WO2021043272A1 - 光电装置 - Google Patents

光电装置 Download PDF

Info

Publication number
WO2021043272A1
WO2021043272A1 PCT/CN2020/113529 CN2020113529W WO2021043272A1 WO 2021043272 A1 WO2021043272 A1 WO 2021043272A1 CN 2020113529 W CN2020113529 W CN 2020113529W WO 2021043272 A1 WO2021043272 A1 WO 2021043272A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical module
plate
optoelectronic device
cavity
Prior art date
Application number
PCT/CN2020/113529
Other languages
English (en)
French (fr)
Inventor
周志源
Original Assignee
周志源
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周志源 filed Critical 周志源
Priority to CN202080062868.8A priority Critical patent/CN114341547A/zh
Publication of WO2021043272A1 publication Critical patent/WO2021043272A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/05Optical design plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/62Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using mixing chambers, e.g. housings with reflective walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • F21S9/03Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
    • F21S9/037Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light the solar unit and the lighting unit being located within or on the same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a photoelectric device.
  • the optoelectronic devices on the market have developed quite maturely, but there are still problems to be improved or solved.
  • solar panels the solar panels currently on the market mainly use sunlight to generate electricity. When more power generation is needed, more solar panels are needed, and the space occupied by solar panels is larger. However, there may not be enough space for installing these solar panels outdoors, and with the influence of sunshine time, latitude, or shelters, the amount of power generated by the solar panels may not be as expected.
  • the lighting device taking the lighting device as an example, most of the current lighting devices on the market use high-power light sources to increase the brightness of the lighting, the distance of the light projection, or the range of the lighting, etc. However, this method consumes more energy.
  • the present invention provides a photoelectric device, which can effectively amplify the energy of output light, thereby helping to improve the above-mentioned problems.
  • the optoelectronic device includes at least five boards and at least one light source.
  • the at least five plates are assembled together to form a cavity.
  • the at least five panels include at least two of a solar panel, a reflective panel, and a translucent panel.
  • the at least one light source is embedded in at least one of the at least five boards.
  • the cavity is hollow.
  • the outer surface of at least one plate in the optoelectronic device is formed with an optical layer, a plurality of microstructures, or a combination of the foregoing.
  • the light receiving surface of the solar panel faces the inside of the cavity.
  • At least one board in the optoelectronic device is a composite board.
  • the inner surface of the reflector is a flat surface, a curved surface, a tortuous surface, or a combination of at least two of the foregoing surfaces.
  • the optoelectronic device is a polygonal cylinder.
  • the at least five boards include a front board, a rear board, a first side board, a second side board, and a bottom board.
  • the front panel and the rear panel are reflectors.
  • the first side panel and the second side panel are solar panels.
  • the bottom plate is a solar panel, a reflective plate or a light-transmitting plate.
  • the optoelectronic device is a lighting device.
  • the bottom plate is a light-transmitting plate. At least one of the inner surface and the outer surface of the bottom plate is a rough surface or is formed with a plurality of microstructures.
  • the at least one light source includes at least one light emitting element and an optical device.
  • the at least one light-emitting element is adapted to output a light beam.
  • the optical device is arranged on the transmission path of the light beam and includes a conductive cavity, a first optical module, a second optical module, and a third optical module.
  • the conductive cavity has a light incident end.
  • the first optical module is fixed in the conductive cavity and is adjacent to the light entrance end.
  • the second optical module is fixed in the conductive cavity.
  • the first optical module is located between the light incident end and the second optical module.
  • the conductive cavity, the first optical module, and the second optical module jointly enclose a first resonance space.
  • the third optical module is fixed in the conductive cavity.
  • the second optical module is located between the first optical module and the third optical module.
  • the conductive cavity, the second optical module, and the third optical module jointly enclose a second resonance space.
  • the at least one light emitting element includes at least one light emitting diode.
  • Fig. 1 is a schematic diagram of an optoelectronic device according to a first embodiment of the present invention
  • Figure 2 is another front view of the front plate in Figure 1;
  • Fig. 3 is a schematic cross-sectional view of the light source in Fig. 1;
  • FIGS. 4 to 6 are schematic diagrams of the optoelectronic device according to the second embodiment to the fourth embodiment of the present invention, respectively.
  • A’ Light source housing hole
  • B, B1, B2 light beam
  • each drawing shows the general features of the methods, structures, and/or materials used in a specific embodiment.
  • these drawings should not be construed as defining or limiting the scope or nature covered by these embodiments.
  • the relative size, thickness, and position of each layer, region, or structure may be reduced or enlarged.
  • first and “second” mentioned in this specification or claims are only used to name discrete elements or to distinguish different embodiments or ranges, and are not used to limit the upper or lower limit of the number of elements It is not used to limit the manufacturing order or the arrangement order of the components.
  • provision of one element/film layer on (or above) another element/film layer can encompass that the element/film layer is directly arranged on (or above) the other element/film layer, and two elements/film layer are directly arranged on (or above) the other element/film layer.
  • the film layer is in direct contact; and the element/film layer is indirectly arranged on (or above) the other element/film layer, and there are one or more elements/film layers between the two elements/film layers happening.
  • the optoelectronic device may include at least five boards and at least one light source.
  • the at least five plates are assembled together to form a cavity.
  • the at least one light source is embedded in at least one of the at least five boards.
  • Each plate has an inner surface and an outer surface. The inner surface is the surface of the plate facing the inside of the cavity, and the outer surface is the surface of the plate facing the outside of the cavity.
  • the at least five panels include at least two of a solar panel, a reflective panel, and a translucent panel.
  • one of the at least five panels can be selected from one of solar panels, reflective panels, and translucent panels, and the other panel of the at least five panels can be selected from solar panels,
  • the other of the reflective plate and the light-transmitting plate, and the remaining plates of the at least five plates may be other types of plates, or the remaining plates of the at least five plates may also be selected from solar panels , Reflective plate and light-transmitting plate.
  • Fig. 1 is a schematic diagram of an optoelectronic device 1 according to a first embodiment of the present invention.
  • the optoelectronic device 1 may include five boards (such as a front board 10, a rear board 11, a first side board 12, a second side board 13 and a bottom board 14) and a light source 15.
  • the front plate 10, the rear plate 11, the first side plate 12, the second side plate 13 and the bottom plate 14 are assembled together to form a cavity C.
  • the front plate 10, the rear plate 11, the first side plate 12, the second side plate 13, and the bottom plate 14 can be fixed together by clamping, locking, bonding or other suitable methods to form the shape shown in FIG.
  • the optoelectronic device may include more plates, and these plates may be assembled to form other types of polygonal cylinders.
  • the cavity C is hollow, that is, the interior of the cavity C may not be provided with a filling material.
  • the light transmission medium in the cavity C may be air, that is, the refractive index of the light transmission medium in the cavity C may be 1.
  • the front plate 10 and the rear plate 11 may be reflective plates.
  • the reflective plate can be a metal plate (such as an aluminum plate or a stainless steel plate, but not limited to this) or a light-transmitting plate with a reflective layer formed thereon (such as a glass plate or a plastic plate, but not limited to this) ), and the light-reflecting layer can face the inside of the cavity C.
  • the inner surface of the reflector may be a flat surface, a curved surface, a curved surface, or a combination of at least two of the foregoing surfaces.
  • the light source 15 may be embedded in the front plate 10 and output a light beam toward the inside of the cavity C, but is not limited thereto. In other embodiments, the number of light sources 15 may be greater than one, and multiple light sources may be embedded in one or more reflectors in the optoelectronic device 1.
  • the first side panel 12 and the second side panel 13 may be solar panels.
  • the solar panel can be any kind of solar panel, such as a silicon-based solar panel, a thin-film solar panel, or an organic material solar panel, but not limited to this.
  • the light receiving surface of the solar panel may face the inside of the cavity C to receive the light output by the light source 15 and convert the light energy into electrical energy.
  • the bottom plate 14 may be a solar panel, a reflective plate, or a light-transmitting plate.
  • the bottom plate 14 can be used together with the first side plate 12 and the second side plate 13 to generate electricity.
  • the bottom plate 14 is a reflective plate, the bottom plate 14 can be used together with the front plate 10 and the back plate 11 to reflect light, so that the energy of the light entering the cavity can be amplified through reflection and diffraction, so that the solar panel (such as The first side plate 12 and the second side plate 13) can receive more light.
  • the bottom plate 14 can be a light-transmitting plate, and the light in the cavity C can be output from the photoelectric device 1 through the bottom plate 14.
  • at least one of the inner surface and the outer surface of the bottom plate (light-transmitting plate) can be a rough surface to homogenize the light beam, or at least one of the inner surface and the outer surface of the bottom plate (light-transmitting plate) can be a rough surface.
