WO2021043328A1 - 一种磁力计校准数据采集方法、装置以及飞行器 - Google Patents

一种磁力计校准数据采集方法、装置以及飞行器 Download PDF

Info

Publication number
WO2021043328A1
WO2021043328A1 PCT/CN2020/122386 CN2020122386W WO2021043328A1 WO 2021043328 A1 WO2021043328 A1 WO 2021043328A1 CN 2020122386 W CN2020122386 W CN 2020122386W WO 2021043328 A1 WO2021043328 A1 WO 2021043328A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
attitude
fuselage
preset
magnetometer
Prior art date
Application number
PCT/CN2020/122386
Other languages
English (en)
French (fr)
Inventor
李颖杰
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021043328A1 publication Critical patent/WO2021043328A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Definitions

  • the invention relates to the technical field of magnetic calibration, and in particular to a method, device and aircraft for collecting magnetometer calibration data.
  • the heading control of the aircraft is directly related to the flight stability and flight safety of the aircraft.
  • the aircraft heading is obtained by fusion of data from various sensors.
  • the yaw angle is also called the heading angle, which is the initial value given by the magnetometer, and other sensors perform post-correction to it to finally get the fused heading angle.
  • the magnetometer measures the geomagnetic field data, and the sampling data it gives is extremely vulnerable to environmental influences, so its given initial value tends to deviate from the true heading.
  • the aircraft As the aircraft flies, other sensor parameters are fused with the heading angle, and accurate heading angle information will be obtained.
  • the heading angle When the heading angle has a large deviation from the initial heading angle given by the magnetometer, the aircraft will make a significant correction to the heading , Reflected in the flight process, is that the heading angle will have a large change, ranging from flying slash, to serious, such as the out-of-control bomber caused by a large correction of the heading angle.
  • the invention provides a magnetometer calibration data acquisition method, device and aircraft, aiming at acquiring more accurate magnetometer calibration data.
  • the present invention provides a magnetometer calibration data collection method, which is applied to an aircraft, the aircraft is provided with a magnetometer, and the method includes:
  • attitude parameters of the aircraft where the attitude parameters are used to characterize the current attitude of the fuselage of the aircraft;
  • the magnetometer is controlled to perform data collection according to the sampling instruction and the acceleration of the aircraft to obtain multiple sets of magnetic data, wherein the sampling instruction is the same as the An instruction sent by a terminal device that is communicatively connected to the aircraft to enable the magnetometer to perform data collection;
  • the attitude parameter includes a roll angle
  • the preset attitude is that the fuselage is parallel to the ground. Then, the judging whether the current attitude of the fuselage is the preset attitude according to the attitude parameters includes:
  • the attitude parameter includes a pitch angle
  • the preset attitude is that the fuselage is parallel to the ground. Then, determining whether the current attitude of the fuselage is a preset attitude according to the attitude parameters includes:
  • the attitude parameter includes a pitch angle
  • the preset attitude is that the fuselage is perpendicular to the ground. Then, the judging whether the current attitude of the fuselage is the preset attitude according to the attitude parameters includes:
  • the aircraft is provided with an accelerometer
  • the attitude parameters include Z-axis output parameters of the accelerometer
  • the preset attitude is that the fuselage is perpendicular to the ground, then the judgment is made according to the attitude parameters Whether the current posture of the fuselage is a preset posture includes:
  • controlling the magnetometer to perform data collection according to the sampling instruction and the acceleration of the aircraft to obtain multiple sets of magnetic data includes:
  • Control the magnetometer to collect a first set of magnetic data according to the sampling instruction, and control the magnetometer to perform the next magnetic data sampling every time the acceleration changes by a preset amount of change, so as to obtain the multiple sets of magnetic data data.
  • the present invention also provides a magnetometer calibration data acquisition device, which is applied to an aircraft, the aircraft is provided with a magnetometer, and the magnetometer calibration data acquisition device includes:
  • An attitude acquisition module to acquire attitude parameters of the aircraft, wherein the attitude parameters are used to characterize the current attitude of the fuselage of the aircraft;
  • a judging module configured to judge whether the current posture of the fuselage is a preset posture according to the posture parameter
  • the acquisition module is configured to, if the current posture of the fuselage is the preset posture, control the magnetometer to perform data collection according to the sampling instruction and the acceleration of the aircraft to obtain multiple sets of magnetic data, wherein the sampling
  • the instruction is an instruction sent by a terminal device communicatively connected with the aircraft to enable the magnetometer to perform data collection;
  • the counting module is used to calculate whether the number of groups of the obtained magnetic data exceeds a preset group number threshold
  • the output module is configured to output the multiple sets of magnetic data if the number of groups of the acquired magnetic data exceeds the threshold of the number of groups.
  • the aircraft is provided with an accelerometer
  • the attitude parameters include Z-axis output parameters of the accelerometer
  • the preset attitude is that the fuselage is perpendicular to the ground
  • the judgment module is used for:
  • the acquisition module is also used for:
  • Control the magnetometer to collect a first set of magnetic data according to the sampling instruction, and control the magnetometer to perform the next magnetic data sampling every time the acceleration changes by a preset amount of change, so as to obtain the multiple sets of magnetic data data.
  • the present invention also provides an aircraft.
  • the aircraft includes a fuselage, a magnetometer arranged on the fuselage, an arm connected to the fuselage, and a power device arranged on the arm.
  • the aircraft further includes :
  • the memory is used to store a computer-executable magnetometer calibration program
  • the processor is used to retrieve an executable magnetometer calibration program stored in the memory to execute the aforementioned magnetometer calibration data collection method.
  • the magnetometer calibration data acquisition method acquires the attitude parameters of the aircraft, wherein the attitude parameters are used to characterize the current attitude of the fuselage of the aircraft;
  • the attitude parameter determines whether the current attitude of the fuselage is the preset attitude; if the current attitude of the fuselage is the preset attitude, the magnetometer is controlled to perform data collection according to the sampling instruction and the acceleration of the aircraft Acquire multiple sets of magnetic data, wherein the sampling instruction is an instruction sent by a terminal device communicatively connected with the aircraft to enable the magnetometer to perform data collection; calculate whether the number of sets of the acquired magnetic data exceeds a preset If the number of groups of the acquired magnetic data exceeds the threshold of the number of groups, output the multiple groups of magnetic data.
  • the magnetometer is controlled to perform data collection according to the sampling instructions and the acceleration of the aircraft to obtain multiple sets of magnetic forces. Data, so as to ensure that the magnetometer can collect multiple sets of magnetic data in a more orderly manner.
  • the multiple sets of magnetic data are output, so that the multiple sets of acquired magnetic data can be used as the sampled data of the magnetometer
  • the initial value is used to calibrate the magnetometer to improve the accuracy of the magnetometer calibration result, thereby reducing or even avoiding the heading angle error caused by the inaccurate magnetometer calibration result.
  • Fig. 1 is a schematic diagram of a communication connection between an aircraft and a terminal device provided by the present invention
