting chamber, the molten steel is supplied while the cold iron source continuously exists in the preheat chamber and the melting chamber. At that time, the difference between the molten steel supply temperature and the liquid phase line temperature of the molten steel is preferably 40 deg.C. In this case, in the expression, S is a projection surface area (m2) in which the cold iron source comes into contact with the molten steel, W is cold iron source melting speed (ton/Hr), T is molten steel supply temperature ( deg.C) and TL is the liquid phase line temperature ( deg.C) of molten steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄スクラップや直
接還元鉄等の冷鉄源を効率良く溶解する溶解方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melting method for efficiently dissolving a cold iron source such as iron scrap and direct reduced iron.

【0002】[0002]

【従来の技術】近年、鉄スクラップの発生量の増大と共
に、世界的に製鋼用アーク炉が新設されている。このア
ーク炉では、アーク発生用電極から発生するアーク熱に
より鉄スクラップや直接還元鉄等の冷鉄源を加熱・溶解
し、精錬して溶鋼を製造するが、多くの電力を消費する
ため、溶解中にアーク炉溶解室から発生する高温の排ガ
スを利用して冷鉄源を予熱し、予熱した冷鉄源を溶解す
ることで電力使用量を削減する方法が多数提案されてい
る。
2. Description of the Related Art In recent years, with the increase in the amount of generated iron scrap, an arc furnace for steelmaking has been newly installed worldwide. This arc furnace heats and melts a cold iron source such as iron scrap or direct reduced iron by the arc heat generated from the arc generating electrode and refines it to produce molten steel. A number of methods have been proposed for preheating a cold iron source by using high-temperature exhaust gas generated from an arc furnace melting chamber and melting the preheated cold iron source to reduce power consumption.

【0003】例えば、特開平7−180975号公報
(以下、「先行技術1」と記す)には、1段又は2段以
上の開閉可能な火格子を装着したシャフト型予熱室を、
アーク炉溶解室の上方に鉄スクラップ導入路を介して接
続して設け、火格子で保持した鉄スクラップを溶解室の
排ガスにより予熱し、予熱した鉄スクラップを鉄スクラ
ップ導入路に落下させ、この鉄スクラップを鉄スクラッ
プ導入路に設けたプッシャーにてアーク炉溶解室内に装
入する設備が開示されている。
For example, Japanese Patent Application Laid-Open No. 7-180975 (hereinafter referred to as “prior art 1”) discloses a shaft-type preheating chamber equipped with a grate that can be opened or closed in one or more stages.
The steel scrap held by the grate is preheated by the exhaust gas from the melting chamber, and the preheated iron scrap is dropped into the iron scrap introduction path, and is connected to the upper part of the arc furnace melting chamber via an iron scrap introduction path. A facility is disclosed in which scrap is charged into an arc furnace melting chamber by a pusher provided in an iron scrap introduction path.

【0004】特開平7−332874号公報(以下、
「先行技術2」と記す)には、アーク炉溶解室の上蓋に
接続する水平方向に配置したロータリードラム型の第1
の予熱室と、第1の予熱室と底部で接続するシャフト型
の第2の予熱室とを配置し、第2の予熱室内で溶解室か
ら発生する排ガスにて冷鉄源を予熱した後、プッシャー
にて第1の予熱室に冷鉄源を押し込み、そして、回転す
る第1の予熱室を介して、予熱された冷鉄源を溶解室内
に装入する設備が開示されている。
[0004] Japanese Patent Application Laid-Open No. 7-332874 (hereinafter referred to as
The “prior art 2”) includes a rotary drum type first drum connected to an upper lid of an arc furnace melting chamber.
And a shaft-type second preheating chamber connected to the first preheating chamber at the bottom with the first preheating chamber, and after preheating the cold iron source with exhaust gas generated from the melting chamber in the second preheating chamber, A facility is disclosed in which a cold iron source is pushed into a first preheating chamber by a pusher, and a preheated cold iron source is charged into the melting chamber via the rotating first preheating chamber.

【0005】又、特公平6−46145号公報(以下、
「先行技術3」と記す)には、溶解室に直結するシャフ
ト型予熱室を設け、溶解室内とシャフト型予熱室内とに
1ヒート分の冷鉄源を溶解毎に装入し、排ガスでシャフ
ト型予熱室内の冷鉄源を予熱しつつ、溶解された冷鉄源
に見合う量を溶解室内に自由落下させ、こうして、溶解
室内とシャフト型予熱室内とに装入された全ての冷鉄源
を溶解する設備が開示されている。
In addition, Japanese Patent Publication No. 6-46145 (hereinafter referred to as "Japanese Patent Publication")
In the prior art 3), a shaft-type preheating chamber directly connected to the melting chamber was provided, and a cold iron source for one heat was charged into the melting chamber and the shaft-type preheating chamber for each melting, and the exhaust gas was applied to the shaft. While preheating the cold iron source in the mold preheating chamber, the amount of the cold iron source that has been melted is freely dropped into the melting chamber, and thus all the cold iron sources charged in the melting chamber and the shaft type preheating chamber are removed. Dissolution equipment is disclosed.

【0006】[0006]

【発明が解決しようとする課題】以上のような方法及び
装置により、予熱効果の高いものでは、250〜270
kWh/tの電力原単位が達成されるとしているが、上
記先行技術1〜3には以下の問題点がある。
According to the above method and apparatus, if the preheating effect is high, 250 to 270
Although it is stated that a power consumption of kWh / t is achieved, the above-mentioned prior arts 1 to 3 have the following problems.

【0007】先行技術1及び先行技術2では、予熱され
た冷鉄源をアーク炉溶解室内に装入するために、火格
子、プッシャー、又はロータリードラムといった冷鉄源
の保持・搬送用の装置が必要であり、このため、溶解室
からの排ガスで予熱する際に、予熱温度に限界がある。
即ち、溶解室に大量のコークス等の炭材と酸素ガスとを
吹き込み、大量に生成する高温の排ガスで冷鉄源を予熱
すれば、予熱温度が高くなり予熱効果が向上するが、上
記の保持・搬送用装置の熱変形や融着等の設備トラブル
が発生するので、排ガス温度を上げることができない。
In Prior Art 1 and Prior Art 2, a device for holding and transporting a cold iron source such as a grate, a pusher, or a rotary drum is used to load a preheated cold iron source into an arc furnace melting chamber. Therefore, when preheating with the exhaust gas from the melting chamber, the preheating temperature is limited.
In other words, if a large amount of carbonaceous material such as coke and oxygen gas are blown into the melting chamber and the cold iron source is preheated with a large amount of high-temperature exhaust gas, the preheating temperature increases and the preheating effect improves,・ Equipment troubles such as thermal deformation and fusion of the transfer device occur, so that the exhaust gas temperature cannot be raised.

