WO2021042289A1 - Multiplicateur d'électrons gazeux, tube photomultiplicateur à gaz et intensificateur d'image à rayons x à gaz - Google Patents

Multiplicateur d'électrons gazeux, tube photomultiplicateur à gaz et intensificateur d'image à rayons x à gaz Download PDF

Info

Publication number
WO2021042289A1
WO2021042289A1 PCT/CN2019/104376 CN2019104376W WO2021042289A1 WO 2021042289 A1 WO2021042289 A1 WO 2021042289A1 CN 2019104376 W CN2019104376 W CN 2019104376W WO 2021042289 A1 WO2021042289 A1 WO 2021042289A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electron multiplier
micro
anode plate
mesh
Prior art date
Application number
PCT/CN2019/104376
Other languages
English (en)
Chinese (zh)
Inventor
张志永
刘建北
邵明
周意
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Priority to PCT/CN2019/104376 priority Critical patent/WO2021042289A1/fr
Priority to JP2022514969A priority patent/JP7466631B2/ja
Publication of WO2021042289A1 publication Critical patent/WO2021042289A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind

Definitions

  • the present disclosure proposes a gas electron multiplier, including: a readout anode plate 1; a micro-mesh electrode structure 2, which is formed by cascading n-layer micro-mesh electrodes 21 through a support structure 3, and the support structure 3 is fixed on the readout anode On the board 1; wherein, the micropores of the microgrid electrode 21 of the upper layer are misaligned with the micropores of the microgrid electrode 21 of the next layer, and the gas avalanche amplification area is formed between the microgrid electrodes 21, and n is an integer greater than or equal to 3.
  • the distance between the micro mesh electrodes 21 is 50-500 microns.
  • Fig. 1 schematically shows a structural diagram of a gas electron multiplier provided by an embodiment of the present disclosure.
  • the thickness of the micro-mesh electrode 21 can be, for example, between 10-40 microns, and the optical transmittance (or windowing rate) can be, for example, between 30% and 70%.
  • the electrode a uses a thinner mesh with a high windowing rate.
  • the gas avalanche pre-amplification zone (gap P) In order to facilitate the electrons to pass through the mesh into the first layer, the gas avalanche pre-amplification zone (gap P), to improve the collection efficiency of electrons.
  • the electrodes b and c adopt a denser mesh type, that is, the micro-mesh electrode 21 with low window opening rate and thicker to suppress IBFR.
  • three gaps are formed between the three-layer micro-mesh electrode 21 and the readout anode plate 1.
  • a strong electric field will be formed in the gap for the electron avalanche, and part of the electrons generated by the avalanche can be removed from the P
  • the (S) gap is transferred to the S(M) gap, thereby realizing gas cascade multiplication. Therefore, the selection of the gap and the distribution of the electrode voltage (gap electric field) have a direct impact on IBFR suppression and electron multiplication.
  • the photocathode 4 can be, for example, cesium iodide CsI (ultraviolet), basic or new semiconductor materials such as gallium arsenide (visible light).
  • the working gas G may be, for example, a mixed gas of an inert gas (argon, neon, xenon, etc.) and a negative gas (such as carbon tetrafluoride, methane, etc.).
  • the crystal material may be crystals such as quartz glass or magnesium fluoride, for example.
  • the reading anode plate 1 may be a ceramic reading plate, for example. The specific disclosure is not limited.
  • Fig. 4 schematically shows a structural diagram of a reflective gas photomultiplier tube according to an embodiment of the present disclosure.
  • the gas photomultiplier tube includes the gas electron multiplier and the photocathode 4 mentioned in the above embodiment.
  • the photocathode 4 can be, for example, cesium iodide CsI (ultraviolet), basic or new semiconductor materials such as gallium arsenide (visible light), and the working gas G can be, for example, inert gas (argon, neon, xenon, etc.) and negatively charged gas (for example, a mixed gas such as carbon tetrafluoride, methane, etc., the crystal material may be crystals such as quartz glass or magnesium fluoride, and the reading anode plate 1 may be, for example, a ceramic reading plate, which is not limited in this disclosure.
  • CsI ultraviolet
  • basic or new semiconductor materials such as gallium arsenide (visible light)
  • the working gas G can be, for example, inert gas (argon, neon, xenon, etc.) and negatively charged gas (
  • a mixed gas such as carbon tetrafluoride, methane, etc.
  • the crystal material may be crystals such as quartz glass or magnesium fluoride

