WO2021042423A1 - 一种基于步进环栅的输电线路的多目标优化路径选择方法 - Google Patents

一种基于步进环栅的输电线路的多目标优化路径选择方法 Download PDF

Info

Publication number
WO2021042423A1
WO2021042423A1 PCT/CN2019/107634 CN2019107634W WO2021042423A1 WO 2021042423 A1 WO2021042423 A1 WO 2021042423A1 CN 2019107634 W CN2019107634 W CN 2019107634W WO 2021042423 A1 WO2021042423 A1 WO 2021042423A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
area
tower
topological
ring
Prior art date
Application number
PCT/CN2019/107634
Other languages
English (en)
French (fr)
Inventor
冯健
于春洋
卢森骧
任程泽
马大中
李云博
徐临平
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to US16/621,233 priority Critical patent/US20210342502A1/en
Publication of WO2021042423A1 publication Critical patent/WO2021042423A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the invention belongs to the field of transmission line path selection optimization, and relates to a multi-objective optimization path selection method for a stepped ring grid transmission line.
  • Transmission line path selection is the basis of transmission line design, and there is a complete design process. The line selection is generally divided into four steps according to the design stage, namely indoor line selection, data collection, preliminary survey and final survey line selection.
  • the purpose of the present invention is to provide a multi-objective optimization path selection method for transmission lines based on step ring grids, which uses GIS data information to fuse multiple data drives, and adopts multi-objective optimization algorithms to achieve optimal transmission lines. Path selection method.
  • the multi-objective optimization path selection method of power transmission line based on step ring grid of the present invention includes the following steps:
  • Step 1 Select relevant influencing factors and fuse GIS data to construct an index set of characteristic factors
  • Step 2 According to the nature of the region, divide the semi-circular area where the electric tower can be built into multiple categories, and construct the multiple categories into a regional feature set;
  • Step 3 Construct a classification algorithm to classify multiple semi-circular areas where electrical towers can be built according to the feature factor index set and regional feature set;
  • Step 4 Take the starting point, the end point, the middle area of the residential community or the necessary passing points as the topological nodes, generate a virtual topological path network, construct a virtual topological map, and make an overall plan for the path according to the virtual topological map;
  • Step 5 Classify the topological nodes according to the classification algorithm, use the distance between the topological nodes as the weight of the topological nodes, and select the optimal overall topological path in the virtual topological map;
  • Step 6 Construct a local step-by-step ring grid map between adjacent topological nodes of the overall path of the optimal topology, form a semi-ring region where the tower can be constructed, and divide the half-ring region between adjacent topological nodes into multiple Grid, and number the grid;
  • Step 7 Read the GIS data, filter the grids of the semi-circular area where the tower can be built according to the altitude factor of the unbuilt area, identify the feasible grids and infeasible grids that are filtered out, and compose the feasible grids Preselected area;
  • Step 8 Determine the complexity of each feasible grid in the preselected area according to the Gini coefficient
  • Step 9 Configure the parameters of the feasible grids in the buildable area, and construct the distance function according to the longitude and latitude attributes and the height of the electrical tower in the configured parameters;
  • Step 10 Construct a cost objective function according to the step-by-step ring grid map
  • Step 11 Construct a corner objective function according to the corners between adjacent towers
  • Step 12 Construct a multi-objective optimization function according to the distance function, cost objective function, and corner objective function to coordinately optimize the transmission line path.
  • the step 2 specifically includes:
  • the buildable ring area is divided into four types: feasible area, traversable area, crossable area and infeasible area.
  • the step 3 specifically includes:
  • Step 3.1 The characteristic factor index set is expressed as Among them, i ⁇ N 1 , i ⁇ Z; N 1 represents the number of characteristic factor indexes, and f i represents the selected characteristic factor indexes.
  • the step 5 is specifically:
  • the step 6 is specifically:
  • Step 6.1 Take the topological node as the coordinate origin, and the ordinate axis takes the connection direction of two adjacent topological nodes as the positive direction to construct a rectangular coordinate system;
  • Step 6.2 Carry out coordinate transformation on the overall topological map and transform it into a unified coordinate system, and use coordinate changes to reduce the amount of calculation so that the tower base will only be placed in the first quadrant and the first quadrant;
  • Step 6.3 Determine the distance between tower bases l ⁇ [m,n] according to the requirements of the power transmission and distribution project and on-site conditions, where m is the minimum distance from the tower base, n is the maximum distance from the tower base, and the coordinates for constructing the electrical tower are Among them, S j represents the j-th electrical tower; S j is the circle point, and concentric circles are constructed with m and n as radii. The location of S j+1 satisfies the following equation:
  • the constructed area is a semi-ring domain, which is defined as
  • Step 6.4 Carry out grid cutting on the constructed half-circle to construct a grid approximately square. All the half-circles cut by the grid constitute a step-by-step ring grid map;
  • Step 6.5 Number the grids to facilitate optimization calculations.
  • the expression of the Gini coefficient in the step 8 is:
  • the probability of building the base of the tower is p 1 (S 0 , S 1 ), the area of the unbuildable base of the tower is p 2 (S 0 , S 1 ), the buildable area is S 1 and the unbuilt area is S 0 , p k Represents the probability of occurrence of the k-th category, and judges the complexity of the selected region based on the above-mentioned Gini coefficient.
  • the step 9 is specifically:
  • the cost objective function in the step 10 is:
  • C represents the total cost
  • c l represents the cost of wire per unit length
  • is the power transmission coefficient.
  • the number of electrical lines used in the three-phase transmission or DC transmission process is different, and the power transmission coefficient represents the number of transmissions
  • n And N respectively represent the number of virtual topological map classifications and the total number of tower bases constructed
  • Represents the cost factor, f k (F) represents the estimated construction cost according to the k section of the site conditions
  • u s represents the transportation cost coefficient
  • G k (F ) represents the estimated transportation cost required by the k section of the site according to the specific conditions
  • ⁇ k represents the cost of the k-th tower pole
  • ⁇ k represents the labor cost of the k-th stage
  • setting: c in c s f k (F)+u s G k (F)+ ⁇ k + ⁇ k is feasible
  • Attribute assignment is performed on the k-th raster grains.
  • the step 11 is specifically:
  • Step ring half ring domain Inner adjacent half ring And semicircle
  • the selected tower base point is the deflection angle constructed by S j, tower base point S j+1 and tower base point S j+2.
  • the multi-objective optimization function in the step 12 is:
  • the multi-objective optimization path selection method of the transmission line based on the step ring grid of the present invention uses a reasonable and efficient method for multiple data drive and path optimization, and combines the integrated data with the virtual topology map and the step ring
  • the grid map is merged to greatly reduce the amount of calculation, and the multi-objective optimization model method is adopted to obtain the comprehensive optimal solution.
  • Fig. 1 is a flow chart of a method for multi-objective optimization path selection of a transmission line based on a step ring grid according to the present invention
  • Figure 2 is the characteristic index constituting the characteristic factor index set in the present invention.
  • Figure 3 is a schematic diagram of a virtual topology map in the present invention.
  • Figure 4a is a schematic diagram of a step ring grid map in the present invention.
  • Fig. 4b is a schematic diagram of the semi-circle domain segmentation in the present invention.
