WO2021115289A1 - 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法 - Google Patents

一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法 Download PDF

Info

Publication number
WO2021115289A1
WO2021115289A1 PCT/CN2020/134703 CN2020134703W WO2021115289A1 WO 2021115289 A1 WO2021115289 A1 WO 2021115289A1 CN 2020134703 W CN2020134703 W CN 2020134703W WO 2021115289 A1 WO2021115289 A1 WO 2021115289A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas density
density relay
gas
adjustment mechanism
contact signal
Prior art date
Application number
PCT/CN2020/134703
Other languages
English (en)
French (fr)
Inventor
常敏
黄小泵
夏铁新
郭正操
曾伟
金海勇
Original Assignee
上海乐研电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911263998.3A external-priority patent/CN111029211B/zh
Priority claimed from CN201911263996.4A external-priority patent/CN110988667A/zh
Application filed by 上海乐研电气有限公司 filed Critical 上海乐研电气有限公司
Priority to EP20899597.7A priority Critical patent/EP4075467A4/en
Priority to US17/776,219 priority patent/US20220390518A1/en
Publication of WO2021115289A1 publication Critical patent/WO2021115289A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • G01R31/3274Details related to measuring, e.g. sensing, displaying or computing; Measuring of variables related to the contact pieces, e.g. wear, position or resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/26Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences
    • G01N9/266Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring pressure differences for determining gas density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/26Details
    • H01H35/28Compensation for variation of ambient pressure or temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H33/563Gas reservoirs comprising means for monitoring the density of the insulating gas