【0008】これに対して、先行技術3では、シャフト
型予熱室が溶解室に直結されているため、前述した冷鉄
源の保持・搬送用装置を必要とせず、従って、上記の問
題点も発生しない。しかしながら、先行技術3では、1
ヒート分の溶鋼量を溶解する毎に、予熱室内の冷鉄源を
全て溶解し、予熱室内に冷鉄源が残らない状態で溶鋼を
出鋼するため、次ヒートの最初に溶解される冷鉄源の予
熱ができず、排ガスの有効利用という点では十分とはい
えない。
On the other hand, in the prior art 3, since the shaft-type preheating chamber is directly connected to the melting chamber, the above-described device for holding and transporting the cold iron source is not required, and therefore, the above-mentioned problem is also encountered. Does not occur. However, in prior art 3, 1
Each time the amount of molten steel for the heat is melted, all of the cold iron source in the preheating chamber is melted, and the molten steel is discharged without leaving the cold iron source in the preheating chamber. Since the source cannot be preheated, it cannot be said that it is sufficient in terms of effective use of exhaust gas.

【0009】本発明は上記事情に鑑みなされたもので、
その目的とするところは、予熱室から溶解室への冷鉄源
搬送用装置を必要とせず、又、次ヒートの初期に装入さ
れる冷鉄源の予熱も可能であり、そして、従来の排ガス
を利用した予熱方法では達成できなかった高効率で冷鉄
源を溶解することのできる冷鉄源の溶解方法を提供する
ことである。
The present invention has been made in view of the above circumstances,
The purpose is not to require a device for transferring the cold iron source from the preheating chamber to the melting chamber, and it is also possible to preheat the cold iron source charged at the beginning of the next heat, and An object of the present invention is to provide a method for dissolving a cold iron source with high efficiency that cannot be achieved by a preheating method using exhaust gas.

【0010】[0010]

【課題を解決するための手段】本発明による冷鉄源の溶
解方法は、アーク発生用電極を備えた溶解室と、溶解室
に直結するシャフト型の予熱室とを具備し、溶解室で発
生する排ガスを予熱室に導入して冷鉄源を予熱しつつ溶
解するアーク炉での冷鉄源の溶解方法において、冷鉄源
が予熱室と溶解室とに連続して存在する状態を保つよう
に冷鉄源を連続的又は断続的に予熱室へ供給しながら、
冷鉄源と溶解室内の溶鋼とが接触する投影界面積と、冷
鉄源溶解速度とを、出鋼温度及び溶鋼の液相線温度から
定まる(1)式を満足するように制御しつつ、溶解室内
の冷鉄源をアークにて溶解し、溶解室に少なくとも1ヒ
ート分の溶鋼が溜まった時点で、冷鉄源が予熱室と溶解
室とに連続して存在する状態で溶鋼を出鋼することを特
徴とするものである。その際に、出鋼温度と溶鋼の液相
線温度との差を40℃とすることが好ましい。 S≦2W/(T−TL )……(1) 但し、(1)式において各記号は以下を表すものであ
る。 S ;冷鉄源と溶鋼とが接触する投影界面積(m2 ) W ;冷鉄源溶解速度(ton/Hr) T ;出鋼温度(℃) TL ;溶鋼の液相線温度(℃)
A method for melting a cold iron source according to the present invention comprises a melting chamber provided with an electrode for arc generation, and a shaft-type preheating chamber directly connected to the melting chamber. In the method of melting a cold iron source in an arc furnace, which introduces exhaust gas into the preheating chamber and melts it while preheating the cold iron source, the cold iron source is kept in a continuous state in the preheating chamber and the melting chamber. While supplying the cold iron source to the preheating chamber continuously or intermittently.
While controlling the projected field area where the cold iron source contacts the molten steel in the melting chamber and the melting rate of the cold iron source so as to satisfy the equation (1) determined from the tapping temperature and the liquidus temperature of the molten steel, The cold iron source in the melting chamber is melted by an arc, and when at least one heat of molten steel has accumulated in the melting chamber, the molten steel is discharged while the cold iron source is continuously present in the preheating chamber and the melting chamber. It is characterized by doing. At this time, it is preferable to set the difference between the tapping temperature and the liquidus temperature of the molten steel to 40 ° C. S ≦ 2W / (T−T L ) (1) where each symbol in the formula (1) represents the following. S: projected field area (m 2 ) where cold iron source and molten steel come into contact W; cold iron source dissolution rate (ton / Hr) T: tapping temperature (° C) TL : liquidus temperature of molten steel (° C)

【0011】本発明においては、溶解室の上部に直結し
たシャフト型予熱室内で予熱された冷鉄源が、溶解室内
での冷鉄源の溶解速度に見合って、自然落下して溶解室
に装入されるので、予熱室から溶解室への冷鉄源搬送用
装置が不要であり、予熱温度を上昇させることができ
る。そして、冷鉄源が予熱室と溶解室とに連続して存在
する状態を保つように予熱室への冷鉄源の供給を継続し
ながら溶解室内の冷鉄源を溶解し、又、冷鉄源が予熱室
と溶解室とに連続して存在する状態で溶鋼を出鋼するの
で、次ヒートに用いる冷鉄源が全て予熱され、極めて高
い予熱効率で溶解することができる。
In the present invention, the cold iron source preheated in the shaft-type preheating chamber directly connected to the upper part of the melting chamber falls naturally into the melting chamber according to the melting speed of the cold iron source in the melting chamber. Therefore, a device for transporting a cold iron source from the preheating chamber to the melting chamber is not required, and the preheating temperature can be increased. Then, the cold iron source in the melting chamber is melted while the supply of the cold iron source to the preheating chamber is continued so that the cold iron source is continuously present in the preheating chamber and the melting chamber. Since the molten steel is tapped in a state where the source is continuously present in the preheating chamber and the melting chamber, all the cold iron sources used for the next heating are preheated and can be melted with extremely high preheating efficiency.

【0012】一方、溶解室内において生成する溶鋼中に
冷鉄源が埋没して共存した状態で溶解すると、加えられ
た熱エネルギーは冷鉄源を溶解するための潜熱に使用さ
れ、溶鋼温度は上昇しにくい。本発明のように冷鉄源の
供給及び溶解が連続的に行われている状態において、溶
鋼中に冷鉄源が埋没している領域での熱の授受は、マク
ロ的には(2)式で表わすことができる。但し(2)式
において、Qは冷鉄源の溶解潜熱(kcal/to
n)、Wは冷鉄源溶解速度(ton/Hr)、hは冷鉄
源と溶鋼との界面における熱伝達係数(kcal/m2
・Hr・deg)、ΔTは溶鋼の過熱度(℃)、即ち溶
鋼温度と溶鋼の液相線温度(TL )との差、S0 は冷鉄
源と溶鋼との接触界面積(m2 )である。 Q×W=h×ΔT×S0 ……(2)
On the other hand, when the cold iron source is buried in the molten steel produced in the melting chamber and melts in a coexisting state, the applied thermal energy is used for latent heat for melting the cold iron source, and the molten steel temperature rises. Hard to do. In the state where the supply and melting of the cold iron source are continuously performed as in the present invention, the transfer of heat in the region where the cold iron source is buried in the molten steel is expressed by the equation (2) macroscopically. Can be represented by However, in equation (2), Q is the latent heat of dissolution of the cold iron source (kcal / to
n), W is the dissolution rate of the cold iron source (ton / Hr), and h is the heat transfer coefficient (kcal / m 2 ) at the interface between the cold iron source and the molten steel.
Hr · deg), ΔT is the superheat degree (° C.) of the molten steel, that is, the difference between the molten steel temperature and the liquidus temperature (T L ) of the molten steel, and S 0 is the contact interface area (m 2 ) between the cold iron source and the molten steel. ). Q × W = h × ΔT × S 0 (2)

