WO2021043344A2 - 一种自带调速功能的电机 - Google Patents

一种自带调速功能的电机 Download PDF

Info

Publication number
WO2021043344A2
WO2021043344A2 PCT/CN2020/136099 CN2020136099W WO2021043344A2 WO 2021043344 A2 WO2021043344 A2 WO 2021043344A2 CN 2020136099 W CN2020136099 W CN 2020136099W WO 2021043344 A2 WO2021043344 A2 WO 2021043344A2
Authority
WO
WIPO (PCT)
Prior art keywords
outer sleeve
sleeve
motor
inner sleeve
rotor
Prior art date
Application number
PCT/CN2020/136099
Other languages
English (en)
French (fr)
Other versions
WO2021043344A3 (zh
Inventor
朱庭楼
李文杰
张涛
Original Assignee
江苏嘉瑞丰机电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏嘉瑞丰机电设备有限公司 filed Critical 江苏嘉瑞丰机电设备有限公司
Priority to JP2021600014U priority Critical patent/JP3235100U/ja
Priority to DE212020000330.0U priority patent/DE212020000330U1/de
Priority to AU2020342301A priority patent/AU2020342301A1/en
Publication of WO2021043344A2 publication Critical patent/WO2021043344A2/zh
Publication of WO2021043344A3 publication Critical patent/WO2021043344A3/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/043Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with a radial airgap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the utility model relates to the technical field of motors, in particular to a motor with its own speed regulation function.
  • the governor consists of a conductor rotor, a permanent magnet rotor and a regulator.
  • the permanent magnetic field generates eddy currents on the conductor rotor, and the eddy current generates an induced magnetic field and the permanent magnetic field. It drives the permanent magnet rotor to rotate in the same direction as the conductor rotor, transfers the torque of the input shaft to the output shaft, and changes the speed of the load end by changing the number of stages, voltage, current, or frequency of the motor, thereby making the load
  • it is especially suitable for pumps and fans with large changes in flow. It can obtain good energy-saving effects.
  • the current heat dissipation methods of adjustable speed motors include water-cooled heat dissipation and air-cooled heat dissipation, and water-cooled
  • the cooling liquid pipe structure of the heat dissipation method is bulky, and the heat dissipation effect of the fin of the air cooling method is low, which greatly limits the operation of the speed control motor. Therefore, people urgently need a motor with a speed control function to solve the above problems.
  • a motor with its own speed regulation function including a rotor, a rotating shaft, an outer sleeve, an inner sleeve and a regulator, one end of the rotor passes through the rotating shaft and the outer sleeve A fixed connection, an inner sleeve is provided on one side of the outer sleeve, one side of the inner sleeve is fixedly connected with an output shaft, and an adjuster is sleeved on the output shaft;
  • the outer sleeve, inner sleeve, and regulator are combined to form a governor.
  • the outer sleeve is equivalent to a conductor rotor
  • the inner sleeve is equivalent to a permanent magnet rotor.
  • the rotor drives the shaft to rotate so that the outer sleeve rotates.
  • the permanent magnetic field generates eddy currents on the outer sleeve.
  • the eddy current generates an induced magnetic field to interact with the permanent magnetic field, thereby driving the inner sleeve to rotate in the same direction as the outer sleeve.
  • the torque of the motor input shaft is transmitted to the output shaft and the load, and the load speed is adjusted through the regulator.
  • fan blades are provided on the rotating shaft
  • the rotor drives the shaft to rotate, and the fan blades also rotate together.
  • the wind formed by the rotation of the fan blades can take away the heat emitted by the outer sleeve, so as to achieve the effect of air cooling and heat dissipation.
  • a plurality of through holes are opened on the outer sleeve, and the plurality of through holes are corresponding to the fan blades;
  • the rotor drives the shaft to rotate, and at the same time the fan blades rotate together.
  • the wind formed by the rotation of the fan blades enters the outer sleeve and the inner sleeve through the through holes, and the outside cold wind is used to pass through the outer sleeve and the inner sleeve to form air.
  • Circulation so as to take away the heat on the outer sleeve and the inner sleeve, to achieve the effect of heat dissipation of the outer sleeve and the inner sleeve, so that the performance of the governor composed of the outer sleeve, the inner sleeve and the regulator is greatly improved .
  • the through holes are arranged in a spiral shape
  • the through holes are arranged in a spiral shape so that the wind formed by the fan blades is spiral at the through holes, so that the wind entering the outer sleeve is also spiral, thereby prolonging the residence time of the external cold air inside the outer sleeve.
  • the spiral The type of wind passing through the outer sleeve increases the contact area between the wind and the outer sleeve, which makes the effect better.