  • Figure 5 is a schematic diagram of coordinate transformation in the present invention.
  • Fig. 6 is a schematic diagram of the step-by-step ring-grid map coordinate segmentation cutting method in the present invention.
  • FIG. 7 is a schematic diagram of the numbering diagram of the step ring gate in the present invention.
  • Fig. 8 is a schematic diagram of angle optimization in the present invention.
  • a certain 220kV external power supply project neutron project is selected as an application example.
  • 400mm 2 cross-section conductors are selected for the line of this project.
  • the wire of this project is recommended to use JL/G1A-400/35 steel core aluminum stranded wire.
  • the ground wire of this project uses two 48-core OPGW optical cables to serve as lightning protection ground wires.
  • the wire suspension insulator string adopts 120kN grade composite insulator and 100kN series fittings.
  • the wire suspension insulator string adopts 120kN grade composite Insulators and 120kN series fittings, the line air distance is about 10km.
  • the present invention is a multi-objective optimization path selection method for power transmission lines based on stepped ring grids, including:
  • Step 1 Select relevant influencing factors and fuse GIS data to construct a characteristic factor index set Among them, i ⁇ N 1 , i ⁇ Z; indicates that N 1 indicators are selected as reference indicators, and f i indicates the selected feature indicators. Carry out feature identification on the selected area and construct a feature factor index set.
  • the location and installation environment of the transmission line includes natural environmental factors, meteorological environmental factors, and human control factors.
  • F Rock and soil conditions, groundwater conditions, ground motion parameters, dirty area conditions, galloping area conditions, bad geological freezing conditions, icing conditions, temperature conditions, wind speed conditions, urban and rural construction planning areas, military facilities protection areas, natural environmental protection District, national first-level forest land, large-scale industrial development zone, important communication facilities, traffic conditions ⁇
  • Route selection adopts new technologies such as satellite film, aerial photography, all-digital measurement system and infrared measurement; geological remote sensing technology is used when necessary in areas with complex geological conditions; comprehensive consideration of line length, topography, address, ice area, traffic, construction, and operation And local planning and other factors, carry out the technical and economic comparison of multiple schemes, so as to be safe, reliable, environmentally friendly, and economical.
  • the route selection should avoid military installations, large-scale enterprises and important facilities, etc., in line with town planning.
  • Route selection should avoid unfavorable geological zones and mining-affected areas. When unavoidable, necessary measures should be taken; heavy ice areas, galloping areas and other areas that affect safe operation should be avoided; primitive deep forests, nature reserves, and other areas should be avoided. Scenic Area.
  • Route selection should consider the mutual influence of adjacent facilities such as radio stations, airports, weak points and lines.
  • the route selection is close to the existing national roads, provincial roads, county roads and township roads, making full use of the existing improved traffic conditions to facilitate construction and operation.
  • the incoming and outgoing lines of large power plants and hubs and substations, and adjacent routes of two or more circuits should be planned uniformly, and the same tower should be used in the crowded corridors.
  • the length of the tensile section of light, medium and heavy ice regions shall not exceed 10km, 5km, and 3km respectively.
  • measures to prevent stringing should be taken.
  • the length of the tensile section should be appropriately shortened. Transmission lines and main railways. For highway crossings, independent tensile sections shall be adopted.
  • the design meteorological conditions should be determined based on the mathematical statistics of the meteorological data along the route and the operating experience of the existing routes nearby. When the meteorological conditions along the route are close to the typical meteorological areas in this code, the values listed in the typical meteorological areas shall be used.
  • the basic wind speed and the design ice thickness return period should meet the following requirements:
  • the return period of 750kV, 500kV transmission lines and their major crossings should be 50 years;
  • the annual maximum wind speed averaged at a 10-minute interval between local weather stations and stations should be taken as samples, and extreme value type I should be used as the probability model.
  • the height of the statistical wind speed should meet the following requirements:
  • the statistical wind speed of 110kV ⁇ 750kV transmission lines should be taken 10m from the ground;
  • the statistical wind speed for large voltage crossings at all levels should be taken as the average lowest water level of 10m in the gale season over the years.
  • the basic wind speed of 110kV ⁇ 330kV transmission lines shall not be lower than 23.5m/s; the basic wind speed of 500 ⁇ 750kV transmission lines shall not be lower than 27m/s.
  • the light ice area is designed according to ice-free, 5mm, 10mm icing thickness, and the middle ice area is designed according to 15mm or 20mm icing thickness.
  • the heavy ice area is checked according to 20mm, 30mm, 40mm or 50mm, and if necessary, it is checked according to the rare icing conditions.
  • the design ice thickness of the ground wire should be 5mm more than the wire except for the ice-free section.
  • the basic wind speed of the large span When there is no reliable data, the statistical value of the wind speed of the nearby land transmission line is converted to a place 10m above the average lowest water level in the windy season of the span, and an increase of 10%, considering the impact of the water surface, and then increasing by 10%. .
  • the basic wind speed of the large span shall not be lower than the basic wind speed of the transmission lines on the connected roads.
  • the design ice thickness of the large span is 5mm more than the design ice thickness of the general input circuit nearby.
  • the annual average temperature used in the design shall be taken in accordance with the following regulations:
  • the average temperature is reduced by 3°C and 5°C, respectively, and the value of 5 adjacent to this number is taken.
  • the wind speed of the installation conditions should be 10m/s, the thickness of the icing should be no ice, and the temperature should be taken according to the following regulations:
  • the temperature of the lightning overvoltage condition is 15°C.
  • the wind speed of the lightning overvoltage condition is 15m/s, otherwise it is 10m/s; check the wire and When the distance between the ground wires is used, the conditions of no wind and no ice shall be adopted.
  • the temperature of the operating overvoltage condition can be the annual average temperature, and the wind speed is 50% of the wind speed at the average height of the conductor based on the basic wind speed, but not less than 15m/s, and there should be no ice.
  • the wind speed of live working conditions can be 10m/s, the temperature can be 15°C, and the thickness of icing should be no ice.
  • Overhead power lines pass through areas such as urban areas or forests, if the average height of the shields on both sides is greater than the height of the tower Its maximum design wind speed is 20% lower than the local maximum design wind speed.
  • Step 2 According to the nature of the region, divide the semi-circular area where the electric tower can be built into multiple categories, and construct the multiple categories into a regional feature set;
  • Step 3 Construct a classification algorithm to classify multiple semi-circular areas where electrical towers can be built according to the feature factor index set and regional feature set;
  • Step 3.1 The characteristic factor index set is expressed as Among them, i ⁇ N 1 , i ⁇ Z; N 1 represents the number of characteristic factor indexes, and f i represents the selected characteristic factor indexes.
  • R 1 ⁇ Rock and soil conditions, groundwater conditions, ground motion parameters, dirty area conditions, galloping area conditions, bad geological freezing conditions, icing conditions, temperature conditions, wind speed conditions ⁇
  • R 2 ⁇ Urban and rural construction planning area, military facility protection area, natural environmental protection area, national first-class forest land, large-scale industrial development zone, important communication facilities, traffic conditions ⁇