【0013】本発明のような連続溶解の場合には冷鉄源
溶解速度(W)は一定であり、冷鉄源溶解速度(W)が
一定の条件においては、(2)式で表わされるように、
溶鋼過熱度(ΔT)は接触界面積(S0 )に反比例す
る。即ち、接触界面積(S0 )を小さくすれば、溶鋼過
熱度(ΔT)が高くなることが分かる。しかし、接触界
面積(S0 )は直接測定することができないので、本発
明者等は接触界面積(S 0 )に代わる新たな指標とし
て、冷鉄源と溶解室内の溶鋼とが接触する投影界面積を
用い、この投影界面積を種々変更した試験操業(後述の
実施例で詳細に説明する)を実施した。そして、投影界
面積をS(m2 )とした時、投影界面積(S)と冷鉄源
溶解速度(W)と出鋼時の溶鋼過熱度(ΔT)との関係
は(3)式で表わされることを明らかにした。尚、出鋼
時の溶鋼過熱度(ΔT)とは、出鋼温度(T)と溶鋼の
液相線温度(TL )との差を表わすものである。 S=2W/ΔT……(3)
In the case of continuous melting as in the present invention, a cold iron source
The dissolution rate (W) is constant, and the dissolution rate (W) of the cold iron source is
Under certain conditions, as expressed by equation (2),
The degree of superheat (ΔT) of molten steel is determined by the contact area (S0Is inversely proportional to
You. That is, the contact area (S0) Can be reduced by
It can be seen that the degree of heat (ΔT) increases. But the contact field
Area (S0) Cannot be measured directly.
A bright person etc. has a contact area (S 0) As a new indicator
The projected area of contact between the cold iron source and the molten steel in the melting chamber.
Test operation with various changes in the projected field area (described later)
(Described in detail in Examples). And the projection world
The area is S (mTwo), The projected field area (S) and the cold iron source
Relationship between melting speed (W) and superheat (ΔT) of molten steel during tapping
Is expressed by equation (3). In addition, tapping
The superheat degree (ΔT) of molten steel at the time is the tapping temperature (T) and the
Liquidus temperature (TL). S = 2W / ΔT (3)

【0014】本発明では、出鋼時の溶鋼過熱度(ΔT)
と冷鉄源溶解速度(W)とから(3)式で決まる投影界
面積(S)を越えない範囲、即ち(1)式を満足する範
囲で溶解するので、冷鉄源の潜熱に費やされる熱エネル
ギーが減少して溶鋼温度が上昇し、出鋼時に所定の溶鋼
過熱度(ΔT)を確保することができる。その結果、出
鋼中における出鋼口の閉塞等の溶鋼温度の低下によるト
ラブルを未然に防止することが可能となる。特に、出鋼
時の溶鋼過熱度(ΔT)を40℃確保することで、温度
低下に起因する操業トラブルを回避でき、安定した操業
が可能となる。
In the present invention, the degree of superheat of molten steel during tapping (ΔT)
And the melting rate of the cold iron source (W), the molten iron is melted in a range not exceeding the projected field area (S) determined by the equation (3), that is, in a range satisfying the equation (1). The heat energy decreases and the temperature of the molten steel rises, so that a predetermined degree of molten steel superheat (ΔT) can be secured during tapping. As a result, it is possible to prevent troubles caused by a drop in molten steel temperature such as blockage of a tapping port during tapping. In particular, by ensuring the molten steel superheat degree (ΔT) at the time of tapping at 40 ° C., it is possible to avoid operation troubles due to a decrease in temperature and to achieve stable operation.

【0015】尚、本発明の、冷鉄源と溶解室内の溶鋼と
が接触する投影界面積(S)とは、溶鋼中に埋没してい
る冷鉄源の最外周部と溶鋼との界面積であり、具体的に
は予熱室の内周長さと溶鋼深さとの積で表わされ、又、
本発明の1ヒート分の溶鋼とは、連続鋳造等の鋳造作業
に用いる取鍋等の溶鋼保持容器の1つの容器に収納され
る溶鋼量であり、これは鋳造作業を実施する建物のクレ
ーン等の吊り上げ荷重から決まる量である。
The projected area (S) of the present invention where the cold iron source and the molten steel in the melting chamber are in contact with each other is defined as the interface area between the outermost peripheral portion of the cold iron source buried in the molten steel and the molten steel. Which is specifically expressed as the product of the inner peripheral length of the preheating chamber and the molten steel depth,
The molten steel for one heat according to the present invention is the amount of molten steel stored in one of the molten steel holding containers such as a ladle used for a casting operation such as continuous casting, which is a crane or the like of a building that performs the casting operation. The amount is determined by the lifting load.

【0016】[0016]

【発明の実施の形態】本発明を図面に基づき説明する。
図1は、本発明を実施したアーク炉設備の縦断面概略図
であり、図2は、図1におけるX−X断面の概略図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
FIG. 1 is a schematic longitudinal sectional view of an arc furnace equipment embodying the present invention, and FIG. 2 is a schematic sectional view taken along line XX in FIG.

【0017】図において、内部を耐火物で構築され、底
部に炉底電極6を備えた溶解室2の上部には、シャフト
型の予熱室3と水冷構造の炉壁4とが配置され、この予
熱室3で覆われない炉壁4の上部開口部は開閉自在な水
冷構造の炉蓋5で覆われている。この炉蓋5を貫通し
て、溶解室2内へ上下移動可能な黒鉛製の上部電極7が
設けられ、直流式アーク炉1が構成されている。溶解室
2の予熱室3を設置した部位の反対側の突出部には、そ
の炉底に、扉19で出口側を押さえ付けられて内部に詰
め砂又はマッド剤が充填された出鋼口10と、その側壁
に、扉20で出口側を押さえ付けられて内部に詰め砂又
はマッド剤が充填された出滓口11とが設けられ、又、
アーク発生用電極である炉底電極6と上部電極7とは直
流電源(図示せず)に連結し、炉底電極6と上部電極7
との間でアーク16を発生する。
In the figure, a shaft-type preheating chamber 3 and a water-cooled furnace wall 4 are arranged above a melting chamber 2 having a furnace bottom electrode 6 at the bottom, which is constructed of a refractory inside. The upper opening of the furnace wall 4 that is not covered with the preheating chamber 3 is covered with a furnace lid 5 having a water cooling structure that can be freely opened and closed. An upper electrode 7 made of graphite is provided which penetrates through the furnace lid 5 and can be moved up and down into the melting chamber 2, thereby constituting the DC arc furnace 1. On the protruding part of the melting chamber 2 opposite to the part where the preheating chamber 3 is installed, the outlet of the furnace 10 is pressed against the outlet side by a door 19 and filled with sand or mud. And, on the side wall thereof, there is provided a slag port 11 in which the exit side is pressed by the door 20 and the inside is filled with sand or a mud agent.
The furnace bottom electrode 6 and the upper electrode 7, which are electrodes for arc generation, are connected to a DC power supply (not shown), and the furnace bottom electrode 6 and the upper electrode 7 are connected.
And an arc 16 is generated.

