WO2021042252A1 - Procédé et dispositif de surveillance de la qualité du gaz - Google Patents

Procédé et dispositif de surveillance de la qualité du gaz Download PDF

Info

Publication number
WO2021042252A1
WO2021042252A1 PCT/CN2019/104109 CN2019104109W WO2021042252A1 WO 2021042252 A1 WO2021042252 A1 WO 2021042252A1 CN 2019104109 W CN2019104109 W CN 2019104109W WO 2021042252 A1 WO2021042252 A1 WO 2021042252A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
volume flow
flow rate
ratio
quality
Prior art date
Application number
PCT/CN2019/104109
Other languages
English (en)
Chinese (zh)
Inventor
肖福明
曾频
印志强
方晓鹏
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to PCT/CN2019/104109 priority Critical patent/WO2021042252A1/fr
Publication of WO2021042252A1 publication Critical patent/WO2021042252A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents

Definitions

  • the invention relates to the technical field of safety monitoring, and more specifically, to a method and device for monitoring the quality of gas.
  • the present invention provides a method and device for monitoring the quality of gas.
  • the technical solution is as follows:
  • a method for monitoring the quality of gas comprising:
  • the preset threshold value is a ratio of the air volume flow rate to the gas volume flow rate under normal gas usage conditions.
  • the method further includes:
  • the method further includes:
  • the knock suppression operation is performed.
  • a device for monitoring the quality of gas comprising:
  • An obtaining module which is used to obtain air volume flow and gas volume flow
  • a judging module the judging module is used to judge whether the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold
  • the determining module is configured to determine that when the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold, the gas quality has changed and the gas has a tendency to knock.
  • the preset threshold value is a ratio of the air volume flow rate to the gas volume flow rate under normal gas use conditions.
  • the device further includes:
  • the execution module is configured to trigger the acquisition module when the ratio of the air volume flow rate to the gas volume flow rate is less than or equal to a preset threshold.
  • the device further includes:
  • the control module is configured to perform knock suppression operations when it is determined that there is a tendency to knock.
  • This method of monitoring gas quality monitors the air volume flow and the gas volume flow in real time, and compares the ratio of the two with the safety threshold to determine whether there is a tendency to knock, and then the corresponding explosion suppression can be quickly adopted. Shock operation to suppress the occurrence of knocking.
  • this method of monitoring gas quality predicts knocking by monitoring the quality of the gas source, even without installing knock sensors and other components, which greatly reduces development costs.
  • FIG. 1 is a schematic flowchart of a method for monitoring gas quality according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another method for monitoring gas quality according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another method for monitoring gas quality according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a device for monitoring gas quality provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another device for monitoring gas quality provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of another device for monitoring gas quality according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for monitoring gas quality according to an embodiment of the present invention, and the method includes:
  • S102 Determine whether the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold.
  • the preset threshold value is a ratio of the air volume flow rate to the gas volume flow rate under normal gas use conditions.
  • gas with high calorific value is prone to knocking.
  • propane is prone to knocking compared to methane.
  • the ratio of the real-time air volume flow rate to the gas volume flow rate will change significantly.
  • the gas composition In different gas usage conditions, the gas composition will be different. In order to prevent normal operation under any gas composition, the monitoring of its gas quality is extremely important.
  • the gas source of pipeline gas or gas filling station is mainly a mixture of methane and air.
  • the composition of the gas source in the mine is more complex, belonging to a variety of mixed gas, which contains methane, ethane and propane and other high-calorific value gases.
  • methane the chemical formula is CH 4 , the calorific value per unit volume: 35.3882 [MJ/m 3 ], is the simplest hydrocarbon, composed of one carbon and four hydrogen atoms through SP 3 hybridization, therefore, the methane molecule
  • the structure is a regular tetrahedron structure, and the bond lengths of the four bonds are the same and the bond angles are the same.
  • methane is a colorless and odorless gas. In theory, 9.7 volumes of air are required to completely burn 1 volume of methane.
  • Propane The chemical formula is C 3 H 8 , the calorific value per unit volume: 93.207 [MJ/m 3 ], and the structural formula is CH 3 CH 2 CH 3 . It is usually in a gaseous state, but it is generally transported after being compressed into a liquid state. After crude oil or natural gas is processed, propane can be obtained from the refined oil.
  • the method for monitoring gas quality monitors the air volume flow and the gas volume flow in real time, and compares the ratio of the two with the safety threshold to easily and quickly determine whether there is a tendency to knock, and then can quickly adopt the corresponding Suppress knocking operation and suppress the occurrence of knocking.