Definitions

  • 201911263996.4 title of invention: a gas density relay with online self-checking function and its calibration method
  • 201911263998.3 title of the invention: a method for transforming a gas density relay
  • the invention relates to the field of electric power technology, in particular to a gas density relay with online self-checking function and a calibration method thereof applied to high-voltage and medium-voltage electrical equipment, and a method for transforming the gas density relay.
  • SF6 sulfur hexafluoride
  • SF6 gas can undergo hydrolysis reaction with water at a high temperature of 200°C or higher to generate active HF and SOF 2 , corrode insulating parts and metal parts, and generate a lot of heat, which will increase the pressure of the gas chamber. high. 3) When the temperature drops, too much moisture may form condensation, which will significantly reduce the insulation strength of the surface of the insulator, or even flashover, causing serious harm. Therefore, the power grid operation regulations compulsorily stipulate that the density and water content of SF6 gas must be regularly tested before and during the operation of the equipment.
  • the current gas density monitoring system (gas density relay) is basically: 1) The use of remote SF6 gas density relay to realize the collection and upload of density, pressure and temperature, and to realize on-line monitoring of gas density. 2) Use gas density transmitter to realize the collection and upload of density, pressure and temperature, and realize online monitoring of gas density.
  • SF6 gas density relay is the core and key component.
  • the remote SF6 gas density relay is composed of mechanical density relays and electronic remote transmissions.
  • the grid system that uses gas density transmitters still retains traditional mechanical density relays.
  • the mechanical density relay has one, two or three sets of mechanical contacts, which can transmit the information to the target equipment terminal through the contact connection circuit in time when the pressure reaches the state of alarm, blocking or overpressure, to ensure the safe operation of the equipment.
  • the monitoring system is also equipped with a safe and reliable circuit transmission function, which establishes an effective platform for real-time data remote reading and information monitoring, and can transmit pressure, temperature, density and other information to the target device (usually a computer terminal) in time. Online Monitoring.
  • the purpose of the present invention is to provide a method for transforming a gas density relay, a gas density relay with online self-checking function and a calibration method thereof, so as to solve the problems raised in the technical background.
  • the first aspect of this application provides a gas density relay (or gas density monitoring device) with an online self-calibration function, including: a gas density relay body, a gas density detection sensor, a gas circuit isolation pressure adjustment mechanism, and an online calibration Contact signal sampling unit and intelligent control unit;
  • the gas density detection sensor is in communication with the gas density relay body
  • the gas circuit of the gas density relay body is connected to the first interface of the gas circuit interrupting pressure adjustment mechanism
  • the air circuit cut off pressure adjustment mechanism is further provided with a second interface connected to the electrical equipment, and the air circuit cut off pressure adjustment mechanism is configured to cut off the air circuit between the first interface and the second interface, and Adjusting the pressure rise and fall of the gas density relay body so that the gas density relay body generates a contact signal action;
  • the online verification contact signal sampling unit is directly or indirectly connected to the gas density relay body, and is configured to sample the contact signal of the gas density relay body;
  • the intelligent control unit is respectively connected with the gas density detection sensor, the gas path cutoff pressure adjustment mechanism and the online verification contact signal sampling unit, and is configured to complete the control of the gas path cutoff pressure adjustment mechanism.
  • the contact signal includes alarm and/or lockout.
  • the gas density detection sensor, the online verification contact signal sampling unit and the intelligent control unit are arranged on the gas density relay body; or,
  • the gas density detection sensor, the online verification contact signal sampling unit, and the intelligent control unit are arranged on the gas circuit cut-off pressure adjustment mechanism; the gas circuit cut-off pressure adjustment mechanism is arranged on the gas density relay body On; or,
  • the gas density detection sensor, the gas circuit interruption pressure adjustment mechanism, the online verification contact signal sampling unit and the intelligent control unit are arranged on the gas density relay body; or,
  • the gas density detection sensor is arranged on the gas density relay body; or,
  • the gas density detection sensor is arranged on the gas path blocking pressure adjustment mechanism; or,
  • the gas density relay body is arranged on the gas circuit blocking pressure adjustment mechanism; or,
  • the on-line verification contact signal sampling unit and the intelligent control unit are arranged on the air circuit blocking pressure adjustment mechanism.
  • the gas density relay body and the gas density detection sensor are an integrated structure.
  • the gas density relay body and the gas density detection sensor are remote gas density relays with an integrated structure.
  • the gas density detection sensor is an integrated structure.
  • the gas density detection sensor is a gas density transmitter with an integrated structure.
  • the online verification contact signal sampling unit and the intelligent control unit are arranged on the gas density transmitter.
  • the online verification contact signal sampling unit and the intelligent control unit are arranged together; preferably, the online verification contact signal sampling unit and the intelligent control unit are sealed in a cavity or housing.
  • the gas density detection sensor includes at least one pressure sensor and at least one temperature sensor; or, the gas density detection sensor adopts a gas density transmitter composed of a pressure sensor and a temperature sensor; or, the gas density detection sensor
  • the sensor is a density detection sensor using quartz tuning fork technology.
  • the pressure sensor is installed on the gas path of the gas density relay body or on the gas path blocking pressure adjustment mechanism; the temperature sensor is installed on the gas path or outside the gas path of the gas density relay body, Or inside the gas density relay body, or outside the gas density relay body.
  • the intelligent control unit obtains the gas density value collected by the gas density detection sensor; or, the intelligent control unit obtains the pressure value and temperature value collected by the gas density detection sensor to complete the gas density relay pairing
  • the on-line monitoring of the gas density relay body is to complete the on-line monitoring of the gas density of the monitored electrical equipment by the gas density relay.
  • the intelligent control unit uses an average value method (average value method) to calculate the gas density value
  • the average value method is: within a set time interval, set the collection frequency, and collect all the different time Perform average calculation processing on the N gas density values of a point to obtain the gas density value; or, in the set time interval, set the temperature interval step, and correspond to the N different temperature values collected in the entire temperature range Calculate the average value of the density value to obtain the gas density value; or, in the set time interval, set the pressure interval step size, and collect the density values corresponding to the N different pressure values collected in the entire pressure range Perform average calculation processing to obtain the gas density value; where N is a positive integer greater than or equal to 1.
  • the intelligent control unit obtains the gas density value collected by the gas density detection sensor when the gas density relay body generates a contact signal action or switching, and completes the on-line of the gas density relay (or gas density monitoring device) Check; or,
  • the intelligent control unit obtains the pressure value and temperature value collected by the gas density detection sensor when the gas density relay body generates a contact signal action or switching, and converts it into a pressure value corresponding to 20°C according to the gas pressure-temperature characteristic, That is, the gas density value completes the online verification of the gas density relay (or gas density monitoring device).
  • the gas density relay body has a comparison density value output signal, and the comparison density value output signal is connected to the intelligent control unit; or, the gas density relay body has a comparison pressure value output signal , The output signal of the comparison pressure value is connected with the intelligent control unit.
  • the gas path cutoff pressure adjustment mechanism includes a sealed cavity and a partition in the sealed cavity.
  • the first interface and the second interface are both arranged on the wall of the sealed cavity and are connected to the sealed cavity.
  • the internal space of the body is connected; the partition is configured to block the gas path between the first interface and the second interface, and to adjust the pressure rise and fall of the gas density relay body, so that the gas density relay body generates contacts Signal action.
  • the air path blocking pressure adjusting mechanism further includes a connecting piece and a driving component, and the blocking piece is connected to the driving component through the connecting piece; or the partitioning piece and the connecting piece are integrated in design and directly connected to the driving component ; Or, the partition is associated with the drive component through magnetic coupling;
  • the drive components include a magnetic drive mechanism, a motor, a reciprocating motion mechanism, a Carnot cycle mechanism, an air compressor, a compressor, an air release valve, a pressure generating pump, a booster pump, a booster valve, and an electric air pump , Electromagnetic air pump, pneumatic components, magnetic coupling thrust mechanism, heating generating thrust mechanism, electric heating generating thrust mechanism, chemical reaction generating thrust mechanism one or more of them.
  • one end of the sealed cavity is provided with a fifth interface
  • one end of the connecting member is connected to the partition member, and the other end passes through the fifth interface to connect to the driving component.
  • the first interface is closer to the fifth interface than the second interface, or the first interface is farther away from the fifth interface than the second interface.
  • the gas path cutoff pressure adjusting mechanism further includes a sealing element coupling element, the sealing element coupling element is arranged at the fifth interface of the sealing cavity, and the other end of the coupling element passes through the sealing element coupling element It is connected with the driving component; preferably, the seal coupling includes, but is not limited to, one of a bellows, an air bag, and a sealing ring.
  • One end of the above-mentioned sealing element connecting piece is sealedly connected with the fifth interface, and the other end is sealedly connected with the driving end of the driving part, or the other end of the driving part is sealed and wrapped in the sealed connecting part.
  • the sealed cavity is a retractable cavity
  • the driving component is located in the sealed cavity, and is provided with driving ends in two directions
  • the connecting piece includes a first connecting piece and a second connecting piece, Respectively connected to the driving ends in two directions; wherein, the other end of the first connecting piece is connected to the inner wall of the sealed cavity; the other end of the second connecting piece is connected to the partition, and the partition is provided with a through hole to seal
  • the inside of the cavity is in communication with the second interface, and the side of the partition facing the second interface is provided with a sealing element, and the sealing element is arranged around the perforation.
  • sealing element is two sealing rings, and the perforation is located between the two sealing rings.
  • the two driving ends face in opposite directions.
  • the first interface is connected to the gas density relay body through a connecting tube (preferably a capillary tube).
  • first connecting member is connected to an end of the sealed cavity provided with a first interface in a direction away from the second connecting member.
  • the sealed cavity is provided with a fixed point with an invariable position, and the driving component is installed or connected to the fixed point.
  • the partition of the gas path blocking pressure adjustment mechanism moves under the drive of the driving component, the partition member interrupts the gas path connection between the first interface and the second interface, and the gas in the sealed cavity
  • the pressure changes with the change of the position of the partition, and is used to adjust the pressure rise and fall of the gas density relay body, so that the gas density relay body generates a contact signal action.
  • the edge of the partition is in sealing contact with the inner wall of the sealed cavity; preferably, the partition includes, but is not limited to, one of a piston and a sealed partition.
  • the gas path cutoff pressure adjusting mechanism is sealed in a cavity or housing.
  • the online verification contact signal sampling unit includes an isolation sampling element, and the isolation sampling element is controlled by a gas density relay body, or a gas circuit interruption pressure adjustment mechanism, or an intelligent control unit; in the non-verification state, the The online verification contact signal sampling unit is relatively isolated on the circuit by isolating the sampling element and the contact of the gas density relay body; in the verification state, the online verification contact signal sampling unit cuts off the contact signal of the gas density relay body by isolating the sampling element
  • the control circuit connects the contact of the gas density relay body with the intelligent control unit; preferably, the isolation sampling element includes a travel switch, a micro switch, a button, an electric switch, a displacement switch, an electromagnetic relay, and an optocoupler , One or more of thyristor.
  • the gas density relay (or gas density monitoring device) further includes: a multi-way connector, and the gas density relay body and the gas circuit interruption pressure adjusting mechanism are arranged on the multi-way connector; or,
  • the gas path blocking pressure adjusting mechanism is fixed on the multi-way joint; or,
  • the gas density relay body, the gas density detection sensor, and the gas circuit interruption pressure adjustment mechanism are arranged on the multi-way joint.
  • the gas density relay (or gas density monitoring device) further includes: a gas supplement interface, the gas supplement interface is arranged on the gas circuit blocking pressure adjustment mechanism; or, the gas supplement interface is arranged on the On electrical equipment; or, the supplemental gas interface is arranged on the multi-way connector.
  • the gas density relay (or gas density monitoring device) further includes: a valve, the gas path blocking pressure adjusting mechanism is further provided with a third interface; one end of the valve is connected to the third port of the gas path blocking pressure adjusting mechanism The interface is connected, and the other end of the valve is directly or indirectly connected to the electrical device; the first interface is located between the second interface and the third interface.
  • the valve is an electric valve or an electromagnetic valve.
  • the valve is a permanent magnet solenoid valve.
  • the valve is a piezoelectric valve, or a temperature-controlled valve, or a new type of valve made of smart memory material that is opened or closed by electric heating.
  • valve is closed or opened by bending or pinching the hose.
  • valve is sealed in a cavity or housing.
  • the gas density relay (or gas density monitoring device) further includes: a self-sealing valve installed between the multi-way joint and the valve; or, the valve is installed on the Between the through joint and the self-sealing valve.
  • the gas density relay (or gas density monitoring device) further includes: micro water sensors respectively connected to the gas density relay body and the intelligent control unit, and/or respectively connected to the gas density relay body Decomposition sensor connected to the intelligent control unit.
  • the gas density relay (or gas density monitoring device) further includes: a gas circulation mechanism, which is respectively connected to the gas density relay body and the intelligent control unit, and the gas circulation mechanism Including capillary tube, sealed chamber and heating element.
  • micro-water sensor can be installed in the sealed chamber, in the capillary tube, the capillary port, or outside the capillary of the gas circulation mechanism.
  • the gas density relay (or gas density monitoring device) further includes: a temperature adjustment mechanism, the temperature adjustment mechanism is a temperature adjustable adjustment mechanism configured to adjust the temperature compensation element of the gas density relay body The temperature rises and falls, and then cooperates or/and combines with the gas circuit to cut off the pressure adjustment mechanism, so that the gas density relay body generates a contact signal action; the intelligent control unit is connected with the temperature adjustment mechanism to complete the control of the temperature adjustment mechanism .
  • a temperature adjustment mechanism is a temperature adjustable adjustment mechanism configured to adjust the temperature compensation element of the gas density relay body The temperature rises and falls, and then cooperates or/and combines with the gas circuit to cut off the pressure adjustment mechanism, so that the gas density relay body generates a contact signal action
  • the intelligent control unit is connected with the temperature adjustment mechanism to complete the control of the temperature adjustment mechanism .
  • the temperature adjustment mechanism is a heating element; or, the temperature adjustment mechanism includes a heating element, a heat insulating member, a temperature controller, a temperature detector, and a temperature adjustment mechanism housing; or, the temperature adjustment mechanism includes a heating element And a temperature controller; or, the temperature adjustment mechanism includes a heating element, a heating power regulator, and a temperature controller; or, the temperature adjustment mechanism includes a heating element, a cooling element, a heating power regulator, and a temperature controller; or, The temperature adjustment mechanism includes a heating element, a heating power regulator, and a thermostat controller; or, the temperature adjustment mechanism includes a heating element, a temperature controller, and a temperature detector; or, the temperature adjustment mechanism is a heating element, and a heating element It is arranged near the temperature compensation element of the gas density relay body; or, the temperature adjustment mechanism is a miniature thermostat;
  • the number of the heating element is at least one, and the heating element includes one or more of silicone rubber heaters, resistance wires, electric heating bands, electric heating rods, hot air blowers, infrared heating devices, and semiconductors;
  • the temperature controller is connected to the heating element and is used to control the heating temperature of the heating element.
  • the temperature controller includes a PID controller, a controller that combines PID and fuzzy control, a frequency conversion controller, and a PLC controller. One or more.
  • At least two gas density relay bodies, at least two gas circuit isolation pressure adjustment mechanisms, at least two online verification contact signal sampling units, an intelligent control unit, and a gas density detection sensor complete the gas density relay ( Or gas density monitoring device) online verification; or,
  • At least two gas density relay bodies at least two gas circuit isolation pressure adjustment mechanisms, at least two online verification contact signal sampling units, at least two intelligent control units and a gas density detection sensor to complete the gas density relay (or Gas density monitoring device) online verification; or,
  • At least two gas density relay bodies At least two gas circuit isolation pressure adjustment mechanisms, at least two online verification contact signal sampling units, at least two gas density detection sensors and an intelligent control unit to complete the gas density relay (or Gas density monitoring device) online verification.
  • the gas density detection sensor includes at least one pressure sensor and at least one temperature sensor.
  • the pressure sensor may be an absolute pressure sensor, a relative pressure sensor, or an absolute pressure sensor and a relative pressure sensor, and may be a diffused silicon pressure sensor, a MEMS pressure sensor, a chip pressure sensor, a coil induction pressure sensor (such as a Baden pressure sensor). Pressure sensor with induction coil attached to the tube), resistance pressure sensor (such as the pressure sensor with sliding wire resistance attached to the Baden tube), which can be an analog pressure sensor or a digital pressure sensor; the temperature sensor can be a thermocouple, Thermistor, semiconductor type, contact type and non-contact type, thermal resistance and thermocouple.
  • the pressure sensor includes a relative pressure sensor, and/or an absolute pressure sensor.
  • the pressure sensor when the pressure sensor is an absolute pressure sensor, it is represented by an absolute pressure value, and its verification result is the corresponding absolute pressure value of 20°C, which is represented by a relative pressure value, and the verification result is converted into a corresponding 20°C absolute pressure value.
  • the relative pressure value of °C when the pressure sensor is a relative pressure sensor, it is expressed by the relative pressure value, and the verification result is the corresponding relative pressure value of 20°C, expressed by the absolute pressure value, and the verification result is converted into The corresponding absolute pressure value of 20°C; the conversion relationship between the absolute pressure value and the relative pressure value is:
  • P absolute pressure P relative pressure + P standard atmospheric pressure .
  • the gas density relay body includes, but is not limited to, a bimetal-compensated gas density relay, a gas-compensated gas density relay, a bimetallic and gas-compensated hybrid gas density relay; a completely mechanical gas density relay, Digital gas density relay, mechanical and digital combined gas density relay; gas density relay with pointer display, digital gas density relay, gas density switch without display or indication; SF6 gas density relay, SF6 mixed gas density Relay, N2 gas density relay.
  • the electrical equipment includes SF6 gas electrical equipment, SF6 mixed gas electrical equipment, environmentally friendly gas electrical equipment, or other insulated gas electrical equipment.
  • the electrical equipment includes GIS, GIL, PASS, circuit breakers, current transformers, voltage transformers, transformers, gas filling cabinets, and ring network cabinets.
  • the online verification contact signal sampling unit for sampling the contact signal of the gas density relay body satisfies: the online verification contact signal sampling unit has at least two independent sets of sampling contacts, which can simultaneously perform sampling of at least two contacts. Automatically complete the calibration, and continuous measurement, no need to replace the contact or re-select the contact; among them, the contact includes, but not limited to alarm contact, alarm contact + lock contact, alarm contact + lock 1 contact + lock 2 contact, alarm contact + One of latching contacts + over-pressure contacts.
  • the test voltage of the on-line verification contact signal sampling unit for the contact signal action value or the switching value of the gas density relay body is not less than 24V, that is, during the verification, the test voltage is applied between the corresponding terminals of the contact signal No less than 24V voltage.
  • the intelligent control unit is based on the embedded algorithm and control program of the embedded system of the microprocessor, and automatically controls the entire verification process, including all peripherals, logic, input and output.
  • the intelligent control unit is based on general-purpose computers, industrial computers, ARM chips, AI chips, CPUs, MCUs, FPGAs, PLCs, etc., industrial control motherboards, embedded main control boards and other embedded algorithms and control programs to automatically control the entire
  • the verification process includes all peripherals, logic, input and output.
  • the intelligent control unit has an electrical interface, and the electrical interface completes test data storage, and/or test data export, and/or test data printing, and/or data communication with an upper computer, and/or input simulation Quantity, digital quantity information.
  • the gas density relay (or gas density monitoring device) supports the input of basic information, and the basic information includes one or more of the factory number, accuracy requirements, rated parameters, manufacturer, and operating position.
  • the intelligent control unit further includes a communication module that realizes long-distance transmission of test data and/or verification results.
  • the communication mode of the communication module is wired communication or wireless communication.
  • the wired communication mode includes one or more of RS232 bus, RS485 bus, CAN-BUS bus, 4-20mA, Hart, IIC, SPI, Wire, coaxial cable, PLC power carrier, and cable.
  • the wireless communication method includes one of NB-IOT, 2G/3G/4G/5G, WIFI, Bluetooth, Lora, Lorawan, Zigbee, infrared, ultrasonic, acoustic wave, satellite, light wave, quantum communication, sonar, or Several kinds.
  • the intelligent control unit is also provided with a clock, and the clock is configured to periodically set the calibration time of the gas density relay, or record the test time, or record the event time.
  • control of the intelligent control unit is through on-site control and/or through background control.
  • the gas density relay (or gas density monitoring device) completes the online verification of the gas density relay according to the settings or instructions of the background; or, according to the set verification time of the gas density relay , To complete the online verification of the gas density relay.
  • the gas density relay (or gas density monitoring device) further includes: a display interface for human-computer interaction, which is connected to the intelligent control unit to display current calibration data and/or support data in real time enter.
  • the gas density relay (or gas density monitoring device) further includes a camera for monitoring.
  • the gas density relay body includes: a housing, and a base, a pressure detector, a temperature compensation element, and a plurality of signal generators arranged in the housing; the first interface of the gas circuit blocking pressure adjustment mechanism Connected with the base; the online verification contact signal sampling unit is connected with the signal generator;
  • the signal generator includes a micro switch or a magnetic-assisted electric contact
  • the gas density relay body outputs a contact signal through the signal generator
  • the pressure detector includes a Baden tube or a bellows
  • the temperature The compensation element adopts a temperature compensation sheet or a gas enclosed in the housing.
  • At least one of the temperature sensors is arranged near the temperature compensation element of the gas density relay body, or arranged on the temperature compensation element, or integrated in the temperature compensation element.
  • at least one of the temperature sensors is arranged at an end of the pressure detector of the gas density relay body close to the temperature compensation element.
  • the gas density relay body further includes a display mechanism, the display mechanism includes a movement, a pointer, and a dial, the movement is fixed on the base or in the housing; one end of the temperature compensation element It is also connected to the movement through a connecting rod or directly connected to the movement; the pointer is mounted on the movement and is arranged in front of the dial, and the pointer combines with the dial to display the gas density value ;and / or
  • the display mechanism includes a digital device or a liquid crystal device with an indication display.
  • the gas density relay (or gas density monitoring device) further includes a contact resistance detection unit; the contact resistance detection unit is connected to the contact signal or directly connected to the signal generator; and the contact signal sampling is checked online Under the control of the unit, the contact signal of the gas density relay body is isolated from its control circuit.
  • the contact resistance detection unit can detect the contact resistance of the gas density relay body. Contact resistance value of the contact.
  • the gas density relay (or gas density monitoring device) further includes an insulation resistance detection unit; the insulation resistance detection unit is connected to the contact signal or directly connected to the signal generator; and the contact signal sampling is checked online Under the control of the unit, the contact signal of the gas density relay is isolated from its control circuit.
  • the insulation resistance detection unit can detect the gas density The insulation resistance value of the relay contact.
  • the gas density relay with on-line self-checking function generally refers to the design of its constituent elements into an integrated structure; and the gas density monitoring device generally refers to the design of its constituent elements into a body structure and flexible composition.
  • the second aspect of this application provides a method for calibrating a gas density relay, including:
  • the gas density relay (or gas density monitoring device) monitors the gas density value in the electrical equipment;
  • the gas density relay (or gas density monitoring device) according to the set calibration time and/or calibration instructions, as well as the gas density value, when the gas density relay is allowed to be calibrated:
  • the gas path cutoff pressure adjustment mechanism is controlled by the intelligent control unit.
  • the partition piece of the gas path cutoff pressure adjustment mechanism moves under the action of the driving component.
  • the partition piece cuts off the gas path connection of the first interface and the second interface, and follows With the movement of the blocking member, the volume of the sealed cavity of the gas circuit blocking pressure adjustment mechanism changes, which can adjust the pressure of the gas density relay body, so that the gas pressure slowly drops, so that the gas density relay body undergoes contact action.
  • the contact action is transmitted to the intelligent control unit through the online verification contact signal sampling unit.
  • the intelligent control unit obtains the gas density value according to the pressure value and temperature value during the contact action, or directly obtains the gas density value, and detects the contact signal of the gas density relay body Action value, complete the verification of the action value of the contact signal of the gas density relay body;
  • the intelligent control unit controls the air circuit cutoff pressure adjustment mechanism, and the partition piece of the air circuit cutoff pressure adjustment mechanism moves under the action of the driving component, so that the air circuit cuts off the second pressure adjustment mechanism.
  • the air path of the first interface and the second interface communicate with each other.
  • a calibration method of a gas density relay includes:
  • the gas density relay (or gas density monitoring device) monitors the gas density value in the electrical equipment, and the gas density relay (or gas density monitoring device) monitors the gas density value in the electrical equipment online through the gas density detection sensor and the intelligent control unit.
  • Gas density value (or gas density monitoring device) monitors the gas density value in the electrical equipment online through the gas density detection sensor and the intelligent control unit.
  • the gas density relay (or gas density monitoring device) according to the set calibration time and/or calibration instructions, as well as the gas density value, when the gas density relay is allowed to be calibrated:
  • the online calibration contact signal sampling unit is adjusted to the calibration state directly or indirectly through the intelligent control unit.
  • the online calibration contact signal sampling unit cuts off the control circuit of the contact signal of the gas density relay body, and the gas density relay The contact of the main body is connected to the intelligent control unit;
  • the gas path cutoff pressure adjustment mechanism is controlled by the intelligent control unit.
  • the partition piece of the gas path cutoff pressure adjustment mechanism moves under the action of the driving part.
