WO2021042593A1 - 纹路识别装置及其制作方法 - Google Patents

纹路识别装置及其制作方法 Download PDF

Info

Publication number
WO2021042593A1
WO2021042593A1 PCT/CN2019/121568 CN2019121568W WO2021042593A1 WO 2021042593 A1 WO2021042593 A1 WO 2021042593A1 CN 2019121568 W CN2019121568 W CN 2019121568W WO 2021042593 A1 WO2021042593 A1 WO 2021042593A1
Authority
WO
WIPO (PCT)
Prior art keywords
recognition device
pattern recognition
light
layer
photosensitive
Prior art date
Application number
PCT/CN2019/121568
Other languages
English (en)
French (fr)
Inventor
丰亚洁
李成
薛艳娜
詹小舟
耿越
王奎元
黄海波
陶京富
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980002644.5A priority Critical patent/CN112771484B/zh
Priority to US16/970,091 priority patent/US11908226B2/en
Publication of WO2021042593A1 publication Critical patent/WO2021042593A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/54Extraction of image or video features relating to texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1359Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • G06V40/1376Matching features related to ridge properties or fingerprint texture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0067Devices for protecting against damage from electrostatic discharge
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Definitions

  • the embodiment of the present disclosure relates to a pattern recognition device and a manufacturing method thereof.
  • the pattern recognition device can be used as an identity verification device in airports, banks and other occasions alone, or the pattern recognition device can also be combined with a mobile terminal to provide the mobile terminal with functions such as identity verification and electronic payment. In this regard, how to design a more optimized pattern recognition device is the focus of attention in this field.
  • the pattern recognition device includes a backlight element and a photosensitive element.
  • the photosensitive element is arranged on the light-emitting side of the backlight element and configured to detect the lines emitted by the backlight element and passed through the detection body. The reflected light is used to identify the texture image of the detection body texture; wherein, the photosensitive element includes a plurality of photosensitive sensors and an antistatic layer on the side of the plurality of photosensitive sensors away from the backlight element, and the plurality of photosensitive elements
  • the orthographic projection of the sensor on the plane where the anti-static layer is located is inside the anti-static layer.
  • the thickness of the antistatic layer is 8-30 microns.
  • the relative dielectric constant of the anti-static layer is 3-10; the material of the anti-static layer includes a resin material.
  • the photosensitive element further includes a filter layer on the side of the antistatic layer away from the plurality of photosensitive sensors, and the filter layer is configured to filter Light with a wavelength of 580nm-1100nm.
  • the material of the filter layer includes a stack of at least one SiO 2 layer and at least one Ti 3 O 5 layer or at least one SiO 2 layer and at least one Ta 2 layer. O 5 layer stack.
  • the surface of the filter layer far from the antistatic layer is configured as a texture touch surface.
  • the backlight element includes a surface light source and a light beam layer, and the light beam layer is located on a side of the surface light source close to the photosensitive element and is configured to be vertical
  • the direction of the surface of the pattern recognition device restricts the light emitted from the surface light source.
  • the beam layer includes a first prism structure, and the first prism structure is configured to make the direction of light emitted from the surface light source perpendicular to the direction of light emitted from the surface light source through refraction.
  • the direction of the surface of the pattern recognition device is aligned.
  • one surface of the first prism structure includes a plurality of prismatic protrusions arranged in parallel, and the main cross-section of the prismatic protrusions is a triangle.
  • the vertex angle of the triangle is 40 degrees-75 degrees.
  • the surface of the first prism structure facing the surface light source includes the plurality of prismatic protrusions arranged in parallel.
  • the light beam layer further includes a second prism structure disposed on a side of the first prism structure away from the surface light source, and the second prism structure is configured In order to emit only the light whose angle with the normal direction of the second prism structure is within 30 degrees.
  • one surface of the second prism structure includes a plurality of prismatic protrusions arranged in parallel, and the main cross-section of the prismatic protrusions is trapezoidal, and The bottom angle of the trapezoid is 60°-90°.
  • the surface light source includes a light guide plate and at least one light emitting element provided on at least one side of the light guide plate, and the light emitted by the at least one light emitting element is emitted from the light guide plate.
  • the at least one side surface is incident into the light guide plate and exits from the surface of the light guide plate facing the light beam layer; or, the surface light source includes an array of light emitting elements, and the array of light emitting elements includes an arrangement Multiple light-emitting elements in multiple rows and multiple columns.
  • the light-emitting element includes a cathode, an anode, a light-emitting layer between the cathode and the anode, and a ground pin connected to the cathode.
  • the pattern recognition device provided by at least one embodiment of the present disclosure further includes: a driving circuit on a side of the backlight element away from the photosensitive element, wherein the driving circuit is configured to drive the photosensitive element.
  • the photosensitive element includes a sensing area and a peripheral area surrounding the sensing area, the plurality of photosensitive sensors are arranged in an array in the sensing area, and
  • the pattern recognition device also includes a plurality of readout integrated circuits, the plurality of readout integrated circuits are arranged in the peripheral area and are respectively alternately distributed on the first side and the second side of the sensing area, the first side and The second side is opposite;
  • the array of the plurality of photosensitive sensors includes a plurality of sub-arrays, the first ends of the plurality of readout integrated circuits are electrically connected to the plurality of subarrays, and the plurality of readout integrated circuits The second end is electrically connected to the driving circuit.
  • the pattern recognition device provided by at least one embodiment of the present disclosure further includes: at least one gate driver in the peripheral area and on the third side of the sensing area, wherein the first terminal of the at least one gate driver is electrically connected The plurality of photosensitive sensors are connected, and the second end of the at least one gate driver is electrically connected to the driving circuit.
  • the pattern recognition device provided by at least one embodiment of the present disclosure further includes a circuit board, wherein the at least one gate driver includes two gate drivers, the circuit board is disposed between the two gate drivers, and the circuit The board and the two gate drivers are arranged in parallel on the third side, and the two gate drivers are electrically connected to the driving circuit through the circuit board.
  • the pattern recognition device provided by at least one embodiment of the present disclosure further includes: an opaque plastic frame surrounding the sensing area.
  • the photosensitive element further includes a filter layer on the side of the antistatic layer away from the plurality of photosensitive sensors, and the filter layer is configured to filter Light with a wavelength of 580nm-1100nm
  • the backlight element includes a surface light source and a light beam layer
  • the light beam layer includes a first prism structure and a second prism structure
  • the second prism structure is disposed far from the first prism structure
  • the first prism structure is configured to collimate light emitted from the surface light source in a direction perpendicular to the surface of the pattern recognition device through refraction
  • the second prism structure is configured In order to only emit light whose angle with the normal direction of the second prism structure is within 30 degrees
  • the photosensitive element includes a sensing area and a peripheral area surrounding the sensing area, and the plurality of photosensitive sensors are arrayed In the sensing area
  • the pattern recognition device further includes: a driving circuit on the
  • At least one embodiment of the present disclosure provides a method for fabricating a pattern recognition device, including: providing a backlight element; and providing a photosensitive element configured to detect light emitted by the backlight element and reflected by the pattern of the detection body to identify the light
  • the texture image of the detection body texture wherein, the photosensitive element includes a plurality of photosensitive sensors and an antistatic layer on the side of the plurality of photosensitive sensors away from the backlight element, and the plurality of photosensitive sensors are in the antistatic
  • the orthographic projection on the plane of the layer is located inside the antistatic layer; the backlight element and the photosensitive element are laminated.
  • providing a photosensitive element includes: forming a plurality of photosensitive sensors on a substrate, and forming an antistatic layer on the plurality of photosensitive sensors by coating.
  • providing a photosensitive element further includes: forming a filter layer on a side of the antistatic layer away from the plurality of photosensitive sensors by evaporation.
  • the filter layer is configured to filter light with a wavelength within a predetermined range.
  • the manufacturing method of the pattern recognition device further includes: providing a driving circuit, and combining the driving circuit on the side of the backlight element away from the photosensitive element.
  • FIG. 1 is a schematic side view of a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 2 is a schematic partial plan view of a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of a photosensitive element in a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of an antistatic layer of a pattern recognition device provided by at least one embodiment of the present disclosure
  • 5A is a schematic plan view of a backlight element in a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 5B is a schematic cross-sectional view of the backlight element in FIG. 5A along the line A-A;
  • FIG. 6 is a schematic plan view of a surface light source in a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 7 is a schematic cross-sectional view of a light-emitting diode in a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 8 is a schematic cross-sectional view of a first prism structure in a pattern recognition device provided by at least one embodiment of the present disclosure
  • FIG. 9 is a schematic cross-sectional view of a second prism structure in a pattern recognition device provided by at least one embodiment of the present disclosure.
  • FIG. 10 is a partial circuit diagram of a pattern recognition device provided by at least one embodiment of the present disclosure.
  • the photosensitive sensor is a key device to realize fingerprint collection and recognition. It converts light signals into electrical signals, and then realizes the collection and recognition of patterns. Since the photosensitive sensor is mainly operated by the light emitted by the backlight light source of the pattern recognition device, at this time, ambient light may interfere with the photosensitive sensor; in addition, when the detected body pattern touches the pattern recognition device, it is easy to generate static electricity. It may interfere with the normal operation of the photosensitive sensor, thereby affecting the accuracy of pattern recognition.
  • An embodiment of the present disclosure provides a pattern recognition device, which includes a backlight element and a photosensitive element.
  • the photosensitive element is arranged on the light emitting side of the backlight element and is configured to detect the light emitted by the backlight element and reflected by the detection body texture to identify the texture image of the detection body texture.
  • the photosensitive element includes a plurality of photosensitive sensors and an antistatic layer on the side of the plurality of photosensitive sensors away from the backlight element, and the orthographic projection of the plurality of photosensitive sensors on the plane where the antistatic layer is located is inside the antistatic layer.
  • the pattern recognition device can effectively prevent the static electricity generated when the pattern of the detection body touches the pattern recognition device from interfering with the photosensitive sensor.
  • Fig. 1 is a schematic side view of a pattern recognition device provided by at least one embodiment of the present disclosure
  • Fig. 2 is a partial plan view of a pattern recognition device provided by at least one embodiment of the present disclosure
  • Fig. 3 is at least one embodiment of the present disclosure Provided is a schematic cross-sectional view of a photosensitive element in a pattern recognition device
  • the pattern recognition device 100 includes a backlight element 20 and a photosensitive element 10.
  • the photosensitive element 10 is configured to detect the light emitted by the backlight element 20 and reflected by the lines of the detecting body. Light to identify the pattern image of the body pattern.
  • the lines of the test body include the lines of the fingers or the palm of the test body.
  • the lines recognized by the photosensitive element 10 are skin lines, such as fingerprints, palm prints, etc.; in addition, the lines of the test body can also be those of a non-biological body with certain lines.
  • the texture is, for example, a texture of a non-object made of materials such as resin, and the embodiment of the present disclosure does not specifically limit the texture of the detection body.
  • the photosensitive element 10 is disposed on the light-emitting side of the backlight element 20, and includes a first substrate 111, a plurality of photosensitive sensors 112 on the first substrate 111, and a plurality of photosensitive sensors 112 on the first substrate 111.
  • the anti-static layer 113 is away from the anti-static layer 113 on the side of the backlight element 20 (that is, the upper side shown in the figure), and the orthographic projection of the plurality of photosensitive sensors 112 on the plane where the anti-static layer 113 is located is inside the anti-static layer 113, so that the anti-static layer 113 covers a plurality of photosensitive sensors 112 to prevent static electricity generated when the detected body pattern touches the pattern recognition device 100 from interfering with the photosensitive sensor 112, thereby improving the accuracy of pattern recognition by the pattern recognition device 100.
  • the photosensitive element 10 includes a sensing area 101 and a peripheral area 102 at least partially (for example, all) surrounding the sensing area 101.
  • a plurality of photosensitive sensors 112 are arranged in an array in the sensing area 101, and the peripheral area 102 is in the peripheral area 102.
  • the driving elements, signal wiring, etc. for driving the photosensitive element 10 may be arranged.
  • the light emitted from the backlight element 20 may enter the pattern of the operating body through the gap between the adjacent photosensitive sensors 112, and then be reflected by the pattern to the photosensitive sensor 112 to be recognized.
  • a plurality of photosensitive sensors 112 are arranged in an array of 1600 ⁇ 1500 (that is, 1600 rows, 1500 columns) in the sensing area 101, thereby forming a pattern recognition device with a resolution of 1600 ⁇ 1500.
  • the size of one pixel of the pattern image formed by the pattern recognition device is about 50.8 ⁇ m, so the pattern recognition device is a high PPI (pixel per inch) large area pattern recognition device, which can be used for four at the same time.
  • the recognition of large-area patterns such as a finger or a large-area palmprint can be applied to places requiring identity verification such as airports and banks, or combined with mobile terminals such as large-screen mobile phones and tablets.