  • this method of monitoring gas quality predicts knocking by monitoring the quality of the gas source, even without the installation of knock sensors and other components, which greatly reduces the development cost and can ensure that no matter what mixed gas composition is Both can effectively suppress knocking, thereby improving working stability.
  • the preset threshold may be the value range of the safety threshold to be reduced again in the case of the safety threshold to prevent knocking to a great extent.
  • this method of monitoring gas quality can also assist customers in troubleshooting the cause of knocking. For example, if there is a problem with the command or measure to control knock or suppress knock, but the engine is damaged for unknown reasons during use, it is suspected that the damage is caused by engine knock. You can call the engine stored in the ECU.
  • the volume ratio of air and gas before the damage occurs analyze whether this volume ratio is greater than the threshold of knock based on the quality of gas, if it exceeds this threshold, you can assist the customer service staff to determine that the user is using high calorific value gas
  • the resulting knock caused damage to the engine and better deal with after-sales claims and other issues.
  • FIG. 2 is a schematic flowchart of another method for monitoring gas quality according to an embodiment of the present invention, and the method further includes:
  • the target of predicting knocking continues to work, and returns to continue to obtain the air volume flow rate and the gas volume flow rate, To ensure the purpose of real-time monitoring, the timeliness of suppressing knocking can be further improved.
  • FIG. 3 is a schematic flowchart of another method for monitoring gas quality according to an embodiment of the present invention, and the method further includes:
  • the knock suppression operation when the target for predicting knock is different, the knock suppression operation is different.
  • the knock suppression operation when the knock suppression operation is performed on the engine, it includes but is not limited to the operation of retarding the ignition advance angle.
  • the method of monitoring gas quality tends to occurrence of knocking in accordance with the physical characteristics of high BTU gas, e.g., with respect to methane, a high-calorific gas belonging propane, propane combustion 1m 3 needs to 24.7m 3 Air, burning 1m 3 of methane requires 9.7m 3 of air.
  • the ratio of 24.7:9.7 belongs to a relatively high signal-to-noise ratio. That is to say, a clear distinction can generally eliminate interference errors caused by other factors.
  • the ratio of the air volume flow rate to the gas volume flow rate has a larger signal-to-noise ratio and a stronger anti-interference ability.
  • FIG. 4 is a schematic structural diagram of a device for monitoring gas quality according to an embodiment of the present invention.
  • the device includes:
  • An obtaining module 41 which is used to obtain air volume flow and gas volume flow
  • a judging module 42 for judging whether the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold
  • the determining module 43 is configured to determine that when the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold, the gas quality has changed and the gas has a tendency to knock.
  • the preset threshold value is a ratio of the air volume flow rate to the gas volume flow rate under normal gas use conditions.
  • Fig. 5 is a schematic structural diagram of another device for monitoring gas quality according to an embodiment of the present invention, and the device further includes:
  • the execution module 44 is configured to trigger the acquisition module when the ratio of the air volume flow rate to the gas volume flow rate is less than or equal to a preset threshold.
  • FIG. 6 is a schematic structural diagram of another device for monitoring gas quality according to an embodiment of the present invention, and the device further includes:
  • the control module 45 is configured to perform a knock suppression operation when it is determined that there is a tendency to knock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé et un dispositif de surveillance de la qualité d'un gaz. Le procédé comprend les étapes consistant à : acquérir un débit volumique d'air et un débit volumique d'un gaz (S101) ; déterminer si un rapport entre le débit volumique d'air et le débit volumique du gaz est supérieur à un seuil prédéfini (S102) ; et si tel est le cas, déterminer que la qualité du gaz a changé et qu'il existe une plus grande probabilité de cliquetis (S103). Selon le procédé, un débit volumique d'air et un débit volumique d'un gaz sont surveillés en temps réel, puis un rapport entre les deux débits volumiques est obtenu à partir du calcul et comparé à un seuil de sécurité, de telle sorte que l'on puisse déterminer de manière pratique et rapide s'il y a une plus grande probabilité de cliquetis, et qu'une opération correspondante de suppression des cliquetis puisse être rapidement effectuée pour supprimer l'apparition de cliquetis. Dans le procédé de surveillance de la qualité d'un gaz, la prédiction du cliquetis est effectuée par surveillance de la qualité d'une source de gaz et ne nécessite pas l'installation de composants tels qu'un capteur de cliquetis, ce qui permet de réduire au maximum les coûts de développement.
PCT/CN2019/104109 2019-09-03 2019-09-03 Procédé et dispositif de surveillance de la qualité du gaz WO2021042252A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104109 WO2021042252A1 (fr) 2019-09-03 2019-09-03 Procédé et dispositif de surveillance de la qualité du gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104109 WO2021042252A1 (fr) 2019-09-03 2019-09-03 Procédé et dispositif de surveillance de la qualité du gaz

Publications (1)

Publication Number Publication Date
WO2021042252A1 true WO2021042252A1 (fr) 2021-03-11

Family

ID=74851974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104109 WO2021042252A1 (fr) 2019-09-03 2019-09-03 Procédé et dispositif de surveillance de la qualité du gaz

Country Status (1)

