WO2021043060A1 - 指示方法、装置和存储介质 - Google Patents

指示方法、装置和存储介质 Download PDF

Info

Publication number
WO2021043060A1
WO2021043060A1 PCT/CN2020/111769 CN2020111769W WO2021043060A1 WO 2021043060 A1 WO2021043060 A1 WO 2021043060A1 CN 2020111769 W CN2020111769 W CN 2020111769W WO 2021043060 A1 WO2021043060 A1 WO 2021043060A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
srs resource
uplink
sri
spatial parameter
Prior art date
Application number
PCT/CN2020/111769
Other languages
English (en)
French (fr)
Inventor
潘煜
蒋创新
鲁照华
高波
张淑娟
何震
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20861481.8A priority Critical patent/EP4027726A4/en
Priority to US17/753,473 priority patent/US20220330221A1/en
Publication of WO2021043060A1 publication Critical patent/WO2021043060A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • This application relates to the field of communications, for example, to an indication method, device, and storage medium.
  • the base station can By sending a sounding reference signal (Sounding Reference Signal, SRS) resource indicator (SRS resource indicator, SRI) to indicate a PUSCH transmission beam; for multiple uplink transmission beam indicators, the base station can indicate the first time by sending an SRI
  • SRS Sounding Reference Signal
  • SRI Sounding Reference Signal resource indicator
  • the embodiments of the present application provide an indication method, device, and storage medium, which improve the diversity gain of the beam.
  • the embodiment of the present application provides an indication method, including:
  • the transmission sounding reference signal resource indicates SRI information
  • the SRI information is used to indicate K SRS resource groups
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group
  • K is greater than or equal to 1.
  • the uplink information element includes one of the following: physical uplink shared channel PUSCH, one of multiple repeated transmissions of PUSCH.
  • the embodiment of the present application also provides an indication method, including:
  • the set of spatial parameter information is used to automatically update the spatial parameters of physical channels or physical signal transmission at different transmission times; wherein, the set of spatial parameter information includes a transmission configuration indication TCI state set or a spatial relationship information set .
  • the embodiment of the present application also provides an indication method, including:
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group, and K is an integer greater than or equal to 1,
  • the uplink information element includes one of the following: PUSCH, one of multiple repeated transmissions of PUSCH;
  • PUSCH transmission is performed according to the SRS resource group indicated by the SRI information.
  • the embodiment of the present application also provides an indication method, including:
  • the set of spatial parameter information includes a transmission configuration indication TCI state set or a spatial relationship information set;
  • the spatial parameters of physical channels or physical signal transmissions at different transmission times are automatically updated according to the spatial parameter information set.
  • the embodiment of the present application also provides an indication device, including:
  • the first transmission module is configured to transmit sounding reference signal SRS resource indication SRI information, the SRI information is used to indicate K SRS resource groups, and the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group , K is an integer greater than or equal to 1, and the uplink information element includes one of the following: physical uplink shared channel PUSCH, one of multiple repeated transmissions of PUSCH.
  • the embodiment of the present application also provides an indication device, including:
  • the first configuration module is configured to configure a set of spatial parameter information, the set of spatial parameter information is used to automatically update the spatial parameters of physical channels or physical signal transmission at different transmission times; wherein, the set of spatial parameter information includes a transmission configuration indication TCI State collection or spatial relationship information collection.
  • the embodiment of the present application also provides an indication device, including:
  • the first receiving module is configured to receive SRI information transmitted by the base station, the SRI information is used to indicate K SRS resource groups, the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group, and K is An integer greater than or equal to 1, the uplink information element includes one of the following: PUSCH, one of multiple repeated transmissions of PUSCH;
  • the second transmission module is configured to perform PUSCH transmission according to the SRS resource group indicated by the SRI information.
  • the embodiment of the present application also provides an indication device, including:
  • the second receiving module is configured to receive a set of spatial parameter information configured by the base station, where the set of spatial parameter information includes a transmission configuration indication TCI state set or a spatial relationship information set;
  • the update module is configured to automatically update the physical channel or physical signal transmission spatial parameters of different transmission times according to the spatial parameter information set.
  • An embodiment of the present application also provides a storage medium, the storage medium stores a computer program, and the computer program is executed by a processor to implement the instruction method described in any of the foregoing embodiments.
  • Fig. 1 is a flowchart of an indication method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of User Equipment (UE) beam switching in a high-speed rail scenario according to an embodiment of the present application;
  • UE User Equipment
  • FIG. 3 is a flowchart of another indication method provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of another indication method provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of another indication method provided by an embodiment of the present application.
  • Fig. 6 is a structural block diagram of an indicating device provided by an embodiment of the present application.
  • FIG. 7 is a structural block diagram of another indicating device provided by an embodiment of the present application.
  • FIG. 8 is a structural block diagram of another indicating device provided by an embodiment of the present application.
  • FIG. 9 is a structural block diagram of still another indicating device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Fig. 1 is a flowchart of an indication method provided by an embodiment of the present application. This embodiment is applicable to a situation where multiple Sounding Reference Signal (SRS) resources are used for multiple PUSCH transmissions, and this embodiment can be executed by a base station.
  • SRS Sounding Reference Signal
  • the method provided in this embodiment includes S120.
  • S120 Transmit sounding reference signal SRS resource indication SRI information.
  • SRI information is used to indicate K SRS resource groups
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group
  • K is an integer greater than or equal to 1
  • the uplink information elements include one of the following: PUSCH, PUSCH One of the multiple repeated transmissions.
  • the base station instructs the UE to perform M PUSCH transmissions for K SRS resource groups. Among them, 1 ⁇ K ⁇ N SRS , and N SRS is the total number of SRS resources configured by the UE.
  • PUSCH transmission includes non-codebook-based uplink transmission and codebook-based uplink transmission. In an embodiment, the total number of SRS resources used for non-codebook-based uplink transmission is at most 4.
  • the base station may send SRI information to indicate multiple SRS resources to perform multiple PUSCH transmissions, that is, use SRI information to indicate multiple transmission beams to perform multiple PUSCH transmissions, thereby providing beam diversity gain.
  • the SRI information is used to indicate K SRS resource groups, that is, the SRI information is used to indicate the SRS resource index corresponding to the SRS resource included in each SRS resource group.
  • Each SRS resource group may include one or two SRS resources, and each SRS resource is indicated by an SRS resource index.
  • the SRS resource index can be 0-3, that is, the SRS resource can be SRS0, SRS1, SRS2, or SRS3; for another example, when the maximum value of N SRS is 2, the SRS resource index It can be 0-1, that is, the SRS resource package can be SRS0 or SRS1.
  • the spatial parameter information of each SRS resource group is spatial parameter information corresponding to an uplink information element set.
  • each SRS resource group corresponds to a different set of uplink information elements, that is, the spatial parameter information of each set of uplink information elements is used to indicate a corresponding SRS resource group.
  • one SRS resource group may include one SRS resource or two SRS resources, which is related to the maximum number of transmission layers supported by the UE.
  • the number of SRS resources corresponding to one SRS resource group is one; for another example, assuming that the maximum number of transmission layers supported by the UE is 2, then one SRS resource group corresponds to The number of SRS resources can be 2.
  • the K uplink information element sets include at least one of the first uplink information element set and the second uplink information element set; the first uplink information element set includes one of the following: the PUSCH transmission indication value is less than or equal to the preset value.
  • Set threshold PUSCH transmission, PUSCH transmission indicator value is odd-numbered PUSCH transmission indicator value, preset threshold value is half of the total number of PUSCH transmission indicator values;
  • the second set of uplink information elements includes one of the following: PUSCH transmission indicator value is greater than the predetermined value
  • a threshold is set for PUSCH transmission, and the PUSCH transmission indicator value is a PUSCH transmission with an even transmission indicator value.
  • the transmission indication value includes one of the following: the number of transmissions, and the time unit index.
  • each PUSCH transmission performed by the UE is performed at a different time.
  • the PUSCH transmission indicator value may be the number of PUSCH transmissions, or may be a time unit index.
  • each time unit index corresponds to a time unit. For example, assuming 8 PUSCH transmissions, each transmission interval is 1 time slot (slot), then the time unit index can be 0-7, and the number of transmissions is the 1st to 8th. Then in the second PUSCH transmission, The corresponding time unit is the second time slot, and so on, in the 8th PSCH transmission, the corresponding time unit is the 8th time slot.
  • the SRI information is used to indicate the spatial parameter information of the two uplink information element sets, which are the spatial parameter information of the first uplink information element set and the second uplink information element set, and the SRI The information is used to indicate two SRS resource groups, that is, each SRS resource group corresponds to an uplink information element set.
  • the number of transmissions may be used to describe the first set of uplink information elements and the second set of uplink information elements.
  • the SRI information indicates that two SRS resource groups perform M PUSCH transmissions
  • the first uplink information element set may include: the first M/2 PUSCH transmissions in M transmissions, or the odd PUSCH transmissions in M transmissions
  • the second set of uplink information elements may include: the last M/2 PUSCH transmissions in M transmissions, or even PUSCH transmissions in M transmissions.
  • the first uplink information element set includes: the first 4 PUSCH transmissions out of 8 transmissions, or the odd number of PUSCH transmissions out of 8 transmissions, that is, the first uplink information element set includes: 1 , 2, 3, 4 PUSCH transmissions, or 1, 3, 5, 7 PUSCH transmissions; correspondingly, the second uplink information element set includes: 5, 6, 7, 8 PUSCH transmissions, or 2, 4 , 6, 8 PUSCH transmissions.
  • the spatial parameter information includes at least one of the following: transmission beam information, transmission beam group information, precoding matrix information, transmission layer information, spatial relationship information, and spatial filter information.
  • the transmission beam information refers to the related information of the transmission beam used by the uplink information element set, that is, one uplink information element set uses one transmission beam for PUSCH transmission;
  • the transmission beam group information refers to the transmission used by the uplink information element set.
  • the relevant information of the beam group that is, a set of uplink information elements uses at least two transmit beams for PUSCH transmission;
  • the precoding matrix information refers to the matrix information that the UE sends to the base station containing SRS resources with better transmit beams;
  • the transmission layer information refers to Is the relevant information of each transmission layer of the UE.
  • the transmission layer information may include: the number of transmission layers; the spatial relationship information is used to characterize the relevant information of the transmission beam; the spatial filter information is used to characterize the transmission beam of the two reference signals Same or not, that is, if the spatial filter information of the two reference signals is the same, the relevant information of the transmission beam is the same.
  • the SRI information includes one of the following: an SRI index value, and joint information of the SRI index value and a dedicated demodulation reference signal (Dedicated deModulation Reference Signal, DMRS) index value.
  • DMRS Dedicated deModulation Reference Signal
  • the K SRS resource groups may be indicated to the UE through the SRI index value.
  • the K SRS resource groups may also be indicated to the UE through joint information of the SRI index value and the DMRS index value.
  • the SRI information is used to indicate K SRS resource groups, including one of the following:
  • the SRI index value is used to indicate the SRS resource group corresponding to the i-th uplink information element set, that is, the SRI is used
  • the index value indicates K (1 ⁇ K ⁇ N SRS ) SRS resource groups
  • N SRS is the maximum number of SRS resources that the UE can be configured.
  • the base station may indicate to the UE through the SRI information that two SRS resource groups perform M PUSCH transmissions, and each SRS resource corresponds to a different set of uplink information elements.
  • different sets of uplink information elements correspond to SRS resources in different SRS resource groups.
  • the spatial parameter information of the i-th SRS resource group of the SRI information corresponds to the spatial parameter information corresponding to the i-th uplink information element set, that is, the transmission beam of the i-th uplink information element set is used to transmit the i-th uplink information element set.
  • the transmission beam of the SRS resource group is used to transmit the i-th uplink information element set.
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 PUSCH transmissions among M transmissions, or the odd PUSCH transmission among M transmissions; correspondingly, the second The set of uplink information elements includes the last M/2 PUSCH transmissions in M transmissions, or even PUSCH transmissions in M transmissions.
  • Table 1 is an SRI indication comparison table based on non-codebook PUSCH transmission provided by an embodiment of the present application.
  • the SRI field is increased from the original 2 bits to 4 bits, and the newly added SRI index value is used to indicate different SRS resource groups corresponding to different sets of uplink information elements, where the SRS resource index refers to the location of the UE.
  • the SRS resource index can be 0-3, that is, SRS0, SRS1, SRS2, and SRS3.
  • Table 1 A comparison table of SRI indication based on non-codebook PUSCH transmission
  • the transmit beam of the first set of uplink information elements is the transmit beam used to transmit the first group of SRS resources, that is, the first uplink information element
  • the transmit beam of the set is the transmit beam used to transmit SRS0 resources
  • the transmit beam of the second set of uplink information elements is the transmit beam used to transmit the second set of SRS resources, that is, the transmit beam of the second set of uplink information elements is used
  • the transmission beam of the SRS3 resource is transmitted, thereby improving the diversity gain of the beam.
  • the SRI information is used to indicate K SRS resource groups, including: the SRI index value in the SRI bit field in the DCI is used to indicate the i-th uplink information element set corresponding to the i-th SRS resource group.
  • the SRI bit field groups SRS resources in advance. For example, assuming there are 8 SRS resources in total, the first 4 SRS resources are the first group, and the last 4 SRS resources are the second group. The SRI bit field is selected from the two SRS resource groups, and the first SRS resource group is corresponding The first set of uplink information elements, and the second set of SRS resource groups correspond to the second set of uplink information elements.
  • the SRS resource group satisfies at least one of the following characteristics: different uplink information element sets correspond to different SRS resource groups; the SRS resource group is associated with one of the following information: spatial relationship information grouping, SRS resource Sequence number grouping.
  • the SRS resource group is associated with the spatial relationship information group and/or the SRS resource sequence number group.
  • the corresponding spatial relationship information can be obtained through the SRS resource group, and correspondingly, the corresponding SRS resource group can be obtained through the spatial relationship information.
  • Table 2 is another SRI indicator comparison table based on non-codebook PUSCH transmission provided by the embodiment of the present application.
  • the SRI field is increased from the original 2 bits to 3 bits, and the newly added number of rows (that is, the SRI index value) is used to indicate that the SRS resources used by different sets of uplink information elements come from different SRS resource groups, where,
  • the grouping manner of the SRS resource group may adopt one of the following methods: grouping according to the spatial relationship information area, or grouping according to the sequence number of the SRS resource (that is, the first half of the SRS resource is distinguished from the second half of the SRS resource).
  • grouping according to the spatial relationship information area or grouping according to the sequence number of the SRS resource (that is, the first half of the SRS resource is distinguished from the second half of the SRS resource).
  • the SRI index value indication of non-codebook PUSCH transmission in this embodiment is described. It is assumed that the UE is configured with 4 SRS resources and 2 spatial relationship information at the same time.
  • Each SRS resource is configured with a piece of spatial relationship information, where SRS resources with the same spatial relationship information are divided into a group.
  • SRS resources with the same spatial relationship information are divided into a group.
  • the SRI index value indication of non-codebook PUSCH transmission in this embodiment will be explained. It is assumed that the UE is configured with 4 SRS resources, which are SRS0 resources. , SRS1 resource, SRS2 resource, SRS3 resource, SRS0 resource and SRS1 resource are a group, SRS2 resource and SRS3 resource are a group.
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 transmissions in M transmissions, or the odd number of PUSCH transmissions in M transmissions; correspondingly, the second uplink information
  • the element set includes the last M/2 transmissions in M transmissions, or even PUSCH transmissions in M transmissions.
  • the manner of the SRI index value indication is as shown in Table 2.
  • M 8
  • N SRS 4
  • the value of the SRI index value received by the UE is 6
  • the first uplink information element set corresponds to SRS1
  • the second uplink information element set corresponds to SRS2
  • the 1, 3, 5, and 7th PUSCH transmissions correspond to SRS1
  • the 2, 4, 6, and 8th PUSCH transmissions correspond to SRS2 .
  • Table 2 Another SRI indicator comparison table based on non-codebook PUSCH transmission
  • the transmission beam of the first set of uplink information elements is the transmission beam used to transmit the first group of SRS resources, that is, the first uplink information element
  • the transmit beam of the set is the transmit beam used to transmit SRS1 resources
  • the transmit beam of the second set of uplink information elements is the transmit beam used to transmit the second set of SRS resources, that is, the transmit beam of the second set of uplink information elements is used
  • the transmission beam of the SRS2 resource is transmitted, and the SRS resource (SRS2) used in the second uplink information element set and the SRS resource (SRS1) used in the first uplink information element set belong to different SRS resource groups, thereby improving the beam performance Diversity gain.
  • the SRI information is used to indicate K SRS resource groups
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group
  • the SRI index value is used to indicate the first uplink information element set
  • the SRS resource group corresponding to the second uplink information element set is obtained according to one of the following information: an index identifier (Identifier, excluding the SRS resource corresponding to the first uplink information element set indicated by the SRI index value) ID) the largest SRS resource, except for the SRS resource corresponding to the first uplink information element set indicated by the SRI index value, the SRS resource with the smallest index ID, where the first uplink information element set and the second uplink information element set belong to A set of K uplink information elements, and K is an integer greater than or equal to 1.
  • the SRI index value is used to indicate the SRS resource corresponding to the first uplink information element set, and the SRI index value indication method includes: the SRI index value is the index ID of the indicated SRS resource.
  • the SRI index value is 2, it indicates that the SRS resource corresponding to the first uplink information element set is SRS2.
  • the SRS resource corresponding to the second set of uplink information elements may adopt one of the following methods: in addition to the SRS resource corresponding to the first set of uplink information elements indicated by the SRI index value, the SRS resource with the largest index ID, Or, except for the SRS resource corresponding to the first uplink information element set indicated by the SRI index value, the SRS resource with the smallest index ID.
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 transmissions in M transmissions, or the odd number of PUSCH transmissions in M transmissions; correspondingly, the second uplink information The element set includes the last M/2 transmissions in M transmissions, or even PUSCH transmissions in M transmissions.
  • Table 3 is a comparison table with the largest SRS resource ID corresponding to non-codebook PUSCH transmission provided by an embodiment of the present application.
  • the SRS resource with the largest index ID other than the SRS resource corresponding to the first set of uplink information elements indicated by the SRI index value may be used to obtain the second set of uplink information elements (that is, the last M in M transmissions).
  • Table 3 shows the SRS resources corresponding to /2 transmissions, or even PUSCH transmissions in M transmissions.
  • Table 3 A comparison table based on the largest SRS resource ID corresponding to non-codebook PUSCH transmission
  • the SRS resource corresponding to the first uplink information element set is SRS2
  • the SRS resource corresponding to the second uplink information element set is the SRS resource except the first uplink information element set indicated by the SRI index value.
  • the SRS resource with the largest index ID that is, the SRS resource corresponding to the second set of uplink information elements is SRS3.
  • Table 4 is a comparison table with the smallest SRS resource ID corresponding to non-codebook PUSCH transmission provided by an embodiment of the present application. Wherein, in addition to the SRS resource corresponding to the first uplink information element set indicated by the SRI index value, the SRS resource with the smallest index ID is used to obtain the second uplink information element set (ie, the last M/2 of the M transmissions) Transmission, or even number of PUSCH transmissions in M transmissions) corresponding SRS resources are shown in Table 4.