  • FIG. 2 is a flowchart of the steps of the magnetometer calibration data acquisition method provided by the present invention.
  • Fig. 3A is a schematic structural diagram of the attitude angle of the fuselage of the aircraft
  • 3B is a schematic diagram of the position coordinate relationship between the Z axis of the aircraft body coordinate system and the Z axis of the inertial coordinate system;
  • Fig. 4 is a schematic diagram of a movement trajectory diagram of the aircraft provided by the present invention for magnetometer calibration
  • FIG. 5 is a schematic diagram of a block diagram structure of a magnetometer calibration data acquisition device provided by the present invention.
  • Fig. 6 is a schematic diagram of a block diagram structure of an aircraft provided by the present invention.
  • a process, method, system, product, or device that includes a series of steps or units is not necessarily limited to clearly listed Instead, those steps or units listed may include other steps or units that are not clearly listed or are inherent to these processes, methods, products, or equipment.
  • the present invention provides a magnetometer calibration data acquisition method, device, and aircraft.
  • the method obtains the attitude parameters of the aircraft, wherein the attitude parameters are used to characterize the current attitude of the fuselage of the aircraft;
  • the attitude parameter determines whether the current attitude of the fuselage is the preset attitude; if the current attitude of the fuselage is the preset attitude, the magnetometer is controlled to perform data collection according to the sampling instruction and the acceleration of the aircraft
  • the sampling instruction is an instruction sent by a terminal device communicatively connected with the aircraft to enable the magnetometer to perform data collection; calculate whether the number of sets of the acquired magnetic data exceeds a predetermined number If the number of groups of the acquired magnetic data exceeds the threshold of the number of groups, output the multiple groups of magnetic data.
  • the magnetometer is controlled to perform data collection according to the sampling instructions and the acceleration of the aircraft to obtain multiple sets of magnetic forces. Data, so as to ensure that the magnetometer can collect multiple sets of magnetic data in a more orderly manner.
  • the multiple sets of magnetic data are output, so that the multiple sets of acquired magnetic data can be used as the sampled data of the magnetometer
  • the initial value is used to calibrate the magnetometer to improve the accuracy of the magnetometer calibration result, thereby reducing or even avoiding the heading angle error caused by the inaccurate magnetometer calibration result.
  • the present invention provides an aircraft 10, the aircraft 10 includes a fuselage 101, an arm 102 connected to the fuselage 101, a power device 103 provided on the arm 102, and a control system provided on the fuselage 101 ( Picture not shown).
  • the power device 103 is used to provide thrust, lift, etc. for the flight of the aircraft 10.
  • the control system is the central nerve of the aircraft 10 and may include multiple functional units, such as a flight control system, a path planning system, and other systems with specific functions.
  • the tracking system is used to obtain the position and tracking distance of the target to be tracked, that is, the distance between the aircraft 10 and the target to be tracked.
  • the flight control system includes various sensors, such as gyroscopes, accelerometers, and magnetometers.
  • the flight control system is used to control the flight attitude of the aircraft 10.
  • the path planning system is used to plan the flight path of the aircraft 10 based on the location of the tracking target, and instruct the flight control system to control the flight attitude of the aircraft 10 to make the aircraft 10 fly according to the designated path.
  • the aircraft 10 is in communication connection with the terminal device 20, and the user can send control instructions to the aircraft 10 by controlling the terminal device 20.
  • the terminal device 20 is, for example, a smart phone, a tablet computer, a computer, a remote control, and the like.
  • the user may interact with the terminal device 20 through any suitable type of one or more user interaction devices, and these user interaction devices may be a mouse, a button, a touch screen, and the like.
  • a communication connection can be established through wireless communication modules separately provided in each, such as a signal receiver, a signal transmitter, etc., and data/commands can be uploaded or issued.
  • the present invention provides a method for collecting magnetometer calibration data.
  • the method is applied to an aircraft 10, and the method includes:
  • Step S101 Obtain the attitude parameters of the aircraft, where the attitude parameters are used to characterize the current attitude of the fuselage of the aircraft.
  • attitude parameters of the aircraft 10 are obtained through the sensor assembly provided in the aircraft 10, and the attitude parameters are used To characterize the current posture of the fuselage 101 of the aircraft 10, the flight control system of the aircraft 10 can determine whether the posture of the aircraft 10 is a preset posture according to the acquired posture parameters.
  • Step S102 Determine whether the current posture of the fuselage is the preset posture according to the posture parameters, and if the current posture of the fuselage is the preset posture, perform step S103, if the current posture of the fuselage is If it is not the preset posture, return to step S101.
  • the attitude parameter includes a roll angle
  • the preset attitude is that the fuselage is parallel to the ground. Then, the judging whether the current attitude of the fuselage is the preset attitude according to the attitude parameters ,include:
  • the body 101 of the aircraft 10 is parallel to the ground, wherein the first angle value interval may be [0-10°], [0-20 °] or [0-30°].
  • the aircraft 10 obtains the relevant parameters through the built-in sensor, and obtains the roll angle ⁇ through calculation. If the roll angle ⁇ is in any interval of [0-10°], [0-20°] or [0-30°], it indicates The body 101 of the aircraft 10 is parallel to the ground. As shown in FIG. 3A, the roll angle ⁇ is the angle at which the aircraft 10 rolls along the X axis.
  • the attitude parameter includes a pitch angle
  • the preset attitude is that the fuselage is parallel to the ground. Then, the judging whether the current attitude of the fuselage is the preset attitude according to the attitude parameters ,include:
  • the body 101 of the aircraft 10 is parallel to the ground, where the second angle value interval may be [0-10°], [0- 20°] or [0-30°].
  • the aircraft 10 obtains the relevant parameters through the built-in sensor, and obtains the pitch angle ⁇ through calculation. If the pitch angle ⁇ is in any interval of [0-10°], [0-20°] or [0-30°], it indicates The body 101 of the aircraft 10 is parallel to the ground. As shown in FIG. 3A, the pitch angle ⁇ is the pitch angle of the aircraft 10 when it rotates along the Y axis.
  • the attitude parameter includes a pitch angle
  • the preset attitude is that the fuselage is perpendicular to the ground. Then, the judging whether the current attitude of the fuselage is the preset attitude according to the attitude parameters ,include:
  • the body 101 of the aircraft 10 is parallel to the ground, where the third angle value interval may be [70-80°] or [70- 90°].
  • the aircraft 10 obtains the relevant parameters through the built-in sensor, and obtains the pitch angle ⁇ after calculation. If the pitch angle ⁇ is in the range of [70-80°] or [70-90°], it indicates that the body 101 of the aircraft 10 is in contact with the ground. Parallel, as shown in FIG. 3A, the pitch angle ⁇ is the pitch angle when the aircraft 10 rotates along the Y axis.
  • the aircraft is provided with an accelerometer
  • the attitude parameters include Z-axis output parameters of the accelerometer
  • the preset attitude is that the fuselage is perpendicular to the ground.
  • the attitude parameters determine whether the current attitude of the fuselage is a preset attitude, including:
  • the aircraft 10 has an organic coordinate system.
  • the Z-axis of the body coordinate system of the aircraft 10 and the Z-axis of the inertial coordinate system are changed at an angle ⁇ , and the accelerometer Z-axis output parameter in the sensor assembly, that is, the Z-axis reading of the accelerometer can be changed.
  • Zb is the Z axis of the machine system
  • Zo is the Z axis of the inertial system