  • the probability is p 1 (S 0 , S 1 )
  • the unbuildable tower base area is the probability p 2 (S 0 , S 1 )
  • the buildable area is S 1 and the unbuildable area is S 0
  • the structure occupancy ratio When S cale > -0.477, the grid can be used to construct tower foundation projects.
  • the parameter setting of the method in step 3 meets the GB50233-2014 110kV-750kV overhead transmission line construction and acceptance specification. According to the expert evaluation weight and the definition and review of the collaborative processing department, the R 1 and R 2 weight attribute configuration is constructed.
  • Step 4 Select the topological node, where the starting point, the ending point, the middle area of the residential community, or the necessary passing points (predetermined route points such as substations, grid points, etc.) are the topological nodes to generate a virtual topological path network and construct a virtual topological map.
  • the virtual topology map makes overall planning for the path.
  • the virtual topology map where 1 is the starting point and 13 is the end point, and the overall path is planned according to the topology map.
  • Topological node set T ⁇ O i ,i ⁇ 1 ⁇ i ⁇ , connect all the topological nodes, connect the start and end points in parallel, and construct a virtual topology map.
  • Step 5 Classify the topological nodes according to the classification algorithm, use the distance between the topological nodes as the weight of the topological nodes, and select the optimal overall topological path in the virtual topological map.
  • the set of topology nodes from the start point to the end point O T (O 1 ,O 2 ,...,O n ) T.
  • Step 6 Construct a local step-by-step ring grid map between adjacent topological nodes on the overall path of the optimal topology.
  • the area where electrical towers can be constructed forms a semi-circular region, and the semi-circular region between adjacent topological nodes is divided into multiple grids. Grids and number the grids. As shown in Figure 4a, it is a schematic diagram of the stepping ring grid map. Step 6 specifically includes:
  • Step 6.1 Take the topological node as the coordinate origin, and the ordinate axis takes the connection direction of two adjacent topological nodes as the positive direction to construct a rectangular coordinate system;
  • a coordinate system is established, with the topological node as the coordinate origin O i , and the y-axis of the ordinate is taken as In the positive direction, construct a rectangular coordinate system xO i y.
  • Step 6.2 Carry out coordinate transformation on the overall topological map and transform it into a unified coordinate system, and use coordinate changes to reduce the amount of calculation so that the tower base will only be placed in the first quadrant and the first quadrant;
  • the coordinates are determined by That is, the rotation and translation transformation between coordinates, as shown in Figure 5, where (a i , b i ) are the coordinates of the coordinate origin of the next coordinate system relative to the previous coordinate system, and ⁇ i+1 is the relative coordinate system of the i+1
  • the rotation angle of the i-th coordinate system transforms the overall topology map using coordinate changes into a unified coordinate system, and uses coordinate changes to reduce the amount of calculation. Then the tower base will only fall within the first quadrant and the first quadrant.
  • Step 6.3 Determine the distance between tower bases l ⁇ [m,n] according to the requirements of the power transmission and distribution project and on-site conditions, where m is the minimum distance from the tower base, n is the maximum distance from the tower base, and the coordinates for constructing the electrical tower are Among them, S j represents the j-th electrical tower; S j is the circle point, and concentric circles are constructed with m and n as radii. The location of S j+1 satisfies the following equation:
  • the constructed area is a semi-circular domain, which is defined as a semi-circular domain
  • 1 represents the semi-circular domain
  • 2 represents the tower base construction point
  • 3 is the step length
  • 4 is the next step into the semi-circular domain.
  • Step 6.4 Carry out grid cutting on the constructed half-circle to construct an approximate square grid, and all the half-circles cut by the grid constitute a stepping ring grid map;
  • the dividing line is shown as 6 in Figure 4b, which is divided into ⁇ parts, where Construct a grid of ⁇ . then Where N is the total number of semi-ring domains constructed, that is, For the stepping ring grid map.
  • Step 6.5 In step 6.4, number the grid after cutting the half-circle, which is convenient for optimization calculation.
  • the center point of the grid is taken as the center coordinates (x, y) to establish a corresponding coordinate system. Since the system uses a step-by-step ring grid map, its semi-circular area If the outer edge is circular, the coordinate system is established by the segmented cutting method, and the curved edge is used as the coordinate system Represents in the semi-circle domain
  • the i-th sub-coordinate of the in-built segmented cutting method is shown in Figure 6. Numbering the raster map is shown in Figure 7, and its coordinate mapping is: Where x len represents the range of grid coordinates, int represents the rounding operation, and N j+1 represents the semi-circular domain Corresponding coordinates are labeled inside.
  • Step 7 Read the GIS data, filter the grids in the buildable area according to the altitude factor of the unbuildable area, identify the feasible grids and infeasible grids selected, and form the feasible grids into the preselected area;
  • the height of the tower pole is h, read the altitude E i and the semi-circular area of the S j
  • the altitude of the line is the altitude of the sampling point i. If E ni - ⁇ >min ⁇ I n +h,E i +h ⁇ , where ⁇ is the safety margin for overhead wires, the grid cannot be used as a tower foundation construction point.
  • Step 8 Determine the complexity of each feasible grid in the preselected area according to the Gini coefficient
  • Gini coefficient is:
  • the probability of building the base of the tower is p 1 (S 0 , S 1 ), the area of the unbuildable base of the tower is p 2 (S 0 , S 1 ), the buildable area is S 1 and the unbuilt area is S 0 , p k Represents the probability of occurrence of the k-th category, and judges the complexity of the selected region based on the above-mentioned Gini coefficient.
  • Step 9 Configure the parameters of the feasible grids in the buildable area, and construct the distance function according to the longitude and latitude attributes and the height of the electrical tower in the configured parameters;
  • Configuration parameters for each grid which grid comprises a cost parameter c in, longitude J in N i, latitude W in N i, altitude data H in N i, is expressed as:
  • the longitude and latitude coordinates of the S j tower base S j (J j S j ,W j S j ), then there is the wire distance between the towers:
  • Step 10 Construct a cost objective function according to the step-by-step ring grid map
  • C represents the total cost
  • cl represents the cost of wire per unit length
  • is the power transmission coefficient.
  • the number of electrical lines used in the three-phase transmission or DC transmission process is different, and the power transmission coefficient represents the number of transmissions
  • n and N respectively represents the number of virtual topological map classifications and the total number of tower bases constructed
  • Represents the cost coefficient, fk(F) represents the estimated construction cost required for the k section of the site conditions
  • u s represents the transportation cost coefficient
  • G k (F) represents the estimated transportation cost required for the k section of the site according to the specific conditions
  • ⁇ k represents the cost of the k-th section of the tower pole
  • ⁇ k represents the labor cost of the k-th section.
  • Step 11 Construct a corner objective function according to the corners between adjacent towers
  • Step 12 Construct a multi-objective optimization function according to the distance function, cost objective function, and corner objective function to coordinately optimize the transmission line path.
  • the multi-objective optimization model is:
  • the core is to coordinate the relationship between each objective function, find the optimal solution set of each objective function value, that is, the set of inferior solutions-Pareto solution set, to obtain the system optimal solution set ⁇ S 1 ,S 2 , ...,S N ⁇ .
  • NSGA-II Elitist Non-Dominated Sorting Genetic Algorithm, NSGA-II
  • NSGA-II Elitist Non-Dominated Sorting Genetic Algorithm