  • the spiral through hole arrangement also increases the amount of heat dissipation air inside the outer sleeve, which is beneficial to improve the use of the motor. Performance and prolong the service life of the motor.
  • the spiral through hole can avoid the problem of low air cooling efficiency caused by the direct passage of wind from the inside of the outer sleeve.
  • the spiral air circulation greatly improves the air-cooled heat dissipation efficiency of the motor, and does not require other parts and connections to increase the contact area between the outside flowing air and the outer sleeve, which is simple and efficient.
  • the through holes are circumferentially arranged on the outer sleeve;
  • the through holes are arranged circumferentially on the outer sleeve so that the outside flowing air is closer to the inner wall of the outer sleeve, and the spiral flowing air passing through the through holes will more concentratedly remove the heat from the inner wall of the outer sleeve, thereby increasing the spiral flow air band.
  • outer sleeve and the inner sleeve are arranged oppositely, and the outer sleeve and the inner sleeve are concentric and have no mechanical contact;
  • the outer sleeve and the inner sleeve are separated by an air gap, and the cold air from the outside is used to pass through the outer sleeve and the inner sleeve to form air circulation, so as to take away the heat on the outer sleeve and the inner sleeve to achieve the external The heat dissipation effect of the sleeve and the inner sleeve.
  • cross-sectional area of the outer sleeve is greater than the cross-sectional area of the inner sleeve
  • the cross-sectional area of the outer sleeve is larger than the cross-sectional area of the inner sleeve to ensure the stability and uniqueness of the air duct.
  • the rotation of the rotor drives the rotation of the shaft, and the fan blades also rotate with the shaft.
  • the wind generated by the rotation of the fan blades passes through the spiral through holes to form a spiral air flow inside the outer sleeve, so that the external cold wind and the inside of the outer sleeve
  • the contact area is increased, and the inner wall of the outer sleeve has a good heat dissipation effect.
  • the motor Compared with the existing air cooling, it effectively avoids the problem of low heat dissipation efficiency caused by the direct passage of wind through the outer sleeve.
  • the motor has a lower failure rate, because there is no water source and no external water pipe and water source are needed, making the motor smaller and lighter, which is beneficial to improve the sense of use of the motor.
  • the outer sleeve, inner sleeve and regulator are combined to form a governor.
  • the rotor drives the shaft to rotate, so that the outer sleeve rotates while driving the inner sleeve to rotate, and the torque of the motor input shaft is transmitted to the output shaft and
  • the load speed is adjusted by the regulator, so that it can adapt to various high-power loads, and the motor has a simple structure connection, a light volume, and a strong practicability.
  • Figure 1 is a schematic diagram of the overall structure of the utility model
  • Figure 2 is a schematic diagram of the installation structure of the rotor and governor of the utility model
  • Figure 3 is a schematic diagram of the installation structure of the fan blade and the governor of the utility model
  • Figure 4 is a cross-sectional view of the motor of the utility model
  • FIG. 5 is a schematic diagram of the structure of the governor of the present invention.
  • This utility model provides a technical solution: a motor with its own speed regulation function, including a rotor 1, a rotating shaft 2, an outer sleeve 3, an inner sleeve 4 and a regulator 8, and a rotor 1.
  • the output shaft is fixedly connected with the outer sleeve 3 through the rotating shaft 2, an inner sleeve 4 is provided on one side of the outer sleeve 3, and the output shaft 7 is fixedly connected on one side of the inner sleeve 4, and an adjuster 8 is sleeved on the output shaft 7 ;
  • the rotor is the rotor of the motor 10, the rotation of the rotor 1 is used to drive the rotation of the shaft 2, the rotation of the shaft 2 is used to drive the rotation of the outer sleeve 3, the rotation of the outer sleeve 3 is used to generate an induced magnetic field to drive the inner sleeve 4 to rotate, and the output shaft 7 is The output shaft 7 of the regulator, and the other end of the output shaft 7 is connected to the load.
  • the regulator 8 is used to adjust the load speed.
  • the outer sleeve 3, the inner sleeve 4 and the regulator 8 are combined to form a governor 9, and the outer sleeve
  • the barrel 3 is equivalent to a conductor rotor
  • the inner sleeve 4 is equivalent to a permanent magnet rotor.
  • the rotor 1 drives the shaft 2 to rotate, so that the outer sleeve 3 rotates.
  • the outer sleeve 3 and the inner sleeve 4 are opposed to each other.