  • the angle between Zb and Zo is ⁇
  • the projection of Zo on Zb is OA
  • cos ⁇
  • corresponds to the acceleration of gravity g
  • is the acceleration a z of the aircraft 10 on the Z axis of the aircraft system.
  • the body 101 of the aircraft 10 cannot be completely perpendicular to the ground, that is, the included angle ⁇ usually cannot reach 90°.
  • the included angle ⁇ exceeds the preset value of the included angle, it can be considered that the aircraft 10 is perpendicular to the ground, where the preset value of the included angle is 70°-90°, that is, if ⁇ is greater than 70°, it can be considered that the aircraft 10 is perpendicular to the ground.
  • the posture of the fuselage 101 of the aircraft 10 is the preset posture, that is, when the Z axis output parameter a z is less than the acceleration threshold g*cos 70°, the posture of the fuselage 101 of the aircraft 10 is the preset posture, and the gravity acceleration g is based on the aircraft 10 Set the latitude of the location when calibrating.
  • the maintenance time t of the accelerometer's Z-axis output parameter is calculated to avoid the influence of external interference factors on the accelerometer's Z-axis degree. If the maintenance time t exceeds the preset time threshold T, it is determined that the fuselage 101 is perpendicular to the ground, and the time threshold T can be set to 1s-5s as needed.
  • the value of gravitational acceleration g can also be between 9.7-10 m/s 2 .
  • Step S103 According to the sampling instruction and the acceleration of the aircraft, the magnetometer is controlled to perform data collection to obtain multiple sets of magnetic data, wherein the sampling instruction is sent by a terminal device communicatively connected with the aircraft to make the magnetic force Calculate the instructions for data collection.
  • controlling the magnetometer to perform data collection according to the sampling instruction and the acceleration of the aircraft to obtain multiple sets of magnetic data includes:
  • Control the magnetometer to collect a first set of magnetic data according to the sampling instruction, and control the magnetometer to perform the next magnetic data sampling every time the acceleration changes by a preset amount of change, so as to obtain the multiple sets of magnetic data data.
  • the acceleration is the acceleration a z in the Z-axis direction output by the accelerometer as an example for description.
  • the user when the attitude of the fuselage 101 of the aircraft 10 meets the magnetic data sampling requirements, the user sends a sampling instruction to the aircraft 10 through the terminal device 20, and the aircraft 10 receives the sampling instruction and controls the magnetometer to sample the magnetic data to obtain the first Set the magnetic force data and the acceleration a z in the Z-axis direction when the first set of magnetic force data is collected. It also monitors and obtains the magnitude of the acceleration a z in the Z-axis direction output by the accelerometer in real time, and controls the magnetometer to perform a data sampling every time the acceleration a z changes by a preset amount of change to obtain multiple sets of magnetic data .
  • the preset change amount can be adjusted according to needs.
  • the magnetometer performs one data sampling.
  • the aircraft 10 performs the "8" magnetic force calibration along the trajectory A under the action of external force. That is, the magnetometer is controlled by external force to draw the "8" of the aircraft 10 to perform data collection, so as to obtain the geomagnetic data uniformly, so that the geomagnetic calibration result is more accurate.
  • Step S104 Calculate whether the number of groups of the acquired magnetic data exceeds a preset threshold of the number of groups, if the number of groups of the acquired magnetic data exceeds the threshold of the number of groups, step S105 is executed, if the acquired number of magnetic data If the number of data groups does not exceed the group number threshold, step S103 is executed.
  • Step S105 Output the multiple sets of magnetic data.
  • the threshold of the number of magnetic data sampling groups is set to 200 groups.
  • the magnetic data sampling is stopped, and the 200 groups of magnetic data are output.
  • the present invention also provides a magnetometer calibration data collection device 20, which is applied to an aircraft 10, the aircraft 10 is provided with a magnetometer, and the magnetometer calibration data collection device 20 includes:
  • Attitude acquisition module 201 to acquire attitude parameters of the aircraft, where the attitude parameters are used to characterize the current attitude of the fuselage of the aircraft;
  • the judging module 202 is configured to judge whether the current posture of the fuselage is a preset posture according to the posture parameter;
  • the acquisition module 203 is configured to, if the current posture of the fuselage is the preset posture, control the magnetometer to perform data collection according to the sampling instruction and the acceleration of the aircraft to obtain multiple sets of magnetic data, wherein the
  • the sampling instruction is an instruction sent by a terminal device communicatively connected with the aircraft to enable the magnetometer to perform data collection;
  • the counting module 204 is configured to calculate whether the number of groups of the obtained magnetic data exceeds a preset group number threshold
  • the output module 205 is configured to output the multiple sets of magnetic data if the number of groups of the acquired magnetic data exceeds the group number threshold.
  • the attitude parameter includes a roll angle
  • the preset attitude is that the fuselage is parallel to the ground
  • the judgment module 202 is further configured to:
  • the attitude parameter includes a pitch angle
  • the preset attitude is that the fuselage is parallel to the ground
  • the judgment module 202 is further configured to:
  • the attitude parameter includes a pitch angle
  • the preset attitude is that the fuselage is perpendicular to the ground
  • the judgment module 202 is further configured to:
  • the aircraft is provided with an accelerometer
  • the attitude parameters include Z-axis output parameters of the accelerometer
  • the preset attitude is that the fuselage is perpendicular to the ground
  • the judgment module 202 is further configured to:
  • the collection module 203 is also used to:
  • Control the magnetometer to collect a first set of magnetic data according to the sampling instruction, and control the magnetometer to perform the next magnetic data sampling every time the acceleration changes by a preset amount of change, so as to obtain the multiple sets of magnetic data data.
  • the aircraft 10 further includes a memory 104, a processor 105, and a bus 106.
  • the power unit 103 and the memory 104 are electrically connected to the processor 105 through the bus 106.
  • the memory 104 includes at least one type of readable storage medium, the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), magnetic memory, magnetic disk, and optical disk. Wait.
  • the memory 104 may be an internal storage unit of the aircraft 10 in some embodiments, for example, a hard disk of the aircraft 10. In other embodiments, the memory 104 may also be an external storage device of the aircraft 10, for example, a plug-in hard disk equipped on the aircraft 10, a smart memory card (Smart Media Card, SMC), and a Secure Digital (SD). Card, Flash Card, etc.
  • the memory 104 may not only be used to store application software and various data installed in the aircraft 10, exemplary computer-readable program codes, etc., such as a magnetometer calibration program, that is, the memory 104 may be used as a storage medium.
  • the processor 105 may be a central processing unit (CPU), a controller, a microcontroller, a microprocessor, or other data processing chips, and the processor 105 may call program codes stored in the memory 104 or Process the data to realize the aforementioned magnetometer calibration data collection method.
  • CPU central processing unit
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other data processing chips
  • the processor 105 may call program codes stored in the memory 104 or Process the data to realize the aforementioned magnetometer calibration data collection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种磁力计校准数据采集方法、装置以及飞行器,其中,该磁力计校准数据采集方法应用于飞行器,该方法包括:获取飞行器的姿态参数,其中,该姿态参数用于表征飞行器机身的当前姿态(S101);根据该姿态参数判断机身的当前姿态是否为预设姿态(S102);若机身的当前姿态为预设姿态,则根据采样指令和飞行器的加速度控制磁力计进行数据采集以获取多组磁力数据(S103),其中,该采样指令为与飞行器通信连接的终端设备发送的以使该磁力计进行数据采集的指令;计算获取的磁力数据的组数是否超过预设的组数阈值(S104);若获取的磁力数据的组数超过组数阈值,则输出该多组磁力数据(S105)。