  • a number of microstructures are formed to achieve the desired lighting effect.
  • Fig. 1 schematically shows that the front plate 10, the rear plate 11, the first side plate 12, the second side plate 13, and the bottom plate 14 are all a single plate.
  • at least one board in the optoelectronic device 1 may be a composite board.
  • Fig. 2 is another front view of the front plate 10 in Fig. 1.
  • the front board 10 may also be a composite board formed by combining the first sub board 100, the second sub board 101 and the third sub board 102.
  • the combination of the first sub-board 100, the second sub-board 101, and the third sub-board 102 may include clamping, locking, bonding or other suitable methods.
  • FIG. 1 schematically shows that the front plate 10, the rear plate 11, the first side plate 12, the second side plate 13, and the bottom plate 14 are all a single plate.
  • at least one board in the optoelectronic device 1 may be a composite board.
  • Fig. 2 is another front view of the front plate 10 in Fig. 1.
  • the front board 10 may also be a composite board formed
  • the second sub-board 101 is disposed between the first sub-board 100 and the third sub-board 102, and the center of the second sub-board 101 is formed with an opening A for accommodating the light source 15.
  • the design parameters such as the position of the opening A, the number or arrangement of the multiple sub-boards, or the shape of each sub-board can be changed as required, and other boards in the optoelectronic device 1 can also be composite boards. I won't repeat it here.
  • the solar panels (such as the first side panel 12, the second side panel 13 and/or the bottom panel 14) can use the light output by the light source 15 to generate electricity, and can generate electricity without relying on sunlight, so the photovoltaic device 1In addition to being set up outdoors, it can also be set up indoors.
  • the installation position of the optoelectronic device 1 may not be limited to the sunlight irradiated area, and the power generation of the optoelectronic device 1 may not be affected by sunshine time, latitude, or shielding.
  • the optoelectronic device 1 In the case that the optoelectronic device 1 is installed outdoors, multiple boards of the optoelectronic device 1 (such as a plurality of the front board 10, the rear board 11, the first side board 12, the second side board 13, and the bottom board 14) can bear The ability to impact the environment (such as strong winds, falling snow).
  • the outer surface of at least one board (such as at least one of the front board 10, the rear board 11, the first side board 12, the second side board 13 and the bottom board 14) in the optoelectronic device 1 may be selectively formed with an optical layer , Multiple microstructures or a combination of the above to achieve the required optical effect (such as anti-reflection effect, but not limited to this).
  • the light source 15 may use a light source that helps amplify the energy of the output light, so that it can meet the needs of power generation or lighting without consuming too much energy.
  • FIG. 3 is a schematic cross-sectional view of the light source 15 in FIG. 1.
  • the light source 15 may include at least one light emitting element 150 and an optical device 152.
  • the at least one light-emitting element 150 is suitable for outputting a light beam B.
  • the at least one light emitting element 150 may include at least one light emitting diode.
  • the light source 15 may further include a circuit board 154.
  • the circuit board 154 can be a printed circuit board (Printed Circuit Board, PCB), a flexible printed circuit board (Flexible Printed Circuit, FPC), or any substrate suitable for carrying circuits.
  • the light emitting element 150 is disposed on the circuit board 154 and is electrically connected to the circuit board 154.
  • the light-emitting diode may be a white light-emitting diode.
  • the light-emitting diode can be a blue light-emitting diode with at least one color conversion layer (not shown).
  • the color conversion layer is suitable for absorbing short-wavelength light beams (such as blue light) and emitting long-wavelength light beams (such as yellow light, red light or green light).
  • the material of the color conversion layer may include phosphors, quantum dots, or a combination of the two.
  • the color conversion layer can cover the light-emitting diode such that the light-emitting diode is located between the color conversion layer and the circuit board 154.
  • the multiple light-emitting diodes may share the same color conversion layer, or the multiple light-emitting diodes may not share the same color conversion layer.
  • multiple light-emitting diodes may be covered with multiple color conversion layers.
  • the multiple color conversion layers are structurally separated and can be excited to light beams of the same color or different colors.
  • multiple color conversion layers can be separately excited to emit red light, green light, and blue light to mix white light, that is, the color of light beam B is white, but the color of light beam B can be changed according to different requirements, and can be The specific structure of the light-emitting diode is adjusted according to the required color of the beam B.
  • the shape of the color conversion layer can be hemispherical to provide the effect of converging light, but it is not limited to this.
  • a protective layer may be further provided on the color conversion layer to isolate the negative effects of air and moisture on the color conversion layer.
  • the shape of the protective layer can be hemispherical to provide the effect of concentrating light. In this way, the shape of the color conversion layer may or may not be hemispherical.
  • a hemispherical protective layer can also be provided on the light-emitting diode to provide the effect of concentrating light.
  • the optical device 152 is arranged on the transmission path of the light beam B and is suitable for amplifying the energy of the light emitted and adjusting the light shape of the light.
  • the optical device 152 includes a conductive cavity 1520, a first optical module 1522, a second optical module 1524, and a third optical module 1526.
  • the conductive cavity 1520 is suitable for fixing the light emitting element 150, the first optical module 1522, the second optical module 1524, and the third optical module 1526.
  • the conductive cavity 1520 may be an integrally formed single-piece structure, or may be a multi-piece structure assembled from multiple pieces, and the multiple pieces may have the same or different materials.
  • the conductive cavity 1520 can also be used as an object that receives photons and emits electrons in the photoelectric effect. Therefore, the material of the conductive cavity 1520 includes a conductive material suitable for generating a photoelectric effect, and is preferably a material with good conductivity.
  • the material of the conductive cavity 1520 may include metal, alloy, graphene, or a combination of at least two of the foregoing, but is not limited thereto.
  • the conductive cavity 1520 has a light input terminal X1 and a light output terminal X2 opposite to the light input terminal X1.
  • the light emitting element 150 is disposed at the light entrance X1, so that the light beam B output by the light emitting element 150 enters the conductive cavity 1520 through the light entrance X1, and the light beam B is output from the conductive cavity 1520 through the light exit X2.
  • the light incident end X1 of the conductive cavity 1520 has a light source accommodating hole A'for accommodating the light-emitting element 150, and the light-emitting element 150 is disposed in the light source accommodating hole A'.
  • the relative arrangement relationship between the conductive cavity 1520 and the light emitting element 150 is not limited to this.
  • the light-emitting element 150 may be integrally disposed in the light source accommodating hole A', but it is not limited to this.
  • the design parameters of the conductive cavity 1520 can be adjusted as required, instead of the ones shown in FIG. 3 The display is limited.
  • the first optical module 1522, the second optical module 1524, and the third optical module 1526 are fixed in the conductive cavity 1520.
  • 3 schematically shows that the edges of the first optical module 1522, the edges of the second optical module 1524, and the edges of the third optical module 1526 are all fixed on the side wall S1520 of the conductive cavity 1520, but the optical module and the conductive cavity
  • the fixing method and/or the relative configuration relationship between the two are not limited to this.
  • the first optical module 1522, the second optical module 1524, and the third optical module 1526 can be fixed in the conductive cavity 1520 by clamping, locking, bonding or other suitable methods.
  • the multiple optical modules can be fixed between two adjacent pieces by clamping, locking, bonding or other suitable methods.
  • the first optical module 1522 is adjacent to the light incident end X1 and is located between the light incident end X1 and the second optical module 1524, and the second optical module 1524 is located between the first optical module 1522 and the third optical module 1526.
  • the conductive cavity 1520, the first optical module 1522, and the second optical module 1524 jointly enclose the first resonance space SP1, and the conductive cavity 1520, the second optical module 1524, and the third optical module 1526 jointly enclose the second resonance space SP1 Space SP2.
  • the refractive index of the light transmission medium in the first resonance space SP1 and the second resonance space SP2 is 1.
  • the light transmission medium in the first resonance space SP1 and the second resonance space SP2 may be air, and the filling material may not be provided in the first resonance space SP1 and the second resonance space SP2.
  • the distance or position between the first resonance space SP1 and the second resonance space SP2 can be adjusted according to requirements.
  • the resonance space can also be increased or decreased according to requirements.
  • the light beam B output from the light emitting element 150 enters the first resonance space SP1 via the first optical module 1522.
  • the first optical module 1522 may be a light focusing module to converge the light beam B output by the light emitting element 150 into the first resonance space SP1.
  • the light focusing module may include one or more lenses.
  • Each of the one or more lenses may be spherical or aspherical lenses.
  • the material of each of the one or more lenses may be glass or plastic.
  • Either the second optical module 1524 and the third optical module 1526 includes an optical element that allows the light beam to partially penetrate and partially reflect.
  • the optical element may be one or more lenses or protective covers.
  • the components of the second optical module 1524 and the third optical module 1526 can be selected according to actual needs (such as application categories), and the type and/or number of components of the second optical module 1524 can be the same or different from that of the third optical module 1526 The type and/or quantity of components.