  • the permanent magnetic field In motion, the permanent magnetic field generates eddy currents on the outer sleeve 3, and the eddy currents generate an induced magnetic field to interact with the permanent magnetic field, thereby driving the inner sleeve 4 to rotate in the same direction as the outer sleeve 3, and transmit the torque of the input shaft of the rotor 1 To the output shaft 7 and the load, and through the regulator 8 to achieve the adjustment of the load speed.
  • the rotating shaft 2 is provided with a fan blade 6, and the outer sleeve 3 is provided with a plurality of through holes 5, and the plurality of through holes 5 are arranged corresponding to the fan blade 6, the outer sleeve and the inner sleeve are arranged oppositely, and the outer sleeve and the inner sleeve
  • the tube is concentric and has no mechanical contact;
  • the rotating shaft 2 drives the outer sleeve 3 to rotate while also driving the fan blade 6 to rotate.
  • the fan blade 6 rotates to generate wind to pass through the through hole 5, and the through hole 5 is used for external cold wind to pass through to dissipate heat inside the outer sleeve 3 ,
  • the outer sleeve 3 and the inner sleeve 4 are separated by an air gap, and a number of through holes 5 are arranged corresponding to the blades 6 so that the blades 6
  • the wind generated by the rotation can directly enter the inside of the through hole 5, which is beneficial to improve the heat dissipation efficiency inside the outer sleeve 3 and the inner sleeve 4.
  • the wind formed by the rotation of the fan blade 6 enters the outer sleeve 3 and the inner sleeve through the through hole 5
  • the outside cold wind is used to pass through the outer sleeve 3 and the inner sleeve 4 to form air circulation, so as to take away the heat on the outer sleeve 3 and the inner sleeve 4 to reach the outer sleeve 3 and the inner sleeve.
  • the heat dissipation effect greatly improves the performance of the governor 9 composed of the outer sleeve 3, the inner sleeve 4 and the regulator 8.
  • the cross-sectional area of the outer sleeve 3 is larger than the cross-sectional area of the inner sleeve 4, the through holes 5 are arranged in a spiral shape, and the through holes 5 are circumferentially arranged on the outer sleeve 3;
  • the cross-sectional area of the outer sleeve 3 is larger than the cross-sectional area of the inner sleeve 4 to ensure the stability and uniqueness of the air duct.
  • the through holes 5 are arranged in a spiral shape so that the wind formed by the fan blades 6 is in a spiral shape at the through holes 5. , So that the wind entering the outer sleeve 3 is also spiral, thereby prolonging the residence time of the external cold wind inside the outer sleeve 3.
  • the spiral wind passing through the outer sleeve 3 increases the wind and the outer sleeve 3
  • the contact area of the inner wall makes the effect better, and the arrangement of the spiral through hole 5 also increases the amount of heat dissipation air inside the outer sleeve 3, which is beneficial to improve the performance of the motor 10 and prolong the service life of the motor 10.
  • Circumferential arrangement on the outer sleeve 3 makes the outside flowing air closer to the inner wall of the outer sleeve 3, and the spiral flowing air passing through the through hole 5 will more concentratedly remove the heat from the inner wall of the outer sleeve 3, thereby improving the spiral
  • the efficiency of the flowing air taking away the heat from the inner wall of the outer sleeve 3 can increase the contact area between the outside flowing air and the outer sleeve 3 without requiring other parts and connections, which is simple and efficient.
  • the outer sleeve 3, the inner sleeve 4 and the regulator 8 together constitute the governor 9 to adjust the speed of the load
  • the rotation of the rotor 1 drives the rotation of the shaft 2
  • the rotation of the rotation shaft 2 drives the fan blade 6 and the outer at the same time.
  • the sleeve 3 rotates together.
  • the rotation of the outer sleeve 3 generates an induction magnetic field to drive the inner sleeve 4 to rotate.
  • the fan blade 6 rotates to generate wind passing through the spiral through hole 5, and a spiral wind enters at the position of the through hole 5.
  • the spiral air flow formed through the spiral through hole 5 through the spiral through hole 5 makes the fan blade 6 rotate the outer sleeve 3 and the inner sleeve 4 to achieve better heat dissipation effect and improve
  • the air-cooling degree of the fan blade 6 is avoided, and the external cold wind directly passes through the outer sleeve 3, which effectively increases the range and duration of the air flow inside the outer sleeve 3.
  • the spiral air-cooling is compared with water-cooling. Therefore, the failure rate of the speed-regulating motor 10 is lower because there is no water source and external pipelines. At the same time, the volume of the speed-regulating motor 10 is smaller and lighter, so that the motor 10 has a better sense of use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本实用新型公开了一种自带调速功能的电机,包括转子、转轴、外套筒、内套筒和调节器,所述转子一端通过转轴与外套筒固定连接,所述外套筒一侧设有内套筒,所述内套筒一侧与输出轴固定连接,所述输出轴上套设有调节器,本实用新型结构科学合理,使用安全方便,转子转动带动转轴转动,扇叶也同时随转轴转动,扇叶转动产生的风通过螺旋状的通孔从而在外套筒内部形成螺旋式的风,使得外部的冷风与外套筒内部的接触面积增大,对外套筒内壁起到良好的散热效果,有效地避免了风从外套筒内部直接穿过而导致风冷散热效率低的问题,同时,与现有的水冷相比,由于没有水源的加入使得故障率更低,更加的小巧和轻便。

