WO2021040169A1 - 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법 - Google Patents

메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법 Download PDF

Info

Publication number
WO2021040169A1
WO2021040169A1 PCT/KR2020/003851 KR2020003851W WO2021040169A1 WO 2021040169 A1 WO2021040169 A1 WO 2021040169A1 KR 2020003851 W KR2020003851 W KR 2020003851W WO 2021040169 A1 WO2021040169 A1 WO 2021040169A1
Authority
WO
WIPO (PCT)
Prior art keywords
bio
cells
ink composition
crosslinking
composition
Prior art date
Application number
PCT/KR2020/003851
Other languages
English (en)
French (fr)
Inventor
서장수
Original Assignee
주식회사 이노리젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노리젠 filed Critical 주식회사 이노리젠
Publication of WO2021040169A1 publication Critical patent/WO2021040169A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/80Hyaluronan

Definitions

  • the present invention relates to a bio-ink composition containing methacrylated low-molecular collagen, and a method for manufacturing a tissue-like structure using the same, and more particularly, to a bio-ink composition containing methacrylated low-molecular collagen as a cell transport material in a specific amount or more. It relates to an ink composition and a method of manufacturing a tissue-like structure using the same.
  • the three-dimensional cell culture technology is developed as a technology capable of manufacturing cells and tissues in an environment similar to living tissues in vitro, and is applied to various research fields related to the growth and differentiation of cells, and formation of tissues and organs. have.
  • These tissue-like organs can be usefully used in drug toxicity and pharmacokinetic studies in place of actual tissues or organs, and thus, it is expected to reduce the direct application of experiments to human specimens and other mammals.
  • it is contributing to the engineering design of tissues and organs as an important element of tissue engineering techniques for the purpose of replacing or treating damaged tissues and organs.
  • bioprinting technology has become a useful device for precisely manufacturing such tissue-like organs and implantable structures. This technology makes it possible to create microscopic and large tissue structures that closely mimic real human tissues.
  • biomaterials that carry living cells during bioprinting that is, bio-inks
  • bio-inks have many limitations in their utilization.
  • As a characteristic of bio-ink required to be applied to bio-printing excellent biocompatibility is required, and it must have excellent printing properties that can be printed in a desired pattern by smoothly passing through a micro-diameter dispensing nozzle. It should have structural stability that can maintain the role of a mechanical support while providing a cell-specific signal after printing.
  • bio-inks based on these existing hydrogels are in terms of physical and biological aspects such as biocompatibility, printing compatibility, geometric precision, and precision. There are significant limitations.
  • the inventors of the present invention have disclosed a bio-ink composition containing a specific amount of a cell transport material, a viscosity enhancer, a lubricant, and a structural material through prior research (Korean Patent Laid-Open No. 10-2017-0012099).
  • the conventional bio-ink composition contains methacrylated low molecular weight collagen as a cell carrier in a specific content or more, it is possible to manufacture a bio-ink having surprisingly improved structural stability and printing precision. And completed the present invention.
  • An object of the present invention is to provide a bio-ink composition comprising a methacrylated low-molecular collagen as a cell transport material.
  • Another object of the present invention is to provide a method for manufacturing a tissue-like structure using the bio-ink composition and a tissue-like structure prepared by the method.
  • the present invention includes a cell transport material, a viscosity enhancer, a lubricant and a structural material,
  • the cell carrier material provides a bio-ink composition comprising methacrylated low molecular weight collagen.
  • the molecular weight of the methacrylated low-molecular collagen may be 500 ⁇ 4000 Da.
  • the methacrylated low-molecular collagen contained in the bioink composition may be 0.1 to 10 w/v%.
  • the viscosity before crosslinking of the bioink composition may be 8 to 1000 Pa ⁇ s, and the viscosity after crosslinking may be 20 to 3000 Pa ⁇ s.
  • the viscosity before crosslinking may be 60 to 140 Pa ⁇ s, and the viscosity after crosslinking may be 130 to 350 Pa ⁇ s under the condition of a frequency of 1 Hz of the bioink composition.
  • the bioink composition has a storage modulus before crosslinking of 250 to 1000 Pa, a loss modulus of 80 to 160 Pa, and a storage modulus after crosslinking of 700 ⁇ 2300 Pa, loss modulus may be 160 ⁇ 400 Pa.
  • the storage modulus before crosslinking is 400 to 850 Pa
  • the loss modulus is 85 to 200 Pa
  • the storage modulus after crosslinking is 800 under the condition of a frequency of 1 Hz of the bioink composition.
  • loss modulus may be 180 ⁇ 250 Pa.
