WO2021043040A1 - 具有在线采样校验功能的电气系统及其校验方法 - Google Patents

具有在线采样校验功能的电气系统及其校验方法 Download PDF

Info

Publication number
WO2021043040A1
WO2021043040A1 PCT/CN2020/111252 CN2020111252W WO2021043040A1 WO 2021043040 A1 WO2021043040 A1 WO 2021043040A1 CN 2020111252 W CN2020111252 W CN 2020111252W WO 2021043040 A1 WO2021043040 A1 WO 2021043040A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas density
contact
density relay
gas
verification
Prior art date
Application number
PCT/CN2020/111252
Other languages
English (en)
French (fr)
Inventor
夏铁新
贺兵
常敏
郭正操
廖海明
金海勇
王恩林
Original Assignee
上海乐研电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海乐研电气有限公司 filed Critical 上海乐研电气有限公司
Priority to US17/640,776 priority Critical patent/US20220341993A1/en
Priority to EP20861073.3A priority patent/EP4027154A4/en
Publication of WO2021043040A1 publication Critical patent/WO2021043040A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/26Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/563Gas reservoirs comprising means for monitoring the density of the insulating gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • G01N2009/006Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis vibrating tube, tuning fork
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/26Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices

Definitions

  • the present invention relates to the field of electric power technology, in particular to an electrical system (or electrical equipment) with online sampling and verification functions applied to high-voltage and medium-voltage electrical equipment and a verification method thereof.
  • Gas density relay is generally used to monitor and control the density of insulating gas in high-voltage electrical equipment. It has a contact signal control circuit inside. The gas path of the gas density relay is connected to the gas chamber of the high-voltage electrical equipment. When a gas leak is detected, The contact action of the gas density relay generates a contact signal, and the contact signal control circuit sends an alarm or locks according to the contact signal, so as to realize the safe operation and protection of electrical equipment.
  • SF6 sulfur hexafluoride
  • SF6 gas can undergo hydrolysis reaction with water at a high temperature of 200°C or higher to generate active HF and SOF2, corrode insulating parts and metal parts, and generate a lot of heat, which will increase the pressure of the gas chamber. . 3) When the temperature drops, too much moisture may form condensation, which will significantly reduce the insulation strength of the surface of the insulator, or even flashover, causing serious harm. Therefore, the power grid operation regulations compulsorily stipulate that the density and water content of SF6 gas must be regularly tested before and during the operation of the equipment.
  • the purpose of the present invention is to provide an electrical system (or electrical equipment) with an online sampling and verification function and a verification method thereof, so as to solve the problems raised in the above technical background.
  • the first aspect of this application provides an electrical system with online sampling and verification functions, including:
  • the gas density relay is installed outside the gas chamber of the electrical equipment, or installed outside the gas chamber of the electrical equipment through a valve;
  • a valve the air inlet of which is connected to the gas chamber of the electrical equipment, and the air outlet of which is connected to the gas path of the gas density relay;
  • a pressure adjusting mechanism configured to adjust the pressure rise and fall of the gas path of the gas density relay so that the gas density relay generates a contact signal action ;
  • a gas density detection sensor which is in communication with the gas density relay
  • An online verification contact signal sampling unit connected to the gas density relay, and configured to sample the contact signal of the gas density relay at an ambient temperature
  • the intelligent control unit is respectively connected with the gas density detection sensor, the pressure adjusting mechanism, the valve and the online verification contact signal sampling unit, and is configured to control the closing or opening of the valve to complete the Control of the pressure regulating mechanism, collection of pressure value and temperature value, and/or gas density value collection, and detection of the contact signal action value and/or contact signal return value of the gas density relay;
  • the contact signal includes alarm and/or lockout.
  • the electrical equipment includes SF6 gas electrical equipment, SF6 mixed gas electrical equipment, environmentally friendly gas electrical equipment, or other insulated gas electrical equipment.
  • the electrical equipment includes GIS, GIL, PASS, circuit breakers, current transformers, voltage transformers, transformers, gas filling cabinets, and ring network cabinets.
  • the electrical system includes a bracket, and the air chamber of the electrical equipment is located above or below the bracket.
  • the bracket includes a vertical frame and a horizontal frame, and the gas density relay is located in the internal accommodation space of the horizontal frame.
  • the air inlet of the valve is connected to one end of a connecting pipe, and the other end of the connecting pipe extends along the horizontal frame to below the air chamber, and communicates with the air chamber from below the air chamber.
  • the gas density relay includes, but is not limited to, a bimetal-compensated gas density relay, a gas-compensated gas density relay, a bimetallic and gas-compensated hybrid gas density relay; a fully mechanical gas density relay, digital Gas density relay, mechanical and digital combined gas density relay; gas density relay with pointer display, digital gas density relay, gas density switch without display or indication; SF6 gas density relay, SF6 mixed gas density relay , N2 gas density relay.
  • the gas density detection sensor is arranged on the gas density relay; or, the pressure adjustment mechanism is arranged on the gas density relay; or, the gas density detection sensor, the online verification contact signal
  • the sampling unit and the intelligent control unit are arranged on the gas density relay.
  • the gas density relay and the gas density detection sensor are an integrated structure; preferably, the gas density relay and the gas density detection sensor are an integrated remote gas density relay.
  • the gas density detection sensor is an integrated structure.
  • the gas density detection sensor is a gas density transmitter with an integrated structure; preferably, the online verification contact signal sampling unit and the intelligent control unit are arranged on the gas density transmitter.
  • the gas density detection sensor includes at least one pressure sensor and at least one temperature sensor; or, the gas density detection sensor is a gas density transmitter composed of a pressure sensor and a temperature sensor; or, the gas density detection sensor It is a density detection sensor using quartz tuning fork technology.
  • the probe of the pressure sensor is installed on the gas path of the gas density relay.
  • the probe of the temperature sensor is installed on or outside the gas path of the gas density relay, or installed in the gas density relay, or installed outside the gas density relay.
  • the temperature sensor may be a thermocouple, a thermistor, or a semiconductor type; it may be a contact type or a non-contact type; it may be a thermal resistance or a thermocouple.
  • the pressure sensor includes, but is not limited to, a relative pressure sensor, and/or an absolute pressure sensor.
  • the pressure sensor may also be a diffused silicon pressure sensor, a MEMS pressure sensor, a chip pressure sensor, a coil induction pressure sensor (such as a pressure sensor with an induction coil attached to a Baden tube), a resistance pressure sensor (such as a Baden tube attached to a pressure sensor). Pressure sensor with sliding wire resistance); it can be an analog pressure sensor or a digital pressure sensor.
  • At least one of the temperature sensors is arranged near the temperature compensation element of the gas density relay, or arranged on the temperature compensation element, or integrated in the temperature compensation element.
  • at least one of the temperature sensors is arranged at one end of the pressure detector of the gas density relay close to the temperature compensation element; wherein, the pressure detector is a Baden tube or a bellows, and the temperature compensation element adopts temperature Compensation sheet or gas enclosed in the housing.
  • the intelligent control unit compares the ambient temperature value with the temperature value collected by the temperature sensor to complete the verification of the temperature sensor.
  • the valve communicates with the electrical equipment through a connector.
  • the valve is an electric valve and/or a solenoid valve. More preferably, the valve is a permanent magnet solenoid valve.
  • the valve is a piezoelectric valve, or a temperature-controlled valve, or a new-type valve made of smart memory materials that is opened or closed by electric heating.
  • the valve is closed or opened by bending or pinching the hose.
  • the valve is sealed in a cavity or housing.
  • valve and the pressure regulating mechanism are sealed in a cavity or housing.
  • pressure sensors are respectively provided on both sides of the gas path of the valve; or, pressure detectors are respectively provided on both sides of the gas path of the valve.
  • the pressure adjusting mechanism is sealed in a cavity or housing.
  • the pressure adjusting mechanism is a closed air chamber, and heating elements and/or cooling elements are arranged outside or inside the closed air chamber, and the heating elements are heated by the heating elements and/or passed through the air.
  • the cooling of the refrigeration element causes the temperature of the gas in the closed gas chamber to change, thereby completing the pressure rise and fall of the gas density relay.
  • the heating element and/or the cooling element are semiconductors.
  • the pressure adjusting mechanism further includes a heat-insulating member, and the heat-insulating member is arranged outside the airtight chamber.
  • the pressure adjustment mechanism is a cavity with one end open, and the other end of the cavity is connected to the gas path of the gas density relay; there is a piston in the cavity, and one end of the piston is connected with An adjustment rod, the outer end of the adjustment rod is connected to a driving part, the other end of the piston extends into the opening and is in sealing contact with the inner wall of the cavity, and the driving part drives the adjustment rod to drive The piston moves in the cavity.
  • the pressure adjusting mechanism is a closed air chamber, and a piston is arranged inside the closed air chamber, and the piston is in sealing contact with the inner wall of the closed air chamber, and the outside of the closed air chamber A driving part is provided, and the driving part pushes the piston to move in the cavity through electromagnetic force.
  • the pressure adjusting mechanism is an airbag with one end connected to a driving member, the airbag changes in volume under the driving of the driving member, and the airbag communicates with the gas density relay.
  • the pressure adjustment mechanism is a bellows, one end of the bellows is connected to the gas density relay, and the other end of the bellows is expanded and contracted under the drive of a driving component.
  • the driving component in the above-mentioned pressure adjusting mechanism includes, but is not limited to, one of magnetic force, motor (variable frequency motor or stepper motor), reciprocating motion mechanism, Carnot cycle mechanism, and pneumatic element.
  • the pressure regulating mechanism is a purge valve.
  • the pressure adjusting mechanism further includes a flow valve for controlling the release flow of the gas.
  • the air release valve is a solenoid valve or an electric valve, or other air release valves realized by electric or pneumatic means.
  • the air release valve releases the gas to the zero position
  • the intelligent control unit collects the current pressure value, performs comparison, and completes the zero calibration of the pressure sensor, and the intelligent control unit or background compares the results. Judgment, if the error is out of tolerance, an abnormal prompt will be issued: there is a problem with the pressure sensor.
  • the pressure regulating mechanism is a compressor.
  • the pressure adjusting mechanism is a pump. More preferably, the pump includes, but is not limited to, one of a pressure generating pump, a boosting pump, an electric air pump, and an electromagnetic air pump.
  • the online verification contact signal sampling unit and the intelligent control unit are arranged together.
  • the online verification contact signal sampling unit and the intelligent control unit are sealed in a cavity or shell.
  • the online verification contact signal sampling unit for sampling the contact signal of the gas density relay satisfies: the online verification contact signal sampling unit has at least two independent sets of sampling contacts, which can automatically perform automatic sampling on at least two contacts at the same time.
  • the contacts include, but are not limited to, alarm contact, alarm contact + lock contact, alarm contact + lock 1 contact + lock 2 contact, alarm contact + lock One of contact + overpressure contact.
  • the test voltage of the on-line verification contact signal sampling unit for the contact signal action value or the switching value of the gas density relay is not lower than 24V, that is, during verification, a test voltage is applied between the corresponding terminals of the contact signal.
  • the voltage is lower than 24V.
  • the contact of the gas density relay is a normally open density relay
  • the online check contact signal sampling unit includes a first connection circuit and a second connection circuit
  • the first connection circuit is connected to the gas density relay
  • the second connection circuit connects the contact of the gas density relay and the intelligent control unit; in the non-checking state, the second connection circuit is disconnected or isolated, and the second connection circuit is disconnected or isolated.
  • a connection circuit is closed; in the verification state, the online verification contact signal sampling unit cuts off the first connection circuit, communicates with the second connection circuit, and connects the contact of the gas density relay to the intelligent control unit Connected; or,
  • the contact of the gas density relay is a normally closed density relay
  • the online check contact signal sampling unit includes a first connection circuit and a second connection circuit
  • the first connection circuit connects the contact of the gas density relay with The contact signal control circuit
  • the second connection circuit connects the contact of the gas density relay and the intelligent control unit; in the non-checking state, the second connection circuit is disconnected or isolated, and the first connection circuit Closed;
  • the online verification contact signal sampling unit closes the contact signal control circuit, cuts off the connection between the contact of the gas density relay and the contact signal control circuit, connects the second connection circuit, and connects the The contact of the gas density relay is connected with the intelligent control unit.
  • the first connection circuit includes a first relay
  • the second connection circuit includes a second relay
  • the first relay is provided with at least one normally closed contact
  • the second relay is provided with at least one normally open contact.
  • Contact, the normally closed contact and the normally open contact maintain opposite switching states; the normally closed contact is connected in series in the contact signal control circuit, and the normally open contact is connected to the contact of the gas density relay;
  • the normally closed contact In the non-calibration state, the normally closed contact is closed, the normally open contact is opened, and the gas density relay monitors the output state of the contact in real time; in the verification state, the normally closed contact is opened, The normally open contact is closed, and the contact of the gas density relay is connected to the intelligent control unit through the normally open contact. For the normally closed density relay, the corresponding adjustment can be made.
  • first relay and the second relay may be two independent relays, or the same relay.
  • the online verification contact signal sampling unit is provided with a contact sampling circuit
  • the contact sampling circuit includes a photocoupler and a resistor
  • the photocoupler includes a light emitting diode and a photosensitive transistor
  • the light emitting diode and the The contacts of the gas density relay are connected in series to form a closed loop
  • the emitter of the phototransistor is grounded
  • the collector of the phototransistor is connected to the intelligent control unit, and the collector of the phototransistor is also connected to the power supply through the resistor ;
  • the closed loop When the contact is closed, the closed loop is energized, the light emitting diode emits light, the light turns on the photosensitive transistor, and the collector of the photosensitive transistor outputs a low level;
  • the closed loop is disconnected, the light-emitting diode does not emit light, the photosensitive triode is cut off, and the collector of the photosensitive triode outputs a high level.
  • the online verification contact signal sampling unit is provided with a contact sampling circuit, and the contact sampling circuit includes a first photocoupler and a second photocoupler;
  • the light-emitting diodes of the first photocoupler and the light-emitting diodes of the second photocoupler are connected in parallel or directly in parallel through current limiting resistors, and are connected in series with the contact of the gas density relay to form a closed loop after the parallel connection.
  • the connection directions of the light emitting diodes of a photocoupler and the second photocoupler are opposite;
  • the collector of the phototransistor of the first photocoupler and the collector of the phototransistor of the second photocoupler are both connected to the power supply through a voltage divider resistor, and the emitter of the phototransistor of the first photocoupler Connected with the emitter of the phototransistor of the second photocoupler to form an output terminal, the output terminal is connected with the intelligent control unit, and is grounded through a resistor;
  • the closed loop When the contact is closed, the closed loop is energized, the first photocoupler is turned on, the second photocoupler is turned off, and the emitter of the phototransistor of the first photocoupler outputs a high level; or, The first photocoupler is turned off, the second photocoupler is turned on, and the emitter of the phototransistor of the second photocoupler outputs a high level;
  • the closed loop When the contact is disconnected, the closed loop is de-energized, the first photocoupler and the second photocoupler are both cut off, and the photosensitive triodes of the first photocoupler and the second photocoupler The emitter outputs a low level.
  • the contact sampling circuit further includes a first Zener diode group and a second Zener diode group, the first Zener diode group and the second Zener diode group are connected in parallel on the contact signal control loop , And the connection directions of the first Zener diode group and the second Zener diode group are opposite; the first Zener diode group and the second Zener diode group are each composed of one, two or two The above Zener diodes are connected in series. Alternatively, diodes can be used instead of Zener diodes.
  • the first Zener diode group includes a first Zener diode and a second Zener diode connected in series, and the cathode of the first Zener diode is connected to the anode of the second Zener diode;
  • the two Zener diode groups include a third Zener diode and a fourth Zener diode connected in series, and the anode of the third Zener diode is connected to the cathode of the fourth Zener diode.
  • the online verification contact signal sampling unit is provided with a contact sampling circuit, and the contact sampling circuit includes a first Hall current sensor and a second Hall current sensor.
  • the first Hall current sensor, the The contacts of the second Hall current sensor and the gas density relay are connected in series to form a closed loop, and the contacts of the gas density relay are connected between the first Hall current sensor and the second Hall current sensor;
  • the output terminal of the first Hall current sensor and the output terminal of the second Hall current sensor are both connected to the intelligent control unit;
  • the closed loop When the contact is closed, the closed loop is energized, and current flows between the first Hall current sensor and the second Hall current sensor to generate an induced electric potential;
  • the online verification contact signal sampling unit is provided with a contact sampling circuit, and the contact sampling circuit includes: a first thyristor, a second thyristor, a third thyristor, and a fourth thyristor;
  • the first thyristor and the third thyristor are connected in series, and the second thyristor and the fourth thyristor are connected in series to form a series-parallel closed loop with the series circuit formed by the first thyristor and the third thyristor.
  • One end of the contact point of the gas density relay is electrically connected to the line between the first thyristor and the third thyristor through a line, and the other end is electrically connected to the second thyristor and the fourth thyristor through a line.
  • the lines are electrically connected.
  • the cathode of the first thyristor is connected to the intelligent control unit, the anode of the first thyristor is connected to the cathode of the third thyristor; the first thyristor is connected to the The control electrode of the third thyristor is connected to the intelligent control unit; the cathode of the second thyristor is connected to the intelligent control unit, and the anode of the second thyristor is connected to the fourth controllable unit.
  • the cathode of the silicon is connected; the control electrodes of the second thyristor and the fourth thyristor are connected with the intelligent control unit.
  • the intelligent control unit obtains the gas density value collected by the gas density detection sensor; or, the intelligent control unit obtains the pressure value and temperature value collected by the gas density detection sensor, and completes the on-line gas density of the gas density relay. monitor. That is, the on-line monitoring of the gas density of the monitored electrical equipment by the gas density relay is completed.
  • the intelligent control unit uses an average value method (average value method) to calculate the gas density value, and the average value method is: within a set time interval, set the collection frequency, and collect all the different time Perform average calculation processing on the N gas density values of a point to obtain the gas density value; or,
  • set the temperature interval step length calculate the average value of the density values corresponding to the N different temperature values collected in the entire temperature range to obtain the gas density value
  • N is a positive integer greater than or equal to 1.
  • the intelligent control unit obtains the gas density value collected by the gas density detection sensor when the gas density relay generates contact signal action or switching, and completes the online verification of the gas density relay; or,
  • the intelligent control unit obtains the pressure value and temperature value collected by the gas density detection sensor when the gas density relay generates contact signal action or switching, and converts it into a pressure value corresponding to 20°C according to the gas pressure-temperature characteristic, namely The gas density value completes the online verification of the gas density relay.
  • the gas density relay has a comparison density value output signal, and the comparison density value output signal is connected to the intelligent control unit; or, the gas density relay has a comparison pressure value output signal, which The output signal of the comparison pressure value is connected with the intelligent control unit.
  • the intelligent control unit collects the current gas density value, performs comparison, and completes the verification of the comparison density value of the gas density relay, and the intelligent control unit or The result is judged by background comparison, and if the error is out of tolerance, an abnormal prompt will be issued; or,
  • the intelligent control unit collects the current gas density value, performs comparison, and completes the mutual verification of the gas density relay and the gas density detection sensor, and the intelligent control unit or background comparison Judge the result, if the error is out of tolerance, give an abnormal prompt; or,
  • the intelligent control unit collects the current pressure value, performs comparison, and completes the mutual verification of the gas density relay and the gas density detection sensor, and the intelligent control unit or background comparison The result is judged, and if the error is out of tolerance, an abnormal prompt will be issued.
  • the electrical system with online sampling and verification function of the present application includes at least two gas density detection sensors, each gas density detection sensor includes a pressure sensor and a temperature sensor; each gas density detection sensor detects the gas density value Comparing, complete the mutual verification of each gas density detection sensor.
  • the gas density detection sensor includes at least two pressure sensors, and the pressure values collected by each pressure sensor are compared to complete the mutual verification of each pressure sensor.
  • the gas density detection sensor includes at least two temperature sensors, and the temperature values collected by each temperature sensor are compared to complete the mutual verification of each temperature sensor.
  • the gas density detection sensor includes at least one pressure sensor and at least one temperature sensor; the pressure value collected by each pressure sensor and the temperature value collected by each temperature sensor are randomly arranged and combined, and each combination is converted according to the gas pressure-temperature characteristic Become multiple pressure values corresponding to 20°C, that is, gas density values, compare each gas density value to complete the mutual verification of each pressure sensor and each temperature sensor; or, the pressure value collected by each pressure sensor and each temperature sensor The collected temperature value traverses all permutations and combinations, and converts each combination into multiple pressure values corresponding to 20°C according to the gas pressure-temperature characteristics, that is, gas density values.
  • the gas density values are compared to complete each pressure sensor, The mutual verification of each temperature sensor; or, compare the multiple gas density values obtained by each pressure sensor and each temperature sensor with the output signal of the gas density relay to compare the density value output signal to complete the gas density relay, each pressure sensor, Mutual verification of various temperature sensors.
  • the electrical system automatically generates a calibration report of the gas density relay, and if there is an abnormality, an alarm is issued and uploaded to the remote end or sent to a designated receiver.
  • the intelligent control unit is based on the embedded system embedded algorithm and control program of the microprocessor to automatically control the entire verification process, including all peripherals, logic, input and output.
  • the intelligent control unit is based on general-purpose computers, industrial computers, ARM chips, AI chips, CPUs, MCUs, FPGAs, PLCs, etc., industrial control motherboards, embedded main control boards and other embedded algorithms and control programs to automatically control the entire
  • the verification process includes all peripherals, logic, input and output.
  • the intelligent control unit is provided with an electrical interface, and the electrical interface completes test data storage, and/or test data export, and/or test data printing, and/or data communication with an upper computer, and/or input Analog quantity, digital quantity information.
  • the intelligent control unit further includes a communication module that realizes long-distance transmission of test data and/or verification results.
  • the communication mode of the communication module is wired communication or wireless communication.
  • the wired communication mode includes one or more of RS232 bus, RS485 bus, CAN-BUS bus, 4-20mA, Hart, IIC, SPI, Wire, coaxial cable, PLC power carrier, and cable.
  • the wireless communication method includes one of NB-IOT, 2G/3G/4G/5G, WIFI, Bluetooth, Lora, Lorawan, Zigbee, infrared, ultrasonic, acoustic wave, satellite, light wave, quantum communication, sonar, or Several kinds.
  • the intelligent control unit is further provided with a clock, and the clock is configured to periodically set the calibration time of the gas density relay, or record the test time, or record the event time.
  • control of the intelligent control unit is through on-site control and/or through background control.
  • the electrical system completes the online calibration of the gas density relay according to the settings or instructions of the background; or, according to the set calibration time of the gas density relay, completes the online calibration of the gas density relay. Test.
  • the circuit of the intelligent control unit includes an intelligent control unit protection circuit
  • the intelligent control unit protection circuit includes, but is not limited to, an anti-static interference circuit (such as ESD, EMI), an anti-surge circuit, an electric fast protection circuit, One or more of anti-radio frequency field interference circuit, anti-pulse group interference circuit, power supply short-circuit protection circuit, power supply reverse protection circuit, electric contact misconnection protection circuit, and charging protection circuit.
  • an anti-static interference circuit such as ESD, EMI
  • an anti-surge circuit such as ESD, EMI
  • an electric fast protection circuit such as ESD, EMI
  • the electrical system further includes a multi-way connector, and the gas density relay, the valve, and the pressure regulating mechanism are arranged on the multi-way connector; or the intelligent control unit is arranged on the multi-way connector .
  • the gas path of the gas density relay is connected to the first connector of the multi-way connector; the gas path of the pressure regulating mechanism is connected to the second connector of the multi-way connector, and the first connector is connected to The second joint is in communication, so that the gas path of the pressure adjusting mechanism is connected to the gas path of the gas density relay; the gas outlet of the valve is communicated with the third joint of the multi-way joint, and the first The three connectors are in communication with the first connector, so as to connect the gas outlet of the valve with the gas path of the pressure regulating mechanism and/or the gas path of the gas density relay.
  • the third joint of the multi-way joint is provided with a connection part for butting with the electrical equipment, and the valve is embedded in the connection part.
  • the housing of the gas density relay is provided with a connector, and the connector is fixed in the gas chamber of the electrical equipment; or, preferably, the housing of the gas density relay is fixed to the multi-way connector Above, the multi-way joint is fixed in the air chamber.
  • the gas density relay, the valve, and the pressure regulating mechanism are connected together by a connecting pipe.
  • the gas path of the pressure adjusting mechanism is connected to the gas path of the gas density relay through a first connecting pipe; the gas outlet of the valve is directly connected to the gas path of the gas density relay through a second connecting pipe. Or the air outlet of the valve is connected to the air circuit of the pressure regulating mechanism through a second connecting pipe, thereby connecting the valve with the air circuit of the gas density relay.
  • the electrical system further includes a self-sealing valve installed between the electrical device and the valve; or the valve is installed between the electrical device and the self-sealing valve.
  • the electrical system further includes an air supplement interface.
  • the supplemental gas interface is arranged on the pressure regulating mechanism; or, the supplemental gas interface is arranged on the electrical device; or, the supplemental gas interface is arranged on the multi-way connector; or , The supplemental gas interface is arranged on the self-sealing valve.
  • the electrical system can count the number of times of supplementary air; or the amount of supplementary air; or the time of supplementary air.
  • the electrical system can perform online air supplementation.
  • the electrical system can perform online gas drying.
  • the electrical system further includes: a display interface for human-computer interaction, the display interface is connected with the intelligent control unit, and displays the current verification data in real time, and/or supports data input. Specifically, it includes real-time online gas density value display, pressure value display, temperature value display, change trend analysis, historical data query, real-time alarm, etc.
  • the electrical system supports the input of basic information of the gas density relay, and the basic information includes, but is not limited to, one or more of the factory number, accuracy requirements, rated parameters, manufacturer, and operating position.
  • the electrical system further includes: a micro-water sensor, which is respectively connected to the gas density relay and the intelligent control unit.
  • the electrical system further includes: a gas circulation mechanism connected to the gas density relay and the intelligent control unit respectively, and the gas circulation mechanism includes a capillary tube, a sealed chamber, and a heating element , The gas is heated by the heating element to realize the gas flow, and the micro water value inside the gas is monitored on-line.
  • a gas circulation mechanism connected to the gas density relay and the intelligent control unit respectively, and the gas circulation mechanism includes a capillary tube, a sealed chamber, and a heating element , The gas is heated by the heating element to realize the gas flow, and the micro water value inside the gas is monitored on-line.
  • micro-water sensor can be installed in the sealed chamber, in the capillary tube, the capillary port, or outside the capillary of the gas circulation mechanism.
  • the electrical system further includes a decomposition product sensor, which is respectively connected to the gas density relay and the intelligent control unit.
  • the electrical system further includes a camera for monitoring.
  • the electrical system monitors the gas density value, or the density value, pressure value, or temperature value online; or, the electrical system remotely transmits the monitored gas density value, or the density value, pressure value, or temperature value.
  • the electrical system has a self-diagnostic function and can promptly notify abnormalities. For example, notices such as disconnection, short-circuit alarm, and sensor damage.
  • the electrical system has a safety protection function: when the gas density value or the pressure value is lower than the set value, the calibration is automatically stopped and a notification signal is issued.
  • the electrical system is provided with a heater and/or a radiator (for example, a fan), the heater is turned on when the temperature is lower than a set value, and the radiator (for example, a fan) is turned on when the temperature is higher than the set value .
  • a heater and/or a radiator for example, a fan
  • the heater is turned on when the temperature is lower than a set value
  • the radiator for example, a fan
  • the gas density relay further includes a contact resistance detection unit connected to the contact signal or directly connected to the signal generator in the gas density relay; the contact signal sampling unit is checked online Under the control of the gas density relay, the contact signal of the gas density relay is isolated from its control circuit.
  • the contact resistance detection unit can detect the gas density relay. The contact resistance value of the contact point.
  • the gas density relay further includes an insulation resistance detection unit connected to the contact signal or directly connected to the signal generator in the gas density relay; the contact signal sampling unit is checked online Under the control of the gas density relay, the contact signal of the gas density relay is isolated from its control circuit.
  • the insulation resistance detection unit can detect the gas density relay The insulation resistance value of the contact point, and then the insulation performance of the gas density relay.
  • the second aspect of this application provides a method for calibrating a gas density relay, including:
  • the gas density relay monitors the gas density value in the electrical equipment
  • the gas density relay is allowed to calibrate the gas density relay:
  • the pressure adjustment mechanism is driven by the intelligent control unit to slowly decrease the gas pressure, so that the gas density relay has a contact action.
  • the contact action is transmitted to the intelligent control unit through the online verification contact signal sampling unit.