【0018】予熱室3の上方には、冷鉄源供給手段とし
て、走行台車21に吊り下げられた底開き型の冷鉄源供
給用バケット12が設けられ、この冷鉄源供給用バケッ
ト12より、予熱室3の上部に設けた開閉自在な冷鉄源
供給口17を介して予熱室3内に、鉄スクラップや直接
還元鉄等の冷鉄源13が供給される。そして、予熱室3
の上端に設けられたダクト18は集塵機(図示せず)に
連結し、溶解室2で発生する高温の排ガスは、予熱室
3、及びダクト18を順に通って吸引され、予熱室3内
の冷鉄源13は予熱される。予熱された冷鉄源13は、
溶解室2内で溶解された量に見合って、溶解室2内に自
由落下し、溶解室2へ装入される。
Above the preheating chamber 3, a bottom-open type cold iron source supply bucket 12 suspended from a traveling carriage 21 is provided as a cold iron source supply means. A cold iron source 13 such as iron scrap or direct reduced iron is supplied into the preheating chamber 3 through an openable / closable cold iron source supply port 17 provided at the upper part of the preheating chamber 3. And preheating chamber 3
Is connected to a dust collector (not shown), and the high-temperature exhaust gas generated in the melting chamber 2 is sucked through the preheating chamber 3 and the duct 18 in order, and the cooling air in the preheating chamber 3 is cooled. The iron source 13 is preheated. The preheated cold iron source 13
In accordance with the amount dissolved in the dissolution chamber 2, it falls freely into the dissolution chamber 2 and is charged into the dissolution chamber 2.

【0019】炉蓋5を貫通して、溶解室2内を上下移動
可能な酸素吹き込みランス8と炭材吹き込みランス9と
が設けられ、酸素吹き込みランス8からは酸素ガスが溶
解室2内に吹き込まれ、そして、炭材吹き込みランス9
からは空気や窒素ガス等を搬送用ガスとしてコークス、
チャー、石炭、木炭、黒鉛等の等の炭材が溶解室2内に
吹き込まれる。吹き込まれた炭材は、吹き込まれた酸素
ガスと反応して燃焼熱を発生し、補助熱源として作用す
る。
An oxygen blowing lance 8 and a carbon material blowing lance 9 are provided to penetrate the furnace cover 5 and move up and down in the melting chamber 2, and oxygen gas is blown into the melting chamber 2 from the oxygen blowing lance 8. Lance 9
From air and nitrogen gas as carrier gas for coke,
Charcoal such as char, coal, charcoal, graphite and the like is blown into the melting chamber 2. The injected carbon material reacts with the injected oxygen gas to generate heat of combustion and acts as an auxiliary heat source.

【0020】この直流式アーク炉1における本発明によ
る冷鉄源溶解方法を以下に説明する。先ず、この直流式
アーク炉1における冷鉄源溶解速度(W)を把握する。
冷鉄源溶解速度(W)は、アーク発生用電極に印加する
電力量と、酸素吹き込みランス8から吹き込まれる酸素
ガス量とで決めることができる。但し、吹き込まれる酸
素ガス量は操業条件により変動することがあるので、操
業の安定性を考慮すれば、印加する電力量のみから把握
することが好ましい。尚、他の加熱手段、例えばガスバ
ーナー等が設置されている場合には、それらを含めて冷
鉄源溶解速度(W)を把握する。
The method for melting the cold iron source according to the present invention in the DC arc furnace 1 will be described below. First, the melting rate (W) of the cold iron source in the DC arc furnace 1 is grasped.
The dissolution rate (W) of the cold iron source can be determined by the amount of electric power applied to the electrode for arc generation and the amount of oxygen gas blown from the oxygen blowing lance 8. However, the amount of oxygen gas to be blown may vary depending on the operating conditions. Therefore, it is preferable that the amount of oxygen gas be grasped only from the applied electric energy in consideration of the stability of the operation. When other heating means, such as a gas burner, are installed, the cold iron source dissolution rate (W) is grasped including those.

【0021】次いで、出鋼時の溶鋼過熱度(ΔT)、即
ち出鋼温度(T)と液相線温度(T L )との差を決定
し、把握した冷鉄源溶解速度(W)と決定した溶鋼過熱
度(ΔT)とを(1)式右辺に代入して(1)式右辺を
算出する。そして、投影界面積(S)が(1)式右辺の
値以下となるように、予め予熱室3の断面積や形状、又
は溶解室2の形状を定めておく。例えば、冷鉄源溶解速
度(W)が150ton/Hrで、溶鋼過熱度(ΔT)
を40℃とする場合には、投影界面積(S)を7.5m
2 以下となるようにすれば良い。
Next, the superheat degree (ΔT) of molten steel at the time of tapping,
Dispensing steel temperature (T) and liquidus temperature (T L) And determine the difference
Overheating of molten steel determined from the cold iron source dissolution rate (W)
The degree (ΔT) is substituted into the right side of equation (1), and the right side of equation (1) is
calculate. Then, the projected field area (S) is
So that the cross-sectional area and shape of the preheating chamber 3
Defines the shape of the melting chamber 2. For example, cold iron source melting speed
Degree (W) is 150 ton / Hr, molten steel superheat degree (ΔT)
Is 40 ° C., the projected field area (S) is 7.5 m
TwoWhat should be done is as follows.

【0022】投影界面積(S)は、図1に示す溶鋼深さ
(H)と図2に示す予熱室3の内周長さ(L)との積で
算出することができる。尚、投影界面積(S)の算出の
際に、溶鋼深さ(H)は最大時の溶鋼深さを用い、予熱
室3の内周長さは、予熱室3を溶解室2に投影した時、
溶解室2の底面に投影される予熱室3下部の内周長さを
用いるものとする。従って、投影界面積(S)は、予熱
室3の断面積を小さくするほど小さくなり、又、溶解室
2の予熱室3側の底部を嵩上げして、冷鉄源13が埋没
する範囲を狭くする又は浅くすることで、投影界面積
(S)を小さくすることができる。投影界面積(S)の
調整ができない場合には、(1)式を満足する値となる
まで、印加する電力や吹き込む酸素ガス量を増加し、更
には他の加熱手段を設けて、冷鉄源溶解速度(W)を大
きくする。
The projected field area (S) can be calculated by the product of the molten steel depth (H) shown in FIG. 1 and the inner peripheral length (L) of the preheating chamber 3 shown in FIG. In calculating the projected field area (S), the molten steel depth (H) used the maximum molten steel depth, and the inner peripheral length of the preheating chamber 3 was obtained by projecting the preheating chamber 3 onto the melting chamber 2. Time,
The inner peripheral length of the lower part of the preheating chamber 3 projected on the bottom of the melting chamber 2 is used. Therefore, the projected field area (S) decreases as the cross-sectional area of the preheating chamber 3 decreases, and the bottom of the melting chamber 2 on the preheating chamber 3 side is raised to narrow the range in which the cold iron source 13 is buried. By making it shallow or shallow, the projection field area (S) can be made small. If the projection field (S) cannot be adjusted, increase the applied power or the amount of oxygen gas to be blown until the value satisfies the expression (1), and further provide another heating means, Increase source dissolution rate (W).