  • the partition piece cuts off the gas path connection of the first interface and the second interface, and follows With the movement of the blocking member, the volume of the sealed cavity of the gas circuit blocking pressure adjustment mechanism changes, which can adjust the pressure of the gas density relay body so that the gas pressure slowly drops, so that the gas density relay body undergoes contact action.
  • the contact action is transmitted to the intelligent control unit through the online verification contact signal sampling unit.
  • the intelligent control unit obtains the gas density value according to the pressure value and temperature value during the contact action, or directly obtains the gas density value, and detects the contact signal action of the gas density relay Value, to complete the verification of the contact signal action value of the gas density relay;
  • the gas pressure regulating mechanism is driven by the intelligent control unit to slowly increase the gas pressure, so that the contact reset of the gas density relay body occurs.
  • the contact reset is transmitted to the intelligent control unit through the online calibration contact signal sampling unit, and the intelligent control unit is reset according to the contact point.
  • the intelligent control unit controls the air circuit cutoff pressure adjustment mechanism, and the partition piece of the air circuit cutoff pressure adjustment mechanism moves under the action of the driving component, so that the air circuit cuts off the second pressure adjustment mechanism.
  • the gas path of the first interface and the second interface are connected to each other, and the online check contact signal sampling unit is adjusted to the working state, and the control circuit of the contact signal of the gas density relay body returns to the normal working state.
  • a calibration method of a gas density relay includes:
  • the gas density relay (or gas density monitoring device) further includes a temperature adjustment mechanism; the method includes:
  • the gas density relay (or gas density monitoring device) monitors the gas density value in the electrical equipment, and the gas density relay (or gas density monitoring device) monitors the gas density value in the electrical equipment online through the gas density detection sensor and the intelligent control unit.
  • Gas density value (or gas density monitoring device) monitors the gas density value in the electrical equipment online through the gas density detection sensor and the intelligent control unit.
  • the gas density relay (or gas density monitoring device) is based on the set calibration time or/and calibration instructions, as well as the gas density value, under the condition that the gas density relay is allowed to be calibrated:
  • the online calibration contact signal sampling unit is adjusted to the calibration state directly or indirectly through the intelligent control unit.
  • the online calibration contact signal sampling unit cuts off the contact signal control loop of the gas density relay, and the gas density relay body The contact point is connected to the intelligent control unit;
  • the gas path cutoff pressure adjustment mechanism is controlled by the intelligent control unit.
  • the partition piece of the gas path cutoff pressure adjustment mechanism moves under the action of the driving part.
  • the partition piece cuts off the gas path connection of the first interface and the second interface, and follows With the movement of the partition member, the volume of the sealed cavity of the gas path blocking pressure adjustment mechanism changes, which can adjust the pressure of the gas density relay body to make the gas pressure slowly drop, and the temperature can be controlled by the intelligent control unit.
  • the control of the adjusting mechanism increases the temperature of the temperature compensation element of the gas density relay body, so that the gas density relay body produces contact action.
  • the contact action is transmitted to the intelligent control unit through the online verification contact signal sampling unit, and the intelligent control unit is based on Get the gas density value from the pressure value and temperature value during the contact action, or get the gas density value directly, detect the contact signal action value of the gas density relay body, and complete the verification of the contact signal action value of the gas density relay body;
  • the intelligent control unit Through the intelligent control unit to drive the gas circuit to cut off the pressure adjustment mechanism to slowly increase the gas pressure, and through the intelligent control unit to control the temperature adjustment mechanism, the temperature of the temperature compensation element of the gas density relay body is reduced, so that the gas density
  • the relay body undergoes a contact reset, and the contact reset is transmitted to the intelligent control unit through the online calibration contact signal sampling unit.
  • the intelligent control unit obtains the gas density value according to the pressure value and temperature value when the contact is reset, or directly obtains the gas density value, and detects the gas
  • the return value of the contact signal of the density relay completes the verification of the return value of the contact signal of the gas density relay body;
  • the intelligent control unit controls the air circuit cutoff pressure adjustment mechanism, and the partition piece of the air circuit cutoff pressure adjustment mechanism moves under the action of the driving component, so that the air circuit cuts off the second pressure adjustment mechanism.
  • the gas path of the first interface and the second interface are connected with each other, and the intelligent control unit turns off the heating element of the temperature adjustment mechanism, and adjusts the online verification contact signal sampling unit to the working state, and the control circuit of the contact signal of the gas density relay body is restored Running in normal working condition.
  • the contact signal includes alarm and/or lockout.
  • the gas density detection sensor includes at least one pressure sensor and at least one temperature sensor; or, the gas density detection sensor is a gas density transmitter composed of a pressure sensor and a temperature sensor; or, the gas density detection sensor It is a density detection sensor using quartz tuning fork technology.
  • the gas density relay (or gas density monitoring device) completes the calibration, if there is an abnormality, it can automatically send an alarm and upload it to the remote or send it to a designated receiver.
  • the verification method further includes: displaying the gas density value and the verification result on the spot, or displaying the gas density value and the verification result through the background.
  • the verification method further includes: the intelligent control unit is controlled through on-site control and/or through background control.
  • the third aspect of this application provides a method for transforming a gas density relay, including:
  • the gas path cutoff pressure adjustment mechanism Connect the gas path of the gas density relay body to the first port of the gas path cutoff pressure adjustment mechanism; the gas path cutoff pressure adjustment mechanism is also provided with a second port that communicates with electrical equipment, and the gas path cuts off the pressure
  • the adjustment mechanism is used to isolate the gas path between the first interface and the second interface, and to adjust the pressure rise and fall of the gas density relay body, so that the gas density relay body generates a contact signal action;
  • the contact signal includes alarm and/or lockout.
  • the gas density detection sensor, the online verification contact signal sampling unit and the intelligent control unit are arranged on the gas density relay body; or,
  • the gas density detection sensor, the online verification contact signal sampling unit, and the intelligent control unit are arranged on the gas circuit cut-off pressure adjustment mechanism; the gas circuit cut-off pressure adjustment mechanism is arranged on the gas density relay body On; or,
  • the gas density detection sensor, the gas circuit interruption pressure adjustment mechanism, the online verification contact signal sampling unit and the intelligent control unit are arranged on the gas density relay body; or,
  • the gas density detection sensor is arranged on the gas density relay body; or,
  • the gas density detection sensor is arranged on the gas path blocking pressure adjustment mechanism; or,
  • the gas density relay body is arranged on the gas circuit blocking pressure adjustment mechanism; or,
  • the on-line verification contact signal sampling unit and the intelligent control unit are arranged on the air circuit blocking pressure adjustment mechanism.
  • the transformation method of the gas density relay further includes:
  • the gas density relay body and the gas circuit interruption pressure adjustment mechanism are arranged on a multi-way joint; or,
  • the gas path blocking pressure adjusting mechanism is fixed on the multi-way joint; or,
  • the gas density relay body, the gas density detection sensor, and the gas circuit interruption pressure adjustment mechanism are arranged on a multi-way joint.
  • the method for reforming the gas density relay further includes: providing a gas supplement interface on the gas circuit cutoff pressure adjustment mechanism; or, setting a gas supplement interface on the electrical equipment; or, An air supplement interface is provided on the multi-way connector.
  • the method for reforming the gas density relay further includes: the gas circuit cut-off pressure regulating mechanism is further provided with a third interface, and one end of the valve is connected with the third interface of the pneumatic circuit cut-off pressure regulating mechanism, The other end of the valve is directly or indirectly connected to the electrical equipment; the first interface is located between the second interface and the third interface.
  • the method for reforming the gas density relay further includes: installing a self-sealing valve between the multi-way connector and the valve; or installing the valve on the multi-way connector and the self-sealing valve. Between the valves.
  • the method for transforming the gas density relay further includes: arranging a temperature adjustment mechanism inside or outside the housing of the gas density relay body, the temperature adjustment mechanism being a temperature adjustable adjustment mechanism, and adjusting the The temperature rise and fall of the temperature compensation element of the gas density relay body, and then cooperate with or/and combine with the gas circuit to cut off the pressure adjustment mechanism, so that the gas density relay body generates a contact signal action; connect the intelligent control unit and the temperature adjustment mechanism Connect to complete the control of the temperature adjustment mechanism.
  • the method for transforming the gas density relay further includes: connecting at least two gas density relay bodies, at least two gas circuit isolation pressure adjustment mechanisms, at least two online verification contact signal sampling units, and an intelligent control unit.
  • Unit and a gas density detection sensor are connected to complete the online verification of the gas density relay; or,
  • This application is used for high-voltage and medium-voltage electrical equipment, including gas density relay body, gas density detection sensor, gas circuit interruption pressure adjustment mechanism, online verification contact signal sampling unit and intelligent control unit.
  • the gas path cutoff pressure adjustment mechanism is controlled by the intelligent control unit.
  • the partition piece of the gas path cutoff pressure adjustment mechanism moves under the action of the driving part.
  • the partition piece cuts off the gas path connection of the first interface and the second interface, and follows With the movement of the partition, the volume of the sealed cavity changes, and the pressure of the gas density relay body can be adjusted, so that the gas pressure slowly drops or rises, so that the gas density relay body undergoes contact action or reset, and the contact action or reset
  • the contact signal sampling unit is sent to the intelligent control unit through online verification.
  • the intelligent control unit detects the alarm and/or blocking contact signal action value and/or return value of the gas density relay body according to the density value when the contact is activated, without the need for maintenance personnel
  • the calibration of the gas density relay can be completed on site, which improves the reliability of the power grid, improves the efficiency, reduces the cost, and can realize the maintenance-free gas density relay.
  • the entire calibration process achieves zero emission of SF 6 gas, which meets the requirements of environmental protection regulations.
  • this application does not need to use an electronic control valve, which results in better sealing performance, smaller volume, convenient on-site reconstruction, improved reliability, and promotion and application.
  • Fig. 1 is a schematic diagram of the structure of the gas density relay with online self-checking function in the working state of the first embodiment
  • FIG. 2 is a schematic structural diagram of the gas density relay with online self-calibration function in the online calibration state of the first embodiment
  • FIG. 3 is a schematic circuit diagram of a gas density relay with online self-checking function in the first embodiment
  • FIG. 4 is a schematic diagram of the structure of the gas density relay with online self-checking function in the second embodiment
  • FIG. 5 is a schematic diagram of the structure of the gas density relay with online self-checking function in the third embodiment
  • FIG. 6 is a schematic diagram of the structure of the gas density relay with online self-checking function in the fourth embodiment
  • FIG. 7 is a schematic structural diagram of a gas density relay body of a preferred embodiment
  • FIG. 8 is a schematic diagram of the structure of a gas density relay with online self-checking function in the fifth embodiment
  • FIG. 9 is a schematic diagram of the structure of the gas density relay with online self-checking function in the sixth embodiment.
  • Fig. 10 is a schematic structural diagram of a gas density relay with online self-checking function in the seventh embodiment.
  • the first embodiment of the present invention provides a gas density relay (or gas density monitoring device) with online self-checking function, including: gas density relay body 1, pressure sensor 2, temperature sensor 3, gas Circuit cut-off pressure adjustment mechanism 5, online verification contact signal sampling unit 6 and intelligent control unit 7.
  • gas density relay body 1, the pressure sensor 2, the temperature sensor 3 and the intelligent control unit 7 are arranged on the gas circuit cut off pressure regulating mechanism 5, and the gas circuit cut off pressure regulating mechanism 5 is also provided with a gas circuit connected to the electrical equipment 8.
  • Figure 1 is a schematic diagram of the working state of a gas density relay (or gas density monitoring device) with an online self-checking function.
  • the gas path blocking pressure adjusting mechanism 5 includes a sealed cavity 501, a blocking member 502, a blocking seal 503, a connecting member 504, a driving member 505, a first interface 506, a second interface 507, a sealing member coupling member 508, and a Four interfaces 509, contact signal interlocking parts 5K.
  • the partition 502 is arranged in the sealed cavity 501, and the partition 502 is connected to the driving component 505 through a connection 504 and a sealing connection 508.
  • the driving component 505 may include, but is not limited to, a magnetic drive mechanism, a motor, a reciprocating mechanism, a Carnot cycle mechanism, an air compressor, a compressor, a bleed valve, a pressure generating pump, a booster pump, a booster valve, and an electric air pump , Electromagnetic air pump, pneumatic components, magnetic coupling thrust mechanism, heating generating thrust mechanism, electric heating generating thrust mechanism, one of the chemical reaction generating thrust mechanism. Heating the thrust generating mechanism, such as heating the bimetal, will generate thrust.
  • the driving component 505 is to move the partition 502 to shut off the gas path of the electrical equipment 8, so as to isolate the gas path of the gas density relay body 1 from the electrical equipment 8, and at the same time, it can adjust the gas pressure rise and fall of the gas density relay body 1 to enable The contact of the gas density relay body 1 is activated or reset.
  • the partition 502 is in sealing contact with the inner wall of the sealed cavity 501; the partition 502 includes, but is not limited to, one of a piston and a sealing partition.
  • the sealing element connecting piece 508 and the sealing cavity 501 are arranged together, and the connecting piece 504 is connected to the driving component 505 through the sealing element connecting piece 508.
  • one end of the sealed cavity 501 is provided with a fifth interface
  • the first interface 506 is closer to the fifth interface 530 than the second interface 507, or the first interface 506 is farther away from the fifth interface 530 than the second interface 507, that is, it is cut off
  • the piece 502 cannot block the first interface 506 and the second interface 507 at the same time.
  • the sealing coupling 508 is arranged at the fifth interface 530 of the sealed cavity 501, one end of which is sealed to the fifth interface 530, and the other end is sealed to the driving end of the driving part 505, or the other end of the sealing coupling 508 seals and wraps the driving part 505 Inside the seal coupling 508.
  • the seal coupling 508 includes, but is not limited to, one of a bellows, an air bag, and a sealing ring.
  • the relative positions of the first interface 506 and the second interface 507 of the air path blocking pressure adjusting mechanism 5 are staggered.
  • the second interface 507 of the gas circuit cut-off pressure regulating mechanism 5 is directly or indirectly connected to the electrical equipment 8, and the first interface 506 of the gas circuit cut-off pressure regulating mechanism 5 is directly or indirectly connected to the gas density relay body 1; a pressure sensor 2 is connected to the fourth interface 509 of the air circuit blocking pressure adjustment mechanism 5.
  • the sealed cavity 501 of the gas circuit blocking pressure regulating mechanism 5 is connected to the gas circuit of the gas density relay body 1 and the electrical equipment 8;
  • the online verification contact signal sampling unit 6 is respectively connected to the gas density relay body 1 and the intelligent control The unit 7 is connected;
  • the pressure sensor 2, the temperature sensor 3 and the gas circuit cut off pressure adjustment mechanism 5 are respectively connected to the intelligent control unit 7;
  • the isolated sampling element of the online check contact signal sampling unit 6 is set corresponding to the contact signal interlocking part 5K,
  • the contact signal interlocking component 5K can cut off the contact signal control circuit of the gas density relay body 1, ensuring that the contact action signal of the gas density relay body 1 will not be uploaded during the calibration, and will not affect the safe operation of the power grid.
  • the isolated sampling element of the online verification contact signal sampling unit 6 includes one of a travel switch, a micro switch, a button, an electric switch, a displacement switch, an electromagnetic relay, and an optocoupler.
  • the gas density relay body 1 includes: a bimetallic compensated gas density relay, a gas compensated gas density relay, or a bimetallic and gas compensated mixed gas density relay; a completely mechanical gas density relay, a digital gas Density relay, mechanical and digital combination type gas density relay; density relay with indicator (density relay with pointer display, density relay with digital display, density relay with liquid crystal display), density relay without indicator (ie density switch) ; SF6 gas density relay, SF6 mixed gas density relay, N2 gas density relay, other gas density relays, etc.
  • the intelligent control unit 7 is mainly composed of a processor 71 (U1) and a power supply 72 (U2).
  • the processor 71 (U1) can be a general-purpose computer, an industrial computer, a CPU, a single-chip microcomputer, an ARM chip, an AI chip, an MCU, an FPGA, a PLC, etc., an industrial control board, an embedded main control board, etc., and other intelligent integrated circuits.
  • the power supply 72 (U2) can be a switching power supply, AC 220V, DC power supply, LDO, programmable power supply, solar energy, storage battery, rechargeable battery, battery, electric field induction power supply, magnetic field induction power supply, wireless charging power supply, capacitor power supply, etc.
  • the type of the pressure sensor 2 is an absolute pressure sensor, a relative pressure sensor, or an absolute pressure sensor and a relative pressure sensor, and the number can be several.
  • the pressure sensor 2 can be in the form of a diffused silicon pressure sensor, a MEMS pressure sensor, a chip pressure sensor, a coil induction pressure sensor (such as a pressure measurement sensor with an induction coil on a Baden tube), and a resistance pressure sensor (such as a slip wire with a Baden tube). Resistance pressure measurement sensor), it can be an analog pressure sensor or a digital pressure sensor.
  • Pressure collection is a variety of pressure-sensitive components such as pressure sensors and pressure transmitters, such as diffused silicon type, sapphire type, piezoelectric type, strain gauge type (resistance strain gauge type, ceramic strain gauge type).
  • the temperature sensor 3 can be a thermocouple, a thermistor, a semiconductor type, a contact type and a non-contact type, or a thermal resistance and a thermocouple.
  • temperature collection can use various temperature sensing elements such as temperature sensors and temperature transmitters.
  • the gas path blocking pressure adjusting mechanism 5 of this embodiment is mainly composed of a sealed cavity 501, a partition 502, a partition seal 503, a connecting piece 504, a driving part 505, a first interface 506, a second interface 507, and a sealing member coupling 508 , The fourth interface 509, contact signal interlocking parts 5K composition.
  • the sealed cavity 501 includes a seal coupling 508, and the seal coupling 508 is composed of a bellows.
  • the partition 502 provided with the partition seal 503 is arranged in the sealed cavity 501, and the partition 502 is connected to the driving component 505 through the connecting piece 504 and the sealing connecting piece 508.
  • the driving part 505 is composed of a motor and a reciprocating mechanism.
  • the partition 502 is in sealing contact with the inner wall of the sealed cavity 501 through the partition seal 503; the partition 502 includes, but is not limited to, one of a piston and a sealed partition. Since the sealing element coupling piece 508 and the sealing cavity 501 are arranged together, the connecting element 504 is connected to the driving component 505 through the sealing element coupling piece 508, which can ensure that the entire verification process is sealed.
  • the online verification contact signal sampling unit 6 is controlled by the contact signal interlocking part 5K, and mainly completes the contact signal sampling of the gas density relay body 1. That is, the basic requirements or functions of the online verification contact signal sampling unit 6 are: 1) The safe operation of the electrical equipment 8 is not affected during the verification. That is, during calibration, when the contact signal of the gas density relay body 1 acts, it will not affect the safe operation of the electrical equipment 8; 2) The contact signal control circuit of the gas density relay body 1 does not affect the performance of the gas density relay, especially The performance of the intelligent control unit 7 will not be affected, and the gas density relay will not be damaged, or the test work will not be affected.
  • the basic requirement or function of the intelligent control unit 7 is that the control and signal acquisition of the air path blocking pressure adjustment mechanism 5 are completed by the intelligent control unit 7.
  • the pressure value and temperature value are converted into the corresponding pressure value P 20 (density value) at 20°C, that is, the contact action value P D20 of the gas density relay body 1 can be detected, and the calibration of the gas density relay body 1 can be completed.
  • the density value P D20 when the contact signal of the gas density relay body 1 is activated can be directly detected, and the verification work for the gas density relay body 1 can be completed.
  • the intelligent control unit 7 can also realize: complete test data storage; and/or test data export; and/or test data can be printed; and/or can communicate with the host computer; and/or can input analog and digital ⁇ Volume information.
  • the intelligent control unit 7 also includes a communication module, which realizes remote transmission of test data and/or verification results and other information through the communication module; when the rated pressure value of the gas density relay body 1 outputs a signal, the intelligent control unit 7 At the same time, the current density value is collected to complete the verification of the rated pressure value of the gas density relay body 1. At the same time, the self-checking work between the gas density relay body 1, the pressure sensor 2, and the temperature sensor 3 can be completed through the test of the rated pressure value of the gas density relay body 1, and maintenance-free is realized.
  • Electrical equipment 8 including SF6 gas electrical equipment, SF6 mixed gas electrical equipment, environmentally friendly gas electrical equipment, or other insulated gas electrical equipment.
  • the electrical equipment 8 includes GIS, GIL, PASS, circuit breakers, current transformers, voltage transformers, transformers, gas filling cabinets, ring network cabinets, and so on.
  • the gas density relay body 1, the pressure sensor 2, the temperature sensor 3, the gas circuit interruption pressure adjustment mechanism 5, the online verification contact signal sampling unit 6, the intelligent control unit 7 or/and the multi-way connector can be flexibly set according to needs.
  • the gas density relay body 1, the pressure sensor 2 and the temperature sensor 3 can be arranged together; or the pressure sensor 2 and the gas circuit blocking pressure adjustment mechanism 5 can be arranged together. In short, the settings between them can be flexibly arranged and combined.
  • the sealed cavity 501 may be hollow or partially hollow, and its shape is matched with the partition 502 and used in conjunction with the partition 502 to adjust the gas pressure change.
  • the working principle of a gas density relay (or gas density monitoring device) with online self-checking function: the intelligent control unit 7 monitors the gas pressure and temperature of the electrical equipment 8 according to the pressure sensor 2 and the temperature sensor 3, and obtains the corresponding 20 °C pressure value P 20 (namely gas density value, that is, online monitoring gas density value).
  • the gas density relay (or gas density monitoring device) will issue an instruction, that is, through the intelligent control unit 7 Drive the driving part 505 of the air circuit blocking pressure adjusting mechanism 5.
  • the driving part 505 pushes the connecting member 504 to move, thereby causing the partition 502 and the partition seal 503 to move in the direction of the first interface 506 and the second interface 507, as shown in Figure 2 and As shown in Fig. 3, and during movement, the contact signal sampling unit 6 cuts off the control circuit of the contact signal of the gas density relay body 1 through the contact signal interlocking piece 5K, and connects the contact of the gas density relay body 1 to the intelligent control Unit 7. Because the gas density relay has monitored and judged the gas density value P 20 ⁇ the set safety verification density value P S before starting the calibration, the gas of the electrical equipment 8 is within the safe operation range, and gas leakage is a problem. The slow process is safe during calibration.
  • the first interface 506 and the second interface 507 are separated from each other under the partition action of the partition 502 and the partition seal 503. That is, the partition 502 and the partition seal 503 of the air circuit partition pressure adjusting mechanism 5 move toward the first interface 506 and the second interface 507 under the action of the driving part 505.
  • the partition 502 cuts off the gas circuit connection between the first interface 506 and the second interface 507, and as the partition 502 continues to move in the direction of the second interface 507, the volume of the sealed cavity 501 changes, which can adjust the gas density relay body 1
  • the gas pressure drops slowly, causing the contact action of the gas density relay body 1, and the contact action is transmitted to the intelligent control unit 7 through the online verification contact signal sampling unit 6.
  • the intelligent control unit 7 collects the pressure according to the contact action.
  • the pressure value P and temperature value T of the sensor 2 and the temperature sensor 3 are then calculated to obtain the gas density value P 20 , or the gas density value P 20 can be directly obtained, and the contact signal action value P D20 of the gas density relay body 1 is detected, complete Check the action value of the contact signal of the gas density relay.
  • the intelligent control unit 7 is converted into the pressure value P 20 (density value) corresponding to 20 °C according to the gas pressure-temperature relationship characteristics, and it can detect the contact action value P D20 of the gas density relay body 1, and wait for the gas density relay body 1 After all the contact action values of the alarm and/or blocking signals are detected, the intelligent control unit 7 drives the air circuit blocking pressure adjustment mechanism 5, the partition 502 moves toward the first interface 506, and the volume of the sealed cavity 501 changes , The pressure of the gas density relay body 1 can be adjusted to slowly increase the gas pressure, so that the gas density relay body 1 will reset the contacts, and the contact reset will be transmitted to the intelligent control unit 7 through the online verification contact signal sampling unit 6.
  • Unit 7 obtains the gas density value P 20 according to the pressure value P and temperature value T when the contact is reset, or directly obtains the gas density value P 20 , detects the contact signal return value P F20 of the gas density relay, and completes the contact signal of the gas density relay The verification work of the return value P F20. This can be repeated for many times (for example, 2 to 3 times), and then the average value can be calculated, thus completing the verification of the gas density relay body 1.
  • the intelligent control unit 7 controls the air circuit cutoff pressure adjustment mechanism 5, and the partition 502 of the air circuit cutoff pressure adjustment mechanism 5 moves under the action of the driving part 505, so that the air circuit cutoff pressure adjustment
  • the air paths of the first interface 506 and the second interface 507 of the mechanism 5 are connected to each other (as shown in FIG. 1), and with the movement of the contact signal interlocking member 5K, the online verification contact signal sampling unit 6 is adjusted to the working state, The control circuit of the contact signal of the gas density relay body 1 resumes normal operation.
  • the gas path of the first port 506 and the second port 507 of the gas path cutoff pressure regulating mechanism 5 are connected to each other, that is, the gas density relay body 1 is connected to the electrical equipment 8 on the gas path, and the gas density
  • the relay or gas density monitoring device
  • the gas density relay (or gas density monitoring device) will make a judgment, and the detection result can be notified in a flexible manner.
  • gas density relay can be displayed on-site, such as display by indicator light, digital or LCD; 2) Or gas density relay can be uploaded through online remote communication, for example, it can be uploaded to the online monitoring system. Background; 3) or upload via wireless upload to a specific terminal, such as wireless upload to a mobile phone; 4) or upload via other means; 5) or upload abnormal results via an alarm signal line or a dedicated signal line; 6) alone Upload, or bundle upload with other signals.
  • the gas density relay After the gas density relay completes the online verification of the gas density relay body 1, if there is an abnormality, it can automatically send an alarm, which can be uploaded to the remote end, or can be sent to a designated receiver, such as a mobile phone. Or, after the gas density relay completes the calibration work of the gas density relay body 1, if there is an abnormality, the intelligent control unit 7 can upload the remote (monitoring room, background monitoring platform, etc.) through the alarm contact signal of the gas density relay body 1, and You can also display notices on the spot.
  • the simple version of the gas density relay online calibration can upload the abnormal results of the calibration through the alarm signal line. It can be uploaded according to a certain rule.
  • a contact in parallel with the alarm signal contact when there is an abnormality, connect a contact in parallel with the alarm signal contact to regularly close and open, and the status can be obtained through analysis; or upload through an independent check signal line. Specifically, it can be uploaded in good condition, or there is a problem, or it can be uploaded through remote transmission density online monitoring, or the verification result can be uploaded through a separate verification signal line, or through local display, local alarm, or through wireless upload, Online upload with smart phone.