  • the pattern recognition device 100 may further include an opaque plastic frame 40 surrounding the sensing area 101, such as a dark (for example, black, blue, etc.) plastic frame, so as to define the sensing area 101.
  • an opaque plastic frame 40 surrounding the sensing area 101, such as a dark (for example, black, blue, etc.) plastic frame, so as to define the sensing area 101.
  • the texture of the detection body can be accurately pressed on the sensing area 101; in addition, the opaque plastic frame 40 can also play a role in shielding light to prevent light from entering the multiple photosensitive sensors 112 from around the sensing area 101, thereby reducing ambient light Interference, improve detection accuracy.
  • the entire surface of the anti-static layer 113 is formed on the side of the plurality of photosensitive sensors 112 away from the backlight element 20.
  • the orthographic projection of the sensing area 101 on the plane where the anti-static layer 113 is located is on the anti-static layer 113.
  • the anti-static layer 113 entirely covers the sensing area 101 of the photosensitive element 10, so that the anti-static layer 113 can provide a sufficient anti-static effect.
  • the thickness T of the antistatic layer 113 can be 8-30 microns, such as 10 microns, 15 microns, 20 microns, or 25 microns; the relative value of the antistatic layer 113 The dielectric constant may be 3-10, such as 5, 7, or 9; the material of the anti-static layer 113 may include a resin material (resin ink), such as an epoxy material, etc.
  • the anti-static layer 113 can effectively prevent the static electricity generated when the lines of the detection body touches the line identification device 100 from interfering with the photosensitive sensor 112.
  • the light transmittance of the antistatic layer 113 is above 90%, and there are no scattering particles inside (that is, to ensure that the antistatic layer 113 has a certain degree of purity and does not contain impurities that can scatter light), so that it will not affect the texture.
  • the propagation of the identified light is above 90%, and there are no scattering particles inside (that is, to ensure that the antistatic layer 113 has a certain degree of purity and does not contain impurities that can scatter light), so that it will not affect the texture. The propagation of the identified light.
  • the photosensitive element 10 may further include a filter layer 114 on the side of the antistatic layer 113 away from the plurality of photosensitive sensors 112, and the filter layer 114 is configured to filter a wavelength of 580 nm. -1100nm light, that is, the filter layer 114 does not allow light with a wavelength of 580nm-1100nm to pass, or in other words, the light passing through the filter layer 114 does not include part of the light with a wavelength of 580nm-1100nm.
  • the light absorbed and reflected by the hemoglobin in the blood is red, with a wavelength of about 580nm-1100nm, and the myoglobin on the muscles of the fingers or palms also reflects red light. Therefore, when the ambient light is strong, the ambient light can pass through the fingers or palms, and the light passing through the fingers or palms is red light with a wavelength of about 580nm-1100nm. At this time, the arrangement of the filter layer 114 can effectively prevent ambient light from entering the photosensitive sensor 112 to affect the normal operation of the photosensitive sensor 112.
  • the filter layer 114 can only filter the light with a wavelength of 580nm-1100nm generated by the ambient light passing through the fingers or palms, while the light emitted by the backlight element 20 is not affected, so the filter layer 114 114 can effectively prevent ambient light without affecting the photosensitive sensor 112 to receive the light emitted from the backlight element 20 and reflected by the fingers or palm.
  • the filter layer 114 may include a stack of multiple material layers.
  • the filter layer 114 includes a stack of at least one SiO 2 layer and at least one Ti 3 O 5 layer, or includes at least one SiO 2 layer and at least one Ta 2 O 5 layer. Laminated.
  • FIG. 4 shows a stacked structure of the filter layer 114.
  • the filter layer 114 includes a stack of two material layers 1141 and 1142.
  • the two material layers 1141 and 1142 are respectively a SiO 2 layer and a Ti 3 O 5 layer, and the reflectivity of the Ti 3 O 5 layer is higher than that of the SiO 2 layer; or, the two material layers 1141 and 1142 are respectively SiO 2 layers and Ta 2 O 5 layers.
  • the reflectivity of the Ta 2 O 5 layer is higher than that of the SiO 2 layer, so that the filter layer 114 can achieve the technical effect of filtering light with a wavelength of 580nm-1100nm, and will not affect the use The spread of light for grain recognition.
  • the filter layer 114 may also include a stack of more material layers, such as a stack of three or four material layers, etc., for example, a stack of SiO 2 /Ti 3 O 5 /SiO 2 Layer structure, SiO 2 /Ti 3 O 5 /SiO 2 /Ti 3 O 5 laminated structure, SiO 2 /Ta 2 O 5 /SiO 2 laminated structure or SiO 2 /Ta 2 O 5 /SiO 2 /Ta 2 O 5 laminate structure.
  • the embodiment of the present disclosure does not limit the specific structure of the filter layer 114.
  • the surface of the filter layer 114 away from the antistatic layer 113 (that is, the upper surface shown in the figure) is configured as a textured touch surface, that is, the texture of the operating body can directly touch the surface of the filter layer 114 away from the antistatic layer 113, To be recognized.
  • the filter layer 114 has the above-mentioned laminated structure and material settings, the surface of the filter layer 114 has a higher hardness, and therefore has a higher scratch resistance, and can be directly used as a textured touch surface, so that no additional The texture touch element, at this time, the texture recognition device 100 is thinner, and the manufacturing cost of the texture recognition device 100 can be reduced.
  • FIG. 5A is a schematic plan view of the backlight element 20 in the pattern recognition device 100 provided by at least one embodiment of the present disclosure
  • FIG. 5B is a schematic cross-sectional view of the backlight element 20 in FIG. 5A along the line A-A.
  • the backlight element 20 includes a surface light source 20A and a light beam layer 20B.
  • the beam layer 20B is located on the side of the surface light source 20A close to the photosensitive element 10 and is configured to constrain the light emitted from the surface light source 20A in a direction perpendicular to the surface of the pattern recognition device 100 (ie, in the vertical direction in the figure).
  • the light beam layer 20B includes a first prism structure 203, and the first prism structure 203 is configured to redirect light emitted from the surface light source 20A to a direction perpendicular to the pattern recognition device through refraction.
  • the direction of the surface ie, the vertical direction in the figure is aligned.
  • FIG. 8 shows a schematic cross-sectional view of a first prism structure 203.
  • one surface of the first prism structure 203 (for example, the surface of the first prism structure 203 facing the surface light source 20A, that is, the lower surface shown in the figure) includes a plurality of prismatic protrusions 2031 arranged in parallel.
  • the main cross section of the prismatic protrusion 2031 is a triangle.
  • the prismatic protrusion 2031 is a triangular prismatic protrusion.
  • the apex angle ⁇ 1 of the triangle may be 40°-75°, such as 50°, 60° Or 70 degrees, etc.
  • the base D1 of the triangle may be 20 ⁇ m-50 ⁇ m, such as 30 ⁇ m or 40 ⁇ m, etc.
  • the height H1 of the triangle may be 10 ⁇ m-25 ⁇ m, such as 15 ⁇ m or 20 ⁇ m.
  • the prismatic protrusions 2031 of the first prism structure 203 can refract the light emitted from the surface light source 20A in a direction perpendicular to the surface of the pattern recognition device 100, thereby realizing the collimation effect of the light. .
  • the "main cross section" of a structure mentioned in the embodiments of the present disclosure is a cross section that reflects the main design parameters of the structure.
  • the main cross section is the same as the shape of the bottom surface of the prism.
  • its main cross-section is a triangle
  • quadrangular prism its main cross-section is a quadrilateral.
  • the surface of the first prism structure 203 facing the surface light source 20A has the aforementioned multiple prismatic protrusions 2031, or, in some embodiments, the surface of the first prism structure 203 away from the surface light source 20A has the aforementioned multiple
  • the embodiment of the present disclosure does not limit the number of prismatic protrusions 2031, as long as the first prism structure 203 can refract the light emitted from the surface light source 20A in a direction perpendicular to the surface of the pattern recognition device 100.
  • the first prism structure 203 may also adopt other structures.
  • the prismatic protrusions 2031 of the first prism structure 203 may also be quadrangular prisms, pentagonal prisms, or other prismatic shapes.
  • the embodiment of the present disclosure does not limit the specific structure of the first prism structure 203, as long as the first prism
  • the structure 203 can refract the light emitted from the surface light source 20A in a direction perpendicular to the surface of the pattern recognition device 100.
  • the light beam layer 20B further includes a second prism structure 204 disposed on the side of the first prism structure 203 away from the surface light source 20A, and the second prism structure 204 is configured to only emit light and The light whose normal direction (ie, the vertical direction in the figure) of the second prism structure 204 has an included angle ⁇ within 30 degrees.
  • FIG. 9 shows a schematic cross-sectional view of a second prism structure 204.
  • one surface of the second prism structure 204 (shown as the lower surface in the figure) includes a plurality of prismatic protrusions 2041 arranged in parallel, and the main cross section of the prismatic protrusions 2041 is trapezoidal, such as isosceles.
  • the prismatic protrusion 2041 is a quadrangular prismatic protrusion.
  • the bottom angle ⁇ 2 of the trapezoid is 60 degrees to 90 degrees, such as 70 degrees or 80 degrees
  • the height H2 of the trapezoid may be 300 ⁇ m- 600 ⁇ m, such as 400 ⁇ m or 500 ⁇ m, etc.
  • the distance D2 between adjacent trapezoids may be 25 ⁇ m-65 ⁇ m, such as 30 ⁇ m, 47 ⁇ m, or 55 ⁇ m.
  • the second prism structure 204 can only emit light whose angle with the normal direction of the second prism structure 204 (ie, the vertical direction in the figure) is within 30 degrees, and the second prism structure 204 The light with an included angle greater than 30 degrees in the normal direction of the two prism structure 204 will not be emitted, so the second prism structure 204 can further achieve the collimation effect of the light.
  • the surface of the second prism structure 204 facing the surface light source 20A has the above-mentioned multiple prismatic protrusions 2041, or, in some embodiments, the surface of the second prism structure 204 away from the surface light source 20A may have the above-mentioned multiple
  • the second prism structure 204 may also adopt other structures.
  • the second prism structure may include a prism surface with a plurality of hollow areas arranged in an array, and the shape of the hollow areas may be rectangles (for example, rectangles, squares, etc.), regular triangles, regular hexagons, or circles. ⁇ Shape and so on.
  • the size of the hollowed-out area can be designed to realize that the hollowed-out area only emits light whose included angle ⁇ with the normal direction of the second prism structure 204 (ie, the vertical direction in the figure) is within 30 degrees.
  • the first prism structure 203 and the second prism structure 204 may be covered with UV (Ultra-Violet) on the surface of a PET (Polyethylene terephthalate) matrix material.
  • UV Ultra-Violet
  • PET Polyethylene terephthalate
  • the embodiment of the present disclosure does not specifically limit the materials of the first prism structure 203 and the second prism structure 204.
  • the backlight element 20 further includes an adhesive layer 205 located on the side of the second prism structure 204 away from the first prism structure 203, and the adhesive layer 205 is used to combine the backlight element 20 and the photosensitive element 10.
  • the adhesive layer 205 may include a transparent adhesive such as optical clear glue.
  • the surface light source 20A includes a light guide plate 202 and at least one light emitting element 201 provided on at least one side of the light guide plate 202 (shown as the right side in the figure), The light emitted by the at least one light-emitting element 201 enters the light guide plate 202 from the above at least one side, and exits from the surface of the light guide plate 202 facing the light beam layer 20B (that is, the upper plate surface), thereby forming an edge-type backlight light source .
  • the light-emitting element is a linear light source (such as a fluorescent lamp), so a light-emitting element is provided on the side of the light guide plate 202; for another example, the light-emitting element is a point light source, and a plurality of light-emitting elements 201 are at least on the light guide plate 202.
  • One side surface is arranged linearly, thereby forming a line light source located on at least one side surface of the light guide plate 202.
  • FIG. 5B shows five light-emitting elements 201 arranged in a line.
  • the number of light-emitting elements 201 may be more, such as 10 or 14, etc.
  • the number of light-emitting elements 201 It can be determined according to actual conditions such as the size of the sensing area 101 and the luminous intensity of the light-emitting element 201.
  • the surface light source 20A may also include a light-emitting element array 210, that is, the combination of the light guide plate 202 and the light-emitting element 201 is replaced by the light-emitting element array 210 in FIGS. 5A and 5B.
  • the light emitting element array 210 includes a plurality of light emitting elements 2101 arranged in multiple rows and multiple columns, so as to be realized as a direct type backlight light source.
  • edge-type backlight light source and direct-type backlight light source can both be used as surface light sources, and therefore can be selected according to actual needs.
  • FIG. 7 shows a schematic cross-sectional view of a light-emitting element.
  • the light-emitting element 201 or the light-emitting element 2101 includes an anode 2011, a cathode 2013, a light-emitting layer 2012 between the cathode 2013 and the anode 2011, and a ground pin 2014 connected to the cathode 2013.
  • the light-emitting element 201 or the light-emitting element 2101 may be a light-emitting diode (LED), and the ground pin 2014 of the light-emitting diode is grounded, so as to provide a stable voltage for the cathode 2013 to prevent electrostatic interference, thereby protecting the light-emitting element and improving the light-emitting uniformity of the light-emitting element .
  • LED light-emitting diode
  • the surface light source 20A may further include a reflective layer 206, which is located on the side of the edge-type backlight source or the direct-type backlight source away from the first prism structure 203, namely The bottom side of the edge-type backlight source or the direct-type backlight source in FIG. 5B.
  • the reflective layer 206 can reflect the light emitted by the backlight source or the direct-lit backlight source, so that the light emitted by the edge-lit backlight source or the direct-lit backlight source is emitted toward the first prism structure 203 as much as possible, thereby improving the utilization rate of the light source.
  • the reflective layer 206 may be a metal layer, which is formed on the surface of the light guide plate away from the first prism structure 203 by, for example, evaporation, or it may be a metal plate, which is arranged on the light guide plate.
  • the backlight element 20 may further include a back plate 207, and the back plate 207 is disposed on the side of the reflective layer 206 away from the photosensitive element 10.
  • the back plate 207 can provide support and protection for the above-mentioned structure of the backlight element 20.
  • the side of the back plate 207 away from the reflective layer 206 may be combined with the driving circuit 30 (described later) through an adhesive.