【0023】尚、(1)式により投影界面積(S)を算
出する際、溶鋼過熱度(ΔT)は40℃を確保すること
が好ましい。又、投影界面積(S)を小さくするほど溶
鋼過熱度(ΔT)は大きくなるが、溶鋼過熱度(ΔT)
が余りにも高くなると炉体耐火物の損傷が激しくなるの
で、投影界面積(S)の最小値は溶鋼過熱度(ΔT)が
150℃となる範囲、即ち(4)式の範囲とすることが
好ましい。 S≧2W/150……(4)
When calculating the projected field area (S) according to the equation (1), it is preferable that the superheat (ΔT) of molten steel is 40 ° C. Also, the smaller the projected field area (S), the higher the degree of superheat of molten steel (ΔT), but the degree of superheat of molten steel (ΔT)
If the temperature is too high, the furnace body refractory will be severely damaged. Therefore, the minimum value of the projected field area (S) should be in the range where the molten steel superheat (ΔT) is 150 ° C., that is, in the range of equation (4). preferable. S ≧ 2W / 150 ... (4)

【0024】このように調整した後、操業を行う。操業
は、先ず、溶解室2を水平状態として、冷鉄源供給バケ
ット12より予熱室3内に冷鉄源13を供給する。予熱
室3内に供給された冷鉄源13は、溶解室2内にも装入
され、やがて予熱室3内を充填する。尚、溶解室2内へ
冷鉄源13を均一に装入するため、炉蓋5を開けて予熱
室3と反対側の溶解室2内に冷鉄源13を装入すること
もできる。次いで、炉底電極6と上部電極7との間に直
流電流を給電しつつ上部電極7を昇降させ、上部電極7
と炉底電極6及び装入した冷鉄源13との間でアーク1
6を発生させる。そして、発生するアーク熱により冷鉄
源13を溶解し、溶鋼14を生成させる。溶鋼14の生
成と共に、生石灰、蛍石等のフラックスを溶解室2内に
装入して、溶融スラグ15を溶鋼14上に形成させ、溶
鋼14の酸化を防止すると共に溶鋼14の保温を図る。
溶融スラグ15の量が多すぎる場合には、操業中でも出
滓口11から、排滓することができる。
After such adjustment, the operation is performed. In the operation, first, the melting chamber 2 is set in a horizontal state, and the cold iron source 13 is supplied from the cold iron source supply bucket 12 into the preheating chamber 3. The cold iron source 13 supplied into the preheating chamber 3 is also charged into the melting chamber 2 and eventually fills the inside of the preheating chamber 3. In order to uniformly load the cold iron source 13 into the melting chamber 2, the furnace lid 5 may be opened and the cold iron source 13 may be charged into the melting chamber 2 on the opposite side of the preheating chamber 3. Next, the upper electrode 7 is moved up and down while supplying a direct current between the furnace bottom electrode 6 and the upper electrode 7, and
Arc 1 between the furnace bottom electrode 6 and the inserted cold iron source 13
Generate 6. Then, the cold iron source 13 is melted by the generated arc heat, and the molten steel 14 is generated. Along with the formation of the molten steel 14, a flux such as quicklime or fluorite is charged into the melting chamber 2 to form a molten slag 15 on the molten steel 14, thereby preventing oxidation of the molten steel 14 and keeping the molten steel 14 warm.
If the amount of the molten slag 15 is too large, it can be discharged from the slag port 11 during operation.

【0025】溶鋼14の生成する頃から、酸素吹き込み
ランス8及び炭材吹き込みランス9から、酸素ガスと炭
材とを溶鋼14面又は溶融スラグ15中に吹き込む。吹
き込まれて溶鋼14中に溶解した炭材又は溶融スラグ1
5中に懸濁した炭材と、吹き込まれる酸素ガスとが反応
して燃焼熱を発生し、補助熱源として作用し、電力使用
量を節約すると共に、反応生成物のCOガスが溶融スラ
グ15をフォーミングさせて、アーク16が溶融スラグ
15に包まれるので、アーク16の着熱効率が上昇す
る。又、大量に発生する高温のCOガスで予熱室3内の
冷鉄源13は効率良く予熱される。その結果、冷鉄源溶
解速度(W)が大きくなり、溶鋼過熱度(ΔT)が大き
くなる。この炭材の吹き込み量は、吹き込む酸素ガスの
量に対応して決める。即ち、吹き込まれる酸素ガスの化
学等量に等しい程度の炭材を添加する。炭材が吹き込ま
れる酸素ガスに比べて少ないと、溶鋼14が過剰に酸化
するので好ましくない。
From the time when the molten steel 14 is formed, oxygen gas and carbon material are blown into the molten steel 14 or into the molten slag 15 from the oxygen blowing lance 8 and the carbon material blowing lance 9. Carbon material or molten slag 1 blown and dissolved in molten steel 14
The carbonaceous material suspended in 5 reacts with the blown oxygen gas to generate heat of combustion, acts as an auxiliary heat source, saves electric power consumption, and the CO gas of the reaction product dissolves molten slag 15. Since the forming is performed and the arc 16 is wrapped in the molten slag 15, the heating efficiency of the arc 16 increases. In addition, the cold iron source 13 in the preheating chamber 3 is efficiently preheated by a large amount of high-temperature CO gas. As a result, the dissolution rate (W) of the cold iron source increases, and the degree of superheat (ΔT) of the molten steel increases. The amount of carbon material to be blown is determined according to the amount of oxygen gas to be blown. That is, a carbon material is added in an amount equivalent to the chemical equivalent of the oxygen gas to be blown. If the carbon material is less than the oxygen gas to be blown, the molten steel 14 is excessively oxidized, which is not preferable.

【0026】溶鋼14の生成と共に、予熱室3内の冷鉄
源13は、溶解室2内で溶解された量に見合って溶解室
2内に自由落下して減少するので、この減少分を補うた
めに、冷鉄源供給用バケット12から予熱室3へ冷鉄源
13を供給する。この冷鉄源13の予熱室3内への供給
は、冷鉄源13が予熱室3と溶解室2とに連続して存在
する状態を保つように、連続的又は断続的に行う。その
際に、予熱室3と溶解室2とに連続して存在する冷鉄源
13の量を、1ヒート分の冷鉄源13の50wt%以上
とすることが好ましい。予熱室3と溶解室2とに連続し
て存在する冷鉄源13を、常に1ヒート分の冷鉄源13
の50wt%以上確保することで、予熱効果を高めるこ
とができる。こうして、予熱室3から供給される冷鉄源
13は、溶鋼14中に埋没した状態で加熱され溶解す
る。
When the molten steel 14 is generated, the cold iron source 13 in the preheating chamber 3 falls freely into the melting chamber 2 in accordance with the amount melted in the melting chamber 2 and decreases. For this purpose, the cold iron source 13 is supplied from the cold iron source supply bucket 12 to the preheating chamber 3. The supply of the cold iron source 13 into the preheating chamber 3 is performed continuously or intermittently so as to keep the state where the cold iron source 13 is continuously present in the preheating chamber 3 and the melting chamber 2. At this time, it is preferable that the amount of the cold iron source 13 continuously present in the preheating chamber 3 and the melting chamber 2 be 50 wt% or more of the cold iron source 13 for one heat. The cold iron source 13 existing continuously in the preheating chamber 3 and the melting chamber 2 is always replaced with the cold iron source 13 for one heat.
By ensuring 50% by weight or more of the above, the preheating effect can be enhanced. Thus, the cold iron source 13 supplied from the preheating chamber 3 is heated and melted while being buried in the molten steel 14.