  • Table 4 A comparison table based on the smallest SRS resource ID corresponding to non-codebook PUSCH transmission
  • the SRS resource group corresponding to the second uplink information element set is the first uplink information element set indicated by the SRI index value Except for the corresponding SRS resource (ie SRS2), the SRS resource with the smallest index ID, that is, the SRS resource corresponding to the second set of uplink information elements is SRS0.
  • the SRI information is used to indicate K SRS resource groups, and the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group: the SRI index value indicates the corresponding to the first uplink information element set The DMRS index value indicates the SRS resource corresponding to the second uplink information element set, where the first uplink information element set and the second uplink information element set belong to K uplink information element sets.
  • using the DMRS index value to indicate the SRS resource corresponding to the second uplink information element set includes: using the DMRS index value to indicate that the SRS resource corresponding to the second uplink information element set is relative to the SRS indicated by the SRI index value.
  • the index ID offset of the resource; or, the DMRS index value is the index ID of the SRS resource corresponding to the second set of uplink information elements.
  • the SRI information when the SRI information includes the combined information of the SRI index value and the DMRS index value, that is, the combined information of the SRI index value and the DMRS index value is used to indicate K (1 ⁇ K ⁇ N SRS ) SRS resources
  • the DMRS index value is used to indicate the index ID offset of the SRS resource corresponding to the second uplink information element set relative to the SRS resource indicated by the SRI index value
  • the scenario is PUSCH transmission based on non-codebook
  • the SRI index value is used to indicate the SRS resource corresponding to the first uplink information element set
  • the DMRS index value is used to indicate the SRS resource corresponding to the second uplink information element set.
  • the way of indicating the SRI index value is to indicate according to the indication way of Release 15 (Release 15, R15), that is, the SRI index value is the index ID of the SRS resource corresponding to the first set of uplink information elements.
  • the DMRS index value indication method is to use the DMRS index value to indicate the index ID offset of the SRS resource relative to the SRS resource indicated by the SRI index value.
  • the SRI index value indicates that the SRS resource corresponding to the first uplink information element set is SRS0, and the DMRS index value in the Downlink control information (DCI) is 2, that is, the SRS resource is offset from the index ID of SRS0 If the quantity is 2, the SRS resource corresponding to the second set of uplink information elements is SRS2.
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 transmissions among M transmissions, or the odd number of PUSCH transmissions among M transmissions; correspondingly, the second uplink The set of information elements includes the last M/2 transmissions in M transmissions, or even PUSCH transmissions in M transmissions.
  • Table 5 is a comparison table of the combined information indicating SRS resources of the SRI index value and the DMRS index value provided in an embodiment of the present application.
  • Table 5 A comparison table of the combined information indicating the SRS resource of the SRI index value and the DMRS index value
  • the SRI information when the SRI information includes the combined information of the SRI index value and the DMRS index value, that is, the combined information of the SRI index value and the DMRS index value is used to indicate K (1 ⁇ K ⁇ N SRS ) SRS resources
  • using the DMRS index value to indicate the SRS resource corresponding to the second uplink information element set includes: the DMRS index value is the index ID of the SRS resource corresponding to the second uplink information element set.
  • the SRI index value is used to indicate the SRS resource corresponding to the first uplink information element set
  • the DMRS index value is used to indicate the SRS resource corresponding to the second uplink information element set.
  • the SRI index value indication method is to indicate according to the R15 indication method, that is, the SRI index value is the index ID of the SRS resource corresponding to the first uplink information element set
  • the DMRS index value indication method is, the DMRS index value It is the index ID of the SRS resource corresponding to the second set of uplink information elements.
  • the SRI index value indicates that the SRS resource corresponding to the first uplink information element set is SRS0, and the DMRS index value in the DCI is 2, and the SRS resource corresponding to the second uplink information element set is SRS2.
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 transmissions in M transmissions, or the odd number of PUSCH transmissions in M transmissions; correspondingly, the second uplink information
  • the element set includes the last M/2 transmissions in M transmissions, or even PUSCH transmissions in M transmissions, that is, the first 4 PUSCH transmissions correspond to SRS0 resources, and the last 4 PUSCH transmissions correspond to SRS2 resources; or ,
  • the first, third, fifth, and seventh PUSCH transmissions correspond to SRS0 resources
  • the second, fourth, sixth, and eighth PUSCH transmissions correspond to SRS2 resources.
  • the SRI information when the SRI information includes the combined information of the SRI index value and the DMRS index value, that is, the combined information of the SRI index value and the DMRS index value is used to indicate K (1 ⁇ K ⁇ N SRS ) SRS resources
  • using the DMRS index value to indicate the SRS resource corresponding to the second uplink information element set includes: using the DMRS index value to indicate the SRS resource corresponding to the second uplink information element set relative to the SRS resource indicated by the SRI index value Index ID offset.
  • the SRI index value is used to indicate the two SRS resources corresponding to the first uplink information element set
  • the DMRS index value is used to indicate the two SRS resources corresponding to the second uplink information element set.
  • the SRI index value indicates that the SRS resources corresponding to the first uplink information element set are SRS0 and SRS3, and the DMRS index value in the DCI is 2, that is, the index ID offset of the SRS resource relative to SRS0 and SRS3 is 2, then
  • the SRS resources corresponding to the second set of uplink information elements are SRS2 and SRS1.
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 transmissions in M transmissions, or the odd number of PUSCH transmissions in M transmissions; correspondingly, the second uplink information
  • the element set includes the last M/2 transmissions in M transmissions, or even PUSCH transmissions in M transmissions, that is, the first 4 PUSCH transmissions correspond to SRS0 and SRS3, and the last 4 PUSCH transmissions correspond to SRS2 and SRS1.
  • the 1, 3, 5, and 7th PUSCH transmissions correspond to SRS0 and SRS3, and the 2, 4, 6, and 8th PUSCH transmissions correspond to SRS2, SRS1.
  • the SRI information when the SRI information includes the combined information of the SRI index value and the DMRS index value, that is, the combined information of the SRI index value and the DMRS index value is used to indicate K (1 ⁇ K ⁇ N SRS ) SRS resources
  • the base station indicates to the UE K (1 ⁇ K ⁇ N SRS ) SRS resources to perform M PUSCH transmissions through the SRI index value.
  • Each PUSCH transmission corresponds to 2 SRS resources, and different sets of uplink information elements correspond to different SRS resource groups.
  • N SRS is the maximum number of SRS resources that the UE can be configured.
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 PUSCH transmissions among M transmissions, or the odd number of PUSCH transmissions among M transmissions; correspondingly, the second uplink information element The set includes the last M/2 PUSCH transmissions among M transmissions, or the even number of PUSCH transmissions among M transmissions.
  • the i-th SRS resource group of the SRI information is used to indicate the spatial parameter information of the i-th uplink information element set, that is, the transmission beam of the i-th uplink information element set is used to transmit the i-th SRS resource group Transmit beam.
  • the UE receives an SRI index value of 10, then the first uplink information element set corresponds to SRS0 and SRS1, and the second uplink information element set corresponds to SRS2 and SRS3, that is, the previous The 4 PUSCH transmissions correspond to SRS0 and SRS1, and the next 4 PUSCH transmissions correspond to SRS2 and SRS3; or, the 1, 3, 5, and 7 PUSCH transmissions correspond to SRS0 and SRS1, and the second, fourth, sixth, and sixth PUSCH transmissions correspond to 8 PUSCH transmissions correspond to SRS2 and SRS3.
  • Table 6 A comparison table of SRI indications based on non-codebook PUSCH transmission
  • the transmission beam of the first set of uplink information elements is the transmission beam used to transmit the first group of SRS resources, that is, the first uplink information element
  • the transmit beam of the set is the transmit beam used to transmit SRS0 and SRS1;
  • the transmit beam of the second set of uplink information elements is the transmit beam used to transmit the second set of SRS resources, that is, the transmit beam of the second set of uplink information elements is used It is used to transmit the transmit beams of SRS2 and SRS3, thereby improving the diversity gain of the beams.
  • the SRI information is used to indicate K SRS resource groups, including: extending the SRI bit field, and the SRI index value of the i-th group in the SRI bit field is used to indicate the SRS resource group corresponding to the i-th uplink information element set.
  • SRS resources correspond to different sets of uplink information elements
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 PUSCH transmissions in M transmissions, or M transmissions
  • the second set of uplink information elements includes the last M/2 PUSCH transmissions among the M transmissions, or the even PUSCH transmissions among the M transmissions.
  • Table 7 is a comparison table of SRI indications for PUSCH transmission based on codebook provided in an embodiment of the present application. As shown in Table 7, the SRI field is increased from 1 bit to 2 bits, and the number of newly added rows (ie SRI index value) indicates that different sets of uplink information elements correspond to different SRS resource groups, and the UE obtains it through different SRI index values. SRS resource groups corresponding to different sets of uplink information elements.
  • the UE receives the SRI index value of 2, and the first set of uplink information elements corresponds to the SRS0 resource, and the second set of uplink information elements corresponds to the SRS1 resource, that is, the previous 4 times
  • the PUSCH transmission corresponds to the SRS0 resource
  • the next 4 PUSCH transmissions correspond to the SRS1 resource
  • the 1, 3, 5, and 7th PUSCH transmissions correspond to the SRS0 resource
  • the 2, 4, 6 and 8th PUSCH transmissions correspond to the SRS0 resource.
  • SRS1 resources correspond.
  • Table 7 A comparison table of SRI indication for PUSCH transmission based on codebook
  • the maximum value of N SRS is 2.
  • the transmission beam of the first uplink information element set is the transmission beam used to transmit the SRS resources included in the first SRS resource group, that is, the first uplink information element
  • the transmit beam of the set is the transmit beam used to transmit SRS0 resources
  • the transmit beam of the second uplink information element set is the transmit beam used to transmit the SRS resources included in the second SRS group, that is, the transmit beam of the second uplink information element set.
  • the transmission beam is a transmission beam used to transmit SRS1, thereby improving the diversity gain of the beam.
  • the SRI information includes the combined information of the SRI index value and the DMRS index value, that is, the combined information of the SRI index value and the DMRS index value indicates the SRS resource corresponding to the set of uplink information elements.
  • the scenario is PUSCH transmission based on the codebook, and it is a single-user single-input single-output (Single-UserMultiple-InputMultiple-Output, SU-MIMO) situation at the same time.
  • the UE is configured with two SRS resources at most, namely SRS0 and SRS1, and the corresponding mode of SRS resource and PUSCH transmission is indicated by the SRI index value and the DMRS index value jointly.
  • the DMRS index value is 0, which means that M PUSCH transmissions correspond to the same SRS resource, that is, the SRS resource corresponding to each PUSCH transmission is indicated by the SRI index value;
  • the DMRS index value is 1, which means the first uplink information The element set corresponds to SRS0, and the second uplink information element set corresponds to SRS1;
  • the DMRS index value is 2, which means that the first uplink information element set corresponds to SRS1, and the second uplink information element set corresponds to SRS0.
  • the set of uplink information elements may adopt one of the following methods: the first set of uplink information elements includes the first M/2 PUSCH transmissions among M transmissions, or the odd PUSCH transmissions among M transmissions; correspondingly, the second uplink The set of information elements includes the last M/2 PUSCH transmissions in M transmissions, or even PUSCH transmissions in M transmissions.
  • the optimal receiving beam and the optimal transmitting beam between the base station and the UE are often switched and updated.
  • the railway is fixed, that is, the trajectory of the UE is fixed.
  • the UE is in a different position at different times, and the position is known or determined to the base station. Therefore, the UE can be instructed by the base station for the optimal receiving beam for different downlink channels or downlink signals, or the optimal transmitting beam for uplink channels or signals, that is, to update the TCI status of the downlink channel or downlink signal, or update the uplink channel or signal ⁇ spatial relationship information.
  • the transmit beams and receive beams corresponding to UE0 and UE1 in the high-speed rail at time t0 can be beam 0, beam 1, or beam 2; the UE0 and UE1 in the high-speed rail correspond to the corresponding beams at time t1.
  • the transmitting beam and the receiving beam may be beam 4, beam 5, or beam 6.
  • it can be implemented in at least one of the following ways:
  • Fig. 3 is a flowchart of another indication method provided by an embodiment of the present application. This embodiment can be executed by a base station.
  • the method in this embodiment includes S220.
  • the spatial parameter information set is used to automatically update the spatial parameters of physical channels or physical signal transmissions at different transmission times; wherein, the spatial parameter information set includes a transmission configuration indicator (Transmission configuration indicator, TCI) state set or a spatial relationship information set.
  • TCI Transmission configuration indicator
  • the base station configures the TCI state set or the spatial relationship set, and sends the TCI state set and the spatial relationship set to the UE, so that the UE can automatically update the physical channels or physical channels at different transmission times according to the TCI state set or spatial relationship set.
  • the spatial parameters of signal transmission are configured to be used to update the physical channels or physical channels at different transmission times according to the TCI state set or spatial relationship set.
  • the spatial parameters of the physical channel and/or the physical signal are determined according to at least one of the following information: the index of the time unit where the physical channel and/or the physical signal is located, and the mapping relationship between the spatial parameter and the time unit, where
  • the spatial parameters include one of the following: quasi co-located reference signal information, spatial relationship information, and spatial filter information.
  • the quasi co-located reference signal information can be configured in the TCI state.
  • the spatial parameter information set is used to automatically update the spatial parameters of physical channels or physical signal transmission at different transmission times, including:
  • the spatial parameter information set is used to trigger the UE to sequentially update the spatial parameters of the physical channel or physical signal transmission according to the mapping relationship between the starting position, the spatial parameter, and the time.
  • the UE After the UE receives the spatial parameter information set, it determines the n+1th spatial parameter in the corresponding spatial parameter information set according to the pre-configured starting position n, and according to the mapping between the spatial parameter and the time unit Relations, and sequentially update the spatial parameters of the physical channel or physical signal transmission.
  • the physical channel includes at least one of the following: Physical Downlink Shared Channel (PDSCH), PUSCH, Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (Physical Uplink Control) Channel, PUCCH); and/or, the physical signal includes at least one of the following: SRS, channel state information reference signal (CSI-RS).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the physical signal includes at least one of the following: SRS, channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the time unit is configured through the first high-level signaling, and the time unit is used to determine the update interval of the spatial parameter in the spatial parameter information set; where the time unit includes: a fixed time unit or a time unit set.
  • the first higher layer signaling may be Radio Resource Control (RRC) signaling or Medium Access Control (MAC)-Control Element (CE) signaling.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Control Element
  • the TCI state set or the spatial relationship information set is configured for the UE through RRC signaling, and the time unit is configured through MAC-CE signaling.
  • a starting position is configured through the second higher layer signaling, and the starting position is used to determine the initial position of the spatial parameter update in the spatial parameter information set.
  • the second layer signaling may be an activation instruction, and the activation instruction may be a MAC-CE signaling. Configure a starting position through MAC-CE signaling to enable the UE to be activated or indicate a starting position.
  • the base station configures a TCI state set and time unit through the first high-level signaling, and configures a starting position through the second high-level signaling.
  • the time unit is the update time interval
  • the time unit set is the update time interval set.
  • the first high-level command is RRC signaling or MAC-CE signaling
  • the second high-level command is MAC-CE signaling.
  • a TCI state set is configured for the UE through the first higher layer signaling (RRC signaling), and the TCI state set includes N (N ⁇ 1) TCI states; wherein, the TCI state refers to the base station receiving the target downlink for the UE The TCI status of the signal or target downlink channel configuration.
  • the TCI status is at least associated with the following configuration information: the first source reference signal; where the first source reference signal refers to the provision of the first quasi co-location (Quasi co-location) for the target downlink signal or target downlink channel. location, QCL) type (for example, QCL-Type D) source reference signal.
  • QCL quasi co-location
  • QCL-Type D source reference signal
  • the update time interval set T* includes N-1 different Update time interval; among them, the update time interval refers to the time interval between the UE updating the current TCI state and the next update of the TCI state; through a second higher layer signaling (for example, MAC-CE signaling), the UE is activated or instructed Start position n (0 ⁇ n ⁇ N-1); where the start position n corresponds to the n+1th TCI state in the TCI state set, and is used to indicate the UE from the n+1th TCI state set
  • the TCI status starts to sequentially update the TCI status of downlink signals or downlink channels (including but not limited to PDCCH, PDSCH, CSI-RS), where the time interval between each update of the TCI status is obtained according to the configured fixed update time interval T, Or, according to the update time interval value and order in the configured update time interval set T*.
  • the state is updated to the first TCI state in the TCI state set, that is, TCI0.
  • the UE automatically updates the TCI state of the currently received PDSCH to TCI1.
  • the UE automatically updates the current received PDSCH state.
  • the TCI status of PDSCH is updated to TCI2.
  • the base station configures a spatial relationship information set and time unit through the first high-level signaling, and configures a starting position through the second high-level signaling.
  • the time unit is the update time interval
  • the time unit set is the update time interval set
  • the first high-level signaling is RRC signaling or MAC-CE signaling
  • the second high-level command is MAC-CE signaling.
  • the UE through the first high-level signaling (for example, RRC signaling), the UE is configured with a spatial relationship information set; the spatial relationship information set includes N (N ⁇ 1) pieces of spatial relationship information, and each spatial relationship information The spatial relationship information included in the set is not completely the same; where the spatial relationship information includes an uplink reference signal or a downlink reference signal, which is used to indicate an uplink channel or an uplink signal, which has the same spatial filter as the uplink reference signal; or, the uplink The channel or uplink signal has the same spatial filter as the downlink reference signal.
  • the spatial relationship information includes an uplink reference signal or a downlink reference signal, which is used to indicate an uplink channel or an uplink signal, which has the same spatial filter as the uplink reference signal; or, the uplink The channel or uplink signal has the same spatial filter as the downlink reference signal.
  • the DM-RS of the PUSCH is configured with a spatial relationship information
  • the spatial relationship information includes an SRS, which is used to indicate that the PUSCH DM-RS and SRS resources have the same spatial filter.
  • the n+1th spatial relationship information starts to sequentially update the spatial relationship information of uplink signals or uplink channels (including but
  • the time unit and at least two spatial parameter information sets are configured through the third layer signaling, and the time unit includes: a fixed time unit or a time unit set.
  • the third layer signaling may be RRC signaling or MAC-CE signaling.
  • at least two spatial parameter information sets are configured through RRC signaling, and time units are configured through MAC-CE signaling.
  • one of the at least two spatial parameter sets is selected through the fourth high-level signaling, and the space corresponding to each transmission time is determined in the selected spatial parameter set according to the time unit and the starting position parameter.
  • the fourth layer signaling may be MAC-CE signaling.
  • a time unit and a starting position are configured through MAC-CE signaling, and a spatial parameter information set is selected from at least two spatial parameter sets through MAC-CE signaling, and the selected spatial parameter information The spatial parameter corresponding to each transmission time is determined in the set according to the time unit and the starting position.
  • the spatial parameter set includes the TCI state set or the spatial relationship information set, that is, when the spatial parameter set is the TCI state set, the spatial parameter is the TCI state; when the spatial parameter set is the spatial relationship information set, the spatial parameter is Spatial relationship information.
  • one time unit and at least two TCI state sets are configured through the third layer signaling, and one TCI state set of the at least two TCI state sets is selected through the fourth layer signaling, and the selected In the TCI state set, the TCI state corresponding to each transmission time is determined according to the time unit and the starting position.
  • the time unit is the update time interval
  • the time unit set is the update time interval set.