Description

一种磁力计校准数据采集方法、装置以及飞行器 技术领域
本发明涉及磁力校准技术领域,尤其涉及一种磁力计校准数据采集方法、装置以及飞行器。
背景技术
飞行器的航向控制,直接关系到飞行器的飞行稳定性和飞行安全性。通常情况下,飞行器航向通过各传感器的数据进行融合得到。飞行器滚转角度、俯仰角度、偏航角度三个通道姿态中,偏航角度也称航向角,其是由磁力计给出初值,其他传感器对其进行后期修正最终得到融合后的航向角。磁力计测量地磁场数据,其给出的采样数据极易受环境影响,所以其给定的初值往往会偏离真正的航向。
随着飞行器飞行,其他传感器参数与航向角融合过程,准确的航向角信息会被获得,当该航向角与磁力计给定的初始航向角具有较大偏差时,飞机会对航向进行大幅度修正,体现在飞行过程中,就是航向角会出现较大的变化,轻则飞斜线,重则出现诸如航向角大幅修正导致的失控炸机。
因此,如何获取较为精准的磁力计校准数据,以减小航向角的初值误差是本领域技术人员亟待解决的技术问题。
发明内容
本发明提供一种磁力计校准数据采集方法、装置以及飞行器,旨在获取较为精准的磁力计校准数据。
为实现上述目的,本发明提供一种磁力计校准数据采集方法,应用于飞行器,所述飞行器设置有磁力计,所述方法包括:
获取所述飞行器的姿态参数,其中,所述姿态参数用于表征所述飞行器的机身的当前姿态;
根据所述姿态参数判断所述机身的当前姿态是否为预设姿态;
若所述机身的当前姿态为所述预设姿态,则根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,其中,所述采 样指令为与所述飞行器通信连接的终端设备发送的以使所述磁力计进行数据采集的指令;
计算获取的所述磁力数据的组数是否超过预设的组数阈值;
若获取的所述磁力数据的组数超过所述组数阈值,则输出所述多组磁力数据。
优选地,所述姿态参数包括翻滚角,所述预设姿态为所述机身与地面平行,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
判断所述翻滚角的角度值是否处于预设的第一角度值区间;
若所述翻滚角的角度值处于所述第一角度值区间,则判断所述机身与地面平行。
优选地,所述姿态参数包括俯仰角,所述预设姿态为所述机身与地面平行,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
判断所述俯仰角的角度值是否处于预设的第二角度值区间;
若所述俯仰角的角度值处于所述第二角度值区间,则判断所述机身与地面平行。
优选地,所述姿态参数包括俯仰角,所述预设姿态为所述机身与地面垂直,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
判断所述俯仰角的角度值是否处于预设的第三角度值区间;
若所述俯仰角的角度值处于所述第三角度值区间,则判断所述机身与地面垂直。
优选地,所述飞行器设置有加速度计,所述姿态参数包括所述加速度计的Z轴输出参数,所述预设姿态为所述机身与地面垂直,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
判断所述加速度计的Z轴输出参数是否超过加速参数阈值;
若所述加速度计的Z轴输出参数超过所述加速参数阈值,则计算所述加速度计的Z轴输出参数的维持时间;
判断所述维持时间是否超过预设的时间阈值;
若所述维持时间超过所述时间阈值,则判断所述机身与地面垂直。
优选地,所述根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,包括:
根据所述采样指令控制所述磁力计采集第一组磁力数据,并控制所述磁力计以所述加速度每变化一次预设变化量时进行下一次的磁力数据采样,以获取所述多组磁力数据。
本发明还提供一种磁力计校准数据采集装置,应用于飞行器,所述飞行器设置有磁力计,所述磁力计校准数据采集装置包括:
姿态获取模块,获取所述飞行器的姿态参数,其中,所述姿态参数用于表征所述飞行器的机身的当前姿态;
判断模块,用于根据所述姿态参数判断所述机身的当前姿态是否为预设姿态;
采集模块,用于若所述机身的当前姿态为所述预设姿态,则根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,其中,所述采样指令为与所述飞行器通信连接的终端设备发送的以使所述磁力计进行数据采集的指令;
计数模块,用于计算获取的所述磁力数据的组数是否超过预设的组数阈值;
输出模块,用于若获取的所述磁力数据的组数超过所述组数阈值,则输出所述多组磁力数据。
优选地,所述飞行器设置有加速度计,所述姿态参数包括所述加速度计的Z轴输出参数,所述预设姿态为所述机身与地面垂直,所述判断模块用于:
判断所述加速度计的Z轴输出参数是否超过加速参数阈值;
若所述加速度计的Z轴输出参数超过所述加速参数阈值,则计算所述加速度计的Z轴输出参数的维持时间;
判断所述维持时间是否超过预设的时间阈值;
若所述维持时间超过所述时间阈值,则判断所述机身与地面垂直。
优选地,所述采集模块还用于:
根据所述采样指令控制所述磁力计采集第一组磁力数据,并控制所述磁力计以所述加速度每变化一次预设变化量时进行下一次的磁力数据采样,以 获取所述多组磁力数据。
本发明还提供一种飞行器,所述飞行器包括机身,设置于所述机身的磁力计,与所述机身相连的机臂,设置于所述机臂的动力装置,所述飞行器还包括:
存储器以及处理器;
所述存储器用于存储计算机可执行的磁力计校准程序;
所述处理器用于调取存储在所述存储器中的可执行的磁力计校准程序,以执行前述的磁力计校准数据采集方法。
与现有设计相比,本发明提供的一种磁力计校准数据采集方法通过获取所述飞行器的姿态参数,其中,所述姿态参数用于表征所述飞行器的机身的当前姿态;根据所述姿态参数判断所述机身的当前姿态是否为预设姿态;若所述机身的当前姿态为所述预设姿态,则根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,其中,所述采样指令为与所述飞行器通信连接的终端设备发送的以使所述磁力计进行数据采集的指令;计算获取的所述磁力数据的组数是否超过预设的组数阈值;若获取的所述磁力数据的组数超过所述组数阈值,则输出所述多组磁力数据。
也即,通过获取飞行器的姿态参数,根据状态参数判断飞行器是否符合磁力参数采样条件,若飞行器符合采样条件时,则根据采样指令和飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,从而确保磁力计可以较为有序采集多组磁力数据,当所获取的磁力数据数量达到预设值时,输出该多组磁力数据,从而可以用获取的多组磁力数据作为磁力计的采样数据初值对磁力计进行校准,以提高磁力计校准结果准确性,从而减小甚至避免由于磁力计校准结果不准确导致的航向角误差。
附图说明
图1为本发明提供的飞行器与终端设备通信连接的场景示意图;
图2为本发明提供的磁力计校准数据采集方法的步骤流程图;
图3A为飞行器的机身姿态角的结构示意图;
图3B为飞行器机体坐标系Z轴和惯性坐标系Z轴之间的位置坐标关系示意图;
图4为本发明提供的飞行器进行磁力计校准的运动轨迹图示意图;
图5为本发明提供的一种磁力计校准数据采集装置的框图结构示意图;