【0027】このようにして冷鉄源13を溶解して、溶
解室2内に少なくとも1ヒート分の溶鋼14を溜め、そ
して、必要により脱炭等の精錬を行った後、傾動装置
(図示せず)により溶解室2を傾動して出鋼口10から
溶鋼保持容器(図示せず)に溶鋼14を出鋼する。出鋼
後、溶鋼14は必要により取鍋精錬炉等にて精錬した
後、連続鋳造機等で鋳造する。溶鋼14を出鋼し、更に
溶融スラグ15を排滓した後、溶解炉2を傾動装置にて
水平に戻し、出鋼口10及び出滓口11内に詰め砂又は
マッド材を充填し、溶解を再開する。次回のヒートは予
熱された冷鉄源13で溶解を開始することができる。
尚、出鋼時に、数トン〜数十トンの溶鋼14を溶解室2
内に残留させて、次回ヒートの溶解を再開しても良い。
こうすることで初期の溶解が促進され、溶解効率が一層
向上する。
In this way, the cold iron source 13 is melted, the molten steel 14 for at least one heat is stored in the melting chamber 2 and, if necessary, refining such as decarburization is performed. 1), the melting chamber 2 is tilted to discharge the molten steel 14 from the tapping port 10 to a molten steel holding vessel (not shown). After tapping, the molten steel 14 is refined in a ladle refining furnace or the like, if necessary, and then cast by a continuous casting machine or the like. After the molten steel 14 is tapped and the molten slag 15 is drained, the melting furnace 2 is returned to a horizontal position by a tilting device, and the inside of the tapping port 10 and the tapping port 11 are filled with sand or mud material to be melted. Resume. The next heat can start melting with the preheated cold iron source 13.
At the time of tapping, several to several tens of tons of molten steel 14 is supplied to the melting chamber 2.
May be left in the chamber to resume the melting of the next heat.
By doing so, the initial dissolution is promoted, and the dissolution efficiency is further improved.

【0028】このようにして溶解することで、操業の最
初に用いる冷鉄源13は予熱されないが、その後に装入
される冷鉄源13は全て予熱されるので、予熱効率の極
めて高い状態でアーク炉操業を行うことができ、電力原
単位を大幅に低減することが可能になると共に、大きな
溶鋼過熱度(ΔT)を確保することができるので、溶鋼
温度の低下による出鋼時の操業トラブルを未然に防止す
ることができ、安定した操業を行うことができる。
By melting in this manner, the cold iron source 13 used at the beginning of the operation is not preheated, but all the cold iron sources 13 charged after that are preheated, so that the preheating efficiency is extremely high. Operation of the arc furnace can be performed, the power consumption can be greatly reduced, and a large degree of superheat (ΔT) of molten steel can be secured. Can be prevented beforehand, and stable operation can be performed.

【0029】尚、上記説明では、直流式アーク炉1の場
合について説明したが、交流式アーク炉でも全く支障な
く本発明を適用でき、又、溶解室2における予熱室3と
出鋼口10との位置関係は溶解室2の中心に対して18
0度の対向する位置に限るものではなく90度の位置で
あっても良く、更に、溶解室2の断面形状や炉底電極6
の構造、及び上部電極7の数も上記に限定されるもので
はないことは言うまでもない。
In the above description, the case of the DC arc furnace 1 has been described. However, the present invention can be applied without any trouble to the AC arc furnace. Further, the preheating chamber 3 and the tapping port 10 in the melting chamber 2 can be used. Is 18 relative to the center of the melting chamber 2.
The position is not limited to the position facing 0 °, but may be 90 °. Further, the sectional shape of the melting chamber 2 and the furnace bottom electrode 6
Needless to say, the structure described above and the number of upper electrodes 7 are not limited to the above.

【0030】[0030]

【実施例】図1に示す直流式アーク炉を用いて、予熱室
の断面サイズと冷鉄源溶解速度(W)とを変更した試験
操業を合計8ヒート(試験No.1〜No.8)実施し、冷鉄
源溶解速度(W)と投影界面積(S)と溶鋼過熱度(Δ
T)との関係を調査した。
EXAMPLE Using a DC arc furnace as shown in FIG. 1, a total of 8 tests (test No. 1 to No. 8) were carried out in a test operation in which the cross-sectional size of the preheating chamber and the melting rate (W) of the cold iron source were changed. The cold iron source melting rate (W), projected field area (S) and molten steel superheat (Δ
T) was investigated.

【0031】用いたアーク炉は、溶解室が高さ4m、炉
径7.2mの一定であり、予熱室は高さを7m一定とし
て、内径を試験No.1及びNo.5では2.5m、試験No.
2及びNo.6では3.0m、試験No.3及びNo.7では
3.5m、試験No.4及びNo.8では4.0mの4水準に
変更した。最大電源容量は電圧600V、電流100k
Aであり、冷鉄源溶解速度(W)を調整するために、試
験No.1〜No.4では電圧400V、電流100kA、
又、試験No.5〜No.8では電圧350V、電流80kA
で印加した。
In the arc furnace used, the melting chamber had a constant height of 4 m and a furnace diameter of 7.2 m, the preheating chamber had a constant height of 7 m, and the inner diameter was 2.5 m in Test Nos. 1 and 5. , Test No.
The levels were changed to 3.0 m for Test Nos. 2 and 6, 3.5 m for Tests No. 3 and No. 7, and 4.0 m for Tests No. 4 and No. 8. Maximum power capacity is 600V voltage and 100k current
A, in order to adjust the dissolution rate (W) of the cold iron source, in tests No. 1 to No. 4, the voltage was 400 V, the current was 100 kA,
In test Nos. 5 to 8, the voltage was 350 V and the current was 80 kA.
Was applied.

【0032】炉容量は180トンであり、その時の溶鋼
深さ(H)は0.88mである。又、予熱室の内周長さ
(L)は、予熱室の内周に0.8を乗算して求め、投影
界面積(S)は、予熱室内径が2.5mの場合に5.5
2 、予熱室内径が3.0mの場合に6.6m2 、予熱
室内径が3.5mの場合に7.7m2 、予熱室内径が
4.0mの場合に8.8m2 となる。
The furnace capacity is 180 tons, and the molten steel depth (H) at that time is 0.88 m. The inner circumference length (L) of the preheating chamber is obtained by multiplying the inner circumference of the preheating chamber by 0.8, and the projected field area (S) is 5.5 when the diameter of the preheating chamber is 2.5 m.
m 2, 6.6 m 2 when preheating chamber inner diameter of 3.0 m, if the preheating chamber inner diameter of 3.5 m 7.7 m 2, the preheating chamber inner diameter becomes 8.8 m 2 in the case of 4.0 m.