  • the pattern recognition device 100 further includes a driving circuit 30 on the side of the backlight element 20 away from the photosensitive element 10.
  • the driving circuit 30 is configured to drive the photosensitive element 10, for example, the photosensitive element 10. Carry out pattern collection and recognition.
  • the driving circuit 30 may also be configured to drive the backlight element 30, for example, to drive the backlight element 30 to emit light.
  • the driving circuit 30 may be a Field Programmable Gate Array (FPGA), or a microprocessor, such as an X86 processor or an ARM processor, or may be a digital processor (DSP) or the like.
  • FPGA Field Programmable Gate Array
  • DSP digital processor
  • the pattern recognition device 100 further includes a plurality of driving elements arranged in the peripheral area 102.
  • One end of these driving elements is electrically connected to the driving circuit 30, and the other end is electrically connected to the photosensitive element 10, so that the driving circuit 30 can
  • the working state of the photosensitive element 10 is controlled by the driving element located in the peripheral area 102.
  • these driving elements include a plurality of readout integrated circuits (Readout Integrated Circuit, ROIC) 102, shown in the figure are six readout integrated circuits 102, namely a first readout integrated circuit 1021, a second readout integrated circuit 1022 , The third readout integrated circuit 1023, the fourth readout integrated circuit 1024, the fifth readout integrated circuit 1025, and the sixth readout integrated circuit 1026.
  • a plurality of readout integrated circuits 102 are arranged in the peripheral area 102 and are respectively on the first side of the sensing area 101 (shown as the upper side of the sensing area 101 in the figure) and the second side (shown as the lower side of the sensing area 101 in the figure). Side) alternately distributed, and the first side and the second side are opposite to each other.
  • an array of multiple photosensitive sensors includes multiple sub-arrays, as shown in the figure as six sub-arrays, namely, the first sub-array 1, the second sub-array 2, the third sub-array 3, the fourth sub-array 4, and the fifth sub-array.
  • the first ends of the plurality of readout integrated circuits 102 are respectively electrically connected to the plurality of sub-arrays, that is, the first ends of the first readout integrated circuits 1021 are electrically connected to the first sub-array 1, and the second read
  • the first end of the output integrated circuit 1022 is electrically connected to the second sub-array 2
  • the first end of the third readout integrated circuit 1023 is electrically connected to the third sub-array 3
  • the first end of the fourth readout integrated circuit 1024 is electrically connected to the fourth In the sub-array 4
  • the first end of the fifth readout integrated circuit 1025 is electrically connected to the fifth sub-array 5
  • the first end of the sixth readout integrated circuit 1026 is electrically connected to the sixth sub-array 6.
  • the second end of the plurality of readout integrated circuits 102 (that is, the end far away from the sensing area 101) is electrically connected to the driving circuit 30. Therefore, the multiple photosensitive sensors 112 in the sensing area 101 are driven by different readout integrated circuits 102 to simplify circuit arrangement and data processing.
  • multiple readout integrated circuits (Readout Integrated Circuit, ROIC) 102 may be integrated circuits arranged on a flexible film, namely ROIC COF (Chip on Film), so that the second end of the multiple readout integrated circuits 102 can pass through
  • ROIC COF Chip on Film
  • the bending of the flexible film is partially arranged on the back of the pattern recognition device, and is further electrically connected to the driving circuit 30.
  • the distance D between the first end of the readout integrated circuit 102 and the closest photosensitive sensor 112 electrically connected to it is greater than 5 mm, for example, greater than 5.11 mm, which facilitates wiring arrangement and reduces the difficulty of the manufacturing process of the pattern recognition device.
  • the number of multiple readout integrated circuits 102 and the number of sub-arrays of multiple photosensitive sensors can be selected according to actual conditions such as the size and purpose of the pattern recognition device, which is not the case in the embodiments of the present disclosure. Make a limit.
  • the pattern recognition device 100 may further include at least one gate driver (Gate IC) 103 on the peripheral area 102 and on the third side of the sensing area 101 (shown as the left side in the figure).
  • the first end of one gate driver 103 is electrically connected to a plurality of photosensitive sensors 112, and the second end of the at least one gate driver 103 is electrically connected to the driving circuit 30.
  • At least one gate driver 103 includes two gate drivers 103.
  • the pattern recognition device 100 may also include a circuit board 104, and the circuit board 104 is disposed on the two gate drivers 103. In between, the circuit board 104 and the two gate drivers 103 are arranged in parallel on the third side of the sensing area 101, and the two gate drivers 103 are electrically connected to the driving circuit 30 through the circuit board 103.
  • the circuit board 104 may be a flexible printed circuit (FPC), the ends of the two gate drivers 103 close to the circuit board 104 are electrically connected to the circuit board 104, and the end of the circuit board 103 away from the sensing area 101 passes through the flexible circuit
  • the bent part of the plate is arranged on the back of the pattern recognition device, and is further electrically connected to the driving circuit 30.
  • two gate drivers 103 are electrically connected to photosensitive sensors 112 located in different rows, for example, one gate driver 103 is electrically connected to the first N rows of photosensitive sensors 112, and the other gate driver 103 is electrically connected to the rear M rows of photosensitive sensors 112 (M and N are A positive integer, and M+N is equal to the total number of rows of photosensitive sensors 112 arranged in the array), so that multiple photosensitive sensors 112 are driven by different gate drivers 103 in sub-regions to simplify circuit arrangement and data processing.
  • FIG. 10 shows a circuit diagram of a driving circuit of a pattern recognition device.
  • the driving process of the above-mentioned driving circuit 30 and driving elements to the photosensitive element 10 will be exemplarily introduced.
  • each photosensitive sensor 112 of the photosensitive element 10 includes a photosensitive member 112A and a switching transistor 112B electrically connected to the photosensitive member 112A.
  • the gate of the switching transistor 112B is electrically connected to the gate driver 103 through the wiring 103A
  • the source of the switching transistor 112B is electrically connected to the photosensitive component 112A
  • the drain of the switching transistor 112B is electrically connected to the readout integrated circuit 102 through the wiring 102A.
  • the switching transistor 112B is turned on to connect the photosensitive component 112A to the readout integrated circuit 102 through the wiring 102A, so that the readout integrated circuit 102 can obtain
  • the photosensitive component 112A generates electrical signals through photoelectric conversion and reads out the integrated circuit 102 to determine the pattern image according to the acquired electrical signals.
  • the switching transistor 112B is turned off.
  • the driving circuit 30 is used to control the gate driver 103 to transmit a gate turn-on signal, and to control the readout integrated circuit 102 to recognize the pattern image.
  • the driving circuit 30 is also used to control the working state of the backlight element 10, that is, to control whether the backlight element 10 emits light or not.
  • FIG. 10 shows an array of photosensitive sensors 112 arranged in 4 rows and 6 columns.
  • the image sensors in the first row and the second row are electrically connected to a gate driver 103 through a wiring 103A, and the third row and the fourth row are electrically connected to each other.
  • the image sensors are respectively electrically connected to the other gate driver 103 through a wire 103A.
  • the image sensors in the first column are electrically connected to the first readout integrated circuit 1021 through the same trace 102A
  • the image sensors in the second column are electrically connected to the second readout integrated circuit 1022 through the same trace 102A
  • the image sensors in the third column are electrically connected to the second readout integrated circuit 1022 through the same trace 102A.
  • the trace 102A is electrically connected to the third readout integrated circuit 1023, the fourth column of image sensors is electrically connected to the fourth column of readout integrated circuits 1024 through the same trace 102A, and the fifth column of image sensors is electrically connected to the fifth column through the same trace 102A.
  • the readout integrated circuit 1025, the image sensor of the sixth column is electrically connected to the sixth readout integrated circuit 1026 through the same wiring 102A. In this way, the sub-regional control and pattern recognition of the plurality of photosensitive sensors 112 are realized.
  • the photosensitive component 112A can be a photodiode, for example, the photodiode is a PN-type or PIN-type photodiode, and the semiconductor material used can be silicon, germanium, selenium, gallium arsenide, or the like.
  • the photosensitive member 112A may, for example, only sense light of a certain wavelength (for example, blue light or green light), or may sense all visible light.
  • the switching transistor 112B may be a switching element such as a thin film transistor.
  • the wiring 102A and the wiring 103A may be metal wiring including molybdenum (Mo) and/or aluminum (Al).
  • the laminated layer of the photosensitive element 10, the backlight element 20 and the driving circuit 30 is encapsulated by a plastic frame 60.
  • the overall size of the photosensitive element 10, the backlight element 20, and the driving circuit 30 encapsulated by the plastic frame 60 is approximately 91.5 mm ⁇ 90.2 mm.
  • the pattern recognition device further includes a first housing 50 and a second housing 70 to provide protection for functional structures such as the photosensitive element 10, the backlight element 20, and the driving circuit 30.
  • the first housing 50 is combined above the photosensitive element 10 through an opaque plastic frame 40
  • the second housing 70 is combined under the driving circuit 30 through a plastic frame 60.
  • the overall size of the pattern recognition device that combines the first housing 50 and the second housing 70 is about 92.1 mm ⁇ 90.9 mm, and the thickness is about 3-7 mm, such as 4 mm or 5 mm.
  • the pattern recognition device provided by at least one embodiment of the present disclosure has an antistatic layer disposed above the photosensitive element, so as to prevent the static electricity generated by the operating body from touching the pattern recognition device from interfering with the photosensitive element; in addition, in at least one embodiment The pattern recognition device also has a filter layer disposed above the antistatic layer, so that ambient light can be filtered to avoid interference from ambient light on the photosensitive element; in addition, in at least one embodiment, the backlight element of the pattern recognition device includes Both the first prism structure and the second prism structure can adjust the light emitted by the backlight light source, so that the light emitted from the backlight element has better collimation and uniformity. Therefore, the pattern recognition device of at least one embodiment of the present disclosure may have better pattern recognition accuracy as a whole, and may be used for large-area pattern recognition.
  • At least one embodiment of the present disclosure also provides a method for manufacturing a pattern recognition device, which includes: providing a backlight element; providing a photosensitive element; and stacking the backlight element and the photosensitive element.
  • the photosensitive element is configured to detect the light emitted by the backlight element and reflected by the lines of the detection body to identify the line image of the lines of the detection body.
  • the photosensitive element includes a plurality of photosensitive sensors and an antistatic layer on the side of the plurality of photosensitive sensors away from the backlight element, and the orthographic projection of the plurality of photosensitive sensors on the plane where the antistatic layer is located is inside the antistatic layer.
  • each element of the backlight element and the photosensitive element may be commercially available and then assembled according to the arrangement of FIG. 1.
  • the photosensitive element may also be self-made.
  • providing the photosensitive element may include: forming a plurality of photosensitive sensors on the substrate 111, and then using coated Ways to form an anti-static layer.
  • the substrate 111 may be a transparent substrate with a thickness of about 0.7 mm, such as a glass substrate.
  • forming a plurality of sensors includes forming a photosensitive member and a switching transistor of each photosensitive sensor.
  • the photosensitive component may be a photodiode, such as a PN-type or PIN-type photodiode; the switching transistor may be a thin film transistor.
  • forming the plurality of sensors 112 includes sequentially forming various functional layers of thin film transistors and photodiodes on the base substrate 111 using a patterning process.
  • the specific preparation process can refer to related technologies, which will not be repeated here.
  • the antistatic layer 113 may be formed on the plurality of photosensitive sensors by coating or the like.
  • the anti-static layer 113 includes an epoxy resin material. During the preparation process, the epoxy material may be coated on the entire surface of the plurality of photosensitive sensors to form the anti-static layer 113.
  • the anti-static layer 113 can fully realize the anti-static effect.
  • the filter layer 114 can be formed on the side of the anti-static layer 113 away from the plurality of photosensitive sensors 112 by evaporation or the like, and the filter layer 114 is configured to filter the wavelength within a predetermined range. The light.
  • the filter layer 114 includes a stack of multiple material layers, so in the manufacturing process, multiple material layers can be vapor-deposited on the antistatic layer 113 in sequence.
  • the filter layer 114 includes a stack of two material layers 1141 and 1142.
  • the two material layers 1141 and 1142 are SiO 2 layers and Ti 3 O 5 layers, respectively; or, the two material layers 1141 and 1142 are SiO 2 layers and Ta 2 O 5 layers, respectively.
  • an SiO 2 layer and a Ti 3 O 5 layer can be vapor-deposited on the antistatic layer 113 in order to form a stack of the SiO 2 layer and the Ti 3 O 5 layer; or, the antistatic layer 113 can be evaporated in sequence.
  • the SiO 2 layer and the Ta 2 O 5 layer are plated to form a stack of the SiO 2 layer and the Ta 2 O 5 layer.
  • the manufacturing method of the pattern recognition device further includes providing a driving circuit, and combining the driving circuit on the side of the backlight element away from the photosensitive element.
  • the provided driving circuit may be a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the photosensitive element and the backlight element can be electrically connected to the driving circuit respectively, and the electrical connection mode can refer to the above-mentioned embodiment, so as to form the pattern recognition device as shown in FIG. 1.
  • the driving circuit may be manufactured by commissioning a factory after being designed, or it may be self-made.
  • the embodiment of the present disclosure does not limit the method of obtaining the driving circuit.
  • an opaque plastic frame such as a black plastic frame
  • a plastic frame such as The plastic frame 60
  • the embodiments of the present disclosure do not specifically limit other preparation processes of the pattern recognition device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种纹路识别装置(100)及其制作方法,其中的纹路识别装置(100)包括背光元件(20)和感光元件(10)。感光元件(10)设置在背光元件(20)的出光侧以及配置为检测由背光元件(20)发出且经检测体纹路反射的光以识别检测体纹路的纹路图像。感光元件(10)包括多个光敏传感器(112)以及在多个光敏传感器(112)远离背光元件(20)一侧的防静电层(113),多个光敏传感器(112)在防静电层(113)所在平面上的正投影位于防静电层(113)内部。由此,纹路识别装置(100)可以有效避免检测体纹路触碰纹路识别装置(100)时产生的静电对光敏传感器(112)产生干扰。