  • the second optical module 1524 may be a light focusing module including one or more lenses.
  • the third optical module 1526 may be a light focusing module including one or more lenses.
  • the third optical module 1526 when used to increase the range of illumination, the third optical module 1526 may be a light expansion module including one or more lenses, and the refractive power of the light expansion module may be negative. Furthermore, the third optical module 1526 can also be a protective cover to protect the components located thereunder.
  • the material of the protective cover can be glass or plastic.
  • the protective cover can be a flat or curved substrate.
  • a part of the light beam B entering the first resonance space SP1 (referred to as the first part) is output from the first resonance space SP1 to the second resonance space SP2 via the second optical module 1524, and the other part of the light beam B entering the first resonance space SP1 ( (Referred to as the second part) can perform resonance amplification through the first resonance space SP1, and output from the first resonance space SP1 to the second resonance space SP2 through the second optical module 1524 after accumulating sufficient energy.
  • the first part may be, for example, 60% of the light beam B entering the first resonance space SP1
  • the second part may be, for example, 40% of the light beam B entering the first resonance space SP1
  • the respective percentages of the second part can be changed according to different design requirements, and can be changed by adjusting the design parameters of the first optical module 1522 and the second optical module 1524 (such as curvature, refractive index, distance to other components, etc.)
  • the percentage of each of the first part and the second part can be changed.
  • the design parameters of the first optical module 1522 the light energy distribution of the light beam B transmitted to different regions (such as the central region and the peripheral region) of the second optical module 1524 can be controlled.
  • the percentage of the first part (beam directly passing through the second optical module 1524) and the percentage of the second part (beam reflected by the second optical module 1524) can be controlled by adjusting the design parameters of the second optical module 1524.
  • the second part is reflected by the second optical module 1524 to the side wall S1520 of the conductive cavity 1520, and the side wall S1520 converts photons into electrons based on the photoelectric effect. This electron finally releases energy in the form of visible light, thus producing a flash of light.
  • the light beam B photon
  • the light beam B can be reflected/impacted/colliding back and forth multiple times in the first resonance space SP1 to excite more electrons.
  • the frequency and phase of the light beam B emitted by the light-emitting element 150 are adjusted to be consistent or mostly consistent as much as possible (that is, to achieve the characteristic of coherence).
  • a part (the third part) of the light beam B1 that enters the second resonance space SP2 through the second optical module 1524 is output from the second resonance space SP2 to the outside of the optical device 152 through the third optical module 1526, and enters the second resonance space SP2.
  • the other part of the beam B1 in the resonance space SP2 (the fourth part for short) can be resonantly amplified through the second resonance space SP2, and after accumulating sufficient energy, it is output from the second resonance space SP2 to the outside of the optical device 152 through the third optical module 1526 , So that the energy of the light beam B2 output from the second resonance space SP2 exceeds the energy of the light beam B1 entering the second resonance space SP2. In this way, the energy of the light beam B2 output from the optical device 152 can exceed the energy of the light beam B output from the light-emitting element 150.
  • the third part may be, for example, 60% of the light beam B1 entering the second resonance space SP2
  • the fourth part may be, for example, 40% of the light beam B1 entering the second resonance space SP2
  • the third part and The respective percentages of the fourth part can be changed according to different design requirements, and can be changed by adjusting the design parameters of the second optical module 1524 and the third optical module 1526 (such as curvature, refractive index, distance to other elements, etc.)
  • the percentage of each of the third part and the fourth part for related instructions, please refer to the foregoing, and will not repeat them here.
  • FIG. 3 schematically shows that the optical device 152 has two resonant spaces
  • the number of resonant spaces possessed by the optical device is not limited thereto. Since each resonance space helps to amplify the energy of the light emitted, the optical device may only have one resonance space (such as the first resonance space). Under this structure, the optical device may not include the third optical module 1526, which helps to reduce the overall volume of the optical device. In yet another embodiment, the optical device may also have more than three resonance spaces. Under this structure, the optical device may include more optical modules, so that each resonance space is formed by two adjacent optical modules and the conductive cavity 1520. In this way, it helps to increase the distance of light projection or increase the range of illumination.
  • the shape of all optical modules is not limited to a certain shape, it can be round, square, rectangular, elliptical, single-sided convex, double-sided convex, single-sided convex and single-sided concave, and one side has a convex shape. Textures (such as pits) with no texture on the other side, texture on both sides, flat shape, flat on one side and radian on the other side, triangle, polygon, or other shapes.
  • the material of the optical module in addition to glass and plastic, can also be a transparent or translucent polymer, and even a liquid can be used to form the optical module.
  • part of the optical materials can be formed by adding various mineral elements or color materials as needed, so that lighting devices with different colors of optical output can be produced.
  • different minerals or color materials are added in the production of optical lenses, and different minerals or color materials in the optical lenses are used to change the color of the output light.
  • the resonance space may be formed in different shapes, or some kind of accessories may be added, such as a metal hood or a component with a reflective function.
  • the materials of the parts may be made of different materials such as metal, ceramics, plastics, graphene or various minerals.
  • the material of the optical module may be ordinary glass, or it may be a specially formulated optical lens, or it may be made of plastic material (such as PC material), it may be made of ceramic or quartz, or more advanced materials.
  • the lenses, height, width, or thickness used in conjunction with all optical modules can be different, but are not limited to this.
  • the light source 15 may also have a wireless charging function. In some embodiments, the light source 15 may have a central remote control system. In some embodiments, the light source 15 can be controlled or monitored by a 5G network to save energy. In some embodiments, the light source 15 can be charged or powered by a solar panel or wireless transmission.
  • the light source 15 helps to amplify the energy of the output light.
  • the phase and frequency of the light beam B2 output from the light source 15 are consistent or mostly consistent, the light intensity of the light beam B2 output from the light source 15 can be more uniform.
  • the light beam B2 output by the light source 15 can be amplified again through the cavity C in FIG.
  • 4 to 6 are schematic diagrams of the optoelectronic device 1A according to the second embodiment of the present invention to the optoelectronic device 1C of the fourth embodiment, respectively.
  • the photoelectric device 1A includes a front plate 10, a rear plate 11, a first side plate 12, a second side plate 13, a bottom plate 14, and a top plate 16, and these six plates can be fixed and locked by clamping and locking.
  • the top plate 16 is connected between the first side plate 12 and the second side plate 13 and opposite to the bottom plate 14, but not Limit this.
  • the top plate 16 may be a reflective plate.
  • the top plate 16 may not be embedded in the light source 15. In other embodiments, the top plate 16 may be embedded with one or more light sources.
  • the photoelectric device 1B also includes six boards including a front board 10, a rear board 11, a first side board 12, a second side board 13, a bottom board 14, and a top board 16, and these six boards can be fixed by clamping, They are fixed together by locking, bonding or other suitable methods to form a rectangular parallelepiped as shown in FIG. 5.
  • the optoelectronic device 1B may include a plurality of light sources 15, and each of the front plate 10 and the rear plate 11 may be embedded with the plurality of light sources 15 respectively. In other embodiments, each reflector in the optoelectronic device 1B may be embedded in one or more light sources 15 or not.
  • the optoelectronic device 1C includes eight panels including a front panel 10, a rear panel 11, a first side panel 12, a second side panel 13, a bottom panel 14, a top panel 16, a third side panel 17 and a fourth side panel 18. , And these eight plates can be fixed together by clamping, locking, bonding or other suitable methods to form a hexagonal column as shown in FIG. 6, wherein the third side plate 17 is connected to the first side plate, for example 12 and the bottom plate 14, and the fourth side plate 18 is connected between the second side plate 13 and the bottom plate 14, for example.
  • each of the third side plate 17 and the fourth side plate 18 may be a solar panel or a reflector, and the reflector may be embedded with one or more light sources or not.
  • the optoelectronic device may also be other polygonal cylinders, such as octagonal cylinders, but it is not limited to this.
  • multiple sides of the polygonal cylinder can be of equal length or unequal length.
  • the photovoltaic device can also generate current and voltage.
  • the number of solar panels in the photovoltaic device can be one or more, such as two, three or more.
  • the light beam output by the light source is injected into the cavity, and the energy of the light beam injected into the cavity can be amplified by reflection, diffraction, etc., so the embodiment of the present invention
  • the photoelectric device helps to amplify the energy of the output light, so that it can meet the needs of power generation or lighting without consuming too much energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Power Steering Mechanism (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种光电装置(1),包括至少五个板以及至少一个光源(15)。至少五个板组装在一起形成腔体(C);至少五个板包括太阳能面板、反光板以及透光板中的至少两个;至少一个光源(15)嵌入至少五个板中的至少一个。