  • the communication method is wired or wireless.
  • the wired communication method can be RS232, RS485, CAN-BUS and other industrial buses, optical fiber Ethernet, 4-20mA, Hart, IIC, SPI, Wire, coaxial cable, PLC power carrier, etc.;
  • the wireless communication method can be 2G/3G/4G/5G, etc., WIFI, Bluetooth, Lora, Lorawan, Zigbee, infrared, ultrasonic, sound wave, satellite, light wave, quantum communication, sonar, sensor built-in 5G/NB-IOT communication module (such as NB-IOT) and so on.
  • multiple methods and multiple combinations can be used to fully ensure the reliable performance of the gas density relay.
  • the gas density relay has a safety protection function, which specifically means that when the value is lower than the set value, the gas density relay (or gas density monitoring device) will automatically no longer perform online verification on the gas density relay body 1 and send out a notice signal. For example, when the gas density device than the set value P S, not the check. For example: only when the gas density value of the equipment is greater than or equal to (alarm pressure value + 0.02MPa), the online calibration can be performed.
  • the gas density relay (or gas density monitoring device) can perform online calibration according to the set time, or according to the set temperature (such as extreme high temperature, high temperature, extreme low temperature, low temperature, normal temperature, 20 degrees, etc.) .
  • the error judgment requirements are different.
  • the accuracy requirement of the gas density relay can be 1.0 or 1.6, and it can be used at high temperature. It is level 2.5.
  • it can be implemented in accordance with temperature requirements and related standards. For example, in accordance with the 4.8 temperature compensation performance regulations in DL/T 259 "Sulfur hexafluoride Gas Density Relay Calibration Regulations", each temperature value corresponds to the accuracy requirements.
  • the gas density relay (or gas density monitoring device) can compare its error performance at different temperatures and time periods. That is to compare the performance of gas density relays and electrical equipment in different periods and within the same temperature range. It has the comparison of various periods of history, the comparison of history and the present.
  • the gas density relay (or gas density monitoring device) can be repeatedly checked multiple times (for example, 2 to 3 times), and the average value is calculated according to the result of each check. When necessary, the gas density relay can be checked online at any time.
  • the gas density relay (or gas density monitoring device) has the functions of pressure and temperature measurement and software conversion. On the premise that the safe operation of the electrical equipment 8 is not affected, the alarm and/or blocking contact action value and/or return value of the gas density relay body 1 can be detected online. Of course, the return value of the alarm and/or blocking contact signal can also be tested without testing. At the same time, the gas density relay (or gas density monitoring device) can also monitor the gas density value, and/or pressure value, and/or temperature value of the electrical device 8 online, and upload it to the target device for online monitoring.
  • the second embodiment of the present invention provides a gas density relay (or gas density monitoring device) with online self-checking function, including: gas density relay body 1, pressure sensor 2, temperature sensor 3, valve 4. Pneumatic cut-off pressure adjustment mechanism 5.
  • the pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged on the gas density relay body 1, and the gas circuit cutoff pressure regulating mechanism 5 is also provided with a gas circuit connected to the electrical equipment 8. Through the interface.
  • Figure 4 is a schematic diagram of the working state of a gas density relay (or gas density monitoring device) with online self-checking function.
  • the air path blocking pressure adjusting mechanism 5 includes a sealed cavity 501, a partition 502, a partition seal 503, a connecting piece 504, a driving part 505, a first interface 506, a second interface 507, a third interface 511, and a connecting piece.
  • One end of the valve 4 is connected to the third interface 511, and the other end of the valve 4 is connected to the multi-way joint 9.
  • the first interface 506 is provided at a position between the second interface 507 and the third interface 511.
  • the connector 504 is sealed with the sealed cavity 501 through the connector seal 510; the partition 502 is arranged in the sealed cavity 501, and the partition 502 is connected to the drive component 505 through the connector 504; the connector 504, the drive component 505,
  • the connector seal 510 is sealed in the cavity (or housing) 512.
  • the cavity (or housing) 512 and the sealed cavity 501 have a good seal, that is, the cavity (or housing) 512 ensures that the air circuit interruption pressure adjusting mechanism 5 has a good sealing performance.
  • the gas density relay body 1 is installed on the gas circuit blocking pressure regulating mechanism 5; the gas circuit blocking pressure regulating mechanism 5 is installed on the multi-way connector 9; the pressure sensor 2, the temperature sensor 3 are installed on the gas density relay body 1, and the pressure sensor 2 It communicates with the gas density relay body 1 on the gas path.
  • the gas circuit interruption pressure adjusting mechanism 5 is connected to the gas density relay body 1; the online verification contact signal sampling unit 6 and the intelligent control unit 7 are set together.
  • the pressure sensor 2, the temperature sensor 3, the valve 4 and the air circuit blocking pressure adjusting mechanism 5 are respectively connected with the intelligent control unit 7.
  • the multi-way connector 9 is also connected with a supplementary air interface.
  • Valve 4 can be controlled by a variety of transmission methods, such as manual, electric, hydraulic, pneumatic, turbine, electromagnetic, electromagnetic hydraulic, electro-hydraulic, pneumatic-hydraulic, spur gear, bevel gear drive, etc.; it can be driven by pressure, Under the action of temperature or other forms of sensing signals, it will act according to the predetermined requirements, or simply open or close without relying on the sensing signals.
  • the valve 4 relies on a drive or an automatic mechanism to make the opening and closing member move up, down, sliding, or swinging. Revolving movement, thereby changing the size of the flow channel area to achieve its control function.
  • the valve 4 can be an automatic valve, a power driven valve, and a manual valve.
  • the automatic valve may include: electromagnetic drive, electromagnetic-hydraulic drive, electro-hydraulic drive, turbine drive, spur gear drive, bevel gear drive, pneumatic drive, hydraulic drive, gas-hydraulic drive, electric drive, and motor (motor) drive.
  • the valve 4 can be automatic or manual or semi-automatic. The verification process can be completed automatically or semi-automatically through manual cooperation.
  • the valve 4 is directly or indirectly connected to the electrical equipment 8 through a self-sealing valve, a manual valve, or a valve that is not disassembled, and is connected integrally or separately.
  • the valve 4 can be a normally open type or a normally closed type according to needs, and can be a one-way type or a two-way type. In short, the valve 4 is used to open or close the gas circuit, and the valve 4 can be solenoid valve, electronically controlled ball valve, electric valve, or electronically controlled proportional valve.
  • the gas path blocking pressure adjusting mechanism 5 of this embodiment is mainly that the connecting piece 504 is sealed with the sealing cavity 501 through the connecting piece seal 510; the connecting piece 504, the driving part 505, and the connecting piece seal 510 It is sealed in the cavity (or housing) 512.
  • the cavity (or housing) 512 and the sealed cavity 501 have a good seal, that is, the cavity (or housing) 512 ensures that the air circuit interruption pressure adjusting mechanism 5 has a good sealing performance.
  • this embodiment also includes a valve 4, through which the verification of the gas density relay body 1 with the function of an overpressure alarm contact is completed.
  • the partition 502 is adjusted (or automatically set) to a suitable position, such as close to
  • the second interface 507 controls the valve 4 through the intelligent control unit 7, that is, opens the valve 4 through the intelligent control unit 7.
  • the gas of the electrical equipment 8 enters the gas density relay body 1, so that the gas density relay body 1
  • the pressure rises to the set pressure value or directly to the gas pressure value of the electrical equipment 8, and then the valve 4 is closed by the intelligent control unit 7.
  • the partition 502 moves toward the third interface 511, and the volume of the sealed cavity 501 (the right part of the partition 502 in FIG. 4) changes and can be adjusted.
  • the pressure of the gas density relay body 1 causes the gas pressure to rise slowly, causing the overpressure alarm contact of the gas density relay body 1 to act, and the signal for the action of the overpressure alarm contact is transmitted to the online verification contact signal sampling unit 6
  • the intelligent control unit 7 obtains the gas density value P 20 according to the pressure value P and the temperature value T when the overpressure alarm contact occurs, or directly obtains the gas density value P 20 , and detects the overpressure alarm of the gas density relay
  • the contact signal value PC20 of the contact action completes the verification work of the overpressure alarm contact signal value PC20 of the gas density relay body 1.
  • the gas circuit cut-off pressure adjusting mechanism 5 makes the driving part 505 move the partition 502 to change the volume of the sealed cavity 501, thereby completing the pressure drop, and detecting the overpressure alarm contact of the gas density relay
  • the reset contact signal value P CF20 occurs, the verification of the return value P CF20 of the overpressure alarm contact signal of the gas density relay body 1 is completed.
  • the third embodiment of the present invention provides a gas density relay (or gas density monitoring device) with online self-checking function, including: gas density relay body 1, pressure sensor 2, temperature sensor 3, gas Circuit cut-off pressure regulating mechanism 5, online check contact signal sampling unit 6, intelligent control unit 7, multi-way connector 9 and air supplement connector 10.
  • the air circuit blocking pressure adjusting mechanism 5 includes a sealed cavity 501, a blocking member 502, a blocking sealing member 503, a connecting member 504, driving components 513 and 514, a first interface 506, and a second interface 507.
  • the gas density relay body 1 is installed on the gas circuit isolation pressure regulating mechanism 5; the pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6 and the intelligent control unit 7 are arranged together.
  • the gas path blocking pressure adjusting mechanism 5 is installed on the multi-way connector 9, the pressure sensor 2 is connected to the gas density relay body 1 on the gas path; the air supplement connector 10 is arranged on the multi-way connector 9.
  • the pressure sensor 2, the temperature sensor 3, and the gas path blocking pressure adjusting mechanism 5 are respectively connected to the intelligent control unit 7.
  • the driving part of the air circuit blocking pressure adjustment mechanism 5 of this embodiment is composed of a power driving part 513 and a driven part 514.
  • the blocking part 502, the connecting part 504, and the driven part 514 are arranged in the sealing Inside the cavity 501.
  • the partition member 502 is connected to the driven member 514 through the connecting member 504.
  • the power driving member 513 pushes the driven member 514 to move, thereby causing the partition member 502 to move, so that the volume of the sealed cavity 501 is changed, and the pressure rise and fall are completed.
  • the power driving part 513 is arranged outside the sealed cavity 501, and the driven part 514 is arranged inside the sealed cavity 501.
  • the power driving part 513 applies electromagnetic force to drive the driven part 514 to move, namely the power driving part 513 and the driven part
  • the driven part 514 and the partitioning part 502 are moved by magnetic force between 514.
  • This embodiment can be implemented in combination with a magnetically coupled rodless cylinder.
  • the fourth embodiment of the present invention provides a gas density relay (or gas density monitoring device) with online self-checking function, including: gas density relay body 1, pressure sensor 2, temperature sensor 3, gas Circuit cut-off pressure adjustment mechanism 5, online verification contact signal sampling unit 6 and intelligent control unit 7.
  • gas density relay body 1 The pressure sensor 2, the temperature sensor 3, the online check contact signal sampling unit 6, and the intelligent control unit 7 are arranged on the gas density relay body 1; the gas density relay body 1 is arranged on the gas circuit blocking pressure regulating mechanism 5.
  • the air path blocking pressure adjusting mechanism 5 includes a sealed cavity 501, a partition 502, a partition seal 503, a connecting piece 504, a driving part 505, a first interface 506, a second interface 507, a sealing element coupling 508, a cavity (or Shell) 512;
  • the seal coupling 508 can be formed by a bellows.
  • the connecting member 504, the driving member 505, and the sealing member coupling member 508 are sealed and arranged inside the cavity (or housing) 512.
  • the second interface 507 of the air circuit blocking pressure adjusting mechanism 5 can be directly or indirectly connected to the electrical device 8 through a joint.
  • the connecting piece 504, the driving part 505, and the seal coupling piece 508 of this embodiment are sealed and arranged inside the cavity (or housing) 512, which further improves the sealing performance and ensures the safety of the power grid. run.
  • the partition 502 can be directly connected to the driving part 505 through the seal coupling 508; alternatively, the partition 502 and the connecting part 504 are of an integrated design and are directly connected to the driving part 505.
  • FIG. 7 is a schematic structural diagram of a gas density relay body 1 according to a preferred embodiment of this application.
  • a gas density relay body 1 includes: a housing 101, a base 102, an end seat 108, a pressure detector 103, a temperature compensation element 104, and a number of signal generators arranged in the housing 101. 109, movement 105, pointer 106, dial 107.
  • One end of the pressure detector 103 is fixed on the base 102 and communicates with it, the other end of the pressure detector 103 is connected to one end of the temperature compensation element 104 through an end seat 108, and the other end of the temperature compensation element 104 is provided with a beam ,
  • the crossbeam is provided with an adjusting member that pushes the signal generator 109 and makes the contact of the signal generator 109 turn on or off.
  • the movement 105 is fixed on the base 102; the other end of the temperature compensation element 104 is also connected to the movement 105 or directly connected to the movement 105 through a connecting rod; the pointer 106 is installed on the movement 105 and is arranged in front of the dial 107, The pointer 106 combined with the dial 107 displays the gas density value.
  • the gas density relay body 1 may also include a digital device or a liquid crystal device with an indication display.
  • the signal generator 109 includes a micro switch or a magnetic-assisted electric contact, the gas density relay body 1 outputs a contact signal through the signal generator 109;
  • the pressure detector 103 includes a Baden tube or a bellows;
  • the temperature compensation element 104 adopts temperature compensation Enclosed gas inside the sheet or shell.
  • the gas density relay body 1 of this embodiment may also include an oil-filled density relay, an oil-free density relay, a gas density meter, a gas density switch, or a gas pressure gauge.
  • the pressure detector 103 and the temperature compensation element 104 are used to correct the changed pressure and temperature to reflect the change in the density of the sulfur hexafluoride gas. That is, under the pressure of the measured medium sulfur hexafluoride (SF6) gas, due to the function of the temperature compensation element 104, when the density value of the sulfur hexafluoride gas changes, the pressure value of the sulfur hexafluoride gas also changes accordingly , Forcing the end of the pressure detector 103 to produce a corresponding elastic deformation displacement, with the help of the temperature compensation element 104, it is transmitted to the movement 105, and the movement 105 is transmitted to the pointer 106, and the measured density of sulfur hexafluoride gas is It is indicated on the dial 107.
  • SF6 measured medium sulfur hexafluoride
  • the signal generator 109 serves as an output alarm latching contact.
  • the gas density relay body 1 can display the density value of the sulfur hexafluoride gas. If the gas leaks, the density of sulfur hexafluoride gas drops, and the pressure detector 103 produces a corresponding downward displacement, which is transmitted to the movement 105 through the temperature compensation element 104, and the movement 105 is transmitted to the pointer 106.
  • the pointer 106 is Go in the direction of the small value, and the degree of air leakage is displayed on the dial 107; at the same time, the pressure detector 103 drives the cross beam to move downward through the temperature compensation element 104, and the adjustment piece on the cross beam gradually moves away from the signal generator 109 to a certain level.
  • the contact of the signal generator 109 is turned on, and the corresponding contact signal (alarm or lockout) is sent out to achieve the purpose of monitoring and controlling the sulfur hexafluoride gas density in electrical switches and other equipment, so that the electrical equipment can work safely.
  • the pressure value increases accordingly, and the end of the pressure detector 103 and temperature compensation
  • the element 104 generates a corresponding upward displacement, and the temperature compensation element 104 also causes the beam to move upward, and the adjusting member on the beam moves upward and pushes the contact of the signal generator 109 to be disconnected, and the contact signal (alarm or lock) is released.
  • the fifth embodiment of the present invention provides a gas density relay (or gas density monitoring device) with online self-checking function, including: gas density relay body 1, pressure sensor 2, temperature sensor 3, gas Circuit cut-off pressure adjustment mechanism 5, online verification contact signal sampling unit 6 and intelligent control unit 7.
  • gas density relay body 1 The pressure sensor 2, the temperature sensor 3, the online verification contact signal sampling unit 6, and the intelligent control unit 7 are arranged on the gas density relay body 1; the gas density relay body 1 is arranged on the gas circuit interruption pressure regulating mechanism 5.
  • the gas path cutoff pressure adjustment mechanism 5 includes a sealed cavity 501, a partition 502, a partition seal 503, a connecting piece 504, and a driving part consisting of a heating device 516 and a bimetallic sheet 515 (that is, electric heating generating thrust mechanism),
  • the 517 and the sliding member 518 are sealed and arranged inside the cavity (or housing).
  • the second interface 507 of the air circuit blocking pressure adjusting mechanism 5 can be directly or indirectly connected to the electrical device 8 through a joint.
  • the difference from the first embodiment is that the connecting member 504, the heating device 516, and the driving part composed of the bimetallic sheet 515, the connecting member 517 and the sliding member 518 of this embodiment are sealed and arranged inside the cavity (or housing), and further Improve the sealing performance to ensure the safe operation of the power grid.
  • the driving part of this case is composed of a heating device 516 and a bimetallic sheet 515. When the heating device 516 is energized and heated, the bimetallic sheet 515 expands, pushing the connecting piece 517 and the sliding piece 518 to move, and then pushing the connecting piece 504 to move. , And then push the partition 502 to move to complete the partition of the gas path and the adjustment of the pressure.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the sixth embodiment of the present invention provides a gas density relay (or gas density monitoring device) with online self-checking function, including: gas density relay body 1, pressure sensor 2, temperature sensor 3, gas Circuit cut-off pressure adjustment mechanism 5, online verification contact signal sampling unit 6 and intelligent control unit 7.
  • gas density relay body 1 The pressure sensor 2, the temperature sensor 3, the online check contact signal sampling unit 6, and the intelligent control unit 7 are arranged on the gas density relay body 1; the gas density relay body 1 is arranged on the gas circuit blocking pressure regulating mechanism 5.
  • the gas path blocking pressure adjusting mechanism 5 includes a sealed cavity 501, a partition 502, a partition seal 503A, a partition seal 503B, a connector 504A, a connector 504B, a drive component 505, a first interface 506, and a second interface 507, capillary tube 520, cavity (or housing) 512.
  • the second interface 507 of the air circuit blocking pressure adjusting mechanism 5 can be directly or indirectly connected to the electrical device 8 through a joint.
  • the sealed cavity 501 is composed of a bellows 508, a partition 502, and a blocking member 521; on the gas path, the gas density relay body 1 is connected to the first interface 506 of the gas path blocking pressure adjustment mechanism 5 through a spiral capillary 520 through.
  • the sealed cavity 501 is also provided with a fixed point (not shown in the figure) with an invariable position, such as a point where the wall of the sealed cavity 501 is fixedly connected to the outer housing 512, and the driving component 505 can be installed or connected to the fixed point , To prevent the position of the driving part 505 from changing.
  • the intelligent control unit 7 controls the driving part 505 to move the connecting piece 504B downwards, thereby pushing the partitioning piece 502 downwards, closing the air path of the second interface 507 ,
  • the gas density relay body 1 and the electrical equipment 8 are separated on the gas path; and at the same time or subsequently, the connecting piece 504A is moved upwards, and then the blocking piece 521 is pushed upwards, so that the bellows 508 expands to make the sealed cavity 501 occur
  • the volume of the body 501 changes, thereby adjusting the pressure drop or increase;
  • the partition 502 can be moved downward to close the air path of the second interface 507, and at the same time, the connecting piece 504A is moved upward, thereby pushing the blocking piece 521
  • the upward movement causes the bellows 508 to expand, causing the volume of the sealed cavity 501 to change, thereby adjusting the pressure to drop or increase.
  • the partition 502 can be moved downwards, and the blocking member 521 can be moved upwards, and the partition 502 can move downwards.
  • the air circuit closing the second interface 507 will not move, and the air circuit of the second interface 507 can be kept closed;
  • the blocking member 521 can continue to move upwards, so that the bellows 508 expands, and the volume of the sealed cavity 501 is changed, thereby adjusting the pressure to drop or increase.
  • the driving component 505 can be arranged inside or outside the sealed cavity 501.
  • the seventh embodiment of the present invention provides a gas density relay (or gas density monitoring device) with an online self-checking function, including: a gas density relay body 1, a first pressure sensor 21, and a second pressure The sensor 22, the first temperature sensor 31, the second temperature sensor 32, the air circuit blocking pressure adjustment mechanism 5, the online verification contact signal sampling unit 6, the intelligent control unit 7, the multi-way connector 9, the air supplement interface 10, and the self-sealing valve 11 .
  • One end of the self-sealing valve 11 is hermetically connected to the electrical equipment 8, and the other end of the self-sealing valve 11 is connected to the multi-way joint 9.
  • the second pressure sensor 21, the second temperature sensor 22, the air path cutoff pressure adjustment mechanism 5, and the supplemental gas interface 10 are arranged on the multi-way joint 9; the first pressure sensor 21, the first temperature sensor 31 are arranged on the air path cutoff pressure adjustment Institution 5.
  • the first pressure sensor 21, the second pressure sensor 22, the first temperature sensor 31, and the second temperature sensor 32 are respectively connected to the intelligent control unit 7.
  • the first pressure sensor 21, the second pressure sensor 22, and the gas density relay body 1 are in communication with the gas path cutoff pressure adjustment mechanism 5 on the gas path; the gas path cutoff pressure adjustment mechanism 5 is connected with the intelligent control unit 7.
  • the difference from the first embodiment is that there are two pressure sensors, namely the first pressure sensor 21 and the second pressure sensor 22; there are two temperature sensors, namely the first temperature sensor 31 and the second temperature sensor.
  • Sensor 32 This embodiment provides multiple pressure sensors and temperature sensors. The purpose is: the pressure values monitored by the first pressure sensor 21 and the second pressure sensor 22 can be compared for mutual verification; the first temperature sensor 31 and the second temperature sensor The temperature values monitored by 32 can be compared for mutual verification; the density value P1 20 monitored by the first pressure sensor 21 and the first temperature sensor 31 is compared with the density monitored by the second pressure sensor 22 and the second temperature sensor 32 Compare the values P2 20 and verify each other; you can even obtain the density value Pe 20 of the rated value of the gas density relay body 1 through online verification, and compare and verify each other. To further ensure the reliable performance of the gas density relay (or gas density monitoring device), automatic monitoring and comparison, and maintenance-free.
  • it may also include a micro-water sensor (not shown in the figure) for monitoring the content of micro-water in the electrical equipment 8 and a decomposition sensor (not shown in the figure) for monitoring the content of decomposition products.
  • the technical product of the present invention may also have a safety protection function, specifically: 1) The density value monitored by the first pressure sensor 21 and the first temperature sensor 31 or the second pressure sensor 22 and the second temperature sensor 32 is lower than the set value. When the value is set, the gas density relay will automatically no longer check the gas density relay body 1, and send out a notification signal. For example, when the gas density value of the device is less than the set value, it will not be calibrated. Only when the gas density value of the equipment ⁇ (blocking pressure + 0.02MPa), can the calibration be carried out. The docking point alarm has status indication.
  • the valve is closed at this time, and when the density value monitored by the second pressure sensor 22 and the second temperature sensor 32 is lower than the set value, the gas density relay will automatically stop checking the gas density relay body 1 Carry out the calibration and send out a notice signal (gas leak) at the same time.
  • the gas density value of the equipment is less than the set value (blocking pressure + 0.02MPa), it will not be verified.
  • the set value can be set arbitrarily as required.
  • the gas density relay also has mutual verification of multiple pressure sensors and temperature sensors, as well as mutual verification of the sensor and the gas density relay, to ensure that the gas density relay works normally.
  • the pressure values monitored by the first pressure sensor 21 and the second pressure sensor 22 are compared to verify each other; the temperature values monitored by the first temperature sensor 31 and the second temperature sensor 32 are compared to each other. Verification; the density value P1 20 monitored by the first pressure sensor 21 and the first temperature sensor 31 is compared with the density value P2 20 monitored by the second pressure sensor 22 and the second temperature sensor 32 to verify each other ; It can even be verified to obtain the density value Pe 20 of the rated value of the gas density relay body 1, and compare and verify each other.
  • the present invention provides a gas density relay with online self-calibration function and a calibration method thereof, as well as a modification method of the gas density relay. It is composed of part, signal measurement control part, etc.
  • the main function is to perform online verification measurement on the contact value of the gas density relay body (pressure value during alarm/locking action), and automatically convert it to the corresponding pressure value at 20°C, which is realized online
  • the performance test of the contact (alarm and lockout) value of the gas density relay body The installation positions of the gas density relay body, pressure sensor, temperature sensor, gas circuit interruption pressure adjustment mechanism, online verification contact signal sampling unit, and intelligent control unit can be flexibly combined.
  • gas density relay body, pressure sensor, temperature sensor, online calibration contact signal sampling unit, intelligent control unit can be combined together, integrated design, can also be separated design; can be installed on the shell, or multi-way connector It can also be connected together by connecting pipes.
  • the valve can be directly connected to electrical equipment, or can be connected through a self-sealing valve or a gas pipe.
  • Pressure sensor, temperature sensor, online verification contact signal sampling unit, intelligent control unit can be combined together, integrated design; pressure sensor, temperature sensor can be combined together, integrated design; online verification contact signal sampling unit, intelligent control Units can be combined together, integrated design.
  • the structure is eclectic.
  • a gas density relay with on-line self-checking function generally refers to the design of its constituent elements into an integrated structure; and the gas density monitoring device generally refers to the design of its constituent elements in a body structure and flexible composition.
  • Gas density relay with online self-calibration function when calibrating the contact of density relay at high temperature, low temperature, normal temperature and 20°C ambient temperature, its error judgment requirements can be different, and the specific requirements can be based on temperature and in accordance with relevant standards.
  • Implementation able to compare the error performance of the density relay at different temperatures and time periods. That is, the comparison of different periods and the same temperature range is used to determine the performance of the density relay. It has the comparison of various periods of history, the comparison of history and the present. Physical examination can also be performed on the density relay body. When necessary, the density relay contact signal can be verified at any time; whether the density value of the gas density relay body and the monitored electrical equipment is normal is determined.
  • the density value of the electrical equipment itself, the gas density relay body, the pressure sensor, and the temperature sensor can be judged, analyzed and compared for normal and abnormal, and then the gas density monitoring of the electrical equipment, the gas density relay body and other states can be judged, Compare and analyze; also monitor the contact signal state of the gas density relay, and remotely transmit its state.
  • the contact signal state of the gas density relay can be known in the background: whether it is open or closed, thereby adding a layer of monitoring and improving reliability; it can also detect, or detect and determine the temperature compensation performance of the gas density relay body; It can detect, or detect and determine the contact resistance of the gas density relay body; it can also detect, or detect and determine the insulation performance of the gas density relay body.
  • the structure of the application is compact and reasonable, each component has good rust-proof and shock-proof capabilities, the installation is firm, and the use is reliable.
  • the connection, disassembly and assembly of each pipeline of the gas density relay are easy to operate, and the equipment and components are easy to maintain.
  • This application can complete the calibration of the gas density relay without the need for maintenance personnel to go to the site, which greatly improves the reliability of the power grid, improves the efficiency, and reduces the cost.
  • the entire calibration process has achieved zero emission of SF 6 gas, which meets the requirements of environmental protection regulations.
  • this application may not use an electronic control valve, resulting in better sealing performance, smaller volume, convenient on-site reconstruction, improved reliability, and promotion and application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本申请提供一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法,用于高压、中压电气设备,包括气体密度继电器本体、气体密度检测传感器、气路隔断压力调节机构、在线校验接点信号采样单元和智控单元。智控单元控制气路隔断压力调节机构的隔断件运动,隔断第一接口和第二接口的气路连接,同时密封腔体发生体积变化,气体密度继电器本体的气体压力缓慢下降从而发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的密度值检测出报警和/或闭锁接点信号动作值和/或返回值,无需检修人员到现场就能完成校验,大大提高了电网的可靠性和效率,降低了成本。