Description

纹路识别装置及其制作方法 技术领域
本公开的实施例涉及一种纹路识别装置及其制作方法。
背景技术
由于皮肤纹路例如指纹图案或掌纹图案的唯一性,结合光学成像的纹路识别技术逐渐被纹路识别装置采用以用于身份验证。该纹路识别装置可单独作为身份验证装置用于机场、银行等场合,或者该纹路识别装置也可以结合于移动终端以为移动终端提供身份验证、电子支付等功能。对此,如何设计更加优化的纹路识别装置是本领域关注的焦点问题。
发明内容
本公开至少一个实施例提供一种纹路识别装置,该纹路识别装置包括背光元件和感光元件,感光元件设置在所述背光元件的出光侧以及配置为检测由所述背光元件发出且经检测体纹路反射的光以识别所述检测体纹路的纹路图像;其中,所述感光元件包括多个光敏传感器以及在所述多个光敏传感器远离所述背光元件一侧的防静电层,所述多个光敏传感器在所述防静电层所在平面上的正投影位于所述防静电层内部。
例如,本公开至少一个实施例提供的纹路识别装置中,所述防静电层的厚度为8微米-30微米。
例如,本公开至少一个实施例提供的纹路识别装置中,所述防静电层的相对介电常数为3-10;所述防静电层的材料包括树脂材料。
例如,本公开至少一个实施例提供的纹路识别装置中,所述感光元件还包括在所述防静电层远离所述多个光敏传感器一侧的滤光层,所述滤光层配置为可过滤波长为580nm-1100nm的光。
例如,本公开至少一个实施例提供的纹路识别装置中,所述滤光层的材料包括至少一个SiO 2层和至少一个Ti 3O 5层的叠层或者至少一个SiO 2层和至少一个Ta 2O 5层的叠层。
例如,本公开至少一个实施例提供的纹路识别装置中,所述滤光层的远 离所述防静电层的表面配置为纹路触摸面。
例如,本公开至少一个实施例提供的纹路识别装置中,所述背光元件包括面光源和束光层,所述束光层位于所述面光源的靠近所述感光元件的一侧,配置为向垂直于所述纹路识别装置的表面的方向约束从所述面光源出射的光。
例如,本公开至少一个实施例提供的纹路识别装置中,所述束光层包括第一棱镜结构,所述第一棱镜结构配置为通过折射作用使从所述面光源出射的光向垂直于所述纹路识别装置的表面的方向准直。
例如,本公开至少一个实施例提供的纹路识别装置中,所述第一棱镜结构的一个表面包括多个平行排布的棱柱状凸起,所述棱柱状凸起的主截面为三角形,所述三角形的顶角大小为40度-75度。
例如,本公开至少一个实施例提供的纹路识别装置中,所述第一棱镜结构的面向所述面光源的表面包括所述多个平行排布的棱柱状凸起。
例如,本公开至少一个实施例提供的纹路识别装置中,所述束光层还包括设置在所述第一棱镜结构远离所述面光源一侧的第二棱镜结构,所述第二棱镜结构配置为仅出射与所述第二棱镜结构的法线方向的夹角在30度以内的光。
例如,本公开至少一个实施例提供的纹路识别装置中,所述第二棱镜结构的一个表面包括多个平行排布的棱柱状凸起,所述棱柱状凸起的主截面为梯形,所述梯形的底角大小为60度-90度。
例如,本公开至少一个实施例提供的纹路识别装置中,所述面光源包括导光板以及在所述导光板的至少一个侧面设置的至少一个发光元件,所述至少一个发光元件发出的光从所述至少一个侧面入射到所述导光板之中,并从所述导光板的朝向所述束光层的板面出射;或者,所述面光源包括发光元件阵列,所述发光元件阵列包括排布为多行多列的多个发光元件。
例如,本公开至少一个实施例提供的纹路识别装置中,所述发光元件包括阴极、阳极、在所述阴极和所述阳极之间的发光层、以及连接所述阴极的接地引脚。
例如,本公开至少一个实施例提供的纹路识别装置还包括:在所述背光元件远离所述感光元件一侧的驱动电路,其中,所述驱动电路配置为驱动所述感光元件。
例如,本公开至少一个实施例提供的纹路识别装置中,所述感光元件包括感应区和围绕所述感应区的周边区,所述多个光敏传感器呈阵列排布在所述感应区,所述纹路识别装置还包括多个读出集成电路,所述多个读出集成电路设置在所述周边区且分别在所述感应区的第一侧和第二侧交替分布,所述第一侧和所述第二侧相对;所述多个光敏传感器的阵列包括多个子阵列,所述多个读出集成电路的第一端分别电连接所述多个子阵列,所述多个读出集成电路的第二端电连接所述驱动电路。
例如,本公开至少一个实施例提供的纹路识别装置还包括:在所述周边区且在所述感应区的第三侧的至少一个栅驱动器,其中,所述至少一个栅驱动器的第一端电连接所述多个光敏传感器,所述至少一个栅驱动器的第二端电连接所述驱动电路。
例如,本公开至少一个实施例提供的纹路识别装置还包括电路板,其中,所述至少一个栅驱动器包括两个栅驱动器,所述电路板设置在所述两个栅驱动器之间,所述电路板与所述两个栅驱动器在所述第三侧并列排布,所述两个栅驱动器通过所述电路板电连接所述驱动电路。
例如,本公开至少一个实施例提供的纹路识别装置还包括:围绕所述感应区的不透明胶框。
例如,本公开至少一个实施例提供的纹路识别装置中,所述感光元件还包括在所述防静电层远离所述多个光敏传感器一侧的滤光层,所述滤光层配置为可过滤波长为580nm-1100nm的光,所述背光元件包括面光源和束光层,所述束光层包括第一棱镜结构和第二棱镜结构,所述第二棱镜结构设置在所述第一棱镜结构远离所述面光源的一侧,所述第一棱镜结构配置为通过折射作用使从所述面光源出射的光向垂直于所述纹路识别装置的表面的方向准直,所述第二棱镜结构配置为仅出射与所述第二棱镜结构的法线方向的夹角在30度以内的光;所述感光元件包括感应区和围绕所述感应区的周边区,所述多个光敏传感器阵列排布在所述感应区;所述纹路识别装置还包括:在所述背光元件远离所述感光元件一侧的驱动电路,所述驱动电路用于驱动所述感光元件;多个读出集成电路,设置在所述周边区且分别在所述感应区的第一侧和第二侧交替分布,所述第一侧和所述第二侧相对;所述多个光敏传感器的阵列包括多个子阵列,所述多个读出集成电路的第一端分别电连接所述多个子阵列,所述多个读出集成电路的第二端电连接所述驱动电路;两个 栅驱动器,在所述周边区且在所述感应区的第三侧;电路板,设置在所述两个栅驱动器之间,所述电路板与所述两个栅驱动器在所述第三侧并列排布,所述两个栅驱动器的第一端分别电连接所述多个光敏传感器,所述两个栅驱动器的第二端通过所述电路板电连接所述驱动电路。
本公开至少一个实施例提供一种纹路识别装置的制作方法,包括:提供背光元件;提供感光元件,所述感光元件配置为检测由所述背光元件发出且经检测体纹路反射的光以识别所述检测体纹路的纹路图像;其中,所述感光元件包括多个光敏传感器以及在所述多个光敏传感器远离所述背光元件一侧的防静电层,所述多个光敏传感器在所述防静电层所在平面上的正投影位于所述防静电层内部;将所述背光元件和所述感光元件叠层。
例如,本公开至少一个实施例提供的纹路识别装置的制作方法中,提供感光元件包括:在基板上形成多个光敏传感器,在所述多个光敏传感器上采用涂覆的方式形成防静电层。
例如,本公开至少一个实施例提供的纹路识别装置的制作方法中,提供感光元件还包括:在所述防静电层的远离所述多个光敏传感器的一侧采用蒸镀的方式形成滤光层,所述滤光层配置为可过滤波长在预定范围内的光。
例如,本公开至少一个实施例提供的纹路识别装置的制作方法还包括:提供驱动电路,并将所述驱动电路结合在所述背光元件的远离所述感光元件的一侧。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开至少一实施例提供的一种纹路识别装置的侧面示意图;
图2为本公开至少一实施例提供的一种纹路识别装置的部分平面示意图;
图3为本公开至少一实施例提供的一种纹路识别装置中感光元件的截面示意图;
图4为本公开至少一实施例提供的一种纹路识别装置的防静电层的截面示意图;
图5A为本公开至少一实施例提供的一种纹路识别装置中背光元件的平面示意图;
图5B为图5A中的背光元件沿A-A线的截面示意图;
图6为本公开至少一实施例提供的一种纹路识别装置中面光源的平面示意图;
图7为本公开至少一实施例提供的一种纹路识别装置中发光二极管的截面示意图;
图8为本公开至少一实施例提供的一种纹路识别装置中第一棱镜结构的截面示意图;
图9为本公开至少一实施例提供的一种纹路识别装置中第二棱镜结构的截面示意图;以及
图10为本公开至少一实施例提供的一种纹路识别装置的部分电路图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在结合光学成像的纹路识别装置中,光敏传感器是实现指纹采集与识别的关键器件,它将光信号转化为电信号,进而实现纹路的采集与识别。由于 光敏传感器主要由纹路识别装置的背光光源发出的光进行工作,此时,环境光可能会对光敏传感器产生干扰;另外,当检测体纹路触碰纹路识别装置时,容易产生静电,该静电也可能会对光敏传感器的正常工作产生干扰,从而影响纹路识别的准确性。
本公开的一个实施例提供了一种纹路识别装置,该纹路识别装置包括背光元件和感光元件。感光元件设置在背光元件的出光侧以及配置为检测由背光元件发出且经检测体纹路反射的光以识别检测体纹路的纹路图像。感光元件包括多个光敏传感器以及在多个光敏传感器远离背光元件一侧的防静电层,多个光敏传感器在防静电层所在平面上的正投影位于防静电层内部。该纹路识别装置可以有效避免检测体纹路触碰纹路识别装置时产生的静电对光敏传感器产生干扰。
下面,将参考附图详细地说明本公开实施例提供的纹路识别装置及其制作方法。
图1为本公开至少一实施例提供的一种纹路识别装置的侧面示意图;图2为本公开至少一实施例提供的一种纹路识别装置的部分平面示意图;图3为本公开至少一实施例提供的一种纹路识别装置中感光元件的截面示意图;
如图1-图3所示,在本公开的至少一个实施例中,纹路识别装置100包括背光元件20和感光元件10,感光元件10配置为检测由背光元件20发出且经检测体纹路反射的光以识别检测体纹路的纹路图像。例如,检测体纹路包括检测体的手指或手掌的纹路,此时感光元件10识别的纹路为皮肤纹路,例如指纹、掌纹等;另外,检测体纹路也可以为具有一定纹路的非生物体的纹路,例如采用树脂等材料制作的非物体的纹路,本公开的实施例对检测体纹路不做具体限定。
例如,在一些实施例中,如图3所示,感光元件10设置在背光元件20的出光侧,并且包括第一基板111、第一基板111上的多个光敏传感器112以及在多个光敏传感器112远离背光元件20一侧(即图中示出的上侧)的防静电层113,多个光敏传感器112在防静电层113所在平面上的正投影位于防静电层113内部,从而防静电层113覆盖多个光敏传感器112,以避免检测体纹路触碰纹路识别装置100时产生的静电对光敏传感器112产生干扰,进而提高纹路识别装置100对纹路识别的准确性。
例如,如图2所示,感光元件10包括感应区101和至少部分(例如全 部)围绕感应区101的周边区102,多个光敏传感器112呈阵列排布在感应区101中,周边区102中可以排布用于驱动感光元件10的驱动元件、信号走线等。如图3所示,从背光元件20发出的光可以通过相邻的光敏传感器112之间的间隙射入到操作体纹路,然后被纹路反射至光敏传感器112,以被识别。