图6为本发明提供的一种飞行器的框图结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,如下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,示例性地,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提供了一种磁力计校准数据采集方法、装置以及飞行器,所述方法通过获取所述飞行器的姿态参数,其中,所述姿态参数用于表征所述飞行器的机身的当前姿态;根据所述姿态参数判断所述机身的当前姿态是否为预设姿态;若所述机身的当前姿态为所述预设姿态,则根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,其中,所述采样指令为与所述飞行器通信连接的终端设备发送的以使所述磁力计进行数据采集的指令;计算获取的所述磁力数据的组数是否超过预设的组数阈值; 若获取的所述磁力数据的组数超过所述组数阈值,则输出所述多组磁力数据。
也即,通过获取飞行器的姿态参数,根据状态参数判断飞行器是否符合磁力参数采样条件,若飞行器符合采样条件时,则根据采样指令和飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,从而确保磁力计可以较为有序采集多组磁力数据,当所获取的磁力数据数量达到预设值时,输出该多组磁力数据,从而可以用获取的多组磁力数据作为磁力计的采样数据初值对磁力计进行校准,以提高磁力计校准结果准确性,从而减小甚至避免由于磁力计校准结果不准确导致的航向角误差。
请参阅图1,本发明提供一种飞行器10,该飞行器10包括机身101、与机身101相连的机臂102、设于机臂102的动力装置103、设于机身101的控制系统(图未示)。动力装置103用于提供飞行器10飞行的推力、升力等,控制系统是飞行器10的中枢神经,可以包括多个功能性单元,例如飞控系统、路径规划系统以及其他具有特定功能的系统。其中,跟踪系统用于获得待跟踪目标的位置、跟踪距离,即飞行器10距待跟踪目标的距离。飞控系统包括各类传感器,例如陀螺仪、加速计、磁力计等,飞控系统用于控制飞行器10的飞行姿态等。路径规划系统用于基于跟踪目标的位置对飞行器10的飞行路径进行规划,并指示飞控系统控制飞行器10的飞行姿态以使飞行器10按指定路径飞行。
在飞行器10的一些应用场景中,飞行器10与终端设备20通信连接,用户可以通过操控终端设备20向飞行器10发送控制指令。
其中,终端设备20例如智能手机、平板电脑、电脑、遥控器等。用户可以通过任何合适类型的一种或者多种用户交互设备与终端设备20交互,这些用户交互设备可以是鼠标、按键、触摸屏等。飞行器10和终端设备20之间,可以通过分别设置在各自内部的无线通信模块,例如信号接收器、信号发送器等建立通信连接,上传或者下发数据/指令。
请参阅图2,本发明提供一种磁力计校准数据采集方法,该方法应用于飞行器10,该方法包括:
步骤S101:获取所述飞行器的姿态参数,其中,所述姿态参数用于表征所述飞行器的机身的当前姿态。
飞行器10在进行磁力计校准前,需要确保飞行器10的姿态符合预设姿 态,以便于传感器组件中的磁力计的校准,通过设置于飞行器10内传感器组件获取飞行器10的姿态参数,该姿态参数用于表征飞行器10的机身101的当前姿态,飞行器10的飞控系统可以根据所获取的姿态参数判定该飞行器10的姿态是否为预设姿态。
步骤S102:根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,若所述机身的当前姿态为所述预设姿态,则执行步骤S103,若所述机身的当前姿态为非所述预设姿态,则返回执行步骤S101。
在部分实施例中,所述姿态参数包括翻滚角,所述预设姿态为所述机身与地面平行,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
判断所述翻滚角的角度值是否处于预设的第一角度值区间;
若所述翻滚角的角度值处于所述第一角度值区间,则判断所述机身与地面平行。
示例性地,预设飞行器10的翻滚角α在第一角度值区间时,该飞行器10的机体101与地面平行,其中,该第一角度值区间可以[0-10°]、[0-20°]或[0-30°]。
飞行器10通过内置的传感器获取相关参数,并经过解算获取翻滚角α,若翻滚角α在[0-10°]、[0-20°]或[0-30°]任一区间,则表明飞行器10的机体101与地面平行,如图3A所示,翻滚角α即为飞行器10沿着X轴翻滚的角度。
在部分实施例中,所述姿态参数包括俯仰角,所述预设姿态为所述机身与地面平行,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
判断所述俯仰角的角度值是否处于预设的第二角度值区间;
若所述俯仰角的角度值处于所述第二角度值区间,则判断所述机身与地面平行。
示例性地,预设飞行器10的俯仰角β在第二角度值区间时,该飞行器10的机体101与地面平行,其中,该第二角度值区间可以是[0-10°]、[0-20°]或[0-30°]。
飞行器10通过内置的传感器获取相关参数,并经过解算获取俯仰角β,若俯仰角β在[0-10°]、[0-20°]或[0-30°]任一区间,则表明飞行器10的机体 101与地面平行,如图3A所示,俯仰角β即为飞行器10沿着Y轴旋转时倾仰的角度。
在部分实施例中,所述姿态参数包括俯仰角,所述预设姿态为所述机身与地面垂直,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
判断所述俯仰角的角度值是否处于预设的第三角度值区间;
若所述俯仰角的角度值处于所述第三角度值区间,则判断所述机身与地面垂直。
示例性地,预设飞行器10的俯仰角β在第三角度值区间时,该飞行器10的机体101与地面平行,其中,该第三角度值区间可以是[70-80°]或[70-90°]。
飞行器10通过内置的传感器获取相关参数,并经过解算获取俯仰角β,若俯仰角β在[70-80°]或[70-90°]任一区间,则表明飞行器10的机体101与地面平行,如图3A所示,俯仰角β即为飞行器10沿着Y轴旋转时倾仰的角度。
在部分实施例中,所述飞行器设置有加速度计,所述姿态参数包括所述加速度计的Z轴输出参数,所述预设姿态为所述机身与地面垂直,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
判断所述加速度计的Z轴输出参数是否超过加速参数阈值;
若所述加速度计的Z轴输出参数超过所述加速参数阈值,则计算所述加速度计的Z轴输出参数的维持时间;
判断所述维持时间是否超过预设的时间阈值;
若所述维持时间超过所述时间阈值,则判断所述机身与地面垂直。
示例性地,飞行器10有机体坐标系,当飞行器10的机体与地面垂直时飞行器10的机体坐标系的Z轴与惯性坐标系的Z轴呈夹角θ,且θ=90°。因此,飞行器10的机身101的姿态可以从飞行器10的机体坐标系的Z轴与惯性坐标系的Z轴呈夹角θ改变分析得出。其中,飞行器10的机体坐标系的Z轴与惯性坐标系的Z轴呈夹角θ改变又可以从传感器组件中的加速度计Z轴输出参数,也即加速度计的Z轴读数。
以预设姿态为机身101与地面垂直为例进行说明。
如图3B所示,Zb为机体系的Z轴,Zo为惯性系的Z轴,Zb和Zo之间呈夹角θ,Zo在Zb上的投影为OA,cosθ=|OA|/|Zo|,其中|Zo|对应重力 加速度g时,|OA|即为飞行器10在机体系的Z轴上的加速度a z