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Mathematical Optimization (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Marketing (AREA)
  • Power Engineering (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种基于步进环栅的输电线路的多目标优化路径选择方法,采用多元数据驱动,对地域进行分类,选择虚拟拓扑节点构造虚拟拓扑地图,根据短路径最短优化方法选取可行拓扑节点行总体路径规划;在选择的虚拟拓扑路径后,在所经的拓扑节点间构造半环域式步进环栅地图,采用分段式切割法,对栅格进行编号,根据栅格属性定义,利用栅格属性对路径进行优化筛选,根据距离函数、成本目标函数和转角目标函数,构造多目标优化函数,对输电线路路径进行协同优化。

Description

一种基于步进环栅的输电线路的多目标优化路径选择方法 技术领域
本发明属于输电线路路径选择优化领域,涉及一种于步进环栅的输电线路的多目标优化路径选择方法。
背景技术
在经济发展的带动下,社会对于电力的需求不断增长,电网的规划问题也引起了社会各界的广泛关注。电网的规划属于一个多决策变量、多约束条件的混合整数非线性规划问题。输电线路路径选择作为输电线路设计的基础,已经有完善的设计流程,选线工作一般按照设计阶段分为四步进行,即室内选线、收集资料、初勘与终勘选线。
传统输电线路路径选择时依托于地形图,不过由于地形图上信息无法更新,加之近年来我国经济飞速发展,城乡建设加快,导致现场实际情况与地形图上信息差距较大,设计人员需多次到现场核实并到各地国土资源局收集相关信息后,对线路路径进行多次调整,不仅延长设计周期,更难以保证设计的准确性和时效性。该方法耗费大量人力物力且人工勘测过程存在一定的危险性且存在人工进行输电线路路径设计时需考虑的信息复杂困难,工作量大的问题,主观性强,缺乏系统的整体性。
发明内容
为解决上述技术问题,本发明的目的是提供一种基于步进环栅的输电线路的多目标优化路径选择方法,利用GIS数据信息融合多元数据驱动,采用多目标优化算法实现对输电线路最优路径选择方法。
本发明的一种基于步进环栅的输电线路的多目标优化路径选择方法,包括如下步骤:
步骤1:选取相关影响因素并融合GIS数据,构造特征因素指标集;
步骤2:根据区域性质将可建造电塔的半环域划分为多类,将多个种类构造成区域特征集;
步骤3:构造分类算法,根据特征因素指标集和区域特征集,对多个可建造电塔的半环域进行分类;
步骤4:以起点、终点、居住群落中间区域或者必经点为拓扑节点,生成虚拟拓扑路径网络,构造虚拟拓扑地图,根据虚拟拓扑地图对路径进行总体规划;
步骤5:根据分类算法对拓扑节点进行分类,并将拓扑节点间的距离作为拓扑节点的权值,选择虚拟拓扑地图中的最优拓扑总体路径;
步骤6:在最优拓扑总体路径的相邻拓扑节点间构造局域步进环栅地图,将可建造电塔的区域构成半环域,将相邻拓扑节点间的半环域划分成多个栅格,并对栅格进行编号;
步骤7:读取GIS数据,根据不可建造区域的海拔因素对可建造电塔的半环域的栅格进行筛选,对筛选出的可行栅格和不可行栅格进行标识,将可行栅格构成预选区域;
步骤8:根据基尼系数判断预选区域内每个可行栅格的复杂程度;
步骤9:对可建造区域内的可行栅格进行参数配置,根据配置的参数中的经、纬度属性、电塔高度构造距离函数;
步骤10:根据步进环栅地图,构造成本目标函数;
步骤11:根据相邻电塔间的转角,构造转角目标函数;
步骤12:根据距离函数、成本目标函数和转角目标函数,构造多目标优化函数,对输电线路路径进行协同优化。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤2中具体为:
将可建造环形区域划分为:可行区、可穿越区、可跨越区和不可行区4类,区域特征集表示为D={d m,m=1,2,3,4},其中d m表示区域标识。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤3中具体为:
步骤3.1:特征因素指标集表示为
Figure PCTCN2019107634-appb-000001
其中i<N 1,i∈Z;N 1表示特征因素指标的数量,f i表示选取的特征因素指标,构造子特征因素集R 1,R 2,其中
Figure PCTCN2019107634-appb-000002
R 1∪R 2=F;R 1包含k个子元素,R 2包含q个子元素,k+q=N 1,即
Figure PCTCN2019107634-appb-000003
为决策辅集,有将其进行成本估算权重赋值,
Figure PCTCN2019107634-appb-000004
Figure PCTCN2019107634-appb-000005
为决策主集,将其进行决策赋值
Figure PCTCN2019107634-appb-000006
其中0表示不可建造点,1表示可建造点;
步骤3.2:各个决策辅集所共有的并运算为
Figure PCTCN2019107634-appb-000007
S cale表示占据比,各个决策主集所共有的交运算
Figure PCTCN2019107634-appb-000008
子空间R u和R I都是逻辑运算结果,则有R=R u∧R I,其中,运算为1,则可确定为建造可行点,0为不可行点。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤5具体为:
根据分类算法对拓扑节点进行分类,排除不可行区,将起点到终点间的拓扑节点的距离权重构造成权重向量ω T=(ω 12,...,ω n) T,其中n表示拓扑结构的边数;由起点到终点的拓扑节点集合表示为O T=(O 1,O 2,...,O n) T,则根据拓扑目标方程
Figure PCTCN2019107634-appb-000009
选择最短路径,作为最优拓扑总体路径。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤6具体为:
步骤6.1:以拓扑节点为坐标原点,纵坐标轴取两相邻拓扑节点的连线方向为正方向,构造直角坐标系;
步骤6.2:对总体拓扑地图进行坐标变换,转化为统一坐标系,利用坐标变化降低计算量,使塔基落点只会在第Ι象限和第ΙΙ象限内;
步骤6.3:根据输配电工程要求及现场工况确定塔基间距离l∈[m,n],其中m为塔基距离最小值,n为塔基距离最大值,建造电塔的坐标为
Figure PCTCN2019107634-appb-000010
其中S j表示第j个电塔;以S j为圆点,分别以m和n为半径构造同心圆,S j+1选址满足下列方程:
Figure PCTCN2019107634-appb-000011
所构造的区域为半环域,定义半环域为
Figure PCTCN2019107634-appb-000012
步骤6.4:对所构造半环域进行栅格切割,构造近似正方形的栅格,所有的经栅格切割后的半环域构成步进环栅地图;
步骤6.5:对栅格进行编号,便于寻优计算。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤8中基尼系数表达式为:
Figure PCTCN2019107634-appb-000013
Figure PCTCN2019107634-appb-000014
其中,设定半环域
Figure PCTCN2019107634-appb-000015
中可建造塔基概率为p 1(S 0,S 1),不可建造塔基区域为概率p 2(S 0,S 1),可建造面积为S 1和不可建造区域为S 0,p k表示第k个类别发生的概率,基于上述基尼系数判断所选区域的复杂程度。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤9具体为:
对每个栅格进行参数配置,其栅格参数包括成本c in、经度J inN i、纬度W inN i、海拔数据H inN i,表示为:
Figure PCTCN2019107634-appb-000016
其中n表示第i个半环域内栅格标号,即栅格点的经纬度坐标为N in=(J inN i,W inN i);S j塔基的经纬度坐标S j=(J jS j,W jS j),则有建造塔杆间电线距离:
l j=(R+H inN i+h)arccos(cos(W inN i)cos(W jS j)cos(J inN i-J jS j)+sin(W jS j)sin(W inN i))其中,上述是在假设地球以海平面到地心距离为半径R的一个规则的圆球。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤10中的成本目标函数为:
Figure PCTCN2019107634-appb-000017
其中C表示总成本;c l表示单位长度电线的成本;μ为功率传输系数,根据输电的类型,三相电传输或直流电传输过程采用电线路数不同,由功率传输系数表示几路传输;n和N分别表示虚拟拓扑地图分类数及建造塔基总数以;
Figure PCTCN2019107634-appb-000018
表示成本系数,f k(F)表示根据现场工况第k段所需的建造成本估算;u s表示运输成本系数,G k(F )表示现场根据具体状况第k段所需的运输成本估算;ψ k表示第k段塔杆成本;τ k表示第k段人工成本;设定:c in=c sf k(F)+u sG k(F)+ψ kk即对可行第k段栅格粒进行属性赋值。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤11具体为:
设定规划路径起点为虚拟拓扑节点T={O i,i≥1∪i∈□},即起点为O 1,终点为O N; 设定电塔基点为S j
Figure PCTCN2019107634-appb-000019
为路径总偏转角度函数,电塔基点间向量设定为
Figure PCTCN2019107634-appb-000020
则根据偏转角最小化求解,则有下述函数:
Figure PCTCN2019107634-appb-000021
其中,
Figure PCTCN2019107634-appb-000022
设定
Figure PCTCN2019107634-appb-000023
即在步进环栅半环域
Figure PCTCN2019107634-appb-000024
内相邻半环域
Figure PCTCN2019107634-appb-000025