例如,在一些示例中,多个光敏传感器112在感应区101排布为1600×1500(即1600行、1500列)的阵列,从而形成分辨率为1600×1500的纹路识别装置。例如,在一个示例中,该纹路识别装置形成的纹路图像的一个像素的大小约为50.8μm,由此该纹路识别装置为高PPI(pixel per inch)大面积纹路识别装置,可同时用于四个手指或者大面积掌纹等大面积纹路的识别,例如可以应用于机场、银行等需要进行身份验证的场所,或者结合于大屏幕的手机、平板等移动终端中。
例如,在该实施例的一个示例中,纹路识别装置100还可以包括围绕感应区101的不透明胶框40,例如深色(例如黑色、蓝色等)胶框,从而限定出感应区101。此时,检测体纹路可以准确地按压在感应区101;另外,不透明胶框40还可以起到遮光作用,以防止光线从感应区101的四周射入多个光敏传感器112,由此减少环境光干扰,提高检测精度。
例如,在一些实施例中,防静电层113整面形成在多个光敏传感器112的远离背光元件20一侧,例如,感应区101在防静电层113所在平面上的正投影位于防静电层113内部,从而防静电层113整体覆盖感光元件10的感应区101,由此防静电层113可以提供充分的防静电效果。
例如,在一些实施例中,如图3所示,防静电层113的厚度T可以为8微米-30微米,例如10微米、15微米、20微米、或者25微米等;防静电层113的相对介电常数可以为3-10,例如5、7或9等;防静电层113的材料可以包括树脂材料(树脂油墨),例如环氧树脂材料等。由此,防静电层113可以有效避免检测体纹路触碰纹路识别装置100时产生的静电对光敏传感器112产生干扰。例如,防静电层113的光透过率为90%以上,且内部没有散射粒子(即保证防静电层113具有一定的纯净度,不含有可散射光的杂质),从而不会影响用于纹路识别的光线的传播。
例如,在一些实施例中,如图3所示,感光元件10还可以包括在防静电层113远离多个光敏传感器112一侧的滤光层114,滤光层114配置为可 过滤波长为580nm-1100nm的光,即滤光层114不允许波长为580nm-1100nm的光通过,或者说,通过滤光层114的光中不包括波长为580nm-1100nm的部分光。
由于检测体的手指或手掌中不断有血液在循环,血液中的血红蛋白吸收和反射的光线是红色的,波长大约在580nm-1100nm,并且手指或手掌的肌肉上的肌红蛋白同样有反射红光的作用,因此环境光较强的情况下,环境光可透过手指或手掌,并且透过手指或手掌的光为红光,波长大约在580nm-1100nm。此时,滤光层114的设置可有效避免环境光射入光敏传感器112而对光敏传感器112的正常工作产生影响。
另外,由于手指或手掌表面具有角质层,从背光元件20发出的光到达手指或手掌后不会进入手指或手掌的内部,而是被手指或手掌反射,因此从背光元件20发出的光不会被手指或手掌转化为红光,因此滤光层114可仅过滤环境光透过手指或手掌而产生的波长在580nm-1100nm的光,而背光元件20发出的光不受影响,从而滤光层114既能有效防止环境光又不影响光敏传感器112接受从背光元件20发出且被手指或手掌反射的光。
例如,在一些实施例中,滤光层114可以包括多个材料层的叠层。例如,在一些实施例中,滤光层114包括至少一层SiO 2层和至少一层Ti 3O 5层的叠层,或者包括至少一层SiO 2层和至少一层Ta 2O 5层的叠层。
例如,图4示出了一种滤光层114的叠层结构,该示例中,滤光层114包括两个材料层1141和1142的叠层。例如,两个材料层1141和1142分别为SiO 2层和Ti 3O 5层,Ti 3O 5层的反射率高于SiO 2层的反射率;或者,两个材料层1141和1142分别为SiO 2层和Ta 2O 5层,Ta 2O 5层的反射率高于SiO 2层的反射率,从而滤光层114可以实现过滤波长为580nm-1100nm的光的技术效果,并且不会影响用于纹路识别的光线的传播。
例如,在其他实施例中,滤光层114也可以包括更多层材料层的叠层,例如三层或四层材料层的叠层等,例如包括SiO 2/Ti 3O 5/SiO 2叠层结构、SiO 2/Ti 3O 5/SiO 2/Ti 3O 5叠层结构、SiO 2/Ta 2O 5/SiO 2叠层结构或者SiO 2/Ta 2O 5/SiO 2/Ta 2O 5叠层结构等。本公开的实施例对滤光层114的具体结构不做限定。
例如,滤光层114的远离防静电层113的表面(即图中示出的上表面)配置为纹路触摸面,即操作体纹路可以直接触摸滤光层114的远离防静电层113的表面,以被识别。由于该滤光层114在上述叠层结构以及材料设置下, 滤光层114的表面具有较高的硬度,因此具有较高的抗划伤能力,可直接作为纹路触摸面,从而不用提供额外的纹路触摸元件,此时,纹路识别装置100更加薄型化,并可降低纹路识别装置100的制作成本。
例如,图5A为本公开至少一实施例提供的纹路识别装置100中背光元件20的平面示意图;图5B为图5A中的背光元件20沿A-A线的截面示意图。如图5A和图5B所示,背光元件20包括面光源20A和束光层20B。束光层20B位于面光源20A的靠近感光元件10的一侧,配置为向垂直于纹路识别装置100的表面的方向(即向图中的竖直方向)约束从面光源20A出射的光。
例如,在一些实施例中,如图5B所示,束光层20B包括第一棱镜结构203,第一棱镜结构203配置为通过折射作用使从面光源20A出射的光向垂直于纹路识别装置的表面的方向(即图中的竖直方向)准直。
例如,图8示出了一种第一棱镜结构203的截面示意图。如图8所示,第一棱镜结构203的一个表面(例如第一棱镜结构203的面向面光源20A的表面,即图中示出的下表面)包括多个平行排布的棱柱状凸起2031,棱柱状凸起2031的主截面为三角形,此时,棱柱状凸起2031为三棱柱状凸起,例如,该三角形的顶角θ1大小可以为40度-75度,例如50度、60度或者70度等,三角形的底边D1可以为20μm-50μm,例如30μm或者40μm等,三角形的高H1可以为10μm-25μm,例如15μm或者20μm等。如图8中的箭头所示,第一棱镜结构203的棱柱状凸起2031可以将从面光源20A发出的光向垂直于纹路识别装置100的表面的方向折射,进而实现对光线的准直效果。
需要注意的是,本公开实施例中提到的某个结构的“主截面”为体现该结构主要设计参数的截面,例如对棱柱状结构来说,其主截面与该棱柱的底面的形状相同。例如,对于三棱柱来说,其主截面为三角形,对于四棱柱来说,其主截面为四边形。
例如,第一棱镜结构203的面向面光源20A的表面具有上述多个棱柱状凸起2031,或者,在一些实施例中,也可以是第一棱镜结构203的远离面光源20A的表面具有上述多个棱柱状凸起2031,本公开的实施例对此不做限定,只要第一棱镜结构203可以实现将从面光源20A发出的光向垂直于纹路识别装置100的表面的方向折射即可。
例如,在另一些实施例中,第一棱镜结构203也可以采用其他结构。例如,第一棱镜结构203的棱柱状凸起2031还可以为四棱柱形、五棱柱形或其他棱柱形状等,本公开的实施例对第一棱镜结构203的具体结构不作限制,只要第一棱镜结构203可以实现将从面光源20A发出的光向垂直于纹路识别装置100的表面的方向折射即可。
例如,在一些实施例中,如图5B所示,束光层20B还包括设置在第一棱镜结构203远离面光源20A一侧的第二棱镜结构204,第二棱镜结构204配置为仅出射与第二棱镜结构204的法线方向(即图中的竖直方向)的夹角α在30度以内的光。
例如,图9示出了一种第二棱镜结构204的截面示意图。如图9所示,第二棱镜结构204的一个表面(图中示出为下表面)包括多个平行排布的棱柱状凸起2041,棱柱状凸起2041的主截面为梯形,例如等腰梯形,此时,棱柱状凸起2041为四棱柱状凸起,例如,该梯形的底角θ2大小为60度-90度,例如70度或者80度等,该梯形的高度H2可以为300μm-600μm,例如400μm或者500μm等,相邻的梯形的间距D2可以为25μm-65μm,例如30μm、47μm或者55μm等。如图9中的箭头所示,该第二棱镜结构204可以仅出射与第二棱镜结构204的法线方向(即图中的竖直方向)的夹角在30度以内的光,而与第二棱镜结构204的法线方向的夹角大于30度的光线将不会出射,由此第二棱镜结构204可以进一步实现对光线的准直效果。
例如,第二棱镜结构204的面向面光源20A的表面具有上述多个棱柱状凸起2041,或者,在一些实施例中,也可以是第二棱镜结构204的远离面光源20A的表面具有上述多个棱柱状凸起2041,本公开的实施例对此不做限定,只要第二棱镜结构204可以实现对光线的准直效果即可。
例如,在另一些实施例中,第二棱镜结构204也可以采用其他结构。例如,第二棱镜结构可以包括棱镜面,该棱镜面内具有阵列排布的多个镂空区域,该镂空区域的形状可以为矩形(例如,长方形、正方形等)、正三角形、正六边形或者圆形等。此时,可以通过设计该镂空区域的尺寸以实现该镂空区域仅出射与第二棱镜结构204的法线方向(即图中的竖直方向)的夹角α在30度以内的光。
例如,在一些实施例中,第一棱镜结构203和第二棱镜结构204可以是在PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)基质材料表面 覆盖以UV(Ultra-Violet,紫外线)固化型树脂材料形成的棱镜结构的膜片,本公开的实施例对第一棱镜结构203和第二棱镜结构204的材料不做具体限定。
例如,背光元件20还包括位于第二棱镜结构204的远离第一棱镜结构203的一侧的粘结层205,粘结层205用于将背光元件20与感光元件10结合。例如,粘结层205可以包括光学透明胶等透明粘结剂。
例如,在一些实施例中,如图5A和图5B所示,面光源20A包括导光板202以及在导光板202的至少一个侧面(图中示出为右侧)设置的至少一个发光元件201,至少一个发光元件201发出的光从上述至少一个侧面入射到导光板202之中,并从导光板202的朝向束光层20B的板面(即上板面)出射,从而形成侧入式背光光源。
例如,在一个示例中,发光元件为线光源(例如荧光灯),由此在导光板202的侧面设置一个发光元件;又例如,发光元件为点光源,多个发光元件201在导光板202的至少一个侧面呈线状排布,从而形成为位于导光板202的至少一个侧面的线光源。例如,图5B中示出为呈线状排布的5个发光元件201,在其他示例中,发光元件201的个数可以为更多个,例如10个或者14个等,发光元件201的数量可根据感应区101的大小以及发光元件201的发光强度等实际情况而定。