即,飞行器10飞行时,重力加速度g与加速度计的Z轴方向的加速度a z满足:cosθ=a z/g,也即θ=arccos az/ g,其中,加速度a z可以从加速度计读取,也即夹角θ或加速度a z可以作为加速参数反馈出飞行器10的机身101与地面垂直。
通常飞行器10的机体101无法与地面完全垂直,也即夹角θ通常无法达到90°。当夹角θ超过夹角预设值时,即可认为该飞行器10与地面垂直,其中,夹角预设值为70°-90°,即θ大于70°可认为该飞行器10与地面垂直,即飞行器10的机身101姿态为预设姿态,也即,Z轴输出参数a z小于加速度阈值g*cos 70°时,飞行器10的机身101姿态为预设姿态,重力加速度g根据飞行器10进行校准时所在地的纬度进行设置。
如,广州g=9.788m/s 2,武汉g=9.794m/s 2,东京g=9.798m/s 2,纽约g=9.803m/s 2,莫斯科g=9.816m/s 2
当Z轴输出参数a z小于加速度阈值g*cos 70°时,计算所述加速度计的Z轴输出参数的维持时间t,避免因外界干扰因素影响加速度计Z轴度数。若为维持时间t超过预设的时间阈值T时,判断机身101与地面垂直,该时间阈值T可以根据需要设置为1s-5s。
在部分实施例中,重力加速度g取值还可以是在9.7-10m/s 2之间。
步骤S103:根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,其中,所述采样指令为与所述飞行器通信连接的终端设备发送的以使所述磁力计进行数据采集的指令。
在部分实施例中,所述根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,包括:
根据所述采样指令控制所述磁力计采集第一组磁力数据,并控制所述磁力计以所述加速度每变化一次预设变化量时进行下一次的磁力数据采样,以获取所述多组磁力数据。
本实施例中以加速度为加速度计输出的在Z轴方向上的加速度a z为例进行说明。
示例性地,飞行器10的机身101的姿态符合磁力数据采样要求时,用户通过终端设备20向飞行器10发送采样指令,飞行器10接收该采样指令,并 控制磁力计进行磁力数据采样,获取第一组磁力数据和采集该第一组磁力数据时的Z轴方向上的加速度a z。并实时监控并获取加速度计输出的在Z轴方向上的加速度a z的大小,并控制磁力计以所述加速度a z每变化一次预设变化量时进行一次数据采样,以获取多组磁力数据。其中该预设变化量可以根据需要进行调整,如,若预设变化量为g*cos 0.7°时,a z每变化g*cos 0.7°时磁力计进行一次数据采样,即,重力加速度g与加速度计的Z轴方向的加速度a z满足:cosθ=a z/g,也即θ=arccos az/ g=0.7°磁力计进行一次数据采样。
如图4所示,飞行器10在外力作用下沿着轨迹A进行“8”字磁力校准。即通过外力使飞行器10的进行划“8”字的方式控制磁力计进行数据采集,以均匀获取地磁数据,从而使得地磁校准结果较为精准。
步骤S104:计算获取的所述磁力数据的组数是否超过预设的组数阈值,若获取的所述磁力数据的组数超过所述组数阈值,则执行步骤S105,若获取的所述磁力数据的组数未超过所述组数阈值,则执行步骤S103。
步骤S105:输出所述多组磁力数据。
示例性地,设置磁力数据采样的组数阈值为200组,当磁力计获取的磁力数据组数达到200组时,停止磁力数据采样,并输出该200组磁力数据,
请参阅图5,本发明还提供一种磁力计校准数据采集装置20,该磁力计校准数据采集装置20应用于飞行器10,该飞行器10设置有磁力计,该磁力计校准数据采集装置20包括:
姿态获取模块201,获取所述飞行器的姿态参数,其中,所述姿态参数用于表征所述飞行器的机身的当前姿态;
判断模块202,用于根据所述姿态参数判断所述机身的当前姿态是否为预设姿态;
采集模块203,用于若所述机身的当前姿态为所述预设姿态,则根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,其中,所述采样指令为与所述飞行器通信连接的终端设备发送的以使所述磁力计进行数据采集的指令;
计数模块204,用于计算获取的所述磁力数据的组数是否超过预设的组数阈值;
输出模块205,用于若获取的所述磁力数据的组数超过所述组数阈值,则输出所述多组磁力数据。
在部分实施例中,所述姿态参数包括翻滚角,所述预设姿态为所述机身与地面平行,判断模块202还用于:
判断所述翻滚角的角度值是否处于预设的第一角度值区间;
若所述翻滚角的角度值处于所述第一角度值区间,则判断所述机身与地面平行。
在部分实施例中,所述姿态参数包括俯仰角,所述预设姿态为所述机身与地面平行,判断模块202还用于:
判断所述俯仰角的角度值是否处于预设的第二角度值区间;
若所述俯仰角的角度值处于所述第二角度值区间,则判断所述机身与地面平行。
在部分实施例中,所述姿态参数包括俯仰角,所述预设姿态为所述机身与地面垂直,判断模块202还用于:
判断所述俯仰角的角度值是否处于预设的第三角度值区间;
若所述俯仰角的角度值处于所述第三角度值区间,则判断所述机身与地面垂直。
在部分实施例中,所述飞行器设置有加速度计,所述姿态参数包括所述加速度计的Z轴输出参数,所述预设姿态为所述机身与地面垂直,判断模块202还用于:
判断所述加速度计的Z轴输出参数是否超过加速参数阈值;
若所述加速度计的Z轴输出参数超过所述加速参数阈值,则计算所述加速度计的Z轴输出参数的维持时间;
判断所述维持时间是否超过预设的时间阈值;
若所述维持时间超过所述时间阈值,则判断所述机身与地面垂直。
在部分实施例中,采集模块203还用于:
根据所述采样指令控制所述磁力计采集第一组磁力数据,并控制所述磁力计以所述加速度每变化一次预设变化量时进行下一次的磁力数据采样,以获取所述多组磁力数据。
在部分实施例中,该飞行器10还包括存储器104、处理器105和总线106, 动力装置103以及存储器104通过总线106与处理器105电连接。
其中,存储器104至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(示例性地,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器104在一些实施例中可以是飞行器10的内部存储单元,示例性地该飞行器10的硬盘。存储器104在另一些实施例中也可以是飞行器10的外部存储设备,示例性地飞行器10上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。存储器104不仅可以用于存储安装于飞行器10的应用软件及各类数据,示例性地计算机可读程序的代码等,如磁力计校准程序,也即存储器104可以作为存储介质。
处理器105在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,处理器105可调用存储器104中存储的程序代码或处理数据,实现前述的磁力计校准数据采集方法。
以上仅为本发明的优选实施例,并非因此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的保护范围内。