  • the intelligent control unit is based on the pressure value when the contact is activated. Obtain the gas density value from the temperature value, or directly obtain the gas density value, detect the contact signal action value of the gas density relay, and complete the verification work of the contact signal action value of the gas density relay;
  • the intelligent control unit opens the valve.
  • a calibration method of a gas density relay includes:
  • the gas density relay monitors the gas density value in the electrical equipment, and the gas density relay monitors the gas density value in the electrical equipment online through the gas density detection sensor and the intelligent control unit;
  • the gas density relay is allowed to calibrate the gas density relay:
  • the online calibration contact signal sampling unit is adjusted to the calibration state through the intelligent control unit.
  • the online calibration contact signal sampling unit cuts off the contact signal control circuit of the gas density relay, and connects the contact of the gas density relay to the intelligent Control unit
  • the pressure adjustment mechanism is driven by the intelligent control unit to slowly decrease the gas pressure, so that the gas density relay has a contact action.
  • the contact action is transmitted to the intelligent control unit through the online verification contact signal sampling unit.
  • the intelligent control unit is based on the pressure value when the contact is activated. Obtain the gas density value from the temperature value, or directly obtain the gas density value, detect the contact signal action value of the gas density relay, and complete the verification work of the contact signal action value of the gas density relay;
  • the pressure adjustment mechanism is driven by the intelligent control unit to slowly increase the gas pressure, so that the contact reset of the gas density relay occurs.
  • the contact reset is transmitted to the intelligent control unit through the online calibration contact signal sampling unit.
  • the intelligent control unit is based on the pressure value when the contact is reset. Obtain the gas density value from the temperature value, or directly obtain the gas density value, detect the return value of the contact signal of the gas density relay, and complete the verification of the return value of the contact signal of the gas density relay;
  • the intelligent control unit opens the valve and adjusts the online verification contact signal sampling unit to the working state, and the contact signal control loop of the gas density relay resumes its normal working state.
  • the contact signal includes alarm and/or lockout.
  • the gas density detection sensor includes at least one pressure sensor and at least one temperature sensor; or, the gas density detection sensor is a gas density transmitter composed of a pressure sensor and a temperature sensor; or, the gas density detection sensor It is a density detection sensor using quartz tuning fork technology.
  • the gas density relay After the gas density relay completes the calibration, if there is an abnormality, it can automatically send an alarm and upload it to the remote end or send it to the designated receiver.
  • the verification method further includes: displaying the gas density value and the verification result on the spot, or displaying the gas density value and the verification result through the background.
  • the verification method further includes: controlling the intelligent control unit through on-site control and/or through background control.
  • This application provides an electrical system with online sampling and verification functions and a verification method thereof, which are used in high-voltage electrical equipment, including electrical equipment, gas density relays, gas density detection sensors, pressure regulating mechanisms, valves, and online verification contact signals Sampling unit and intelligent control unit.
  • the valve is closed by the intelligent control unit, so that the gas density relay is isolated from the electrical equipment on the gas circuit; the pressure adjustment mechanism is used to adjust the pressure rise and fall to make the gas density relay contact action, and the contact action is transmitted to the intelligent control through the online verification contact signal sampling unit Unit, the intelligent control unit detects the alarm and/or blocking contact signal action value and/or return value of the gas density relay according to the density value when the contact is activated, and the calibration of the gas density relay can be completed without the need for maintenance personnel to go to the site.
  • the reliability of the power grid is improved, work efficiency is improved, and operation and maintenance costs are reduced.
  • the entire calibration process of the technology of the present invention can realize zero emission of SF 6 gas, which meets the requirements of environmental protection regulations.
  • Figure 1 is a schematic structural diagram of an electrical system with online sampling and verification functions in the first embodiment
  • Figure 2 is a schematic diagram of a control circuit of the electrical system of the first embodiment
  • FIG. 3 is a schematic diagram of the structure of the electrical system with online sampling and verification function of the second embodiment
  • FIG. 4 is a schematic diagram of the structure of the electrical system with online sampling and verification function in the third embodiment
  • FIG. 5 is a schematic diagram of the structure of the electrical system with online sampling and verification function in the fourth embodiment
  • FIG. 6 is a schematic diagram of the structure of the electrical system with online sampling and verification function of the fifth embodiment
  • Figure 7 is a schematic structural diagram of an electrical system with online sampling and verification functions of the sixth embodiment
  • FIG. 8 is a schematic diagram of the structure of the electrical system with online sampling and verification function in the seventh embodiment
  • FIG. 9 is a schematic diagram of the structure of the electrical system with online sampling and verification function of the eighth embodiment.
  • FIG. 10 is a schematic diagram of the structure of the electrical system with online sampling and verification function in the ninth embodiment
  • FIG. 11 is a schematic diagram of the structure of the electrical system with online sampling and verification function of the tenth embodiment
  • Figure 12 is a schematic structural diagram of an electrical system with online sampling and verification functions in the eleventh embodiment
  • FIG. 13 is a schematic diagram of the structure of the electrical system with online sampling and verification function of the twelfth embodiment
  • 15 is a schematic diagram of the control circuit of the electrical system of the fourteenth embodiment.
  • 16 is a schematic diagram of the control circuit of the electrical system of the fifteenth embodiment.
  • Figure 17 is a schematic diagram of the control circuit of the electrical system of the sixteenth embodiment.
  • 19 is a schematic diagram of the control circuit of the electrical system of the eighteenth embodiment.
  • Fig. 20 is a schematic diagram of a gas circuit structure of an electrical system of the nineteenth embodiment.
  • the first embodiment of the present invention provides an electrical system with online sampling and verification function, including: electrical equipment 8, gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5. Online verification contact signal sampling unit 6, intelligent control unit 7, multi-way connector 9 and air supplement interface 10.
  • the gas density relay 1, the valve 4, the pressure sensor 2, the pressure adjusting mechanism 5 and the gas supplement interface 10 are arranged on the multi-way joint 9.
  • the electrical device 8 is provided with an air chamber inside, and the air chamber is filled with insulating gas.
  • the air inlet of the valve 4 is hermetically connected to the electrical equipment 8 and communicates with the air chamber of the electrical equipment 8, and the air outlet of the valve 4 is communicated with the gas density relay 1 through a multi-way joint 9;
  • the pressure sensor 2 is connected to the gas density relay 1 on the gas circuit through a multi-way connector 9;
  • the pressure regulating mechanism 5 is connected to the gas density relay 1 through a multi-way connector 9;
  • the online verification contact signal sampling unit 6 is respectively connected to the gas density relay 1
  • the valve 4, the pressure sensor 2, the temperature sensor 3 and the pressure adjustment mechanism 5 are respectively connected with the intelligent control unit 7;
  • the supplemental gas interface 10 is connected with the multi-way joint 9;
  • Fig. 2 is a schematic diagram of a control circuit of an electrical system with an online sampling and verification function according to the first embodiment of the present invention.
  • the online verification contact signal sampling unit 6 of this embodiment is provided with a protection circuit, including a first connection circuit and a second connection circuit.
  • the first connection circuit connects the contact of the gas density relay 1 and the contact signal.
  • the second connection circuit connects the contact of the gas density relay 1 and the intelligent control unit 7.
  • the test contact signal sampling unit 6 cuts off the first connection circuit, communicates with the second connection circuit, and connects the contact of the gas density relay 1 to the intelligent control unit 7.
  • the first connection circuit includes a first relay J1
  • the second connection circuit includes a second relay J2.
  • the first relay J1 is provided with normally closed contacts J11 and J12, the normally closed contacts J11 and J12 are connected in series in the contact signal control loop;
  • the second relay J2 is provided with normally open contacts J21 and J22, the J21 and J22 normally open contact connected to the gas density of the relay contact P J 1; also, the first relay and the second relay J2 J1 as one, that is, the relay having a normally open normally closed contacts.
  • the normally closed contacts J11 and J12 are closed, the normally open contacts J21 and J22 are disconnected, and the gas density relay monitors the output state of the contact P J in real time; in the verification state, The normally closed contacts J11 and J12 are disconnected, the normally open contacts J21 and J22 are closed, and the contact P J of the gas density relay 1 is connected to the intelligent control unit 7 through the normally open contacts J21 and J22.
  • the intelligent control unit 7 is mainly composed of a processor 71 (U1) and a power supply 72 (U2).
  • the processor 71 (U1) can be a general-purpose computer, an industrial computer, a CPU, a single-chip microcomputer, an ARM chip, an AI chip, an MCU, an FPGA, a PLC, etc., an industrial control board, an embedded main control board, etc., and other intelligent integrated circuits.
  • the power supply 72 (U2) can be a switching power supply, AC 220V, DC power supply, LDO, programmable power supply, solar energy, storage battery, rechargeable battery, battery, etc.
  • the pressure sensor 2 of the pressure acquisition P may be various pressure-sensitive components such as pressure sensors and pressure transmitters.
  • the temperature sensor 3 of the temperature collection T may be various temperature sensing elements such as a temperature sensor and a temperature transmitter.
  • the valve 4 can be a solenoid valve, an electric valve, a pneumatic valve, a ball valve, a needle valve, a regulating valve, a shut-off valve, and other components that can open and close the air circuit, and even control the flow.
  • the semi-automatic valve can also be a manual valve.
  • the pressure regulating mechanism 5 can be an electric regulating piston, an electric regulating cylinder, a booster pump, a gas cylinder pressurizing, a valve, a solenoid valve, a flow controller, and the like.
  • the semi-automatic pressure adjustment mechanism can also be manually adjusted.
  • the intelligent control unit 7 monitors the gas pressure P and temperature T of the electrical equipment according to the pressure sensor 2 and the temperature sensor 3, and obtains the corresponding 20°C pressure value P 20 (that is, the gas density value).
  • the intelligent control unit 7 controls the closing of the valve 4 so that the gas density relay 1 is on the gas path Separate from electrical equipment 8.
  • the intelligent control unit 7 controls to disconnect the contact signal control circuit of the gas density relay 1, that is, the normally closed contacts J11 and J12 of the first relay J1 of the online verification contact signal sampling unit 6 are disconnected, so that the online verification gas density relay 1 o'clock will not affect the safe operation of electrical equipment 8, nor will it send an alarm signal by mistake or block the control loop during calibration. Because before starting the calibration, the gas density value P 20 ⁇ the set safety calibration density value P S has been monitored and judged, the gas of the electrical equipment 8 is within the safe operation range, and the gas leakage is a slow process. , It is safe during verification.
  • the contact sampling circuit of the contact of the gas density relay 1 is connected through the intelligent control unit 7, that is, the normally open contacts J21 and J22 of the second relay J2 of the online check contact signal sampling unit 6 are closed, at this time the contact of the gas density relay 1 P J is connected to the intelligent control unit 7 through the normally open contacts J21 and J22 of the second relay J2.
  • the intelligent control unit 7 controls the driving part 52 of the pressure adjusting mechanism 5 (which can be realized by a motor (motor) and gears, and its methods are various and flexible), and then adjusts the volume change of the pressure adjusting mechanism 5 to make the gas of the gas density relay 1.
  • the pressure of the gas density relay 1 gradually decreases, causing the contact signal action of the gas density relay 1, and the contact signal action is uploaded to the intelligent control unit 7 through the second relay J2 of the online check contact signal sampling unit 6, and the intelligent control unit 7 measures when the contact signal acts according to the contact signal.
  • the obtained pressure value P and temperature T value are converted into the corresponding pressure value P20 (density value) at 20°C according to the gas characteristics, and the contact action value P D20 of the gas density relay can be detected.
  • the intelligent control unit 7 controls the motor (motor or variable frequency motor) of the pressure adjustment mechanism 5, and adjusts the pressure adjustment mechanism 5 so that The gas pressure of the gas density relay 1 gradually rises, and the return value of the alarm and/or blocking contact signal of the gas density relay 1 is tested. Repeat the calibration for many times (for example, 2 to 3 times), and then calculate the average value, thus completing the gas density relay calibration work.
  • the normally open contacts J21 and J22 of the second relay J2 of the online verification contact signal sampling unit 6 are disconnected.
  • the contact P J of the gas density relay 1 is normally open by disconnecting the contact of the second relay J2 J21 and J22 are not connected to the intelligent control unit 7.
  • the intelligent control unit 7 controls the valve 4 to open, so that the gas density relay 1 is connected to the electrical equipment 8 on the gas circuit.
  • the normally closed contacts J11 and J12 of the first relay J1 of the contact signal sampling unit 6 are closed, the contact signal control circuit of the gas density relay 1 works normally, and the gas density relay safely monitors the gas density of the electrical equipment 8 to make the electrical Device 8 works safely and reliably. In this way, it is convenient to complete the online verification work of the gas density relay, and at the same time, the safe operation of the electrical equipment 8 is not affected.
  • the electrical system When the gas density relay 1 completes the calibration work, the electrical system will make a judgment and can announce the test result.
  • the method is flexible, specifically: 1) The electrical system can be displayed on-site, such as display by indicator light, digital or LCD; 2) or upload through online remote communication, for example, it can be uploaded to the background of the online monitoring system; 3) Or upload via wireless, upload to a specific terminal, such as wireless upload mobile phone; 4) or upload through other means; 5) or upload abnormal results through the alarm signal line or dedicated signal line; 6) upload alone, or with other Signal bundle upload.
  • the electrical system After the electrical system completes the online verification work of the gas density relay 1, if there is an abnormality, it can automatically send an alarm, which can be uploaded to the remote end, or can be sent to a designated receiver, such as a mobile phone. Or, after completing the calibration work, if there is an abnormality, the intelligent control unit 7 can upload the remote (monitoring room, background monitoring platform, etc.) through the alarm contact signal of the gas density relay 1, and can also display the notice on the spot.
  • the simple version of online verification can upload the abnormal results of the verification through the alarm signal line. It can be uploaded according to a certain rule.
  • the communication method can be wired or wireless.
  • the wired communication method can be RS232, RS485, CAN-BUS and other industrial buses, optical fiber Ethernet, 4-20mA, Hart, IIC, SPI, Wire, coaxial cable, PLC power carrier, etc.
  • the wireless communication method can be 2G/3G/4G/5G, etc., WIFI, Bluetooth, Lora, Lorawan, Zigbee, infrared, ultrasonic, sound wave, satellite, light wave, quantum communication, sonar, sensor built-in 5G/NB-IOT communication module (such as NB-IOT) and so on.
  • NB-IOT sensor built-in 5G/NB-IOT communication module
  • the electrical system has a safety protection function, that is, when the value is lower than the set value, the electrical system automatically no longer performs online verification on the gas density relay 1, but sends out a notice signal. For example, when it is detected that the gas density value is less than the set value P S , the calibration is no longer; only when the gas density value ⁇ (alarm pressure value + 0.02MPa), online calibration can be performed.
  • the electrical system can be calibrated online according to the set time, or according to the set temperature (such as extreme high temperature, high temperature, extreme low temperature, low temperature, normal temperature, 20 degrees, etc.).
  • the error judgment requirements are different.
  • the accuracy requirement of the gas density relay can be 1.0 or 1.6.
  • the accuracy requirement of the gas density relay can be 1.0 or 1.6.
  • the accuracy requirement of the gas density relay can be 1.0 or 1.6.
  • the accuracy requirement of the gas density relay can be 1.0 or 1.6.
  • high temperature can be level 2.5.
  • it can be implemented in accordance with temperature requirements and related standards. For example, in accordance with the 4.8 temperature compensation performance regulations in DL/T 259 "Sulfur hexafluoride Gas Density Relay Calibration Regulations", each temperature value corresponds to the accuracy requirements.
  • the electrical system can compare the error performance of the gas density relay 1 at different temperatures and time periods. That is, the comparison in different periods and within the same temperature range to determine the performance of the gas density relay 1 and the electrical equipment 8 has the comparison of each period of history, and the comparison of history and the present.
  • the electrical equipment can be repeatedly checked multiple times (for example, 2 to 3 times), and the average value is calculated based on the result of each check.
  • the gas density relay 1 can be checked online at any time.
  • gas density relay 1 including: bimetallic compensation gas density relay, gas compensation gas density relay, or bimetallic and gas compensation hybrid gas density relay; fully mechanical gas density relay, digital gas density relay Relay, mechanical and digital combined gas density relay; density relay with indicator (density relay with pointer display, density relay with digital display, density relay with liquid crystal display), density relay without indicator (ie density switch); SF6 gas density relay, SF6 mixed gas density relay, N2 gas density relay, other gas density relays, etc.
  • the types of pressure sensors 2 include: absolute pressure sensors, relative pressure sensors, or absolute pressure sensors and relative pressure sensors, and the number can be several.
  • the pressure sensor can be in the form of a diffused silicon pressure sensor, MEMS pressure sensor, chip pressure sensor, coil induction pressure sensor (such as a pressure measurement sensor with an induction coil in a Baden tube), a resistance pressure sensor (such as a slip wire resistance with a Baden tube)
  • the pressure measurement sensor can be an analog pressure sensor or a digital pressure sensor.
  • Pressure collection is a variety of pressure-sensitive components such as pressure sensors and pressure transmitters, such as diffused silicon type, sapphire type, piezoelectric type, strain gauge type (resistance strain gauge type, ceramic strain gauge type).
  • the temperature sensor 3 may be a thermocouple, a thermistor, or a semiconductor type; it may be a contact type or a non-contact type; it may be a thermal resistance or a thermocouple.
  • temperature collection can use various temperature sensing elements such as temperature sensors and temperature transmitters.
  • valve 4 can adopt a variety of transmission methods, such as manual, electric, hydraulic, pneumatic, turbine, electromagnetic, electromagnetic hydraulic, electro-hydraulic, pneumatic-hydraulic, spur gear, bevel gear drive, etc.; Under the action of pressure, temperature or other forms of sensing signals, it will act according to the predetermined requirements, or simply open or close without relying on the sensing signal.
  • the valve relies on the drive or automatic mechanism to make the opening and closing parts lift, slide, and rotate. Pendulum or rotary motion, thereby changing the size of the flow channel area to achieve its control function.
  • the valve 4 can be an automatic valve, a power driven valve, and a manual valve.
  • the automatic valve may include: electromagnetic drive, electromagnetic-hydraulic drive, electro-hydraulic drive, turbine drive, spur gear drive, bevel gear drive, pneumatic drive, hydraulic drive, gas-hydraulic drive, electric drive, and motor (motor) drive.
  • the valve 4 can be automatic, manual, or semi-automatic. The verification process can be completed automatically or semi-automatically through manual cooperation.
  • the valve 4 is directly or indirectly connected to the electrical equipment 8 through a self-sealing valve, a manual valve, or a valve that is not disassembled, and is connected integrally or separately.
  • the valve 4 can be a normally open type or a normally closed type as required, and can be a one-way type or a two-way type.
  • the air circuit can be opened or closed by the electric control valve, and the electric control valve can be solenoid valve, electric control ball valve, electric valve, electric control proportional valve and so on.
  • the pressure adjusting mechanism 5 of this embodiment is a cavity with one end open.
  • the cavity has a piston 51, the piston 51 is provided with a sealing ring 510, and one end of the piston 51 is connected with an adjusting rod.
  • the outer end is connected to a driving part 52.
  • the other end of the piston 51 extends into the opening and is in contact with the inner wall of the cavity.
  • the driving part 52 drives the adjusting rod to drive the piston 51 to move there. Said to move inside the cavity.
  • the driving component 52 includes, but is not limited to, one of a magnetic force, a motor (variable frequency motor or a stepping motor), a reciprocating motion mechanism, a Carnot cycle mechanism, and a pneumatic element.
  • the online verification contact signal sampling unit 6 mainly completes the contact signal sampling of the gas density relay 1. That is, the basic requirements or functions of the online calibration contact signal sampling unit 6 are: 1) During calibration, the safe operation of electrical equipment will not be affected, that is, when the contact signal of the gas density relay 1 is activated during calibration, it will not affect Safe operation of electrical equipment; 2) The contact signal control circuit of the gas density relay 1 does not affect the performance of the gas density relay, especially the performance of the intelligent control unit 7, and will not damage the gas density relay or affect the test work.
  • the basic requirement or function of the intelligent control unit 7 is: the intelligent control unit 7 completes the control of the valve 4, the control of the pressure adjustment mechanism 5, and the signal collection.
  • the density value P D20 when the contact signal of the gas density relay 1 is activated can be directly detected, and the verification work of the gas density relay 1 can be completed.
  • the intelligent control unit 7 can also realize: test data storage; and/or test data export; and/or test data can be printed; and/or can communicate with the host computer; and/or can input analog and digital quantities information.
  • the intelligent control unit 7 may also include a communication module, which realizes remote transmission of test data and/or verification results and other information through the communication module; when the rated pressure value of the gas density relay 1 outputs a signal, the intelligent control unit 7 simultaneously collects the current Complete the calibration of the rated pressure value of the gas density relay 1.
  • Electrical equipment including SF6 gas electrical equipment, SF6 mixed gas electrical equipment, environmentally friendly gas electrical equipment, or other insulated gas electrical equipment.
  • electrical equipment includes GIS, GIL, PASS, circuit breakers, current transformers, voltage transformers, transformers, gas filling cabinets, ring network cabinets, and so on.
  • the electrical system has pressure and temperature measurement and software conversion functions.
  • the alarm and/or blocking contact action value and/or return value of the gas density relay 1 can be detected online.
  • the return value of the alarm and/or blocking contact signal can also be tested without testing.
  • the electrical system When the electrical system completes the calibration of the gas density relay, it will automatically compare and judge each other. If the error is large, it will give an abnormal prompt: there is a problem with the gas density relay or the pressure sensor or the temperature sensor. That is to say, the electrical system can complete the mutual calibration function of the gas density relay and the pressure sensor, temperature sensor, or density transmitter, and has the ability of artificial intelligence calibration; after completing the calibration work, it can automatically generate a calibration report.
  • the specific method can be flexible; with real-time online gas Data display such as density value, pressure value, temperature value, change trend analysis, historical data query, real-time alarm and other functions; can monitor gas density value, or gas density value, pressure value, temperature value online; have self-diagnosis function, can check Announce abnormalities in time, such as disconnection, short circuit alarm, sensor damage, etc.; the error performance of the electrical system can be compared under different temperatures and different time periods. That is, comparisons in different periods and within the same temperature range are used to determine the performance of the electrical system.
  • the gas density value of the electrical equipment 8 itself, the gas density relay 1, the pressure sensor 2, and the temperature sensor 3 can be judged, analyzed and compared for normal and abnormal; it also contains an analysis system (expert management analysis system) for gas density monitoring,
  • the gas density relay and monitoring components perform detection, analysis, and judgment to know where the problem is; it can also monitor the state of the contact signal of the gas density relay 1, and remotely transmit its state.
  • the contact signal state of the gas density relay 1 can be open or closed, thereby adding a layer of monitoring and improving reliability; it can also detect, or detect and determine the temperature compensation performance of the gas density relay 1; It can also detect, or detect and determine the contact resistance of the gas density relay 1; it has data analysis and data processing functions, and can perform corresponding fault diagnosis and prediction on the electrical equipment 8.
  • test data of pressure sensor 2, temperature sensor 3, and gas density relay 1 are consistent and normal, it can indicate that the electrical system is normal. It is not necessary to calibrate the gas density relay or calibrate other devices. It can be free of calibration for the whole life. Unless the test data of the pressure sensor 2, the temperature sensor 3, and the gas density relay 1 of a certain electrical equipment in the substation are inconsistent with each other or abnormal, the maintenance personnel will be arranged to deal with it. For consistent and normal conditions, there is no need to perform verification. In this way, reliability is greatly improved, work efficiency is improved, and operation and maintenance costs are reduced.
  • the second embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Inspection contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary gas interface 10, self-sealing valve 11.
  • gas density relay 1 pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Inspection contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary gas interface 10, self-sealing valve 11.
  • One end of the self-sealing valve 11 is hermetically connected to the electrical equipment 8, and the other end of the self-sealing valve 11 is connected to the valve 4; the air inlet of the valve 4 is hermetically connected to the self-sealing valve 11, the valve 4 The air outlet is connected to the multi-way connector 9.
  • the gas density relay 1 is installed on the multi-way connector 9; the pressure sensor 2 and the temperature sensor 3 are installed on the gas density relay 1, and the pressure sensor 2 is connected to the gas density relay 1 on the gas path; the pressure regulating mechanism 5 is installed on the
  • the connection joint 9 is connected with the gas path of the gas density relay 1; the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged together.
  • the pressure sensor 2, the temperature sensor 3, the valve 4 and the pressure adjusting mechanism 5 are respectively connected with the intelligent control unit 7.
  • the supplemental gas interface 10 is in communication with the multi-way connector 9.
  • the pressure adjusting mechanism 5 of this embodiment is mainly composed of an airbag 53 and a driving component 52.
  • the pressure adjusting mechanism 5 causes the driving component 52 to push the airbag 53 to change the volume, thereby completing the lifting and lowering of the pressure.
  • the pressure is adjusted by the pressure adjustment mechanism 5 to make the gas density relay 1 contact action.
  • the contact action is transmitted to the intelligent control unit 7 through the online check contact signal sampling unit 6.
  • the intelligent control unit 7 is based on the contact action of the gas density relay 1
  • the pressure value and temperature value are converted into the corresponding density value, and the alarm and/or blocking contact action value and/or return value of the gas density relay 1 are detected, thereby completing the calibration work of the gas density relay 1.
  • the third embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, electric valve 4, pressure adjustment mechanism 5, online Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary gas interface 10 and valve 12.
  • gas density relay 1 is installed on the multi-way connector 9; the pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged together.
  • the pressure adjusting mechanism 5 is installed on the multi-way connector 9, and the pressure sensor 2 is connected to the gas density relay 1 on the gas path through the multi-way connector 9; the supplemental gas connector 10 is arranged on the pressure adjusting mechanism 5.
  • the pressure sensor 2, the temperature sensor 3, the valve 4, and the pressure adjustment mechanism 5 are respectively connected to the intelligent control unit 7.
  • the difference from the first embodiment is that the pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged together.
  • the fourth embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary gas interface 10 and self-sealing valve 11.
  • gas density relay 1 pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary gas interface 10 and self-sealing valve 11.
  • One end of the self-sealing valve 11 is hermetically connected to the electrical equipment 8, and the other end of the self-sealing valve 11 is connected to the air inlet of the valve 4; the air outlet of the valve 4 is connected to the gas density relay 1, the pressure sensor 2, and the pressure through a multi-way joint 9
  • the adjusting mechanism 5 and the air supplement interface 10 are connected on the air path.
  • the pressure sensor 2 and the temperature sensor 3 are set together to form a gas density transmitter to directly obtain the gas density value, pressure value, and temperature value; the pressure regulating mechanism 5 is connected to the gas density relay 1 through the multi-way connector 9; online calibration
  • the inspection contact signal sampling unit 6 and the intelligent control unit 7 are arranged together.
  • the pressure sensor 2 and the temperature sensor 3 are directly or indirectly connected to the intelligent control unit 7; the valve 4 is connected to the intelligent control unit 7; the pressure adjustment mechanism 5 is connected to the intelligent control unit 7.
  • the pressure adjustment mechanism 5 of this embodiment is mainly composed of a bellows 54 and a driving part 52.
  • the bellows 54 is hermetically connected with the gas density relay 1 to form a reliable sealed cavity.
  • the pressure adjusting mechanism 5 causes the drive component 52 to push the bellows 54 to change in volume, and the sealed cavity to change in volume, thereby completing the pressure rise and fall.
  • the pressure sensor 2 and the temperature sensor 3 are set together to form a gas density transmitter, which directly obtains the density value, pressure value, and temperature value of the gas.
  • the pressure is adjusted by the pressure adjustment mechanism 5 to make the gas density relay 1 contact action.
  • the contact action is transmitted to the intelligent control unit 7 through the online verification contact signal sampling unit 6.
  • the intelligent control unit 7 is based on the contact action of the gas density relay 1 The density value, even the pressure value and the temperature value, the alarm and/or blocking contact action value and/or return value of the gas density relay 1 are detected, and the calibration of the gas density relay 1 is completed. Or, only the alarm and/or blocking contact action value of the gas density relay 1 is detected, and the calibration of the gas density relay 1 is completed.
  • the fifth embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, air supplement interface 10.
  • gas density relay 1 pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration
  • Check contact signal sampling unit 6 intelligent control unit 7, electrical equipment 8, multi-way connector 9, air supplement interface 10.
  • the air inlet of the valve 4 is hermetically connected to the electrical equipment 8, and the air outlet of the valve 4 is connected with the multi-way joint 9.
  • the valve 4 is sealed inside the first housing 41, and the control cable of the valve 4 is led out through the first lead-out line seal 42 sealed with the first housing 41. This design ensures that the valve 4 remains sealed and can work reliably for a long time.
  • the supplemental gas interface 10 is directly arranged on the electrical equipment 8 and can perform supplementary gas or micro-water tests on the electrical equipment 8.
  • the gas density relay 1 is installed on the multi-way connector 9; the pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6 and the gas density relay 1 are arranged together.
  • the pressure sensor 2 is connected to the gas density relay 1 on the gas path;
  • the pressure regulating mechanism 5 is installed on the multi-way connector 9 and the pressure regulating mechanism 5 is connected to the gas density relay 1 on the gas path;
  • the pressure regulating mechanism 5 is sealed in the second housing Inside the body 55, the control cable of the pressure adjusting mechanism 5 is led out through the second lead-out line seal 56 sealed with the second housing 55.
  • This design ensures that the pressure adjusting mechanism 5 can be reliably sealed for a long time and can work reliably for a long time.
  • the pressure sensor 2 and the temperature sensor 3 are connected with the intelligent control unit 7; the valve 4 is connected with the intelligent control unit 7; the pressure adjustment mechanism 5 is connected with the intelligent control unit 7.