和半环域
Figure PCTCN2019107634-appb-000026
所选的塔基点为S j与塔基点S j+1及塔基点S j+2所构造的偏转夹角。
在本发明的基于步进环栅的输电线路的多目标优化路径选择方法中,所述步骤12中的多目标优化函数为:
Figure PCTCN2019107634-appb-000027
其可行域为步进式环栅所构造的半环域
Figure PCTCN2019107634-appb-000028
则有X=(S 1,S 2,...,S N) T为优化问题的一个解。
本发明的一种基于步进环栅的输电线路的多目标优化路径选择方法,将多元数据驱动与路径优化使用一种合理且高效的手段加以利用,将综合数据与虚拟拓扑地图和步进环栅地图融合,大大降低运算量,采用多目标优化模型方法,得到综合最优解。
附图说明
图1为本发明的一种基于步进环栅的输电线路的多目标优化路径选择方法的流程图;
图2为本发明中构成特征因素指标集的特征指标;
图3为本发明中的虚拟拓扑地图示意图;
图4a为本发明中的步进环栅地图示意图;
图4b为本发明中的半环域分割示意图;
图5为本发明中的坐标变换示意图;
图6为本发明中的步进环栅地图坐标分段切割法示意图;
图7为本发明中的步进环栅示意图编号示意图;
图8为本发明中的角度优化示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于 说明本发明,但不用来限制本发明的范围。
本次选择某段220kV外部供电工程中子工程作为应用实例。根据电力系统输送容量计算分析,本工程线路选用400mm 2截面的导线。经比较分析,本工程导线推荐采用JL/G1A-400/35型钢芯铝绞线。根据系统通信要求,本工程地线采用两根48芯OPGW光缆兼做防雷地线。当用于JL/G1A-400/35型导线,导线悬垂绝缘子串采用120kN级复合绝缘子及100kN系列金具,当用于2×JL/G1A-400/35型导线,导线悬垂绝缘子串采用120kN级复合绝缘子及120kN系列金具,线路航空距离约10km。
为解决上述技术问题,如图1所示,本发明额一种基于步进环栅的输电线路的多目标优化路径选择方法,包括:
步骤1:选取相关影响因素并融合GIS数据,构造特征因素指标集
Figure PCTCN2019107634-appb-000029
其中i<N 1,i∈Z;表示选取N 1个指标作为参考指标,f i表示选取的特征指标。对所选区域进行特征标识,构造特征因素指标集。
如图2所示,在输电线路选址及安装的环境包括自然环境因素,气象环境因素,人为控制因素。选取15个指标作为特征指标,即N 1=15,其各特征指标包括:f 1岩土条件,f 2地下水条件,f 3地震动参数,f 4污秽区条件,f 5舞动区条件,f 6不良地质冻结条件;f 7覆冰情况,f 8温度状况,f 9风速状况;f 10军事设施保护区,f 11城乡建设规划区,f 12自然环境保护区,f 13大型产业开发区,f 14重要通信设施,f 15交通状况。即构造如下特征因素指标集:
F={岩土条件,地下水条件,地震动参数,污秽区条件,舞动区条件,不良地质冻结条件,覆冰情况,温度状况,风速状况,城乡建设规划区,军事设施保护区,自然环境保护区,国家一级林地,大型产业开发区,重要通信设施,交通状况}
其特征因素指标集满足GB50233-2014110kV—750kV架空输电线路施工及验收规范:
路径选择采用卫片、航片、全数字测量系统和红外测量等新技术;在地质条件复杂地区必要时采用地质遥感技术;综合考虑线路长度、地形地貌、地址、冰区、交通、施工、运行及地方规划等因素,进行多方案技术经济比较,做到安全可靠、环境友好、经济合理。路径选择应避开军事设施、大型工况企业及重要设施等,符合城镇规划。
路径选择应避开不良地质带和采动影响区,当无法避让时,应采取必要的措施;避开重冰区,舞动区及影响安全运行的其他区域;避开原始深林、自然保护区和风景名胜区。
路径选择应考虑电台、机场、弱点线路等邻近设施的相互影响。
路径选择靠近现有国道、省道、县道及乡镇公路,充分使用现有的改善交通条件,方便施工和运行。
大型发电厂和枢纽变电所的进出线、两回或多回路相邻路线应统一规划,在走廊拥挤地段采用同杆塔架设。
轻、中、重冰区的耐张段长度分别不大于10km,5km,和3km。当耐张段长度较长时应采取防串倒措施。在高差或档距相差悬殊的山区和重冰区等运行条件较差的地段,耐张段长度应适当缩短。输电线路与主干铁路。高速公路交叉,应采用独立耐张段。
山区线路在选择路径和定位时,应注意控制使用档距和相应额高差,避免出现杆塔两侧大小悬殊档距,当无法避免时应采取必要的措施,提高安全高度。
有大的跨越的输电线路,路径方案结合大的跨越的情况,通过综合技术经济比较确定。
设计气象条件,应根据沿线气象资料的数理统计结果及附近已有路线的运行经验确定,当沿线的气象与本规范典型气象区接近时,采用典型气象区所列数值。基本风速、设计冰厚重重现期应符合下列规定:
750kV,500kV输电线路及其重大跨越重现期应取50年;
110kV~330kV输电线路及其重大跨越重现期应取30年。
确定基本风速时,应按照当地气象台、站10min时距平均的年最大风速为样本,并采用极值Ⅰ型作为概率模型,统计风速的高度应符合下列规定:
110kV~750kV输电线路统计风速应取离地面10m;
各级电压大跨越统计风速应取历年大风季节平均最低水位10m。
山区输电线路,采用统计分析和对比观测等方法,由邻近地区气象台、站的气象资料推算山区的基本风速,并应结合实际运行经验确定。当无可靠资料时将平原地区的统计值提高10%。
110kV~330kV输电线路的基本风速,不低于23.5m/s;500~750kV输电线路,基本风速不低于27m/s。必要时候要对按稀有风速条件进行验算。
轻冰区按无冰、5mm、10mm覆冰厚度设计,中冰区按照15mm或20mm覆冰厚度设计。重冰区按照20mm,30mm,40mm或50mm,必要时还按照稀有覆冰条件进行验算。
地线设计冰厚,除无冰区段外,应较导线增加5mm。
设计时应加强对沿线已建线路设计、运行情况调查,并应考虑微地形、微气象条件及导线舞动地区的影响。
大跨越基本风速,当无可靠资料时,将附近陆上输电线路的风速的统计值换算到跨越处历年大风季平均最低水位以上10m处,并增加10%,考虑水面影响再增加10%后选用。大跨越基本风速不应低于相连接的路上输电线路的基本风速。
大跨越设计冰厚除无冰区段外,较附近一般输入电路的设计冰厚增加5mm。
设计用年平均气温,按照下列规定取值:
当地区年平均气温在3℃~17℃时,取与年平均气温值邻近的5的倍数值;
当地区年平均气温小于3℃和大于17℃时,分别按照平均气温减少3℃和5℃后,取与此数邻近的5的倍数值。
安装工况风速采用10m/s,覆冰厚度应采用无冰,同时气温应按照下列规定取值:
最低气温为-40℃的地区,采用-15℃;
最低气温为-20℃的地区,采用-10℃;
最低气温为-10℃的地区,采用-5℃;
最低气温为-5℃的地区,采用0℃。
雷电过电压工况的气温采用15℃,当基本风速折算到导线平均高度处其极大值等于35m/s时雷电过电压工况风速取15m/s,否则取10m/s;校验导线与地线之间的距离时,应采用无风、无冰工况。
操作过电压工况的气温可采用年平均气温,风速取基本风速折算到导线平均高度处的风速的50%,但不低于15m/s,且应无冰。
带电作业工况风速可采用10m/s,气温可采用15℃,覆冰厚度应采用无冰。
架空电力线路通过市区或者森林等地区,如两侧屏蔽物的平均高度大于杆塔高度的
Figure PCTCN2019107634-appb-000030
其最大设计风速比当地最大设计风速减小20%。
步骤2:根据区域性质将可建造电塔的半环域划分为多类,将多个种类构造成区域特征集;
区域特征集D={d m,m=1,2,...,M},其中,d m表示区域标识,M为区域划分类别总数;
具体实施时,将可建造环形区域划分为:可行区、可穿越区、可跨越区和不可行区4类,即M=4,d 1=可行区,d 2=可穿越区,d 3=可跨越区,d 4=不可行区。
步骤3:构造分类算法,根据特征因素指标集和区域特征集,对多个可建造电塔的半环域进行分类;
步骤3.1:特征因素指标集表示为
Figure PCTCN2019107634-appb-000031
其中i<N 1,i∈Z;N 1表示特征因素指标的数量,f i表示选取的特征因素指标,构造子特征因素集R 1,R 2,其中
Figure PCTCN2019107634-appb-000032
R 1∪R 2=F;R 1包含k个子元素,R 2包含q个子元素,k+q=N 1,即
Figure PCTCN2019107634-appb-000033
为决策辅集,有将其进行成本估算权重赋值,
Figure PCTCN2019107634-appb-000034
Figure PCTCN2019107634-appb-000035
为决策主集,将其进行决策赋值
Figure PCTCN2019107634-appb-000036
其中0表示不可建造点,1表示可建造点;
步骤3.2:各个决策辅集所共有的并运算为
Figure PCTCN2019107634-appb-000037
S cale表示占据比,各个决策主集所共有的交运算
Figure PCTCN2019107634-appb-000038
子空间R u和R I都是逻辑运算结果,则有R=R u∧R I,其中,运算为1,则可确定为建造可行点,0为不可行点。
具体实施时:
R 1={岩土条件,地下水条件,地震动参数,污秽区条件,舞动区条件,不良地质冻结条件,覆冰情况,温度状况,风速状况}
R 2={城乡建设规划区,军事设施保护区,自然环境保护区,国家一级林地,大型产业开发区,重要通信设施,交通状况}
构造可行域比函数,结合GIS数据和遥感数据及特征因素指标集F={f 1,f 2,...f i,...,f N},设定半环域中可建造塔基概率为p 1(S 0,S 1),不可建造塔基区域为概率p 2(S 0,S 1),可建造面积为S 1和不可建造区域为S 0,则在特征F的条件下,根据中占据比判定步进环栅地图,构造占据比为
Figure PCTCN2019107634-appb-000039
当S cale>-0.477时,该栅格可用于建造塔基工程。
步骤3中的方法的参数设定满足GB50233-2014110kV—750kV架空输电线路施工及验收规范,根据专家评估权重及各协同处理部门对其定义及审核,构造R 1与R 2权重属性配置。