  • the UE is configured with M TCI state sets, where each TCI state The set includes N (N ⁇ 1) TCI states, and the TCI states in each TCI state set are not completely the same; among them, the TCI state refers to the TCI state configured by the base station for the UE to receive the target downlink signal or target downlink channel.
  • the TCI state At least the following configuration information is associated: a first source reference signal; where the first source reference signal refers to a source reference signal that provides a first QCL type (such as QCL-Type D) for a target downlink signal or a target downlink channel.
  • the UE is configured with a fixed update time interval T, or an update time interval set T*; the update time interval set T* includes N-1 different The update time interval; where the update time interval refers to the time interval between the UE updating the current TCI state and the next update of the TCI state; through a fourth high-level signaling (for example, MAC-CE signaling), the UE is activated or instructed One TCI state set in the M TCI state sets (0 ⁇ n ⁇ N-1); the UE starts to update the downlink signal or downlink channel (including but not Limited to the TCI status of PDCCH, PDSCH, CSI-RS), where the time interval between each update of the TCI status is the configured fixed update time interval T, or according to the update time in the configured update time interval set T* The interval value and order are obtained.
  • the update time interval set T* includes N-1 different The update time interval; where the update time interval refers to the time interval between the UE updating the current TCI state and the next update of the TCI state;
  • one time unit and at least two spatial relationship information sets are configured through the third high-level signaling, and one spatial relationship information set of the at least two spatial relationship information sets is selected through the fourth high-level signaling, and the In the selected spatial relationship information set, the spatial relationship information corresponding to each transmission time is determined according to the time unit and the starting position.
  • the time unit is the update time interval
  • the time unit set is the update time interval set.
  • the UE is configured with M spatial relationship information sets; spatial relationship information sets Including N (N ⁇ 1) pieces of spatial relationship information; where the spatial relationship information includes an uplink reference signal or downlink reference signal, which is used to indicate that the uplink channel or uplink signal and the uplink reference signal have the same spatial filter, or indicate the uplink
  • the channel or uplink signal has the same spatial filter as the downlink reference signal.
  • the DM-RS of the PUSCH is configured with a spatial relationship information
  • the spatial relationship information includes an SRS, which is used to indicate that the DM-RS of the PUSCH and the SRS have the same spatial filter.
  • the update time interval set T* includes N-1 different Update time interval; among them, the update time interval refers to the time interval between the UE updating the current spatial relationship information and the next time the spatial relationship information is updated; the UE is activated or indicates 1 spatial relationship information set of the M spatial relationship information sets (0 ⁇ n ⁇ N-1); the UE sequentially updates the spatial relationship information of the downlink signal or channel (including but not limited to PUCCH, PUSCH, SRS) starting from the first spatial relationship information in the indicated specified spatial relationship information set, where The time interval between each update of the spatial relationship information is obtained according to the configured fixed update time interval T, or according to the update time interval value and order in the configured update time interval set T*.
  • the update time interval set T* includes N-1 different Update time interval; among them, the update time interval refers to the time interval between the UE updating the current spatial relationship information and the next time the spatial relationship information is updated; the UE is activated or indicates 1 spatial relationship information set of the M spatial relationship information sets (0 ⁇ n ⁇ N-1); the UE sequential
  • the spatial relationship information set for the UE to be activated is A2; after the UE receives the above information, it follows the spatial relationship information in A2 Update the spatial relationship information of the currently transmitted PUCCH to the first spatial relationship information in the spatial relationship information set, namely SpecialrelationInfo1.
  • the UE automatically updates the spatial relationship information of the currently transmitted PUCCH to SpecialrelationInfo2
  • the UE automatically updates the spatial relationship information of the PUCCH currently sent to SpecialrelationInfo3.
  • the method further includes: configuring spatial parameters for the PDSCH, the spatial parameters are at least associated with the following configuration information: source reference signal, the source reference signal is the target downlink The first QCL type reference signal corresponding to the signal or the target downlink channel.
  • the spatial parameter can be the TCI state.
  • the base station configures the TCI state for the PDSCH.
  • the TCI state refers to the TCI state configured by the base station for the UE to receive the target downlink signal or the target downlink channel.
  • the TCI state is associated with at least the following configuration information: source reference signal; where the source reference signal refers to The source reference signal of the first QCL type (such as QCL-Type D) is provided for the target downlink signal or the target downlink channel, which means that the PDSCH and the source reference signal satisfy the quasi co-location relationship with respect to the QCL-Type D.
  • the UE may determine the reference signal in the uplink signal or the spatial relationship information of the uplink channel according to the source reference signal, that is, the two reference signals have the same spatial filter.
  • FIG. 4 is a flowchart of another indication method provided by an embodiment of the present application, and this embodiment may be executed by a UE.
  • the method in this embodiment includes S320-S340.
  • S320 Receive SRI information transmitted by the base station.
  • SRI information is used to indicate K SRS resource groups
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group
  • K is an integer greater than or equal to 1
  • the uplink information element includes one of the following: PUSCH , One transmission in multiple repeated transmissions of PUSCH.
  • S340 Perform PUSCH transmission according to the SRS resource group indicated by the SRI information.
  • the base station configures SRI information for the UE and transmits the SRI information to the UE. After the UE receives the SRI information, it can perform PUSCH transmission according to the SRS resources included in the SRS resource group indicated by the SRI information.
  • FIG. 5 is a flowchart of another indication method provided by an embodiment of the present application, and this embodiment may be executed by a UE.
  • the method in this embodiment includes S420-S440.
  • S420 Receive a set of spatial parameter information configured by the base station.
  • the spatial parameter information set includes a TCI state set or a spatial relationship information set.
  • the base station configures a spatial parameter information set for the UE, so that the UE can automatically update the physical channel or physical signal transmission spatial parameters of different transmission times according to the spatial parameter information set.
  • the physical channel includes at least one of the following: PDSCH, PUSCH, PDCCH, PUCCH; and/or, the physical signal includes at least one of the following: SRS, CSI-RS.
  • the spatial parameter information set includes a TCI state set or a spatial relationship information set.
  • the UE when the spatial parameter information set includes the TCI state set, the UE automatically updates the TCI state of the physical channel or physical signal transmission at different transmission times; in an embodiment, the spatial parameter information set includes the spatial relationship In the case of information aggregation, the UE automatically updates the spatial relationship information of physical channels or physical signal transmissions at different transmission times.
  • the method when the downlink channel and the uplink channel meet the channel reciprocity, the method further includes:
  • Receive the spatial parameters configured by the base station and the spatial parameters are associated with at least the following configuration information: a source reference signal, the source reference signal is a reference signal of the first QCL type corresponding to the target downlink signal or the target downlink channel; the first reference signal is determined according to the source reference signal , The uplink channel or uplink signal has the same spatial parameter information as the first reference signal.
  • the base station configures spatial parameters (for example, TCI state) for the PDSCH, and the spatial parameters are at least associated with the source reference signal, so that the UE can be based on the source reference signal Determine the first reference signal.
  • the uplink channel or uplink signal has the same spatial parameter information as the first reference signal, that is, the spatial filter is the same.
  • the spatial parameter information includes at least one of the following: transmission beam information, transmission beam group information, precoding matrix information, transmission layer information, spatial relationship information, and spatial filter information.
  • at least one spatial parameter information of the uplink channel or uplink signal is the same as that of the first reference signal.
  • the uplink channel or uplink signal is the same as the transmission beam information of the first reference signal, which is the same as the transmission beam group information and the precoding matrix.
  • the information, the transmission layer information, the spatial relationship information, and the spatial filter information are the same.
  • Fig. 6 is a structural block diagram of an indicating device provided by an embodiment of the present application. As shown in FIG. 6, the indicating device provided in this embodiment includes: a first transmission module 520.
  • the first transmission module 520 is configured to transmit sounding reference signal SRS resource indication SRI information, the SRI information is used to indicate K SRS resource groups, and the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group, K is an integer greater than or equal to 1, and the uplink information element includes one of the following: PUSCH, one of multiple repeated transmissions of PUSCH.
  • the indicating device provided in this embodiment is configured to implement the indicating method of the embodiment shown in FIG. 1.
  • the implementation principle and technical effect of the indicating device provided in this embodiment are similar, and will not be repeated here.
  • the SRI information includes one of the following: an SRI index value, and joint information of the SRI index value and the dedicated demodulation reference signal DMRS index value.
  • the SRI information is used to indicate K SRS resource groups, including one of the following:
  • the SRI index value in the SRI bit field in the downlink control information DCI is used to indicate the SRS resource group corresponding to the i-th uplink information element set; the SRI index value in the SRI bit field in the DCI is used to indicate the SRS resource group corresponding to the i-th SRS resource group
  • the i-th uplink information element set, i 1,...,K.
  • the SRS resource group satisfies at least one of the following characteristics:
  • SRS resource groups are associated with one of the following information: spatial relationship information grouping, and SRS resource sequence number grouping.
  • the SRI information is used to indicate K SRS resource groups
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group, and includes at least one of the following: the SRI index value is used to indicate The SRS resource group corresponding to the first uplink information element set, and the SRS resource group corresponding to the second uplink information element set is obtained according to one of the following information: except for the SRS resource corresponding to the first uplink information element set indicated by the SRI index value
  • the SRS resource with the largest external index ID is the SRS resource with the smallest index ID other than the SRS resource corresponding to the first uplink information element set indicated by the SRI index value, where the first uplink information element set and the second uplink information element
  • the set belongs to K uplink information element sets, and K is an integer greater than or equal to 1.
  • the SRI information is used to indicate K SRS resource groups
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group, and includes at least one of the following: the SRI index value indicates the first uplink information The SRS resource corresponding to the element set, and the DMRS index value indicates the SRS resource corresponding to the second uplink information element set, where the first uplink information element set and the second uplink information element set belong to K uplink information element sets.
  • using the DMRS index value to indicate the SRS resource corresponding to the second set of uplink information elements includes:
  • the DMRS index value is used to indicate the index ID offset of the SRS resource corresponding to the second uplink information element set relative to the SRS resource indicated by the SRI index value; or the DMRS index value is the SRS resource corresponding to the second uplink information element set The index ID.
  • the spatial parameter information includes at least one of the following: transmission beam information, transmission beam group information, precoding matrix information, transmission layer information, spatial relationship information, and spatial filter information.
  • the K uplink information element sets include at least one of the first uplink information element set and the second uplink information element set; the first uplink information element set includes one of the following: the PUSCH transmission indication value is less than or equal to the preset value. Threshold PUSCH transmission; PUSCH transmission indicator value is odd transmission indicator value PUSCH transmission, the preset threshold value is half of the total number of PUSCH transmission indicator values; the second set of uplink information elements includes one of the following: PUSCH transmission indicator value is greater than the predetermined value Threshold PUSCH transmission; PUSCH transmission indicator value is even-numbered PUSCH transmission indicator value, where the transmission indicator value includes one of the following: the number of transmissions, and the time unit index.
  • FIG. 7 is a structural block diagram of another indication device provided by an embodiment of the present application, and this embodiment may be executed by a UE. As shown in FIG. 7, the indicating device provided in this embodiment includes: a first configuration module 620.
  • the first configuration module 620 is configured to configure a set of spatial parameter information, which is used to automatically update the physical channel or physical signal transmission spatial parameters of different transmission times; wherein, the spatial parameter information set includes a transmission configuration indication TCI state set or Spatial relationship information collection.
  • the indicating device provided in this embodiment is configured to implement the indicating method of the embodiment shown in FIG. 3, and the implementation principle and technical effect of the indicating device provided in this embodiment are similar, and will not be repeated here.
  • the spatial parameters of the physical channel and/or the physical signal are determined according to at least one of the following information: the index of the time unit where the physical channel and/or the physical signal is located, and the mapping relationship between the spatial parameter and the time unit, where
  • the spatial parameters include one of the following: quasi co-located reference signal information, spatial relationship information, and spatial filter information.
  • the spatial parameter information set is used to automatically update the spatial parameters of physical channels or physical signal transmissions at different transmission times, including: the spatial parameter information set is used to trigger the UE according to the starting position, the spatial parameters, and the time unit.
  • the physical channel includes at least one of the following: physical downlink shared channels PDSCH, PUSCH, physical downlink control channel PDCCH, physical uplink control channel PUCCH; and/or, the physical signal includes at least one of the following: SRS, channel status Information reference signal CSI-RS.
  • the time unit is configured through the first high-level signaling, and the time unit is used to determine the update interval of the spatial parameter in the spatial parameter information set; where the time unit includes: a fixed time unit or a time unit set.
  • a starting position is configured through the second higher layer signaling, and the starting position is used to determine the initial position of the spatial parameter update in the spatial parameter information set.
  • the time unit and at least two spatial parameter information sets are configured through the third layer signaling, and the time unit includes: a fixed time unit or a time unit set.
  • one of the at least two spatial parameter sets is selected through the fourth high-level signaling, and the space corresponding to each transmission time is determined in the selected spatial parameter set according to the time unit and the starting position parameter.
  • the indicating device when the downlink channel and the uplink channel meet the channel reciprocity, the indicating device further includes:
  • the second configuration module is configured to configure space parameters for the PDSCH, and the space parameters are associated with at least the following configuration information: a source reference signal, which is a target downlink signal or a first quasi co-located QCL type reference signal corresponding to the target downlink channel.
  • Fig. 8 is a structural block diagram of another indication device provided by an embodiment of the present application.
  • the indicating device provided in this embodiment includes: a first receiving module 720 and a second transmitting module 740.
  • the first receiving module 720 is configured to receive SRI information transmitted by the base station.
  • the SRI information is used to indicate K SRS resource groups.
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group, and K is greater than or equal to An integer of 1, the uplink information element includes one of the following: PUSCH, one of multiple repeated transmissions of PUSCH.
  • the second transmission module 740 is configured to perform PUSCH transmission according to the SRS resource group indicated by the SRI information.
  • the indicating device provided in this embodiment is configured to implement the indicating method of the embodiment shown in FIG. 4.
  • the implementation principle and technical effect of the indicating device provided in this embodiment are similar, and will not be repeated here.
  • Fig. 9 is a structural block diagram of yet another indication device provided by an embodiment of the present application.
  • the indicating device provided in this embodiment includes: a second receiving module 820 and an update module 840.
  • the second receiving module 820 is configured to receive a set of spatial parameter information configured by the base station.
  • the set of spatial parameter information includes a transmission configuration indication TCI state set or a spatial relationship information set.
  • the update module 840 is configured to automatically update the physical channel or physical signal transmission spatial parameters of different transmission times according to the spatial parameter information set.
  • the indicating device provided in this embodiment is configured to implement the indicating method of the embodiment shown in FIG. 5, and the implementation principle and technical effect of the indicating device provided in this embodiment are similar, and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device provided by the present application includes: a processor 910 and a memory 920.
  • the number of processors 910 in the device may be one or more.
  • One processor 910 is taken as an example in FIG. 10.
  • the number of memories 920 in the device may be one or more, and one memory 920 is taken as an example in FIG. 10.
  • the processor 910 and the memory 920 of the device may be connected through a bus or in other ways, and connection through a bus is taken as an example in FIG. 10.
  • the device is a base station.
  • the memory 920 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the device of any embodiment of the present application (for example, a transmission module in an indicating device).
  • the memory 920 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 920 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 920 may include a memory remotely provided with respect to the processor 910, and these remote memories may be connected to the device through a network.
  • Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above-provided device can be configured to execute the instruction method applied to the base station provided by any of the above-mentioned embodiments, and has corresponding functions and effects.
  • the program stored in the corresponding memory 920 may be a program instruction/module corresponding to the instruction method applied to the UE provided in the embodiment of the present application, and the processor 910 runs the software program, instruction, and instruction stored in the memory 920.
  • the module thus executes one or more functional applications and data processing of the computer equipment, that is, implements the instruction method applied to the UE in the foregoing method embodiment.
  • the above-mentioned device is a UE, it can perform the indication method applied to the UE provided by any embodiment of the present application, and has corresponding functions and effects.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute an instruction method when executed by a computer processor.
  • the method is applied to the base station side, and the method includes: transmitting sounding references
  • the signal SRS resource indicates SRI information
  • the SRI information is used to indicate K SRS resource groups
  • the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group
  • K is an integer greater than or equal to 1
  • the elements include one of the following: physical uplink shared channel PUSCH, one of multiple repeated transmissions of PUSCH.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute an instruction method when executed by a computer processor.
  • the method is applied to the base station side, and the method includes: configuring spatial parameters Information set.
  • the spatial parameter information set is used to automatically update the spatial parameters of physical channels or physical signal transmissions at different transmission times; wherein, the spatial parameter information set includes a transmission configuration indication TCI state set or a spatial relationship information set.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute an instruction method when executed by a computer processor.
  • the method is applied to the UE side, and the method includes: receiving base station transmissions.
  • the SRI information is used to indicate K SRS resource groups, the spatial parameter information of the uplink information element set corresponds to the spatial parameter information of the SRS resource group, K is an integer greater than or equal to 1, and the uplink information elements include the following One: physical uplink shared channel PUSCH, one of multiple repeated transmissions of PUSCH; PUSCH transmission is performed according to the SRS resource group indicated by the SRI information.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute an instruction method when executed by a computer processor.
  • the method is applied to the UE side, and the method includes: receiving a base station configuration
  • the spatial parameter information set includes the transmission configuration indication TCI state set or the spatial relationship information set; the physical channel or physical signal transmission spatial parameters of different transmission times are automatically updated according to the spatial parameter information set.
  • user equipment encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种指示方法、装置和存储介质。该指示方法包括:传输探测参考信号SRS的资源指示SRI信息,SRI信息用于指示K个SRS资源组,K个上行信息元素集合的空间参数信息与K个SRS资源组的空间参数信息相对应,K为大于或等于1的整数,;上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输。