Country Link
WO (1) WO2021042252A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791145A (en) * 1994-09-30 1998-08-11 Cooper Cameron Corporation Natural gas engine control system
CN1690391A (zh) * 2004-04-27 2005-11-02 株式会社丰田自动织机 均质充气压燃式发动机及运行均质充气压燃发动机的方法
EP1707791A2 (fr) * 2005-03-31 2006-10-04 Mazda Motor Corporation Dispositif de commande d'un moteur à allumage commandé
US20070251509A1 (en) * 2006-04-26 2007-11-01 Denso Corporation Air-fuel ratio control apparatus of internal combustion engine
US20090283080A1 (en) * 2008-05-15 2009-11-19 Lycoming Engines, A Division Of Avco Corporation Method and apparatus for providing fuel to an aircraft engine
JP2016006305A (ja) * 2014-06-20 2016-01-14 本田技研工業株式会社 内燃機関の制御装置
WO2017135957A1 (fr) * 2016-02-04 2017-08-10 Cummins Inc. Système et procédé pour le réglage automatique de paramètres de performance de moteur pendant une variation de qualité de carburant
CN109209660A (zh) * 2018-09-13 2019-01-15 湖北谊立舜达动力科技有限公司 一种天然气发动机空燃比控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791145A (en) * 1994-09-30 1998-08-11 Cooper Cameron Corporation Natural gas engine control system
CN1690391A (zh) * 2004-04-27 2005-11-02 株式会社丰田自动织机 均质充气压燃式发动机及运行均质充气压燃发动机的方法
EP1707791A2 (fr) * 2005-03-31 2006-10-04 Mazda Motor Corporation Dispositif de commande d'un moteur à allumage commandé
US20070251509A1 (en) * 2006-04-26 2007-11-01 Denso Corporation Air-fuel ratio control apparatus of internal combustion engine
US20090283080A1 (en) * 2008-05-15 2009-11-19 Lycoming Engines, A Division Of Avco Corporation Method and apparatus for providing fuel to an aircraft engine
JP2016006305A (ja) * 2014-06-20 2016-01-14 本田技研工業株式会社 内燃機関の制御装置
WO2017135957A1 (fr) * 2016-02-04 2017-08-10 Cummins Inc. Système et procédé pour le réglage automatique de paramètres de performance de moteur pendant une variation de qualité de carburant
CN109209660A (zh) * 2018-09-13 2019-01-15 湖北谊立舜达动力科技有限公司 一种天然气发动机空燃比控制系统

Similar Documents

Publication Publication Date Title
Yousefi et al. Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions
Quader What limits lean operation in spark ignition engines—flame initiation or propagation?
EP2700804B1 (fr) Moteur à gaz, appareil de commande de moteur à gaz, et procédé de commande de moteur à gaz
Brecq et al. A new indicator for knock detection in gas SI engines
Kim et al. An investigation on the causes of cycle variation in direct injection hydrogen fueled engines
Yamanaka et al. Development of pre-chamber sparkplug for gas engine
Chen et al. Quantitative evaluation of n-butane concentration on knock severity of a natural gas heavy-duty SI engine
Singh et al. Effectiveness of fuel enrichment on knock suppression in a gasoline spark-ignited engine
WO2021042252A1 (fr) Procédé et dispositif de surveillance de la qualité du gaz
Brecq et al. Knock prevention of CHP engines by addition of N2 and CO2 to the natural gas fuel
KR20160149575A (ko) 노킹 제어 시스템이 구비된 엔진 및 엔진의 노킹 제어 방법
JP2010209892A (ja) エンジン失火判定システム及び方法
WO2015033371A1 (fr) Dispositif de détection de combustion anormale pour moteur et procédé de détection de combustion anormale pour moteur
JPWO2012114500A1 (ja) 多種燃料内燃機関の制御装置
Wise et al. Development of a lean burn methane number measurement technique for alternative gaseous fuel evaluation
JP5466098B2 (ja) 内燃機関の燃焼状態検出システム
Maurya et al. Knocking and combustion noise analysis
Badr et al. An investigation of the lean operational limits of gas-fueled spark ignition engines
WO2019082384A1 (fr) Procédé de détection de cognement et dispositif de détection de cognement
van Essen et al. The effect of humidity on the knock behavior in a medium BMEP lean-burn high-speed gas engine
Ghanaati et al. A comparative study on knock occurrence for different fuel octane number
Ladd et al. Evaluation of operating parameters and fuel composition on knock in large bore two-stroke pipeline engines
Bade Shrestha et al. Effects of diluents on knock rating of gaseous fuels
Smolenskaya et al. Influence of the Thermodynamic Characteristics of the Combustion Process on Vehicle Emissions in Spark-Ignition Engines
JP5984719B2 (ja) 火花点火式エンジン及びその運転制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944380

Country of ref document: EP

Kind code of ref document: A1