  • the difference from the first embodiment is: 1) The valve 4 and the pressure regulating mechanism 5 are respectively sealed inside the casing. 2) The pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6 and the gas density relay 1 are arranged together. 3) It also contains a micro water sensor 13, one end of which is connected to the multi-way connector 9 and the other end is connected to the intelligent control unit 7, which can monitor the micro water content of the air chamber of the electrical equipment 8, and can be combined with the pressure adjustment mechanism 5. For gas circulation, the micro water content inside the gas chamber can be accurately monitored. 4) The supplemental gas interface 10 is directly arranged on the electrical equipment 8.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the sixth embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Inspection contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary gas interface 10, self-sealing valve 11.
  • gas density relay 1 pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Inspection contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary gas interface 10, self-sealing valve 11.
  • One end of the self-sealing valve 11 is hermetically connected to the electrical equipment 8, and the other end of the self-sealing valve 11 is connected to the valve 4; the air inlet of the valve 4 is hermetically connected to the self-sealing valve 11, and the air outlet of the valve 4 is connected to the multi-way joint 9 Phase connection.
  • the gas density relay 1 is installed on the multi-way connector 9; the pressure sensor 2 is installed on the multi-way connector 9, and the pressure sensor 2 is connected to the gas density relay 1 on the gas path; the pressure regulating mechanism 5 is installed on the multi-way connector 9.
  • the adjustment mechanism 5 is connected with the gas density relay 1; the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged together; the temperature sensor 3 is arranged in the temperature compensation component accessory inside the housing of the gas density relay 1.
  • the pressure sensor 2 and the temperature sensor 3 are connected with the intelligent control unit 7; the valve 4 is connected with the intelligent control unit 7; the pressure adjustment mechanism 5 is connected with the intelligent control unit 7.
  • the supplemental gas interface 10 communicates with the multi-way connector 9.
  • the pressure adjustment mechanism 5 of this embodiment is mainly composed of an air chamber 57, a heating element 58, and a heat preservation member 59.
  • a heating element 58 is provided on the outside (or inside) of the air chamber 57, which is heated by the heating element 58 to cause a temperature change, thereby completing a pressure rise and fall.
  • the pressure is adjusted by the pressure adjustment mechanism 5 to make the gas density relay 1 contact action.
  • the contact action is transmitted to the intelligent control unit 7 through the online verification contact signal sampling unit 6.
  • the intelligent control unit 7 is based on the contact action of the gas density relay 1
  • the pressure value and temperature value are converted into the corresponding density value, and the alarm and/or blocking contact action value and/or return value of the gas density relay are detected, and the calibration of the gas density relay is completed.
  • the working principle of this embodiment is as follows: when the density relay needs to be checked, the intelligent control unit 7 controls the heating element 58 of the pressure adjusting mechanism 5 to heat, and when the temperature difference between the temperature value in the pressure adjusting mechanism 5 and the temperature value of the temperature sensor 3 reaches After setting the value, the valve 4 can be closed by the intelligent control unit 7, so that the gas density relay 1 is isolated from the electrical equipment 8 on the gas path; then the heating element 58 of the adjusting mechanism 5 is immediately turned off to stop heating the heating element 58.
  • the pressure of the gas in the closed gas chamber 57 of the regulating mechanism 5 gradually drops, so that the gas density relay 1 alarms and or locks the contacts respectively, and the contact actions are transmitted to the intelligent control unit 7 through the online verification contact signal sampling unit 6.
  • the intelligent control unit 7 detects the alarm and/or lock contact action value and/or return value of the gas density relay 1 according to the density value when the alarm and/or lock contact is activated, and completes the verification of the gas density relay 1.
  • the seventh embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, air supplement interface 10.
  • gas density relay 1 is installed on the multi-way connector 9; the pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6, and the intelligent control unit 7 are installed on the gas density relay 1.
  • the pressure sensor 2 is connected to the gas density relay 1 on the gas path; the pressure regulating mechanism 5 is installed on the multi-way connector 9, and the pressure regulating mechanism 5 is connected to the gas density relay 1.
  • the pressure sensor 2, the temperature sensor 3, the valve 4, and the pressure adjustment mechanism 5 are respectively connected with the intelligent control unit 7.
  • the pressure regulating mechanism 5 of this embodiment is mainly composed of a solenoid valve and a second housing 55.
  • the pressure adjusting mechanism 5 causes the solenoid valve to open, and the pressure changes, thereby completing the pressure rise and fall.
  • the pressure is adjusted by the pressure adjusting mechanism 5 (solenoid valve), so that the gas density relay 1 has contact action.
  • the contact action is transmitted to the intelligent control unit 7 through the online check contact signal sampling unit 6.
  • the intelligent control unit 7 is based on the gas density relay 1
  • the pressure value and temperature value during the contact action are converted into the corresponding density value, and the alarm and/or blocking contact action value of the gas density relay 1 is detected.
  • the intelligent control unit 7 closes the solenoid valve 5, then opens the valve 4, the pressure changes, and then the pressure rises, making the gas density relay 1 contact reset, and the contact reset passes
  • the on-line verification contact signal sampling unit 6 is transmitted to the intelligent control unit 7.
  • the intelligent control unit 7 converts the pressure value and temperature value when the contact of the gas density relay 1 is reset (returned) into the corresponding density value, and the gas density relay is detected
  • the return value of the alarm and/or blocking contact of 1 is used to complete the calibration of the gas density relay 1.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the eighth embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, air supplement interface 10.
  • gas density relay 1 pressure sensor 2
  • temperature sensor 3 valve 4
  • pressure adjustment mechanism 5 online calibration Check contact signal sampling unit 6
  • intelligent control unit 7 electrical equipment 8
  • multi-way connector 9 air supplement interface 10.
  • the interface between the valve 4 and the electrical equipment 8 is connected to the first connector of the multi-way connector 9; the gas density relay 1 is connected to the multi-way connector 9 through the valve 4; the second connector of the multi-way connector 9 is used for connection Electrical Equipment.
  • the supplemental gas interface 10 and the temperature sensor 3 are also arranged on the multi-way connector 9 respectively.
  • the pressure adjustment mechanism 5 of this embodiment is mainly composed of a piston 51 and a driving component 52.
  • One end of the piston 51 is hermetically connected with the gas density relay 1 to form a reliable sealed cavity.
  • the pressure adjusting mechanism 5 causes the driving component 52 to push the piston 51 to move, and the volume of the sealed cavity changes, thereby completing the pressure rise and fall.
  • the driving part 52 is arranged outside the sealed cavity, and the piston 51 is arranged inside the sealed cavity.
  • the driving part 52 applies electromagnetic force to push the piston 51 to move.
  • the ninth embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, supplemental gas interface 10, and self-sealing valve 11.
  • gas density relay 1 pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online calibration
  • One end of the self-sealing valve 11 is hermetically connected to the electrical device 8, and the other end is connected to the supplemental gas interface 10 and the air inlet of the valve 4; the air outlet of the valve 4 is connected to the pressure regulating mechanism through a connecting pipe 14. 5, so as to connect the valve 4 with the gas density relay 1.
  • the difference from the first embodiment is that the pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6, the intelligent control unit 7 and the gas density relay 1 are arranged together; the gas density relay 1 is arranged on the pressure regulating mechanism 5. on.
  • the tenth embodiment of the present invention provides an electrical system with online sampling and verification function, including: a gas density relay 1, a first pressure sensor 21, a second pressure sensor 22, a first temperature sensor 31, The second temperature sensor 32, the valve 4, the pressure regulating mechanism 5, the online verification contact signal sampling unit 6, the intelligent control unit 7, the electrical equipment 8, the multi-way connector 9, the air supplement interface 10, and the self-sealing valve 11.
  • One end of the self-sealing valve 11 is hermetically connected to the electrical equipment 8, the other end of the self-sealing valve 11 is connected to the air inlet of the valve 4; the air outlet of the valve 4 is connected to the multi-way joint 9.
  • the gas density relay 1, the second pressure sensor 22, the second temperature sensor 32, the pressure adjustment mechanism 5, and the gas supplement port 10 are arranged on the multi-way connector 9; the first pressure sensor 21 and the first temperature sensor 31 are arranged on the pressure adjustment mechanism 5 on.
  • the first pressure sensor 21, the second pressure sensor 22, the first temperature sensor 31, and the second temperature sensor 32 are connected to the intelligent control unit 7 respectively.
  • the first pressure sensor 21, the second pressure sensor 22, and the gas density relay 1 are connected to the pressure adjusting mechanism 5 on the gas path; the valve 4 is connected to the intelligent control unit 7; the pressure adjusting mechanism 5 is connected to the intelligent control unit 7.
  • the difference from the first embodiment is that there are two pressure sensors, namely the first pressure sensor 21 and the second pressure sensor 22; there are two temperature sensors, namely the first temperature sensor 31 and the second temperature sensor.
  • Sensor 32 This embodiment provides multiple pressure sensors and temperature sensors. The purpose is: the pressure values monitored by the first pressure sensor 21 and the second pressure sensor 22 can be compared for mutual verification; the first temperature sensor 31 and the second temperature sensor The temperature values monitored by 32 can be compared for mutual verification; the density value P1 20 monitored by the first pressure sensor 21 and the first temperature sensor 31 is compared with the density monitored by the second pressure sensor 22 and the second temperature sensor 32 Compare the values P2 20 and verify each other; you can even obtain the density value Pe 20 of the rated value of the gas density relay 1 through online verification, and compare and verify each other.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the eleventh embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online Check contact signal sampling unit 6 and intelligent control unit 7, electrical equipment 8, supplemental gas interface 10, and self-sealing valve 11.
  • gas density relay 1 pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online Check contact signal sampling unit 6 and intelligent control unit 7, electrical equipment 8, supplemental gas interface 10, and self-sealing valve 11.
  • One end of the self-sealing valve 11 is hermetically connected to the electrical device 8, and the other end of the self-sealing valve 11 is connected to the air inlet of the valve 4 and the air supplement port 10 through a connecting pipe.
  • the gas outlet of the valve 4 is in communication with the gas density relay 1.
  • the pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6, and the intelligent control unit 7 are arranged on or in the shell of the gas density relay 1, and the pressure sensor 2 is connected to the gas density relay 1 on the gas path;
  • the adjustment mechanism 5 is connected with the gas density relay 1; the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged together.
  • the pressure sensor 2, the temperature sensor 3, the valve 4, and the pressure adjustment mechanism 5 are respectively connected to the intelligent control unit 7.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the twelfth embodiment of the present invention provides an electrical system with online sampling and verification function, including: gas density relay 1, pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary air interface 10, self-sealing valve 11, micro-water sensor 13, and decomposition sensor 15.
  • gas density relay 1 pressure sensor 2, temperature sensor 3, valve 4, pressure adjustment mechanism 5, online Check contact signal sampling unit 6, intelligent control unit 7, electrical equipment 8, multi-way connector 9, supplementary air interface 10, self-sealing valve 11, micro-water sensor 13, and decomposition sensor 15.
  • One end of the self-sealing valve 11 is hermetically connected to the electrical equipment 8, the other end of the self-sealing valve 11 is connected to the air inlet of the valve 4, and the air supplement port 10 is connected to the self-sealing valve 11; the air outlet of the valve 4 is connected to the multi-way joint 9 Phase connection.
  • the gas density relay 1, the pressure sensor 2, the pressure adjusting mechanism 5, the micro water sensor 13, and the decomposition sensor 15 are arranged on the multi-way connector 9; the temperature sensor 3 is arranged on the electrical equipment 8.
  • the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged together.
  • the pressure sensor 2, the temperature sensor 3, the micro water sensor 13, the decomposition sensor 15 and the intelligent control unit 7 are connected.
  • the pressure sensor 2 and the gas density relay 1 are connected to the pressure adjusting mechanism 5 on the gas path; the valve 4 is connected to the intelligent control unit 7; the pressure adjusting mechanism 5 is connected to the intelligent control unit 7.
  • the temperature sensor 3 is provided on the electrical equipment 8; at the same time, it also contains a micro water sensor 13 for monitoring the micro water content of the electrical equipment 8 and a decomposition product sensor 15 for monitoring the decomposition product content.
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • an electrical system with online sampling and verification function provided by the thirteenth embodiment of the present invention includes: a gas density relay 1, a first pressure sensor 21, a second pressure sensor 22, a first temperature sensor 31, The second temperature sensor 32, the valve 4, the pressure regulating mechanism 5, the online verification contact signal sampling unit 6, the intelligent control unit 7, the electrical equipment 8, the multi-way connector 9, the air supplement interface 10, and the connector 16.
  • One end of the connector 16 is connected to the electrical equipment 8 in a sealed manner, and the other end of the connector 16 is connected to the air inlet of the valve 4; and the air outlet of the valve 4 is connected to the multi-way connector 9, so
  • the valve 4 is sealed inside the first housing 41, and the control cable of the valve 4 is led out through the first lead-out seal 42 sealed with the first housing 41.
  • This design ensures that the valve 4 remains sealed and can work reliably for a long time.
  • the gas density relay 1, the first pressure sensor 21, the first temperature sensor 31, the pressure adjusting mechanism 5, and the gas supplement interface 10 are arranged on the multi-way connector 9.
  • the pressure regulating mechanism 5 is sealed inside the second housing 55, and the control cable of the pressure regulating mechanism 5 is led out through the second lead-out seal 56 sealed with the second housing 55.
  • This design ensures that the pressure regulating mechanism 5 remains sealed , Can work reliably for a long time.
  • the second pressure sensor 22 and the second temperature sensor 32 are arranged on the connector 16.
  • the first pressure sensor 21, the second pressure sensor 22, the first temperature sensor 31, the second temperature sensor 32 are connected to the intelligent control unit 7; the valve 4 is connected to the intelligent control unit 7; the pressure regulating mechanism 5 is connected to the intelligent control unit 7 Phase connection.
  • the first pressure sensor 21, the second pressure sensor 22, and the gas density relay 1 are in communication with the pressure regulating mechanism 5 on the gas path.
  • the valve 4 is closed, the first pressure sensor 21 and the gas density relay 1 are connected to the pressure regulating mechanism 5 on the gas path, while the second pressure sensor 22 is not connected to the gas density relay 1 and the pressure regulating mechanism 5 on the gas path. .
  • the difference from the first embodiment is that there are two pressure sensors, namely a first pressure sensor 21 and a second pressure sensor 22; there are two temperature sensors, a first temperature sensor 31 and a second temperature sensor 32 respectively.
  • This embodiment has a safety protection function, specifically: 1) When the density value monitored by the first pressure sensor 21 and the first temperature sensor 31 or the second pressure sensor 22 and the second temperature sensor 32 is lower than the set value, the gas The density relay will automatically no longer be checked, but will send out a notice signal. For example, when the gas density value of the equipment is less than the set value, it will not be calibrated; only when the gas density value of the equipment is ⁇ (blocking pressure + 0.02MPa), the calibration can be performed.
  • the contact alarm has status indication.
  • the valve 4 is closed at this time, and when the density value monitored by the second pressure sensor 22 and the second temperature sensor 32 is lower than the set value, the gas density relay will automatically no longer perform the calibration, and at the same time Give a notice signal (leak). For example, when the gas density value of the equipment is less than the set value (blocking pressure + 0.02MPa), it will not be verified.
  • the set value can be set arbitrarily as required.
  • the gas density relay also has mutual verification of multiple pressure sensors and temperature sensors, as well as mutual verification of the sensor and the gas density relay, to ensure that the gas density relay works normally.
  • the pressure values monitored by the first pressure sensor 21 and the second pressure sensor 22 are compared to verify each other; the temperature values monitored by the first temperature sensor 31 and the second temperature sensor 32 are compared to each other. Verification; the density value P1 20 monitored by the first pressure sensor 21 and the first temperature sensor 31 is compared with the density value P2 20 monitored by the second pressure sensor 22 and the second temperature sensor 32 to verify each other ; It is even possible to verify the density value Pe 20 of the rated value of the gas density relay 1, and compare and verify each other.
  • the online verification contact signal sampling unit 6 is provided with a contact sampling circuit.
  • the contact sampling circuit includes a photocoupler OC1 and a resistor R1, the photocoupler OC1 includes a light-emitting diode and a photosensitive triode; the anode of the light-emitting diode and the contact point of the gas density relay 1 P J is connected in series to form a closed loop; the emitter of the phototransistor is grounded; the collector of the phototransistor is used as the output terminal out6 of the online check contact signal sampling unit 6 to connect to the intelligent control unit 7, and the collection of the phototransistor
  • the electrode is also connected to a power source through the resistor R1.
  • the contact P J of the gas density relay 1 it is easy to know whether the contact P J of the gas density relay 1 is in an open or closed state. Specifically, when the contact P J is closed, the closed loop is energized, the light emitting diode emits light, the light turns on the phototransistor, and the collector of the phototransistor outputs a low level; when the contact P J is off When it is open, the closed loop is disconnected, the light-emitting diode does not emit light, the phototransistor is cut off, and the collector of the phototransistor outputs a high level. In this way, the output terminal out6 of the signal sampling unit 6 through the online verification contact outputs high and low levels.
  • the intelligent control unit 7 is isolated from the contact signal control circuit by photoelectric isolation, and the contact P J is closed during the verification process, or the contact P J will also be closed in the case of air leakage. At this time, both are detected.
  • the time to close the contact P J during the control verification is at a preset length, so that the length of the closed state of the contact P J during the verification process is determined in the case of no air leakage, and the received low-level signal is monitored. The duration can be judged whether the contact P J is closed during the verification process. Therefore, by recording the time during calibration, it can be judged that the gas density relay 1 sends out an alarm signal during calibration, rather than an alarm signal during gas leakage.
  • the intelligent control unit 7 is mainly composed of a processor 71 (U1) and a power supply 72 (U2).
  • Embodiment 15 is a diagrammatic representation of Embodiment 15:
  • the online verification contact signal sampling unit 6 is provided with a contact sampling circuit.
  • the contact sampling circuit includes a first photocoupler OC1 and a second photocoupler OC2.
  • the light-emitting diodes of the first photocoupler OC1 and the light-emitting diodes of the second photocoupler OC2 are connected in parallel through current limiting resistors, and connected in series with the contacts of the gas density relay to form a closed loop, and the first The connection directions of the light-emitting diodes of the photocoupler OC1 and the second photocoupler OC2 are opposite; the collector of the phototransistor of the first photocoupler OC1 and the collector of the phototransistor of the second photocoupler OC2 Both are connected to the power supply through a voltage divider resistor, the emitter of the phototransistor of the first photocoupler OC1 and the emitter of the phototransistor of the second photocoupler OC2 are connected to form an output terminal out6, and the output terminal out6 is connected to The intelligent control unit 7 is connected and grounded through a resistor R5.
  • the contact sampling circuit it is easy to know whether the contact P J of the gas density relay 1 is in an open or closed state. Specifically, when the contact PJ is closed, the closed loop is energized, the first photocoupler OC1 is turned on, the second photocoupler OC2 is turned off, and the phototransistor of the first photocoupler OC1 emits The output terminal (ie the output terminal out6) outputs a high level; or, the first photocoupler OC1 is turned off, the second photocoupler OC2 is turned on, and the emitter of the phototransistor of the second photocoupler OC2 ( That is, the output terminal out6) outputs a high level.
  • the closed loop is de-energized, the first photocoupler OC1 and the second photocoupler OC2 are both cut off, and the first photocoupler OC1 and the second photocoupler OC2 are both cut off.
  • the emitter of the phototransistor of the coupler OC2 (that is, the output terminal out6) outputs a low level.
  • the contact sampling circuit further includes a first Zener diode group and a second Zener diode group, and the first Zener diode group and the second Zener diode group are connected in parallel to the On the contact signal control loop, and the connection directions of the first Zener diode group and the second Zener diode group are opposite; the first Zener diode group and the second Zener diode group are each composed of one, Two or more Zener diodes are connected in series.
  • the first Zener diode group includes a first Zener diode D1 and a second Zener diode D2 connected in series, and the cathode of the first Zener diode D1 is connected to the second Zener diode D2.
  • Anode; the second Zener diode group includes a third Zener diode D3 and a fourth Zener diode D4 connected in series, and the anode of the third Zener diode D3 is connected to the cathode of the fourth Zener diode D4.
  • the contact sampling circuit can easily monitor the state of the contact P J of the gas density relay 1. Combined with the intelligent control unit 7, the contact P J is in the open or closed state for corresponding processing, and the remote transmission is implemented, which can be known from the background The state of the contact signal greatly improves the reliability of the power grid.
  • the intelligent control unit 7 is mainly composed of a processor 71 (U1) and a power supply 72 (U2).
  • the intelligent control unit 7 is mainly composed of a processor 71 (U1), a power supply 72 (U2), a communication module 73 (U3), and a protection circuit 74 of the intelligent control unit. (U4), display and output 75 (U5), data storage 76 (U6) and other components.
  • the communication mode of the communication module 73 can be wired, such as RS232, RS485, CAN-BUS and other industrial buses, optical fiber Ethernet, 4-20mA, Hart, IIC, SPI, Wire, coaxial cable, PLC power carrier Etc.; or wireless, such as 2G/3G/4G/5G, WIFI, Bluetooth, Lora, Lorawan, Zigbee, infrared, ultrasonic, acoustic wave, satellite, light wave, quantum communication, sonar, etc.
  • wired such as RS232, RS485, CAN-BUS and other industrial buses, optical fiber Ethernet, 4-20mA, Hart, IIC, SPI, Wire, coaxial cable, PLC power carrier Etc.
  • wireless such as 2G/3G/4G/5G, WIFI, Bluetooth, Lora, Lorawan, Zigbee, infrared, ultrasonic, acoustic wave, satellite, light wave, quantum communication, sonar, etc.
  • the intelligent control unit protection circuit 74 can be an anti-static interference circuit (such as ESD, EMI), an anti-surge circuit, an electric fast protection circuit, an anti-radio frequency field interference circuit, an anti-pulse group interference circuit, a power short-circuit protection circuit, and a power supply Reverse connection protection circuit, electric contact misconnection protection circuit, charging protection circuit, etc.
  • These intelligent control unit protection circuits can be one or several flexible combinations.
  • Display and output 75 (U5) can be nixie tube, LED, LCD, HMI, monitor, matrix screen, printer, fax, projector, mobile phone, etc., and can be one or several flexible combinations.
  • Data storage 76 (U6) can be flash memory cards such as FLASH, RAM, ROM, hard disk, SD, magnetic tape, punched tape, CD, U disk, disc, film, etc. It can be one or several flexible combinations. to make.
  • the online verification contact signal sampling unit 6 is provided with a contact sampling circuit.
  • the contact sampling circuit includes a first Hall current sensor H1 and a second Hall current sensor H2.
  • the first Hall current sensor H1, the second Hall current sensor H2, and the contact point P J of the gas density relay are connected in series to form a closed loop, and the contact point P J of the gas density relay 1 is connected to the first Between the Hall current sensor H1 and the second Hall current sensor H2; the output terminal of the first Hall current sensor H1 and the output terminal of the second Hall current sensor H2 are both connected to the intelligent control unit 7-phase connection.
  • the contact sampling circuit it is easy to know whether the contact P J of the gas density relay 1 is in an open or closed state. Specifically, when the contact PJ is closed, the closed loop is energized, and a current flows between the first Hall current sensor H1 and the second Hall current sensor H2 to generate an induced potential; when the contact P When J is disconnected, the closed loop is powered off, no current flows between the first Hall current sensor H1 and the second Hall current sensor H2, and the induced potential generated is zero.
  • the intelligent control unit 7 is mainly composed of a processor 71 (U1), a power supply 72 (U2), a communication module 73 (U3), an intelligent control unit protection circuit 74 (U4), a display and output 75 (U5), and data Store 76 (U6) and other components.
  • Embodiment 18 is a diagrammatic representation of Embodiment 18:
  • the online verification contact signal sampling unit 6 is provided with a contact sampling circuit.
  • the contact sampling circuit includes: a first thyristor SCR1, a second thyristor SCR2, and a third thyristor SCR2. Thyristor SCR3 and fourth thyristor SCR4.
  • the first thyristor SCR1 and the third thyristor SCR3 are connected in series, and the second thyristor SCR2 and the fourth thyristor SCR4 are connected in series and then form a string with the series circuit formed by the first thyristor SCR1 and the third thyristor SCR3.
  • Parallel closed circuit; one end of the contact P J of the gas density relay 1 is electrically connected to the first thyristor SCR1 and the third thyristor SCR3 through a line, and the other end is electrically connected to the second thyristor SCR2 through a line ,
  • the circuit between the fourth thyristor SCR4 is electrically connected.
  • the series-parallel connection described here is shown in Fig. 6, which is a circuit in which the above-mentioned components are connected in parallel and in series.
  • the cathode of the first thyristor SCR1 and the cathode of the second thyristor SCR2 are connected to form the output terminal of the online verification contact signal sampling unit 6 which is connected to the intelligent control unit 7;
  • the anode is connected to the cathode of the third thyristor SCR3;
  • the anode of the second thyristor SCR2 is connected to the cathode of the fourth thyristor SCR4;
  • the anode of the third thyristor SCR3 and the anode of the fourth thyristor SCR4 It is connected to the input terminal of the online verification contact signal sampling unit 6.
  • control electrodes of the first thyristor SCR1, the second thyristor SCR2, the third thyristor SCR3 and the fourth thyristor SCR4 are all connected to the intelligent control unit 7.
  • the intelligent control unit 7 can control the on or off of the corresponding thyristor.
  • the contact sampling circuit triggers the third thyristor SCR3 and the fourth thyristor SCR4, and the third thyristor SCR3 and the fourth thyristor SCR4 are in In the conducting state, the contact signal control loop is in working state. At this time, the contact sampling circuit does not trigger the first thyristor SCR1 and the second thyristor SCR2, and the cathodes of the first thyristor SCR1 and the second thyristor SCR2 have no voltage output and are in an unconnected state.
  • the contact sampling circuit When performing verification, the contact sampling circuit does not trigger the third thyristor SCR3 and the fourth thyristor SCR4, but triggers the first thyristor SCR1 and the second thyristor SCR2. At this time, the third thyristor SCR3 and the fourth thyristor SCR4 are in the off state, and the contact P J is separated from the contact signal control circuit. The first thyristor SCR1 and the second thyristor SCR2 are in a conducting state, and the contact P J is connected to the online verification contact signal sampling unit 6 and is connected to the intelligent control unit 7.
  • the online verification contact signal sampling unit 6 can also be composed of solid state relays or electromagnetic relays and thyristor mixed flexibly.
  • the intelligent control unit 7 is mainly composed of a processor 71 (U1), a power supply 72 (U2), a communication module 73 (U3), an intelligent control unit protection circuit 74 (U4), a display and output 75 (U5), and data Store 76 (U6) and other components.
  • Fig. 20 is a schematic diagram of a gas circuit structure of an electrical system according to a preferred embodiment of the present invention.
  • the electrical equipment 8 is a sulfur hexafluoride high-voltage circuit breaker, and includes a gas chamber 802 provided in the electrical equipment 8.
  • the gas density relay 1 is installed in the internal accommodating space of the horizontal frame.
  • One end of the connecting pipe is connected to the air inlet of the valve 4, and the other end of the connecting pipe extends along the horizontal frame to below the gas chamber 802 and communicates with the gas chamber 802 from below.
  • the air inlet of the valve 4 is hermetically connected to the air chamber 802 of the electrical device 8 through a connecting pipe; the air outlet of the valve 4 is in communication with the air path of the gas density relay 1.
  • the probe of the pressure sensor 2 is located on the gas path of the gas density relay 1; the pressure regulating mechanism 5 is connected to the gas path of the gas density relay 1; the online verification contact signal sampling unit 6 is connected to the gas density relay 1 and the intelligent control unit 7 respectively.
  • the pressure sensor 2, the temperature sensor 3, the valve 4, and the pressure adjustment mechanism 5 are also connected to the intelligent control unit 7 respectively.
  • the parts other than the probe of the pressure sensor 2, the part other than the probe of the temperature sensor 3, the pressure adjusting mechanism 5, the online verification contact signal sampling unit 6, and the intelligent control unit 7 are all fixed on the mounting plate of the vertical frame.
  • the error judgment requirements can be different, and the specific requirements can be based on temperature and in accordance with relevant standards.
  • Implementation Able to compare the error performance of the gas density relay at different temperatures and different time periods, that is, comparisons in different periods and within the same temperature range, to determine the performance of the density relay; with historical comparisons, Comparison of history and present. You can also perform a physical examination on the density relay.
  • the contact signal of the gas density relay can be verified at any time; whether the density value of the gas density relay and the monitored electrical equipment is normal can be judged, that is, the density value of the electrical equipment itself, the gas density relay, and the pressure can be judged.
  • Sensors and temperature sensors perform normal and abnormal judgment, analysis, and comparison, and then realize the judgment, comparison, and analysis of the gas density monitoring of electrical equipment, gas density relays, etc.; it can also monitor the contact signal state of the gas density relay, and Implement remote transmission of its status.
  • the contact signal state of the gas density relay is open or closed, thereby adding a layer of monitoring to improve reliability; it can also detect, or detect and determine the temperature compensation performance of the gas density relay; Detect, or detect and judge the contact resistance of the gas density relay; it can also detect, or detect and judge the insulation performance of the gas density relay.
  • the electrical system with online sampling and verification function and its verification method provided by the present invention are composed of a gas circuit (which can be passed through a pipeline) connection part, a pressure adjustment part, a signal measurement control part, etc.
  • the main functions are Perform online verification and measurement of the contact value of the gas density relay (pressure value during alarm/blocking action) at ambient temperature, and automatically convert it to the corresponding pressure value at 20°C, and realize the online contact of the gas density relay (alarm and Blocking) value performance detection.
  • the installation positions of the gas density relay, pressure sensor, temperature sensor, pressure regulating mechanism, valve, online calibration contact signal sampling unit, and intelligent control unit can be combined flexibly.
  • gas density relay, pressure sensor, temperature sensor, online calibration contact signal sampling unit, intelligent control unit can be combined together, integrated design, can also be separated design; can be installed on the shell, or on the multi-way connector , Can also be connected together by connecting pipes.
  • the valve can be directly connected to electrical equipment, or through a self-sealing valve or a gas pipe.
  • Pressure sensor, temperature sensor, online verification contact signal sampling unit, intelligent control unit can be combined together, integrated design; pressure sensor, temperature sensor can be combined together, integrated design; online verification contact signal sampling unit, intelligent control Units can be combined together, integrated design.
  • the structure is eclectic.
  • the gas density relay involved in the electrical system with on-line sampling and verification function and the verification method of the present invention can refer to the gas density relay whose constituent elements are designed as an integrated structure, or can refer to its constituent elements
  • a gas density relay designed with a component structure can generally also be referred to as a gas density monitoring device.
  • the structure of the application is compact and reasonable, each component has good rust-proof and shock-proof capabilities, the installation is firm, and the use is reliable.
  • the connection, disassembly and assembly of the pipelines of the electrical system are easy to operate, and the equipment and components are easy to maintain.
  • This application can complete the verification of the gas density relay without the need for maintenance personnel to go to the site, which greatly improves the reliability of the power grid, improves the work efficiency, and reduces the cost of operation and maintenance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