Description

指示方法、装置和存储介质
本申请要求在2019年09月03日提交中国专利局、申请号为201910829544.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种指示方法、装置和存储介质。
背景技术
对于单次上行传输(比如,基于码本(Code Book,CB)、非码本(Non-Code Book,NCB)的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输)的波束指示,基站可以通过发送一个探测参考信号(Sounding Reference Signal,SRS)资源指示(SRS resource indicator,SRI)来指示一次PUSCH的发送波束;对于多次上行传输的波束指示,基站可以通过发送一个SRI来指示第一次PUSCH的发送波束,之后的PUSCH传输会重复使用第一次PUSCH的发送波束。然而,在高可靠低时延通信(Ultra-reliable and Low Latency Communications,URLLC)场景下,提高波束的分集增益是获得高可靠低时延的数据传输的有效方法。
发明内容
本申请实施例提供一种指示方法、装置和存储介质,提高了波束的分集增益。
本申请实施例提供了一种指示方法,包括:
传输探测参考信号资源指示SRI信息,所述SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输。
本申请实施例还提供了一种指示方法,包括:
配置空间参数信息集合,所述空间参数信息集合用于自动更新不同传输时间的物理信道或物理信号传输的空间参数;其中,所述空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合。
本申请实施例还提供了一种指示方法,包括:
接收基站传输的SRI信息,所述SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:PUSCH,PUSCH的多次重复传输中的一次传输;
按照所述SRI信息指示的SRS资源组进行PUSCH传输。
本申请实施例还提供了一种指示方法,包括:
接收基站配置的空间参数信息集合,所述空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合;
根据所述空间参数信息集合自动更新不同传输时间的物理信道或物理信号传输的空间参数。
本申请实施例还提供了一种指示装置,包括:
第一传输模块,设置为传输探测参考信号SRS资源指示SRI信息,所述SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输。
本申请实施例还提供了一种指示装置,包括:
第一配置模块,设置为配置空间参数信息集合,所述空间参数信息集合用于自动更新不同传输时间的物理信道或物理信号传输的空间参数;其中,所述空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合。
本申请实施例还提供了一种指示装置,包括:
第一接收模块,设置为接收基站传输的SRI信息,所述SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:PUSCH,PUSCH的多次重复传输中的一次传输;
第二传输模块,设置为按照SRI信息指示的SRS资源组进行PUSCH传输。
本申请实施例还提供了一种指示装置,包括:
第二接收模块,设置为接收基站配置的空间参数信息集合,所述空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合;
更新模块,设置为根据所述空间参数信息集合自动更新不同传输时间的物理信道或物理信号传输的空间参数。
本申请实施例还提供了一种存储介质,所述存储介质存储有计算机程序, 所述计算机程序被处理器执行时实现上述任一实施例所述的指示方法。
附图说明
图1是本申请实施例提供的一种指示方法的流程图;
图2是本申请实施例提供的一种高铁场景下的用户设备(User Equipment,UE)波束切换示意图;
图3是本申请实施例提供的另一种指示方法的流程图;
图4是本申请实施例提供的又一种指示方法的流程图;
图5是本申请实施例提供的再一种指示方法的流程图;
图6是本申请实施例提供的一种指示装置的结构框图;
图7是本申请实施例提供的另一种指示装置的结构框图;
图8是本申请实施例提供的又一种指示装置的结构框图;
图9是本申请实施例提供的再一种指示装置的结构框图;
图10是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
图1是本申请实施例提供的一种指示方法的流程图。本实施例可适用于利用多个探测参考信号(Sounding reference signal,SRS)资源进行多次PUSCH传输的情况,本实施例可通过基站来执行。
如图1所示,本实施例提供的方法包括S120。
S120、传输探测参考信号SRS资源指示SRI信息。
SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:PUSCH,PUSCH的多次重复传输中的一次传输。在实施例中,基站向UE指示K个SRS资源组进行M次PUSCH传输。其中,1<K≤N SRS,N SRS为UE被配置的SRS资源的总个数。其中,PUSCH传输包括基于非码本的上行传输和码本的上行传输。在一实施例中,基于非码本的上行传输所采用的SRS资源的总个数最多为4个,即基于非码本的上行传输的情况下,N SRS的最大值为4;基于码本的上行传输所采用的SRS资源的总个数最多为2个,即基于码本的上行传输的情况下,N SRS的最大值为2。对于多次PUSCH传输,基站 可以通过发送SRI信息来指示多个SRS资源进行多次PUSCH传输,即采用SRI信息指示多个发送波束进行多次PUSCH传输,从而提供了波束的分集增益。
在一实施例中,SRI信息用于指示K个SRS资源组,即SRI信息用于指示每个SRS资源组所包括SRS资源对应的SRS资源索引。在每个SRS资源组可以包括一个或两个SRS资源,并且每个SRS资源均由一个SRS资源索引来指示。比如,N SRS的最大值为4的情况下,SRS资源索引可以为0-3,即SRS资源可以为SRS0、SRS1、SRS2或SRS3;又如,在N SRS的最大值为2,SRS资源索引可以为0-1,即SRS资源包可以为SRS0或SRS1。
在一实施例中,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应,包括:第i个上行信息元素集合的空间参数信息与第i个SRS资源组的空间参数信息相对应,i=1,…,K。在实施例中,每个SRS资源组的空间参数信息为一个上行信息元素集合所对应的空间参数信息。其中,每个SRS资源组与不同的上行信息元素集合相对应,即采用每个上行信息元素集合的空间参数信息采用对应的一个SRS资源组进行指示。在一实施例中,一个SRS资源组可以包括一个SRS资源,也可以包括两个SRS资源,与UE所支持的最大传输层数有关。示例性地,假设UE支持的最大传输层数为1,则一个SRS资源组对应的SRS资源个数为1个;又如,假设UE支持的最大传输层数为2,则一个SRS资源组对应的SRS资源个数可以为2个。
在一实施例中,K个上行信息元素集合包括第一上行信息元素集合和第二上行信息元素集合中的至少一个;第一上行信息元素集合包括如下之一:PUSCH传输指示值小于或等于预设阈值的PUSCH传输,PUSCH传输指示值为奇数传输指示值的PUSCH传输,预设阈值为PUSCH传输指示值总个数的一半;第二上行信息元素集合包括如下之一:PUSCH传输指示值大于预设阈值的PUSCH传输,PUSCH传输指示值为偶数传输指示值的PUSCH传输。其中,传输指示值包括下述之一:传输次数,时间单元索引。在实施例中,UE进行的每次PUSCH传输是在不同时刻进行的。在一实施例中,PUSCH传输指示值可以为PUSCH传输次数,也可以为时间单元索引。其中,每个时间单元索引对应一个时间单元。比如,假设进行8次PUSCH传输,每次传输间隔为1时隙(slot),则时间单元索引可以为0~7,传输次数分别为第1~8次,则在第2次PUSCH传输时,对应的时间单元为第2时隙,以此类推,在第8次PSCH传输时,对应的时间单元为第8时隙。
在一实施例中,假设K=2,则SRI信息用于指示两个上行信息元素集合的空间参数信息,分别为第一上行信息元素集合和第二上行信息元素集合的空间参数信息,并且SRI信息用于指示两个SRS资源组,即每个SRS资源组对应一 个上行信息元素集合。在一实施例中,可采用传输次数来对第一上行信息元素集合和第二上行信息元素集合进行说明。假设SRI信息指示两个SRS资源组进行M次PUSCH传输,其中,第一上行信息元素集合可以包括:M次传输中的前M/2次PUSCH传输,或者,M次传输中的奇数次PUSCH传输;第二上行信息元素集合可以包括:M次传输中的后M/2次PUSCH传输,或者,M次传输中的偶数次PUSCH传输。示例性地,假设M为8,则第一上行信息元素集合包括:8次传输中的前4次PUSCH传输,或8次传输中的奇数次PUSCH传输,即第一上行信息元素集合包括:1、2、3、4次PUSCH传输,或者,1、3、5、7次PUSCH传输;对应的,第二上行信息元素集合包括:5、6、7、8次PUSCH传输,或者,2、4、6、8次PUSCH传输。
在一实施例中,空间参数信息包括以下至少之一:发送波束信息,发送波束组信息,预编码矩阵信息,传输层信息,空间关系信息,空间滤波器信息。其中,发送波束信息指的是上行信息元素集合所采用的发送波束的相关信息,即一个上行信息元素集合采用一个发送波束进行PUSCH传输;发送波束组信息指的是上行信息元素集合所采用的发送波束组的相关信息,即一个上行信息元素集合采用至少两个发送波束进行PUSCH传输;预编码矩阵信息指的是UE向基站发送的包含发送波束较好的SRS资源的矩阵信息;传输层信息指的是UE的每个传输层的相关信息,比如,传输层信息可以包括:传输层数;空间关系信息用来表征发送波束的相关信息;空间滤波器信息用来表征两个参考信号的发送波束相同与否,即若两个参考信号的空间滤波器信息相同,则发送波束的相关信息相同。
在一实施例中,SRI信息包括以下之一:SRI索引值,SRI索引值与专用解调参考信号(Dedicated deModulation Reference Signal,DMRS)索引值的联合信息。在一实施例中,可通过SRI索引值向UE指示K个SRS资源组。在一实施例中,也可通过SRI索引值与DMRS索引值的联合信息向UE指示K个SRS资源组。
在一实施例中,SRI信息用于指示K个SRS资源组,包括如下之一:
下行控制信息DCI中的SRI比特域中SRI索引值用于指示第i个上行信息元素集合对应的SRS资源组;DCI中的SRI比特域中第i个SRS资源组的SRI索引值对应第i个上行信息元素集合,i=1,…,K。
在一实施例中,在SRI信息用于指示K个SRS资源组包括DCI中的SRI比特域中SRI索引值用于指示第i个上行信息元素集合对应的SRS资源组的情况下,即采用SRI索引值来指示K(1≤K≤N SRS)个SRS资源组的情况下,假设场景为基于非码本的PUSCH传输,并且UE支持的最大传输层数为1,且K=2。 其中,N SRS为UE可被配置的SRS资源个数的最大值。在实施例中,基站可以通过SRI信息向UE指示两个SRS资源组进行M次PUSCH传输,并且每个SRS资源与不同的上行信息元素集合相对应。其中,不同上行信息元素集合对应于不同SRS资源组中的SRS资源。在实施例中,SRI信息的第i个SRS资源组的空间参数信息对应第i个上行信息元素集合对应的空间参数信息,即第i个上行信息元素集合的发送波束就是用于发送第i个SRS资源组的发送波束。其中,上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M次传输中的前M/2次PUSCH传输,或者,M次传输中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次PUSCH传输,或者,M次传输中的偶数次PUSCH传输。
表1是本申请实施例提供的一种基于非码本PUSCH传输的SRI指示对照表。如表1所示,表1中的SRI索引值为0、1,且N SRS为2的情况,SRI索引值为是0、1和2,且N SRS为3的情况,以及SRI索引值为是0、1、2和3,且N SRS为4的这三种情况,均为R15中基于非码本的L max=1的SRI指示对照表。在实施例中,将SRI域由原来的2比特增加至4比特,新增的SRI索引值用于指示不同上行信息元素集合对应的不同的SRS资源组,其中,SRS资源索引指的是UE所采用的SRS资源的序号。其中,SRS资源索引可以为0-3,即为SRS0、SRS1、SRS2和SRS3。在实施例中,UE可以通过不同的SRI索引值来获取不同上行信息元素集合所对应的SRS资源。例如,在M=8,N SRS=4时,UE接收到SRI索引值的值为6,则第一上行信息元素集合与SRS0相对应,第二上行信息元素集合与SRS3相对应,即前4次PUSCH传输与SRS0相对应,后4次PUSCH传输与SRS3相对应;或者,第1、3、5、7次PUSCH传输与SRS0相对应,第2、4、6、8次PUSCH传输与SRS3相对应。
表1一种基于非码本PUSCH传输的SRI指示对照表
Figure PCTCN2020111769-appb-000001
Figure PCTCN2020111769-appb-000002
如表1所示,在SRI索引值为6,N SRS=4的情况下,第1个上行信息元素集合的发送波束为用于发送第1组SRS资源的发送波束,即第一上行信息元素集合的发送波束为用于发送SRS0资源的发送波束;第2个上行信息元素集合的发送波束为用于发送第2组SRS资源的发送波束,即第二上行信息元素集合的发送波束为用于发送SRS3资源的发送波束,从而提高了波束的分集增益。
在一实施例中,SRI信息用于指示K个SRS资源组,包括:DCI中的SRI比特域中SRI索引值用于指示第i个SRS资源组对应的第i个上行信息元素集合。在实施例中,SRI比特域预先对SRS资源分组。比如,假设总共有8个SRS资源,前4个SRS资源是第一组,后4个SRS资源是第二组,SRI比特域从两组SRS资源组选择,并将第一组SRS资源组对应第一上行信息元素集合,以及第二组SRS资源组对应第二上行信息元素集合。
在一实施例中,SRS资源组满足如下特征中的至少之一:不同上行信息元素集合对应于不同SRS资源组;SRS资源组与如下信息之一之间有关联:空间关系信息分组,SRS资源序号分组。在实施例中,SRS资源组与空间关系信息分组和/或SRS资源序号分组有关联。比如,可通过SRS资源组得到对应的空间关系信息,相应的,可通过空间关系信息得到对应的SRS资源组。
在一实施例中,在SRI信息包括SRI索引值的情况下,即采用SRI索引值来指示K(1≤K≤N SRS)个SRS资源组的情况下,假设场景为基于非码本的PUSCH传输,并且UE支持的最大传输层数为1,且K=2。表2是本申请实施例提供的另一种基于非码本PUSCH传输的SRI指示对照表。如表2所示,表1中的SRI索引值为0、1,且N SRS为2的情况,SRI索引值为是0、1和2,且N SRS为3的情况,以及SRI索引值为是0、1、2和3,且N SRS为4的这三种情况,均为R15中基于非码本的L max=1的SRI指示对照表。在实施例中,将SRI域由原来的2比特增加至3比特,新增的行数(即SRI索引值)用于指示不同上行信息元素集合使用的SRS资源来自不同的SRS资源组,其中,SRS资源组的分组方式可以采用以下方式之一:按照空间关系信息区分组,或者按照SRS资源序号分组(即按前一半SRS资源与后一半SRS资源区分)。示例性地,以按照空间关系信息区分为例,对本实施例的非码本PUSCH传输的SRI索引值指 示进行说明,假设UE被配置了4个SRS资源,同时被配置了2个空间关系信息,每个SRS资源被配置了一个空间关系信息,其中,具有相同空间关系信息的SRS资源被划分为一组。又如,以按照前一半SRS资源与后一半SRS资源区分为例,对本实施例中的非码本PUSCH传输的SRI索引值指示进行说明,假设UE被配置了4个SRS资源,分别为SRS0资源,SRS1资源,SRS2资源,SRS3资源,则SRS0资源与SRS1资源为一组,SRS2资源与SRS3资源为一组。其中,上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M次传输中的前M/2次传输,或M次传输中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次传输,或M次传输中的偶数次PUSCH传输。
示例性地,在SRS资源组的分组方式采用前一半与后一半SRS资源的方式时,SRI索引值指示的方式如表2所示。例如,当M=8,N SRS=4,UE接收到SRI索引值的值为6,则第一上行信息元素集合与SRS1相对应,第二上行信息元素集合与SRS2相对应,即前4次PUSCH传输与SRS1相对应,后4次PUSCH传输与SRS2相对应;或者,第1、3、5、7次PUSCH传输与SRS1相对应,第2、4、6、8次PUSCH传输与SRS2相对应。
表2另一种基于非码本PUSCH传输的SRI指示对照表
Figure PCTCN2020111769-appb-000003
如表2所示,在SRI索引值为6,N SRS=4的情况下,第1个上行信息元素集合的发送波束为用于发送第1组SRS资源的发送波束,即第一上行信息元素集合的发送波束为用于发送SRS1资源的发送波束;第2个上行信息元素集合的发送波束为用于发送第2组SRS资源的发送波束,即第二上行信息元素集合的发送波束为用于发送SRS2资源的发送波束,并且,第二上行信息元素集合所采 用的SRS资源(SRS2)与第一上行信息元素集合所采用的SRS资源(SRS1)属于不同的SRS资源组,从而提高了波束的分集增益。
在一实施例中,SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应:SRI索引值用于指示第一上行信息元素集合所对应的SRS资源,第二上行信息元素集合所对应的SRS资源组根据如下信息之一获取:除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外的索引标识(Identifier,ID)最大的SRS资源,除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外的索引ID最小的SRS资源,其中,第一上行信息元素集合和第二上行信息元素集合属于K个上行信息元素集合,K为大于或等于1的整数。
在一实施例中,在SRI信息包括SRI索引值的情况下,即采用SRI索引值来指示K(1≤K≤N SRS)个SRS资源组的情况下,假设场景为基于非码本的PUSCH传输,UE支持的最大传输层数为1,且K=2。其中,SRI索引值用于指示第一上行信息元素集合所对应的SRS资源,SRI索引值指示的方式包括:SRI索引值即为所指示的SRS资源的索引ID。示例性地,SRI索引值为2时,则表明第一上行信息元素集合所对应的SRS资源为SRS2。在实施例中,第二上行信息元素集合所对应的SRS资源可以采用以下方式之一:除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外,索引ID最大的SRS资源,或者,除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外,索引ID最小的SRS资源。其中,上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M次传输中的前M/2次传输,或M次传输中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次传输,或M次传输中的偶数次PUSCH传输。
表3是本申请实施例提供的一种基于非码本PUSCH传输所对应SRS资源ID最大的对照表。其中,可采用除SRI索引值指示的所述第一上行信息元素集合所对应的SRS资源之外的索引ID最大的SRS资源,得到的第二上行信息元素集合(即M次传输中的后M/2次传输,或M次传输中的偶数次PUSCH传输)所对应的SRS资源如表3所示。在一实施例中,第二上行信息元素集合所对应的SRS资源采用的方式为除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外,索引ID最大的SRS资源,并且M=8,N SRS=4,SRI=2(即SRI索引值为2),则第一上行信息元素集合与SRS2相对应,第二上行信息元素集合与SRS3相对应,即前4次PUSCH传输与SRS2资源相对应,后4次PUSCH传输与SRS3资源相对应;或者,第1、3、5、7次PUSCH传输与SRS2资源相对应,第2、4、6、8次PUSCH传输与SRS3资源相对应。
表3一种基于非码本PUSCH传输所对应SRS资源ID最大的对照表
Figure PCTCN2020111769-appb-000004
如表3所示,在SRI索引值为2的情况下,第一上行信息元素集合所对应的SRS资源为SRS2;并且,N SRS=4,即UE被配置的SRS资源个数为4个,分别为SRS0~SRS3,在第一上行信息元素集合所对应的SRS资源为SRS2的情况下,第二上行信息元素集合所对应的SRS资源,为除SRI索引值指示的第一上行信息元素集合所对应的SRS资源(即SRS2)之外,索引ID最大的SRS资源,即第二上行信息元素集合所对应的SRS资源为SRS3。