Description

光电装置 技术领域
本发明涉及一种光电装置。
背景技术
目前市面上的光电装置都已发展得相当成熟,但仍有待提升或解决的问题。以太阳能面板为例,目前市面上的太阳能面板主要利用太阳光来发电。当需要的发电量越多,则需要越多的太阳能面板,且太阳能面板的占据空间也越大。然而,户外不一定有足够的空间摆设这些太阳能面板,且随着日照时间、纬度或遮蔽物等的影响,太阳能面板产生的发电量可能不如预期。另外,以照明装置为例,目前市面上的照明装置大多通过使用大功率的光源来增加照明的亮度、光投射的距离或照明的范围等,然而这种方式会耗费更多的能源。
发明内容
本发明提供一种光电装置,其可有效放大输出光的能量,从而有助于改善上述问题。
根据本发明的实施例,光电装置包括至少五个板以及至少一个光源。所述至少五个板组装在一起而形成腔体。所述至少五个板包括太阳能面板、反光板以及透光板中的至少两个。所述至少一个光源嵌入所述至少五个板中的至少一个。
在根据本发明的实施例中,腔体是中空的。
在根据本发明的实施例中,光电装置中的至少一个板的外表面形成有光学层、多个微结构或上述的组合。
在根据本发明的实施例中,太阳能面板的光接收面朝向所述腔体的内部。
在根据本发明的实施例中,光电装置中的至少一个板是组合板。
在根据本发明的实施例中,反光板的内表面是平面、曲面、曲折面或上述至少两种表面的组合。
在根据本发明的实施例中,光电装置是多边形柱体。所述至少五个板包括前板、后板、第一侧板、第二侧板以及底板。前板以及后板是反光板。第一侧板以及第二侧板是太阳能面板。底板是太阳能面板、反光板或透光板。
在根据本发明的实施例中,光电装置是照明装置。底板是透光板。底板的内表面以及外表面的其中至少一个是粗糙表面或形成有多个微结构。
在根据本发明的实施例中,所述至少一个光源包括至少一个发光元件以及光学装置。所述至少一个发光元件适于输出光束。光学装置设置在光束的传递路径上且包括导电腔体、第一光学模块、第二光学模块以及第三光学模块。导电腔体具有入光端。第一光学模块固定于导电腔体中且邻近入光端。第二光学模块固定于导电腔体中。第一光学模块位于入光端与第二光学模块之间。导电腔体、第一光学模块以及第二光学模块共同围设出第一谐振空间。第三光学模块固定于导电腔体中。第二光学模块位于第一光学模块与第三光学模块之间。导电腔体、第二光学模块以及第三光学模块共同围设出第二谐振空间。
在根据本发明的实施例中,所述至少一个发光元件包括至少一个发光二极管。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图详细说明如下。
附图说明
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1是根据本发明的第一实施例的光电装置的示意图;
图2是图1中前板的另一种正视图;
图3是图1中光源的一种剖面示意图;
图4至图6分别是根据本发明的第二实施例的光电装置至第四实施例的光电装置的示意图。
附图标号说明
1、1A、1B、1C:光电装置;
10:前板;
100:第一子板;
101:第二子板;
102:第三子板;
11:后板;
12:第一侧板;
13:第二侧板;
14:底板;
15:光源;
150:发光元件;
152:光学装置;
1520:导电腔体;
1522:第一光学模块;
1524:第二光学模块;
1526:第三光学模块;
154:电路板;
16:顶板;
17:第三侧板;
18:第四侧板;
A:开孔;
A’:光源容置孔;
B、B1、B2:光束;
C:腔体;
S1520:侧壁;
SP1:第一谐振空间;
SP2:第二谐振空间;
X1:入光端;
X2:出光端。
具体实施方式
本文中所提到的方向用语,例如:“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向。因此,使用的方向用语是用来说明,而并非用来限制本发明。
在附图中,各附图示出的是特定实施例中所使用的方法、结构和/或材料的通常性特征。然而,这些附图不应被解释为界定或限制由这些实施例所涵盖的范围或性质。举例来说,为了清楚起见,各膜层、区域或结构的相对尺寸、厚度及位置可能缩小或放大。
在下述实施例中,相同或相似的元件将采用相同或相似的标号,且将省略其赘述。此外,不同实施例中的特征在没有冲突的情况下可相互组合,且依本说明书或权利要求所作的简单的等效变化与修饰,皆仍属本发明涵盖的范围内。
本说明书或权利要求中提及的“第一”、“第二”等用语仅用以命名分立(discrete)的元件或区别不同实施例或范围,而并非用来限制元件数量上的上限或下限,也并非用以限定元件的制造顺序或设置顺序。此外,一元件/膜层设置在另一元件/膜层上(或上方)可涵盖所述元件/膜层直接设置在所述另一元件/膜层上(或上方),且两个元件/膜层直接接触的情况;以及所述元件/膜层间接设置在所述另一元件/膜层上(或上方),且两个元件/膜层之间存在一或多个元件/膜层的情况。
在本发明的实施例中,光电装置可包括至少五个板以及至少一个光源。所述至少五个板组装在一起而形成腔体。所述至少一个光源嵌入所述至少五个板中的至少一个。各个板具有内表面以及外表面,内表面为所述板朝向腔体内部的表面,而外表面为所述板朝向腔体外部的表面。所述至少五个板包括太阳能面板、反光板以及透光板中的至少两个。换句话说,所述至少五个板中的一个板可选自于太阳能面板、反光板以及透光板中的其中一个,所述至少五个板中的另一个板可选自于太阳能面板、反光板以及透光板中的其中另一个,而所述至少五个板中的其余的板可为其他种类的板,或者所述至少五个板中的其余的板也可选自于太阳能面板、反光板以及透光板。
以下特举实施例,并配合附图详细说明如下。
图1是根据本发明的第一实施例的光电装置1的示意图。请参照图1,光电装置1可包括五个板(如前板10、后板11、第一侧板12、第二侧板13以 及底板14)以及光源15。前板10、后板11、第一侧板12、第二侧板13以及底板14组装在一起而形成腔体C。举例来说,前板10、后板11、第一侧板12、第二侧板13以及底板14可通过卡固、锁固、黏合或其他合适的方式固定在一起而形成如图1所示的三角形柱体,其中第一侧板12的其中一长边与第二侧板13的其中一长边连接,且底板14连接于第一侧板12的其中另一长边与第二侧板13的其中另一长边之间,而前板10与后板11分别固定于第一侧板12、第二侧板13以及底板14的相对两端,但不以此为限。在其他实施例中,光电装置可包括更多的板,且这些板可组装形成其他种类的多边形柱体。
在一些实施例中,腔体C是中空的,即腔体C的内部可不设置填充材料。在一些实施例中,腔体C中的光传递介质可为空气,即腔体C中的光传递介质的折射率可为1。