Description

一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法
本申请请求如下中国专利申请的优先权:
1、2019年12月11日申请的申请号为201911263996.4(发明名称:一种具有在线自校验功能的气体密度继电器及其校验方法);
2、2019年12月11日申请的申请号为201911263998.3(发明名称:一种气体密度继电器的改造方法)。
技术领域
本发明涉及电力技术领域,具体涉及一种应用在高压、中压电气设备上,具有在线自校验功能的气体密度继电器及其校验方法,以及一种气体密度继电器的改造方法。
背景技术
目前,SF6(六氟化硫)电气设备已广泛应用在电力部门、工矿企业,促进了电力行业的快速发展。近年来,随着经济高速发展,我国电力系统容量急剧扩大,SF6电气设备用量越来越多。SF6气体在高压电气设备中的作用是灭弧和绝缘,高压电气设备内SF6气体的密度降低和微水含量如果超标将严重影响SF6高压电气设备的安全运行:1)SF6气体密度降低至一定程度将导致绝缘和灭弧性能的丧失。2)在一些金属物的参与下,SF6气体在高温200℃以上温度可与水发生水解反应,生成活泼的HF和SOF 2,腐蚀绝缘件和金属件,并产生大量热量,使气室压力升高。3)在温度降低时,过多的水分可能形成凝露水,使绝缘件表面绝缘强度显著降低,甚至闪络,造成严重危害。因此电网运行规程强制规定,在设备投运前和运行中都必须对SF6气体的密度和含水量进行定期检测。
随着无人值守变电站向网络化、数字化方向发展以及对遥控、遥测的要求不断加强,因此对SF6电气设备的气体密度和微水含量状态的在线监测具有重要的现实意义。随着中国智能电网的不断发展,智能高压电气设备作为智能变电站的重要组成部分和关键节点,对智能电网的安全起着举足轻重的作用。高压电气设备目前大多为SF6气体绝缘设备,如果气体密度降低(如泄漏等引起)将严重影响设备的电气性能,对安全运行造成严重隐患。目前 在线监测SF6高压电气设备中的气体密度值已经非常普遍了,为此气体密度监测系统(气体密度继电器)应用将蓬勃发展。而目前的气体密度监测系统(气体密度继电器)基本上是:1)应用远传式SF6气体密度继电器实现密度、压力和温度的采集,上传,实现气体密度在线监测。2)应用气体密度变送器实现密度、压力和温度的采集,上传,实现气体密度在线监测。SF6气体密度继电器是核心和关键部件。但是,由于高压变电站现场运行的环境恶劣,特别是电磁干扰非常强,目前使用的气体密度监测系统(气体密度继电器)中,其远传式SF6气体密度继电器是由机械式密度继电器和电子远传部分组成的;另外,应用气体密度变送器的电网系统中,都还保留传统的机械式密度继电器。该机械式密度继电器有一组、二组或三组机械触点,可以在压力到达报警、闭锁或超压的状态,及时将信息通过接点连接电路传送到目标设备终端,保证设备安全运行。同时,监测系统还配有安全可靠的电路传送功能,为实现实时数据远程读取与信息监控建立了有效平台,可将压力、温度、密度等信息及时传送到目标设备(一般为电脑终端)实现在线监测。
对电气设备上的气体密度继电器进行定期检验,是防患于未然,保障电气设备安全可靠运行的必要措施。《电力预防性试验规程》和《防止电力生产重大事故的二十五项重点要求》都要求要定期地对气体密度继电器进行校验。从实际运行情况来看,对气体密度继电器进行定期校验是保障电力设备安全、可靠运行的必要手段之一。因此,目前气体密度继电器的校验在电力系统已经非常重视和普及,各供电公司、发电厂、大型厂矿企业都已经实施。而供电公司、发电厂、大型厂矿企业为完成气体密度继电器的现场校验检测工作需配备测试人员、设备车辆和高价值的SF6气体。包括检测时的停电营业损失在内,粗略计算,每个高压开关站的每年分摊的检测费用在数万到几十万元左右。另外,检测人员现场校验如果不规范操作,还存在安全隐患。为此,非常有必要在现有的气体密度自校验气体密度继电器,尤其是气体密度在线自校验气体密度继电器或系统中,进行创新,使实现气体密度在线监测的气体密度继电器或组成的监测系统中还具有气体密度继电器的校验功能,进而完成(机械式)气体密度继电器的定期校验工作,无须检修人员到现场,大大提高了工作效率,降低了成本。
发明内容
本发明的目的在于提供一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法,以解决上述技术背景中提出的问题。
为实现上述目的,本发明采用以下技术方案:
本申请第一个方面提供了一种具有在线自校验功能的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体、气体密度检测传感器、气路隔断压力调节机构、在线校验接点信号采样单元和智控单元;
所述气体密度检测传感器,与所述气体密度继电器本体相连通;
所述气体密度继电器本体的气路,连接所述气路隔断压力调节机构的第一接口;
所述气路隔断压力调节机构还设有与电气设备相连通的第二接口,所述气路隔断压力调节机构被配置为用于隔断第一接口和第二接口之间的气路,以及用于调节所述气体密度继电器本体的压力升降,使所述气体密度继电器本体发生接点信号动作;
所述在线校验接点信号采样单元,与所述气体密度继电器本体直接或间接相连接,被配置为采样所述气体密度继电器本体的接点信号;
智控单元,分别与所述气体密度检测传感器、所述气路隔断压力调节机构和所述在线校验接点信号采样单元相连接,被配置为完成所述气路隔断压力调节机构的控制,压力值采集和温度值采集、和/或气体密度值采集,以及检测所述气体密度继电器本体的接点信号动作值和/或接点信号返回值;
其中,所述接点信号包括报警、和/或闭锁。
优选地,所述气体密度检测传感器、所述在线校验接点信号采样单元和所述智控单元设置在所述气体密度继电器本体上;或者,
所述气体密度检测传感器、所述在线校验接点信号采样单元和所述智控单元设置在所述气路隔断压力调节机构上;所述气路隔断压力调节机构设置在所述气体密度继电器本体上;或者,
所述气体密度检测传感器、所述气路隔断压力调节机构、所述在线校验接点信号采样单元和所述智控单元设置在所述气体密度继电器本体上;或者,
所述气体密度检测传感器设置在所述气体密度继电器本体上;或者,
所述气体密度检测传感器设置在所述气路隔断压力调节机构上;或者,
所述气体密度继电器本体设置在所述气路隔断压力调节机构上;或者,
所述在线校验接点信号采样单元和所述智控单元设置在所述气路隔断压力调节机构上。
优选地,所述气体密度继电器本体、所述气体密度检测传感器为一体化结构。
更优选地,所述气体密度继电器本体、所述气体密度检测传感器为一体化结构的远传式气体密度继电器。
优选地,所述气体密度检测传感器为一体化结构。
更优选地,所述气体密度检测传感器为一体化结构的气体密度变送器。
进一步地,所述在线校验接点信号采样单元、智控单元设置在所述气体密度变送器上。
优选地,所述在线校验接点信号采样单元和所述智控单元设置在一起;优选地,所述在线校验接点信号采样单元和所述智控单元密封在一个腔体或壳体内。
优选地,所述气体密度检测传感器包括至少一个压力传感器和至少一个温度传感器;或者,所述气体密度检测传感器采用由压力传感器和温度传感器组成的气体密度变送器;或者,所述气体密度检测传感器为采用石英音叉技术的密度检测传感器。
更优选地,所述压力传感器安装于所述气体密度继电器本体的气路上或所述气路隔断压力调节机构上;所述温度传感器安装于所述气体密度继电器本体的气路上或气路外,或所述气体密度继电器本体内,或所述气体密度继电器本体外。
优选地,所述智控单元获取所述气体密度检测传感器采集的气体密度值;或者,所述智控单元获取所述气体密度检测传感器采集的压力值和温度值,完成所述气体密度继电器对气体密度继电器本体的在线监测,即完成所述气体密度继电器对所监测的电气设备的气体密度的在线监测。
更优选地,所述智控单元采用均值法(平均值法)计算所述气体密度值,所述均值法为:在设定的时间间隔内,设定采集频率,将全部采集得到的不同时间点的N个气体密度值进行平均值计算处理,得到其气体密度值;或者,在设定的时间间隔里、设定温度间隔步长,把全部温度范围内采集得到的N个不同温度值对应的密度值进行平均值计算处理,得到其气体密度值;或者,在设定的时间间隔里、设定压力间隔步长,把全部压力变化范围内采集得到的N个不同压力值对应的密度值进行平均值计算处理,得到其气体密度值;其中,N为大于等于1的正整数。
优选地,所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述气体密度检测传感器采集的气体密度值,完成所述气体密度继电器(或气体密度监测装置)的在线校验;或者,
所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述气体密度检测传感器采集的压力值和温度值,并按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值,完成所述气体密度继电器(或气体密度监测装置)的在线校验。
优选地,所述气体密度继电器本体带有比对密度值输出信号,该比对密度值输出信号与 所述智控单元相连接;或者,所述气体密度继电器本体带有比对压力值输出信号,该比对压力值输出信号与所述智控单元相连接。
优选地,所述气路隔断压力调节机构包括密封腔体、以及处于密封腔体内的隔断件,第一接口和第二接口均设置在所述密封腔体的壁上,并与所述密封腔体的内部空间连通;所述隔断件被配置为用于隔断第一接口和第二接口之间的气路,以及用于调节气体密度继电器本体的压力升降,使所述气体密度继电器本体发生接点信号动作。
更优选地,所述气路隔断压力调节机构还包括连接件和驱动部件,所述隔断件通过连接件与驱动部件相连接;或者,隔断件与连接件一体化设计,直接与驱动部件相连接;或者,隔断件通过磁耦合与驱动部件相关联;
其中,优选地,所述驱动部件包括磁力驱动机构、电机、往复运动机构、卡诺循环机构、空压机、压缩机、放气阀、造压泵、增压泵、增压阀、电动气泵、电磁气泵、气动元件、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构中的一种或更多种。
进一步地,所述密封腔体的一端设有第五接口,所述连接件的一端连接所述隔断件,另一端穿出所述第五接口连接到所述驱动部件。
更进一步地,所述第一接口比所述第二接口更靠近所述第五接口,或者,所述第一接口比所述第二接口更远离所述第五接口。
更进一步地,所述气路隔断压力调节机构还包括密封件联结件,所述密封件联结件设置在密封腔体的第五接口,所述连接件的另一端穿过所述密封件联结件与驱动部件相连接;优选地,所述密封件联结件包括、但不限于波纹管、气囊、密封圈中的一种。
上述密封件联结件的一端与所述第五接口密封连接,另一端与驱动部件的驱动端密封连接,或者另一端将驱动部件密封包裹在所述密封联结件内。
进一步地,所述密封腔体为可伸缩腔体,所述驱动部件位于所述密封腔体内,并在两个方向设有驱动端;所述连接件包括第一连接件和第二连接件,分别连接在两个方向的驱动端;其中,第一连接件的另一端连接所述密封腔体的内壁;第二连接件的另一端连接所述隔断件,所述隔断件设有穿孔将密封腔体的内部与第二接口连通,所述隔断件朝向第二接口的一侧设有密封件,所述密封件环绕所述穿孔设置。
更进一步地,所述密封件为两个密封环,所述穿孔位于两个密封环之间。
更进一步地,两个所述驱动端朝向相反的方向。
更进一步地,所述第一接口通过连接管(优选为毛细管)连接气体密度继电器本体。
更进一步地,所述第一连接件在背向所述第二连接件的方向连接到所述密封腔体设有第一接口的一端。
更进一步地,所述密封腔体设有位置不可变的固定点,所述驱动部件安装或连接在所述固定点上。
进一步地,校验时,所述气路隔断压力调节机构的隔断件在驱动部件的驱动下运动,所述隔断件隔断第一接口和第二接口的气路连接,所述密封腔体的气体压力随所述隔断件的位置变化而变化,用于调节所述气体密度继电器本体的压力升降,使所述气体密度继电器本体发生接点信号动作。
更优选地,所述隔断件的边缘与所述密封腔体的内壁密封接触;优选地,所述隔断件包括、但不限于活塞、密封隔离件中的一种。
优选地,所述气路隔断压力调节机构密封在一个腔体或壳体内。
优选地,所述在线校验接点信号采样单元包括隔离采样元件,所述隔离采样元件由气体密度继电器本体、或气路隔断压力调节机构、或智控单元控制;在非校验状态,所述在线校验接点信号采样单元通过隔离采样元件与气体密度继电器本体的接点在电路上相对隔离;在校验状态,所述在线校验接点信号采样单元通过隔离采样元件切断气体密度继电器本体的接点信号控制回路,将所述气体密度继电器本体的接点与所述智控单元相连接;优选地,所述隔离采样元件包括行程开关、微动开关、按钮、电动开关、位移开关、电磁继电器、光耦、可控硅中的一种或更多种。
优选地,所述气体密度继电器(或气体密度监测装置)还包括:多通接头,所述气体密度继电器本体、所述气路隔断压力调节机构设置在所述多通接头上;或者,
所述气路隔断压力调节机构固定在所述多通接头上;或者,
所述气体密度继电器本体、气体密度检测传感器、所述气路隔断压力调节机构设置在所述多通接头上。
更优选地,所述气体密度继电器(或气体密度监测装置),还包括:补气接口,所述补气接口设置在所述气路隔断压力调节机构上;或者,所述补气接口设置在电气设备上;或者,所述补气接口设置在所述多通接头上。
优选地,所述气体密度继电器(或气体密度监测装置)还包括:阀,所述气路隔断压力调节机构还设有第三接口;所述阀的一端与气路隔断压力调节机构的第三接口相连接,所述 阀的另一端直接或间接与电气设备相连接;所述第一接口位于所述第二接口和所述第三接口之间的位置。
更优选地,所述阀为电动阀,或为电磁阀。优选地,所述阀为为永磁式电磁阀。
更优选地,所述阀为压电阀,或为温度控制的阀,或为采用智能记忆材料制作的、采用电加热开启或关闭的新型阀。
更优选地,所述阀为软管折弯或夹扁方式实现关闭或开启。
更优选地,所述阀密封在一个腔体或壳体内。
更优选地,所述气体密度继电器(或气体密度监测装置)还包括:自封阀,所述自封阀安装于所述多通接头与所述阀之间;或者,所述阀安装于所述多通接头与所述自封阀之间。
优选地,所述气体密度继电器(或气体密度监测装置)还包括:分别与所述气体密度继电器本体和所述智控单元相连接的微水传感器,和/或分别与所述气体密度继电器本体和所述智控单元相连接的分解物传感器。
更优选地,所述气体密度继电器(或气体密度监测装置)还包括:气体循环机构,所述气体循环机构分别与所述气体密度继电器本体和所述智控单元相连接,所述气体循环机构包括毛细管、密封腔室和加热元件。
进一步地,所述微水传感器可以安装于所述气体循环机构的密封腔室、毛细管中、毛细管口、或毛细管外。
优选地,所述气体密度继电器(或气体密度监测装置)还包括:温度调节机构,所述温度调节机构为温度可调的调节机构,被配置为调节所述气体密度继电器本体的温度补偿元件的温度升降,进而配合或/和结合气路隔断压力调节机构,使所述气体密度继电器本体发生接点信号动作;所述智控单元与所述温度调节机构相连接,完成所述温度调节机构的控制。
更优选地,所述温度调节机构为加热元件;或者,所述温度调节机构包括加热元件、保温件、温度控制器、温度检测器、温度调节机构外壳;或者,所述温度调节机构包括加热元件和温度控制器;或者,所述温度调节机构包括加热元件、加热功率调节器和温度控制器;或者,所述温度调节机构包括加热元件、制冷元件、加热功率调节器和温度控制器;或者,所述温度调节机构包括加热元件、加热功率调节器和恒温控制器;或者,所述温度调节机构包括加热元件、温度控制器、温度检测器;或者,所述温度调节机构为加热元件,加热元件设置在气体密度继电器本体的温度补偿元件附近;或者,所述温度调节机构为微型恒温箱;
其中,所述加热元件的数量为至少一个,所述加热元件包括硅橡胶加热器、电阻丝、电 热带、电热棒、热风机、红外线加热器件、半导体中的一种或更多种;
所述温度控制器,连接所述加热元件,用于控制加热元件的加热温度,所述温度控制器包括PID控制器、PID与模糊控制相组合的控制器、变频控制器、PLC控制器中的一种或更多种。
优选地,至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接点信号采样单元和一个智控单元、一个气体密度检测传感器,完成所述气体密度继电器(或气体密度监测装置)的在线校验;或者,
至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接点信号采样单元、至少两个智控单元和一个气体密度检测传感器,完成所述气体密度继电器(或气体密度监测装置)的在线校验;或者,
至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接点信号采样单元、至少两个气体密度检测传感器和一个智控单元,完成所述气体密度继电器(或气体密度监测装置)的在线校验。
优选地,所述气体密度检测传感器包括至少一个压力传感器、至少一个温度传感器。
具体地,所述压力传感器可以是绝对压力传感器、相对压力传感器、或绝对压力传感器和相对压力传感器,可以是扩散硅压力传感器、MEMS压力传感器、芯片式压力传感器、线圈感应压力传感器(如巴登管附带感应线圈的压力传感器)、电阻压力传感器(如巴登管附带滑线电阻的压力传感器),可以是模拟量压力传感器,也可以是数字量压力传感器;所述温度传感器可以是热电偶、热敏电阻、半导体式,可以是接触式和非接触式,也可以是热电阻和热电偶。
更优选地,所述压力传感器包括相对压力传感器,和/或绝对压力传感器。
进一步地,所述压力传感器为绝对压力传感器时,用绝对压力值来表示,其校验结果是相应的20℃的绝对压力值,用相对压力值来表示,其校验结果换算成相应的20℃的相对压力值;所述压力传感器为相对压力传感器时,用相对压力值来表示,其校验结果是相应的20℃的相对压力值,用绝对压力值来表示,其校验结果换算成相应的20℃的绝对压力值;所述绝对压力值和所述相对压力值之间的换算关系为:
P 绝对压力=P 相对压力+P 标准大气压
优选地,所述气体密度继电器本体包括、但不限于双金属片补偿的气体密度继电器、气体补偿的气体密度继电器、双金属片和气体补偿混合型的气体密度继电器;完全机械的气体 密度继电器、数字型气体密度继电器、机械和数字结合型的气体密度继电器;带指针显示的气体密度继电器、数显型气体密度继电器、不带显示或指示的气体密度开关;SF6气体密度继电器、SF6混合气体密度继电器、N2气体密度继电器。
优选地,所述电气设备包括SF6气体电气设备、SF6混合气体电气设备、环保型气体电气设备、或其它绝缘气体电气设备。
具体地,所述电气设备包括GIS、GIL、PASS、断路器、电流互感器、电压互感器、变压器、充气柜、环网柜。
优选地,所述在线校验接点信号采样单元对所述气体密度继电器本体的接点信号采样满足:所述在线校验接点信号采样单元具有独立的至少两组采样接点,可同时对至少两个接点自动完成校验,且连续测量、无须更换接点或重新选择接点;其中,所述接点包括、但不限于报警接点、报警接点+闭锁接点、报警接点+闭锁1接点+闭锁2接点、报警接点+闭锁接点+超压接点中的一种。
优选地,所述在线校验接点信号采样单元对所述气体密度继电器本体的接点信号动作值或其切换值的测试电压不低于24V,即在校验时,在接点信号相应端子之间施加不低于24V电压。
优选地,所述智控单元基于微处理器的嵌入式系统内嵌算法及控制程序,自动控制整个校验过程,包含所有外设、逻辑及输入输出。
更优选地,所述智控单元基于通用计算机、工控机、ARM芯片、AI芯片、CPU、MCU、FPGA、PLC等、工控主板、嵌入式主控板等内嵌算法及控制程序,自动控制整个校验过程,包含所有外设、逻辑及输入输出。
优选地,所述智控单元具有电气接口,所述电气接口完成测试数据存储,和/或测试数据导出,和/或测试数据打印,和/或与上位机进行数据通讯,和/或输入模拟量、数字量信息。
优选地,所述气体密度继电器(或气体密度监测装置)支持基本信息输入,所述基本信息包括出厂编号、精度要求、额定参数、制造厂、运行位置中的一种或几种。
优选地,所述智控单元还包括实现远距离传输测试数据、和/或校验结果的通讯模块。
更优选地,所述通讯模块的通讯方式为有线通讯或无线通讯方式。
进一步地,所述有线通讯方式包括RS232总线、RS485总线、CAN-BUS总线、4-20mA、Hart、IIC、SPI、Wire、同轴电缆、PLC电力载波、电缆线中的一种或几种。
进一步地,所述无线通讯方式包括NB-IOT、2G/3G/4G/5G、WIFI、蓝牙、Lora、Lorawan、 Zigbee、红外、超声波、声波、卫星、光波、量子通信、声呐中的一种或几种。
优选地,所述智控单元上还设有时钟,所述时钟被配置为用于定期设置所述气体密度继电器的校验时间,或者记录测试时间,或者记录事件时间。
优选地,所述智控单元的控制通过现场控制,和/或通过后台控制。
更优选地,所述气体密度继电器(或气体密度监测装置)根据所述后台的设置或指令,完成所述气体密度继电器的在线校验;或者,根据设置的所述气体密度继电器的校验时间,完成所述气体密度继电器的在线校验。
优选地,所述气体密度继电器(或气体密度监测装置),还包括:用于人机交互的显示界面,与所述智控单元相连接,实时显示当前的校验数据,和/或支持数据输入。
优选地,所述气体密度继电器(或气体密度监测装置),还包括用于监控的摄像头。
优选地,所述气体密度继电器本体包括:壳体,以及设于所述壳体内的基座、压力检测器、温度补偿元件、若干信号发生器;所述气路隔断压力调节机构的第一接口与所述基座相连通;所述在线校验接点信号采样单元,与所述信号发生器相连接;
其中,所述信号发生器包括微动开关或磁助式电接点,所述气体密度继电器本体通过所述信号发生器输出接点信号;所述压力检测器包括巴登管或波纹管;所述温度补偿元件采用温度补偿片或壳体内封闭的气体。
更优选地,至少有一个所述温度传感器设置在所述气体密度继电器本体的温度补偿元件附近、或设置在温度补偿元件上,或集成于温度补偿元件中。优选地,至少有一个所述温度传感器设置在所述气体密度继电器本体的压力检测器靠近温度补偿元件的一端。
更优选地,所述气体密度继电器本体还包括显示机构,所述显示机构包括机芯、指针、刻度盘,所述机芯固定在所述基座上或壳体内;所述温度补偿元件的一端还通过连杆与所述机芯连接或直接与所述机芯连接;所述指针安装于所述机芯上且设于所述刻度盘之前,所述指针结合所述刻度盘显示气体密度值;和/或
所述显示机构包括具有示值显示的数码器件或液晶器件。
更优选地,所述气体密度继电器(或气体密度监测装置)还包括接触电阻检测单元;所述接触电阻检测单元与接点信号相连接或直接与信号发生器相连接;在在线校验接点信号采样单元的控制下,气体密度继电器本体的接点信号与其控制回路隔离,在接点信号发生动作时,和/或在接到检测接点接触电阻的指令时,接触电阻检测单元能够检测到气体密度继电器本体的接点接触电阻值。
更优选地,所述气体密度继电器(或气体密度监测装置)还包括绝缘电阻检测单元;所述绝缘电阻检测单元与接点信号相连接或直接与信号发生器相连接;在在线校验接点信号采样单元的控制下,气体密度继电器的接点信号与其控制回路隔离,在气体密度继电器的接点信号发生动作时,和/或在接到检测接点绝缘电阻的指令时,绝缘电阻检测单元能够检测到气体密度继电器的接点绝缘电阻值。
上述内容中,所述具有在线自校验功能的气体密度继电器一般指的是其组成元件设计成一体结构;而气体密度监测装置一般指的是其组成元件设计成分体结构,灵活组成。
本申请第二个方面提供了一种气体密度继电器的校验方法,包括:
正常工作状态时,气体密度继电器(或气体密度监测装置)监控电气设备内的气体密度值;
气体密度继电器(或气体密度监测装置)根据设定的校验时间和/或校验指令,以及气体密度值情况,在允许校验气体密度继电器的状况下:
通过智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,所述隔断件隔断第一接口和第二接口的气路连接,并随着隔断件的运动,所述气路隔断压力调节机构的密封腔体的体积发生变化,能够调节所述气体密度继电器本体的压力,使其气体压力缓慢下降,使得气体密度继电器本体发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器本体的接点信号动作值,完成气体密度继电器本体的接点信号动作值的校验工作;
当所有的接点信号校验工作完成后,智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,使气路隔断压力调节机构的第一接口和第二接口的气路相互连通。
优选地,一种气体密度继电器的校验方法,包括:
正常工作状态时,气体密度继电器(或气体密度监测装置)监控电气设备内的气体密度值,同时气体密度继电器(或气体密度监测装置)通过气体密度检测传感器以及智控单元在线监测电气设备内的气体密度值;
气体密度继电器(或气体密度监测装置)根据设定的校验时间和/或校验指令,以及气体密度值情况,在允许校验气体密度继电器的状况下:
通过智控单元直接或间接把在线校验接点信号采样单元调整到校验状态,在校验状态 下,在线校验接点信号采样单元切断气体密度继电器本体的接点信号的控制回路,将气体密度继电器本体的接点连接至智控单元;
通过智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,所述隔断件隔断第一接口和第二接口的气路连接,并随着隔断件的运动,所述气路隔断压力调节机构的密封腔体的体积发生变化,能够调节所述气体密度继电器本体的压力,使其气体压力缓慢下降,使得气体密度继电器本体发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号动作值,完成气体密度继电器的接点信号动作值的校验工作;
通过智控单元驱动气路隔断压力调节机构,使气体压力缓慢上升,使得气体密度继电器本体发生接点复位,接点复位通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点复位时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器本体的接点信号返回值,完成气体密度继电器本体的接点信号返回值的校验工作;
当所有的接点信号校验工作完成后,智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,使气路隔断压力调节机构的第一接口和第二接口的气路相互连通,并将在线校验接点信号采样单元调整到工作状态,气体密度继电器本体的接点信号的控制回路恢复运行正常工作状态。
优选地,一种气体密度继电器的校验方法,包括:
所述气体密度继电器(或气体密度监测装置)还包括温度调节机构;所述方法包括:
正常工作状态时,气体密度继电器(或气体密度监测装置)监控电气设备内的气体密度值,同时气体密度继电器(或气体密度监测装置)通过气体密度检测传感器以及智控单元在线监测电气设备内的气体密度值;
气体密度继电器(或气体密度监测装置)根据设定的校验时间或/和校验指令,以及气体密度值情况,在允许校验气体密度继电器的状况下:
通过智控单元直接或间接把在线校验接点信号采样单元调整到校验状态,在校验状态下,在线校验接点信号采样单元切断气体密度继电器的接点信号的控制回路,将气体密度继电器本体的接点连接至智控单元;
通过智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,所述隔断件隔断第一接口和第二接口的气路连接,并随着隔断件的运动, 所述气路隔断压力调节机构的密封腔体的体积发生变化,能够调节所述气体密度继电器本体的压力,使其气体压力缓慢下降,以及通过智控单元对所述温度调节机构的控制,使所述气体密度继电器本体的温度补偿元件的温度升高,使得气体密度继电器本体发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器本体的接点信号动作值,完成气体密度继电器本体的接点信号动作值的校验工作;
通过智控单元驱动气路隔断压力调节机构,使气体压力缓慢上升,以及通过智控单元对所述温度调节机构的控制,使所述气体密度继电器本体的温度补偿元件的温度降低,使得气体密度继电器本体发生接点复位,接点复位通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点复位时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号返回值,完成气体密度继电器本体的接点信号返回值的校验工作;
当所有的接点信号校验工作完成后,智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,使气路隔断压力调节机构的第一接口和第二接口的气路相互连通,以及智控单元关断温度调节机构的加热元件,并将在线校验接点信号采样单元调整到工作状态,气体密度继电器本体的接点信号的控制回路恢复运行正常工作状态。
优选地,所述接点信号包括报警、和/或闭锁。
优选地,所述气体密度检测传感器包括至少一个压力传感器和至少一个温度传感器;或者,所述气体密度检测传感器为压力传感器和温度传感器组成的气体密度变送器;或者,所述气体密度检测传感器为采用石英音叉技术的密度检测传感器。
优选地,所述气体密度继电器(或气体密度监测装置)完成校验后,如有异常,能够自动发出报警,并上传至远端、或发送至指定的接收机上。
优选地,所述校验方法还包括:现场就地显示气体密度值和校验结果,或通过后台显示气体密度值和校验结果。
优选地,所述校验方法还包括:所述智控单元的控制通过现场控制和/或通过后台控制。
本申请第三个方面提供了一种气体密度继电器的改造方法,包括:
将气体密度检测传感器,与气体密度继电器本体相连通;
将所述气体密度继电器本体的气路,连接气路隔断压力调节机构的第一接口;所述气路 隔断压力调节机构还设有与电气设备相连通的第二接口,所述气路隔断压力调节机构用于隔断第一接口和第二接口之间的气路,以及用于调节所述气体密度继电器本体的压力升降,使所述气体密度继电器本体发生接点信号动作;
将在线校验接点信号采样单元,与所述气体密度继电器本体直接或间接相连接,所述在线校验接点信号采样单元采样所述气体密度继电器本体的接点信号;
将智控单元,分别与所述气体密度检测传感器、所述气路隔断压力调节机构和所述在线校验接点信号采样单元相连接,完成所述气路隔断压力调节机构的控制,压力值采集和温度值采集、和/或气体密度值采集,以及检测所述气体密度继电器本体的接点信号动作值和/或接点信号返回值;
其中,所述接点信号包括报警、和/或闭锁。
优选地,所述气体密度检测传感器、所述在线校验接点信号采样单元和所述智控单元设置在所述气体密度继电器本体上;或者,
所述气体密度检测传感器、所述在线校验接点信号采样单元和所述智控单元设置在所述气路隔断压力调节机构上;所述气路隔断压力调节机构设置在所述气体密度继电器本体上;或者,
所述气体密度检测传感器、所述气路隔断压力调节机构、所述在线校验接点信号采样单元和所述智控单元设置在所述气体密度继电器本体上;或者,
所述气体密度检测传感器设置在所述气体密度继电器本体上;或者,
所述气体密度检测传感器设置在所述气路隔断压力调节机构上;或者,
所述气体密度继电器本体设置在所述气路隔断压力调节机构上;或者,
所述在线校验接点信号采样单元和所述智控单元设置在所述气路隔断压力调节机构上。
优选地,所述一种气体密度继电器的改造方法,还包括:
将所述气体密度继电器本体、所述气路隔断压力调节机构设置在多通接头上;或者,
所述气路隔断压力调节机构固定在多通接头上;或者,
所述气体密度继电器本体、气体密度检测传感器、所述气路隔断压力调节机构设置在多通接头上。
更优选地,所述一种气体密度继电器的改造方法,还包括:在所述气路隔断压力调节机构上设置补气接口;或者,在所述电气设备上设置补气接口;或者,在所述多通接头上设置补气接口。
优选地,所述一种气体密度继电器的改造方法,还包括:所述气路隔断压力调节机构还设有第三接口,将阀的一端与气路隔断压力调节机构的第三接口相连接,将阀的另一端直接或间接与电气设备相连接;所述第一接口位于所述第二接口和所述第三接口之间的位置。
更优选地,所述一种气体密度继电器的改造方法,还包括:将自封阀安装于所述多通接头与所述阀之间;或者,将所述阀安装于所述多通接头与自封阀之间。
优选地,所述一种气体密度继电器的改造方法,还包括:将温度调节机构设置在气体密度继电器本体的壳体内或壳体外,所述温度调节机构为温度可调的调节机构,调节所述气体密度继电器本体的温度补偿元件的温度升降,进而配合或/和结合气路隔断压力调节机构,使所述气体密度继电器本体发生接点信号动作;将所述智控单元与所述温度调节机构相连接,完成所述温度调节机构的控制。
优选地,所述一种气体密度继电器的改造方法,还包括:将至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接点信号采样单元和一个智控单元、一个气体密度检测传感器相连接,完成所述气体密度继电器的在线校验;或者,
将至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接点信号采样单元、至少两个智控单元和一个气体密度检测传感器相连接,完成所述气体密度继电器的在线校验;或者,
将至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接点信号采样单元、至少两个气体密度检测传感器和一个智控单元相连接,完成所述气体密度继电器的在线校验。
与现有技术相比,本发明的技术方案具有以下有益效果:
本申请用于高压、中压电气设备,包括气体密度继电器本体、气体密度检测传感器、气路隔断压力调节机构、在线校验接点信号采样单元和智控单元。通过智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,所述隔断件隔断第一接口和第二接口的气路连接,并随着隔断件的运动,密封腔体的体积发生变化,能够调节所述气体密度继电器本体的压力,使其气体压力缓慢下降或升高,使得气体密度继电器本体发生接点动作或复位,接点动作或复位通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的密度值,检测出气体密度继电器本体的报警和/或闭锁接点信号动作值和/或返回值,无须检修人员到现场就能完成气体密度继电器的校验工作,提高了电网的可靠性,提高了效率,降低了成本,可以实现气体密度继电器的免维护。同时整个 校验过程实现SF 6气体零排放的,符合环保规程要求。特别是本申请无需使用电控阀,使得密封性能更好,体积更小,便于现场改造,提高了可靠性,利于推广应用。
附图说明
构成本申请的一部分附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是实施例一的具有在线自校验功能的气体密度继电器工作状态时的结构示意图;
图2是实施例一的具有在线自校验功能的气体密度继电器在线校验状态时的结构示意图;
图3是实施例一的具有在线自校验功能的气体密度继电器的电路示意图;
图4是实施例二的具有在线自校验功能的气体密度继电器的结构示意图;
图5是实施例三的具有在线自校验功能的气体密度继电器的结构示意图;
图6是实施例四的具有在线自校验功能的气体密度继电器的结构示意图;
图7是一种优选实施例的气体密度继电器本体的结构示意图;
图8是实施例五的具有在线自校验功能的气体密度继电器的结构示意图;
图9是实施例六的具有在线自校验功能的气体密度继电器的结构示意图;
图10是实施例七的具有在线自校验功能的气体密度继电器的结构示意图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本发明进一步详细说明。应当理解,具体实施例仅用以解释本发明,并不用于限定本发明。
实施例一:
如图1所示,本发明实施例一提供的一种具有在线自校验功能的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体1、压力传感器2、温度传感器3、气路隔断压力调节机构5、在线校验接点信号采样单元6和智控单元7。所述气体密度继电器本体1、压力传感器2、温度传感器3和智控单元7设置在气路隔断压力调节机构5上,气路隔断压力调节机构5上还设有与电气设备8的气路相连通的接口。图1为一种具有在线自校验功能的气体密度继电器(或气体密度监测装置)工作状态示意图。