表4是本申请实施例提供的一种基于非码本PUSCH传输所对应SRS资源ID最小的对照表。其中,采用除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外,索引ID最小的SRS资源,得到的第二上行信息元素集合(即M次传输中的后M/2次传输,或M次传输中的偶数次PUSCH传输)所对应的SRS资源如表4所示。在一实施例中,第二上行信息元素集合所对应的SRS资源采用的方式为除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外,索引ID最小的SRS资源,并且M=8,N SRS=4,SRI=2(即SRI索引值),则第一上行信息元素集合与SRS2资源相对应,第二上行信息元素集合与SRS0相对应,即前4次PUSCH传输与SRS2资源相对应,后4次PUSCH传输与SRS0资源相对应;或者,第1、3、5、7次PUSCH传输与SRS2资源相对应,第2、4、6、8次PUSCH传输与SRS0资源相对应。
表4一种基于非码本PUSCH传输所对应SRS资源ID最小的对照表
Figure PCTCN2020111769-appb-000005
如表4所示,在SRI索引值为2的情况下,第一上行信息元素集合所对应的SRS资源为SRS2;并且,N SRS=4,即UE被配置的SRS资源个数为4个,分别为SRS0-SRS3,在第一上行信息元素集合所对应的SRS资源为SRS2的情况下,第二上行信息元素集合所对应的SRS资源组,为除SRI索引值指示的第一上行信息元素集合所对应的SRS资源(即SRS2)之外,索引ID最小的SRS资源,即第二上行信息元素集合所对应的SRS资源为SRS0。
在一实施例中,SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应:SRI索引值指示第一上行信息元素集合所对应的SRS资源,DMRS索引值指示第二上行信息元素集合所对应的SRS资源,其中,第一上行信息元素集合和第二上行信息元素集合属于K个上行信息元素集合。
在一实施例中,采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源,包括:采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源相对于采用SRI索引值指示的SRS资源的索引ID偏移量;或者,DMRS索引值为第二上行信息元素集合所对应的SRS资源的索引ID。
在一实施例中,在SRI信息包括SRI索引值与DMRS索引值的联合信息的情况下,即采用SRI索引值和DMRS索引值的联合信息来指示K(1≤K≤N SRS)个SRS资源组,并且,采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源相对于采用SRI索引值指示的SRS资源的索引ID偏移量的情况下,假设场景为基于非码本的PUSCH传输,并且UE支持的最大传输层数为1,K=2。在实施例中,采用SRI索引值指示第一上行信息元素集合所对应的SRS资源,采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源。其中,SRI索引值指示的方式为,按照版本15(Release15,R15)的指示方式进行指示,即SRI索引值为第一上行信息元素集合所对应SRS资源的索引ID。采用DMRS索引值指示的方式为,用DMRS索引值指示该SRS资源相对于用SRI索引值指示的SRS资源的索引ID偏移量。例如,SRI索引值指示第一上行信息元素集合所对应的SRS资源为SRS0,在下行控制信息(Downlink control information,DCI)中DMRS索引值为2,即该SRS资源相对于SRS0的索引ID偏移量为2,则第二上行信息元素集合所对应的SRS资源为SRS2。其中,上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M次传输中的前M/2次传输,或者,M次传输中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次传输,或者,M次传输中的偶数次PUSCH传输。
示例性地,表5是本申请实施例提供的一种SRI索引值和DMRS索引值的联合信息指示SRS资源的对照表。假设M=8,N SRS=4,SRI=2(即SRI索引值 为2),DMRS索引值为2时,则第一上行信息元素集合与SRS2资源相对应,第二上行信息元素集合与SRS0资源相对应,即前4次PUSCH传输与SRS2资源相对应,后4次PUSCH传输与SRS0资源相对应;或者,第1、3、5、7次PUSCH传输与SRS2资源相对应,第2、4、6、8次PUSCH传输与SRS0资源相对应。
表5一种SRI索引值和DMRS索引值的联合信息指示SRS资源的对照表
Figure PCTCN2020111769-appb-000006
如表5所示,DMRS索引值指示该SRS资源相对于用SRI索引值指示的SRS资源的索引ID偏移量。比如,在N SRS=4,SRI=3,DMRS=3时,第一上行信息元素集合所对应的SRS资源为SRS3,第二上行信息元素集合所对应SRS资源为SRS2。
在一实施例中,在SRI信息包括SRI索引值与DMRS索引值的联合信息的情况下,即采用SRI索引值和DMRS索引值的联合信息来指示K(1≤K≤N SRS)个SRS资源组,并且,采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源,包括:DMRS索引值为第二上行信息元素集合所对应的SRS资源的索引ID。在实施例中,假设场景为基于非码本的M次PUSCH传输,并且UE支持的最大传输层数为1,K=2。在实施例中,采用SRI索引值指示第一上行信息元素集合所对应的SRS资源,以及,采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源。其中,采用SRI索引值指示的方式为,按照R15的指示方式进行指示,即SRI索引值为第一上行信息元素集合所对应SRS资源的索引ID;采用DMRS索引值指示的方式为,DMRS索引值为第二上行信息元素集合所对应SRS资源的索引ID。例如,SRI索引值指示第一上行信息元素集合所对应的SRS资源为SRS0,在DCI中DMRS索引值为2,则第二上行信息元素集合所对应的SRS资源为SRS2。其中,上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M次传输中的前M/2次传输,或M次传输 中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次传输,或M次传输中的偶数次PUSCH传输,即前4次PUSCH传输与SRS0资源相对应,后4次PUSCH传输与SRS2资源相对应;或者,第1、3、5、7次PUSCH传输与SRS0资源相对应,第2、4、6、8次PUSCH传输与SRS2资源相对应。
在一实施例中,在SRI信息包括SRI索引值与DMRS索引值的联合信息的情况下,即采用SRI索引值和DMRS索引值的联合信息来指示K(1≤K≤N SRS)个SRS资源组,并且,采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源,包括:采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源相对于采用SRI索引值指示的SRS资源的索引ID偏移量。假设场景为基于非码本的PUSCH传输,并且,UE支持的最大传输层数为2,K=2,即每个上行信息元素集合所对应的SRS资源为2个。在实施例中,采用SRI索引值指示第一上行信息元素集合所对应的两个SRS资源,采用DMRS索引值指示第二上行信息元素集合所对应的两个SRS资源。其中,SRI索引值指示的方式为,按照R15的L max=2的指示方式进行指示,即SRI索引值为第一上行信息元素集合所对应SRS资源的索引ID;DMRS索引值指示的方式为,DMRS索引值即为该SRS资源相对于用SRI索引值指示的每个SRS资源的索引ID偏移量。例如,SRI索引值指示第一上行信息元素集合所对应的SRS资源为SRS0、SRS3,在DCI中DMRS索引值为2,即该SRS资源相对于SRS0、SRS3的索引ID偏移量为2,则第二上行信息元素集合所对应的SRS资源为SRS2、SRS1。其中,上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M次传输中的前M/2次传输,或M次传输中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次传输,或者,M次传输中的偶数次PUSCH传输,即前4次PUSCH传输与SRS0、SRS3相对应,后4次PUSCH传输与SRS2、SRS1相对应;或者,第1、3、5、7次PUSCH传输与SRS0、SRS3相对应,第2、4、6、8次PUSCH传输与SRS2、SRS1相对应。
在一实施例中,在SRI信息包括SRI索引值与DMRS索引值的联合信息的情况下,即采用SRI索引值和DMRS索引值的联合信息来指示K(1≤K≤N SRS)个SRS资源组,并且,采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源,包括:DMRS索引值为第二上行信息元素集合所对应的SRS资源的索引ID。假设场景为基于非码本的PUSCH传输,并且UE支持的最大传输层数为2,K=2。基站通过SRI索引值向UE指示K(1≤K≤N SRS)个SRS资源进行M次PUSCH传输,每次PUSCH传输对应于2个SRS资源,不同上行信息元素集合对应于不同的SRS资源组。其中,N SRS为UE可被配置的最大SRS资源个数。上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M 次传输中的前M/2次PUSCH传输,或M次传输中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次PUSCH传输,或M次传输中的偶数次PUSCH传输。在实施例中,SRI信息的第i个SRS资源组用于指示第i个上行信息元素集合的空间参数信息,即第i个上行信息元素集合的发送波束就是用于发送第i个SRS资源组的发送波束。
表6是本申请实施例提供的一种基于非码本的PUSCH传输的SRI指示对照表。如表6所示,新增R15中基于非码本的L max=2的SRI指示表格中的预留行,新增的SRI索引值指示不同上行信息元素集合对应不同的SRS资源,UE通过不同的SRI索引值获取不同上行信息元素集合所对应的SRS资源。例如,M=8,N SRS=4时,UE接收到SRI索引值为10,则第一上行信息元素集合与SRS0、SRS1相对应,第二上行信息元素集合与SRS2、SRS3相对应,即前4次PUSCH传输与SRS0、SRS1相对应,后4次PUSCH传输与SRS2、SRS3相对应;或者,第1、3、5、7次PUSCH传输与SRS0、SRS1相对应,第2、4、6、8次PUSCH传输与SRS2、SRS3相对应。
表6一种基于非码本的PUSCH传输的SRI指示对照表
Figure PCTCN2020111769-appb-000007
Figure PCTCN2020111769-appb-000008
如表6所示,在N SRS=4,SRI索引值为10的情况下,第1个上行信息元素集合的发送波束为用于发送第1组SRS资源的发送波束,即第一上行信息元素集合的发送波束为用于发送SRS0和SRS1的发送波束;第2个上行信息元素集合的发送波束为用于发送第2组SRS资源的发送波束,即第二上行信息元素集合的发送波束为用于发送SRS2和SRS3的发送波束,从而提高了波束的分集增益。
在一实施例中,SRI信息用于指示K个SRS资源组,包括:扩展SRI比特域,SRI比特域中第i组SRI索引值用于指示第i个上行信息元素集合对应的SRS资源组。假设场景为基于码本的PUSCH传输,基站通过SRI索引值向UE指示给K(1≤K≤2)个SRS资源组进行PUSCH的M次传输,K=2。其中,SRS资源与不同的上行信息元素集合相对应,上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M次传输中的前M/2次PUSCH传输,或M次传输中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次PUSCH传输,或M次传输中的偶数次PUSCH传输。
表7是本申请实施例提供的一种基于码本的PUSCH传输的SRI指示对照表。如表7所示,SRI域由原来的1比特增加至2比特,新增的行数(即SRI索引值)指示不同上行信息元素集合对应不同的SRS资源组,UE通过不同的SRI索引值获取不同上行信息元素集合所对应的SRS资源组。例如,M=8,N SRS=2时,UE接收到SRI索引值为2,则第一上行信息元素集合与SRS0资源相对应,第二上行信息元素集合与SRS1资源相对应,即前4次PUSCH传输与SRS0资源相对应,后4次PUSCH传输与SRS1资源相对应;或者,第1、3、5、7次PUSCH传输与SRS0资源相对应,第2、4、6、8次PUSCH传输与SRS1资源相对应。
表7一种基于码本的PUSCH传输的SRI指示对照表
Figure PCTCN2020111769-appb-000009
如表7所示,基于码本的PUSCH传输,N SRS最大值为2。在SRI索引值为2,N SRS=2的情况下,第1个上行信息元素集合的发送波束为用于发送第1个 SRS资源组中所包括SRS资源的发送波束,即第一上行信息元素集合的发送波束为用于发送SRS0资源的发送波束;第2个上行信息元素集合的发送波束为用于发送第2个SRS组中所包括SRS资源的发送波束,即第二上行信息元素集合的发送波束为用于发送SRS1的发送波束,从而提高了波束的分集增益。
在一实施例中,SRI信息包括SRI索引值与DMRS索引值的联合信息,即通过SRI索引值和DMRS索引值的联合信息指示上行信息元素集合所对应的SRS资源。假设场景为基于码本的PUSCH传输,同时是单用户单入单出(Single-UserMultiple-InputMultiple-Output,SU-MIMO)的情况。UE最多被配置2个SRS资源,分别为SRS0与SRS1,SRS资源与PUSCH传输的对应方式由SRI索引值与DMRS索引值联合指示。示例性地,DMRS索引值为0,表示M次PUSCH传输都与相同的SRS资源相对应,即每次PUSCH传输对应的SRS资源由SRI索引值指示;DMRS索引值为1,表示第一上行信息元素集合与SRS0相对应,第二上行信息元素集合与SRS1相对应;DMRS索引值为2,表示第一上行信息元素集合与SRS1相对应,第二上行信息元素集合与SRS0相对应。其中,上行信息元素集合可以采用以下方式之一:第一上行信息元素集合包括M次传输中的前M/2次PUSCH传输,或M次传输中的奇数次PUSCH传输;对应地,第二上行信息元素集合包括M次传输中的后M/2次PUSCH传输,或M次传输中的偶数次PUSCH传输。
在移动的高速铁路网络中,基站与UE之间的接收最优波束与发送最优波束常常切换与更新。铁路是固定的,即UE的行进轨迹是固定的,假设UE跟随高铁的速度匀速前进,不同时刻下UE处于不同的位置,该位置对于基站来说是已知或确定的。因此,UE可以被基站指示不同的下行信道或下行信号的最优接收波束,或者,上行信道或信号的最优发送波束,即更新下行信道或下行信号的TCI状态,或者,更新上行信道或信号的空间关系信息。图2是本申请实施例提供的一种高铁场景下的UE波束切换示意图。如图2所示,可选地,高铁中的UE0和UE1在t0时刻所对应的发送波束与接收波束可以为波束0、波束1或波束2;高铁中的UE0和UE1在t1时刻所对应的发送波束与接收波束可以为波束4、波束5或波束6。在实施例中,可以通过以下方式至少之一实现:
图3是本申请实施例提供的另一种指示方法的流程图。本实施例可通过基站来执行。
如图3所示,本实施例中的方法包括S220。
S220、配置空间参数信息集合。
空间参数信息集合用于自动更新不同传输时间的物理信道或物理信号传输的空间参数;其中,空间参数信息集合包括传输配置指示(Transmission  configuration indicator,TCI)状态集合或空间关系信息集合。
在实施例中,基站配置TCI状态集合或空间关系集合,并将TCI状态集合和空间关系集合发送至UE,以使UE根据TCI状态集合或空间关系集合,自动更新不同传输时间的物理信道或物理信号传输的空间参数。
在一实施例中,根据下述信息至少之一确定物理信道和/或物理信号的空间参数:物理信道和/或物理信号所在的时间单元索引,空间参数和时间单元之间的映射关系,其中空间参数包括如下之一:准共址参考信号信息,空间关系信息,空间滤波器信息。其中,准共址参考信号信息可以在TCI状态中配置。
在一实施例中,空间参数信息集合用于自动更新不同传输时间的物理信道或物理信号传输的空间参数,包括:
空间参数信息集合用于触发UE根据起始位置、空间参数和时间之间的映射关系依次更新物理信道或物理信号传输的空间参数。在实施例中,在UE接收到空间参数信息集合之后,根据预先配置的起始位置n确定对应空间参数信息集合中的第n+1个空间参数,并根据空间参数和时间单元之间的映射关系、依次更新物理信道或物理信号传输的空间参数。
在一实施例中,物理信道包括以下至少之一:物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、PUSCH、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH);和/或,物理信号包括以下至少之一:SRS、信道状态信息参考信号(Channel state information reference signal,CSI-RS)。
在一实施例中,通过第一高层信令配置时间单元,更时间单元用于确定空间参数信息集合中空间参数的更新间隔;其中,时间单元包括:固定时间单元,或时间单元集合。在实施例中,第一高层信令可以为无线资源控制(Radio resource control,RRC)信令或媒体接入控制(Medium Access Control,MAC)-控制元素(Control Element,CE)信令。在实施例中,通过RRC信令对UE配置TCI状态集合或空间关系信息集合,以及通过MAC-CE信令配置时间单元。
在一实施例中,通过第二高层信令配置一个起始位置,起始位置用于确定空间参数信息集合中空间参数的更新初始位置。在实施例中,第二高层信令可以为激活指令,激活指令可以为MAC-CE信令。通过MAC-CE信令配置一个起始位置,以使UE被激活或指示一个起始位置。
在一实施例中,基站通过第一高层信令配置一个TCI状态集合,以及时间单元,并通过第二高层信令配置一个起始位置。其中,时间单元即更新时间间隔,时间单元集合即更新时间间隔集合,第一高层指令为RRC信令或MAC-CE 信令,第二高层指令为MAC-CE信令。在实施例中,通过第一高层信令(RRC信令)对UE配置一个TCI状态集合,且TCI状态集合包括N(N≥1)个TCI状态;其中,TCI状态指基站为UE接收目标下行信号或目标下行信道配置的TCI状态,TCI状态至少关联以下配置信息:第一源参考信号;其中,第一源参考信号指为目标下行信号或目标下行信道提供第一准共址(Quasi co-location,QCL)类型(比如,QCL-Type D)的源参考信号。通过第一高层信令(比如,MAC-CE信令)对UE配置一个固定的更新时间间隔T,或者,一个更新时间间隔集合T*;更新时间间隔集合T*中包括N-1个不同的更新时间间隔;其中,更新时间间隔指UE更新当前TCI状态与下一次更新TCI状态之间的时间间隔;通过一个第二高层信令(比如,MAC-CE信令),UE被激活或指示一个起始位置n(0≤n≤N-1);其中,起始位置n对应于TCI状态集合中的第n+1个TCI状态,用于指示UE从TCI状态集合中的第n+1个TCI状态开始依次更新下行信号或下行信道(包括但不限于PDCCH,PDSCH,CSI-RS)的TCI状态,其中,每次更新TCI状态之间的时间间隔按照所配置的固定更新时间间隔T取得,或者,按照所配置的更新时间间隔集合T*中的更新时间间隔值与顺序取得。
示例性地,基站通过RRC信令配置一个包含3个TCI状态的TCI状态集合A=[TCI0,TCI1,TCI2],再通过MAC-CE信令配置一个更新间隔集合T*=[1,2],单位为时隙;通过一个MAC-CE信令,UE被激活的一个起始位置为n=0;UE接收了上述信息后,按照TC状态集合A中TCI状态的顺序,将当前接收的TCI状态更新为TCI状态集合中的第1个TCI状态,即TCI0,经过1个时隙,UE自动将当前接收的PDSCH的TCI状态更新为TCI1,再经过2个时隙,UE自动将当前接收的PDSCH的TCI状态更新为TCI2。