步骤4:选择拓扑节点,其中以起点、终点、居住群落中间区域、或者必经点(既定路线点如:变电站,并网点等)为拓扑节点,生成虚拟拓扑路径网络,构造虚拟拓扑地图,根据虚拟拓扑地图对路径进行总体规划。
如图3所示的虚拟拓扑地图,其中1为起点,13为终点,根据拓扑地图对路径进行总体规划。拓扑节点集合T={O i,i≥1∪i∈□},将全部拓扑节点联结,并联结起点终点,构造虚拟拓扑地图。
步骤5:根据分类算法对拓扑节点进行分类,并将拓扑节点间的距离作为拓扑节点的权值,选择虚拟拓扑地图中的最优拓扑总体路径。由起点到终点拓扑节点集合的路径权重构造权重向量为ω T=(ω 12,...,ω n) T,其中n表示拓扑结构的边数。根据虚拟拓扑地图节点选择,由起点到终点拓扑节点集合O T=(O 1,O 2,...,O n) T。则拓扑方程目标方程
Figure PCTCN2019107634-appb-000040
选择最短路径,为最优拓扑总体路径。
根据电力线跨越架除了顶面的其他部分,需要在被跨越电力线停电前搭设的,应该保证人员、工器具、跨越架安装构件与被跨越电力线的最小安全距离符合DL 5009.2-2013《电力建设安全工作规程第2部分:架空电力线路》的规定。选择拓扑最优总体路线;如图3中加粗线所表示即选择的路线,即选择的路径的拓扑节点为T={O 1,O 5,O 6,O 9,...,O i,...,O N};
步骤6:在最优拓扑总体路径的相邻拓扑节点间构造局域步进环栅地图,将可建造电塔的区域构成半环域,将邻拓扑节点间的半环域划分成多个栅格,并对栅格进行编号。如图4a所示,为步进环栅地图示意图。步骤6具体包括:
步骤6.1:以拓扑节点为坐标原点,纵坐标轴取两相邻拓扑节点的连线方向为正方向,构造直角坐标系;
具体实施时,建立坐标系,以拓扑节点为坐标原点O i,纵坐标y轴取以
Figure PCTCN2019107634-appb-000041
正方向,构造直角坐标系xO iy。
步骤6.2:对总体拓扑地图进行坐标变换,转化为统一坐标系,利用坐标变化降低计算量,使塔基落点只会在第Ι象限和第ΙΙ象限内;
具体实施时,坐标由
Figure PCTCN2019107634-appb-000042
即坐标之间的旋转平移变换,如图5所示,其中(a i,b i)为下一坐标系坐标原点相对上一坐标系的坐标,α i+1为第i+1坐标系相对第i坐标系的旋转角度,将总体拓扑地图利用坐标变化,转化为统一坐标系,利用坐标变化降低计算量。则塔基落点只会在第Ι象限和第ΙΙ象限内。
步骤6.3:根据输配电工程要求及现场工况确定塔基间距离l∈[m,n],其中m为塔基距离最小值,n为塔基距离最大值,建造电塔的坐标为
Figure PCTCN2019107634-appb-000043
其中S j表示第j个电塔;以S j为圆点,分别以m和n为半径构造同心圆,S j+1选址满足下列方程:
Figure PCTCN2019107634-appb-000044
所构造的区域为半环域,定义为半环域
Figure PCTCN2019107634-appb-000045
如图4a中半环域示意图所示,其中1表示半环域,2表示塔基建造点,3为步进长度,4为下一步进半环域。
步骤6.4:对所构造半环域进行栅格切割,构造近似正方形的栅格,所有的经栅格切割后的半环域构成步进环栅地图;
具体实施时,在半环域
Figure PCTCN2019107634-appb-000046
内构造以栅格粒为a的步进环栅地图,如图4b中5所示栅格,将半环域径向切割σ份,其中
Figure PCTCN2019107634-appb-000047
由半径为m+ai半圆弧为切割,i=1,2,...,σ,如图4b中8所示。由半环域同心圆的圆心点选取ψ为分割等分角,
Figure PCTCN2019107634-appb-000048
构造近似正方形的栅格。如图4b中7所示,其分割线如图4b中6所示,分割为Δ份,其中
Figure PCTCN2019107634-appb-000049
构造Δ×σ的栅格。则
Figure PCTCN2019107634-appb-000050
其中N为所构造的半环域总数,即,
Figure PCTCN2019107634-appb-000051
为步进环栅地图。
步骤6.5:步骤6.4对半环域切割后对栅格进行编号,便于寻优计算。
如图4a中栅格所示,以栅格中心点为中心坐标(x,y),建立对应坐标系。由于系统采用步进式环栅地图,其半环域
Figure PCTCN2019107634-appb-000052
外侧边为环形,则采用分段切割法建立坐标系的方法,以曲边为坐标系
Figure PCTCN2019107634-appb-000053
表示在半环域
Figure PCTCN2019107634-appb-000054
内建造的分段切割法的第i个子坐标如图6所示。对栅格地图进行编号如图7所示,其坐标映射为:
Figure PCTCN2019107634-appb-000055
其中x len表示栅格坐标的取值范围,int表示取整操作,N j+1表示半环域
Figure PCTCN2019107634-appb-000056
内对应坐标进行标号。
步骤7:读取GIS数据,根据不可建造区域的海拔因素对可建造区内的栅格进行筛选,对筛选出的可行栅格和不可行栅格进行标识,将可行栅格构成预选区域;
塔杆高度为h,读取该S j海拔E i及半环域
Figure PCTCN2019107634-appb-000057
的各栅格海拔集K={I n,n=1,2,...,N 1},其中,I n为第n个栅格的海拔,N 1为半环域
Figure PCTCN2019107634-appb-000058
划分的栅格数,与连线间l x的间海拔集E={E ni,i=1,2,...,N},其中,E ni为第n个栅格与S j的连线的海拔采样点i的海拔值。
Figure PCTCN2019107634-appb-000059
若有E ni-σ>min{I n+h,E i+h},其中σ为电线架空的安全裕度,则该栅格不可作为塔基建造点。
步骤8:根据基尼系数判断预选区域内每个可行栅格的复杂程度
具体实施时,基尼系数表达式为:
Figure PCTCN2019107634-appb-000060
其中,设定半环域
Figure PCTCN2019107634-appb-000061
中可建造塔基概率为p 1(S 0,S 1),不可建造塔基区域为概率p 2(S 0,S 1),可建造面积为S 1和不可建造区域为S 0,p k表示第k个类别发生的概率,基于上述基尼系数判断所选区域的复杂程度。
步骤9:对可建造区域内的可行栅格进行参数配置,根据配置的参数中的经、纬度属性、电塔高度构造距离函数;
对每个栅格进行参数配置,其栅格参数包括成本c in、经度J inN i、纬度W inN i、海拔数据H inN i,表示为:
Figure PCTCN2019107634-appb-000062
其中n表示第i个半环域内栅格标号,即栅格点的经纬度坐标为N in=(J inN i,W inN i)。S j塔基的经纬度坐标S j=(J jS j,W jS j),则有建造塔杆间电线距离:
l j=(R+H inN i+h)arccos(cos(W inN i)cos(W jS j)cos(J inN i-J jS j)+sin(W jS j)sin(W inN i))上述是在假设地球以海平面到地心距离为半径R的一个规则的圆球。
步骤10:根据步进环栅地图,构造成本目标函数;
根据上述步进环栅地图及运算,构造目标函数
Figure PCTCN2019107634-appb-000063
其中C表示总成本;cl表示单位长度电线的成本;μ为功率传输系数,根据输电的类型,三相电传输或直流电传输过程采用电线路数不同,由功率传输系数表示几路传输;n和N分别表示虚拟拓扑地图分类数及建造塔基总数以;
Figure PCTCN2019107634-appb-000064
表示成本系数,fk(F)表示根据现场工况第k段所需的建造成本估算;u s表示运输成本系数,G k(F)表示现场根据具体状况第k段所需的运输成本估算;ψ k表示第k段塔杆成本;τ k表示第k段人工成本。设定:c in=c sf k(F)+u sG k(F)+ψ kk即对可行第k段栅格粒进行属性赋值。
步骤11:根据相邻电塔间的转角,构造转角目标函数;
由于在输电线设计系统要求尽量减少转角塔数,尽可能保证直线。设定规划路径起点为虚拟拓扑节点T={O i,i≥1∪i∈□},即起点为O 1,终点为O N;设定塔基点为S j
Figure PCTCN2019107634-appb-000065
为路径总偏转角度函数,塔基间向量设定为
Figure PCTCN2019107634-appb-000066
则根据偏转角最小化求解,如图8所示,则有下述函数:
Figure PCTCN2019107634-appb-000067
Figure PCTCN2019107634-appb-000068
设定
Figure PCTCN2019107634-appb-000069
即在步进环栅半环域
Figure PCTCN2019107634-appb-000070
内相邻半环域
Figure PCTCN2019107634-appb-000071
和半环域
Figure PCTCN2019107634-appb-000072
所选的塔基点为S j与塔基点S j+1及塔基点S j+2所构造的偏转夹角。
步骤12:根据距离函数、成本目标函数和转角目标函数,构造多目标优化函数,对输电线路路径进行协同优化。多目标优化模型为:
Figure PCTCN2019107634-appb-000073
其可行域为步进式环栅所构造的半环域
Figure PCTCN2019107634-appb-000074
j=0,1,2,...,N},则有X=(S 1,S 2,...,S N) T为优化问题的一个解。其核心就是协调各个目标函数之间的关系,找出使得各个目标函数的函数值的最优解集即劣解的集合——Pareto解集,得到系统最优解集{S 1,S 2,...,S N}。
本实施例中,采用NSGA-II算法(带精英策略的非支配排序遗传算法(Elitist Non-Dominated Sorting Genetic Algorithm,NSGA-II),NSGA-II)就是协调各个目标函数之间的关系,找出使得各个目标函数都尽可能达到比较大的(或比较小的)函数值的最优解集。
以上所述仅为本发明的较佳实施例,并不用以限制本发明的思想,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,包括如下步骤:
    步骤1:选取相关影响因素并融合GIS数据,构造特征因素指标集;
    步骤2:根据区域性质将可建造电塔的半环域划分为多类,将多个种类构造成区域特征集;
    步骤3:构造分类算法,根据特征因素指标集和区域特征集,对多个可建造电塔的半环域进行分类;
    步骤4:以起点、终点、居住群落中间区域或者必经点为拓扑节点,生成虚拟拓扑路径网络,构造虚拟拓扑地图,根据虚拟拓扑地图对路径进行总体规划;
    步骤5:根据分类算法对拓扑节点进行分类,并将拓扑节点间的距离作为拓扑节点的权值,选择虚拟拓扑地图中的最优拓扑总体路径;
    步骤6:在最优拓扑总体路径的相邻拓扑节点间构造局域步进环栅地图,将可建造电塔的区域构成半环域,将相邻拓扑节点间的半环域划分成多个栅格,并对栅格进行编号;
    步骤7:读取GIS数据,根据不可建造区域的海拔因素对可建造电塔的半环域的栅格进行筛选,对筛选出的可行栅格和不可行栅格进行标识,将可行栅格构成预选区域;
    步骤8:根据基尼系数判断预选区域内每个可行栅格的复杂程度;
    步骤9:对可建造区域内的可行栅格进行参数配置,根据配置的参数中的经、纬度属性、电塔高度构造距离函数;
    步骤10:根据步进环栅地图,构造成本目标函数;
    步骤11:根据相邻电塔间的转角,构造转角目标函数;
    步骤12:根据距离函数、成本目标函数和转角目标函数,构造多目标优化函数,对输电线路路径进行协同优化。
  2. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤2中具体为:
    将可建造环形区域划分为:可行区、可穿越区、可跨越区和不可行区4类,区域特征集表示为D={d m,m=1,2,3,4},其中d m表示区域标识。
  3. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤3中具体为:
    步骤3.1:特征因素指标集表示为
    Figure PCTCN2019107634-appb-100001
    其中i<N 1,i∈Z;N 1表示特征因素指标的数量,f i表示选取的特征因素指标,构造子特征因素集R 1,R 2,其中
    Figure PCTCN2019107634-appb-100002
    R 1∪R 2=F;R 1包含k个子元素,R 2包含q个子元素,k+q=N 1,即R 1={r i (1),i=1,2,...,k}为决策辅集,有将其进行成本估算权重赋值,r i (1)∈(0,1),
    Figure PCTCN2019107634-appb-100003
    为决策主集,将其进行决策赋值
    Figure PCTCN2019107634-appb-100004
    其中0表示不可建造点,1表示可建造点;
    步骤3.2:各个决策辅集所共有的并运算为
    Figure PCTCN2019107634-appb-100005
    S cale表示占据比,各个决策主集所共有的交运算
    Figure PCTCN2019107634-appb-100006
    子空间R u和R I都是逻辑运算结果,则有R=R u^R I,其中,运算为1,则可确定为建造可行点,0为不可行点。
  4. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤5具体为:
    根据分类算法对拓扑节点进行分类,排除不可行区,将起点到终点间的拓扑节点的距离权重构造成权重向量ω T=(ω 12,...,ω n) T,其中n表示拓扑结构的边数;由起点到终点的拓扑节点集合表示为O T=(O 1,O 2,...,O n) T,则根据拓扑目标方程
    Figure PCTCN2019107634-appb-100007
    选择最短路径,作为最优拓扑总体路径。
  5. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤6具体为:
    步骤6.1:以拓扑节点为坐标原点,纵坐标轴取两相邻拓扑节点的连线方向为正方向,构造直角坐标系;
    步骤6.2:对总体拓扑地图进行坐标变换,转化为统一坐标系,利用坐标变化降低计算量,使塔基落点只会在第Ι象限和第ΙΙ象限内;
    步骤6.3:根据输配电工程要求及现场工况确定塔基间距离l∈[m,n],其中m为塔基距离最小值,n为塔基距离最大值,建造电塔的坐标为
    Figure PCTCN2019107634-appb-100008
    其中S j表示第j个电塔;以S j为圆点,分别以m和n为半径构造同心圆,S j+1选址满足下列方程:
    Figure PCTCN2019107634-appb-100009
    所构造的区域为半环域,定义半环域为
    Figure PCTCN2019107634-appb-100010
    步骤6.4:对所构造半环域进行栅格切割,构造近似正方形的栅格,所有的经栅格切割后的半环域构成步进环栅地图;
    步骤6.5:对栅格进行编号,便于寻优计算。
  6. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤8中基尼系数表达式为:
    Figure PCTCN2019107634-appb-100011
    Figure PCTCN2019107634-appb-100012
    其中,设定半环域
    Figure PCTCN2019107634-appb-100013
    中可建造塔基概率为p 1(S 0,S 1),不可建造塔基区域为概率p 2(S 0,S 1),可建造面积为S 1和不可建造区域为S 0,p k表示第k个类别发生的概率,基于上述基尼系数判断所选区域的复杂程度。
  7. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤9具体为:
    对每个栅格进行参数配置,其栅格参数包括成本c in、经度J inN i、纬度W inN i、海拔数据H inN i,表示为:
    Figure PCTCN2019107634-appb-100014
    其中n表示第i个半环域内栅格标号,即栅格点的经纬度坐标为N in=(J inN i,W inN i);S j塔基的经纬度坐标S j=(J jS j,W jS j),则有建造塔杆间电线距离:
    l j=(R+H inN i+h)arccos(cos(W inN i)cos(W jS j)cos(J inN i-J jS j)+sin(W jS j)sin(W inN i))其中,上述是在假设地球以海平面到地心距离为半径R的一个规则的圆球。
  8. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤10中的成本目标函数为:
    Figure PCTCN2019107634-appb-100015
    其中C表示总成本;c l表示单位长度电线的成本;μ为功率传输系数,根据输电的类型,三相电传输或直流电传输过程采用电线路数不同,由功率传输系数表示几路传输;n和N分别表示虚拟拓扑地图分类数及建造塔基总数以;
    Figure PCTCN2019107634-appb-100016
    表示成本系数,f k(F)表示根据现场工况第k段所需的建造成本估算;u s表示运输成本系数,G k(F)表示现场根据具体状况第k段所需的运输成本估算;ψ k表示第k段塔杆成本;τ k表示第k段人工成本;设定:c in=c sf k(F)+u sG k(F)+ψ kk即对可行第k段栅格粒进行属性赋值。
  9. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤11具体为:
    设定规划路径起点为虚拟拓扑节点T={O i,i≥1∪i∈□},即起点为O 1,终点为O N;设定电塔基点为S j
    Figure PCTCN2019107634-appb-100017
    为路径总偏转角度函数,电塔基点间向量设定为
    Figure PCTCN2019107634-appb-100018
    则根据偏转角最小化求解,则有下述函数:
    Figure PCTCN2019107634-appb-100019
    其中,
    Figure PCTCN2019107634-appb-100020
    设定
    Figure PCTCN2019107634-appb-100021
    即在步进环栅半环域
    Figure PCTCN2019107634-appb-100022
    内相邻半环域
    Figure PCTCN2019107634-appb-100023
    和半环域
    Figure PCTCN2019107634-appb-100024
    所选的塔基点为S j与塔基点S j+1及塔基点S j+2所构造的偏转夹角。
  10. 如权利要求1所述的基于步进环栅的输电线路的多目标优化路径选择方法,其特征在于,所述步骤12中的多目标优化函数为:
    Figure PCTCN2019107634-appb-100025
    其可行域为步进式环栅所构造的半环域
    Figure PCTCN2019107634-appb-100026
    则有 X=(S 1,S 2,...,S N) T为优化问题的一个解。
PCT/CN2019/107634 2019-09-05 2019-09-25 一种基于步进环栅的输电线路的多目标优化路径选择方法 WO2021042423A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/621,233 US20210342502A1 (en) 2019-09-05 2019-09-25 Multiple Objective Optimization Route Selection Method Based on Step Ring Grid Network for Power Transmission Line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910834937.1A CN110532508B (zh) 2019-09-05 2019-09-05 一种基于步进环栅的输电线路的多目标优化路径选择方法
CN201910834937.1 2019-09-05