具体地,气路隔断压力调节机构5包括密封腔体501、隔断件502、隔断密封件503、 连接件504、驱动部件505、第一接口506、第二接口507、密封件联结件508、第四接口509、接点信号连锁件5K。其中隔断件502设置在密封腔体501内,隔断件502通过连接件504、密封件联结件508与驱动部件505相连接。驱动部件505可以是包括、但不限于磁力驱动机构、电机、往复运动机构、卡诺循环机构、空压机、压缩机、放气阀、造压泵、增压泵、增压阀、电动气泵、电磁气泵、气动元件、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构中的一种。加热产生推力机构如加热双金属片,就会产生推力的机构。驱动部件505就是使隔断件502运动,达到关断电气设备8的气路,使气体密度继电器本体1与电气设备8的气路隔断,同时能够调节气体密度继电器本体1的气体压力升降,能够使气体密度继电器本体1的接点发生动作或复位。所述隔断件502与所述密封腔体501的内壁密封接触;所述隔断件502包括、但不限于活塞、密封隔离件中的一种。密封件联结件508与密封腔体501设置在一起,连接件504通过密封件联结件508与驱动部件505相连接。具体地,密封腔体501的一端设有第五接口,第一接口506比第二接口507更靠近第五接口530,或者第一接口506比第二接口507更远离第五接口530,即隔断件502不能同时封堵第一接口506和第二接口507。密封联结件508设置在密封腔体501的第五接口530处,其一端与第五接口530密封连接,其另一端与驱动部件505的驱动端密封连接,或者其另一端将驱动部件505密封包裹在密封件联结件508内。连接件504的一端连接所述隔断件502,另一端穿过密封件联结件508连接到驱动部件505。密封件联结件508包括、但不限于波纹管、气囊、密封圈中的一种。所述气路隔断压力调节机构5的第一接口506和第二接口507的相对位置为错开设置。所述气路隔断压力调节机构5的第二接口507直接或间接与电气设备8相互连接,气路隔断压力调节机构5的第一接口506直接或间接与气体密度继电器本体1相连通;压力传感器2连接在气路隔断压力调节机构5的第四接口509上。工作状态时,气路隔断压力调节机构5的密封腔体501与气体密度继电器本体1和电气设备8的气路相连通;在线校验接点信号采样单元6分别与气体密度继电器本体1和智控单元7相连接;压力传感器2、温度传感器3和气路隔断压力调节机构5分别与智控单元7相连接;在线校验接点信号采样单元6的隔离采样元件与接点信号连锁件5K相对应设置,在校验时,接点信号连锁件5K能够切断气体密度继电器本体1的接点信号控制回路,确保校验时,气体密度继电器本体1的接点动作信号不会上传,进而不会影响电网的安全运行。其中,在线校验接点信号采样单元6的隔离采样元件包括行程开关、微动开关、按钮、电动开关、位移开关、电磁继电器、光耦中的一种。
其中,气体密度继电器本体1,包括:双金属片补偿的气体密度继电器、气体补偿的气体密度继电器、或者双金属片和气体补偿混合型的气体密度继电器;完全机械的气体密度继电器、数字型气体密度继电器、机械和数字结合型的气体密度继电器;带指示的密度继电器(指针显示的密度继电器、或数码显示的密度继电器、液晶显示的密度继电器),不带指示的密度继电器(即密度开关);SF6气体密度继电器、SF6混合气体密度继电器、N2气体密度继电器、其它气体密度继电器等等。
如图3所示,所述智控单元7,主要由处理器71(U1)、电源72(U2)组成。处理器71(U1)可以是通用计算机、工控机、CPU、单片机、ARM芯片、AI芯片、MCU、FPGA、PLC等、工控主板、嵌入式主控板等,以及其它智能集成电路。电源72(U2)可以是开关电源、交流220V、直流电源、LDO、可编程电源、太阳能、蓄电池、充电电池、电池、电场感应电源、磁场感应电源、无线充电电源、电容电源等。
压力传感器2的类型为绝对压力传感器、相对压力传感器、或绝对压力传感器和相对压力传感器,数量可以是若干个。压力传感器2的形式可以是扩散硅压力传感器、MEMS压力传感器、芯片式压力传感器、线圈感应压力传感器(如巴登管附带感应线圈的压力测量传感器)、电阻压力传感器(如巴登管附带滑线电阻的压力测量传感器),可以是模拟量压力传感器,也可以是数字量压力传感器。压力采集为压力传感器、压力变送器等各种感压元件,例如扩散硅式、蓝宝石式、压电式、应变片式(电阻应变片式、陶瓷应变片式)。
温度传感器3可以是热电偶、热敏电阻、半导体式,可以是接触式和非接触式,也可以是热电阻和热电偶。总之,温度采集可以用温度传感器、温度变送器等各种感温元件。
本实施例的气路隔断压力调节机构5主要由密封腔体501、隔断件502、隔断密封件503、连接件504、驱动部件505、第一接口506、第二接口507、密封件联结件508、第四接口509、接点信号连锁件5K组成。密封腔体501包括密封件联结件508,密封件联结件508由波纹管组成。其中设有隔断密封件503的隔断件502设置在密封腔体501内,隔断件502通过连接件504、密封件联结件508与驱动部件505相连接。驱动部件505由电机、往复运动机构构成。隔断件502通过隔断密封件503与密封腔体501的内壁密封接触;隔断件502包括、但不限于活塞、密封隔离件中的一种。由于密封件联结件508与密封腔体501设置在一起,连接件504通过密封件联结件508与驱动部件505相连接,这样可以确保整个校验过程是密封的。
如图3所示,所述在线校验接点信号采样单元6通过接点信号连锁件5K控制,主要完 成气体密度继电器本体1的接点信号采样。即在线校验接点信号采样单元6的基本要求或功能是:1)在校验时不影响电气设备8的安全运行。就是在校验时,气体密度继电器本体1的接点信号发生动作时,不会影响电气设备8的安全运行;2)气体密度继电器本体1的接点信号控制回路不影响气体密度继电器的性能,特别是不影响智控单元7的性能,不会使得气体密度继电器发生损坏、或影响测试工作。
所述智控单元7的基本要求或功能是:通过智控单元7完成气路隔断压力调节机构5的控制和信号采集。实现:能够隔断第一接口506和第二接口507的气路,进而校验时隔断气体密度继电器本体1和电气设备8的气路,能够检测到气体密度继电器本体1的接点信号发生动作时的压力值和温度值,换算成对应的20℃时的压力值P 20(密度值),即能够检测到气体密度继电器本体1的接点动作值P D20,完成气体密度继电器本体1的校验工作。或者,能够直接检测到气体密度继电器本体1的接点信号发生动作时的密度值P D20,完成对气体密度继电器本体1的校验工作。
当然,智控单元7还可以实现:完成测试数据存储;和/或测试数据导出;和/或测试数据可打印;和/或可与上位机进行数据通讯;和/或可输入模拟量、数字量信息。所述智控单元7还包括通讯模块,通过通讯模块实现远距离传输测试数据和/或校验结果等信息;当所述的气体密度继电器本体1的额定压力值输出信号时,智控单元7同时采集当时的密度值,完成气体密度继电器本体1的额定压力值校验。同时可以通过所述的气体密度继电器本体1的额定压力值的测试,完成气体密度继电器本体1、压力传感器2、温度传感器3之间的自校验工作,实现免维护。
电气设备8,包括SF6气体电气设备、SF6混合气体电气设备、环保型气体电气设备、或其它绝缘气体电气设备。具体地,电气设备8包括GIS、GIL、PASS、断路器、电流互感器、电压互感器、变压器、充气柜、环网柜等等。
气体密度继电器本体1、压力传感器2、温度传感器3、气路隔断压力调节机构5、在线校验接点信号采样单元6、智控单元7或/和多通接头之间可以根据需要进行灵活设置。例如气体密度继电器本体1、压力传感器2和温度传感器3可以设置在一起;或者压力传感器2和气路隔断压力调节机构5可以设置在一起。总之,它们间的设置可以灵活排列组合。密封腔体501可以是空心的,也可以是局部空心的,其形状与隔断件502相互配合,与隔断件502配合使用,能够调节气体压力变化。
一种具有在线自校验功能的气体密度继电器(或气体密度监测装置)的工作原理:智 控单元7根据压力传感器2、温度传感器3监测到电气设备8的气体压力和温度,得到相应的20℃压力值P 20(即气体密度值,即在线监测气体密度值)。当需要校验气体密度继电器本体1时,此时如果气体密度值P 20≥设定的安全校验密度值P S;气体密度继电器(或气体密度监测装置)就发出指令,即通过智控单元7驱动气路隔断压力调节机构5的驱动部件505,驱动部件505推动连接件504运动,进而使隔断件502和隔断密封件503往第一接口506和第二接口507方向运动,如图2和图3所示,且在运动中,通过接点信号连锁件5K完成在线校验接点信号采样单元6切断气体密度继电器本体1的接点信号的控制回路,将气体密度继电器本体1的接点连接至智控单元7。因为气体密度继电器在开始校验前,已经进行气体密度值P 20≥设定的安全校验密度值P S的监测和判断,电气设备8的气体是在安全运行范围内的,况且气体泄漏是个缓慢的过程,校验时是安全的。随着隔断件502和隔断密封件503的运动,在隔断件502和隔断密封件503的隔断作用下,所述第一接口506和第二接口507相互隔断。即气路隔断压力调节机构5的隔断件502和隔断密封件503在驱动部件505的作用下往第一接口506和第二接口507方向运动,当隔断件502越过所述第一接口506后,隔断件502就隔断第一接口506和第二接口507的气路连接,并随着隔断件502继续往第二接口507方向运动,密封腔体501的体积发生变化,能够调节气体密度继电器本体1的压力,使其气体压力缓慢下降,使得气体密度继电器本体1发生接点动作,其接点动作通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据接点动作时的采集压力传感器2和温度传感器3的压力值P、温度值T,进而经过计算得到气体密度值P 20,或直接得到气体密度值P 20,检测出气体密度继电器本体1的接点信号动作值P D20,完成气体密度继电器的接点信号动作值的校验工作。即智控单元7按照气体压力-温度关系特性换算成为对应20℃时的压力值P 20(密度值),就可以检测到气体密度继电器本体1的接点动作值P D20,待气体密度继电器本体1的报警和/或闭锁信号的接点动作值全部检测出来后,再通过智控单元7驱动气路隔断压力调节机构5,隔断件502往第一接口506方向运动,密封腔体501的体积发生变化,能够调节所述气体密度继电器本体1的压力,使其气体压力缓慢上升,使得气体密度继电器本体1发生接点复位,接点复位通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据接点复位时的压力值P、温度值T得到气体密度值P 20,或直接得到气体密度值P 20,检测出气体密度继电器的接点信号返回值P F20,完成气体密度继电器的接点信号返回值P F20的校验工作。可以如此反复校验多次(例如2~3次),然后计算其平均值,这样就完成了对气体密度继电器本体1的校验工作。
当所有的接点信号校验工作完成后,智控单元7控制气路隔断压力调节机构5,气路隔断压力调节机构5的隔断件502在驱动部件505的作用下运动,使气路隔断压力调节机构5的第一接口506和第二接口507的气路相互连通(如图1所示),并随着接点信号连锁件5K的运动,将在线校验接点信号采样单元6调整到工作状态,气体密度继电器本体1的接点信号的控制回路恢复运行正常工作状态。如图1所示:此时,气路隔断压力调节机构5的第一接口506和第二接口507的气路相互连通,即气体密度继电器本体1在气路上与电气设备8相连通,气体密度继电器(或气体密度监测装置)正常监控电气设备8气室的气体密度,以及能够在线监测电气设备8的气体密度。即气体密度继电器本体1的密度监控回路正常工作,气体密度继电器本体1安全监控电气设备8的气体密度,使电气设备8安全可靠工作。这样就方便完成了气体密度继电器本体1的在线校验,同时在线校验气体密度继电器本体1时不会影响电气设备8的安全运行。
当气体密度继电器本体1完成了校验工作后,气体密度继电器(或气体密度监测装置)就进行判定,可以告示检测结果,方式灵活。具体来说包括:1)气体密度继电器可以就地告示,例如通过指示灯、数码或液晶等显示;2)或气体密度继电器可以通过在线远传通讯方式实施上传,例如可以上传到在线监测系统的后台;3)或通过无线上传,上传到特定的终端,例如可以无线上传至手机;4)或通过别的途径上传;5)或把异常结果通过报警信号线或专用信号线上传;6)单独上传,或与其它信号捆绑上传。总之,气体密度继电器完成对气体密度继电器本体1的在线校验工作后,如有异常,能够自动发出报警,可以上传到远端,或可以发送到指定的接收机上,例如发送到手机。或者,气体密度继电器完成气体密度继电器本体1的校验工作后,如有异常,智控单元7可以通过气体密度继电器本体1的报警接点信号上传远端(监控室、后台监控平台等),以及还可以就地显示告示。简单版的气体密度继电器在线校验,可以把校验有异常的结果通过报警信号线上传。可以以一定的规律上传,例如异常时,在报警信号接点并联一个接点,有规律地闭合和断开,可以通过解析得到状况;或通过独立的校验信号线上传。具体可以状态好上传,或有问题上传,也可以通过远传密度在线监测上传,或把校验结果通过单独的校验信号线上传,或通过就地显示,就地报警,或通过无线上传,与智能手机联网上传。其通信方式为有线或无线,有线的通讯方式可以为RS232、RS485、CAN-BUS等工业总线、光纤以太网、4-20mA、Hart、IIC、SPI、Wire、同轴电缆、PLC电力载波等;无线通讯方式可以为2G/3G/4G/5G等、WIFI、蓝牙、Lora、Lorawan、Zigbee、红外、超声波、声波、卫星、光波、量子通信、声呐、传 感器内置5G/NB-IOT通讯模块(如NB-IOT)等。总之,可以多重方式,多种组合,充分保证气体密度继电器的可靠性能。
气体密度继电器具有安全保护功能,具体是指低于设定值时,气体密度继电器(或气体密度监测装置)就自动不再对气体密度继电器本体1进行在线校验,而发出告示信号。例如,当设备的气体密度值小于设定值P S时,就不校验了。例如:只有当设备的气体密度值≥(报警压力值+0.02MPa)时,才能进行在线校验。
气体密度继电器(或气体密度监测装置)可以根据设定的时间进行在线校验,也可以根据设定的温度(例如极限高温、高温、极限低温、低温、常温、20度等)进行在线校验。高温、低温、常温、20℃环境温度在线校验时,其误差判定要求是不一样的,例如20℃环境温度校验时,气体密度继电器的精度要求可以是1.0级或1.6级,高温时可以是2.5级。具体可以根据温度要求,按照相关标准实施。例如按照DL/T 259《六氟化硫气体密度继电器校验规程》中的4.8条温度补偿性能规定,每个温度值所对应的精度要求。
气体密度继电器(或气体密度监测装置)能够在不同温度下,不同时间段进行其误差性能的比较。即不同时期,相同温度范围内的比较,判定气体密度继电器、电气设备的性能。具有历史各个时期的比对、历史与现在的比对。
气体密度继电器(或气体密度监测装置)可以反复校验多次(例如2~3次),根据每次的校验结果,计算其平均值。必要时,可以随时对气体密度继电器进行在线校验。
气体密度继电器(或气体密度监测装置)具有压力、温度测量及软件换算功能。在不影响电气设备8安全运行的前提下,能够在线检测出气体密度继电器本体1的报警和/或闭锁接点动作值和/或返回值。当然报警和/闭锁接点信号的返回值也可以根据要求不进行测试。同时,气体密度继电器(或气体密度监测装置)还可以在线监测电气设备8的气体密度值,和/或压力值,和/或温度值,并上传到目标设备实现在线监测。
实施例二:
如图4所示,本发明实施例二提供的一种具有在线自校验功能的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体1、压力传感器2、温度传感器3、阀4、气路隔断压力调节机构5、在线校验接点信号采样单元6、智控单元7和多通接头9。所述压力传感器2、温度传感器3、在线校验接点信号采样单元6和智控单元7设置在气体密度继电器本体1上,气路隔断压力调节机构5还设有与电气设备8的气路相连通的接口。
图4为一种具有在线自校验功能的气体密度继电器(或气体密度监测装置)工作状态 示意图。具体地,气路隔断压力调节机构5包括密封腔体501、隔断件502、隔断密封件503、连接件504、驱动部件505、第一接口506、第二接口507、第三接口511、连接件密封件510、腔体(或壳体)512。阀4的一端与第三接口511相连接,而阀4的另一端与多通接头9相连接。第一接口506设置在第二接口507和第三接口511之间的位置上。连接件504通过连接件密封件510与密封腔体501密封;其中隔断件502设置在密封腔体501内,隔断件502通过连接件504与驱动部件505相连接;连接件504、驱动部件505、连接件密封件510密封在腔体(或壳体)512内。腔体(或壳体)512与密封腔体501有着良好的密封,即通过腔体(或壳体)512确保气路隔断压力调节机构5有着良好的密封性能。气体密度继电器本体1安装在气路隔断压力调节机构5上;气路隔断压力调节机构5安装在多通接头9上;压力传感器2、温度传感器3设置在气体密度继电器本体1上,压力传感器2在气路上与气体密度继电器本体1相连通。工作状态时,气路隔断压力调节机构5与气体密度继电器本体1相连通;在线校验接点信号采样单元6和智控单元7设置在一起。压力传感器2、温度传感器3、阀4和气路隔断压力调节机构5分别与智控单元7相连接。多通接头9还连通有补气接口。
阀4的控制可采用多种传动方式,如手动、电动、液动、气动、涡轮、电磁动、电磁液动、电液动、气液动、正齿轮、伞齿轮驱动等;可以在压力、温度或其它形式传感信号的作用下按预定的要求动作,或者不依赖传感信号而进行简单地开启或关闭,阀4依靠驱动或自动机构使启闭件作升降、滑移、旋摆或回转运动,从而改变其流道面积的大小以实现其控制功能。阀4按驱动方式可以是自动阀类、动力驱动阀类和手动阀类。而自动阀可以包括:电磁驱动、电磁-液压驱动、电-液压驱动、涡轮驱动、正齿轮驱动、伞齿轮驱动、气动驱动、液压驱动、气体-液压驱动、电动驱动、电机(马达)驱动。阀4可以是自动或手动、半自动。校验过程可以是自动完成的,也可以通过人工配合半自动完成。阀4通过自封阀、手动阀、或不拆卸阀与电气设备8直接或间接连接,一体化或分开来连接。阀4根据需要,可以为常开型、或常闭型,可以为单向型,或双向型。总之,通过阀4实现开启或关闭气路,而阀4采用的方式可以是电磁阀、电控球阀、电动阀或电控比例阀等等。
与实施例一区别的是,本实施例的气路隔断压力调节机构5主要是连接件504通过连接件密封件510与密封腔体501密封;连接件504、驱动部件505、连接件密封件510密封在腔体(或壳体)512内。腔体(或壳体)512与密封腔体501有着良好的密封,即通过腔体(或壳体)512确保气路隔断压力调节机构5有着良好的密封性能。此外,本实施例还 包括阀4,通过阀4完成带有超压报警接点功能的气体密度继电器本体1的校验。与本实施例一一样,在完成在线检测出气体密度继电器本体1的报警和/或闭锁接点动作值和/或返回值后,把隔断件502调整到(或自动设置)合适位置,比如靠近第二接口507,然后通过智控单元7的对阀4的控制,即通过智控单元7开启阀4,此时电气设备8的气体就进入气体密度继电器本体1,使气体密度继电器本体1的压力升高,升高到设定压力值或直接升高到电气设备8的气体压力值,然后通过智控单元7关闭阀4。接着,再通过智控单元7驱动气路隔断压力调节机构5,隔断件502往第三接口511方向运动,密封腔体501(图4中隔断件502右侧部分)的体积发生变化,能够调节所述气体密度继电器本体1的压力,使其气体压力缓慢上升,使得气体密度继电器本体1的超压报警接点发生动作,超压报警接点发生动作的信号通过在线校验接点信号采样单元6传递到智控单元7,智控单元7根据超压报警接点发生动作时的压力值P、温度值T得到气体密度值P 20,或直接得到气体密度值P 20,检测出气体密度继电器的超压报警接点发生动作的接点信号值P C20,完成气体密度继电器本体1的超压报警接点信号值P C20的校验工作。气路隔断压力调节机构5根据智控单元7的控制,使得驱动部件505推动隔断件502运动,使密封腔体501发生体积变化,进而完成压力的下降,检测出气体密度继电器的超压报警接点发生复位的接点信号值P CF20,完成气体密度继电器本体1的超压报警接点信号返回值P CF20的校验工作。
实施例三:
如图5所示,本发明实施例三提供的一种具有在线自校验功能的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体1、压力传感器2、温度传感器3、气路隔断压力调节机构5、在线校验接点信号采样单元6、智控单元7、多通接头9和补气接头10。气路隔断压力调节机构5包括密封腔体501、隔断件502、隔断密封件503、连接件504、驱动部件513、514、第一接口506、第二接口507。气体密度继电器本体1安装在气路隔断压力调节机构5上;压力传感器2、温度传感器3、在线校验接点信号采样单元6和智控单元7设置在一起。气路隔断压力调节机构5安装在多通接头9上,压力传感器2在气路上与气体密度继电器本体1相连通;补气接头10设置在多通接头9上。所述压力传感器2、温度传感器3、气路隔断压力调节机构5分别与智控单元7相连接。
与实施例一最大的不同是,本实施例的气路隔断压力调节机构5的驱动部件由动力驱动件513、被驱件514组成,隔断件502、连接件504、被驱件514设置在密封腔体501内部。隔断件502通过连接件504与被驱件514相连接。根据智控单元7的控制,使得动 力驱动件513推动被驱件514运动,进而使隔断件502运动,进而使密封腔体501发生体积变化,完成压力的升降。动力驱动件513设置在密封腔体501的外面,而被驱件514设置在密封腔体501的内部,动力驱动件513应用电磁力推动被驱件514运动,即动力驱动件513与被驱件514之间通过磁力使被驱件514、隔断件502运动。本实施例可以结合磁耦无杆气缸来实现。
实施例四:
如图6所示,本发明实施例四提供的一种具有在线自校验功能的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体1、压力传感器2、温度传感器3、气路隔断压力调节机构5、在线校验接点信号采样单元6和智控单元7。压力传感器2、温度传感器3、在线校验接点信号采样单元6、智控单元7设置在气体密度继电器本体1上;气体密度继电器本体1设置在气路隔断压力调节机构5上。气路隔断压力调节机构5包括密封腔体501、隔断件502、隔断密封件503、连接件504、驱动部件505、第一接口506、第二接口507、密封件联结件508、腔体(或壳体)512;密封件联结件508可以由波纹管构成。连接件504、驱动部件505、密封件联结件508密封设置在腔体(或壳体)512内部。气路隔断压力调节机构5的第二接口507可以通过接头与电气设备8直接或间接连接。
与实施例一有区别的是:本实施例的连接件504、驱动部件505、密封件联结件508密封设置在腔体(或壳体)512内部,进一步提高了密封性能,确保了电网的安全运行。另外,隔断件502可以直接通过密封件联结件508与驱动部件505相连接;或者,隔断件502与连接件504为一体化设计,直接与驱动部件505相连接。
图7为本申请一种优选实施例的气体密度继电器本体1的结构示意图。如图7所示,一种气体密度继电器本体1包括:壳体101,以及设于所述壳体101内的基座102、端座108、压力检测器103、温度补偿元件104、若干信号发生器109、机芯105、指针106、刻度盘107。压力检测器103的一端固定在所述基座102上并与之连通,压力检测器103的另一端通过端座108与温度补偿元件104的一端相连接,温度补偿元件104的另一端设有横梁,横梁上设有推动信号发生器109、使信号发生器109的接点接通或断开的调节件。机芯105固定在基座102上;温度补偿元件104的另一端还通过连杆与机芯105连接或直接与机芯105连接;指针106安装于机芯105上且设于刻度盘107之前,指针106结合刻度盘107显示气体密度值。气体密度继电器本体1还可以包括具有示值显示的数码器件或液晶器件。其中,信号发生器109包括微动开关或磁助式电接点,气体密度继电器本体1 通过信号发生器109输出接点信号;压力检测器103包括巴登管或者波纹管;温度补偿元件104采用温度补偿片或壳体内封闭的气体。本实施例的气体密度继电器本体1还可以包括充油型密度继电器、无油型密度继电器、气体密度表、气体密度开关或者气体压力表。
在本实施例的气体密度继电器本体1内,基于压力检测器103并利用温度补偿元件104对变化的压力和温度进行修正,以反映六氟化硫气体密度的变化。即在被测介质六氟化硫(SF6)气体的压力作用下,由于有了温度补偿元件104的作用,六氟化硫气体密度值变化时,六氟化硫气体的压力值也相应地变化,迫使压力检测器103的末端产生相应的弹性变形位移,借助于温度补偿元件104,传递给机芯105,机芯105又传递给指针106,遂将被测的六氟化硫气体密度值在刻度盘107上指示出来。信号发生器109作为输出报警闭锁接点。这样气体密度继电器本体1就能把六氟化硫气体密度值显示出来了。如果漏气了,六氟化硫气体密度值下降了,压力检测器103产生相应的向下位移,通过温度补偿元件104,传递给机芯105,机芯105又传递给指针106,指针106就往示值小的方向走,在刻度盘107上具体显示漏气程度;同时,压力检测器103通过温度补偿元件104带动横梁向下位移,横梁上的调节件渐离信号发生器109,到一定程度时,信号发生器109的接点接通,发出相应的接点信号(报警或闭锁),达到监视和控制电气开关等设备中的六氟化硫气体密度的目的,使电气设备安全工作。
如果气体密度值升高了,即密封气室内的六氟化硫气体压力值大于设定的六氟化硫气体压力值时,压力值也相应地升高,压力检测器103的末端和温度补偿元件104产生相应的向上位移,温度补偿元件104使横梁也向上位移,横梁上的调节件就向上位移并推动信号发生器109的接点断开,接点信号(报警或闭锁)就解除。
实施例五:
如图8所示,本发明实施例五提供的一种具有在线自校验功能的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体1、压力传感器2、温度传感器3、气路隔断压力调节机构5、在线校验接点信号采样单元6和智控单元7。所述压力传感器2、温度传感器3、在线校验接点信号采样单元6、智控单元7设置在气体密度继电器本体1上;气体密度继电器本体1设置在气路隔断压力调节机构5上。进一步地,气路隔断压力调节机构5包括密封腔体501、隔断件502、隔断密封件503、连接件504、驱动部件由加热器件516和双金属片515组成(即电加热产生推力机构)、第一接口506、第二接口507、相连件517、滑动件518、隔热件519、腔体(或壳体);连接件504、加热器件516和双金属 片515组成的驱动部件、相连件517和滑动件518密封设置在腔体(或壳体)内部。气路隔断压力调节机构5的第二接口507可以通过接头与电气设备8直接或间接相连接。
与实施例一有区别的是:本实施例的连接件504、加热器件516和双金属片515组成的驱动部件、相连件517和滑动件518密封设置在腔体(或壳体)内部,进一步提高密封性能,确保电网安全运行。本案例的驱动部件由加热器件516和双金属片515组成,当加热器件516通电后加热,则双金属片515就涨开来,推动相连件517和滑动件518运动,进而推动连接件504运动,进而推动隔断件502运动,完成气路的隔断以及压力的调节。
实施例六:
如图9所示,本发明实施例六提供的一种具有在线自校验功能的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体1、压力传感器2、温度传感器3、气路隔断压力调节机构5、在线校验接点信号采样单元6和智控单元7。压力传感器2、温度传感器3、在线校验接点信号采样单元6、智控单元7设置在气体密度继电器本体1上;气体密度继电器本体1设置在气路隔断压力调节机构5上。进一步地,气路隔断压力调节机构5包括密封腔体501、隔断件502、隔断密封件503A、隔断密封件503B、连接件504A、连接件504B、驱动部件505、第一接口506、第二接口507、毛细管520、腔体(或壳体)512。气路隔断压力调节机构5的第二接口507可以通过接头与电气设备8直接或间接相连接。其中,密封腔体501由波纹管508、隔断件502、封堵件521组成;在气路上,气体密度继电器本体1通过螺旋状的毛细管520与气路隔断压力调节机构5的第一接口506相连通。所述密封腔体501还设有位置不可变的固定点(图中未示出),比如密封腔体501壁固定连接在外部壳体512的点,驱动部件505可以安装或连接在固定点上,防止驱动部件505的位置变化。
与实施例一有区别的是:本案例工作时,智控单元7通过控制驱动部件505,进而使连接件504B向下运动,进而推动隔断件502向下运动,关闭第二接口507的气路,使气体密度继电器本体1与电器设备8在气路上隔断;并同时或接着使连接件504A向上运动,进而推动封堵件521向上运动,使波纹管508涨开,使其密封腔体501发生体积变化,进而调节压力下降,或升高,完成气体密度继电器本体1的校验。本案例,可以先使隔断件502向下运动,关闭第二接口507的气路,接着使连接件504A向上运动,进而推动封堵件521向上运动,使波纹管508涨开,使其密封腔体501发生体积变化,进而调节压力下降,或升高;或者,也可以使隔断件502向下运动,关闭第二接口507的气路,同时使连接件504A 向上运动,进而推动封堵件521向上运动,使波纹管508涨开,使其密封腔体501发生体积变化,进而调节压力下降,或升高。可以同时使隔断件502向下运动、而封堵件521向上运动,隔断件502向下运动,关闭第二接口507的气路就不动了,保持关闭第二接口507的气路;而封堵件521可以继续向上运动,使波纹管508涨开,使其密封腔体501发生体积变化,进而调节压力下降,或升高。驱动部件505可设于所述密封腔体501内部或外部。
实施例七:
如图10所示,本发明实施例七提供的一种具有在线自校验功能的气体密度继电器(或气体密度监测装置),包括:气体密度继电器本体1、第一压力传感器21、第二压力传感器22、第一温度传感器31、第二温度传感器32、气路隔断压力调节机构5、在线校验接点信号采样单元6、智控单元7、多通接头9、补气接口10、自封阀11。自封阀11的一端密封连接于电气设备8上,自封阀11的另一端与多通接头9相连接。第二压力传感器21、第二温度传感器22、气路隔断压力调节机构5、补气接口10设置在多通接头9上;第一压力传感器21、第一温度传感器31设置在气路隔断压力调节机构5上。所述第一压力传感器21、第二压力传感器22、第一温度传感器31、第二温度传感器32分别与智控单元7相连接。第一压力传感器21、第二压力传感器22、气体密度继电器本体1在气路上与气路隔断压力调节机构5相连通;所述气路隔断压力调节机构5与智控单元7相连接。
与实施例一不同的是,所述压力传感器有两个,分别是第一压力传感器21、第二压力传感器22;所述的温度传感器有两个,分别是第一温度传感器31、第二温度传感器32。本实施例提供多个压力传感器和温度传感器,目的是:第一压力传感器21和第二压力传感器22监测得到的压力值可以进行比对,相互校验;第一温度传感器31和第二温度传感器32监测得到的温度值可以进行比对,相互校验;第一压力传感器21和第一温度传感器31监测得到的密度值P1 20,与第二压力传感器22和第二温度传感器32监测得到的密度值P2 20之间进行比对,相互校验;甚至还可以在线校验得到气体密度继电器本体1的额定值的密度值Pe 20,相互之间进行比对,相互校验。进一步确保气体密度继电器(或气体密度监测装置)的可靠性能,自动监测比对,实现免维护。
同时还可以含有监测电气设备8的微水含量的微水传感器(图中未示出)、以及监测分解物含量的分解物传感器(图中未示出)。
另外,本发明技术产品还可以具有安全保护功能,具体为:1)根据第一压力传感器21和第一温度传感器31或第二压力传感器22和第二温度传感器32监测得到的密度值低 于设定值时,气体密度继电器就自动不再对气体密度继电器本体1进行校验,而发出告示信号。例如,当设备的气体密度值小于设定值时,就不校验了。只有当设备的气体密度值≥(闭锁压力+0.02MPa)时,才能进行校验。对接点报警有状态指示。2)或在校验时,此时阀关闭,根据第二压力传感器22和第二温度传感器32监测得到的密度值低于设定值时,气体密度继电器就自动不再对气体密度继电器本体1进行校验,同时发出告示信号(漏气)。例如,当设备的气体密度值小于设定值(闭锁压力+0.02MPa)时,就不校验了。设定值可以任意根据需要设置。同时该气体密度继电器还具有多个压力传感器、温度传感器的相互校验,以及传感器与气体密度继电器的相互校验,确保气体密度继电器工作是正常的。即第一压力传感器21和第二压力传感器22监测得到的压力值之间进行比对,相互校验;第一温度传感器31和第二温度传感器32监测得到的温度值之间进行比对,相互校验;第一压力传感器21和第一温度传感器31监测得到的密度值P1 20,与第二压力传感器22和第二温度传感器32监测得到的密度值P2 20之间进行比对,相互校验;甚至还可以校验得到气体密度继电器本体1的额定值的密度值Pe 20,相互之间进行比对,相互校验。
综上所述,本发明提供一种具有在线自校验功能的气体密度继电器及其校验方法,以及一种气体密度继电器的改造方法,由气路(可以通过管路)连接部分、压力调节部分、信号测量控制部分等组成,主要功能是对气体密度继电器本体的接点值(报警/闭锁动作时的压力值)进行在线校验测量,并自动换算成20℃时的对应压力值,在线实现对气体密度继电器本体的接点(报警和闭锁)值的性能检测。其气体密度继电器本体、压力传感器、温度传感器、气路隔断压力调节机构、在线校验接点信号采样单元、智控单元的安装位置可以灵活组合。例如:气体密度继电器本体、压力传感器、温度传感器、在线校验接点信号采样单元、智控单元可以组合在一起,一体化设计,也可以分体设计;可以安装在壳体上、或多通接头上,也可以通过连接管连接在一起。阀可以与电气设备直接相连接,也可以通过自封阀、或气管连接。压力传感器、温度传感器、在线校验接点信号采样单元、智控单元可以组合在一起,一体化设计;压力传感器、温度传感器可以组合在一起,一体化设计;在线校验接点信号采样单元、智控单元可以组合在一起,一体化设计。总之,结构不拘一格。
一种具有在线自校验功能的气体密度继电器一般指其组成元件设计成一体结构;而气体密度监测装置一般指其组成元件设计成分体结构,灵活组成。
具有在线自校验功能的气体密度继电器,在高温、低温、常温、20℃环境温度校验密度继电器接点时,对其误差判定要求可以是不一样的,具体可以根据温度的要求,按照相关 标准实施;能够根据密度继电器在不同的温度下,不同的时间段进行其误差性能的比较。即不同时期,相同温度范围内的比较,作出判定密度继电器的性能。具有历史各个时期的比对、历史与现在的比对。还可以对密度继电器本体进行体检。必要时,可以随时对密度继电器接点信号进行校验;具有气体密度继电器本体、所监测的电气设备的密度值的是否正常进行判定。即可以对电气设备本身的密度值、气体密度继电器本体、压力传感器、温度传感器进行正常和异常的判定和分析、比较,进而实现对电气设备的气体密度监控、气体密度继电器本体等状态进行判定、比较、分析;还对气体密度继电器的接点信号状态进行监测,并把其状态实施远传。可以在后台就知道气体密度继电器的接点信号状态:断开的还是闭合的,从而多一层监控,提高可靠性;还能够对气体密度继电器本体的温度补偿性能进行检测,或检测和判定;还能够对气体密度继电器本体的接点接触电阻进行检测,或检测和判定;还对气体密度继电器本体的绝缘性能进行检测,或检测和判定。
本申请结构布置紧凑、合理,各部件具有良好的防锈、防震能力,安装牢固,使用可靠。气体密度继电器各管路的连接、拆装易于操作,设备和部件方便维修。本申请无须检修人员到现场就能完成气体密度继电器的校验工作,大大提高了电网的可靠性,提高了效率,降低了成本。同时整个校验过程实现了SF 6气体零排放,符合环保规程要求。特别是本申请可以不使用电控阀,使得密封性能更好,体积更小,便于现场改造,提高了可靠性,利于推广应用。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (22)