具有在线采样校验功能的电气系统及其校验方法,用于高压、中压电气设备,包括电气设备(8)、气体密度继电器(1)、气体密度检测传感器、阀(4)、压力调节机构(5)、在线校验接点信号采样单元(6)和智控单元(7)。通过压力调节机构(5)调节压力的升降,使得电气设备(8)的气体密度继电器(1)发生接点动作,接点动作通过在线校验接点信号采样单元(6)传递到智控单元(7),智控单元(7)根据接点动作时的密度值,检测出报警和/或闭锁接点信号动作值和/或返回值,无须检修人员到现场就能完成气体密度继电器(1)的校验工作,大大提高了电网的可靠性,提高了工作效率,降低了运行维护成本,同时实现气体密度继电器(1)和气体密度检测传感器间的相互自校验,进而实现免维护。

Description

具有在线采样校验功能的电气系统及其校验方法
本申请请求 201994日申请的申请号为 201910834369.5(发明名称: 有在线采样校验功能的电气系统及其校验方法)的中国专利申请的优先权。
技术领域
本发明涉及电力技术领域,尤其涉及一种应用在高压、中压电气设备上,具有在线采样校验功能的电气系统(或电气设备)及其校验方法。
背景技术
气体密度继电器,一般用于监视和控制高压电气设备内绝缘气体的密度,其内部设有接点信号控制回路,气体密度继电器的气路连通高压电气设备的气室,当检测到出现气体泄漏时,气体密度继电器的接点动作,生成接点信号,接点信号控制回路根据接点信号,发出报警或进行闭锁,从而实现电气设备的安全运行保护。
目前,SF6(六氟化硫)电气设备已广泛应用在电力部门、工矿企业,促进了电力行业的快速发展。高压电气设备气室内SF6气体的密度降低和微水含量如果超标将严重影响SF6高压电气设备的安全运行:1)SF6气体密度降低至一定程度将导致绝缘和灭弧性能的丧失。2)在一些金属物的参与下,SF6气体在高温200℃以上温度可与水发生水解反应,生成活泼的HF和SOF2,腐蚀绝缘件和金属件,并产生大量热量,使气室压力升高。3)在温度降低时,过多的水分可能形成凝露水,使绝缘件表面绝缘强度显著降低,甚至闪络,造成严重危害。因此电网运行规程强制规定,在设备投运前和运行中都必须对SF6气体的密度和含水量进行定期检测。
随着无人值守变电站向网络化、数字化方向发展以及对遥控、遥测的要求不断加强,对SF6电气设备的气体密度和微水含量状态进行在线监测具有重要的现实意义。随着中国智能电网的不断大力发展,智能高压、中压电气设备作为智能变电站的重要组成部分和关键节点,对智能电网的安全起着举足轻重的作用。
发明内容
本发明的目的在于提供一种具有在线采样校验功能的电气系统(或电气设备)及其校验方法,以解决上述技术背景中提出的问题。
为实现上述目的,本发明采用以下技术方案:
本申请第一个方面提供了一种具有在线采样校验功能的电气系统,包括:
电气设备,其内部设有气室,所述气室充有绝缘气体;
气体密度继电器,安装于所述电气设备的气室外部,或者通过阀安装于所述电气设备的气室外部;
阀,其进气口与所述电气设备的气室相连通,其出气口与所述气体密度继电器的气路相连通;
压力调节机构,其气路与所述气体密度继电器的气路相连通,所述压力调节机构被配置为调节所述气体密度继电器的气路的压力升降,使所述气体密度继电器发生接点信号动作;
气体密度检测传感器,与所述气体密度继电器连通;
在线校验接点信号采样单元,与所述气体密度继电器相连接,被配置为采样环境温度下所述气体密度继电器的接点信号;
智控单元,分别与所述气体密度检测传感器、所述压力调节机构、所述阀和所述在线校验接点信号采样单元相连接,被配置为控制所述阀的关闭或开启,完成所述压力调节机构的控制,压力值采集和温度值采集、和/或气体密度值采集,以及检测所述气体密度继电器的接点信号动作值和/或接点信号返回值;
其中,所述接点信号包括报警、和/或闭锁。
优选地,所述电气设备包括SF6气体电气设备、SF6混合气体电气设备、环保型气体电气设备、或其它绝缘气体电气设备。
具体地,所述电气设备包括GIS、GIL、PASS、断路器、电流互感器、电压互感器、变压器、充气柜、环网柜。
优选地,所述电气系统包括支架,所述电气设备的气室位于支架的上方或下方,优选地,所述支架包括竖直架和水平架,所述气体密度继电器位于水平架的内部容纳空间,所述阀的进气口连接一连接管的一端,连接管的另一端沿水平架延伸至气室的下方,并从气室下方连通气室。
优选地,所述气体密度继电器包括、但不限于双金属片补偿的气体密度继电器、气体补 偿的气体密度继电器、双金属片和气体补偿混合型的气体密度继电器;完全机械的气体密度继电器、数字型气体密度继电器、机械和数字结合型的气体密度继电器;带指针显示的气体密度继电器、数显型气体密度继电器、不带显示或指示的气体密度开关;SF6气体密度继电器、SF6混合气体密度继电器、N2气体密度继电器。
优选地,所述气体密度检测传感器设置在所述气体密度继电器上;或者,所述压力调节机构设置在所述气体密度继电器上;或者,所述气体密度检测传感器、所述在线校验接点信号采样单元和所述智控单元设置在所述气体密度继电器上。
更优选地,所述气体密度继电器、所述气体密度检测传感器为一体化结构;优选地,所述气体密度继电器、所述气体密度检测传感器为一体化结构的远传式气体密度继电器。
优选地,所述气体密度检测传感器为一体化结构。
更优选地,所述气体密度检测传感器为一体化结构的气体密度变送器;优选地,所述在线校验接点信号采样单元、所述智控单元设置在所述气体密度变送器上。
优选地,所述气体密度检测传感器包括至少一个压力传感器和至少一个温度传感器;或者,所述气体密度检测传感器为压力传感器和温度传感器组成的气体密度变送器;或者,所述气体密度检测传感器为采用石英音叉技术的密度检测传感器。
更优选地,所述压力传感器的探头安装于所述气体密度继电器的气路上。
更优选地,所述温度传感器的探头安装于所述气体密度继电器的气路上或气路外,或安装于所述气体密度继电器内,或安装于所述气体密度继电器外。
更优选地,所述温度传感器可以是热电偶、热敏电阻、半导体式;可以是接触式和非接触式;可以是热电阻和热电偶。
更优选地,所述压力传感器包括、但不限于相对压力传感器,和/或绝对压力传感器。
进一步地,所述压力传感器还可以是扩散硅压力传感器、MEMS压力传感器、芯片式压力传感器、线圈感应压力传感器(如巴登管附带感应线圈的压力传感器)、电阻压力传感器(如巴登管附带滑线电阻的压力传感器);可以是模拟量压力传感器,也可以是数字量压力传感器。
更优选地,至少有一个所述温度传感器设置在所述气体密度继电器的温度补偿元件附近、或设置在温度补偿元件上,或集成于所述温度补偿元件中。优选地,至少有一个所述温度传感器设置在所述气体密度继电器的压力检测器靠近温度补偿元件的一端;其中,所述压力检测器为巴登管或波纹管,所述温度补偿元件采用温度补偿片或壳体内封闭的气体。
更优选地,所述智控单元将环境温度值,与温度传感器采集的温度值进行比对,完成对温度传感器的校验。
优选地,所述阀通过连接头与所述电气设备相连通。优选地,所述阀为电动阀、和/或电磁阀。更优选地,所述阀为永磁式电磁阀。优选地,所述阀为压电阀,或为温度控制的阀,或为采用智能记忆材料制作的、采用电加热开启或关闭的新型阀。
优选地,所述阀为软管折弯或夹扁方式实现关闭或开启。
优选地,所述阀密封在一个腔体或壳体内。
优选地,所述阀和所述压力调节机构密封在一个腔体或壳体内。
优选地,所述阀的气路两侧分别设置有压力传感器;或者,所述阀的气路两侧分别设置有压力检测器。
优选地,所述压力调节机构密封在一个腔体或壳体内。
优选地,校验时,所述压力调节机构为一密闭气室,所述密闭气室的外部或内部设有加热元件、和/或制冷元件,通过所述加热元件加热、和/或通过所述制冷元件制冷,导致所述密闭气室内的气体的温度变化,进而完成所述气体密度继电器的压力升降。
更优选地,所述加热元件、和/或所述制冷元件为半导体。
更优选地,所述压力调节机构还包括保温件,所述保温件设于所述密闭气室的外面。
优选地,校验时,所述压力调节机构为一端开口的腔体,所述腔体的另一端连通所述气体密度继电器的气路;所述腔体内有活塞,所述活塞的一端连接有一个调节杆,所述调节杆的外端连接驱动部件,所述活塞的另一端伸入所述开口内,且与所述腔体的内壁密封接触,所述驱动部件驱动所述调节杆进而带动所述活塞在所述腔体内移动。
优选地,校验时,所述压力调节机构为一密闭气室,所述密闭气室的内部设有活塞,所述活塞与所述密闭气室的内壁密封接触,所述密闭气室的外面设有驱动部件,所述驱动部件通过电磁力推动所述活塞在所述腔体内移动。
优选地,所述压力调节机构为一端连接驱动部件的气囊,所述气囊在所述驱动部件的驱动下发生体积变化,所述气囊连通所述气体密度继电器。
优选地,所述压力调节机构为波纹管,所述波纹管的一端连通所述气体密度继电器,所述波纹管的另一端在驱动部件的驱动下伸缩。
上述压力调节机构中的所述驱动部件包括、但不限于磁力、电机(变频电机或步进电机)、往复运动机构、卡诺循环机构、气动元件中的一种。
优选地,所述压力调节机构为一放气阀。
更优选地,所述压力调节机构还包括控制气体释放流量的流量阀。
更优选地,所述放气阀为电磁阀或电动阀,或其它通过电的或气的方式实现的放气阀。
更优选地,所述放气阀将气体放至零位,所述智控单元采集当时的压力值,进行比对,完成对压力传感器的零位校验,智控单元或后台对比对结果进行判定,若误差超差,发出异常提示:压力传感器有问题。
优选地,所述压力调节机构为一压缩机。
优选地,所述压力调节机构为一泵。更优选地,所述泵包括、但不限于造压泵、增压泵、电动气泵、电磁气泵中的一种。
优选地,所述在线校验接点信号采样单元和所述智控单元设置在一起。
更优选地,所述在线校验接点信号采样单元和所述智控单元密封在一个腔体或壳体内。
优选地,所述在线校验接点信号采样单元对所述气体密度继电器的接点信号采样满足:所述在线校验接点信号采样单元具有独立的至少两组采样接点,可同时对至少两个接点自动完成校验,且连续测量、无须更换接点或重新选择接点;其中,所述接点包括、但不限于报警接点、报警接点+闭锁接点、报警接点+闭锁1接点+闭锁2接点、报警接点+闭锁接点+超压接点中的一种。
优选地,所述在线校验接点信号采样单元对所述气体密度继电器的接点信号动作值或其切换值的测试电压不低于24V,即在校验时,在接点信号相应端子之间施加不低于24V电压。
优选地,所述气体密度继电器的接点为常开型密度继电器,所述在线校验接点信号采样单元,包括第一连接电路和第二连接电路,所述第一连接电路连接所述气体密度继电器的接点与接点信号控制回路,所述第二连接电路连接所述气体密度继电器的接点与所述智控单元;在非校验状态下,所述第二连接电路断开或隔离,所述第一连接电路闭合;在校验状态下,所述在线校验接点信号采样单元切断所述第一连接电路,连通所述第二连接电路,将所述气体密度继电器的接点与所述智控单元相连接;或者,
所述气体密度继电器的接点为常闭型密度继电器,所述在线校验接点信号采样单元,包括第一连接电路和第二连接电路,所述第一连接电路连接所述气体密度继电器的接点与接点信号控制回路,所述第二连接电路连接所述气体密度继电器的接点与所述智控单元;在非校验状态下,所述第二连接电路断开或隔离,所述第一连接电路闭合;在校验状态下,所述在 线校验接点信号采样单元闭合所述接点信号控制回路,切断气体密度继电器的接点与接点信号控制回路的连接,连通所述第二连接电路,将所述气体密度继电器的接点与所述智控单元相连接。
更优选地,所述第一连接电路包括第一继电器,所述第二连接电路包括第二继电器,所述第一继电器设有至少一个常闭接点,所述第二继电器设有至少一个常开接点,所述常闭接点和所述常开接点保持相反的开关状态;所述常闭接点串联在所述接点信号控制回路中,所述常开接点连接在所述气体密度继电器的接点上;
在非校验状态下,所述常闭接点闭合,所述常开接点断开,所述气体密度继电器实时监测所述接点的输出状态;在校验状态下,所述常闭接点断开,所述常开接点闭合,所述气体密度继电器的接点通过所述常开接点与所述智控单元相连接。而对于接点为常闭型密度继电器而言,可以作出相应的调整。
进一步地,所述第一继电器与所述第二继电器可以是两个独立的继电器,也可以是同一个继电器。
更优选地,所述在线校验接点信号采样单元设有接点采样电路,接点采样电路包括光电耦合器和一电阻,所述光电耦合器包括一发光二极管和一光敏三极管;所述发光二极管和所述气体密度继电器的接点串联形成闭合回路;所述光敏三极管的发射极接地;所述光敏三极管的集电极连接所述智控单元,所述光敏三极管的集电极还通过所述电阻与电源相连接;
当所述接点闭合时,闭合回路通电,所述发光二极管发光,光将所述光敏三极管导通,所述光敏三极管的集电极输出低电平;
当所述接点断开时,闭合回路被断开,所述发光二极管不发光,所述光敏三极管截止,所述光敏三极管的集电极输出高电平。
更优选地,所述在线校验接点信号采样单元设有接点采样电路,所述接点采样电路包括第一光电耦合器和第二光电耦合器;
所述第一光电耦合器的发光二极管和所述第二光电耦合器的发光二极管分别通过限流电阻并联或直接并联,并联后与所述气体密度继电器的接点串联形成闭合回路,且所述第一光电耦合器和所述第二光电耦合器的发光二极管的连接方向相反;
所述第一光电耦合器的光敏三极管的集电极与所述第二光电耦合器的光敏三极管的集电极均通过分压电阻与电源相连接,所述第一光电耦合器的光敏三极管的发射极与所述第二光电耦合器的光敏三极管的发射极连接形成输出端,该输出端与所述智控单元相连接,且通 过一电阻接地;
当所述接点闭合时,闭合回路通电,所述第一光电耦合器导通,所述第二光电耦合器截止,所述第一光电耦合器的光敏三极管的发射极输出高电平;或者,所述第一光电耦合器截止,所述第二光电耦合器导通,所述第二光电耦合器的光敏三极管的发射极输出高电平;
当所述接点断开时,闭合回路被断电,所述第一光电耦合器、所述第二光电耦合器均截止,所述第一光电耦合器和所述第二光电耦合器的光敏三极管的发射极输出低电平。
进一步地,所述接点采样电路还包括第一稳压二极管组和第二稳压二极管组,所述第一稳压二极管组和所述第二稳压二极管组并联在所述接点信号控制回路上,且所述第一稳压二极管组和所述第二稳压二极管组的连接方向相反;所述第一稳压二极管组和所述第二稳压二极管组均由一个、两个或者两个以上的稳压二极管串联构成。或者,还可以用二极管代替稳压二极管。
再进一步地,所述第一稳压二极管组包括串联的第一稳压二极管和第二稳压二极管,所述第一稳压二极管的负极连接所述第二稳压二极管的正极;所述第二稳压二极管组包括串联的第三稳压二极管和第四稳压二极管,所述第三稳压二极管的正极连接所述第四稳压二极管的负极。
更优选地,所述在线校验接点信号采样单元设有接点采样电路,所述接点采样电路包括第一霍尔电流传感器和第二霍尔电流传感器,所述第一霍尔电流传感器、所述第二霍尔电流传感器和所述气体密度继电器的接点串联形成闭合回路,且所述气体密度继电器的接点连接在所述第一霍尔电流传感器和所述第二霍尔电流传感器之间;所述第一霍尔电流传感器的输出端与所述第二霍尔电流传感器的输出端均与所述智控单元相连接;
当所述接点闭合时,闭合回路通电,所述第一霍尔电流传感器和所述第二霍尔电流传感器之间流经电流,产生感应电势;
当所述接点断开时,闭合回路被断电,所述第一霍尔电流传感器和所述第二霍尔电流传感器之间无电流流过,产生的感应电势为零。
更优选地,所述在线校验接点信号采样单元设有接点采样电路,所述接点采样电路包括:第一可控硅、第二可控硅、第三可控硅和第四可控硅;
第一可控硅、第三可控硅串联,第二可控硅、第四可控硅串联后与第一可控硅、第三可控硅构成的串联线路形成串并联闭合回路,所述气体密度继电器的接点的一端通过线路与所述第一可控硅、第三可控硅之间的线路电连接,另一端通过线路与所述第二可控硅、第四可 控硅之间的线路电连接。
进一步地,所述第一可控硅的阴极与智控单元相连接,所述第一可控硅的阳极与所述第三可控硅的阴极相连接;所述第一可控硅和所述第三可控硅的控制极与所述智控单元相连接;所述第二可控硅的阴极与智控单元相连接,所述第二可控硅的阳极与所述第四可控硅的阴极相连接;所述第二可控硅和所述第四可控硅的控制极与所述智控单元相连接。
优选地,所述智控单元获取气体密度检测传感器采集的气体密度值;或者,所述智控单元获取气体密度检测传感器采集的压力值和温度值,完成所述气体密度继电器对气体密度的在线监测。即完成所述气体密度继电器对所监测的电气设备的气体密度的在线监测。
更优选地,所述智控单元采用均值法(平均值法)计算所述气体密度值,所述均值法为:在设定的时间间隔内,设定采集频率,将全部采集得到的不同时间点的N个气体密度值进行平均值计算处理,得到其气体密度值;或者,
在设定的时间间隔里、设定温度间隔步长,把全部温度范围内采集得到的N个不同温度值对应的密度值进行平均值计算处理,得到其气体密度值;或者,
在设定的时间间隔里、设定压力间隔步长,把全部压力变化范围内采集得到的N个不同压力值对应的密度值进行平均值计算处理,得到其气体密度值;
其中,N为大于等于1的正整数。
优选地,所述智控单元获取所述气体密度继电器发生接点信号动作或切换时、所述气体密度检测传感器采集的气体密度值,完成所述气体密度继电器的在线校验;或者,
所述智控单元获取所述气体密度继电器发生接点信号动作或切换时、所述气体密度检测传感器采集的压力值和温度值,并按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值,完成所述气体密度继电器的在线校验。
优选地,所述气体密度继电器带有比对密度值输出信号,该比对密度值输出信号与所述智控单元相连接;或者,所述气体密度继电器带有比对压力值输出信号,该比对压力值输出信号与所述智控单元相连接。
更优选地,当所述气体密度继电器输出比对密度值输出信号时,智控单元采集当时的气体密度值,进行比对,完成对气体密度继电器的比对密度值校验,智控单元或后台对比对结果进行判定,若误差超差,发出异常提示;或者,
当所述气体密度继电器输出比对密度值输出信号时,智控单元采集当时的气体密度值,进行比对,完成对气体密度继电器和气体密度检测传感器的相互校验,智控单元或后台对比 对结果进行判定,若误差超差,发出异常提示;或者,
当所述气体密度继电器输出比对压力值输出信号时,智控单元采集当时的压力值,进行比对,完成对气体密度继电器和气体密度检测传感器的相互校验,智控单元或后台对比对结果进行判定,若误差超差,发出异常提示。
优选地,本申请的具有在线采样校验功能的电气系统包括至少两个气体密度检测传感器,每一个气体密度检测传感器包括一个压力传感器、一个温度传感器;各个气体密度检测传感器检测的气体密度值进行比对,完成对各个气体密度检测传感器的相互校验。
优选地,所述气体密度检测传感器包括至少两个压力传感器,各个压力传感器采集的压力值进行比对,完成对各个压力传感器的相互校验。
优选地,所述气体密度检测传感器包括至少两个温度传感器,各个温度传感器采集的温度值进行比对,完成对各个温度传感器的相互校验。
优选地,所述气体密度检测传感器包括至少一个压力传感器和至少一个温度传感器;各个压力传感器采集的压力值和各个温度传感器采集的温度值随机排列组合,并将各个组合按照气体压力-温度特性换算成为多个对应20℃的压力值,即气体密度值,各个气体密度值进行比对,完成对各个压力传感器、各个温度传感器的相互校验;或者,各个压力传感器采集的压力值和各个温度传感器采集的温度值历遍所有排列组合,并将各个组合按照气体压力-温度特性换算成为多个对应20℃的压力值,即气体密度值,各个气体密度值进行比对,完成对各个压力传感器、各个温度传感器的相互校验;或者,将各个压力传感器、各个温度传感器得到的多个气体密度值与气体密度继电器输出比对密度值输出信号进行比对,完成对气体密度继电器、各个压力传感器、各个温度传感器的相互校验。
优选地,所述气体密度继电器完成校验后,电气系统自动生成气体密度继电器的校验报告,如有异常,发出报警,并上传至远端,或发送至指定的接收机上。
优选地,所述智控单元基于微处理器的嵌入式系统内嵌算法及控制程序,自动控制整个校验过程,包含所有外设、逻辑及输入输出。
更优选地,所述智控单元基于通用计算机、工控机、ARM芯片、AI芯片、CPU、MCU、FPGA、PLC等、工控主板、嵌入式主控板等内嵌算法及控制程序,自动控制整个校验过程,包含所有外设、逻辑及输入输出。
优选地,所述智控单元设有电气接口,所述电气接口完成测试数据存储,和/或测试数据导出,和/或测试数据打印,和/或与上位机进行数据通讯,和/或输入模拟量、数字量信息。
优选地,所述智控单元还包括实现远距离传输测试数据、和/或校验结果的通讯模块。
更优选地,所述通讯模块的通讯方式为有线通讯或无线通讯方式。
进一步地,所述有线通讯方式包括RS232总线、RS485总线、CAN-BUS总线、4-20mA、Hart、IIC、SPI、Wire、同轴电缆、PLC电力载波、电缆线中的一种或几种。
进一步地,所述无线通讯方式包括NB-IOT、2G/3G/4G/5G、WIFI、蓝牙、Lora、Lorawan、Zigbee、红外、超声波、声波、卫星、光波、量子通信、声呐中的一种或几种。
优选地,所述智控单元上还设有时钟,所述时钟被配置为用于定期设置所述气体密度继电器的校验时间,或者记录测试时间,或者记录事件时间。
优选地,所述智控单元的控制通过现场控制,和/或通过后台控制。
更优选地,所述电气系统根据所述后台的设置或指令,完成气体密度继电器的在线校验;或者,根据设置的所述气体密度继电器的校验时间,完成所述气体密度继电器的在线校验。
优选地,所述智控单元的电路包括智控单元保护电路,所述智控单元保护电路包括、但不限于抗静电干扰电路(如ESD、EMI)、抗浪涌电路、电快速保护电路、抗射频场干扰电路、抗脉冲群干扰电路、电源短路保护电路、电源接反保护电路、电接点误接保护电路、充电保护电路中的一种或者几种。
优选地,所述电气系统还包括多通接头,所述气体密度继电器、所述阀、所述压力调节机构设置在所述多通接头上;或者,所述智控单元设置在多通接头上。
更优选地,所述气体密度继电器的气路,连接所述多通接头的第一接头;所述压力调节机构的气路,连接所述多通接头的第二接头,所述第一接头与所述第二接头连通,从而将所述压力调节机构的气路与所述气体密度继电器的气路相连通;所述阀的出气口与所述多通接头的第三接头连通,所述第三接头与所述第一接头连通,从而将所述阀的出气口与所述压力调节机构的气路、和/或所述气体密度继电器的气路相连通。
进一步地,所述多通接头的所述第三接头处,设有与所述电气设备对接的连接部,所述阀内嵌于所述连接部内。
更优选地,所述气体密度继电器的壳体上设有连接头,连接头固定在所述电气设备的气室内;或者,优选地,所述气体密度继电器的壳体固定在所述多通接头上,所述多通接头固定在所述气室内。
优选地,所述气体密度继电器、所述阀、所述压力调节机构通过连接管连接在一起。
更优选地,所述压力调节机构的气路,通过第一连接管与所述气体密度继电器的气路相 连通;所述阀的出气口通过第二连接管直接与所述气体密度继电器的气路相连通,或者所述阀的出气口通过第二连接管连接所述压力调节机构的气路,从而将所述阀与所述气体密度继电器的气路相连通。
优选地,所述电气系统还包括自封阀,所述自封阀安装于所述电气设备与所述阀之间;或者,所述阀安装于所述电气设备与所述自封阀之间。
优选地,所述电气系统,还包括补气接口。
更优选地,所述补气接口设置在所述压力调节机构上;或者,所述补气接口设置在所述电气设备上;或者,所述补气接口设置在所述多通接头上;或者,所述补气接口设置在所述自封阀上。
更优选地,所述电气系统能够统计补气次数;或补气量;或补气时间。
优选地,所述电气系统可以进行在线补气。
优选地,所述电气系统可以进行在线气体干燥。
优选地,所述电气系统还包括:用于人机交互的显示界面,所述显示界面与所述智控单元相连接,实时显示当前的校验数据,和/或支持数据输入。具体地,包括实时在线气体密度值显示、压力值显示、温度值显示、变化趋势分析、历史数据查询、实时告警等。
更优选地,所述电气系统支持气体密度继电器的基本信息输入,所述基本信息包括、但不限于出厂编号、精度要求、额定参数、制造厂、运行位置中的一种或几种。
优选地,所述电气系统还包括:微水传感器,所述微水传感器分别与所述气体密度继电器和所述智控单元相连接。
更优选地,所述电气系统还包括:气体循环机构,所述气体循环机构分别与所述气体密度继电器和所述智控单元相连接,所述气体循环机构包括毛细管、密封腔室和加热元件,通过所述加热元件加热,实现气体流动,在线监测气体内部的微水值。
进一步地,所述微水传感器可以安装于所述气体循环机构的密封腔室、毛细管中、毛细管口、毛细管外。
优选地,所述电气系统还包括:分解物传感器,所述分解物传感器分别与所述气体密度继电器和所述智控单元相连接。
优选地,所述电气系统还包括用于监控的摄像头。
优选地,所述电气系统在线监测气体密度值,或密度值、压力值、温度值;或者,所述电气系统远传监测的气体密度值,或密度值、压力值、温度值。
优选地,所述电气系统具有自诊断功能,能够对异常及时告示。例如断线、短路报警、传感器损坏等告示。
优选地,所述电气系统具有安全保护功能:当气体密度值、或压力值低于设定值时,就自动停止校验,并发出告示信号。
优选地,所述电气系统设有加热器和/或散热器(例如,风扇),在温度低于设定值时开启加热器,在温度高于设定值时开启散热器(例如,风扇)。
优选地,所述气体密度继电器还包括接触电阻检测单元,所述接触电阻检测单元与接点信号相连接或直接与所述气体密度继电器内的信号发生器相连接;在在线校验接点信号采样单元的控制下,气体密度继电器的接点信号与其控制回路隔离,在气体密度继电器的接点信号发生动作时,和/或在接到检测接点接触电阻的指令时,接触电阻检测单元能够检测到气体密度继电器的接点接触电阻值。