Description

一种自带调速功能的电机 技术领域
本实用新型涉及电机技术领域,具体为一种自带调速功能的电机。
背景技术
调速器由导体转子、永磁转子和调节器组成,当导体转子转动时,导体转子与永磁转子产生相对运动,永磁场在导体转子上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动永磁转子沿导体转子相同的方向转动,将输入轴的转矩传递到输出轴上,利用改变电机的级数、电压、电流或频率等方式来改变负载端的转速,从而使得负载端达到较高的使用性能,尤其适用于流量变化较大的泵和风机类负载托动之用,可以获得良好的节能效果,目前可调速电机的散热方式包括水冷散热和风冷散热,水冷散热方式的冷却液管道结构多体积大,风冷散热方式的鳍片散热效果低,极大地限制了调速电机的运转,因此,人们急需一种自带调速功能的电机来解决上述问题。
实用新型内容
为了解决上述技术问题,本实用新型提供如下技术方案:一种自带调速功能的电机,包括转子、转轴、外套筒、内套筒和调节器,所述转子一端通过转轴与外套筒固定连接,所述外套筒一侧设有内套筒,所述内套筒一侧与输出轴固定连接,所述输出轴上套设有调节器;
利用外套筒、内套筒和调节器组合形成一个调速器,外套筒相当 于导体转子,内套筒相当于永磁转子,通过转子带动转轴转动,使得外套筒转动,外套筒转动时,外套筒与内套筒产生相对运动,永磁场在外套筒上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动内套筒沿外套筒相同的方向转动,将电机输入轴的转矩传递到输出轴和负载上,并通过调节器来实现负载转速的调节。
进一步的,所述转轴上设有扇叶;
通过转子带动转轴转动,同时扇叶也一起转动,扇叶转动形成的风可以带走外套筒散发的热量,从而实现风冷散热的效果。
进一步的,所述外套筒上开设有若干个通孔,若干个所述通孔与扇叶对应设置;
通过转子带动转轴转动,同时扇叶也一起转动,扇叶转动形成的风通过通孔进入到外套筒和内套筒内部,利用外界的冷风穿过外套筒和内套筒内部形成空气的流通,从而带走外套筒和内套筒上的热量,达到对外套筒内套筒散热的效果,使得外套筒、内套筒和调节器组成的调速器的使用性能得到极大地提升。
进一步的,所述通孔呈螺旋状设置;
通孔呈螺旋状设置使得扇叶形成的风在通孔处呈螺旋状,使得进入外套筒内部的风也是呈螺旋状的,从而延长了外部冷风在外套筒内部的停留时间,同时,螺旋式的风穿过外套筒增加了风与外套筒的接触面积,使得效果更佳,并且,螺旋式的通孔设置也提高了外套筒内部散热风量的大小,有利于提高电机的使用性能和延长电机的使用寿 命,与现有的直接开孔通风的风冷方式相比,该螺旋状的通孔可以避免风从外套筒内部直接穿过而导致风冷散热效率低的问题,螺旋式的空气流通使得该电机的风冷散热效率得到极大地提升,并且,不需要其它的零件及连接即可实增大外界流动空气与外套筒的接触面积,简单高效。
进一步的,所述通孔在外套筒上呈圆周布置;
通孔在外套筒上呈圆周布置使得外界的流动空气更加靠近外套筒内壁,穿过通孔的螺旋式流动空气会更加集中地带走外套筒内壁的热量,从而提高了螺旋式流动空气带走外套筒内壁热量的效率。
进一步的,所述外套筒与内套筒相对设置,所述外套筒与内套筒同心且无机械接触;
外套筒与内套筒之间由气隙隔开,利用外界的冷风穿过外套筒和内套筒内部形成空气的流通,从而带走外套筒和内套筒上的热量,达到对外套筒和内套筒散热的效果。
进一步的,所述外套筒的横截面积大于内套筒的横截面积;
外套筒的横截面积大于内套筒的横截面积保证了风道的稳定性和唯一性。
与现有技术相比,本实用新型所达到的有益效果是:
1、转子转动带动转轴转动,扇叶也同时随转轴转动,扇叶转动产生的风通过螺旋状的通孔从而在外套筒内部形成螺旋式的空气流 动,使得外部的冷风与外套筒内部的接触面积增大,对外套筒内壁起到良好的散热效果,与现有的风冷相比,有效地避免了风从外套筒内部直接穿过而导致风冷散热效率低的问题,同时,与现有的水冷相比,该电机的故障率更低,因为没有水源的加入且不需要外接水管和水源,使得该电机更加的小巧和轻便,有利于提高该电机的使用感。