在一实施例中,基站通过第一高层信令配置一个空间关系信息集合和时间单元,并通过第二高层信令配置一个起始位置。其中,时间单元即更新时间间隔,时间单元集合即更新时间间隔集合,第一高层信令为RRC信令或MAC-CE信令,第二高层指令为MAC-CE信令。在实施例中,通过第一高层信令(比如,RRC信令),UE被配置一个空间关系信息集合;空间关系信息集合包括N(N≥1)个空间关系信息,并且每个空间关系信息集合中包括的空间关系信息不完全相同;其中,空间关系信息包括一个上行参考信号或下行参考信号,用于指示上行信道或上行信号,分别与上行参考信号具有相同的空间滤波器;或者,上行信道或上行信号,分别与下行参考信号具有相同的空间滤波器。例如,PUSCH的DM-RS被配置了一个空间关系信息,空间关系信息包括了一个SRS,用于指示PUSCH DM-RS与SRS资源具有相同的空间滤波器。通过第二高层信令(比如,MAC-CE信令)对UE配置一个固定的更新时间间隔T,或是一个更新时间间隔集合T*;更新时间间隔集合T*中包括N-1个不同的更新时间间隔; 其中,更新时间间隔指UE更新当前空间关系信息与下一次更新空间关系信息之间的时间间隔;通过一个第二高层信令(比如,MAC-CE信令),UE被激活或指示一个起始位置n(0≤n≤N-1);其中,起始位置n对应于空间关系信息集合中的第n+1个空间关系信息,用于指示UE从所述空间关系信息集合第n+1个空间关系信息开始依次更新上行信号或上行信道(包括但不限于PUCCH,PUSCH,SRS)的空间关系信息,其中每次更新空间关系信息之间的时间间隔按照所配置的固定更新时间间隔T取得,或是按照所配置的更新时间间隔集合T*中的更新时间间隔值与顺序取得。
示例性地,基站通过RRC信令配置一个包含3个空间关系信息的空间关系信息集合A=[SpecialrelationInfo0,SpecialrelationInfo1,SpecialrelationInfo2],再通过MAC-CE信令配置一个更新间隔集合T*=[1,2],单位为时隙;通过一个MAC-CE信令,UE被激活的一个起始位置为n=0;UE接收了上述信息后,按照空间关系信息集合A中的空间关系信息的顺序,将当前发送的PUCCH的空间关系信息更新为空间关系信息集合中的第1个空间关系信息,即SpecialrelationInfo0,经过1个时隙,UE自动将当前发送的PUCCH的空间关系信息更新为SpecialrelationInfo1,再经过2个时隙,UE自动将当前发送的PUCCH的空间关系信息更新为SpecialrelationInfo2。
在一实施例中,通过第三高层信令配置时间单元和至少两个空间参数信息集合,时间单元包括:固定时间单元,或时间单元集合。其中,第三高层信令可以为RRC信令,或者MAC-CE信令,在实施例中,通过RRC信令配置至少两个空间参数信息集合,通过MAC-CE信令配置时间单元。
在一实施例中,通过第四高层信令选择至少两个空间参数集合中的一个空间参数集合,并在所选择的空间参数集合中根据时间单元和起始位置确定每个传输时间对应的空间参数。其中,第四高层信令可以为MAC-CE信令。在实施例中,通过MAC-CE信令配置一个时间单元和起始位置,以及通过MAC-CE信令从至少两个空间参数集合中选择一个空间参数信息集合,并在所选择的空间参数信息集合中根据时间单元和起始位置确定每个传输时间对应的空间参数。其中,空间参数集合包括TCI状态集合或空间关系信息集合,即在空间参数集合为TCI状态集合的情况下,空间参数为TCI状态;在空间参数集合为空间关系信息集合的情况下,空间参数为空间关系信息。
在一实施例中,通过第三高层信令配置一个时间单元和至少两个TCI状态集合,并通过第四高层信令选择至少两个TCI状态集合中的一个TCI状态集合,并在所选择的TCI状态集合中根据时间单元和起始位置确定每个传输时间对应的TCI状态。在实施例中,时间单元即更新时间间隔,时间单元集合即更新时 间间隔集合,通过第三高层信令(比如,RRC信令),UE被配置M个TCI状态集合,其中,每个TCI状态集合中包括N(N≥1)个TCI状态,并且每个TCI状态集合中的TCI状态不完全相同;其中,TCI状态指基站为UE接收目标下行信号或目标下行信道配置的TCI状态,TCI状态至少关联以下配置信息:第一源参考信号;其中,第一源参考信号指为目标下行信号或目标下行信道提供第一QCL类型(如QCL-Type D)的源参考信号。通过第三高层信令(比如,MAC-CE信令),UE被配置一个固定的更新时间间隔T,或是一个更新时间间隔集合T*;更新时间间隔集合T*中包括N-1个不同的更新时间间隔;其中,更新时间间隔指UE更新当前TCI状态与下一次更新TCI状态之间的时间间隔;通过一个第四高层信令(比如,MAC-CE信令),UE被激活或指示M个TCI状态集合中的1个TCI状态集合(0≤n≤N-1);UE从被指示的指定TCI状态集合中的第1个TCI状态开始依次更新下行信号或下行信道(包括但不限于PDCCH,PDSCH,CSI-RS)的TCI状态,其中每次更新TCI状态之间的时间间隔为所配置的固定更新时间间隔T,或者,按照所配置的更新时间间隔集合T*中的更新时间间隔值与顺序取得。
示例性地,基站通过RRC信令配置2个TCI状态集合A1,A2,每个TCI状态集合包含3个TCI状态,即A1=[TCI0,TCI1,TCI2],A2=[TCI1,TCI2,TCI3];再通过MAC-CE信令配置一个固定更新间隔T=2,单位为时隙;基站通过MAC-CE信令选择TCI状态集合A1;UE接收了上述信息后,按照A1中TCI状态的顺序,将当前接收的PDSCH的TCI状态更新为TCI0,经过2个时隙,UE自动将当前接收的PDSCH的TCI状态更新为TCI1,再经过2个时隙,UE自动将当前接收的PDSCH的TCI状态更新为TCI2。
在一实施例中,通过第三高层信令配置一个时间单元和至少两个空间关系信息集合,并通过第四高层信令选择至少两个空间关系信息集合中的一个空间关系信息集合,并在所选择的空间关系信息集合中根据时间单元和起始位置确定每个传输时间对应的空间关系信息。在实施例中,时间单元即更新时间间隔,时间单元集合即更新时间间隔集合,通过第三高层信令(比如,RRC信令),UE被配置了M个空间关系信息集合;空间关系信息集合包括N(N≥1)个空间关系信息;其中,空间关系信息包括一个上行参考信号或下行参考信号,用于指示上行信道或上行信号与上行参考信号具有相同的空间滤波器,或者,指示上行信道或上行信号与下行参考信号具有相同的空间滤波器。例如,PUSCH的DM-RS被配置了一个空间关系信息,空间关系信息包括了一个SRS,用于指示PUSCH的DM-RS与SRS具有相同的空间滤波器。通过第三高层信令(比如,MAC-CE信令)对UE配置一个固定的更新时间间隔T,或是一个更新时间间隔集合T*;更新时间间隔集合T*中包括N-1个不同的更新时间间隔;其中,更新 时间间隔指UE更新当前空间关系信息与下一次更新空间关系信息之间的时间间隔;UE被激活或指示M个空间关系信息集合中的1个空间关系信息集合(0≤n≤N-1);UE从被指示的指定空间关系信息集合中的第1个空间关系信息开始依次更新下行信号或信道(包括但不限于PUCCH,PUSCH,SRS)的空间关系信息,其中每次更新空间关系信息之间的时间间隔按照所配置的固定更新时间间隔T取得,或是按照所配置的更新时间间隔集合T*中的更新时间间隔值与顺序取得。
示例性地,基站通过RRC信令配置2个空间关系信息集合A1和A2,其中,A1=[SpecialrelationInfo0,SpecialrelationInfo1,SpecialrelationInfo2],A2=[SpecialrelationInfo1,SpecialrelationInfo2,SpecialrelationInfo3],再通过MAC-CE信令配置一个更新间隔集合T*=[1,2],单位为时隙;通过一个MAC-CE信令,UE被激活的空间关系信息集合为A2;UE接收了上述信息后,按照A2中空间关系信息的顺序,将当前发送的PUCCH的空间关系信息更新为空间关系信息集合中的第1个空间关系信息,即SpecialrelationInfo1,经过1个时隙,UE自动将当前发送的PUCCH的空间关系信息更新为SpecialrelationInfo2,再经过2个时隙,UE自动将当前发送的PUCCH的空间关系信息更新为SpecialrelationInfo3。
在一实施例中,在下行信道和上行信道满足信道互易性的情况下,方法,还包括:对PDSCH配置空间参数,空间参数至少关联以下配置信息:源参考信号,源参考信号为目标下行信号或目标下行信道所对应的第一QCL类型的参考信号。其中,空间参数可以为TCI状态。
在一实施例中,基站为PDSCH配置TCI状态,TCI状态指基站为UE接收目标下行信号或目标下行信道配置的TCI状态,TCI状态至少关联以下配置信息:源参考信号;其中,源参考信号指为目标下行信号或目标下行信道提供第一QCL类型(如QCL-Type D)的源参考信号,表示PDSCH与源参考信号关于QCL-Type D满足准共址关系。在下行信道和上行信道满足信道互易性的情况下,UE可以根据源参考信号来确定上行信号或上行信道的空间关系信息中的参考信号,即,两个参考信号具有相同的空间滤波器。
图4是本申请实施例提供的又一种指示方法的流程图,本实施例可以由UE执行。
如图4所示,本实施例中的方法包括S320-S340。
S320、接收基站传输的SRI信息。
SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与 所述SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:PUSCH,PUSCH的多次重复传输中的一次传输。
S340、按照SRI信息指示的SRS资源组进行PUSCH传输。
在实施例中,基站对UE配置SRI信息,并将SRI信息传输至UE,在UE接收到SRI信息之后,可以按照SRI信息指示的SRS资源组中所包括的SRS资源进行PUSCH传输。
图5是本申请实施例提供的再一种指示方法的流程图,本实施例可以由UE执行。
如图5所示,本实施例中的方法包括S420-S440。
S420、接收基站配置的空间参数信息集合。
空间参数信息集合包括TCI状态集合或空间关系信息集合。
S440、根据空间参数信息集合自动更新不同传输时间的物理信道或物理信号传输的空间参数。
在实施例中,基站对UE配置空间参数信息集合,以使UE可根据空间参数信息集合自动更新不同传输时间的物理信道或物理信号传输的空间参数。其中,物理信道包括以下至少之一:PDSCH、PUSCH、PDCCH、PUCCH;和/或,物理信号包括以下至少之一:SRS、CSI-RS。空间参数信息集合包括TCI状态集合或空间关系信息集合。在一实施例中,在空间参数信息集合包括TCI状态集合的情况下,UE自动更新不同传输时间的物理信道或物理信号传输的TCI状态;在一实施例中,在空间参数信息集合包括空间关系信息集合的情况下,UE自动更新不同传输时间的物理信道或物理信号传输的空间关系信息。
在一实施例中,在下行信道和上行信道满足信道互易性的情况下,方法,还包括:
接收基站配置的空间参数,空间参数至少关联以下配置信息:源参考信号,源参考信号为目标下行信号或目标下行信道所对应的第一QCL类型的参考信号;根据源参考信号确定第一参考信号,上行信道或上行信号与第一参考信号的空间参数信息相同。
在实施例中,在下行信道和上行信道满足信号互易性的情况下,基站为PDSCH配置空间参数(比如,TCI状态),并且,空间参数至少关联源参考信号,以使UE根据源参考信号确定第一参考信号。其中,上行信道或上行信号与第一参考信号的空间参数信息相同,即空间滤波器相同。其中,空间参数信息至少包括以下之一:发送波束信息,发送波束组信息,预编码矩阵信息,传输 层信息,空间关系信息,空间滤波器信息。在实施例中,上行信道或上行信号与第一参考信号的至少一个空间参数信息相同,比如,上行信道或上行信号与第一参考信号的发送波束信息相同,与发送波束组信息,预编码矩阵信息,传输层信息,空间关系信息,空间滤波器信息中的一个或多个相同。
图6是本申请实施例提供的一种指示装置的结构框图。如图6所示,本实施例提供的指示装置包括:第一传输模块520。
第一传输模块520,设置为传输探测参考信号SRS资源指示SRI信息,SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:PUSCH,PUSCH的多次重复传输中的一次传输。
本实施例提供的指示装置设置为实现图1所示实施例的指示方法,本实施例提供的指示装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,上行信息元素集合的空间参数信息与SRS资源组的空间参数信息相对应,包括:第i个上行信息元素集合的空间参数信息与第i个SRS资源组的空间参数信息相对应,i=1,…,K。
在一实施例中,SRI信息包括以下之一:SRI索引值,SRI索引值与专用解调参考信号DMRS索引值的联合信息。
在一实施例中,SRI信息用于指示K个SRS资源组,包括如下之一:
下行控制信息DCI中的SRI比特域中SRI索引值用于指示第i个上行信息元素集合对应的SRS资源组;DCI中的SRI比特域中SRI索引值用于指示第i个SRS资源组对应的第i个上行信息元素集合,i=1,…,K。
在一实施例中,SRS资源组满足如下特征中的至少之一:
不同上行信息元素集合对应于不同SRS资源组;SRS资源组与如下信息之一之间有关联:空间关系信息分组,SRS资源序号分组。
在一实施例中,SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应,包括如下至少之一:SRI索引值用于指示第一上行信息元素集合所对应的SRS资源组,第二上行信息元素集合所对应的SRS资源组根据如下信息之一获取:除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外的索引ID最大的SRS资源,除SRI索引值指示的第一上行信息元素集合所对应的SRS资源之外的索引ID最小的SRS资源,其中,第一上行信息元素集合和第二上行信息元素集合属于K个上行信息元素集合,K为大于或等于1的整数。
在一实施例中,SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与SRS资源组的空间参数信息相对应,包括如下至少之一:SRI索引值指示第一上行信息元素集合所对应的SRS资源,DMRS索引值指示第二上行信息元素集合所对应的SRS资源,其中,第一上行信息元素集合和第二上行信息元素集合属于K个上行信息元素集合。
在一实施例中,采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源,包括:
采用DMRS索引值指示第二上行信息元素集合所对应的SRS资源相对于采用SRI索引值指示的SRS资源的索引ID偏移量;或者,DMRS索引值为第二上行信息元素集合所对应的SRS资源的索引ID。
在一实施例中,空间参数信息包括以下至少之一:发送波束信息,发送波束组信息,预编码矩阵信息,传输层信息,空间关系信息,空间滤波器信息。
在一实施例中,K个上行信息元素集合包括第一上行信息元素集合和第二上行信息元素集合中的至少一个;第一上行信息元素集合包括如下之一:PUSCH传输指示值小于或等于预设阈值的PUSCH传输;PUSCH传输指示值为奇数传输指示值的PUSCH传输,预设阈值为PUSCH传输指示值总个数的一半;第二上行信息元素集合包括如下之一:PUSCH传输指示值大于预设阈值的PUSCH传输;PUSCH传输指示值为偶数传输指示值的PUSCH传输,其中,传输指示值包括下述之一:传输次数,时间单元索引。
图7是本申请实施例提供的另一种指示装置的结构框图,本实施例可由UE执行。如图7所示,本实施例提供的指示装置包括:第一配置模块620。
第一配置模块620,设置为配置空间参数信息集合,空间参数信息集合用于自动更新不同传输时间的物理信道或物理信号传输的空间参数;其中,空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合。
本实施例提供的指示装置设置为实现图3所示实施例的指示方法,本实施例提供的指示装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,根据下述信息至少之一确定物理信道和/或物理信号的空间参数:物理信道和/或物理信号所在的时间单元索引,空间参数和时间单元之间的映射关系,其中空间参数包括如下之一:准共址参考信号信息,空间关系信息,空间滤波器信息。
在一实施例中,空间参数信息集合用于自动更新不同传输时间的物理信道或物理信号传输的空间参数,包括:空间参数信息集合用于触发UE根据起始位置、空间参数和时间单元之间的映射关系依次更新物理信道或物理信号传输的 空间参数。
在一实施例中,物理信道包括以下至少之一:物理下行共享信道PDSCH、PUSCH、物理下行控制信道PDCCH、物理上行控制信道PUCCH;和/或,物理信号包括以下至少之一:SRS、信道状态信息参考信号CSI-RS。
在一实施例中,通过第一高层信令配置时间单元,时间单元用于确定空间参数信息集合中空间参数的更新间隔;其中,时间单元包括:固定时间单元,或时间单元集合。
在一实施例中,通过第二高层信令配置一个起始位置,起始位置用于确定空间参数信息集合中空间参数的更新初始位置。
在一实施例中,通过第三高层信令配置时间单元和至少两个空间参数信息集合,时间单元包括:固定时间单元,或时间单元集合。
在一实施例中,通过第四高层信令选择至少两个空间参数集合中的一个空间参数集合,并在所选择的空间参数集合中根据时间单元和起始位置确定每个传输时间对应的空间参数。
在一实施例中,在下行信道和上行信道满足信道互易性的情况下,指示装置,还包括:
第二配置模块,设置为对PDSCH配置空间参数,空间参数至少关联以下配置信息:源参考信号,源参考信号为目标下行信号或目标下行信道所对应的第一准共址QCL类型的参考信号。
图8是本申请实施例提供的又一种指示装置的结构框图。如图8所示,本实施例提供的指示装置包括:第一接收模块720和第二传输模块740。
第一接收模块720,设置为接收基站传输的SRI信息,SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:PUSCH,PUSCH的多次重复传输中的一次传输。
第二传输模块740,设置为按照SRI信息指示的SRS资源组进行PUSCH传输。
本实施例提供的指示装置设置为实现图4所示实施例的指示方法,本实施例提供的指示装置实现原理和技术效果类似,此处不再赘述。
图9是本申请实施例提供的再一种指示装置的结构框图。如图9所示,本实施例提供的指示装置包括:第二接收模块820和更新模块840。
第二接收模块820,设置为接收基站配置的空间参数信息集合,空间参数信 息集合包括传输配置指示TCI状态集合或空间关系信息集合。
更新模块840,设置为根据空间参数信息集合自动更新不同传输时间的物理信道或物理信号传输的空间参数。
本实施例提供的指示装置设置为实现图5所示实施例的指示方法,本实施例提供的指示装置实现原理和技术效果类似,此处不再赘述。
图10是本申请实施例提供的一种设备的结构示意图。如图10所示,本申请提供的设备,包括:处理器910以及存储器920。该设备中处理器910的数量可以是一个或者多个,图10中以一个处理器910为例。该设备中存储器920的数量可以是一个或者多个,图10中以一个存储器920为例。该设备的处理器910以及存储器920可以通过总线或者其他方式连接,图10中以通过总线连接为例。在该实施例中,该设备为基站。
存储器920作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,指示装置中的传输模块)。存储器920可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器920可包括相对于处理器910远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
上述提供的设备可设置为执行上述任意实施例提供的应用于基站的指示方法,具备相应的功能和效果。
当设备为UE时,对应存储器920中存储的程序可以是本申请实施例所提供应用于UE的指示方法对应的程序指令/模块,处理器910通过运行存储在存储器920中的软件程序、指令以及模块,从而执行计算机设备的一种或多种功能应用以及数据处理,即实现上述方法实施例中应用于UE的指示方法。上述设备为UE时,可执行本申请任意实施例所提供的应用于UE的指示方法,且具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种指示方法,该方法应用于基站侧,该方法包括:传输探测参考信号SRS资源指示SRI信息,SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参 数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种指示方法,该方法应用于基站侧,该方法包括:配置空间参数信息集合,空间参数信息集合用于自动更新不同传输时间的物理信道或物理信号传输的空间参数;其中,空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种指示方法,该方法应用于UE侧,该方法包括:接收基站传输的SRI信息,SRI信息用于指示K个SRS资源组,上行信息元素集合的空间参数信息与所述SRS资源组的空间参数信息相对应,K为大于或等于1的整数,上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输;按照SRI信息指示的SRS资源组进行PUSCH传输。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种指示方法,该方法应用于UE侧,该方法包括:接收基站配置的空间参数信息集合,空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合;根据空间参数信息集合自动更新不同传输时间的物理信道或物理信号传输的空间参数。
术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本 地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (26)