例如,在另一些实施例中,如图6所示,面光源20A也可以包括发光元件阵列210,即在图5A和图5B中将导光板202和发光元件201的组合替换为发光元件阵列210。该发光元件阵列210包括排布为多行多列的多个发光元件2101,从而实现为直下式背光光源。
上述侧入式背光光源和直下式背光光源均可以作为面光源,因此可以根据实际需要进行选择。
例如,图7示出了一种发光元件的截面示意图。如图7所示,发光元件201或者发光元件2101包括阳极2011、阴极2013、在阴极2013和阳极2011之间的发光层2012、以及连接阴极2013的接地引脚2014。该发光元件201或者发光元件2101可以为发光二极管(LED),该发光二极管的接地引脚2014接地,从而为阴极2013提供稳定电压,防止静电干扰,进而保护发光元件并且提高发光元件的发光均匀性。
例如,在一些实施例中,如图5B所示,面光源20A还可以包括反射层 206,反射层206位于侧入式背光光源或直下式背光光源的远离第一棱镜结构203的一侧,即图5B中侧入式背光光源或直下式背光光源的下侧。反射层206可反射背光光源或直下式背光光源发出的光,以使侧入式背光光源或直下式背光光源发出的光尽量向第一棱镜结构203出射,从而提高光源的利用率。例如,在侧入式背光光源中,反射层206可以为金属层,通过例如蒸镀等方式形成在例如导光板远离第一棱镜结构203的表面上,或者,可以为金属板,设置在导光板远离第一棱镜结构203的一侧;例如,在直下式背光光源中,反射层206可以为金属板,设置在发光元件远离第一棱镜结构203的一侧。
例如,在一些实施例中,背光元件20还可以包括背板207,背板207设置在反射层206的远离感光元件10的一侧。背板207可以对背光元件20的上述结构提供支撑与保护作用。例如,背板207的远离反射层206的一侧可以通过粘结剂与驱动电路30(稍后介绍)结合。
例如,在一些实施例中,如图1所示,纹路识别装置100还包括在背光元件20远离感光元件10一侧的驱动电路30,驱动电路30配置为驱动感光元件10,例如驱动感光元件10进行纹路采集与识别。例如,在一些实施例中,驱动电路30还可以配置为驱动背光元件30,例如驱动背光元件30进行发光等。
例如,驱动电路30可以为现场可编程门阵列(Field Programmable Gate Array,FPGA),也可以是微处理器,例如X86处理器或ARM处理器,或者可以是数字处理器(DSP)等。本公开的实施例对驱动电路30的具体形式不做限定。
例如,如图2所示,纹路识别装置100还包括设置在周边区102的多个驱动元件,这些驱动元件的一端电连接到驱动电路30,另一端电连接感光元件10,进而驱动电路30可通过位于周边区102的驱动元件控制感光元件10的工作状态。
例如,这些驱动元件包括多个读出集成电路(Readout Integrated Circuit,ROIC)102,图中示出为六个读出集成电路102,即第一读出集成电路1021、第二读出集成电路1022、第三读出集成电路1023、第四读出集成电路1024、第五读出集成电路1025和第六读出集成电路1026。多个读出集成电路102设置在周边区102且分别在感应区101的第一侧(图中示出为感应区101的 上侧)和第二侧(图中示出为感应区101的下侧)交替分布,上述第一侧和第二侧相对。
例如,多个光敏传感器的阵列包括多个子阵列,图中示出为六个子阵列,即第一子阵列1、第二子阵列2、第三子阵列3、第四子阵列4、第五子阵列5和第六子阵列6。多个读出集成电路102的第一端(即靠近感应区101的一端)分别电连接多个子阵列,即第一读出集成电路1021的第一端电连接第一子阵列1,第二读出集成电路1022的第一端电连接第二子阵列2,第三读出集成电路1023的第一端电连接第三子阵列3,第四读出集成电路1024的第一端电连接第四子阵列4,第五读出集成电路1025的第一端电连接第五子阵列5,第六读出集成电路1026的第一端电连接第六子阵列6。多个读出集成电路102的第二端(即远离感应区101的一端)电连接驱动电路30。由此,感应区101内的多个光敏传感器112分区域被不同的读出集成电路102驱动,以简化电路排布和数据处理。
例如,多个读出集成电路(Readout Integrated Circuit,ROIC)102可以为设置在柔性薄膜上的集成电路,即ROIC COF(Chip on Film),从而多个读出集成电路102的第二端可以通过柔性薄膜的弯折而部分设置在纹路识别装置的背面,进而与驱动电路30电连接。
例如,读出集成电路102的第一端距离其电连接的最近的光敏传感器112的距离D大于5mm,例如大于5.11mm,从而利于走线排布,降低纹路识别装置的制备工艺难度。
例如,在其他实施例中,多个读出集成电路102的数量和多个光敏传感器的子阵列的数量可以根据纹路识别装置的大小、用途等实际情况进行选择,本公开的实施例对此不做限定。
例如,在一些实施例中,纹路识别装置100还可以包括在周边区102且在感应区101的第三侧(图中示出为左侧)的至少一个栅驱动器(Gate IC)103,该至少一个栅驱动器103的第一端电连接多个光敏传感器112,该至少一个栅驱动器103的第二端电连接驱动电路30。
例如,在一些实施例中,如图2所示,至少一个栅驱动器103包括两个栅驱动器103,此时,纹路识别装置100还可以包括电路板104,电路板104设置在两个栅驱动器103之间,电路板104与两个栅驱动器103在感应区101的第三侧并列排布,两个栅驱动器103通过电路板103电连接驱动电路30。
例如,电路板104可以为柔性电路板(Flexible Printed Circuit,FPC),两个栅驱动器103的靠近电路板104的一端与电路板104电连接,电路板103的远离感应区101的一端通过柔性电路板的弯折而部分设置在纹路识别装置的背面,进而与驱动电路30电连接。
例如,两个栅驱动器103分别电连接位于不同行的光敏传感器112,例如一个栅驱动器103电连接前N行光敏传感器112,另一个栅驱动器103电连接后M行光敏传感器112(M和N为正整数,且M+N等于阵列排布的光敏传感器112的总行数),从而多个光敏传感器112分区域被不同的栅驱动器103驱动,以简化电路排布和数据处理。
例如,图10示出了一种纹路识别装置的驱动电路的电路图,下面,结合该电路图,对上述驱动电路30和驱动元件对感光元件10的驱动过程进行示例性介绍。
例如,如图10所示,感光元件10的每个光敏传感器112包括光敏部件112A以及与光敏部件112A电连接的开关晶体管112B。开关晶体管112B的栅极通过走线103A与栅驱动器103电连接,开关晶体管112B的源极与光敏部件112A电连接,开关晶体管112B的漏极通过走线102A与读出集成电路102电连接。这样在走线103A传输栅驱动器103传输的栅极开启信号时,开关晶体管112B导通以将光敏部件112A通过走线102A与读出集成电路102导通,以使读出集成电路102可以获取到光敏部件112A通过光电转换产生的电信号并且读出集成电路102可以根据获取到的电信号,确定纹路图像。在走线103A传输栅极关闭信号时,开关晶体管112B截止。
例如,驱动电路30用于控制栅驱动器103传输栅极开启信号,并控制读出集成电路102识别纹路图像。在一些实施例中,驱动电路30还用于控制背光元件10的工作状态,即控制背光元件10是否发光等。
例如,图10中示出了阵列排布为4行6列的光敏传感器112,第一行和第二行图像传感器分别通过一条走线103A电连接一个栅驱动器103,第三行和第四行图像传感器分别通过一条走线103A电连接另一个栅驱动器103。第一列图像传感器通过同一条走线102A电连接第一读出集成电路1021,第二列图像传感器通过同一条走线102A电连接第二读出集成电路1022,第三列图像传感器通过同一条走线102A电连接第三读出集成电路1023,第四列图像传感器通过同一条走线102A电连接第四列读出集成电路1024,第五列 图像传感器通过同一条走线102A电连接第五读出集成电路1025,第六列图像传感器通过同一条走线102A电连接第六读出集成电路1026。由此实现多个光敏传感器112的分区域控制与纹路识别。
例如,光敏部件112A可以采用光电二极管,例如该光电二极管为PN型或PIN型光电二极管,其采用的半导体材料可以为硅、锗、硒、砷化镓等。根据需要,光敏部件112A例如可以仅对某个波长的光(例如蓝光或绿光)感测,也可以对全部可见光进行感测。例如,开关晶体管112B可以为薄膜晶体管等开关元件。例如,走线102A和走线103A可以为包括钼(Mo)和/或铝(Al)的金属走线等。
例如,在一些示例中,如图1所示,感光元件10、背光元件20以及驱动电路30的叠层通过胶框60封装。例如,被胶框60封装的感光元件10、背光元件20以及驱动电路30的叠层作为一个整体的尺寸约为91.5mm×90.2mm。例如,纹路识别装置还包括第一外壳50和第二外壳70,以为感光元件10、背光元件20以及驱动电路30等功能结构提供保护作用。例如,第一外壳50通过不透明胶框40结合在感光元件10上方,第二外壳70通过胶框60结合在驱动电路30下方。例如,结合了第一外壳50和第二外壳70的纹路识别装置整体的尺寸约为92.1mm×90.9mm,厚度约为3-7mm,例如4mm或者5mm等。
本公开的至少一个实施例提供的纹路识别装置具有设置在感光元件上方的防静电层,从而可以避免操作体触摸纹路识别装置而产生的静电对感光元件产生干扰;另外,在至少一个实施例中,纹路识别装置还具有设置在防静电层上方的滤光层,从而可以过滤环境光,以避免环境光对感光元件产生干扰;此外,在至少一个实施例中,该纹路识别装置的背光元件包括第一棱镜结构和第二棱镜结构,该第一棱镜结构和第二棱镜结构均可以对背光光源发出的光进行调试,使得从该背光元件出射的光具有更好的准直性与均匀性。由此,本公开至少一个实施例的纹路识别装置整体可以具有更好的纹路识别准确性,并可用于大面积纹路识别。
本公开至少一个实施例还提供一种纹路识别装置的制作方法,该制作方法包括:提供背光元件;提供感光元件;将背光元件和感光元件叠层设置。该感光元件配置为检测由背光元件发出且经检测体纹路反射的光以识别检测体纹路的纹路图像。感光元件包括多个光敏传感器以及在多个光敏传感器 远离背光元件一侧的防静电层,多个光敏传感器在防静电层所在平面上的正投影位于防静电层内部。
例如,在一些实施例中,背光元件和感光元件的各个元件可以是市售的,然后根据图1的设置方式进行组装而得到。
例如,在一些实施例中,感光元件也可以是自制的,此时,参考图3,提供感光元件可以包括:在基板111上形成多个光敏传感器,然后在多个光敏传感器上采用涂覆的方式形成防静电层。