2、利用外套筒、内套筒和调节器组合形成一个调速器,通过转子带动转轴转动,使得外套筒转动同时带动内套筒转动,将电机输入轴的转矩传递到输出轴和负载上,并通过调节器来实现负载转速的调节,使得其可以适应各大功率的负载,并且,该电机结构连接简单,体积轻巧,实用性强。
附图说明
图1是本实用新型整体的结构示意图;
图2是本实用新型转子及调速器的安装结构示意图;
图3是本实用新型扇叶及调速器的安装结构示意图;
图4是本实用新型电机的剖视图;
图5是本实用新型调速器的结构示意图;
图中:1、转子;2、转轴;3、外套筒;4、内套筒;5、通孔;6、扇叶;7、输出轴;8、调节器;9、调速器;10、电机。
具体实施方式
实施例:请参阅图1-5,本实用新型提供技术方案:一种自带调 速功能的电机,包括转子1、转轴2、外套筒3、内套筒4和调节器8,转子1的输出轴通过转轴2与外套筒3固定连接,外套筒3一侧设有内套筒4,内套筒4一侧与输出轴7固定连接,输出轴7上套设有调节器8;
转子为电机10的转子,转子1转动用于带动转轴2转动,转轴2转动用于带动外套筒3转动,外套筒3转动用于产生感应磁场带动内套筒4转动,输出轴7是调节器的输出轴7,输出轴7的另一端与负载连接,调节器8用于调节负载转速,利用外套筒3、内套筒4和调节器8组合形成一个调速器9,外套筒3相当于导体转子,内套筒4相当于永磁转子,通过转子1带动转轴2转动,使得外套筒3转动,外套筒3转动时,外套筒3与内套筒4产生相对运动,永磁场在外套筒3上产生涡流,同时涡流又产生感应磁场与永磁场相互作用,从而带动内套筒4沿外套筒相3同的方向转动,将转子1输入轴的转矩传递到输出轴7和负载上,并通过调节器来8实现负载转速的调节。
转轴2上设有扇叶6,外套筒3上开设有若干个通孔5,若干个通孔5与扇叶6对应设置,外套筒与内套筒相对设置,外套筒与内套筒同心且无机械接触;
转轴2带动外套筒3转动的同时还用于带动扇叶6转动,扇叶6转动用于产生风穿过通孔5,通孔5用于外部冷风穿过从而对外套筒3内部进行散热,达到带走外套筒3和内套筒4内壁热量的效果,外套筒3与内套筒4之间由气隙隔开,若干个通孔5与扇叶6对应设置 使得扇叶6转动产生的风能够直接进入到通5孔内部,有利于提高外套筒3和内套筒4内部的散热效率,扇叶6转动形成的风通过通孔5进入到外套筒3和内套筒4内部,利用外界的冷风穿过外套筒3和内套筒4内部形成空气的流通,从而带走外套筒3和内套筒4上的热量,达到对外套筒3和内套筒4散热的效果,使得外套筒3、内套筒4和调节器8组成的调速器9的使用性能得到极大地提升。
外套筒3的横截面积大于内套筒4的横截面积,通孔5呈螺旋状设置,通孔5在外套筒3上呈圆周布置;
外套筒3的横截面积大于内套筒4的横截面积保证了风道的稳定性和唯一性,通孔5呈螺旋状设置使得扇叶6形成的风在通孔5处呈螺旋状,使得进入外套筒3内部的风也是呈螺旋状的,从而延长了外部冷风在外套筒3内部的停留时间,同时,螺旋式的风穿过外套筒3增加了风与外套筒3内壁的接触面积,使得效果更佳,并且,螺旋式的通孔5设置也提高了外套筒3内部散热风量的大小,有利于提高电机10的使用性能和延长电机10的使用寿命,通孔5在外套筒3上呈圆周布置使得外界的流动空气更加靠近外套筒3内壁,穿过通孔5的螺旋式流动空气会更加集中地带走外套筒3内壁的热量,从而提高了螺旋式流动空气带走外套筒3内壁热量的效率,不需要其它的零件及连接即可实增大外界流动空气与外套筒3的接触面积,简单高效。
本实用新型的工作原理:外套筒3、内套筒4和调节器8一起组成调速器9对负载进行调速,转子1转动带动转轴2转动,转轴2转 动同时带动扇叶6和外套筒3一起转动,外套筒3转动产生感应磁场从而带动内套筒4转动,扇叶6转动产生风穿过螺旋状的通孔5,在通孔5位置处形成螺旋式的风进入到外套筒3内部,从而实现利用外界冷风带走外套筒3内壁热量的效果;
螺旋式通孔5与直通孔相比,穿过螺旋式通孔5而形成的螺旋式空气流动,使得扇叶6转动对外套筒3和内套筒4内部散热所达到的效果更佳,提高了扇叶6的风冷程度,避免了外界冷风从外套筒3内部直接穿过,有效地增加了外套筒3内部空气流动的范围和时长,螺旋式风冷与水冷相比,风冷使得改调速电机10的故障率更低,因为没有水源和外接管路的加入,同时,使得该调速电机10的体积更小,更加的轻便,使得该电机10的使用感更佳。