优选地,所述气体密度继电器还包括绝缘电阻检测单元,所述绝缘电阻检测单元与接点信号相连接或直接与所述气体密度继电器内的信号发生器相连接;在在线校验接点信号采样单元的控制下,气体密度继电器的接点信号与其控制回路隔离,在气体密度继电器的接点信号发生动作时,和/或在接到检测接点绝缘电阻的指令时,绝缘电阻检测单元能够检测到气体密度继电器的接点绝缘电阻值,进而检测气体密度继电器的绝缘性能。
本申请第二个方面提供了一种气体密度继电器的校验方法,包括:
正常工作状态时,气体密度继电器监控电气设备内的气体密度值;
气体密度继电器根据设定的校验时间,以及气体密度值情况,在允许校验气体密度继电器的状况下:
通过智控单元关闭阀;
通过智控单元驱动压力调节机构,使气体压力缓慢下降,使得气体密度继电器发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号动作值,完成气体密度继电器的接点信号动作值的校验工作;
当所有的接点信号校验工作完成后,智控单元开启阀。
优选地,一种气体密度继电器的校验方法,包括:
正常工作状态时,气体密度继电器监控电气设备内的气体密度值,同时气体密度继电器通过气体密度检测传感器以及智控单元在线监测电气设备内的气体密度值;
气体密度继电器根据设定的校验时间,以及气体密度值情况,在允许校验气体密度继电器的状况下:
通过智控单元关闭阀;
通过智控单元把在线校验接点信号采样单元调整到校验状态,在校验状态下,在线校验接点信号采样单元切断气体密度继电器的接点信号控制回路,将气体密度继电器的接点连接至智控单元;
通过智控单元驱动压力调节机构,使气体压力缓慢下降,使得气体密度继电器发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号动作值,完成气体密度继电器的接点信号动作值的校验工作;
通过智控单元驱动压力调节机构,使气体压力缓慢上升,使得气体密度继电器发生接点复位,接点复位通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点复位时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号返回值,完成气体密度继电器的接点信号返回值的校验工作;
当所有的接点信号校验工作完成后,智控单元开启阀,并将在线校验接点信号采样单元调整到工作状态,气体密度继电器的接点信号控制回路恢复运行正常工作状态。
优选地,所述接点信号包括报警、和/或闭锁。
优选地,所述气体密度检测传感器包括至少一个压力传感器和至少一个温度传感器;或者,所述气体密度检测传感器为压力传感器和温度传感器组成的气体密度变送器;或者,所述气体密度检测传感器为采用石英音叉技术的密度检测传感器。
优选地,所述气体密度继电器完成校验后,如有异常,能够自动发出报警,并上传至远端、或发送至指定的接收机上。
优选地,所述校验方法还包括:现场就地显示气体密度值和校验结果,或通过后台显示气体密度值和校验结果。
优选地,所述校验方法还包括:智控单元的控制通过现场控制,和/或通过后台控制。
与现有技术相比,本发明的技术方案具有以下有益效果:
本申请提供一种具有在线采样校验功能的电气系统及其校验方法,用于高压电气设备,包括电气设备、气体密度继电器、气体密度检测传感器、压力调节机构、阀、在线校验接点信号采样单元和智控单元。通过智控单元关闭阀,使得气体密度继电器在气路上与电气设备 隔断;通过压力调节机构调节压力的升降,使得气体密度继电器发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的密度值,检测出气体密度继电器的报警和/或闭锁接点信号动作值和/或返回值,无须检修人员到现场就能完成气体密度继电器的校验工作,提高了电网的可靠性,提高了工作效率,降低了运维成本。同时本发明技术整个校验过程可以实现SF 6气体的零排放,符合环保规程要求。
附图说明
构成本申请的一部分附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是实施例一的具有在线采样校验功能的电气系统的结构示意图;
图2是实施例一的电气系统的控制电路示意图;
图3是实施例二的具有在线采样校验功能的电气系统的结构示意图;
图4是实施例三的具有在线采样校验功能的电气系统的结构示意图;
图5是实施例四的具有在线采样校验功能的电气系统的结构示意图;
图6是实施例五的具有在线采样校验功能的电气系统的结构示意图;
图7是实施例六的具有在线采样校验功能的电气系统的结构示意图;
图8是实施例七的具有在线采样校验功能的电气系统的结构示意图;
图9是实施例八的具有在线采样校验功能的电气系统的结构示意图;
图10是实施例九的具有在线采样校验功能的电气系统的结构示意图;
图11是实施例十的具有在线采样校验功能的电气系统的结构示意图;
图12是实施例十一的具有在线采样校验功能的电气系统的结构示意图;
图13是实施例十二的具有在线采样校验功能的电气系统的结构示意图;
图14是实施例十三的电气系统的控制电路示意图;
图15是实施例十四的电气系统的控制电路示意图;
图16是实施例十五的电气系统的控制电路示意图;
图17是实施例十六的电气系统的控制电路示意图;
图18是实施例十七的电气系统的控制电路示意图;
图19是实施例十八的电气系统的控制电路示意图;
图20是实施例十九的一种电气系统的气路结构示意图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例一:
如图1所示,本发明实施例一提供的一种具有在线采样校验功能的电气系统,包括:电气设备8、气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、多通接头9和补气接口10。所述气体密度继电器1、阀4、压力传感器2、压力调节机构5和补气接口10设置在多通接头9上。
具体地,所述电气设备8,其内部设有气室,所述气室充有绝缘气体。所述阀4的进气口密封连接于电气设备8上,与电气设备8的气室相连通,所述阀4的出气口通过多通接头9与气体密度继电器1相连通;所述压力传感器2通过多通接头9在气路上与气体密度继电器1相连通;所述压力调节机构5通过多通接头9与气体密度继电器1相连通;在线校验接点信号采样单元6分别与气体密度继电器1和智控单元7相连接;所述阀4、压力传感器2、温度传感器3和压力调节机构5分别与智控单元7相连接;所述补气接口10与所述多通接头9相连通。
图2为本发明实施例一的一种具有在线采样校验功能的电气系统的控制电路示意图。如图2所示,本实施例的在线校验接点信号采样单元6设有保护电路,包括第一连接电路和第二连接电路,第一连接电路连接所述气体密度继电器1的接点与接点信号控制回路,第二连接电路连接气体密度继电器1的接点与所述智控单元7,在非校验状态下,第二连接电路断开,第一连接电路闭合;在校验状态下,在线校验接点信号采样单元6切断第一连接电路,连通第二连接电路,将气体密度继电器1的接点与智控单元7相连接。
具体地,第一连接电路包括第一继电器J1,第二连接电路包括第二继电器J2。所述第一继电器J1设有常闭接点J11和J12,所述常闭接点J11和J12串联在所述接点信号控制回路中;所述第二继电器J2设有常开接点J21和J22,所述常开接点J21和J22连接在所述气体密度继电器1的接点P J上;还可以,第一继电器J1和第二继电器J2合为一体,即为具有常开常闭接点的继电器。在非校验状态下,所述常闭接点J11和J12闭合,所述常开接点J21和J22断开,所述气体密度继电器实时监测所述接点P J的输出状态;在校验状 态下,所述常闭接点J11和J12断开,所述常开接点J21和J22闭合,所述气体密度继电器1的接点P J通过所述常开接点J21和J22与所述智控单元7相连接。
所述智控单元7,主要由处理器71(U1)、电源72(U2)组成。处理器71(U1)可以是通用计算机、工控机、CPU、单片机、ARM芯片、AI芯片、MCU、FPGA、PLC等、工控主板、嵌入式主控板等,以及其它智能集成电路。电源72(U2)可以是开关电源、交流220V、直流电源、LDO、可编程电源、太阳能、蓄电池、充电电池、电池等。压力采集P的压力传感器2可以是压力传感器、压力变送器等各种感压元件。温度采集T的温度传感器3可以是温度传感器、温度变送器等各种感温元件。阀4可以是电磁阀、电动阀、气动阀、球阀、针阀、调节阀、截门等可开启和关断气路,甚至控制流量的元件。半自动的还可以是手动阀。压力调节机构5可以是电动调节活塞、电动调节缸、增压泵、气瓶加压、以及阀门、电磁阀、流量控制器等。半自动的还可以是手动调节的压力调节机构。
工作原理:
智控单元7根据压力传感器2、温度传感器3监测到电气设备的气体压力P和温度T,得到相应的20℃压力值P 20(即气体密度值)。当需要校验气体密度继电器1时,此时如果气体密度值P 20≥设定的安全校验密度值P S,智控单元7控制所述阀4的关闭,使得气体密度继电器1在气路上与电气设备8隔断。
接着,智控单元7控制断开气体密度继电器1的接点信号控制回路,即在线校验接点信号采样单元6的第一继电器J1的常闭接点J11和J12断开,使得在线校验气体密度继电器1时不会影响电气设备8的安全运行,也不会在校验时,误发报警信号,或闭锁控制回路。因为在开始校验前,已经进行气体密度值P 20≥设定的安全校验密度值P S的监测和判断,电气设备8的气体是在安全运行范围内的,况且气体泄漏是个缓慢的过程,校验时是安全的。同时,通过智控单元7连通气体密度继电器1的接点的接点采样电路,即在线校验接点信号采样单元6的第二继电器J2的常开接点J21和J22闭合,此时气体密度继电器1的接点P J就通过第二继电器J2的常开接点J21和J22与智控单元7相连接。
然后,智控单元7控制压力调节机构5的驱动部件52(可以采用电机(马达)和齿轮实现,其方式多样、灵活),进而调节压力调节机构5发生体积变化,使气体密度继电器1的气体的压力逐步下降,使得气体密度继电器1发生接点信号动作,其接点信号动作通过在线校验接点信号采样单元6的第二继电器J2上传到智控单元7,智控单元7根据接点信号动作时测得的压力值P和温度T值,按照气体特性换算成为对应20℃时的压力值P20(密 度值),就可以检测到气体密度继电器的接点动作值P D20。待气体密度继电器1的报警和/或闭锁信号的接点信号动作值全部检测出来后,再通过智控单元7控制压力调节机构5的电机(马达、或变频电机),调节压力调节机构5,使气体密度继电器1的气体的压力逐步上升,测试到气体密度继电器1的报警和/闭锁接点信号的返回值。如此反复校验多次(例如2~3次),然后计算其平均值,这样就完成了气体密度继电器的校验工作。
校验完成后,在线校验接点信号采样单元6的第二继电器J2的常开接点J21和J22断开,此时气体密度继电器1的接点P J就通过断开第二继电器J2的接点常开J21和J22与智控单元7不相连接。智控单元7控制阀4开启,使得气体密度继电器1在气路上与电气设备8相连通。接着,在线校验接点信号采样单元6的第一继电器J1的常闭接点J11和J12闭合,气体密度继电器1的接点信号控制回路正常工作,气体密度继电器安全监控电气设备8的气体密度,使电气设备8安全可靠工作。这样就方便完成气体密度继电器的在线校验工作,同时不会影响电气设备8的安全运行。
当气体密度继电器1完成了校验工作后,电气系统就进行判定,可以告示检测结果。方式灵活,具体地:1)电气系统可以就地告示,例如通过指示灯、数码或液晶等显示;2)或通过在线远传通讯方式实施上传,例如可以上传到在线监测系统的后台;3)或通过无线上传,上传到特定的终端,例如可以无线上传手机;4)或通过别的途径上传;5)或把异常结果通过报警信号线或专用信号线上传;6)单独上传,或与其它信号捆绑上传。总之,电气系统完成气体密度继电器1的在线校验工作后,如有异常,能够自动发出报警,可以上传到远端,或可以发送到指定的接收机上,例如发送到手机。或者,完成校验工作后,如有异常,智控单元7可以通过气体密度继电器1的报警接点信号上传远端(监控室、后台监控平台等),以及还可以就地显示告示。简单版的在线校验,可以把校验有异常的结果通过报警信号线上传。可以以一定的规律上传,例如异常时,在报警信号接点并联一个接点,有规律地闭合和断开,可以通过解析得到状况;或通过独立的校验信号线上传。具体可以是状态好上传,或有问题上传,或把校验结果通过单独的校验信号线上传,或通过就地显示,就地报警,或通过无线上传,或与智能手机联网上传。其通信方式可以是有线或无线,有线的通讯方式可以为RS232、RS485、CAN-BUS等工业总线、光纤以太网、4-20mA、Hart、IIC、SPI、Wire、同轴电缆、PLC电力载波等;无线通讯方式可以为2G/3G/4G/5G等、WIFI、蓝牙、Lora、Lorawan、Zigbee、红外、超声波、声波、卫星、光波、量子通信、声呐、传感器内置5G/NB-IOT通讯模块(如NB-IOT)等。总之,可以多重方式,多种组合, 充分保证电气系统的可靠性能。
电气系统具有安全保护功能,即低于设定值时,电气系统自动不再对气体密度继电器1进行在线校验,而发出告示信号。例如,当检测到气体密度值小于设定值P S时,就不再校验;只有当气体密度值≥(报警压力值+0.02MPa)时,才能进行在线校验。
电气系统可以根据设定的时间进行在线校验,也可以根据设定的温度(例如极限高温、高温、极限低温、低温、常温、20度等)进行在线校验。高温、低温、常温、20℃环境温度在线校验时,其误差判定要求是不一样的,例如20℃环境温度校验时,气体密度继电器的精度要求可以是1.0级、或1.6级,高温时可以是2.5级。具体可以根据温度的要求,按照相关标准实施。例如按照DL/T 259《六氟化硫气体密度继电器校验规程》中的4.8条温度补偿性能规定,每个温度值所对应的精度要求。
电气系统能够根据气体密度继电器1在不同的温度下,不同的时间段进行其误差性能的比较。即不同时期,相同温度范围内的比较,判定气体密度继电器1、电气设备8的性能,具有历史各个时期的比对、历史与现在的比对。
电气设备可以反复校验多次(例如2~3次),根据每次的校验结果,计算其平均值。必要时,可以随时对气体密度继电器1进行在线校验。
其中,气体密度继电器1,包括:双金属片补偿的气体密度继电器、气体补偿的气体密度继电器、或者双金属片和气体补偿混合型的气体密度继电器;完全机械的气体密度继电器、数字型气体密度继电器、机械和数字结合型的气体密度继电器;带指示的密度继电器(指针显示的密度继电器、或数码显示的密度继电器、液晶显示的密度继电器),不带指示的密度继电器(即密度开关);SF6气体密度继电器、SF6混合气体密度继电器、N2气体密度继电器、其它气体密度继电器等等。
其中,压力传感器2的类型,包括:绝对压力传感器、相对压力传感器、或绝对压力传感器和相对压力传感器,数量可以为若干个。压力传感器的形式可以是扩散硅压力传感器、MEMS压力传感器、芯片式压力传感器、线圈感应压力传感器(如巴登管附带感应线圈的压力测量传感器)、电阻压力传感器(如巴登管附带滑线电阻的压力测量传感器),可以是模拟量压力传感器,也可以是数字量压力传感器。压力采集为压力传感器、压力变送器等各种感压元件,例如扩散硅式、蓝宝石式、压电式、应变片式(电阻应变片式、陶瓷应变片式)。
其中,温度传感器3可以是:热电偶、热敏电阻、半导体式;可以是接触式和非接触式;可以是热电阻和热电偶。总之,温度采集可以用温度传感器、温度变送器等各种感温元 件。
其中,阀4的控制可采用多种传动方式,如手动、电动、液动、气动、涡轮、电磁动、电磁液动、电液动、气液动、正齿轮、伞齿轮驱动等;可以在压力、温度或其它形式传感信号的作用下,按预定的要求动作,或者不依赖传感信号而进行简单的开启或关闭,阀门依靠驱动或自动机构使启闭件作升降、滑移、旋摆或回转运动,从而改变其流道面积的大小以实现其控制功能。所述阀4按驱动方式可以是自动阀类、动力驱动阀类和手动阀类。而自动阀可以包括:电磁驱动、电磁-液压驱动、电-液压驱动、涡轮驱动、正齿轮驱动、伞齿轮驱动、气动驱动、液压驱动、气体-液压驱动、电动驱动、电机(马达)驱动。所述阀4可以自动或手动、半自动。校验过程可以是自动完成的,也可以通过人工配合半自动完成。阀4通过自封阀、手动阀、或不拆卸阀与电气设备8直接或间接连接,一体化或分开来连接。阀4根据需要,可以是常开型、或常闭型,可以是单向型,或双向型。总之,通过电控阀实现开启或关闭气路,而电控阀采用的方式可以是电磁阀、电控球阀、电动阀、电控比例阀等等。
本实施例的压力调节机构5为一端开口的腔体,所述腔体内有活塞51,所述活塞51设有密封圈510,所述活塞51的一端连接有一个调节杆,所述调节杆的外端连接驱动部件52,所述活塞51的另一端伸入所述开口内,且与所述腔体的内壁相接触,所述驱动部件52驱动所述调节杆进而带动所述活塞51在所述腔体内移动。所述驱动部件52包括、但不限于磁力、电机(变频电机或步进电机)、往复运动机构、卡诺循环机构、气动元件中的一种。
所述在线校验接点信号采样单元6主要完成气体密度继电器1的接点信号采样。即在线校验接点信号采样单元6的基本要求或功能是:1)在校验时不影响电气设备的安全运行,就是在校验时,气体密度继电器1的接点信号发生动作时,不会影响电气设备的安全运行;2)气体密度继电器1的接点信号控制回路不影响气体密度继电器的性能,特别是不影响智控单元7的性能,不会使得气体密度继电器发生损坏、或影响测试工作。
所述智控单元7的基本要求或功能是:通过智控单元7完成对阀4的控制、压力调节机构5的控制和信号采集。实现:能够检测到气体密度继电器1的接点信号发生动作时的压力值和温度值,换算成对应的20℃时的压力值P 20(密度值),即能够检测到气体密度继电器1的接点动作值P D20,完成气体密度继电器1的校验工作。或者,能够直接检测到气体密度继电器1的接点信号发生动作时的密度值P D20,完成气体密度继电器1的校验工作。
当然,智控单元7还可实现:测试数据存储;和/或测试数据导出;和/或测试数据可打 印;和/或可与上位机进行数据通讯;和/或可输入模拟量、数字量信息。所述智控单元7还可以包括通讯模块,通过通讯模块实现远距离传输测试数据和/或校验结果等信息;当气体密度继电器1的额定压力值输出信号时,智控单元7同时采集当时的密度值,完成气体密度继电器1的额定压力值校验。
电气设备,包括SF6气体电气设备、SF6混合气体电气设备、环保型气体电气设备、或其它绝缘气体电气设备。具体地,电气设备包括GIS、GIL、PASS、断路器、电流互感器、电压互感器、变压器、充气柜、环网柜等等。
电气系统具有压力、温度测量及软件换算功能。在不影响电气设备8安全运行的前提下,能够在线检测出气体密度继电器1的报警和/或闭锁接点动作值和/或返回值。当然报警和/闭锁接点信号的返回值也可以根据要求不进行测试。
电气系统完成气体密度继电器的校验时,会自动进行相互对比判断,如果误差大,就会发出异常提示:气体密度继电器或压力传感器、温度传感器有问题。即电气系统能够完成气体密度继电器和压力传感器、温度传感器、或密度变送器的相互校验功能,具有人工智能校对能力;完成校验工作后,能够自动生成校验报告,如有异常,能够自动发出报警,或发送到指定的接收机上,例如发送到手机;现场就地显示气体密度值和校验结果,或通过后台显示气体密度值和校验结果,具体方式可以灵活;具有实时在线气体密度值、压力值、温度值等数据显示、变化趋势分析、历史数据查询、实时告警等功能;可以在线监测气体密度值,或气体密度值、压力值、温度值;具有自诊断功能,能对异常及时告示,例如断线、短路报警、传感器损坏等告示;能根据电气系统在不同的温度下、不同的时间段进行其误差性能的比较。即不同时期、相同温度范围内的比较,作出判定电气系统的性能。具有历史各个时期的比对、历史与现在的比对。可对电气设备8本身的气体密度值、气体密度继电器1、压力传感器2、温度传感器3进行正常和异常的判定和分析、比较;还含有分析系统(专家管理分析系统),对气体密度监测、气体密度继电器、监测元件进行检测分析、判定,知道问题点在哪里;还可以对气体密度继电器1的接点信号状态进行监测,并把其状态实施远传。可以在后台就知道气体密度继电器1的接点信号状态是断开的还是闭合的,从而多一层监控,提高可靠性;还能对气体密度继电器1的温度补偿性能进行检测,或检测和判定;还能对气体密度继电器1的接点接触电阻进行检测,或检测和判定;具有数据分析、数据处理功能,能够对电气设备8进行相应的故障诊断和预测。
只要压力传感器2、温度传感器3、气体密度继电器1相互之间的测试数据是吻合的、 正常的,就可以说明电气系统是正常的,可以不用校验气体密度继电器,也不要对其它装置进行校验,可以全寿命免校验。除非,变电站中某一个电气设备的压力传感器2、温度传感器3、气体密度继电器1相互之间的测试数据是不吻合的、异常的,才安排维修人员去处理。对于吻合的、正常的情况,无需进行校验,这样一来,大大提高了可靠性,提高了工作效率,降低了运维成本。
实施例二:
如图3所示,本发明实施例二提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10、自封阀11。所述自封阀11的一端密封连接于电气设备8上,所述自封阀11的另一端与阀4相连通;所述阀4的进气口密封连接于自封阀11的上,所述阀4的出气口与多通接头9相连接。气体密度继电器1安装在多通接头9上;所述压力传感器2、温度传感器3设置在气体密度继电器1上,压力传感器2在气路上与气体密度继电器1相连通;压力调节机构5安装在多通接头9上,与气体密度继电器1的气路连通;在线校验接点信号采样单元6和智控单元7设置在一起。所述压力传感器2、温度传感器3、阀4和压力调节机构5分别与智控单元7相连接。所述补气接口10与所述多通接头9相连通。
与实施例一有区别的是,本实施例的压力调节机构5主要由气囊53、驱动部件52组成。压力调节机构5根据智控单元7的控制,使得驱动部件52推动气囊53发生体积变化,进而完成压力的升降。通过该压力调节机构5调节压力,使得气体密度继电器1发生接点动作,接点动作通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据气体密度继电器1发生接点动作时的压力值以及温度值,换算成对应的密度值,检测到气体密度继电器1的报警和/或闭锁接点动作值和/或返回值,从而完成对气体密度继电器1的校验工作。
实施例三:
如图4所示,本发明实施例三提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、电动阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10和阀门12。阀门12的一端密封连接于电气设备8上,阀门12的另一端与阀4相连通;阀4的进气口密封连接于阀门12的上,阀4的出气口与多通接头9相连接。气体密度继电器1安装在多通接 头9上;压力传感器2、温度传感器3、在线校验接点信号采样单元6和智控单元7设置在一起。压力调节机构5安装在多通接头9上,压力传感器2通过多通接头9在气路上与气体密度继电器1相连通;补气接头10设置在压力调节机构5上。所述压力传感器2、温度传感器3、阀4、压力调节机构5分别与智控单元7相连接。
与实施例一不同的是,所述压力传感器2、温度传感器3、在线校验接点信号采样单元6和智控单元7设置在一起。
实施例四:
如图5所示,本发明实施例四提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10和自封阀11。自封阀11的一端密封连接于电气设备8上,自封阀11的另一端与阀4的进气口相连通;阀4的出气口通过多通接头9与气体密度继电器1、压力传感器2、压力调节机构5、补气接口10在气路上相连通。压力传感器2、温度传感器3设置一起,可以组成为气体密度变送器,直接得到气体密度值、压力值、温度值;压力调节机构5通过多通接头9与气体密度继电器1相连通;在线校验接点信号采样单元6和智控单元7设置在一起。压力传感器2、温度传感器3直接或间接与智控单元7相连接;阀4与智控单元7相连接;压力调节机构5与智控单元7相连接。
与实施例一有区别的是:
1)本实施例的压力调节机构5主要由波纹管54、驱动部件52组成。波纹管54与气体密度继电器1密封连接在一起,组成一个可靠的密封腔体。压力调节机构5根据智控单元7的控制,使得驱动部件52推动波纹管54发生体积变化,密封腔体发生体积变化,进而完成压力的升降。
2)所述压力传感器2、温度传感器3设置一起组成为气体密度变送器,直接得到气体的密度值、压力值、温度值。通过该压力调节机构5调节压力,使得气体密度继电器1发生接点动作,接点动作通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据气体密度继电器1的接点动作时的密度值,甚至压力值以及温度值,检测到气体密度继电器1的报警和/或闭锁接点动作值和/或返回值,完成对气体密度继电器1的校验工作。或者只检测得到气体密度继电器1的报警和/或闭锁接点动作值,完成对气体密度继电器1的校验工作。
实施例五:
如图6所示,本发明实施例五提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10。阀4的进气口密封连接于电气设备8上,阀4的出气口与多通接头9相连接。阀4密封在第一壳体41内部,阀4的控制电缆线通过与第一壳体41密封的第一引出线密封件42引出,这样设计确保阀4保持密封,能够长期可靠工作。补气接口10直接设置在电气设备8上,可以对电气设备8进行补气或微水测试。气体密度继电器1安装在多通接头9上;压力传感器2、温度传感器3、在线校验接点信号采样单元6和气体密度继电器1设置在一起。压力传感器2在气路上与气体密度继电器1相连通;压力调节机构5安装在多通接头9上,压力调节机构5在气路上与气体密度继电器1相连通;压力调节机构5密封在第二壳体55内部,压力调节机构5的控制电缆线通过与第二壳体55密封的第二引出线密封件56引出,这样设计确保压力调节机构5长期可靠保证密封,能够长期可靠工作。压力传感器2、温度传感器3与智控单元7相连接;阀4与智控单元7相连接;压力调节机构5与智控单元7相连接。