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

L'invention concerne un multiplicateur d'électrons gazeux, comprenant : une plaque d'anode de lecture (1) ; une structure d'électrode à micro-maillage (2), formée par le montage en cascade de n couches d'électrodes à micro-maillage (21) au moyen d'une structure de support (3), la structure de support (3) étant fixée sur la plaque d'anode de lecture (1) ; les micropores de l'électrode à micro-maillage (21) de la couche précédente sont décalées par rapport aux micropores de l'électrode à micro-maillage (21) de la couche suivante, une région d'amplification d'avalanche de gaz est formée entre les électrodes à micro-maillage (21), et n est un nombre entier supérieur ou égal à 3. Le multiplicateur d'électrons gazeux peut augmenter le gain total de la multiplication d'électrons tout en réduisant le taux de retour d'ions. La production d'un photodétecteur sur la base du multiplicateur d'électrons gazeux évite les problèmes de coût accru et de taux de comptage réduit provoqués par des électrodes résistives et augmente la stabilité de gain, et résout également le problème d'un matériau de photocathode sensible à la lumière visible qui est facilement endommagé par réaction ionique.
PCT/CN2019/104376 2019-09-04 2019-09-04 Multiplicateur d'électrons gazeux, tube photomultiplicateur à gaz et intensificateur d'image à rayons x à gaz WO2021042289A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/104376 WO2021042289A1 (fr) 2019-09-04 2019-09-04 Multiplicateur d'électrons gazeux, tube photomultiplicateur à gaz et intensificateur d'image à rayons x à gaz
JP2022514969A JP7466631B2 (ja) 2019-09-04 2019-09-04 ガス電子増倍器、ガス光電増倍管及びガスx線像増強器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104376 WO2021042289A1 (fr) 2019-09-04 2019-09-04 Multiplicateur d'électrons gazeux, tube photomultiplicateur à gaz et intensificateur d'image à rayons x à gaz

Publications (1)

Publication Number Publication Date
WO2021042289A1 true WO2021042289A1 (fr) 2021-03-11

Family

ID=74852015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104376 WO2021042289A1 (fr) 2019-09-04 2019-09-04 Multiplicateur d'électrons gazeux, tube photomultiplicateur à gaz et intensificateur d'image à rayons x à gaz

Country Status (2)