Claims (6)

  1. 一种自带调速功能的电机,其特征在于:包括转子(1)、转轴(2)、外套筒(3)、内套筒(4)和调节器(8),所述转子(1)一端通过转轴(2)与外套筒(3)固定连接,所述外套筒(3)一侧设有内套筒(4),所述内套筒(4)一侧与输出轴(7)固定连接,所述输出轴(7)上套设有调节器(8),所述转轴(2)上设有扇叶(6)。
  2. 根据权利要求1所述的一种自带调速功能的电机,其特征在于:所述外套筒(3)上开设有若干个通孔(5),若干个所述通孔(5)与扇叶(6)对应设置。
  3. 根据权利要求2所述的一种自带调速功能的电机,其特征在于:所述通孔(5)呈螺旋状设置。
  4. 根据权利要求2或3所述的一种自带调速功能的电机,其特征在于:所述通孔(5)在外套筒(3)上呈圆周布置。
  5. 根据权利要求1所述的一种自带调速功能的电机,其特征在于:所述外套筒(3)与内套筒(4)相对设置,所述外套筒(3)与内套筒(4)同心且无机械接触。
  6. 根据权利要求5所述的一种自带调速功能的电机,其特征在于:所述外套筒(3)的横截面积大于内套筒(4)的横截面积。
PCT/CN2020/136099 2020-12-09 2020-12-14 一种自带调速功能的电机 WO2021043344A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021600014U JP3235100U (ja) 2020-12-09 2020-12-14 調速機能が標準装備されるモータ
DE212020000330.0U DE212020000330U1 (de) 2020-12-09 2020-12-14 Motor mit einer Funktion zur Drehzahlregelung
AU2020342301A AU2020342301A1 (en) 2020-12-09 2020-12-14 Motor having speed regulation function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022958516.0U CN213754285U (zh) 2020-12-09 2020-12-09 一种自带调速功能的电机
CN202022958516.0 2020-12-09