【0033】先ず溶解室及び予熱室内に鉄スクラップ1
50トンを装入し、直径28インチの黒鉛製上部電極を
用い、上記の電力を通電して溶解を開始した。溶鋼の生
成と共に、生石灰と蛍石とを添加して溶融スラグを形成
し、次いで、酸素吹き込みランスから酸素ガスを950
0Nm3 /Hrで吹き込むと共に、炭材吹き込みランス
からコークスを80kg/minで溶融スラグ中に吹き
込んだ。酸素ガスとコークスの吹き込みにより、溶融ス
ラグはフォーミングして上部電極の先端は溶融スラグ中
に埋没した。そして、溶解中予熱室内に鉄スクラップを
供給し、予熱室内の鉄スクラップ高さを所定値以上に保
持した。
First, iron scrap 1 was placed in the melting chamber and the preheating chamber.
Fifty tons were charged, and the above-mentioned electric power was applied to start melting using a graphite upper electrode having a diameter of 28 inches. Along with the production of molten steel, quicklime and fluorite are added to form a molten slag, and then oxygen gas is supplied from an oxygen blowing lance to 950.
While blowing at 0 Nm 3 / Hr, coke was blown into the molten slag at 80 kg / min from a carbon material blowing lance. By blowing oxygen gas and coke, the molten slag formed and the tip of the upper electrode was buried in the molten slag. Then, iron scrap was supplied into the preheating chamber during melting, and the height of the iron scrap in the preheating chamber was maintained at a predetermined value or more.

【0034】このように、溶解室内及び予熱室内に鉄ス
クラップが連続して存在する状態で溶解を続け、溶解室
内に180トンの溶鋼が溜まった時点で、溶鋼温度を測
定して、次いで、通電、酸素ガス吹き込み、及び炭材吹
き込みを停止して1ヒート分の120トンの溶鋼を取鍋
に出鋼した。出鋼後、通電、酸素ガス吹き込み、及び炭
材吹き込みを再開して操業を再開した。通電〜出鋼を繰
り返し行い、操業が安定したときの冷鉄源溶解速度
(W)は、試験No.1〜No.4では約150ton/H
r、試験No.5〜No.8では約100ton/Hrであっ
た。
As described above, melting is continued in a state in which iron scrap is continuously present in the melting chamber and the preheating chamber. When 180 tons of molten steel is accumulated in the melting chamber, the temperature of the molten steel is measured, Then, the injection of oxygen gas and the injection of carbon material were stopped, and 120 tons of molten steel for one heat was discharged to the ladle. After tapping, electricity supply, oxygen gas injection, and carbon material injection were restarted to resume operations. The dissolution rate (W) of the cold iron source when the operation is stabilized by repeating the energization to tapping is about 150 ton / H in Test Nos. 1 to 4.
r, it was about 100 ton / Hr in Test Nos. 5 to 8.

【0035】表1に試験操業における予熱室内径、投影
界面積(S)、操業が安定した時の冷鉄源溶解速度
(W)の平均値、及び操業が安定した時の出鋼時の溶鋼
過熱度(ΔT)の平均値を示す。表1に示すように、冷
鉄源溶解速度(W)が一定の条件では、投影界面積
(S)が小さいほど溶鋼過熱度(ΔT)が大きくなるこ
とが分かった。
Table 1 shows the preheating chamber diameter, the projected area (S), the average value of the melting rate of the cold iron source (W) when the operation was stable, and the molten steel at the time of tapping when the operation was stable in Table 1. The average value of the degree of superheat (ΔT) is shown. As shown in Table 1, when the cold iron source melting rate (W) was constant, it was found that the smaller the projected field area (S), the greater the degree of superheat (ΔT) of the molten steel.

【0036】[0036]

【表1】 [Table 1]

【0037】図3は、表1に示す投影界面積(S)と出
鋼時の溶鋼過熱度(ΔT)との関係を図示したもので、
図中●印は冷鉄源溶解速度(W)が約150ton/H
rの試験No.1〜No.4で、○印は冷鉄源溶解速度(W)
が約100tom/Hrの試験No.5〜No.8である。
又、図中、実線の曲線は冷鉄源溶解速度(W)を150
ton/Hrとした時の(3)式による計算値を示し、
破線の曲線は冷鉄源溶解速度(W)を100ton/H
rとした時の(3)による計算値を示すものであるが、
投影界面積(S)と溶鋼過熱度(ΔT)とは(3)式の
関係で表わされることが分かった。従って、冷鉄源溶解
速度(W)に応じて投影界面積(S)を制御すること
で、大きな溶鋼過熱度(ΔT)を得られることが分かっ
た。
FIG. 3 shows the relationship between the projected area (S) shown in Table 1 and the degree of superheat (ΔT) of molten steel during tapping.
In the figure, the symbol ● indicates that the dissolution rate (W) of the cold iron source is about 150 ton / H.
In Test No. 1 to No. 4 of r, the symbol ○ indicates the dissolution rate of cold iron source (W)
Are test Nos. 5 to 8 of about 100 tom / Hr.
In the drawing, the solid line curve indicates that the dissolution rate (W) of the cold iron source is 150.
The value calculated by equation (3) when ton / Hr is shown,
The broken line curve indicates the dissolution rate (W) of the cold iron source at 100 ton / H.
The value calculated by (3) when r is shown,
It has been found that the projected field area (S) and the degree of superheat of molten steel (ΔT) are represented by the relationship of equation (3). Therefore, it was found that by controlling the projected field area (S) according to the cold iron source melting rate (W), a large molten steel superheat (ΔT) can be obtained.

【0038】[0038]

【発明の効果】本発明では、予熱室から溶解室への冷鉄
源搬送用装置を必要としないため、排ガス温度を高めて
冷鉄源の予熱温度を高めることが可能となり、且つ、溶
解する冷鉄源のほとんどを予熱することが可能であるた
め、極めて高い予熱効率を維持して冷鉄源を溶解するこ
とができ、電力使用量を大幅に低減することが可能とな
る。そして、溶鋼と冷鉄源とが接触する面積を所定値に
規定して加熱するので、大きな溶鋼過熱度を得ることが
でき、溶鋼温度低下に起因する操業トラブルもなく、安
定して溶解することができる。
According to the present invention, since there is no need for a device for transferring a cold iron source from the preheating chamber to the melting chamber, it is possible to raise the temperature of the exhaust gas to increase the preheating temperature of the cold iron source, and to melt the iron. Since it is possible to preheat most of the cold iron source, it is possible to melt the cold iron source while maintaining extremely high preheating efficiency, and it is possible to greatly reduce the power consumption. And, since the area of contact between the molten steel and the cold iron source is heated to a predetermined value, a large degree of superheat of the molten steel can be obtained. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施したアーク炉設備の縦断面概略図
である。
FIG. 1 is a schematic longitudinal sectional view of an arc furnace equipment embodying the present invention.

【図2】図1におけるX−X断面の概略図である。FIG. 2 is a schematic view of a section taken along line XX in FIG.