  1. 一种具有在线自校验功能的气体密度继电器,其特征在于,包括:气体密度继电器本体、气体密度检测传感器、气路隔断压力调节机构、在线校验接点信号采样单元和智控单元;
    所述气体密度检测传感器,与所述气体密度继电器本体相连通;
    所述气体密度继电器本体的气路,连接所述气路隔断压力调节机构的第一接口;
    所述气路隔断压力调节机构还设有与电气设备相连通的第二接口,所述气路隔断压力调节机构被配置为用于隔断第一接口和第二接口之间的气路,以及用于调节所述气体密度继电器本体的压力升降,使所述气体密度继电器本体发生接点信号动作;
    所述在线校验接点信号采样单元,与所述气体密度继电器本体直接或间接相连接,被配置为采样所述气体密度继电器本体的接点信号;
    智控单元,分别与所述气体密度检测传感器、所述气路隔断压力调节机构和所述在线校验接点信号采样单元相连接,被配置为完成所述气路隔断压力调节机构的控制,压力值采集和温度值采集、和/或气体密度值采集,以及检测所述气体密度继电器本体的接点信号动作值和/或接点信号返回值;
    其中,所述接点信号包括报警、和/或闭锁。
  2. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述气体密度检测传感器、所述在线校验接点信号采样单元和所述智控单元设置在所述气体密度继电器本体上;或者,
    所述气体密度检测传感器、所述在线校验接点信号采样单元和所述智控单元设置在所述气路隔断压力调节机构上;所述气路隔断压力调节机构设置在所述气体密度继电器本体上;或者,
    所述气体密度检测传感器、所述气路隔断压力调节机构、所述在线校验接点信号采样单元和所述智控单元设置在所述气体密度继电器本体上;或者,
    所述气体密度检测传感器设置在所述气体密度继电器本体上;或者,
    所述气体密度检测传感器设置在所述气路隔断压力调节机构上;或者,
    所述气体密度继电器本体设置在所述气路隔断压力调节机构上;或者,
    所述在线校验接点信号采样单元和所述智控单元设置在所述气路隔断压力调节机构上。
  3. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于, 所述气体密度检测传感器包括至少一个压力传感器和至少一个温度传感器,其中,所述压力传感器安装于所述气体密度继电器本体的气路上或所述气路隔断压力调节机构上,所述温度传感器安装于所述气体密度继电器本体的气路上或气路外,或安装于所述气体密度继电器本体内,或安装于所述气体密度继电器本体外;或者,所述气体密度检测传感器为压力传感器和温度传感器组成的气体密度变送器;或者,所述气体密度检测传感器为采用石英音叉技术的密度检测传感器。
  4. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述智控单元获取所述气体密度检测传感器采集的气体密度值;或者,所述智控单元获取所述气体密度检测传感器采集的压力值和温度值,完成所述气体密度继电器对所监测的电气设备的气体密度的在线监测。
  5. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述气体密度检测传感器采集的气体密度值,完成所述气体密度继电器的在线校验;或者,
    所述智控单元获取所述气体密度继电器本体发生接点信号动作或切换时、所述气体密度检测传感器采集的压力值和温度值,并按照气体压力-温度特性换算成为对应20℃的压力值,即气体密度值,完成所述气体密度继电器的在线校验。
  6. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述气路隔断压力调节机构包括密封腔体、以及处于密封腔体内的隔断件,第一接口和第二接口均设置在所述密封腔体的壁上,并与所述密封腔体的内部空间连通;所述隔断件被配置为用于隔断第一接口和第二接口之间的气路,以及用于调节气体密度继电器本体的压力升降,使所述气体密度继电器本体发生接点信号动作。
  7. 根据权利要求6所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述隔断件的边缘与所述密封腔体的内壁密封接触;所述隔断件包括活塞、密封隔离件中的一种。
  8. 根据权利要求6所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述气路隔断压力调节机构还包括连接件和驱动部件,所述隔断件通过连接件与驱动部件相连接;或者,隔断件与连接件一体化设计,直接与驱动部件相连接;或者,隔断件通过磁耦合与驱动部件相关联;其中,所述驱动部件包括磁力驱动机构、电机、往复运动机构、卡诺循环机构、空压机、压缩机、放气阀、造压泵、增压泵、增压阀、电动气泵、电磁气泵、气 动元件、磁耦合推力机构、加热产生推力机构、电加热产生推力机构、化学反应产生推力机构中的一种或更多种。
  9. 根据权利要求8所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述密封腔体的一端设有第五接口,所述连接件的一端连接所述隔断件,另一端穿出所述第五接口连接到所述驱动部件;其中,所述第一接口比所述第二接口更靠近所述第五接口,或者,所述第一接口比所述第二接口更远离所述第五接口。
  10. 根据权利要求9所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述气路隔断压力调节机构还包括密封件联结件,所述密封件联结件设置在密封腔体的第五接口,所述连接件的另一端穿过所述密封件联结件与驱动部件相连接;其中,所述密封件联结件包括波纹管、气囊、密封圈中的一种。
  11. 根据权利要求6所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述密封腔体为可伸缩腔体,所述驱动部件位于所述密封腔体内,并在两个方向设有驱动端;所述连接件包括第一连接件和第二连接件,分别连接在两个方向的驱动端;第一连接件的另一端连接所述密封腔体的内壁;第二连接件的另一端连接所述隔断件,所述隔断件设有穿孔将密封腔体的内部与第二接口连通,所述隔断件朝向第二接口的一侧设有密封件,所述密封件环绕所述穿孔设置;其中,两个所述驱动端朝向相反的方向。
  12. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述在线校验接点信号采样单元包括隔离采样元件,所述隔离采样元件由气体密度继电器本体、或气路隔断压力调节机构、或智控单元控制;在非校验状态,所述在线校验接点信号采样单元通过隔离采样元件与气体密度继电器本体的接点在电路上相对隔离;在校验状态,所述在线校验接点信号采样单元通过隔离采样元件切断气体密度继电器本体的接点信号控制回路,将气体密度继电器本体的接点与智控单元相连接;其中,隔离采样元件包括行程开关、微动开关、按钮、电动开关、位移开关、电磁继电器、光耦、可控硅中的一种或更多种。
  13. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述气体密度继电器还包括阀,所述气路隔断压力调节机构还设有第三接口;所述阀的一端与气路隔断压力调节机构的第三接口相连接,所述阀的另一端直接或间接与电气设备相连接;所述第一接口位于所述第二接口和所述第三接口之间的位置。
  14. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述气体密度继电器还包括温度调节机构,所述温度调节机构为温度可调的调节机构,被配 置为调节所述气体密度继电器本体的温度补偿元件的温度升降,进而配合或/和结合气路隔断压力调节机构,使所述气体密度继电器本体发生接点信号动作;所述智控单元与所述温度调节机构相连接,完成所述温度调节机构的控制。
  15. 根据权利要求14所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述温度调节机构为加热元件;或者,所述温度调节机构包括加热元件、保温件、温度控制器、温度检测器、温度调节机构外壳;或者,所述温度调节机构包括加热元件和温度控制器;或者,所述温度调节机构包括加热元件、加热功率调节器和温度控制器;或者,所述温度调节机构包括加热元件、制冷元件、加热功率调节器和温度控制器;或者,所述温度调节机构包括加热元件、加热功率调节器和恒温控制器;或者,所述温度调节机构包括加热元件、温度控制器、温度检测器;或者,所述温度调节机构为加热元件,所述加热元件设置在气体密度继电器本体的温度补偿元件附近;或者,所述温度调节机构为微型恒温箱;其中,
    所述加热元件的数量为至少一个,所述加热元件包括硅橡胶加热器、电阻丝、电热带、电热棒、热风机、红外线加热器件、半导体中的一种或更多种;
    所述温度控制器,连接所述加热元件,用于控制加热元件的加热温度,所述温度控制器包括PID控制器、PID与模糊控制相组合的控制器、变频控制器、PLC控制器中的一种或更多种。
  16. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,所述气体密度继电器还包括多通接头,所述气体密度继电器本体、所述气路隔断压力调节机构设置在所述多通接头上;或者,所述气路隔断压力调节机构固定在所述多通接头上;或者,所述气体密度继电器本体、所述气体密度检测传感器、所述气路隔断压力调节机构设置在所述多通接头上。
  17. 根据权利要求1所述的一种具有在线自校验功能的气体密度继电器,其特征在于,至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接点信号采样单元和一个智控单元、一个气体密度检测传感器,完成所述气体密度继电器或所述气体密度监测装置的在线校验;或者,
    至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接点信号采样单元、至少两个智控单元和一个气体密度检测传感器,完成所述气体密度继电器或所述气体密度监测装置的在线校验;或者,
    至少两个气体密度继电器本体、至少两个气路隔断压力调节机构、至少两个在线校验接 点信号采样单元、至少两个气体密度检测传感器和一个智控单元,完成所述气体密度继电器或所述气体密度监测装置的在线校验。
  18. 一种如权利要求1所述的具有在线自校验功能的气体密度继电器的校验方法,其特征在于,包括:
    正常工作状态时,气体密度继电器监控电气设备内的气体密度值;
    气体密度继电器根据设定的校验时间或/和校验指令,以及气体密度值情况,在允许校验气体密度继电器的状况下:
    通过智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,所述隔断件隔断第一接口和第二接口的气路连接,并随着隔断件的运动,所述气路隔断压力调节机构的密封腔体的体积发生变化,能够调节所述气体密度继电器本体的压力,使其气体压力缓慢下降,使得气体密度继电器本体发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器本体的接点信号动作值,完成气体密度继电器本体的接点信号动作值的校验工作;
    当所有的接点信号校验工作完成后,智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,使气路隔断压力调节机构的第一接口和第二接口的气路相互连通。
  19. 根据权利要求18所述的一种具有在线自校验功能的气体密度继电器的校验方法,其特征在于,包括:
    正常工作状态时,气体密度继电器监控电气设备内的气体密度值,同时气体密度继电器通过气体密度检测传感器以及智控单元在线监测电气设备内的气体密度值;
    气体密度继电器根据设定的校验时间或/和校验指令,以及气体密度值情况,在允许校验气体密度继电器的状况下:
    通过智控单元直接或间接把在线校验接点信号采样单元调整到校验状态,在校验状态下,在线校验接点信号采样单元切断气体密度继电器本体的接点信号的控制回路,将气体密度继电器本体的接点连接至智控单元;
    通过智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,所述隔断件隔断第一接口和第二接口的气路连接,并随着隔断件的运动,所述气路隔断压力调节机构的密封腔体的体积发生变化,能够调节所述气体密度继电器本体 的压力,使其气体压力缓慢下降,使得气体密度继电器本体发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号动作值,完成气体密度继电器的接点信号动作值的校验工作;
    通过智控单元驱动气路隔断压力调节机构,使气体压力缓慢上升,使得气体密度继电器本体发生接点复位,接点复位通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点复位时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器本体的接点信号返回值,完成气体密度继电器本体的接点信号返回值的校验工作;
    当所有的接点信号校验工作完成后,智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,使气路隔断压力调节机构的第一接口和第二接口的气路相互连通,并将在线校验接点信号采样单元调整到工作状态,气体密度继电器本体的接点信号的控制回路恢复运行正常工作状态。
  20. 根据权利要求18所述的一种具有在线自校验功能的气体密度继电器的校验方法,其特征在于,所述气体密度继电器还包括温度调节机构,所述温度调节机构为温度可调的调节机构;所述方法包括:
    正常工作状态时,气体密度继电器监控电气设备内的气体密度值,同时气体密度继电器通过气体密度检测传感器以及智控单元在线监测电气设备内的气体密度值;
    气体密度继电器根据设定的校验时间或/和校验指令,以及气体密度值情况,在允许校验气体密度继电器的状况下:
    通过智控单元直接或间接把在线校验接点信号采样单元调整到校验状态,在校验状态下,在线校验接点信号采样单元切断气体密度继电器的接点信号的控制回路,将气体密度继电器本体的接点连接至智控单元;
    通过智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,所述隔断件隔断第一接口和第二接口的气路连接,并随着隔断件的运动,所述气路隔断压力调节机构的密封腔体的体积发生变化,能够调节所述气体密度继电器本体的压力,使其气体压力缓慢下降,以及通过智控单元对所述温度调节机构的控制,使所述气体密度继电器本体的温度补偿元件的温度升高,使得气体密度继电器本体发生接点动作,接点动作通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点动作时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器本体的接点信 号动作值,完成气体密度继电器本体的接点信号动作值的校验工作;
    通过智控单元驱动气路隔断压力调节机构,使气体压力缓慢上升,以及通过智控单元对温度调节机构的控制,使气体密度继电器本体的温度补偿元件的温度降低,使得气体密度继电器本体发生接点复位,接点复位通过在线校验接点信号采样单元传递到智控单元,智控单元根据接点复位时的压力值、温度值得到气体密度值,或直接得到气体密度值,检测出气体密度继电器的接点信号返回值,完成气体密度继电器本体的接点信号返回值的校验工作;
    当所有的接点信号校验工作完成后,智控单元控制气路隔断压力调节机构,所述气路隔断压力调节机构的隔断件在驱动部件的作用下运动,使气路隔断压力调节机构的第一接口和第二接口的气路相互连通,以及智控单元关断温度调节机构的加热元件,并将在线校验接点信号采样单元调整到工作状态,气体密度继电器本体的接点信号的控制回路恢复运行至正常工作状态。
  21. 一种如权利要求1所述的气体密度继电器的改造方法,其特征在于,包括:
    将气体密度检测传感器,与气体密度继电器本体相连通;
    将所述气体密度继电器本体的气路,连接气路隔断压力调节机构的第一接口;所述气路隔断压力调节机构还设有与电气设备相连通的第二接口,所述气路隔断压力调节机构用于隔断第一接口和第二接口之间的气路,以及用于调节所述气体密度继电器本体的压力升降,使所述气体密度继电器本体发生接点信号动作;
    将在线校验接点信号采样单元,与所述气体密度继电器本体直接或间接相连接,所述在线校验接点信号采样单元采样所述气体密度继电器本体的接点信号;
    将智控单元,分别与所述气体密度检测传感器、所述气路隔断压力调节机构和所述在线校验接点信号采样单元相连接,完成所述气路隔断压力调节机构的控制,压力值采集和温度值采集、和/或气体密度值采集,以及检测所述气体密度继电器本体的接点信号动作值和/或接点信号返回值;
    其中,所述接点信号包括报警、和/或闭锁。
  22. 根据权利要求21所述的一种气体密度继电器的改造方法,其特征在于,还包括:
    将温度调节机构设置在气体密度继电器本体的壳体内或壳体外,所述温度调节机构为温度可调的调节机构,调节所述气体密度继电器本体的温度补偿元件的温度升降,进而配合或/和结合气路隔断压力调节机构,使所述气体密度继电器本体发生接点信号动作;将所述智控单元与所述温度调节机构相连接,完成所述温度调节机构的控制。
PCT/CN2020/134703 2019-12-11 2020-12-09 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法 WO2021115289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20899597.7A EP4075467A4 (en) 2019-12-11 2020-12-09 METHOD FOR MODIFYING A GAS SEAL RELAY AND GAS SEAL RELAY WITH ONLINE SELF-CHECK FUNCTION AND TESTING METHOD THEREOF
US17/776,219 US20220390518A1 (en) 2019-12-11 2020-12-09 Method for modifying gas density relay, and gas density relay having online self-checking function and checking method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911263998.3A CN111029211B (zh) 2019-12-11 2019-12-11 一种气体密度继电器的改造方法
CN201911263996.4A CN110988667A (zh) 2019-12-11 2019-12-11 一种具有在线自校验功能的气体密度继电器及其校验方法
CN201911263998.3 2019-12-11
CN201911263996.4 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021115289A1 true WO2021115289A1 (zh) 2021-06-17