在一些实施例中,前板10以及后板11可以是反光板。在本文中,反光板可以是金属板(如铝板或不锈钢板,但不以此为限)或是其上形成有反光层的透光板(如玻璃板或塑料板,但不以此为限),且反光层可朝向腔体C的内部。此外,反光板的内表面可以是平面、曲面、曲折面或上述至少两种表面的组合。光源15可嵌入前板10,并朝腔体C的内部输出光束,但不限于此。在其他实施例中,光源15的数量可大于一,且多个光源可嵌入光电装置1中的一个或多个反光板。
在一些实施例中,第一侧板12以及第二侧板13可以是太阳能面板。太阳能面板可以是任何种类的太阳能面板,如硅基太阳能面板、薄膜太阳能面板或有机材料太阳能面板等,但不以此为限。太阳能面板的光接收面可朝向腔体C的内部,以接收光源15输出的光并将光能转换成电能。
在一些实施例中,底板14可以是太阳能面板、反光板或透光板。当底板14为太阳能面板,底板14可与第一侧板12以及第二侧板13共同用于发电。当底板14为反光板,底板14可与前板10以及后板11共同用于将光反射,使得射入腔体中的光的能量可经由反射及衍射等作用而放大,使太阳能面板(如第一侧板12以及第二侧板13)能够接收到更多的光。当光电装置1有提供照明功能的需求时,底板14可为透光板,腔体C中的光可经由底板14自光电装置1输出。在此架构下,底板(透光板)的内表面以及外表面的其中至少一 个可以是粗糙表面,以将光束均匀化,或者底板(透光板)的内表面以及外表面的其中至少一个可以形成有多个微结构,以达到所需的照明效果。
图1示意性示出前板10、后板11、第一侧板12、第二侧板13以及底板14皆为单一个板。然而,在其他实施例中,光电装置1中的至少一个板可以是组合板。图2是图1中前板10的另一种正视图。如图2所示,前板10也可以是由第一子板100、第二子板101以及第三子板102组合而成的组合板。第一子板100、第二子板101以及第三子板102的组合方式可包括卡固、锁固、黏合或其他合适的方式。在图2中,第二子板101设置在第一子板100与第三子板102之间,且第二子板101的中心形成有用于容纳光源15的开孔A。然而,在其他实施例中,开孔A的位置、多个子板的数量或排列方式或各子板的形状等设计参数可依需求改变,且光电装置1中的其他板也可为组合板,于此不多加赘述。
请再参照图1,由于太阳能面板(如第一侧板12、第二侧板13和/或底板14)可利用光源15输出的光来发电,而可以不用倚靠太阳光来发电,因此光电装置1除了可以设置在户外之外,也可以设置在室内。换句话说,光电装置1的设置位置可不受限于阳光的照射区域,且光电装置1的发电量可不受到日照时间、纬度或遮蔽物等的影响。
在光电装置1设置在户外的情况下,光电装置1的多个板(如前板10、后板11、第一侧板12、第二侧板13以及底板14中的多个)可具有承受环境冲击(如强风、落雪…)的能力。此外,光电装置1中的至少一个板(如前板10、后板11、第一侧板12、第二侧板13以及底板14中的至少一个)的外表面可选择性地形成有光学层、多个微结构或上述的组合,以达到所需的光学效果(如抗反射效果,但不以此为限)。
在一些实施例中,光源15可使用有助于放大输出光的能量的光源,如此,可在不耗费太多能源的情况下满足发电或照明等需求。
图3是图1中光源15的一种剖面示意图。请参照图3,光源15可包括至少一个发光元件150以及光学装置152。所述至少一个发光元件150适于输出光束B。举例来说,所述至少一个发光元件150可包括至少一个发光二极管。在一些实施例中,光源15可进一步包括电路板154。电路板154可为印刷电路板(Printed Circuit Board,PCB)、软性印刷电电路板(Flexible Printed  Circuit,FPC)或任何适于承载线路的基材。发光元件150设置在电路板154上并与电路板154电连接。当光电装置1(参见图1)应用于一般照明时,发光二极管可为白光发光二极管。或者,发光二极管可为蓝色发光二极管搭配至少一层色转换层(未示出)。色转换层适于吸收短波长的光束(如蓝光)并放出长波长的光束(如黄光、红光或绿光)。举例来说,色转换层的材质可包括荧光粉、量子点或上述两个的组合。
色转换层可覆盖于发光二极管上,使得发光二极管位于色转换层与电路板154之间。当光源15包括多个发光二极管时,多个发光二极管可共享同一个色转换层,或者,多个发光二极管可不共享同一个色转换层,例如多个发光二极管上可分别覆盖有多个色转换层。多个色转换层结构上分离且可被激发出相同颜色或不同颜色的光束。举例来说,多个色转换层可分别被激发出红光、绿光及蓝光,以混合出白光,即光束B的颜色为白色,然而光束B的颜色可依据不同的需求而变,且可依所需的光束B的颜色去调整发光二极管的具体架构。
在设置有色转换层的架构下,色转换层的形状可为半球状,以提供汇聚光的效果,但不以此为限。在一实施例中,可于色转换层上进一步设置保护层,以隔绝空气及水气对于色转换层的负面影响。在设置有保护层的架构下,保护层的形状可为半球状,以提供汇聚光的效果,如此,色转换层的形状可为也可不为半球状。另外,在未设置有色转换层的架构下,也可于发光二极管上设置半球状的保护层,以提供汇聚光的效果。
光学装置152设置在光束B的传递路径上且适于放大光射出的能量以及调整光射出的光形等。详细而言,光学装置152包括导电腔体1520、第一光学模块1522、第二光学模块1524以及第三光学模块1526。
导电腔体1520适于固定发光元件150、第一光学模块1522、第二光学模块1524以及第三光学模块1526。导电腔体1520可为一体成型的单体式结构,也可为由多个片件组装而成的多件式结构,且多个片件可具有相同或不同的材质。导电腔体1520除了适于固定发光元件150、第一光学模块1522、第二光学模块1524以及第三光学模块1526之外,还可作为光电效应(Photoelectric effect)中接收光子并放出电子的物体,因此导电腔体1520的材质包括适于发生光电效应的导电材料,且较佳为导电性佳的材料。举例来说,导电腔体1520 的材质可包括金属、合金、石墨烯或上述至少两者的组合,但不以此为限。
导电腔体1520具有入光端X1以及与入光端X1相对的出光端X2。发光元件150设置于入光端X1,使得发光元件150输出的光束B经由入光端X1进入导电腔体1520,且光束B经由出光端X2自导电腔体1520输出。
在本实施例中,导电腔体1520的入光端X1具有用于容纳发光元件150的光源容置孔A’,且发光元件150设置于光源容置孔A’中。然而,导电腔体1520与发光元件150的相对设置关系不以此为限。举例来说,发光元件150可整体设置于光源容置孔A’中,但不以此为限。
应说明的是,导电腔体1520的设计参数(如导电腔体1520的形状和/或尺寸、光源容置孔A’的形状和/或尺寸等)可依需求调整,而不以图3所显示的为限。