Claims (10)

  1. 一种磁力计校准数据采集方法,应用于飞行器,所述飞行器设置有磁力计,其特征在于,所述方法包括:
    获取所述飞行器的姿态参数,其中,所述姿态参数用于表征所述飞行器的机身的当前姿态;
    根据所述姿态参数判断所述机身的当前姿态是否为预设姿态;
    若所述机身的当前姿态为所述预设姿态,则根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,其中,所述采样指令为与所述飞行器通信连接的终端设备发送的以使所述磁力计进行数据采集的指令;
    计算获取的所述磁力数据的组数是否超过预设的组数阈值;
    若获取的所述磁力数据的组数超过所述组数阈值,则输出所述多组磁力数据。
  2. 如权利要求1所述的方法,其特征在于,所述姿态参数包括翻滚角,所述预设姿态为所述机身与地面平行,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
    判断所述翻滚角的角度值是否处于预设的第一角度值区间;
    若所述翻滚角的角度值处于所述第一角度值区间,则判断所述机身与地面平行。
  3. 如权利要求1所述的方法,其特征在于,所述姿态参数包括俯仰角,所述预设姿态为所述机身与地面平行,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
    判断所述俯仰角的角度值是否处于预设的第二角度值区间;
    若所述俯仰角的角度值处于所述第二角度值区间,则判断所述机身与地面平行。
  4. 如权利要求1所述的方法,其特征在于,所述姿态参数包括俯仰角,所述预设姿态为所述机身与地面垂直,则,所述根据所述姿态参数判断所述 机身的当前姿态是否为预设姿态,包括:
    判断所述俯仰角的角度值是否处于预设的第三角度值区间;
    若所述俯仰角的角度值处于所述第三角度值区间,则判断所述机身与地面垂直。
  5. 如权利要求1所述的方法,其特征在于,所述飞行器设置有加速度计,所述姿态参数包括所述加速度计的Z轴输出参数,所述预设姿态为所述机身与地面垂直,则,所述根据所述姿态参数判断所述机身的当前姿态是否为预设姿态,包括:
    判断所述加速度计的Z轴输出参数是否超过加速参数阈值;
    若所述加速度计的Z轴输出参数超过所述加速参数阈值,则计算所述加速度计的Z轴输出参数的维持时间;
    判断所述维持时间是否超过预设的时间阈值;
    若所述维持时间超过所述时间阈值,则判断所述机身与地面垂直。
  6. 如权利要求1-5任意一项所述的方法,其特征在于,所述根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据,包括:
    根据所述采样指令控制所述磁力计采集第一组磁力数据,并控制所述磁力计以所述加速度每变化一次预设变化量时进行下一次的磁力数据采样,以获取所述多组磁力数据。
  7. 一种磁力计校准数据采集装置,应用于飞行器,所述飞行器设置有磁力计,其特征在于,所述磁力计校准数据采集装置包括:
    姿态获取模块,获取所述飞行器的姿态参数,其中,所述姿态参数用于表征所述飞行器的机身的当前姿态;
    判断模块,用于根据所述姿态参数判断所述机身的当前姿态是否为预设姿态;
    采集模块,用于若所述机身的当前姿态为所述预设姿态,则根据采样指令和所述飞行器的加速度控制所述磁力计进行数据采集以获取多组磁力数据, 其中,所述采样指令为与所述飞行器通信连接的终端设备发送的以使所述磁力计进行数据采集的指令;
    计数模块,用于计算获取的所述磁力数据的组数是否超过预设的组数阈值;
    输出模块,用于若获取的所述磁力数据的组数超过所述组数阈值,则输出所述多组磁力数据。
  8. 如权利要求7所述的磁力计校准数据采集装置,其特征在于,所述飞行器设置有加速度计,所述姿态参数包括所述加速度计的Z轴输出参数,所述预设姿态为所述机身与地面垂直,所述判断模块用于:
    判断所述加速度计的Z轴输出参数是否超过加速参数阈值;
    若所述加速度计的Z轴输出参数超过所述加速参数阈值,则计算所述加速度计的Z轴输出参数的维持时间;
    判断所述维持时间是否超过预设的时间阈值;
    若所述维持时间超过所述时间阈值,则判断所述机身与地面垂直。
  9. 如权利要求7所述的磁力计校准数据采集装置,其特征在于,所述采集模块还用于:
    根据所述采样指令控制所述磁力计采集第一组磁力数据,并控制所述磁力计以所述加速度每变化一次预设变化量时进行下一次的磁力数据采样,以获取所述多组磁力数据。
  10. 一种飞行器,所述飞行器包括机身,设置于所述机身的磁力计,与所述机身相连的机臂,设置于所述机臂的动力装置,其特征在于,所述飞行器还包括:
    存储器以及处理器;
    所述存储器用于存储计算机可执行的磁力计校准程序;
    所述处理器用于调取存储在所述存储器中的可执行的磁力计校准程序,以执行前述的磁力计校准数据采集方法。
PCT/CN2020/122386 2019-09-05 2020-10-21 一种磁力计校准数据采集方法、装置以及飞行器 WO2021043328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910838086.8 2019-09-05
CN201910838086.8A CN110567493B (zh) 2019-09-05 2019-09-05 一种磁力计校准数据采集方法、装置以及飞行器