  1. 一种指示方法,包括:
    传输探测参考信号SRS资源指示SRI信息,所述SRI信息用于指示K个SRS资源组,K个上行信息元素集合的空间参数信息与所述K个SRS资源组的空间参数信息一一对应,K为大于或等于1的整数;上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输。
  2. 根据权利要求1所述的方法,其中,所述K个上行信息元素集合的空间参数信息与所述K个SRS资源组的空间参数信息一一对应,包括:
    第i个上行信息元素集合的空间参数信息与第i个SRS资源组的空间参数信息相对应,i=1,…,K。
  3. 根据权利要求1所述的方法,其中,所述SRI信息包括以下之一:SRI索引值,SRI索引值与专用解调参考信号DMRS索引值的联合信息。
  4. 根据权利要求1所述的方法,其中,所述SRI信息用于指示K个SRS资源组,包括如下之一:
    下行控制信息DCI中的SRI比特域中SRI索引值用于指示第i个上行信息元素集合对应的SRS资源组;
    DCI中的SRI比特域中SRI索引值用于指示所述K个上行信息元素集合对应的K个SRS资源组;
    DCI中的SRI比特域中SRI索引值用于指示第i个SRS资源组对应的第i个上行信息元素集合;
    其中,i=1,…,K。
  5. 根据权利要求4所述的方法,其中,所述SRS资源组满足如下特征中的至少之一:
    不同上行信息元素集合对应于不同SRS资源组;
    所述SRS资源组与如下信息之一之间有关联:空间关系信息分组,SRS资源序号分组。
  6. 根据权利要求1所述的方法,其中,所述SRI信息用于指示K个SRS资源组,K个上行信息元素集合的空间参数信息与所述K个SRS资源组的空间参数信息一一对应,包括如下至少之一:
    SRI索引值用于指示第一上行信息元素集合所对应的SRS资源组;
    第二上行信息元素集合所对应的SRS资源组根据如下信息之一获取:除SRI索引值指示的第一上行信息元素集合所对应的SRS资源组中的SRS资源之外的 索引标识ID最大的SRS资源,除SRI索引值指示的第一上行信息元素集合所对应的SRS资源组中的SRS资源之外的索引ID最小的SRS资源;
    其中,所述第一上行信息元素集合和所述第二上行信息元素集合属于所述K个上行信息元素集合。
  7. 根据权利要求1所述的方法,其中,所述SRI信息用于指示K个SRS资源组,K个上行信息元素集合的空间参数信息与所述K个SRS资源组的空间参数信息一一对应,包括如下至少之一:
    SRI索引值指示第一上行信息元素集合所对应的SRS资源组;
    DMRS索引值指示第二上行信息元素集合所对应的SRS资源组;
    其中,所述第一上行信息元素集合和所述第二上行信息元素集合属于所述K个上行信息元素集合。
  8. 根据权利要求7所述的方法,其中,所述DMRS索引值指示所述第二上行信息元素集合所对应的SRS资源组,包括:
    采用所述DMRS索引值指示所述第二上行信息元素集合所对应的SRS资源组中的SRS资源相对于采用所述SRI索引值指示的SRS资源组中的SRS资源的索引ID偏移量;
    或者,所述DMRS索引值为所述第二上行信息元素集合所对应的SRS资源组中的SRS资源的索引ID。
  9. 根据权利要求1~8中任一项所述的方法,其中,所述空间参数信息包括以下至少之一:发送波束信息,发送波束组信息,预编码矩阵信息,传输层信息,空间关系信息,空间滤波器信息。
  10. 根据权利要求1~8中任一项所述的方法,其中,所述K个上行信息元素集合包括第一上行信息元素集合和第二上行信息元素集合中的至少一个;
    所述第一上行信息元素集合包括如下之一:PUSCH传输指示值小于或等于预设阈值的PUSCH传输;PUSCH传输指示值为奇数传输指示值的PUSCH传输,所述预设阈值为所述PUSCH传输指示值总个数的一半;
    所述第二上行信息元素集合包括如下之一:PUSCH传输指示值大于预设阈值的PUSCH传输;PUSCH传输指示值为偶数传输指示值的PUSCH传输;
    其中,所述传输指示值包括下述之一:传输次数,时间单元索引;每个时间单元索引对应一个时隙。
  11. 一种指示方法,包括:
    配置空间参数信息集合,所述空间参数信息集合用于更新不同传输时间的物理信道或物理信号传输的空间参数;其中,所述空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合。
  12. 根据权利要求11所述的方法,其中,根据下述信息中的至少之一确定物理信道和物理信号中的至少之一的空间参数:物理信道和物理信号中的至少之一所在的时间单元索引,空间参数和时间单元之间的映射关系,其中,所述空间参数包括如下之一:准共址参考信号信息,空间关系信息,空间滤波器信息。
  13. 根据权利要求12所述的方法,其中,所述空间参数信息集合用于更新不同传输时间的物理信道或物理信号传输的空间参数,包括:
    所述空间参数信息集合用于触发用户设备UE根据起始位置和所述空间参数和时间单元之间的映射关系依次更新物理信道或物理信号传输的空间参数。
  14. 根据权利要求11所述的方法,其中,通过第一高层信令配置时间单元,所述时间单元用于确定所述空间参数信息集合中空间参数的更新间隔;其中,所述时间单元包括:固定时间单元,或时间单元集合。
  15. 根据权利要求11所述的方法,其中,通过第二高层信令配置一个起始位置,所述起始位置用于确定所述空间参数信息集合中空间参数的更新初始位置。
  16. 根据权利要求11所述的方法,其中,通过第三高层信令配置时间单元和至少两个空间参数信息集合,所述时间单元包括:固定时间单元,或时间单元集合。
  17. 根据权利要求16所述的方法,其中,通过第四高层信令选择所述至少两个空间参数集合中的一个空间参数集合,并在所选择的空间参数集合中根据所述时间单元和起始位置确定每个传输时间对应的空间参数。
  18. 根据权利要求11所述的方法,其中,在下行信道和上行信道满足信道互易性的情况下,所述方法,还包括:
    对物理下行共享信道PDSCH配置空间参数,对PDSCH配置的空间参数关联以下配置信息:源参考信号,所述源参考信号为目标下行信号或目标下行信道所对应的第一准共址QCL类型的参考信号。
  19. 一种指示方法,包括:
    接收基站传输的资源指示SRI信息,所述SRI信息用于指示K个探测参考信号SRS资源组,K个上行信息元素集合的空间参数信息与所述K个SRS资源 组的空间参数信息一一对应,K为大于或等于1的整数,上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输;
    按照所述SRI信息指示的SRS资源组进行PUSCH传输。
  20. 一种指示方法,包括:
    接收基站配置的空间参数信息集合,所述空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合;
    根据所述空间参数信息集合更新不同传输时间的物理信道或物理信号传输的空间参数。
  21. 根据权利要求20所述的方法,其中,在下行信道和上行信道满足信道互易性的情况下,所述方法,还包括:
    接收基站配置的空间参数,所述空间参数关联以下配置信息:源参考信号,所述源参考信号为目标下行信号或目标下行信道所对应的第一准共址QCL类型的参考信号;
    根据所述源参考信号确定第一参考信号,所述上行信道或上行信号的空间参数信息与所述第一参考信号的空间参数信息相同。
  22. 一种指示装置,包括:
    第一传输模块,设置为传输探测参考信号SRS资源指示SRI信息,所述SRI信息用于指示K个SRS资源组,K个上行信息元素集合的空间参数信息与所述K个SRS资源组的空间参数信息一一对应,K为大于或等于1的整数;上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输。
  23. 一种指示装置,包括:
    第一配置模块,设置为配置空间参数信息集合,所述空间参数信息集合用于更新不同传输时间的物理信道或物理信号传输的空间参数;其中,所述空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合。
  24. 一种指示装置,包括:
    第一接收模块,设置为接收基站传输的资源指示SRI信息,所述SRI信息用于指示K个探测参考信号SRS资源组,K个上行信息元素集合的空间参数信息与所述K个SRS资源组的空间参数信息一一对应,K为大于或等于1的整数,上行信息元素包括如下之一:物理上行共享信道PUSCH,PUSCH的多次重复传输中的一次传输;
    第二传输模块,设置为按照所述SRI信息指示的SRS资源组进行PUSCH 传输。
  25. 一种指示装置,包括:
    第二接收模块,设置为接收基站配置的空间参数信息集合,所述空间参数信息集合包括传输配置指示TCI状态集合或空间关系信息集合;
    更新模块,设置为根据所述空间参数信息集合更新不同传输时间的物理信道或物理信号传输的空间参数。
  26. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-21中任一项所述的指示方法。
PCT/CN2020/111769 2019-09-03 2020-08-27 指示方法、装置和存储介质 WO2021043060A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20861481.8A EP4027726A4 (en) 2019-09-03 2020-08-27 INDICATION METHOD AND DEVICE, AND STORAGE MEDIUM
US17/753,473 US20220330221A1 (en) 2019-09-03 2020-08-27 Indication method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910829544.1 2019-09-03
CN201910829544.1A CN110536452A (zh) 2019-09-03 2019-09-03 一种指示方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2021043060A1 true WO2021043060A1 (zh) 2021-03-11