Publications (1)

Publication Number Publication Date
WO2021042423A1 true WO2021042423A1 (zh) 2021-03-11

Family

ID=68667075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107634 WO2021042423A1 (zh) 2019-09-05 2019-09-25 一种基于步进环栅的输电线路的多目标优化路径选择方法

Country Status (3)

Country Link
US (1) US20210342502A1 (zh)
CN (1) CN110532508B (zh)
WO (1) WO2021042423A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114282717A (zh) * 2021-12-20 2022-04-05 电子科技大学 地震应急观测流动台的多目标智能优化选址方法
CN117272500A (zh) * 2023-07-24 2023-12-22 四川大学 一种基于多块拓扑的旋转机械结构网格自动生成方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512512B (zh) * 2017-12-20 2021-07-30 Abb电网瑞士股份公司 使用传输线路的多终端测量的相位选择
CN114896746B (zh) * 2022-05-07 2024-06-14 三峡大学 一种海上风电场集电系统拓扑优化方法
CN115146426B (zh) * 2022-07-12 2024-05-03 西安飞蜂智能科技有限公司 基于拓扑网络数据的农村污水中转站及处理站规划方法
CN115828479B (zh) * 2022-11-21 2024-06-21 四川电力设计咨询有限责任公司 一种输电线路施工便道的规划方法
CN116485056B (zh) * 2023-04-13 2023-10-20 珠海华成电力设计院股份有限公司 基于输电线路路径规划的场景构建系统
CN116865264B (zh) * 2023-09-05 2023-11-07 广州泓盈信息科技有限公司 一种变电站智能化分配供电方法、系统及存储介质
CN117236540B (zh) * 2023-09-25 2024-06-04 国网四川电力送变电建设有限公司 输电线路施工道路的规划方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103971184A (zh) * 2014-05-29 2014-08-06 国家电网公司 基于gis空间地理信息系统的输电线路路径生成方法
CN103984997A (zh) * 2014-05-29 2014-08-13 国家电网公司 基于gis空间信息的输电工程选址选线方法
CN103996089A (zh) * 2014-06-12 2014-08-20 国家电网公司 基于gis的输电线路最优路径生成方法
US20150051744A1 (en) * 2013-08-19 2015-02-19 Board Of Trustees Of Michigan State University Linear Optimal Power Flow System and Method
CN104462685A (zh) * 2014-12-03 2015-03-25 江苏省电力公司淮安供电公司 基于网格GIS和Floyd算法的输电线路设计方法
CN104599069A (zh) * 2015-01-23 2015-05-06 云南电网有限责任公司 一种基于环境因子及地理特征的输电线路路径规划方法
CN107480373A (zh) * 2017-08-11 2017-12-15 国家电网公司 输电线路选线方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735938B (zh) * 2015-05-01 2020-11-20 布莱克本能源公司 辅助动力产生方法和系统
CN106250579B (zh) * 2016-07-08 2019-12-20 广东科诺勘测工程有限公司 一种电力线路路径智能生成的方法及装置
CN110046213B (zh) * 2018-11-20 2023-04-18 国网陕西省电力公司 一种顾及路径失真纠正与交叉跨越纠正的电力选线方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150051744A1 (en) * 2013-08-19 2015-02-19 Board Of Trustees Of Michigan State University Linear Optimal Power Flow System and Method
CN103971184A (zh) * 2014-05-29 2014-08-06 国家电网公司 基于gis空间地理信息系统的输电线路路径生成方法
CN103984997A (zh) * 2014-05-29 2014-08-13 国家电网公司 基于gis空间信息的输电工程选址选线方法
CN103996089A (zh) * 2014-06-12 2014-08-20 国家电网公司 基于gis的输电线路最优路径生成方法
CN104462685A (zh) * 2014-12-03 2015-03-25 江苏省电力公司淮安供电公司 基于网格GIS和Floyd算法的输电线路设计方法
CN104599069A (zh) * 2015-01-23 2015-05-06 云南电网有限责任公司 一种基于环境因子及地理特征的输电线路路径规划方法
CN107480373A (zh) * 2017-08-11 2017-12-15 国家电网公司 输电线路选线方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114282717A (zh) * 2021-12-20 2022-04-05 电子科技大学 地震应急观测流动台的多目标智能优化选址方法
CN114282717B (zh) * 2021-12-20 2023-04-07 电子科技大学 地震应急观测流动台的多目标智能优化选址方法
CN117272500A (zh) * 2023-07-24 2023-12-22 四川大学 一种基于多块拓扑的旋转机械结构网格自动生成方法

Also Published As

Publication number Publication date
CN110532508B (zh) 2020-09-18
CN110532508A (zh) 2019-12-03
US20210342502A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2021042423A1 (zh) 一种基于步进环栅的输电线路的多目标优化路径选择方法
Elboshy et al. A suitability mapping for the PV solar farms in Egypt based on GIS-AHP to optimize multi-criteria feasibility
CN105005827B (zh) 一种基于电力突发事件的应急响应预警方法
CN104951993A (zh) 基于气象及电网gis的综合监测预警系统及方法
CN101976424A (zh) 利用智能规则库引擎生成电力系统污区分布图的方法
CN104766140A (zh) 一种分层分区模式化电网规划方法
CN109359350A (zh) 一种优化精细施工成本的风电场道路智能设计方法
CN107292478A (zh) 一种灾害对配电网影响态势的获取方法
Nasehi et al. Application of fuzzy GIS and ANP for wind power plant site selection in East Azerbaijan Province of Iran
CN113177858B (zh) 一种多维度的电网抗台风评价方法
CN114418215A (zh) 一种基于人工智能的智慧城市输电线路规划方法
CN111126672A (zh) 一种基于分类决策树的高压架空输电线路台风灾害预测方法
CN107194541A (zh) 一种基于自适应权重Voronoi图的配电网供电分区方法
Yin et al. Planning of electric vehicle charging station based on real time traffic flow
CN104951492B (zh) 基于电网gis风电场专业气象监测和预警方法及系统
CN115660367A (zh) 一种基于gis技术的光伏发电站前期宏观选址方法
Genç Determination of the most appropriate site selection of wind power plants based Geographic Information System and Multi-Criteria Decision-Making approach in Develi, Turkey
CN103870631A (zh) 一种基于3s技术的智能输电网络布设模型构建方法
Wang et al. Analysis of novel 5G wireless communication coverage enhancing service mode with power towers and street lamp poles integrated
CN113902346B (zh) 一种电力抢修队伍的智能调拨方法
CN113609752A (zh) 一种面向西南涡的配电变压器损失评估系统及方法
CN114511195A (zh) 一种基于gis数据和地图应用的配电网规划方法
Dai¹ et al. 1 Economic Research Institute of State Grid Zhejiang Electric Power Company, Block A, No. 219, Citizen Street, Hangzhou 310000, China
Ye Identification of the Residential Areas for Urban Renewal Based on Big Data: Take Guangzhou as an example
Dai et al. Auto Division Strategy of Power Supply Unit in Distribution Network Mesh Planning Based on Graph Theory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944451

Country of ref document: EP

Kind code of ref document: A1