Publications (2)

Publication Number Publication Date
WO2021043344A2 true WO2021043344A2 (zh) 2021-03-11
WO2021043344A3 WO2021043344A3 (zh) 2021-09-10

Family

ID=74853452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136099 WO2021043344A2 (zh) 2020-12-09 2020-12-14 一种自带调速功能的电机

Country Status (4)

Country Link
JP (1) JP3235100U (zh)
CN (1) CN213754285U (zh)
AU (2) AU2020342301A1 (zh)
WO (1) WO2021043344A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138905A1 (en) 2022-01-24 2023-07-27 ISOL8 (Holdings) Limited Downhole heating

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184090A (en) * 1977-10-13 1980-01-15 Nova Research Foundation Corporation Rotary magnetic isolation coupling
CN201629653U (zh) * 2010-01-15 2010-11-10 南京艾凌节能技术有限公司 一种永磁调速器
CN207053363U (zh) * 2017-07-20 2018-02-27 江苏磁谷科技股份有限公司 一种永磁耦合调速电机
CN107591987B (zh) * 2017-09-18 2019-06-07 安徽沃弗电力科技有限公司 基于风冷结构的永磁调速器
CN107453544B (zh) * 2017-09-18 2019-06-07 安徽沃弗电力科技有限公司 一种基于气动冷却机构的永磁调速器
CN108880101B (zh) * 2018-06-28 2020-11-20 南京艾凌节能技术有限公司 一种永磁调速器的散热结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138905A1 (en) 2022-01-24 2023-07-27 ISOL8 (Holdings) Limited Downhole heating

Also Published As

Publication number Publication date
AU2020342301A2 (en) 2021-07-15
WO2021043344A3 (zh) 2021-09-10
AU2020342301A1 (en) 2021-06-24
JP3235100U (ja) 2021-11-25
CN213754285U (zh) 2021-07-20
AU2020104436A4 (en) 2021-07-29
AU2020342301A9 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
CN104319931A (zh) 一种电动汽车轮毂电机的防水风冷散热结构
CN107681830B (zh) 一种全封闭电动机及其风冷叶轮和使用该电动机的电动车
JP2014033584A (ja) 回転電機の風冷構造
WO2021043344A2 (zh) 一种自带调速功能的电机
CN110635661A (zh) 一种卧式水冷双筒型永磁调速器
CN108448763A (zh) 外转子电机
CN108286523B (zh) 一种永磁电动机直接驱动的高速离心泵
CN113991925A (zh) 一种散热性好的单相串激电动机
CN208539671U (zh) 一种自冷却电机转子
CN108662920A (zh) 一种水冷散热器组件
US12107485B2 (en) Permanent magnet motor with air and water mixed cooling system
CN105811735A (zh) 一体化永磁调速变速器
WO2021093547A1 (zh) 一种立式风冷双筒型永磁调速器
CN110336434B (zh) 一种双面传动永磁涡流磁滞联轴器
CN107528423A (zh) 一种小型风力发电用密闭式永磁发电机
CN203722457U (zh) 一种带强制对流散热风冷罩的永磁传动装置
CN201682367U (zh) 一种用于风力发电机的冷却装置
CN210536440U (zh) 一种具有散热结构的永磁调速器
CN204967599U (zh) 一体化永磁调速变速器
JP7075836B2 (ja) 内扇ファンを備えた電動機
CN110676979A (zh) 一种具有散热结构的永磁调速器
CN105939091A (zh) 盖板式散热片和永磁涡流柔性驱动器
CN206694281U (zh) 一种自冷式风机
IT201900000615A1 (it) Pompa di ricircolo di un fluido di raffreddamento di motori termici con comando motore elettrico
CN221886145U (zh) 一种转子风冷、定子水冷的电机散热结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021600014

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020342301

Country of ref document: AU

Date of ref document: 20201214

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860428

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20860428

Country of ref document: EP

Kind code of ref document: A2