【図3】投影界面積(S)と出鋼時の溶鋼過熱度(Δ
T)との関係を示す図である。
FIG. 3 shows a projected field area (S) and a superheat degree (Δ) of molten steel during tapping.
FIG. 9 is a diagram showing a relationship with T).

【符号の説明】[Explanation of symbols]

1 直流式アーク炉 2 溶解室 3 予熱室 4 炉壁 5 炉蓋 6 炉底電極 7 上部電極 8 酸素吹き込みランス 9 炭材吹き込みランス 10 出鋼口 11 出滓口 12 冷鉄源供給用バケット 13 冷鉄源 14 溶鋼 15 溶融スラグ 16 アーク REFERENCE SIGNS LIST 1 DC arc furnace 2 Melting chamber 3 Preheating chamber 4 Furnace wall 5 Furnace lid 6 Furnace bottom electrode 7 Upper electrode 8 Oxygen blowing lance 9 Carbon material blowing lance 10 Steel tap 11 Slag tap 12 Cold iron source supply bucket 13 Cold Iron source 14 Molten steel 15 Molten slag 16 Arc

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K001 AA10 BA22 DA05 FA10 GA16 GB10 GB11 4K014 CA00 CB01 CB02 CC01 CC04 4K056 AA02 BA01 BA02 BB08 CA02 DA02 DA33 FA04 FA12 4K063 AA04 AA12 BA02 CA01 CA06 FA53 FA73 FA78 GA07 GA09 GA33  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4K001 AA10 BA22 DA05 FA10 GA16 GB10 GB11 4K014 CA00 CB01 CB02 CC01 CC04 4K056 AA02 BA01 BA02 BB08 CA02 DA02 DA33 FA04 FA12 4K063 AA04 AA12 BA02 CA01 CA06 FA53 FA73 FA78 GA07 GA09 GA33

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アーク発生用電極を備えた溶解室と、溶
解室に直結するシャフト型の予熱室とを具備し、溶解室
で発生する排ガスを予熱室に導入して冷鉄源を予熱しつ
つ溶解するアーク炉での冷鉄源の溶解方法において、冷
鉄源が予熱室と溶解室とに連続して存在する状態を保つ
ように冷鉄源を連続的又は断続的に予熱室へ供給しなが
ら、冷鉄源と溶解室内の溶鋼とが接触する投影界面積
と、冷鉄源溶解速度とを、出鋼温度及び溶鋼の液相線温
度から定まる(1)式を満足するように制御しつつ、溶
解室内の冷鉄源をアークにて溶解し、溶解室に少なくと
も1ヒート分の溶鋼が溜まった時点で、冷鉄源が予熱室
と溶解室とに連続して存在する状態で溶鋼を出鋼するこ
とを特徴とする冷鉄源の溶解方法。 S≦2W/(T−TL )……(1) 但し、(1)式において各記号は以下を表すものであ
る。 S ;冷鉄源と溶鋼とが接触する投影界面積(m2 ) W ;冷鉄源溶解速度(ton/Hr) T ;出鋼温度(℃) TL ;溶鋼の液相線温度(℃)
A melting chamber provided with an arc generating electrode and a shaft-type preheating chamber directly connected to the melting chamber, wherein exhaust gas generated in the melting chamber is introduced into the preheating chamber to preheat a cold iron source. In the method of melting a cold iron source in an arc furnace that melts while supplying, the cold iron source is supplied to the preheating chamber continuously or intermittently so as to maintain the state where the cold iron source is continuously present in the preheating chamber and the melting chamber. Meanwhile, the projected field area where the cold iron source and the molten steel in the melting chamber are in contact with each other and the melting rate of the cold iron source are controlled so as to satisfy the equation (1) determined from the tapping temperature and the liquidus temperature of the molten steel. When the cold iron source in the melting chamber is melted by the arc while the molten steel for at least one heat has accumulated in the melting chamber, the molten iron source is continuously present in the preheating chamber and the melting chamber. A method for melting a cold iron source. S ≦ 2W / (T−T L ) (1) where each symbol in the formula (1) represents the following. S: projected field area (m 2 ) where cold iron source and molten steel come into contact W; cold iron source dissolution rate (ton / Hr) T: tapping temperature (° C) TL : liquidus temperature of molten steel (° C)
【請求項2】 出鋼温度と溶鋼の液相線温度との差を4
0℃とすることを特徴とする請求項1に記載の冷鉄源の
溶解方法。
2. The difference between the tapping temperature and the liquidus temperature of molten steel is 4
The method for dissolving a cold iron source according to claim 1, wherein the temperature is set to 0 ° C.
JP27990298A 1998-10-01 1998-10-01 Method for melting cold iron source Pending JP2000111270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27990298A JP2000111270A (en) 1998-10-01 1998-10-01 Method for melting cold iron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27990298A JP2000111270A (en) 1998-10-01 1998-10-01 Method for melting cold iron source

Publications (1)

Publication Number Publication Date
JP2000111270A true JP2000111270A (en) 2000-04-18

Family

ID=17617517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27990298A Pending JP2000111270A (en) 1998-10-01 1998-10-01 Method for melting cold iron source

Country Status (1)

Country Link
JP (1) JP2000111270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084811A (en) * 2009-09-15 2011-04-28 Jfe Steel Corp Method for producing molten pig iron
JP2011195887A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp Method for removing copper in iron scrap and method for producing molten steel by using iron scrap as iron source
JP2011195886A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp Method for removing copper in iron scrap

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084811A (en) * 2009-09-15 2011-04-28 Jfe Steel Corp Method for producing molten pig iron
JP2011195887A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp Method for removing copper in iron scrap and method for producing molten steel by using iron scrap as iron source
JP2011195886A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp Method for removing copper in iron scrap

Similar Documents

Publication Publication Date Title
JP5236926B2 (en) Manufacturing method of molten steel
JPH0253492B2 (en)
JP2000111270A (en) Method for melting cold iron source
JP3204202B2 (en) Melting method and melting equipment for cold iron source
JPH11257859A (en) Method for melting cold iron source and melting facility
JP3699586B2 (en) Method and apparatus for melting iron scrap
JP2001074377A (en) Method and facility for melting cold iron source
JP4077533B2 (en) Metal melting method
JPH0136903Y2 (en)
JP3521277B2 (en) Cold iron source melting method and melting equipment
JP2000017319A (en) Operation of arc furnace
JP3814768B2 (en) Arc furnace operation method
JP2000292064A (en) Melting method and melting facility for cold iron source
JPH11344287A (en) Operation of arc furnace
JP2002121613A (en) Method for melting cold iron and melting facility thereof
JPH09165613A (en) Scrap melting method
JP2001172713A (en) Method for melting cold iron source
JP2002327211A (en) Method for melting cold iron source
JP2000008115A (en) Melting of cold iron source
JP2002121611A (en) Method and apparatus for melting cold iron
JP2002206859A (en) Melting equipment of cold iron
JP2004052041A (en) Method and facility for melting cold iron source
JP2001107128A (en) Method and equipment for melting cold iron source
JP2002022366A (en) Method for melting cold iron source
JP2002339013A (en) Method for melting steel turnings