与实施例一不同的是:1)阀4和压力调节机构5分别密封在其壳体内部。2)所述压力传感器2、温度传感器3、在线校验接点信号采样单元6和气体密度继电器1设置在一起。3)还含有微水传感器13,其一端与所述多通接头9连接,另一端与所述智控单元7连接,能够监测电气设备8的气室的微水含量,可以结合压力调节机构5对气体的循环,准确监测到气室内部的微水含量。4)补气接口10直接设置在电气设备8上。
实施例六:
如图7所示,本发明实施例六提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10、自封阀11。自封阀11的一端密封连接于电气设备8上,自封阀11的另一端与阀4相连通;阀4的进气口密封连接于自封阀11的上,阀4的出气口与多通接头9相连接。气体密度继电器1安装在多通接头9上;压力传感器2安装在多通接头9上,压力传感器2在气路上与气体密度继电器1相连通;压力调节机构5安装在多通接头9上,压力调节机构5与气体密度继电器1相连通;在线校验接点信号采样单元6和智控单元7设置在一起;温度传感器3设置在气体密度继电器1的壳体内部的温度补偿元件附件。压力传感器2、温度传感器3与智控单元7 相连接;阀4与智控单元7相连接;压力调节机构5与智控单元7相连接。补气接口10与多通接头9相连通。
与实施例一有明显区别的是,本实施例的压力调节机构5主要由气室57、加热元件58、保温件59组成。气室57外部(也可以内部)带有加热元件58,通过加热元件58加热,导致温度的变化,进而完成压力的升降。通过该压力调节机构5调节压力,使得气体密度继电器1发生接点动作,接点动作通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据气体密度继电器1的接点动作时的压力值以及温度值,换算成对应的密度值,检测到气体密度继电器的报警和/或闭锁接点动作值和/或返回值,完成对气体密度继电器的校验工作。
本实施例工作原理如下:当需要校验密度继电器时,智控单元7控制压力调节机构5的加热元件58进行加热,当压力调节机构5内的温度值与温度传感器3的温度值的温差达到设定值后,可以通过智控单元7关闭阀4,使得气体密度继电器1在气路上与电气设备8隔断;接着立即关断调节机构5的加热元件58,停止对加热元件58进行加热,压力调节机构5的密闭的气室57的气体的压力就逐步下降,使得气体密度继电器1发生报警和或闭锁接点分别动作,其接点动作通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据报警和或闭锁接点动作时的密度值,检测出气体密度继电器1的报警和/或闭锁接点动作值和/或返回值,完成对气体密度继电器1的校验工作。
实施例七:
如图8所示,本发明实施例七提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10。阀4的进气口密封连接于电气设备8上,阀4的出气口与多通接头9相连接。气体密度继电器1安装在多通接头9上;压力传感器2、温度传感器3、在线校验接点信号采样单元6、智控单元7设置在气体密度继电器1上。压力传感器2在气路上与气体密度继电器1相连通;压力调节机构5安装在多通接头9上,压力调节机构5与气体密度继电器1相连通。压力传感器2、温度传感器3、阀4、压力调节机构5分别与智控单元7相连接。
与实施例一有区别的是,本实施例的压力调节机构5主要由电磁阀、第二壳体55组成。压力调节机构5根据智控单元7的控制,使得电磁阀开启,发生压力变化,进而完成压力的升降。通过该压力调节机构5(电磁阀)调节压力,使得气体密度继电器1发生接点动作, 接点动作通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据气体密度继电器1的接点动作时的压力值以及温度值,换算成对应的密度值,检测到气体密度继电器1的报警和/或闭锁接点动作值。气体密度继电器1的接点动作值校验完成后,智控单元7就关闭电磁阀5,然后开启阀4,发生压力变化,进而完成压力的上升,使得气体密度继电器1发生接点复位,接点复位通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据气体密度继电器1的接点复位(返回)时的压力值以及温度值,换算成对应的密度值,检测到气体密度继电器1的报警和/或闭锁接点返回值,进而完成对气体密度继电器1的校验工作。
实施例八:
如图9所示,本发明实施例八提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10。阀4与电气设备8相连通的接口,连通至所述多通接头9的第一接头;气体密度继电器1通过阀4与多通接头9相连通;多通接头9的第二接头用于连接电气设备。补气接口10、温度传感器3也分别设置在多通接头9上。
与实施例一有区别的是,本实施例的压力调节机构5主要由活塞51、驱动部件52组成。活塞51的一端与气体密度继电器1密封连接在一起,组成一个可靠的密封腔体。压力调节机构5根据智控单元7的控制,使得驱动部件52推动活塞51运动,密封腔体发生体积变化,进而完成压力的升降。驱动部件52设置在密封腔体的外面,而活塞51设置在密封腔体的内部,驱动部件52应用电磁力推动活塞51运动。
实施例九:
如图10所示,本发明实施例九提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、补气接口10、自封阀11。所述自封阀11的一端密封连接于电气设备8上,其另一端与补气接口10以及阀4的进气口相连通;所述阀4的出气口通过连接管14连接所述压力调节机构5的气路,从而将所述阀4与所述气体密度继电器1相连通。
与实施例一不同的是,所述压力传感器2、温度传感器3、在线校验接点信号采样单元6、智控单元7和气体密度继电器1设置在一起;气体密度继电器1设置在压力调节机构5 上。
实施例十:
如图11所示,本发明实施例十提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、第一压力传感器21、第二压力传感器22、第一温度传感器31、第二温度传感器32、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10、自封阀11。自封阀11的一端密封连接于电气设备8上,自封阀11的另一端与阀4的进气口相连通;阀4的出气口与多通接头9相连接。气体密度继电器1、第二压力传感器22、第二温度传感器32、压力调节机构5、补气接口10设置在多通接头9上;第一压力传感器21、第一温度传感器31设置在压力调节机构5上。第一压力传感器21、第二压力传感器22、第一温度传感器31、第二温度传感器32分别与智控单元7相连接。第一压力传感器21、第二压力传感器22、气体密度继电器1在气路上与压力调节机构5相连通;阀4与智控单元7相连接;压力调节机构5与智控单元7相连接。
与实施例一不同的是,所述压力传感器有两个,分别是第一压力传感器21、第二压力传感器22;所述的温度传感器有两个,分别是第一温度传感器31、第二温度传感器32。本实施例提供多个压力传感器和温度传感器,目的是:第一压力传感器21和第二压力传感器22监测得到的压力值可以进行比对,相互校验;第一温度传感器31和第二温度传感器32监测得到的温度值可以进行比对,相互校验;第一压力传感器21和第一温度传感器31监测得到的密度值P1 20,与第二压力传感器22和第二温度传感器32监测得到的密度值P2 20之间进行比对,相互校验;甚至还可以在线校验得到气体密度继电器1的额定值的密度值Pe 20,相互之间进行比对,相互校验。
实施例十一:
如图12所示,本发明实施例十一提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6和智控单元7、电气设备8、补气接口10、自封阀11。自封阀11的一端密封连接于电气设备8上,自封阀11的另一端通过连接管与阀4的进气口、补气接口10相连通。阀4的出气口与气体密度继电器1相连通。压力传感器2、温度传感器3、在线校验接点信号采样单元6、智控单元7设置在气体密度继电器1的壳体上或壳体内,压力传感器2在气路上与气体密度继电器1相连通;压力调节机构5与气体密度继电器1相连通;在线校验接点信号采样单元6和智控单元7设置在一起。压力传感器2、温度传感器3、阀4、 所述压力调节机构5分别与智控单元7相连接。
实施例十二:
如图13所示,本发明实施例十二提供的一种具有在线采样校验功能的电气系统,包括:气体密度继电器1、压力传感器2、温度传感器3、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10、自封阀11、微水传感器13、分解物传感器15。自封阀11的一端密封连接于电气设备8上,自封阀11的另一端与阀4的进气口相连通,补气接口10连接在自封阀11上;阀4的出气口与多通接头9相连接。气体密度继电器1、压力传感器2、压力调节机构5、微水传感器13、分解物传感器15设置在多通接头9上;温度传感器3设置在电气设备8上。在线校验接点信号采样单元6、智控单元7设置在一起。所述压力传感器2、温度传感器3、微水传感器13、分解物传感器15和智控单元7相连接。压力传感器2、气体密度继电器1在气路上与压力调节机构5相连通;阀4与智控单元7相连接;压力调节机构5与智控单元7相连接。
与实施例一不同的是,温度传感器3设置在电气设备8上;同时还含有监测电气设备8的微水含量的微水传感器13、以及监测分解物含量的分解物传感器15。
实施例十三:
如图14所示,本发明实施例十三提供的一种具有在线采样校验功能的电气系统包括:气体密度继电器1、第一压力传感器21、第二压力传感器22、第一温度传感器31、第二温度传感器32、阀4、压力调节机构5、在线校验接点信号采样单元6、智控单元7、电气设备8、多通接头9、补气接口10、连接头16。
所述连接头16的一端密封连接于电气设备8上,所述连接头16的另一端与阀4的进气口相连通;而所述阀4的出气口与多通接头9相连接,所述阀4密封在第一壳体41内部,阀4的控制电缆线通过与第一壳体41密封的第一引出线密封件42引出,这样设计确保阀4保持密封,能够长期可靠工作。气体密度继电器1、第一压力传感器21、第一温度传感器31、压力调节机构5、补气接口10设置在多通接头9上。所述压力调节机构5密封在第二壳体55内部,压力调节机构5的控制电缆线通过与第二壳体55密封的第二引出线密封件56引出,这样设计确保压力调节机构5保持密封,能够长期可靠工作。第二压力传感器22、第二温度传感器32设置在连接头16上。第一压力传感器21、第二压力传感器22、第一温度传感器31、第二温度传感器32和智控单元7相连接;阀4与智控单元7相连接;压力调节机构5与智控单元7相连接。
阀4开启时,第一压力传感器21、第二压力传感器22、气体密度继电器1在气路上与压力调节机构5相连通。而阀4关闭时,第一压力传感器21、气体密度继电器1在气路上与压力调节机构5相连通,而第二压力传感器22与气体密度继电器1、压力调节机构5在气路上是不相通的。
与实施例一不同的是,压力传感器有两个,分别是第一压力传感器21、第二压力传感器22;温度传感器有两个,分别是第一温度传感器31、第二温度传感器32。本实施例具有安全保护功能,具体为:1)根据第一压力传感器21和第一温度传感器31或第二压力传感器22和第二温度传感器32监测得到的密度值低于设定值时,气体密度继电器就自动不再进行校验,而发出告示信号。例如,当设备的气体密度值小于设定值时,就不校验了;只有当设备的气体密度值≥(闭锁压力+0.02MPa)时,才能进行校验。接点报警有状态指示。2)或在校验时,此时阀4关闭,根据第二压力传感器22和第二温度传感器32监测得到的密度值低于设定值时,气体密度继电器就自动不再进行校验,同时发出告示信号(漏气)。例如,当设备的气体密度值小于设定值(闭锁压力+0.02MPa)时,就不校验了。设定值可以根据需要任意设置。同时该气体密度继电器还具有多个压力传感器、温度传感器的相互校验,以及传感器与气体密度继电器的相互校验,确保气体密度继电器工作是正常的。即第一压力传感器21和第二压力传感器22监测得到的压力值之间进行比对,相互校验;第一温度传感器31和第二温度传感器32监测得到的温度值之间进行比对,相互校验;第一压力传感器21和第一温度传感器31监测得到的密度值P1 20,与第二压力传感器22和第二温度传感器32监测得到的密度值P2 20之间进行比对,相互校验;甚至还可以校验得到气体密度继电器1的额定值的密度值Pe 20,相互之间进行比对,相互校验。
实施例十四:
如图15所示,所述在线校验接点信号采样单元6设有接点采样电路。本实施例中,所述接点采样电路包括光电耦合器OC1和一电阻R1,所述光电耦合器OC1包括一发光二极管和一光敏三极管;所述发光二极管的阳极和所述气体密度继电器1的接点P J串联形成闭合回路;所述光敏三极管的发射极接地;所述光敏三极管的集电极作为在线校验接点信号采样单元6的输出端out6连接所述智控单元7,所述光敏三极管的集电极还通过所述电阻R1与电源相连接。
通过上述接点采样电路,可以方便知道气体密度继电器1的接点P J是断开还是闭合的状态。具体地,当所述接点P J闭合时,闭合回路通电,所述发光二极管发光,光将所述光 敏三极管导通,所述光敏三极管的集电极输出低电平;当所述接点P J断开时,闭合回路被断开,所述发光二极管不发光,所述光敏三极管截止,所述光敏三极管的集电极输出高电平。这样,通过在线校验接点信号采样单元6的输出端out6输出高低电平。
本实施例通过光电隔离的方法使智控单元7与接点信号控制回路隔离,在校验过程中关闭接点P J,或者发生漏气的情况下接点P J也会发生关闭,此时,均检测到光敏三极管的集电极输出的低电平。控制校验过程中关闭接点P J的时间在一个预设长度,从而非漏气情况下、校验过程中接点P J关闭状态持续时间的长度是确定的,通过监控接收到的低电平的持续时间,即可判断是否为校验过程中发生接点P J关闭。因此,在校验时可以通过记录时间,判断气体密度继电器1发出的是校验时的报警信号,而不是漏气时的报警信号。
本实施例中,智控单元7主要由处理器71(U1)、电源72(U2)组成。
实施例十五:
如图16所示,所述在线校验接点信号采样单元6设有接点采样电路,本实施例中,所述接点采样电路包括第一光电耦合器OC1和第二光电耦合器OC2。
所述第一光电耦合器OC1的发光二极管和所述第二光电耦合器OC2的发光二极管分别通过限流电阻并联,并联后与所述气体密度继电器的接点串联形成闭合回路,且所述第一光电耦合器OC1和所述第二光电耦合器OC2的发光二极管的连接方向相反;所述第一光电耦合器OC1的光敏三极管的集电极与所述第二光电耦合器OC2的光敏三极管的集电极均通过分压电阻与电源相连接,所述第一光电耦合器OC1的光敏三极管的发射极与所述第二光电耦合器OC2的光敏三极管的发射极连接形成输出端out6,该输出端out6与所述智控单元7相连接,且通过一电阻R5接地。
通过上述接点采样电路,可以方便知道气体密度继电器1的接点P J是断开还是闭合的状态。具体地,当所述接点P J闭合时,闭合回路通电,所述第一光电耦合器OC1导通,所述第二光电耦合器OC2截止,所述第一光电耦合器OC1的光敏三极管的发射极(即输出端out6)输出高电平;或者,所述第一光电耦合器OC1截止,所述第二光电耦合器OC2导通,所述第二光电耦合器OC2的光敏三极管的发射极(即输出端out6)输出高电平。当所述接点P J断开时,闭合回路被断电,所述第一光电耦合器OC1、所述第二光电耦合器OC2均截止,所述第一光电耦合器OC1和所述第二光电耦合器OC2的光敏三极管的发射极(即输出端out6)输出低电平。
在一种优选实施例中,所述接点采样电路还包括第一稳压二极管组和第二稳压二极管 组,所述第一稳压二极管组和所述第二稳压二极管组并联在所述接点信号控制回路上,且所述第一稳压二极管组和所述第二稳压二极管组的连接方向相反;所述第一稳压二极管组和所述第二稳压二极管组均由一个、两个或者两个以上的稳压二极管串联构成。
本实施例中,所述第一稳压二极管组包括串联的第一稳压二极管D1和第二稳压二极管D2,所述第一稳压二极管D1的负极连接所述第二稳压二极管D2的正极;所述第二稳压二极管组包括串联的第三稳压二极管D3和第四稳压二极管D4,所述第三稳压二极管D3的正极连接所述第四稳压二极管D4的负极。
接点采样电路可以方便实现对气体密度继电器1的接点P J的状态进行监测,结合智控单元7,将接点P J是断开状态还是闭合状态进行相应处理,并实施远传,从后台就知道接点信号状态,大大提高了电网的可靠性。
本实施例中,智控单元7主要由处理器71(U1)、电源72(U2)组成。
实施例十六:
如图17所示,本实施例与实施例十五的区别在于:智控单元7主要由处理器71(U1)、电源72(U2)、通讯模块73(U3)、智控单元保护电路74(U4)、显示及输出75(U5)、数据存储76(U6)等组成。
其中,通讯模块73(U3)的通讯方式可以是有线,如RS232、RS485、CAN-BUS等工业总线、光纤以太网、4-20mA、Hart、IIC、SPI、Wire、同轴电缆、PLC电力载波等;或者是无线,如2G/3G/4G/5G等、WIFI、蓝牙、Lora、Lorawan、Zigbee、红外、超声波、声波、卫星、光波、量子通信、声呐等。智控单元保护电路74(U4)可以是抗静电干扰电路(如ESD、EMI)、抗浪涌电路、电快速保护电路、抗射频场干扰电路、抗脉冲群干扰电路、电源短路保护电路、电源接反保护电路、电接点误接保护电路、充电保护电路等。这些智控单元保护电路可以为一种或若干种灵活组合而成。显示及输出75(U5)可以是数码管、LED、LCD、HMI、显示器、矩阵屏、打印机、传真、投影仪、手机等,可以为一种、或若干种灵活组合而成。数据存储76(U6)可以是FLASH、RAM、ROM、硬盘、SD等闪存卡、磁带、打孔纸带、光盘、U盘、碟片、胶卷等,可以为一种、或若干种灵活组合而成。
实施例十七:
如图18所示,所述在线校验接点信号采样单元6设有接点采样电路,本实施例中,所述接点采样电路包括第一霍尔电流传感器H1和第二霍尔电流传感器H2,所述第一霍尔电流传感器H1、所述第二霍尔电流传感器H2和所述气体密度继电器的接点P J串联形成闭合 回路,且所述气体密度继电器1的接点P J连接在所述第一霍尔电流传感器H1和所述第二霍尔电流传感器H2之间;所述第一霍尔电流传感器H1的输出端与所述第二霍尔电流传感器H2的输出端均与所述智控单元7相连接。
通过上述接点采样电路,可以方便知道气体密度继电器1的接点P J是断开还是闭合的状态。具体地,当所述接点P J闭合时,闭合回路通电,所述第一霍尔电流传感器H1和所述第二霍尔电流传感器H2之间流经电流,产生感应电势;当所述接点P J断开时,闭合回路被断电,所述第一霍尔电流传感器H1和所述第二霍尔电流传感器H2之间无电流流过,产生的感应电势为零。
本实施例中,智控单元7主要由处理器71(U1)、电源72(U2)、通讯模块73(U3)、智控单元保护电路74(U4)、显示及输出75(U5)、数据存储76(U6)等组成。
实施例十八:
如图19所示,所述在线校验接点信号采样单元6设有接点采样电路,本实施例中,所述接点采样电路包括:第一可控硅SCR1、第二可控硅SCR2、第三可控硅SCR3和第四可控硅SCR4。
第一可控硅SCR1和第三可控硅SCR3串联,第二可控硅SCR2和第四可控硅SCR4串联后与第一可控硅SCR1、第三可控硅SCR3构成的串联线路形成串并联闭合回路;气体密度继电器1的接点P J的一端通过线路与第一可控硅SCR1、第三可控硅SCR3之间的线路电连接,另一端通过线路与所述第二可控硅SCR2、第四可控硅SCR4之间的线路电连接。这里所述的串并联如图6所示,为上述元器件相互并联、串联的混合连接的电路。
具体地,第一可控硅SCR1的阴极和第二可控硅SCR2的阴极连接形成所述在线校验接点信号采样单元6的输出端与智控单元7相连接;第一可控硅SCR1的阳极与第三可控硅SCR3的阴极相连接;第二可控硅SCR2的阳极与第四可控硅SCR4的阴极相连接;第三可控硅SCR3的阳极和第四可控硅SCR4的阳极与所述在线校验接点信号采样单元6的输入端相连接。其中,第一可控硅SCR1、第二可控硅SCR2、第三可控硅SCR3和第四可控硅SCR4的控制极均与所述智控单元7相连接。所述智控单元7能够控制对应可控硅的通或断。
本实施例的工作过程如下:
当不进行校验,正常运行时,所述接点P J断开,接点采样电路触发第三可控硅SCR3和第四可控硅SCR4,第三可控硅SCR3和第四可控硅SCR4处于导通状态,接点信号控 制回路处于工作状态。而此时接点采样电路不触发第一可控硅SCR1和第二可控硅SCR2,第一可控硅SCR1和第二可控硅SCR2的阴极无电压输出,处于不通状态。
当进行校验时,接点采样电路不触发第三可控硅SCR3和第四可控硅SCR4,而触发第一可控硅SCR1和第二可控硅SCR2。此时,第三可控硅SCR3、第四可控硅SCR4处于关断状态,接点P J与接点信号控制回路隔断。而第一可控硅SCR1、第二可控硅SCR2处于导通状态,所述接点P J与所述在线校验接点信号采样单元6连通,与智控单元7相连接。
在线校验接点信号采样单元6也可以由固态继电器或电磁继电器和可控硅混合灵活组成。
本实施例中,智控单元7主要由处理器71(U1)、电源72(U2)、通讯模块73(U3)、智控单元保护电路74(U4)、显示及输出75(U5)、数据存储76(U6)等组成。
实施例十九:
图20为本发明优选实施例的一种电气系统的气路结构示意图。如图20所示,该电气设备8为六氟化硫高压断路器,包括设置在电气设备8内的气室802。气体密度继电器1安装于水平架的内部容纳空间,连接管的一端连接阀4的进气口,连接管的另一端沿水平架延伸至气室802的下方,并从下方连通气室802。阀4的进气口通过连接管密封连接所述电气设备8的气室802;阀4的出气口与气体密度继电器1的气路相连通。压力传感器2的探头位于气体密度继电器1的气路上;压力调节机构5与气体密度继电器1的气路相连通;在线校验接点信号采样单元6分别与气体密度继电器1和智控单元7相连接;压力传感器2、温度传感器3、阀4、所述压力调节机构5还分别与智控单元7相连接。压力传感器2的探头以外的部分、温度传感器3的探头以外的部分、压力调节机构5、在线校验接点信号采样单元6、智控单元7均固定在竖直架的安装板上。
具有在线采样校验功能的电气系统,在高温、低温、常温、20℃环境温度校验密度继电器的接点时,对其误差判定要求可以是不一样的,具体可以根据温度的要求,按照相关标准实施;能够根据气体密度继电器在不同的温度下,不同的时间段进行其误差性能的比较,即不同时期,相同温度范围内的比较,作出判定密度继电器的性能;具有历史各个时期的比对、历史与现在的比对。还可以对密度继电器进行体检。必要时,可以随时对气体密度继电器接点信号进行校验;可以对气体密度继电器、所监测的电气设备的密度值的是否正常进行判定,即可以对电气设备本身的密度值、气体密度继电器、压力传感器、温度传感器进行正常和异 常的判定和分析、比较,进而实现对电气设备气体密度监控、气体密度继电器等状态进行判定、比较、分析;还可以对气体密度继电器的接点信号状态进行监测,并把其状态实施远传。可以在后台就知道气体密度继电器的接点信号状态是断开的还是闭合的,从而多一层监控,提高可靠性;还可以对气体密度继电器的温度补偿性能进行检测,或检测和判定;还可以对气体密度继电器的接点接触电阻进行检测,或检测和判定;还可以对气体密度继电器的绝缘性能进行检测,或检测和判定。
综上所述,本发明提供的具有在线采样校验功能的电气系统及其校验方法,由气路(可以通过管路)连接部分、压力调节部分、信号测量控制部分等组成,主要功能是对环境温度下的气体密度继电器的接点值(报警/闭锁动作时的压力值)进行在线校验测量,并自动换算成20℃时的对应压力值,在线实现对气体密度继电器的接点(报警和闭锁)值的性能检测。其气体密度继电器、压力传感器、温度传感器、压力调节机构、阀、在线校验接点信号采样单元、智控单元的安装位置可以灵活组合。例如:气体密度继电器、压力传感器、温度传感器、在线校验接点信号采样单元、智控单元可以组合在一起,一体化设计,也可以分体设计;可以安装在壳体上、或多通接头上,也可以通过连接管连接在一起。阀可以与电气设备直接相连接,也可以通过自封阀、或气管连接。压力传感器、温度传感器、在线校验接点信号采样单元、智控单元可以组合在一起,一体化设计;压力传感器、温度传感器可以组合在一起,一体化设计;在线校验接点信号采样单元、智控单元可以组合在一起,一体化设计。总之,结构不拘一格。
本发明所述的具有在线采样校验功能的电气系统及其校验方法中所涉及的气体密度继电器可以指的是其组成元件设计成一体结构的气体密度继电器,也可以指的是其组成元件设计成分体结构的气体密度继电器,一般也可以另称为气体密度监测装置。
本申请结构布置紧凑、合理,各部件具有良好的防锈、防震能力,安装牢固,使用可靠。电气系统各管路的连接、拆装易于操作,设备和部件方便维修。本申请无须检修人员到现场就能完成气体密度继电器的校验工作,大大提高了电网的可靠性,提高了工作效率,降低了运行维护的成本。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (24)