Family

ID=68666497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111769 WO2021043060A1 (zh) 2019-09-03 2020-08-27 指示方法、装置和存储介质

Country Status (4)

Country Link
US (1) US20220330221A1 (zh)
EP (1) EP4027726A4 (zh)
CN (1) CN110536452A (zh)
WO (1) WO2021043060A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536452A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种指示方法、装置和存储介质
US11588602B2 (en) * 2019-12-13 2023-02-21 Samsung Electronics Co., Ltd. Beam management and coverage enhancements for semi-persistent and configured grant transmissions
CA3166477A1 (en) * 2019-12-31 2021-05-20 Zte Corporation Systems and methods for uplink transmission
CN111342938A (zh) * 2019-12-31 2020-06-26 中兴通讯股份有限公司 物理信道传输方法、装置、节点和存储介质
CN111277391B (zh) * 2020-01-20 2022-11-18 展讯半导体(南京)有限公司 信息发送方法及装置、信息接收方法及装置
CN113259073B (zh) * 2020-02-07 2023-02-17 维沃移动通信有限公司 Pusch传输方法、pusch传输控制方法及相关设备
WO2021159522A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 一种数据传输的方法、设备、芯片及可读存储介质
CN113271681B (zh) * 2020-02-17 2023-04-07 维沃移动通信有限公司 Pusch传输方法、终端及网络设备
WO2021163936A1 (zh) * 2020-02-19 2021-08-26 北京小米移动软件有限公司 通信处理方法、装置及计算机存储介质
US11894952B2 (en) * 2020-03-19 2024-02-06 Acer Incorporated Device and method of handling an uplink transmission with sounding reference signals
EP4133854A4 (en) * 2020-04-10 2024-05-01 Fg Innovation Company Limited METHOD FOR PERFORMING NON-CODEBOOK-BASED PHYSICAL UPLINK SHARED CHANNEL TRANSMISSION AND RELATED DEVICE
CN113630224B (zh) * 2020-05-09 2023-06-23 展讯通信(上海)有限公司 波束指示方法及装置、计算机可读存储介质
EP4133844A4 (en) 2020-05-14 2024-01-10 Apple Inc. SPATIAL RELATIONSHIP AND PATH LOSS REFERENCE SIGNAL FOR MULTI-TRP OPERATION
EP4154584A4 (en) * 2020-09-09 2024-01-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR CONFIGURING STATUS OF TCI
CN114257358B (zh) * 2020-09-24 2024-06-11 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114337758A (zh) * 2020-09-30 2022-04-12 维沃移动通信有限公司 波束指示方法、装置、网络侧设备及终端
WO2022147714A1 (zh) * 2021-01-07 2022-07-14 Oppo广东移动通信有限公司 传输方法、终端设备、网络设备及通信系统
CN114765879A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 Pusch传输方法、装置、设备及存储介质
EP4250846A4 (en) * 2021-01-15 2024-01-17 Huawei Technologies Co., Ltd. DISPLAY METHOD, TERMINAL DEVICE AND RADIO ACCESS NETWORK DEVICE
WO2022183347A1 (zh) * 2021-03-01 2022-09-09 Oppo广东移动通信有限公司 一种pusch重复传输方法、终端设备及网络设备
US12004206B2 (en) * 2021-03-18 2024-06-04 Qualcomm Incorporated Application time for non-serving cell reference signal update
WO2023142120A1 (zh) * 2022-01-30 2023-08-03 Oppo广东移动通信有限公司 通信方法、装置、设备、芯片、存储介质、产品及程序
WO2023178482A1 (zh) * 2022-03-21 2023-09-28 Oppo广东移动通信有限公司 信息传输方法、终端设备和网络设备
WO2024065890A1 (zh) * 2022-09-30 2024-04-04 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN115905124B (zh) * 2022-11-03 2024-04-30 昆易电子科技(上海)有限公司 多类型数据文件的回放方法、装置、设备、介质
CN117693019B (zh) * 2024-02-01 2024-06-25 荣耀终端有限公司 一种上行数据传输方法及相关设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093480A (zh) * 2017-09-30 2018-05-29 中兴通讯股份有限公司 一种信号传输的方法及装置
CN108111283A (zh) * 2017-11-03 2018-06-01 中兴通讯股份有限公司 一种参考信号的传输方法及设备
WO2018117738A1 (en) * 2016-12-22 2018-06-28 Samsung Electronics Co., Ltd. Uplink mimo codebook for advanced wireless communication systems
CN109150269A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种信令接收方法及相关设备
CN109495879A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种资源配置方法、基站和终端
CN110149700A (zh) * 2018-02-11 2019-08-20 电信科学技术研究院有限公司 一种数据传输方法和设备
CN110536452A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种指示方法、装置和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615805B (zh) * 2018-01-19 2023-05-23 株式会社Ntt都科摩 无线通信系统中的用户装置
US10999036B2 (en) * 2018-02-14 2021-05-04 Electronics And Telecommunications Research Institute Method and apparatus for downlink communication in communication system
US10925116B2 (en) * 2018-06-26 2021-02-16 Apple Inc. Beam indication for semi-persistent and grant-free transmissions
US11057915B2 (en) * 2018-08-30 2021-07-06 Qualcomm Incorporated Candidate transmission configuration information states for slot aggregation
US10848222B2 (en) * 2018-09-28 2020-11-24 Qualcomm Incorporated Synchronizing timing for updating beam configuration information
WO2020163992A1 (en) * 2019-02-12 2020-08-20 Qualcomm Incorporated Dynamic physical uplink shared channel configuration
US11510192B2 (en) * 2019-05-02 2022-11-22 Qualcomm Incorporated Control channel resource grouping and spatial relation configuration
EP3918861A4 (en) * 2019-08-16 2022-03-30 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR TRANSMITTING UPLINK CONTROL INFORMATION IN A NETWORK COOPERATIVE COMMUNICATION

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117738A1 (en) * 2016-12-22 2018-06-28 Samsung Electronics Co., Ltd. Uplink mimo codebook for advanced wireless communication systems
CN109150269A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种信令接收方法及相关设备
CN109495879A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种资源配置方法、基站和终端
CN108093480A (zh) * 2017-09-30 2018-05-29 中兴通讯股份有限公司 一种信号传输的方法及装置
CN108111283A (zh) * 2017-11-03 2018-06-01 中兴通讯股份有限公司 一种参考信号的传输方法及设备
CN110149700A (zh) * 2018-02-11 2019-08-20 电信科学技术研究院有限公司 一种数据传输方法和设备
CN110536452A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种指示方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Antenna Selection for PUSCH", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804447, 20 April 2018 (2018-04-20), XP051413292 *

Also Published As

Publication number Publication date
US20220330221A1 (en) 2022-10-13
CN110536452A (zh) 2019-12-03
EP4027726A1 (en) 2022-07-13
EP4027726A4 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
WO2021043060A1 (zh) 指示方法、装置和存储介质
WO2021043058A1 (zh) 数据传输方法、装置、传输接收节点、终端及介质
WO2021043008A1 (zh) 信令信息的传输方法、装置、通信节点和存储介质
WO2019128873A1 (zh) 一种波束训练方法及相关设备
JP7033205B2 (ja) データ伝送方法、基地局および端末
WO2020155179A1 (zh) 传输信号的方法、终端设备和网络设备
CN107347005B (zh) 配置探测参考信号的方法和装置
KR20200125678A (ko) 제어 시그널링을 전송하고 수신하기 위한 방법들 및 장치들, 및 정보를 결정하기 위한 방법
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
JP2023510639A (ja) ワイヤレス通信ネットワークにおけるマルチ送受信ポイント通信用の物理アップリンク共有チャネルのための方法および装置
CN110719623B (zh) 配置方法和设备
KR102662713B1 (ko) 업링크 제어 정보(uci)의 송신
WO2022028616A1 (zh) 码本确定方法、装置、设备和存储介质
CN102859915A (zh) 传输上行链路信号的装置及其方法
WO2021023250A1 (zh) 功率控制方法、通信节点和存储介质
US11343807B2 (en) PUCCH transmission method, user equipment and apparatus
CN103703712A (zh) 配置信道状态信息参考信号的方法和基站
CN111092695B (zh) 重传次数确定方法、指示方法、装置、终端、通信节点及介质
WO2021032029A1 (zh) 侧行链路信道状态信息传输的方法和通信装置
KR102057137B1 (ko) 피드백 정보의 전송 및 제어 방법 및 장치
CN114585099A (zh) Pusch的调度传输方法、终端和网络侧设备
WO2023241500A1 (zh) 一种tci状态激活方法及装置
JP7027523B2 (ja) Pucch送信方法、ユーザー機器及び装置
WO2020228588A1 (zh) Pucch资源确定方法和通信设备
CN114375008A (zh) 配置授权的重复传输方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861481

Country of ref document: EP

Effective date: 20220404