Country Link
JP (1) JP7466631B2 (fr)
WO (1) WO2021042289A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777134A (zh) * 2021-08-26 2021-12-10 中国原子能科学研究院 一种定位方法、读出电极及微结构气体探测器
CN115950920A (zh) * 2023-03-16 2023-04-11 中国科学技术大学 一种基于微流控技术的微结构气体探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034653A (zh) * 2007-04-17 2007-09-12 中国科学院西安光学精密机械研究所 高分辨率x射线像增强器
US20160047919A1 (en) * 2013-03-28 2016-02-18 Atomic Energy Of Canada Limited / Energie Atomique Du Canada Limitee Radiation detection apparatus
CN109444224A (zh) * 2018-11-09 2019-03-08 中国科学技术大学 一种微结构气体探测器及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135267A (ja) 1999-09-08 2001-05-18 Siemens Ag 輻射変換器
US6847042B2 (en) 2003-06-19 2005-01-25 Ge Medical Systems Global Technology Co., Llc Centroid apparatus and method for sub-pixel X-ray image resolution
JP5022611B2 (ja) 2006-03-02 2012-09-12 独立行政法人理化学研究所 ガス電子増幅フォイルの製造方法
GB0723487D0 (en) 2007-11-30 2008-01-09 Micromass Ltd Mass spectrometer
JP2010286316A (ja) 2009-06-10 2010-12-24 Univ Of Tokyo 光検出器
JP5951203B2 (ja) 2011-08-26 2016-07-13 浜松ホトニクス株式会社 検出器
JPWO2013141400A1 (ja) 2012-03-23 2015-08-03 Hoya株式会社 電子増幅用細孔ガラスプレートおよび検出器
CN106024552B (zh) 2016-05-10 2017-11-28 中国科学技术大学 用于大面积gem探测器安装制作的滑动式自张紧方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034653A (zh) * 2007-04-17 2007-09-12 中国科学院西安光学精密机械研究所 高分辨率x射线像增强器
US20160047919A1 (en) * 2013-03-28 2016-02-18 Atomic Energy Of Canada Limited / Energie Atomique Du Canada Limitee Radiation detection apparatus
CN109444224A (zh) * 2018-11-09 2019-03-08 中国科学技术大学 一种微结构气体探测器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALTUNBAS, C. CAPEANS, M. DEHMELT, K. EHLERS, J. FRIEDRICH, J. KONOROV, I. GANDI, A. KAPPLER, S. KETZER, B. DE OL: "Construction, test and commissioning of the triple-gem tracking detector for compass", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, vol. 490, no. 1-2, 1 September 2002 (2002-09-01), NL, pages 177 - 203, XP004377925, ISSN: 0168-9002, DOI: 10.1016/S0168-9002(02)00910-5 *
M ALEXEEV; R BIRSA; F BRADAMANTE; A BRESSAN; M CHIOSSO; P CILIBERTI; S DALLA TORRE; S DASGUPTA; O DENISOV; V DUIC; M FINGER; M FIN: "Ion backflow in thick GEM-based detectors of single photons", JOURNAL OF INSTRUMENTATION , vol. 8, no. 1, 29 January 2013 (2013-01-29), GB, pages 1 - 19, XP020237179, ISSN: 1748-0221, DOI: 10.1088/1748-0221/8/01/P01021 *
WOTSCHACK JOERG: "The development of large-area micromegas detectors for the atlas upgrade", MODERN PHYSICS LETTERS A, vol. 28, no. 13, 17 April 2013 (2013-04-17), pages 1 - 11, XP009526502, ISSN: 0217-7323, DOI: 10.1142/S0217732313400208 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777134A (zh) * 2021-08-26 2021-12-10 中国原子能科学研究院 一种定位方法、读出电极及微结构气体探测器
CN115950920A (zh) * 2023-03-16 2023-04-11 中国科学技术大学 一种基于微流控技术的微结构气体探测器及其制备方法

Also Published As

Publication number Publication date
JP2022541075A (ja) 2022-09-21
JP7466631B2 (ja) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2021042289A1 (fr) Multiplicateur d'électrons gazeux, tube photomultiplicateur à gaz et intensificateur d'image à rayons x à gaz
KR100660466B1 (ko) 에프이디 소자를 이용한 엑스레이 검출기판
JP2014067730A5 (fr)
Winter et al. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry
US9184033B2 (en) Electron multiplying structure for use in a vacuum tube using electron multiplying as well as a vacuum tube using electron multiplying provided with such an electron multiplying structure
CN110600358B (zh) 气体电子倍增器、气体光电倍增管及气体x射线像增强器
Ertley et al. Second generation large area microchannel plate flat panel phototubes
Breskin et al. Recent advances in gaseous imaging photomultipliers
CN101762820B (zh) 一种平板探测器件
US4100445A (en) Image output screen comprising juxtaposed doped alkali-halide crystalline rods
US10886095B2 (en) Image intensifier for night vision device
Siegmund et al. Application of atomic layer deposited microchannel plates to imaging photodetectors with high time resolution
Chechik et al. Progress in GEM-based gaseous photomultipliers
Angelico et al. Air-transfer production method for large-area picosecond photodetectors
CN203850242U (zh) 一种x射线图像增强器
JP2003263952A (ja) 透過型2次電子面及び電子管
CN110571125B (zh) 一种气体光电倍增管
CN105448638B (zh) 一种微通道型入射窗及其制作方法
Jeong et al. Electrical properties of Cs3Sb photocathode emitters in panel device applications
CN207637745U (zh) 一种分幅变像管及分幅相机
Chechik et al. Recent investigations of cascaded GEM and MHSP detectors
CN205303413U (zh) 一种微通道型入射窗
CN110571114B (zh) 一种气体x射线像增强器
US20210242002A1 (en) Gas electron multiplier board photomultiplier
Yusof et al. Development of an alkali transfer photocathode for large area microchannel plate-based photodetectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944333

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19944333

Country of ref document: EP

Kind code of ref document: A1