第一光学模块1522、第二光学模块1524以及第三光学模块1526固定于导电腔体1520中。图3示意性示出第一光学模块1522的边缘、第二光学模块1524的边缘以及第三光学模块1526的边缘皆固定在导电腔体1520的侧壁S1520上,但光学模块与导电腔体之间的固定方式和/或相对配置关系不以此为限。举例来说,第一光学模块1522、第二光学模块1524以及第三光学模块1526可以卡固、锁固、黏合或其他合适的方式固定于导电腔体1520中。当导电腔体1520由多个片件组装而成时,多个光学模块可以卡固、锁固、黏合或其他合适的方式固定于相邻的两个片件之间。
第一光学模块1522邻近入光端X1且位于入光端X1与第二光学模块1524之间,而第二光学模块1524位于第一光学模块1522与第三光学模块1526之间。导电腔体1520、第一光学模块1522以及第二光学模块1524共同围设出第一谐振空间SP1,而导电腔体1520、第二光学模块1524以及第三光学模块1526共同围设出第二谐振空间SP2。在本实施例中,第一谐振空间SP1与第二谐振空间SP2中的光传递介质的折射率为1。换句话说,第一谐振空间SP1与第二谐振空间SP2中的光传递介质可为空气,且第一谐振空间SP1与第二谐振空间SP2中可不设置填充材料。在一些实施例中,第一谐振空间SP1与第二谐振空间SP2之间的距离或位置可依需求而调整。此外,也可依需求而增加或减少谐振空间。
发光元件150输出的光束B经由第一光学模块1522进入第一谐振空间 SP1。第一光学模块1522可为光聚焦模块,以将发光元件150输出的光束B汇聚至第一谐振空间SP1中。光聚焦模块可包括一个或多个透镜。所述一个或多个透镜的每一个可为球面或非球面透镜。此外,所述一个或多个透镜的每一个的材质可为玻璃或塑料。
第二光学模块1524以及第三光学模块1526的任一个包括让光束部分穿透部分反射的一光学元件。所述光学元件可为一个或多个透镜或保护盖。具体地,可依实际需求(如应用范畴)选择第二光学模块1524以及第三光学模块1526的元件,且第二光学模块1524的元件种类和/或数量可相同或不同于第三光学模块1526的元件种类和/或数量。举例来说,第二光学模块1524可为包括一个或多个透镜的光聚焦模块。当第三光学模块1526用于增加光投射的距离时,第三光学模块1526可为包括一个或多个透镜的光聚焦模块。另一方面,当第三光学模块1526用于增加照明的范围时,第三光学模块1526可为包括一个或多个透镜的光扩展模块,且所束光扩展模块的屈亮度可为负。再者,第三光学模块1526也可为保护盖,以保护位于其下的元件。保护盖的材质可为玻璃或塑料。此外,保护盖可为平面或曲面基材。
进入第一谐振空间SP1的光束B的一部分(简称第一部分)经由第二光学模块1524自第一谐振空间SP1输出至第二谐振空间SP2,而进入第一谐振空间SP1的光束B的另一部分(简称第二部分)可经由第一谐振空间SP1进行谐振放大,在累积足够能量后经由第二光学模块1524自第一谐振空间SP1输出至第二谐振空间SP2。
所述第一部分例如可以是进入第一谐振空间SP1的光束B的60%,而所述第二部分例如可以是进入第一谐振空间SP1的光束B的40%,但所述第一部分以及所述第二部分各自的百分比可依不同的设计需求改变,且可通过调整第一光学模块1522以及第二光学模块1524的设计参数(如曲率、折射率、与其他元件的距离等)来改变所述第一部分以及所述第二部分各自的百分比。举例来说,可通过调整第一光学模块1522的设计参数,来控制光束B传递至第二光学模块1524的不同区域(如中心区域跟周边区域)的光能量分布。此外,可通过调整第二光学模块1524的设计参数,来控制第一部分(直接穿出第二光学模块1524的光束)的百分比以及第二部分(被第二光学模块1524反射的光束)的百分比。
在第一谐振空间SP1中,第二部分被第二光学模块1524反射至导电腔体1520的侧壁S1520,侧壁S1520基于光电效应而将光子转换成电子。此电子最终以可见光的形式释放能量,因而产生闪光。通过第一光学模块1522、第二光学模块1524以及导电腔体1520的设计,可使光束B(光子)在第一谐振空间SP1中来回多次反射/冲击/碰撞,而激发出更多的电子逃离原来的轨道,因而达到类似于雷射谐振腔的光能量放大的效果,使得自第一谐振空间SP1输出的光束B1的能量超过进入第一谐振空间SP1的光束B的能量。欲达到谐振放大的效果,发光元件150所发出光束B的频率及相位尽可能调整为一致或大部分一致(即达到相干性的特性)。
类似地,经由第二光学模块1524进入第二谐振空间SP2的光束B1的一部分(简称第三部分)经由第三光学模块1526自第二谐振空间SP2输出至光学装置152的外部,而进入第二谐振空间SP2的光束B1的另一部分(简称第四部分)可经由第二谐振空间SP2进行谐振放大,在累积足够能量后经由第三光学模块1526自第二谐振空间SP2输出至光学装置152的外部,使得自第二谐振空间SP2输出的光束B2的能量超过进入第二谐振空间SP2的光束B1的能量。藉此,自光学装置152输出的光束B2的能量可超过发光元件150输出的光束B的能量。
所述第三部分例如可以是进入第二谐振空间SP2的光束B1的60%,而所述第四部分例如可以是进入第二谐振空间SP2的光束B1的40%,但所述第三部分以及所述第四部分各自的百分比可依不同的设计需求改变,且可通过调整第二光学模块1524以及第三光学模块1526的设计参数(如曲率、折射率、与其他元件的距离等)来改变所述第三部分以及所述第四部分各自的百分比。相关的说明请参考前述,与此不再重述。
应说明的是,虽然图3示意性示出光学装置152具有两个谐振空间,但光学装置所具有的谐振空间的数量不以此为限。由于每一个谐振空间皆有助于放大光出射的能量,因此光学装置可仅具有一个谐振空间(如第一谐振空间)。在此架构下,光学装置可不包括第三光学模块1526,而有助于缩减光学装置整体的体积。在又一实施例中,光学装置也可具有三个以上的谐振空间。在此架构下,光学装置可包括更多个光学模块,使每一个谐振空间由两个相邻的光学模块与导电腔体1520共同围设而成。如此,有助于增加光投射的距离 或增加照射的范围。
另外,因应不同的光学设计的需要,可搭配不同形状的镜片。因此,所有的光学模块的形状不仅限于某一形状,其可以是圆形、正方形、长方形、椭圆形、单面凸出形、双面凸出形、单面凸出且单面凹陷、一面有纹路(如坑纹)且另一面没纹路的、双面都有纹路的、平面形的、单面是平面而另一面有弧度的、三角形的、多边形的或是其他形体。在一些实施例中,光学模块的材质除了玻璃、塑料之外,也可以是透明或半透明的聚合物(polymer),甚至也可以使用液体形成光学模块。在一些实施例中,部分光学的材料可依需要而添加各种不同的矿石元素或颜色材料并成型,从而可生产出具有不同颜色的光学输出的照明装置。换句话说,可以不用通过不同颜色的发光元件进行混光,而是在生产光学镜片时添加不同的矿物质或颜色材料,利用光学镜片中的不同矿物质或颜色材料来改变输出光的颜色。在一些实施例中,也可因应不同用途和设计,而在每一个光学模块之间,增加某一形状的镜片,或是减少某一形状的镜片。甚至直接只需一组光学镜片,配合金属的谐振腔便可。但亦可能需增加相当数量的光学模块,或镜片,形成原设计的需求而增减。举例来说,也可以参考望远镜的部分原理,修改或增加光学模块的设计。