例如,在一个示例中,基板111可以是厚度约为0.7mm的透明基板,例如玻璃基板。例如,形成多个传感器包括形成每个光敏传感器的光敏部件和开关晶体管。光敏部件可以是光电二极管,例如PN型或PIN型光电二极管;开关晶体管可以是薄膜晶体管。此时,形成多个传感器112包括采用构图工艺依次在衬底基板111上形成薄膜晶体管和光电二极管的各功能层。具体制备工艺可以参考相关技术,在此不再赘述。
例如,多个传感器112形成后,可以在多个光敏传感器上采用涂覆(coating)等方式形成防静电层113。例如,在一个示例中,防静电层113包括环氧树脂材料,在制备过程中,可以将环氧树脂材料整面涂覆在多个光敏传感器上方,以形成防静电层113。该防静电层113可以充分实现防静电效果。
例如,在防静电层113形成后,可以在防静电层113的远离多个光敏传感器112的一侧采用蒸镀等方式形成滤光层114,滤光层114配置为可过滤波长在预定范围内的光。
例如,滤光层114包括多个材料层的叠层,因此在制备工艺中,可以依次在防静电层113的上方蒸镀多个材料层。例如,参考图4,在一个示例中,滤光层114包括两个材料层1141和1142的叠层。例如,两个材料层1141和1142分别为SiO 2层和Ti 3O 5层;或者,两个材料层1141和1142分别为SiO 2层和Ta 2O 5层。此时,可以在防静电层113的上方依次蒸镀SiO 2层和Ti 3O 5层,以形成SiO 2层和Ti 3O 5层的叠层;或者,在防静电层113的上方依次蒸镀SiO 2层和Ta 2O 5层,从而形成SiO 2层和Ta 2O 5层的叠层。
例如,在一些实施例中,纹路识别装置的制作方法还包括提供驱动电路,并将驱动电路结合在背光元件的远离感光元件的一侧。例如,在一个示例中,提供的驱动电路可以为现场可编程门阵列(Field Programmable Gate Array, FPGA)。感光元件与背光元件可以分别与驱动电路电连接,该电连接方式可以参照上述实施例,从而形成如图1所示的纹路识别装置。
例如,驱动电路可以是设计好后委托工厂制造的,也可以是自制的,本公开的实施例对驱动电路的获取方式不做限定。
例如,在感光元件制备好后,还可以在感光元件的感应区四周涂覆不透明胶框(例如黑色胶框);在感光元件、背光元件和驱动电路组装好后,还可以采用胶框(例如胶框60)对其叠层结构进行封装,并安装外壳(例如第一外壳50和第二外壳70)对其进行保护,参考图1。本公开的实施例对纹路识别装置的其他制备过程不做具体限定。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种纹路识别装置,包括:
    背光元件;
    感光元件,设置在所述背光元件的出光侧以及配置为检测由所述背光元件发出且经检测体纹路反射的光以识别所述检测体纹路的纹路图像;
    其中,所述感光元件包括多个光敏传感器以及在所述多个光敏传感器远离所述背光元件一侧的防静电层,所述多个光敏传感器在所述防静电层所在平面上的正投影位于所述防静电层内部。
  2. 根据权利要求1所述的纹路识别装置,其中,所述防静电层的厚度为8微米-30微米。
  3. 根据权利要求1或2所述的纹路识别装置,其中,所述防静电层的相对介电常数为3-10;所述防静电层的材料包括树脂材料。
  4. 根据权利要求1-3任一所述的纹路识别装置,其中,所述感光元件还包括在所述防静电层远离所述多个光敏传感器一侧的滤光层,所述滤光层配置为可过滤波长为580nm-1100nm的光。
  5. 根据权利要求4所述的纹路识别装置,其中,所述滤光层的材料包括至少一个SiO 2层和至少一个Ti 3O 5层的叠层或者至少一个SiO 2层和至少一个Ta 2O 5层的叠层。
  6. 根据权利要求4或5所述的纹路识别装置,其中,所述滤光层的远离所述防静电层的表面配置为纹路触摸面。
  7. 根据权利要求1-6任一所述的纹路识别装置,其中,所述背光元件包括面光源和束光层,
    所述束光层位于所述面光源的靠近所述感光元件的一侧,配置为向垂直于所述纹路识别装置的表面的方向约束从所述面光源出射的光。
  8. 根据权利要求7所述的纹路识别装置,其中,所述束光层包括第一棱镜结构,
    所述第一棱镜结构配置为通过折射作用使从所述面光源出射的光向垂直于所述纹路识别装置的表面的方向准直。
  9. 根据权利要求8所述的纹路识别装置,其中,所述第一棱镜结构的一个表面包括多个平行排布的棱柱状凸起,所述棱柱状凸起的主截面为三角 形,所述三角形的顶角大小为40度-75度。
  10. 根据权利要求9所述的纹路识别装置,其中,所述第一棱镜结构的面向所述面光源的表面包括所述多个平行排布的棱柱状凸起。
  11. 根据权利要求8-10任一所述的纹路识别装置,其中,所述束光层还包括设置在所述第一棱镜结构远离所述面光源一侧的第二棱镜结构,
    所述第二棱镜结构配置为仅出射与所述第二棱镜结构的法线方向的夹角在30度以内的光。
  12. 根据权利要求11所述的纹路识别装置,其中,所述第二棱镜结构的一个表面包括多个平行排布的棱柱状凸起,所述棱柱状凸起的主截面为梯形,所述梯形的底角大小为60度-90度。
  13. 根据权利要求7-12任一所述的纹路识别装置,其中,所述面光源包括导光板以及在所述导光板的至少一个侧面设置的至少一个发光元件,所述至少一个发光元件发出的光从所述至少一个侧面入射到所述导光板之中,并从所述导光板的朝向所述束光层的板面出射;或者
    所述面光源包括发光元件阵列,所述发光元件阵列包括排布为多行多列的多个发光元件。
  14. 根据权利要求13所述的纹路识别装置,其中,所述发光元件包括阴极、阳极、在所述阴极和所述阳极之间的发光层、以及连接所述阴极的接地引脚。
  15. 根据权利要求1-14任一所述的纹路识别装置,还包括:在所述背光元件远离所述感光元件一侧的驱动电路,其中,所述驱动电路配置为驱动所述感光元件。
  16. 根据权利要求15所述的纹路识别装置,其中,所述感光元件包括感应区和围绕所述感应区的周边区,所述多个光敏传感器呈阵列排布在所述感应区,
    所述纹路识别装置还包括多个读出集成电路,所述多个读出集成电路设置在所述周边区且分别在所述感应区的第一侧和第二侧交替分布,所述第一侧和所述第二侧相对;
    所述多个光敏传感器的阵列包括多个子阵列,所述多个读出集成电路的第一端分别电连接所述多个子阵列,所述多个读出集成电路的第二端电连接所述驱动电路。
  17. 根据权利要求15或16所述的纹路识别装置,还包括:在所述周边区且在所述感应区的第三侧的至少一个栅驱动器,
    其中,所述至少一个栅驱动器的第一端电连接所述多个光敏传感器,所述至少一个栅驱动器的第二端电连接所述驱动电路。
  18. 根据权利要求17所述的纹路识别装置,还包括电路板,其中,所述至少一个栅驱动器包括两个栅驱动器,所述电路板设置在所述两个栅驱动器之间,所述电路板与所述两个栅驱动器在所述第三侧并列排布,所述两个栅驱动器通过所述电路板电连接所述驱动电路。
  19. 根据权利要求16-18任一所述的纹路识别装置,还包括:围绕所述感应区的不透明胶框。
  20. 根据权利要求1所述的纹路识别装置,其中,所述感光元件还包括在所述防静电层远离所述多个光敏传感器一侧的滤光层,所述滤光层配置为可过滤波长为580nm-1100nm的光,
    所述背光元件包括面光源和束光层,所述束光层包括第一棱镜结构和第二棱镜结构,所述第二棱镜结构设置在所述第一棱镜结构远离所述面光源的一侧,所述第一棱镜结构配置为通过折射作用使从所述面光源出射的光向垂直于所述纹路识别装置的表面的方向准直,所述第二棱镜结构配置为仅出射与所述第二棱镜结构的法线方向的夹角在30度以内的光;
    所述感光元件包括感应区和围绕所述感应区的周边区,所述多个光敏传感器阵列排布在所述感应区;
    所述纹路识别装置还包括:
    在所述背光元件远离所述感光元件一侧的驱动电路,所述驱动电路用于驱动所述感光元件;
    多个读出集成电路,设置在所述周边区且分别在所述感应区的第一侧和第二侧交替分布,所述第一侧和所述第二侧相对;所述多个光敏传感器的阵列包括多个子阵列,所述多个读出集成电路的第一端分别电连接所述多个子阵列,所述多个读出集成电路的第二端电连接所述驱动电路;
    两个栅驱动器,在所述周边区且在所述感应区的第三侧;
    电路板,设置在所述两个栅驱动器之间,所述电路板与所述两个栅驱动器在所述第三侧并列排布,所述两个栅驱动器的第一端分别电连接所述多个光敏传感器,所述两个栅驱动器的第二端通过所述电路板电连接所述驱动电 路。
  21. 一种纹路识别装置的制作方法,包括:
    提供背光元件;
    提供感光元件,所述感光元件配置为检测由所述背光元件发出且经检测体纹路反射的光以识别所述检测体纹路的纹路图像;其中,所述感光元件包括多个光敏传感器以及在所述多个光敏传感器远离所述背光元件一侧的防静电层,所述多个光敏传感器在所述防静电层所在平面上的正投影位于所述防静电层内部;
    将所述背光元件和所述感光元件叠层。
  22. 根据权利要求21所述的纹路识别装置的制作方法,其中,提供感光元件包括:
    在基板上形成多个光敏传感器,在所述多个光敏传感器上采用涂覆的方式形成防静电层。
  23. 根据权利要求22所述的纹路识别装置的制作方法,其中,提供感光元件还包括:
    在所述防静电层的远离所述多个光敏传感器的一侧采用蒸镀的方式形成滤光层,所述滤光层配置为可过滤波长在预定范围内的光。
  24. 根据权利要求21所述的纹路识别装置的制作方法,还包括:
    提供驱动电路,并将所述驱动电路结合在所述背光元件的远离所述感光元件的一侧。
PCT/CN2019/121568 2019-09-04 2019-11-28 纹路识别装置及其制作方法 WO2021042593A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002644.5A CN112771484B (zh) 2019-09-04 2019-11-28 纹路识别装置及其制作方法
US16/970,091 US11908226B2 (en) 2019-09-04 2019-11-28 Texture recognition device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/104349 WO2021042283A1 (zh) 2019-09-04 2019-09-04 纹路识别装置及显示装置
CNPCT/CN2019/104349 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021042593A1 true WO2021042593A1 (zh) 2021-03-11