  1. 具有在线采样校验功能的电气系统,其特征在于,包括:
    电气设备,其内部设有气室,所述气室充有绝缘气体;
    气体密度继电器,安装于所述电气设备的气室外部,或者通过阀安装于所述电气设备的气室外部;
    阀,其进气口与所述电气设备的气室相连通,其出气口与所述气体密度继电器的气路相连通;
    压力调节机构,其气路与所述气体密度继电器的气路相连通,所述压力调节机构被配置为调节所述气体密度继电器的气路的压力升降,使所述气体密度继电器发生接点信号动作;
    气体密度检测传感器,与所述气体密度继电器连通;
    在线校验接点信号采样单元,与所述气体密度继电器相连接,被配置为采样环境温度下所述气体密度继电器的接点信号;
    智控单元,分别与所述气体密度检测传感器、所述压力调节机构、所述阀和所述在线校验接点信号采样单元相连接,被配置为控制所述阀的关闭或开启,完成所述压力调节机构的控制,压力值采集和温度值采集、和/或气体密度值采集,以及检测所述气体密度继电器的接点信号动作值和/或接点信号返回值;
    其中,所述接点信号包括报警、和/或闭锁。
  2. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述电气系统包括支架,所述电气设备的气室位于支架的上方或下方,所述支架包括竖直架和水平架,所述气体密度继电器位于水平架的内部容纳空间,所述阀的进气口连接一连接管的一端,连接管的另一端沿水平架延伸至气室的下方,并从气室下方连通气室。
  3. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度检测传感器设置在所述气体密度继电器上;或者,所述压力调节机构设置在所述气体密度继电器上;或者,所述气体密度检测传感器、所述在线校验接点信号采样单元和所述智控单元设置在所述气体密度继电器上。
  4. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度继电器包括双金属片补偿的气体密度继电器、气体补偿的气体密度继电器、双金属片和气体补偿混合型的气体密度继电器、完全机械的气体密度继电器、数字型气体密度继电器、机械和数字结合型的气体密度继电器、带指针显示的气体密度继电器、数显型气体密度继电 器、不带显示或指示的气体密度开关、SF6气体密度继电器、SF6混合气体密度继电器、N2气体密度继电器中的一种或更多种。
  5. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度检测传感器包括至少一个压力传感器和至少一个温度传感器,其中,所述压力传感器的探头安装于所述气体密度继电器的气路上,所述温度传感器的探头安装于所述气体密度继电器的气路上或气路外,或安装于所述气体密度继电器内,或安装于所述气体密度继电器外;或者,所述气体密度检测传感器为压力传感器和温度传感器组成的气体密度变送器;或者,所述气体密度检测传感器为采用石英音叉技术的密度检测传感器。
  6. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述阀为电动阀、和/或电磁阀,或为压电阀,或为温度控制的阀,或为采用智能记忆材料制作的、采用电加热开启或关闭的新型阀。
  7. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述阀密封在一个腔体或壳体内;或者,所述压力调节机构密封在一个腔体或壳体内;或者,所述阀和所述压力调节机构密封在一个腔体或壳体内。
  8. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述压力调节机构为一密闭气室,所述密闭气室的外部或内部设有加热元件、和/或制冷元件,校验时,通过所述加热元件加热、和/或通过所述制冷元件制冷,导致所述密闭气室内的气体的温度变化,进而完成所述气体密度继电器的压力升降;或者,
    所述压力调节机构为一端开口的腔体,所述腔体的另一端连通所述气体密度继电器的气路;所述腔体内有活塞,所述活塞的一端连接有一个调节杆,所述调节杆的外端连接驱动部件,所述活塞的另一端伸入所述开口内,且与所述腔体的内壁密封接触,所述驱动部件驱动所述调节杆进而带动所述活塞在所述腔体内移动;或者,
    所述压力调节机构为一密闭气室,所述密闭气室的内部设有活塞,所述活塞与所述密闭气室的内壁密封接触,所述密闭气室的外面设有驱动部件,驱动部件通过电磁力推动所述活塞在所述腔体内移动;或者,
    所述压力调节机构为一端连接驱动部件的气囊,所述气囊在驱动部件的驱动下发生体积变化,所述气囊连通所述气体密度继电器;或者,
    所述压力调节机构为波纹管,所述波纹管的一端连通所述气体密度继电器,所述波纹管的另一端在驱动部件的驱动下伸缩;或者,
    所述压力调节机构为一放气阀,所述放气阀为电磁阀或电动阀;或者,
    所述压力调节机构为一压缩机;或者,
    所述压力调节机构为一泵,所述泵包括造压泵、增压泵、电动气泵、电磁气泵中的一种;
    其中,驱动部件包括磁力、电机、往复运动机构、卡诺循环机构、气动元件中的一种。
  9. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述在线校验接点信号采样单元具有独立的至少两组采样接点,可同时对至少两个接点自动完成校验,且连续测量、无须更换接点或重新选择接点;其中,
    所述接点包括、但不限于报警接点、报警接点+闭锁接点、报警接点+闭锁1接点+闭锁2接点、报警接点+闭锁接点+超压接点中的一种。
  10. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度继电器的接点为常开型密度继电器,所述在线校验接点信号采样单元,包括第一连接电路和第二连接电路,所述第一连接电路连接所述气体密度继电器的接点与接点信号控制回路,所述第二连接电路连接所述气体密度继电器的接点与所述智控单元;在非校验状态下,所述第二连接电路断开或隔离,所述第一连接电路闭合;在校验状态下,所述在线校验接点信号采样单元切断所述第一连接电路,连通所述第二连接电路,将所述气体密度继电器的接点与所述智控单元相连接;或者,
    所述气体密度继电器的接点为常闭型密度继电器,所述在线校验接点信号采样单元,包括第一连接电路和第二连接电路,所述第一连接电路连接所述气体密度继电器的接点与接点信号控制回路,所述第二连接电路连接所述气体密度继电器的接点与所述智控单元;在非校验状态下,所述第二连接电路断开或隔离,所述第一连接电路闭合;在校验状态下,所述在线校验接点信号采样单元闭合所述接点信号控制回路,切断气体密度继电器的接点与接点信号控制回路的连接,连通所述第二连接电路,将所述气体密度继电器的接点与所述智控单元相连接。
  11. 根据权利要求10所述的具有在线采样校验功能的电气系统,其特征在于:所述第一连接电路包括第一继电器,所述第二连接电路包括第二继电器,所述第一继电器与所述第二继电器为两个独立的继电器,或者是同一个继电器;所述第一继电器设有至少一个常闭接点,所述第二继电器设有至少一个常开接点,所述常闭接点和所述常开接点保持相反的开关状态;所述常闭接点串联在所述接点信号控制回路中,所述常开接点连接在所述气体密度继电器的接点上;
    在非校验状态下,所述常闭接点闭合,所述常开接点断开,所述气体密度继电器实时监测所述接点的输出状态;在校验状态下,所述常闭接点断开,所述常开接点闭合,所述气体密度继电器的接点通过所述常开接点与所述智控单元相连接。
  12. 根据权利要求10所述的具有在线采样校验功能的电气系统,其特征在于:所述在线校验接点信号采样单元设有接点采样电路,所述接点采样电路包括光电耦合器和一电阻,所述光电耦合器包括一发光二极管和一光敏三极管;所述发光二极管和所述气体密度继电器的接点串联形成闭合回路;所述光敏三极管的发射极接地;所述光敏三极管的集电极连接所述智控单元,所述光敏三极管的集电极还通过所述电阻与电源相连接;当所述接点闭合时,闭合回路通电,所述发光二极管发光,光将所述光敏三极管导通,所述光敏三极管的集电极输出低电平;当所述接点断开时,闭合回路被断开,所述发光二极管不发光,所述光敏三极管截止,所述光敏三极管的集电极输出高电平;或者,
    所述接点采样电路包括第一光电耦合器和第二光电耦合器;所述第一光电耦合器的发光二极管和所述第二光电耦合器的发光二极管分别通过限流电阻并联或直接并联,并联后与所述气体密度继电器的接点串联形成闭合回路,且所述第一光电耦合器和所述第二光电耦合器的发光二极管的连接方向相反;所述第一光电耦合器的光敏三极管的集电极与所述第二光电耦合器的光敏三极管的集电极均通过分压电阻与电源相连接,所述第一光电耦合器的光敏三极管的发射极与所述第二光电耦合器的光敏三极管的发射极连接形成输出端,该输出端与所述智控单元相连接,且通过一电阻接地;当所述接点闭合时,闭合回路通电,所述第一光电耦合器导通,所述第二光电耦合器截止,所述第一光电耦合器的光敏三极管的发射极输出高电平;或者,所述第一光电耦合器截止,所述第二光电耦合器导通,所述第二光电耦合器的光敏三极管的发射极输出高电平;当所述接点断开时,闭合回路被断电,所述第一光电耦合器、所述第二光电耦合器均截止,所述第一光电耦合器和所述第二光电耦合器的光敏三极管的发射极输出低电平;或者,
    所述接点采样电路包括第一霍尔电流传感器和第二霍尔电流传感器,所述第一霍尔电流传感器、所述第二霍尔电流传感器和所述气体密度继电器的接点串联形成闭合回路,且所述气体密度继电器的接点连接在所述第一霍尔电流传感器和所述第二霍尔电流传感器之间;所述第一霍尔电流传感器的输出端与所述第二霍尔电流传感器的输出端均与所述智控单元相连接;当所述接点闭合时,闭合回路通电,所述第一霍尔电流传感器和所述第二霍尔电流传感器之间流经电流,产生感应电势;当所述接点断开时,闭合回路被断电,所述第一霍尔电 流传感器和所述第二霍尔电流传感器之间无电流流过,产生的感应电势为零;或者,
    所述接点采样电路包括第一可控硅、第二可控硅、第三可控硅和第四可控硅;第一可控硅、第三可控硅串联,第二可控硅、第四可控硅串联后与第一可控硅、第三可控硅构成的串联线路形成串并联闭合回路,所述气体密度继电器的接点的一端通过线路与所述第一可控硅、第三可控硅之间的线路电连接,另一端通过线路与所述第二可控硅、第四可控硅之间的线路电连接。
  13. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述智控单元获取所述气体密度检测传感器采集的气体密度值;或者,所述智控单元获取所述气体密度检测传感器采集的压力值和温度值,完成所述气体密度继电器对所监测的电气设备的气体密度的在线监测。
  14. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述智控单元获取所述气体密度继电器发生接点信号动作或切换时、所述气体密度检测传感器采集的气体密度值,完成所述气体密度继电器的在线校验;或者,
    所述智控单元获取所述气体密度继电器发生接点信号动作或切换时、所述气体密度检测传感器采集的压力值和温度值,并按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值,完成所述气体密度继电器的在线校验。
  15. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度继电器带有比对密度值输出信号,该比对密度值输出信号与所述智控单元相连接;或者,所述气体密度继电器带有比对压力值输出信号,该比对压力值输出信号与所述智控单元相连接;
    当所述气体密度继电器输出比对密度值输出信号时,智控单元采集当时的气体密度值,进行比对,完成对气体密度继电器的比对密度值校验,智控单元或后台对比对结果进行判定,若误差超差,发出异常提示;或者,
    当所述气体密度继电器输出比对密度值输出信号时,智控单元采集当时的气体密度值,进行比对,完成对气体密度继电器和气体密度检测传感器的相互校验,智控单元或后台对比对结果进行判定,若误差超差,发出异常提示;或者,
    当所述气体密度继电器输出比对压力值输出信号时,智控单元采集当时的压力值,进行比对,完成对气体密度继电器和气体密度检测传感器的相互校验,智控单元或后台对比对结果进行判定,若误差超差,发出异常提示。
  16. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述电气系统包括至少两个气体密度检测传感器,每一个气体密度检测传感器包括一个压力传感器、一个温度传感器;各个气体密度检测传感器检测的气体密度值进行比对,完成对各个气体密度检测传感器的相互校验。
  17. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度检测传感器包括至少两个压力传感器,各个压力传感器采集的压力值进行比对,完成对各个压力传感器的相互校验。
  18. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度检测传感器包括至少两个温度传感器,各个温度传感器采集的温度值进行比对,完成对各个温度传感器的相互校验。
  19. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度检测传感器包括至少一个压力传感器和至少一个温度传感器;
    各个压力传感器采集的压力值和各个温度传感器采集的温度值随机排列组合,并将各个组合按照气体压力-温度特性换算成为多个对应20℃的压力值,即气体密度值,各个气体密度值进行比对,完成对各个压力传感器、各个温度传感器的相互校验;或者,
    各个压力传感器采集的压力值和各个温度传感器采集的温度值历遍所有排列组合,并将各个组合按照气体压力-温度特性换算成为多个对应20℃的压力值,即气体密度值,各个气体密度值进行比对,完成对各个压力传感器、各个温度传感器的相互校验;或者,
    将各个压力传感器、各个温度传感器得到的多个气体密度值与气体密度继电器输出比对密度值输出信号进行比对,完成对气体密度继电器、各个压力传感器、各个温度传感器的相互校验。
  20. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述气体密度继电器完成校验后,电气系统自动生成气体密度继电器的校验报告,如有异常,发出报警,并上传至远端,或发送至指定的接收机上。
  21. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述智控单元的控制通过现场控制,和/或通过后台控制。
  22. 根据权利要求1所述的具有在线采样校验功能的电气系统,其特征在于:所述电气系统还包括多通接头,所述气体密度继电器、所述阀、所述压力调节机构设置在所述多通接头上;或者,所述智控单元设置在多通接头上。
  23. 一种气体密度继电器的校验方法,其特征在于,包括:
    正常工作状态时,气体密度继电器监控电气设备内的气体密度值;
    智控单元或气体密度继电器根据设定的校验时间,以及气体密度值情况,在允许校验气体密度继电器的状况下:
    通过智控单元关闭阀;
    通过智控单元驱动压力调节机构,使气体压力缓慢下降,使得气体密度继电器发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号动作值,完成气体密度继电器的接点信号动作值的校验工作;
    当所有的接点信号校验工作完成后,智控单元开启阀。
  24. 根据权利要求23所述的一种气体密度继电器的校验方法,其特征在于,包括:
    正常工作状态时,气体密度继电器监控电气设备内的气体密度值,同时气体密度继电器通过气体密度检测传感器以及智控单元在线监测电气设备内的气体密度值;
    智控单元或气体密度继电器根据设定的校验时间,以及气体密度值情况,在允许校验气体密度继电器的状况下:
    通过智控单元关闭阀;
    通过智控单元把在线校验接点信号采样单元调整到校验状态,在校验状态下,在线校验接点信号采样单元切断气体密度继电器的接点信号控制回路,将气体密度继电器的接点连接至智控单元;
    通过智控单元驱动压力调节机构,使气体压力缓慢下降,使得气体密度继电器发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号动作值,完成气体密度继电器的接点信号动作值的校验工作;
    通过智控单元驱动压力调节机构,使气体压力缓慢上升,使得气体密度继电器发生接点复位,接点复位通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点复位时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号返回值,完成气体密度继电器的接点信号返回值的校验工作;
    当所有的接点信号校验工作完成后,智控单元开启阀,并将在线校验接点信号采样单元调整到工作状态,气体密度继电器的接点信号控制回路恢复运行正常工作状态。
PCT/CN2020/111252 2019-09-04 2020-08-26 具有在线采样校验功能的电气系统及其校验方法 WO2021043040A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/640,776 US20220341993A1 (en) 2019-09-04 2020-08-26 Electrical system with on-line sampling verification function and verification method thereof
EP20861073.3A EP4027154A4 (en) 2019-09-04 2020-08-26 ELECTRICAL SYSTEM WITH ONLINE SAMPLE COLLECTION CONTROL FUNCTION AND VERIFICATION METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910834369.5A CN110456266A (zh) 2019-09-04 2019-09-04 具有在线采样校验功能的电气系统及其校验方法
CN201910834369.5 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021043040A1 true WO2021043040A1 (zh) 2021-03-11