再者,谐振空间可以是以不同的形状来形成,或可能增设某一种附件,如金属的遮光罩或是有反射功能的零配件。零配件的材料可能是金属、陶瓷、塑料、石墨烯或各种矿石等不同的材料制造的。光学模块的材料可能是一般的玻璃,也可能是特殊配方调配而成的光学镜片,也可能是塑料材质(如PC材质),也可能是陶瓷或石英制成的,或更先进的材料。所有的光学模块配合使用的镜片、高度、宽度或厚度可皆不同,但不限于此。
在一些实施例中,光源15还可具有无线充电功能。在一些实施例中,光源15可具有中央遥控系统。在一些实施例中,光源15可由5G网络操控或监测,以节省能源。在一些实施例中,光源15可通过太阳能面板或无线传输充电或供电。
基于量子光学的原理,首先利用谐振空间把发光二极管的输出功率放大,增强至更高的能阶,使得电子与光子产生碰撞,而每一次的碰撞,便能产生更多的能量。因此,光源15有助于放大输出光的能量。此外,由于自光源15输出的光束B2的相位及频率为一致或大部分一致,因此自光源15输出的 光束B2的光强度可较均一。另外,光源15输出的光束B2可经由图1中腔体C再次进行光能量放大,使得光电装置1中的太阳能面板的发电量有效提升,且当底板14为透光板时,可在不耗费太多能源(不增加发光二极管的输出功率)的情况下满足照明需求(如增加照明的亮度、光投射的距离或照明的范围等)。
应理解,光电装置中的太阳能面板的数量、反光板的数量、太阳能面板与反光板之间的相对设置关系以及光电装置的外型可依需求改变。图4至图6分别是根据本发明的第二实施例的光电装置1A至第四实施例的光电装置1C的示意图。
请参照图4,光电装置1A包括前板10、后板11、第一侧板12、第二侧板13、底板14以及顶板16等六个板,且这六个板可通过卡固、锁固、黏合或其他合适的方式固定在一起而形成如图4所示的梯形柱体,其中顶板16例如连接于第一侧板12以及第二侧板13之间且与底板14相对,但不以此为限。在一些实施例中,顶板16可为反光板。在一些实施例中,顶板16可不嵌入光源15。在其他实施例中,顶板16可嵌入一个或多个光源。
请参照图5,光电装置1B也包括前板10、后板11、第一侧板12、第二侧板13、底板14以及顶板16等六个板,且这六个板可通过卡固、锁固、黏合或其他合适的方式固定在一起而形成如图5所示的长方体。
光电装置1B可包括多个光源15,且前板10以及后板11中的每一者可各自嵌入多个光源15。在其他实施例中,光电装置1B中的各个反光板可嵌入一个或多个光源15,也可不嵌入光源15。
请参照图6,光电装置1C包括前板10、后板11、第一侧板12、第二侧板13、底板14、顶板16、第三侧板17以及第四侧板18等八个板,且这八个板可通过卡固、锁固、黏合或其他合适的方式固定在一起而形成如图6所示的六边形柱体,其中第三侧板17例如连接于第一侧板12以及底板14之间,且第四侧板18例如连接于第二侧板13以及底板14之间。在一些实施例中,第三侧板17以及第四侧板18中的每一者可为太阳能面板或反光板,且反光板可嵌入一个或多个光源或不嵌入光源。
在其他实施例中,光电装置也可以是其他多边形柱体,如八边形柱体,但不以此为限。此外,多边形柱体的多个边可以等长或不等长。
另外,在本发明的任一实施例中,即使只使用一个太阳能面板,加上光源15,光电装置也可产生电流和电压。当然,依照不同的需求,光电装置中的太阳能面板的数量可为一个或多个,如两个、三个或更多个。
综上所述,在本发明实施例的光电装置中,光源输出的光束射入腔体中,且射入腔体中的光束的能量可经由反射及衍射等作用而放大,因此本发明实施例的光电装置有助于放大输出光的能量,从而可在不耗费太多能源的情况下满足发电或照明等需求。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种光电装置,其特征在于,包括:
    至少五个板,组装在一起而形成腔体,其中所述至少五个板包括太阳能面板、反光板以及透光板中的至少两个;以及
    至少一个光源,嵌入所述至少五个板中的至少一个。
  2. 根据权利要求1所述的光电装置,其中所述腔体是中空的。
  3. 根据权利要求1所述的光电装置,其中所述光电装置中的至少一个板的外表面形成有光学层、多个微结构或上述的组合。
  4. 根据权利要求1所述的光电装置,其中所述太阳能面板的光接收面朝向所述腔体的内部。
  5. 根据权利要求1所述的光电装置,其中所述光电装置中的至少一个板是组合板。
  6. 根据权利要求1所述的光电装置,其中所述反光板的内表面是平面、曲面、曲折面或上述至少两种表面的组合。
  7. 根据权利要求1所述的光电装置,其中所述光电装置是多边形柱体,所述至少五个板包括前板、后板、第一侧板、第二侧板以及底板,其中所述前板以及所述后板是反光板,所述第一侧板以及所述第二侧板是太阳能面板,且所述底板是太阳能面板、反光板或透光板。
  8. 根据权利要求7所述的光电装置,其中所述光电装置是照明装置,所述底板是透光板,且所述底板的内表面以及外表面的其中至少一个是粗糙表面或形成有多个微结构。
  9. 根据权利要求1所述的光电装置,其中所述至少一个光源包括:
    至少一个发光元件,适于输出光束;以及
    光学装置,设置在所述光束的传递路径上且包括:
    导电腔体,具有入光端;
    第一光学模块,固定于所述导电腔体中且邻近所述入光端;
    第二光学模块,固定于所述导电腔体中,其中所述第一光学模块位于所述入光端与所述第二光学模块之间,且所述导电腔体、所述第一光学模块以及所述第二光学模块共同围设出第一谐振空间;以及
    第三光学模块,固定于所述导电腔体中,其中所述第二光学模块位 于所述第一光学模块与所述第三光学模块之间,且所述导电腔体、所述第二光学模块以及所述第三光学模块共同围设出第二谐振空间。
  10. 根据权利要求9所述的光电装置,其中所述至少一个发光元件包括至少一个发光二极管。
PCT/CN2020/113529 2019-09-06 2020-09-04 光电装置 WO2021043272A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080062868.8A CN114341547A (zh) 2019-09-06 2020-09-04 光电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962896587P 2019-09-06 2019-09-06
US62/896,587 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021043272A1 true WO2021043272A1 (zh) 2021-03-11