Publications (1)

Publication Number Publication Date
WO2021043328A1 true WO2021043328A1 (zh) 2021-03-11

Family

ID=68778056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122386 WO2021043328A1 (zh) 2019-09-05 2020-10-21 一种磁力计校准数据采集方法、装置以及飞行器

Country Status (2)

Country Link
CN (1) CN110567493B (zh)
WO (1) WO2021043328A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567493B (zh) * 2019-09-05 2021-08-17 深圳市道通智能航空技术股份有限公司 一种磁力计校准数据采集方法、装置以及飞行器
CN112762965B (zh) * 2021-04-08 2021-09-07 北京三快在线科技有限公司 一种磁力计校准方法以及装置
CN114199220A (zh) * 2022-02-17 2022-03-18 深圳市边界智控科技有限公司 一种无人机空中在线磁罗盘校准方法和装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130338955A1 (en) * 2012-06-14 2013-12-19 Yei Corporation Determining and Correcting Error of Positional Vector-Valued Sensors Using a Fixed Angle Calibration Process
CN103575293A (zh) * 2012-07-25 2014-02-12 华为终端有限公司 一种磁力计方向角校正方法及磁力计
CN104296776A (zh) * 2013-07-15 2015-01-21 霍尼韦尔国际公司 用于磁力计校准和补偿的系统和方法
CN104582805A (zh) * 2012-08-17 2015-04-29 微软公司 动态磁力计校准
CN106842094A (zh) * 2016-12-31 2017-06-13 深圳市优必选科技有限公司 磁力计校准的数据处理方法和装置
CN107907142A (zh) * 2017-10-12 2018-04-13 歌尔科技有限公司 一种磁力计的初始校准方法、装置和磁力计
CN109297476A (zh) * 2017-07-24 2019-02-01 深圳市道通智能航空技术有限公司 磁力计的校准、采样及方位角确定方法和设备
CN109791604A (zh) * 2016-11-01 2019-05-21 谷歌有限责任公司 用于移动设备的自动磁力计校准
CN110567493A (zh) * 2019-09-05 2019-12-13 深圳市道通智能航空技术有限公司 一种磁力计校准数据采集方法、装置以及飞行器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068359A2 (en) * 2010-11-17 2012-05-24 Hillcrest Laboratories, Inc. Apparatuses and methods for magnetometer alignment calibration without prior knowledge of the local magnetic
US9157747B2 (en) * 2013-03-15 2015-10-13 Innovative Solutions And Support, Inc. Method of calibrating a heading reference system
CN107580268B (zh) * 2017-08-04 2019-11-08 歌尔科技有限公司 一种头部姿态检测方法、装置和耳机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130338955A1 (en) * 2012-06-14 2013-12-19 Yei Corporation Determining and Correcting Error of Positional Vector-Valued Sensors Using a Fixed Angle Calibration Process
CN103575293A (zh) * 2012-07-25 2014-02-12 华为终端有限公司 一种磁力计方向角校正方法及磁力计
CN104582805A (zh) * 2012-08-17 2015-04-29 微软公司 动态磁力计校准
CN104296776A (zh) * 2013-07-15 2015-01-21 霍尼韦尔国际公司 用于磁力计校准和补偿的系统和方法
CN109791604A (zh) * 2016-11-01 2019-05-21 谷歌有限责任公司 用于移动设备的自动磁力计校准
CN106842094A (zh) * 2016-12-31 2017-06-13 深圳市优必选科技有限公司 磁力计校准的数据处理方法和装置
CN109297476A (zh) * 2017-07-24 2019-02-01 深圳市道通智能航空技术有限公司 磁力计的校准、采样及方位角确定方法和设备
CN107907142A (zh) * 2017-10-12 2018-04-13 歌尔科技有限公司 一种磁力计的初始校准方法、装置和磁力计
CN110567493A (zh) * 2019-09-05 2019-12-13 深圳市道通智能航空技术有限公司 一种磁力计校准数据采集方法、装置以及飞行器

Also Published As

Publication number Publication date
CN110567493B (zh) 2021-08-17
CN110567493A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2021043328A1 (zh) 一种磁力计校准数据采集方法、装置以及飞行器
CN107148639B (zh) 确定跟踪目标的位置信息的方法及装置、跟踪装置及系统
WO2017197729A1 (zh) 一种跟踪系统及跟踪方法
WO2021223124A1 (zh) 位置信息获取方法、设备及存储介质
WO2021031974A1 (zh) 无人机航向角初值选取方法及无人机
WO2021078002A1 (zh) 无人机航向角初值选取方法、装置及无人机
JP6943988B2 (ja) 移動可能物体の制御方法、機器およびシステム
WO2021031975A1 (zh) 无人机航向确定方法、装置及无人机
EP2856278B1 (en) Hardware attitude detection implementation of mobile devices with mems motion sensors
CN107340764A (zh) 无人机的异常处理方法及装置
US9228842B2 (en) System and method for determining a uniform external magnetic field
JP2015526726A (ja) 風ベクトルの推定
WO2021078005A1 (zh) 对地高度校正方法及装置、无人飞行器
CN106647785B (zh) 无人机停机坪控制方法及装置
KR102122755B1 (ko) 화면 터치 방식을 이용하는 짐벌 제어 방법
CN112611380B (zh) 基于多imu融合的姿态检测方法及其姿态检测装置
CN108444468B (zh) 一种融合下视视觉与惯导信息的定向罗盘
CN109782806B (zh) 一种无人机室内路径跟踪方法及装置
CN102411440A (zh) 一种基于加速度计和陀螺仪传感器的无线头控鼠标
CN108801250B (zh) 基于水下机器人的实时姿态获取方法及装置
CN103712598A (zh) 一种小型无人机姿态确定系统与确定方法
CN109827595B (zh) 室内惯性导航仪方向校准方法、室内导航装置及电子设备
CN109297476B (zh) 磁力计的校准、采样及方位角确定方法和设备
CN112649884B (zh) 应用于航空电磁测量系统的吊舱姿态实时调整方法
WO2018176426A1 (zh) 一种无人机的飞行控制方法及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860141

Country of ref document: EP

Kind code of ref document: A1