Family

ID=76329542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134703 WO2021115289A1 (zh) 2019-12-11 2020-12-09 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法

Country Status (3)

Country Link
US (1) US20220390518A1 (zh)
EP (1) EP4075467A4 (zh)
WO (1) WO2021115289A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4027153A4 (en) * 2019-09-04 2023-10-11 Shanghai Roye Electric Co., Ltd. GAS DENSITY RELAY VERIFICATION DEVICE AND ASSOCIATED VERIFICATION METHOD

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390241A (en) * 1964-10-23 1968-06-25 Bbc Brown Boveri & Cie Gas circulating system for compressed gas operated circuit breakers
CN2637872Y (zh) * 2003-07-09 2004-09-01 上海珂利电气有限公司 一种便于对sf6电气开关中的气体密度继电器校验的接头座
CN101206169A (zh) * 2006-12-22 2008-06-25 苏丽芳 一种sf6气体密度继电器校验仪
US20140130575A1 (en) * 2012-11-09 2014-05-15 Franklin Fueling Systems, Inc. Method and apparatus for electrically indicating a gas characteristic
CN208311751U (zh) * 2018-05-16 2019-01-01 江苏海立普电力科技有限公司 一种sf6气体密度继电器校验用三通阀
CN109752649A (zh) * 2019-01-11 2019-05-14 南京固攀自动化科技有限公司 一种密度继电器智能校验监测装置及其补气校验方法
CN110487670A (zh) * 2019-09-04 2019-11-22 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110514996A (zh) * 2019-09-04 2019-11-29 上海乐研电气有限公司 一种气体密度继电器的改造方法
CN110514995A (zh) * 2019-09-04 2019-11-29 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110542852A (zh) * 2019-09-04 2019-12-06 上海乐研电气有限公司 一种气体密度继电器的改造方法
CN110907815A (zh) * 2019-12-11 2020-03-24 上海乐研电气有限公司 一种气路隔断压力调节机构
CN110954816A (zh) * 2019-12-11 2020-04-03 上海乐研电气有限公司 一种密度继电器在线校验用的气路隔断压力调节机构
CN110988667A (zh) * 2019-12-11 2020-04-10 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN111029211A (zh) * 2019-12-11 2020-04-17 上海乐研电气有限公司 一种气体密度继电器的改造方法
CN212364519U (zh) * 2019-12-11 2021-01-15 上海乐研电气有限公司 一种密度继电器在线校验用的气路隔断压力调节机构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429003A (zh) * 2019-09-04 2019-11-08 上海乐研电气有限公司 用于在线校验密度继电器的变送器及其实现方法、系统
CN110441679A (zh) * 2019-09-04 2019-11-12 上海乐研电气有限公司 实现密度继电器免维护的电气设备、方法和系统
CN110535058B (zh) * 2019-09-04 2024-05-03 上海乐研电气有限公司 具有在线采样校验功能的电气系统及其校验方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390241A (en) * 1964-10-23 1968-06-25 Bbc Brown Boveri & Cie Gas circulating system for compressed gas operated circuit breakers
CN2637872Y (zh) * 2003-07-09 2004-09-01 上海珂利电气有限公司 一种便于对sf6电气开关中的气体密度继电器校验的接头座
CN101206169A (zh) * 2006-12-22 2008-06-25 苏丽芳 一种sf6气体密度继电器校验仪
US20140130575A1 (en) * 2012-11-09 2014-05-15 Franklin Fueling Systems, Inc. Method and apparatus for electrically indicating a gas characteristic
CN208311751U (zh) * 2018-05-16 2019-01-01 江苏海立普电力科技有限公司 一种sf6气体密度继电器校验用三通阀
CN109752649A (zh) * 2019-01-11 2019-05-14 南京固攀自动化科技有限公司 一种密度继电器智能校验监测装置及其补气校验方法
CN110487670A (zh) * 2019-09-04 2019-11-22 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110514996A (zh) * 2019-09-04 2019-11-29 上海乐研电气有限公司 一种气体密度继电器的改造方法
CN110514995A (zh) * 2019-09-04 2019-11-29 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110542852A (zh) * 2019-09-04 2019-12-06 上海乐研电气有限公司 一种气体密度继电器的改造方法
CN110907815A (zh) * 2019-12-11 2020-03-24 上海乐研电气有限公司 一种气路隔断压力调节机构
CN110954816A (zh) * 2019-12-11 2020-04-03 上海乐研电气有限公司 一种密度继电器在线校验用的气路隔断压力调节机构
CN110988667A (zh) * 2019-12-11 2020-04-10 上海乐研电气有限公司 一种具有在线自校验功能的气体密度继电器及其校验方法
CN111029211A (zh) * 2019-12-11 2020-04-17 上海乐研电气有限公司 一种气体密度继电器的改造方法
CN212364519U (zh) * 2019-12-11 2021-01-15 上海乐研电气有限公司 一种密度继电器在线校验用的气路隔断压力调节机构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075467A4
ZHOU QIYI, ZEQIANG ZHANG, JUN GU, YEYUAN LANG, DONG ZHU, QINGLEI LUO, HAIYONG JIN, ENLIN WANG: "Development of an Assembly Joint for Calibration on SF 6 Gas Density Monitor", HIGH VOLTAGE APPARATUS, vol. 51, no. 10, 16 October 2015 (2015-10-16), pages 145 - 149, XP055819787, DOI: 10.13296/j.1001-1609.hva.2015.10.023 *

Also Published As

Publication number Publication date
US20220390518A1 (en) 2022-12-08
EP4075467A4 (en) 2024-01-03
EP4075467A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2021218291A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110988667A (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021218288A1 (zh) 一种气体密度继电器在线校验装置及其在线校验方法
WO2021218286A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN111029211B (zh) 一种气体密度继电器的改造方法
CN110554309B (zh) 一种现场气体密度继电器的在线校验方法
WO2021043036A1 (zh) 实现气体密度继电器免维护的现场检测装置、系统及方法
WO2021043039A1 (zh) 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021218290A1 (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110954816A (zh) 一种密度继电器在线校验用的气路隔断压力调节机构
CN212136345U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211426165U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN110542852B (zh) 一种气体密度继电器的改造方法
CN211718032U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN110441195B (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
WO2021115289A1 (zh) 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法
CN212364519U (zh) 一种密度继电器在线校验用的气路隔断压力调节机构
CN110514996B (zh) 一种气体密度继电器的改造方法
WO2021043035A1 (zh) 一种气体密度继电器的改造方法、一种具有在线自校验功能的气体密度继电器及其校验方法
CN110514995A (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN110927566A (zh) 一种具有在线自校验功能的气体密度继电器及其校验方法
CN211826370U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN210775758U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211179413U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置
CN211426166U (zh) 一种具有在线自校验功能的气体密度继电器及监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020899597

Country of ref document: EP

Effective date: 20220711