Family

ID=74849449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113529 WO2021043272A1 (zh) 2019-09-06 2020-09-04 光电装置

Country Status (4)

Country Link
US (1) US11313535B2 (zh)
CN (1) CN114341547A (zh)
TW (1) TWI772874B (zh)
WO (1) WO2021043272A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11658609B2 (en) 2020-09-11 2023-05-23 Abron Arrington Photovoltaic renewable energy system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561106A (zh) * 2009-02-03 2009-10-21 太阳能产品制造有限公司 一种太阳能照明装置
CN102062330A (zh) * 2009-11-18 2011-05-18 深圳富泰宏精密工业有限公司 光源装置及具有该光源装置的便携式电子装置
US20130021793A1 (en) * 2011-07-22 2013-01-24 Zimmerman Scott M Recycling light cavity with enhanced reflectivity
CN104879706A (zh) * 2015-06-01 2015-09-02 上海向隆电子科技有限公司 导光板灯具
CN105849915A (zh) * 2014-01-06 2016-08-10 皇家飞利浦有限公司 具有成形衬底的半导体发光器件和制造所述器件的方法
CN109642709A (zh) * 2016-08-17 2019-04-16 新山兵治 自发电照明器具
CN109873297A (zh) * 2019-04-26 2019-06-11 山东大学 一种GaN基垂直腔面发射激光器及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2383182C (en) * 2002-04-23 2010-07-20 Ireneusz Witkowski Energy efficient lighting apparatus and use thereof
US6948831B1 (en) * 2004-01-20 2005-09-27 Shams Naqvi Recessed light assembly adapted for use with motion detector
CN101684640B (zh) * 2008-06-04 2012-10-31 利夫·莱沃 多功能安全反射镜装置
CN201354956Y (zh) * 2008-12-30 2009-12-02 史杰 Led光源模组
US8545062B2 (en) * 2009-12-08 2013-10-01 Industrial Technology Research Institute Light uniformization structure and light emitting module
US7891840B1 (en) * 2010-01-22 2011-02-22 Southern Taiwan University Polygonal radiation module having radiating members without light guiding board
JP2011192598A (ja) * 2010-03-16 2011-09-29 Stanley Electric Co Ltd 白色led光源モジュール
CA3014107A1 (en) * 2010-04-16 2011-10-20 Baron Investments, Llc Laminated core element with interior flow channels
JP5606981B2 (ja) * 2011-03-30 2014-10-15 富士フイルム株式会社 光量安定化光源装置
CN202102900U (zh) * 2011-06-30 2012-01-04 台燿科技股份有限公司 太阳能电池
US8096683B1 (en) * 2011-09-09 2012-01-17 Burrell Iv James W Reflective light tube assembly for LED lighting
BE1021974B1 (fr) * 2013-09-03 2016-02-01 Agc Glass Europe Feuille de verre texturee a motifs rectilignes
NL2013168B1 (en) * 2014-07-11 2016-09-09 Stichting Energieonderzoek Centrum Nederland Solar panel and method of manufacturing such a solar panel.
CN104158474B (zh) * 2014-08-22 2016-04-27 友达光电股份有限公司 光电转换模块支架
CN107703569A (zh) * 2017-10-17 2018-02-16 张家港康得新光电材料有限公司 反光膜及其应用以及栅线结构和太阳能面板
CN207740879U (zh) * 2018-01-19 2018-08-17 浙江向日葵环保科技有限公司 一种led面板灯
US11346528B2 (en) * 2019-08-16 2022-05-31 Kenall Manufacturing Company Lighting fixture having uniform brightness

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561106A (zh) * 2009-02-03 2009-10-21 太阳能产品制造有限公司 一种太阳能照明装置
CN102062330A (zh) * 2009-11-18 2011-05-18 深圳富泰宏精密工业有限公司 光源装置及具有该光源装置的便携式电子装置
US20130021793A1 (en) * 2011-07-22 2013-01-24 Zimmerman Scott M Recycling light cavity with enhanced reflectivity
CN105849915A (zh) * 2014-01-06 2016-08-10 皇家飞利浦有限公司 具有成形衬底的半导体发光器件和制造所述器件的方法
CN104879706A (zh) * 2015-06-01 2015-09-02 上海向隆电子科技有限公司 导光板灯具
CN109642709A (zh) * 2016-08-17 2019-04-16 新山兵治 自发电照明器具
CN109873297A (zh) * 2019-04-26 2019-06-11 山东大学 一种GaN基垂直腔面发射激光器及其制备方法

Also Published As

Publication number Publication date
US20210071844A1 (en) 2021-03-11
US11313535B2 (en) 2022-04-26
TWI772874B (zh) 2022-08-01
CN114341547A (zh) 2022-04-12
TW202112053A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US9905709B2 (en) Photovoltaic cell device with switchable lighting/reflection
US8378358B2 (en) Light emitting device
US9042041B2 (en) Optoelectronic module and lighting device including the optoelectronic module
US20070012934A1 (en) Method and system of LED light extraction using optical elements
US8405105B2 (en) Light emitting device
TW200425548A (en) Light-source
CN105830238A (zh) 具有均匀磷光体光照的led模块
WO2021043272A1 (zh) 光电装置
WO2018153042A1 (zh) 光源控制组件、显示装置及制造光源控制组件的方法
WO2012070374A1 (ja) 太陽電池モジュールおよび太陽光発電装置
US8772802B2 (en) Light emitting device with transparent plate
WO2020187205A1 (zh) 光学装置以及照明装置
JP5529576B2 (ja) 発光装置
KR101999568B1 (ko) 광 발전이 가능한 형광 프로젝션 디스플레이 및 그를 이용한 디스플레이 시스템
RU2510824C1 (ru) Способ создания светоизлучающей поверхности и осветительное устройство для реализации способа
RU2317612C1 (ru) Светодиодное устройство
JP2018170311A (ja) 発電モジュールおよび発電装置
CN116565696B (zh) 一种能消除散斑效应的多波长列阵激光器
JP5962503B2 (ja) 光電変換素子用基板および光電変換素子
CN210567668U (zh) 一种折射式的激光白光光源
US20230213813A1 (en) Display device
CN110848589A (zh) 波长转换装置及其制备方法
TWI381136B (zh) 發光模組
KR20230039212A (ko) 다중패널형 태양전지 함체 및 그것을 이용한 발전방법
SK7342Y1 (sk) Spôsob smerovania svetelného toku s požadovaným tvarom krivky svietivosti a kompaktný optomechanický LED modul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861816

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861816

Country of ref document: EP

Kind code of ref document: A1