Family

ID=68490752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111252 WO2021043040A1 (zh) 2019-09-04 2020-08-26 具有在线采样校验功能的电气系统及其校验方法

Country Status (4)

Country Link
US (1) US20220341993A1 (zh)
EP (1) EP4027154A4 (zh)
CN (1) CN110456266A (zh)
WO (1) WO2021043040A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984244A (zh) * 2021-10-22 2022-01-28 臻驱科技(上海)有限公司 一种电机温度采样接口的保护电路、电机温度采样模块及电动车辆

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456266A (zh) * 2019-09-04 2019-11-15 上海乐研电气有限公司 具有在线采样校验功能的电气系统及其校验方法
EP4027153A4 (en) * 2019-09-04 2023-10-11 Shanghai Roye Electric Co., Ltd. GAS DENSITY RELAY VERIFICATION DEVICE AND ASSOCIATED VERIFICATION METHOD
CN111443283B (zh) * 2020-04-29 2024-05-10 上海乐研电气有限公司 一种气体密度继电器在线校验装置及其在线校验方法
CN112615699A (zh) * 2020-12-14 2021-04-06 珠海格力电器股份有限公司 能源信息传感器、能源管理系统及其控制方法和存储介质
CN113835024A (zh) * 2021-08-31 2021-12-24 南方电网科学研究院有限责任公司 一种气体密度继电器校验装置及方法
CN115325458A (zh) * 2022-08-15 2022-11-11 广州瑞鑫智能制造有限公司 输气管道压力流量控制系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221217A (zh) * 2007-01-09 2008-07-16 苏丽芳 Sf6气体密度继电器校验仪及校验流程
CN102879733A (zh) * 2012-09-19 2013-01-16 宁夏电力公司电力科学研究院 采用气体补偿的全温度sf6气体密度继电器校验装置
CN103245908A (zh) * 2012-02-03 2013-08-14 华北电力科学研究院有限责任公司 一种sf6及sf6混合气体密度继电器校验装置
KR20150048286A (ko) * 2013-10-25 2015-05-07 한국전력공사 가스절연개폐장치 가스 저압경보 시험방법 및 장치
CN104698371A (zh) * 2013-12-04 2015-06-10 上海乐研电气科技有限公司 一种多功能气体密度继电器校验装置
CN206804807U (zh) * 2017-06-03 2017-12-26 广东海坤电气实业有限公司 一种sf6气体在线实时检测装置
CN208818810U (zh) * 2018-09-20 2019-05-03 郑州赛奥电子股份有限公司 Sf6高压开关补气和测试控制装置及sf6高压开关
CN109752649A (zh) * 2019-01-11 2019-05-14 南京固攀自动化科技有限公司 一种密度继电器智能校验监测装置及其补气校验方法
CN110456266A (zh) * 2019-09-04 2019-11-15 上海乐研电气有限公司 具有在线采样校验功能的电气系统及其校验方法
CN110535058A (zh) * 2019-09-04 2019-12-03 上海乐研电气有限公司 具有在线采样校验功能的电气系统及其校验方法
CN110554309A (zh) * 2019-09-04 2019-12-10 上海卓电电气有限公司 一种现场气体密度继电器的在线校验方法
CN210863965U (zh) * 2019-09-04 2020-06-26 上海乐研电气有限公司 具有在线采样校验功能的电气系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424596B (zh) * 2008-09-26 2010-08-25 上海电力设备安装有限公司 Sf6气体密度-压力监控装置的校验台及校验方法
CN101937060B (zh) * 2010-09-09 2013-03-06 辽宁省电力有限公司抚顺供电公司 六氟化硫密度继电器校验系统及校验方法
WO2012119082A1 (en) * 2011-03-02 2012-09-07 Franklin Fueling Systems, Inc. Gas density monitoring system
CN104299843B (zh) * 2014-10-21 2017-01-25 上海乐研电气有限公司 一种校验时免拆卸的气体密度继电器
CN104616931B (zh) * 2015-02-02 2016-04-13 国家电网公司 一种耐低温数字式sf6继电器
CN206450793U (zh) * 2016-12-23 2017-08-29 国网山东省电力公司菏泽供电公司 一种压力可控型sf6气体密度继电器信号模拟测试仪
CN106772008B (zh) * 2016-12-23 2023-05-16 国网山东省电力公司菏泽供电公司 一种压力可控型sf6气体密度继电器信号模拟测试仪
CN207336293U (zh) * 2017-06-02 2018-05-08 平高集团有限公司 一种带自校验功能的sf6气体远传式密度表
CN107677411A (zh) * 2017-08-21 2018-02-09 安徽省颍上县正泰电器有限责任公司 一种气体压力监测装置
CN108226768A (zh) * 2017-11-20 2018-06-29 国家电网公司 温度补偿校验系统和方法
CN109031115A (zh) * 2018-10-29 2018-12-18 国家电网公司 一种密度继电器的防拆校验设备及sf6电气设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221217A (zh) * 2007-01-09 2008-07-16 苏丽芳 Sf6气体密度继电器校验仪及校验流程
CN103245908A (zh) * 2012-02-03 2013-08-14 华北电力科学研究院有限责任公司 一种sf6及sf6混合气体密度继电器校验装置
CN102879733A (zh) * 2012-09-19 2013-01-16 宁夏电力公司电力科学研究院 采用气体补偿的全温度sf6气体密度继电器校验装置
KR20150048286A (ko) * 2013-10-25 2015-05-07 한국전력공사 가스절연개폐장치 가스 저압경보 시험방법 및 장치
CN104698371A (zh) * 2013-12-04 2015-06-10 上海乐研电气科技有限公司 一种多功能气体密度继电器校验装置
CN206804807U (zh) * 2017-06-03 2017-12-26 广东海坤电气实业有限公司 一种sf6气体在线实时检测装置
CN208818810U (zh) * 2018-09-20 2019-05-03 郑州赛奥电子股份有限公司 Sf6高压开关补气和测试控制装置及sf6高压开关
CN109752649A (zh) * 2019-01-11 2019-05-14 南京固攀自动化科技有限公司 一种密度继电器智能校验监测装置及其补气校验方法
CN110456266A (zh) * 2019-09-04 2019-11-15 上海乐研电气有限公司 具有在线采样校验功能的电气系统及其校验方法
CN110535058A (zh) * 2019-09-04 2019-12-03 上海乐研电气有限公司 具有在线采样校验功能的电气系统及其校验方法
CN110554309A (zh) * 2019-09-04 2019-12-10 上海卓电电气有限公司 一种现场气体密度继电器的在线校验方法
CN210863965U (zh) * 2019-09-04 2020-06-26 上海乐研电气有限公司 具有在线采样校验功能的电气系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984244A (zh) * 2021-10-22 2022-01-28 臻驱科技(上海)有限公司 一种电机温度采样接口的保护电路、电机温度采样模块及电动车辆
CN113984244B (zh) * 2021-10-22 2023-10-20 臻驱科技(上海)有限公司 一种电机温度采样接口的保护电路、电机温度采样模块及电动车辆

Also Published As

Publication number Publication date
US20220341993A1 (en) 2022-10-27
EP4027154A1 (en) 2022-07-13
EP4027154A4 (en) 2023-10-04
CN110456266A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2021043038A1 (zh) 具有在线采样校验功能的电气系统及其校验方法
WO2021043040A1 (zh) 具有在线采样校验功能的电气系统及其校验方法
WO2021218291A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021218288A1 (zh) 一种气体密度继电器在线校验装置及其在线校验方法
CN110444442B (zh) 一种远传气体密度继电器系统及其校验方法
WO2021218286A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021043036A1 (zh) 实现气体密度继电器免维护的现场检测装置、系统及方法
WO2021043039A1 (zh) 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法
CN210720654U (zh) 具有在线采样校验功能的电气系统
CN110416022A (zh) 一种多功能气体密度继电器
CN110568350A (zh) 一种免维护的智能式气体密度监测装置、方法和系统
CN110426312A (zh) 具有保护功能的在线采样校验气体密度继电器
CN210668207U (zh) 一种远传气体密度继电器系统
CN211426165U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN210863965U (zh) 具有在线采样校验功能的电气系统
CN210863441U (zh) 具有保护功能的在线采样校验气体密度继电器及监测装置
CN211088161U (zh) 用于在线校验密度继电器的变送器及监测系统
CN210722875U (zh) 一种远传气体密度继电器系统
CN210863966U (zh) 实现密度继电器免维护的电气设备及系统
CN211426159U (zh) 实现密度继电器免维护的气体密度监测装置及监测系统
CN210923904U (zh) 用于在线校验气体密度继电器的变送器及系统
CN210775760U (zh) 用于自动在线校验密度继电器的变送器及系统
CN110441679A (zh) 实现密度继电器免维护的电气设备、方法和系统
CN210668208U (zh) 一种多功能气体密度继电器
WO2021115289A1 (zh) 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861073

Country of ref document: EP

Effective date: 20220404