Family

ID=74851996

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/104349 WO2021042283A1 (zh) 2019-09-04 2019-09-04 纹路识别装置及显示装置
PCT/CN2019/121568 WO2021042593A1 (zh) 2019-09-04 2019-11-28 纹路识别装置及其制作方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104349 WO2021042283A1 (zh) 2019-09-04 2019-09-04 纹路识别装置及显示装置

Country Status (4)

Country Link
US (4) US11380129B2 (zh)
EP (1) EP4027190A4 (zh)
CN (2) CN113227889B (zh)
WO (2) WO2021042283A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4027190A4 (en) * 2019-09-04 2022-08-10 BOE Technology Group Co., Ltd. LINE RECOGNITION DEVICE AND DISPLAY DEVICE
CN115088025A (zh) 2020-11-30 2022-09-20 京东方科技集团股份有限公司 光学传感器阵列基板及光学指纹采集器
WO2023159608A1 (zh) * 2022-02-28 2023-08-31 京东方科技集团股份有限公司 纹路识别模组及纹路识别装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190761A1 (en) * 2003-03-05 2004-09-30 Ju-Hyeon Lee Apparatus for fingerprint analysis using current detection
CN101097914A (zh) * 2006-06-30 2008-01-02 卡西欧计算机株式会社 具有薄膜元件和薄膜图形的薄膜器件、及其制造方法
WO2014115957A1 (en) * 2013-01-28 2014-07-31 Silicon Display Technology Transparent fingerprint recognizing sensor array
CN105205470A (zh) * 2015-09-29 2015-12-30 上海箩箕技术有限公司 指纹成像模组
CN105304656A (zh) * 2014-06-23 2016-02-03 上海箩箕技术有限公司 光电传感器
CN207264357U (zh) * 2017-10-16 2018-04-20 广西中沛光电科技有限公司 防污渍残留车载触摸屏
CN108446683A (zh) * 2018-05-18 2018-08-24 北京集创北方系统技术有限公司 指纹识别装置及电子装置
CN208569606U (zh) * 2018-06-26 2019-03-01 江西省平波电子有限公司 一种新型防蓝光电容式触摸屏
CN110032913A (zh) * 2018-01-11 2019-07-19 南昌欧菲生物识别技术有限公司 指纹识别模组的保护膜、指纹识别模组和终端
CN110088768A (zh) * 2019-03-12 2019-08-02 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559367B2 (ja) * 1995-11-10 2004-09-02 富士写真フイルム株式会社 印刷版載置台へのopc印刷版の搭載方法及びopc印刷版の処理方法
KR100347269B1 (ko) * 1999-08-26 2002-08-07 주식회사 세코닉스 지문 인식 장치
KR100735148B1 (ko) * 2004-11-22 2007-07-03 (주)케이디티 백라이트 장치용 광 여기 확산시트, 이를 이용한액정표시용 백라이트 장치
KR100737733B1 (ko) * 2006-08-22 2007-07-10 아이에스하이텍 주식회사 백라이트 유닛용 역프리즘 시트 및 이를 이용한 백라이트유닛
JP6013196B2 (ja) * 2010-03-01 2016-10-25 ヤンセン バイオテツク,インコーポレーテツド 多能性幹細胞から誘導した細胞を精製するための方法
CN102036460B (zh) 2010-12-10 2013-01-02 西安交通大学 平板式等离子体发生装置
WO2012158950A1 (en) * 2011-05-17 2012-11-22 Cross Match Technologies, Inc. Fingerprint sensors
KR101407936B1 (ko) * 2013-09-27 2014-06-17 실리콘 디스플레이 (주) 광학식 박막 트랜지스터형 지문센서
KR101606710B1 (ko) * 2014-08-21 2016-03-28 신화인터텍 주식회사 복합 광학 시트, 및 이를 포함하는 백라이트 어셈블리
US10181070B2 (en) 2015-02-02 2019-01-15 Synaptics Incorporated Low profile illumination in an optical fingerprint sensor
CN105138160B (zh) * 2015-07-22 2018-06-26 京东方科技集团股份有限公司 一种自发电式触控面板、显示装置及其控制方法
CN105095872B (zh) * 2015-07-29 2018-10-02 京东方科技集团股份有限公司 一种基板及其制备方法、指纹识别传感器、指纹识别装置
US10177194B2 (en) 2015-12-11 2019-01-08 Gingy Technology Inc. Fingerprint identification apparatus
CN205212906U (zh) * 2015-12-29 2016-05-04 深圳市方胜光学材料科技有限公司 一种新型多功能防辐射屏保膜
CN105550664A (zh) * 2016-01-08 2016-05-04 上海箩箕技术有限公司 光学指纹传感器模组
KR101904500B1 (ko) * 2016-02-24 2018-11-28 주식회사 엘엠에스 광학물품 및 이를 포함하는 광학필터
CN107292215A (zh) * 2016-03-31 2017-10-24 上海箩箕技术有限公司 光学指纹传感器模组
CN108604296B (zh) * 2016-04-28 2022-05-27 韩国科泰高科株式会社 发光指纹识别面板及包括其的指纹识别显示装置
CN107609456A (zh) 2016-07-12 2018-01-19 上海箩箕技术有限公司 光学指纹传感器模组
CN107798278A (zh) * 2016-09-05 2018-03-13 上海箩箕技术有限公司 指纹成像模组
CN106355160A (zh) 2016-09-06 2017-01-25 京东方科技集团股份有限公司 一种纹路识别器件及电子设备
US10614283B2 (en) * 2017-03-07 2020-04-07 Shenzhen GOODIX Technology Co., Ltd. Devices with peripheral task bar display zone and under-LCD screen optical sensor module for on-screen fingerprint sensing
CN107346075A (zh) * 2017-07-31 2017-11-14 京东方科技集团股份有限公司 一种准直膜结构以及显示装置
JP2019066531A (ja) 2017-09-28 2019-04-25 シャープ株式会社 液晶モジュール
KR102398578B1 (ko) * 2017-12-04 2022-05-16 아크소프트 코포레이션 리미티드 지문인식 기능을 구비한 디스플레이
US10809853B2 (en) * 2017-12-11 2020-10-20 Will Semiconductor (Shanghai) Co. Ltd. Optical sensor having apertures
US10796128B2 (en) * 2017-12-12 2020-10-06 Fingerprint Cards Ab Optical sensor with ambient light filter
US10699092B2 (en) * 2018-05-08 2020-06-30 Vanguard International Semiconductor Corporation Optical sensor and manufacturing method thereof
CN110175492B (zh) * 2018-07-20 2022-03-01 神盾股份有限公司 光学指纹感测装置
KR102529662B1 (ko) * 2018-09-11 2023-05-10 삼성디스플레이 주식회사 전자 장치
US11099703B1 (en) * 2018-11-12 2021-08-24 Apple Inc. Touch sensor panels with silver nanowire-based touch electrodes
CN109598248B (zh) * 2018-12-07 2023-04-18 京东方科技集团股份有限公司 纹路识别装置的操作方法以及纹路识别装置
CN109389933B (zh) * 2018-12-20 2021-09-17 厦门天马微电子有限公司 指纹识别模组的驱动方法和显示装置
CN109521605B (zh) * 2018-12-24 2021-10-15 厦门天马微电子有限公司 背光模组和显示装置
CN109633959A (zh) * 2019-01-21 2019-04-16 上海思立微电子科技有限公司 可实现屏内指纹识别的显示装置
CN109637376B (zh) * 2019-01-31 2022-02-18 厦门天马微电子有限公司 显示装置
KR20210126649A (ko) * 2019-02-15 2021-10-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치, 표시 모듈, 및 전자 기기
CN109765725B (zh) * 2019-03-26 2021-04-06 合肥京东方光电科技有限公司 一种准直膜、准直背光模组、显示模组及显示装置
CN110309705B (zh) * 2019-04-30 2022-04-19 厦门天马微电子有限公司 显示面板和显示装置
US11137534B2 (en) 2019-06-26 2021-10-05 Synaptics Incorporated Systems and methods for optical imaging based on diffraction gratings
CN110456560A (zh) * 2019-07-29 2019-11-15 武汉华星光电技术有限公司 一种显示面板及其显示装置
EP4027190A4 (en) * 2019-09-04 2022-08-10 BOE Technology Group Co., Ltd. LINE RECOGNITION DEVICE AND DISPLAY DEVICE

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190761A1 (en) * 2003-03-05 2004-09-30 Ju-Hyeon Lee Apparatus for fingerprint analysis using current detection
CN101097914A (zh) * 2006-06-30 2008-01-02 卡西欧计算机株式会社 具有薄膜元件和薄膜图形的薄膜器件、及其制造方法
WO2014115957A1 (en) * 2013-01-28 2014-07-31 Silicon Display Technology Transparent fingerprint recognizing sensor array
CN105304656A (zh) * 2014-06-23 2016-02-03 上海箩箕技术有限公司 光电传感器
CN105205470A (zh) * 2015-09-29 2015-12-30 上海箩箕技术有限公司 指纹成像模组
CN207264357U (zh) * 2017-10-16 2018-04-20 广西中沛光电科技有限公司 防污渍残留车载触摸屏
CN110032913A (zh) * 2018-01-11 2019-07-19 南昌欧菲生物识别技术有限公司 指纹识别模组的保护膜、指纹识别模组和终端
CN108446683A (zh) * 2018-05-18 2018-08-24 北京集创北方系统技术有限公司 指纹识别装置及电子装置
CN208569606U (zh) * 2018-06-26 2019-03-01 江西省平波电子有限公司 一种新型防蓝光电容式触摸屏
CN110088768A (zh) * 2019-03-12 2019-08-02 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备

Also Published As

Publication number Publication date
CN113227889B (zh) 2023-11-03
US11380129B2 (en) 2022-07-05
US20230025263A1 (en) 2023-01-26
US11908226B2 (en) 2024-02-20
WO2021042283A1 (zh) 2021-03-11
CN112771484A (zh) 2021-05-07
US20210406496A1 (en) 2021-12-30
CN113227889A (zh) 2021-08-06
US20230237755A1 (en) 2023-07-27
EP4027190A1 (en) 2022-07-13
US11663800B2 (en) 2023-05-30
EP4027190A4 (en) 2022-08-10
CN112771484B (zh) 2024-01-26
US20220277584A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US10185861B2 (en) Display panel and electronic device
US10361255B2 (en) Display panel and display device
US10387712B2 (en) Display panel and display apparatus
WO2019137002A1 (zh) 显示面板和显示装置
EP3748532A1 (en) Optical fingerprint recognition apparatus and electronic device
WO2020181493A1 (zh) 屏下指纹识别装置和电子设备
CN110263773B (zh) 显示模组、显示装置及光栅膜材层的制作方法
KR20200127220A (ko) 지문 식별 장치 및 전자 기기
WO2021042593A1 (zh) 纹路识别装置及其制作方法
WO2020102949A1 (zh) 指纹识别装置和电子设备
US20230251404A1 (en) Texture image acquiring device, display device, and collimator
CN212135452U (zh) 指纹识别装置和电子设备
US11308725B2 (en) Touch display device
JP7262600B2 (ja) スクリーンアセンブリ及び電子装置
WO2019148798A1 (en) Pattern identification device and display apparatus
TWI812081B (zh) 感測裝置
US11769344B2 (en) Pattern identification device and display apparatus
CN213659463U (zh) 指纹识别装置和电子设备
CN113224118A (zh) 纹路识别显示面板和显示装置
CN111552108A (zh) 一种显示装置及其指纹识别方法
WO2021128025A1 (zh) 指纹识别装置、背光模组、显示屏和电子设备
US20230380252A1 (en) Display device and method for fabricating display device
RU2783487C1 (ru) Сборочный узел экрана и электронное устройство
CN113780089A (zh) 显示装置
WO2020206983A1 (zh) 光学指纹装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943993

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19943993

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19943993

Country of ref document: EP

Kind code of ref document: A1