  • the bioink composition contains 0.01 to 1 w/v% of the viscosity enhancer, 1 to 30 w/v% of the lubricant, and 0.1 to 10 w/v% of the structural material. I can.
  • the viscosity increasing agent may be hyaluronic acid or dextran
  • the lubricant may be glycerol
  • the structural material may be fibrinogen or methacrylated gelatin.
  • gelatin or collagen may be additionally included in the cell transport material.
  • the bioink composition may additionally contain cells of 0.05 to 60 ⁇ 10 6 /mL.
  • the cells are stem cells, osteoblasts, myoblasts, tenocytes, neuroblasts, fibroblasts, and glial cells.
  • glioblast germ cells, hepatocytes, renal cells, seroli cells, chondrocytes, epithelial cells, cardiovascular cells, keratinocytes ), smooth muscle cells, cardiomyocytes, glial cells, endothelial cells, hormone secreting cells, immune cells, pancreatic islet cells, and neurons It may be one or more selected from the group consisting of.
  • the composition may further include a photoinitiator.
  • the present invention comprises the steps of: (a) filling the bio-ink composition into a three-dimensional printer; (b) three-dimensional printing of a desired three-dimensional structure; And (c) crosslinking the three-dimensional printed bio-ink composition.
  • the present invention comprises the steps of: (a) filling the bio-ink composition into a three-dimensional printer; (b) three-dimensional printing of a desired tissue-like structure; (c) It provides a method of manufacturing a tissue-like structure comprising the step of crosslinking the three-dimensional printed bio-ink composition.
  • the method may further include (d) culturing the tissue-like structure in a culture medium.
  • the present invention provides a tissue-like structure or tissue-like organoid manufactured according to the above method.
  • bio-ink composition containing methacrylated low-molecular collagen of the present invention exhibits high viscoelasticity, strong structural stability, excellent printing properties, biocompatibility, and appropriate mechanical properties after printing, preparation of a tissue-like structure using three-dimensional bioprinting It can be used very usefully.
  • 1 is a data comparing the viscosity before (A) and after (B) crosslinking of a bioink composition containing methacrylated low molecular collagen (ColMA bioink) and a bioink composition containing gelatin (Cel4cell). .
  • FIG. 2 is data comparing the viscosity of a bioink composition before and after crosslinking based on a frequency of 1 Hz. Each sample number is as follows: 1) Gel4cell, 2) ColMA 1%, 3) ColMA 2%, 4) ColMA 3%, 5) ColMA 4%, 6) ColMA 5%.
  • Each sample number is as follows: 1) Gel4cell, 2) ColMA 1%, 3) ColMA 2%, 4) ColMA 3%, 5) ColMA 4%, 6) ColMA 5%.
  • the present invention relates to a bio-ink composition
  • a bio-ink composition comprising a cell carrier material, a viscosity enhancer, a lubricant, and a structural material in a consistent view
  • the cell carrier material includes methacrylated low molecular weight collagen.
  • the methacrylated low-molecular collagen has undergone a methacrylate reaction to increase the structural safety of low-molecular collagen used for food, and replaces high-cost high-molecular collagen to adhere to, grow, or move cells, By helping the functional aspects of cells such as differentiation, it can be applied to many fields other than tissue regeneration.
  • the methacrylated low-molecular collagen refers to a modified form of low-molecular collagen that can be crosslinked through chemical modification, and preferably has a molecular weight of 500 to 4000 Da.
  • the methacrylated low molecular weight collagen can be used as a cell transport material or a structural material.
  • Cell transport material is a material that can provide an environment suitable for cells to survive in a bio-printed structure, and must exhibit biocompatibility as well as adequate physical stiffness that can impart stability to the structure after bio-printing. It must also be indicated.
  • a bio-ink composition having remarkably excellent structural stability after printing and more precise printing compared to a conventional bio-ink composition using only gelatin as a cell transport material can be prepared. I can.
  • any one or more materials selected from the group consisting of gelatin, collagen, alginate, agar, agarose, pluronic, and polyvinyl alcohol and methacrylated low-molecular collagen were added to the cell carrier material. It can be mixed and used.
  • the viscosity enhancing agent may be selected suitable for maintaining excellent printing tendency and initial strength of the bio-ink, and non-limiting examples thereof may be hyaluronic acid or dextran.
  • the lubricant is preferably selected from materials capable of minimizing shear rate and improving dispensing speed, and non-limiting examples thereof include glycerol.
  • the structural material is preferably selected from materials capable of forming rapid crosslinking and maintaining mechanical rigidity, and non-limiting examples thereof include fibrinogen, hyaluronic acid modified to be chemically crosslinked (e.g., methacrylate Hyaluronic acid, thiolated hyaluronic acid, etc.), gelatin modified to be chemically crosslinked (e.g., gelatin methacrylate, thiolated gelatin, etc.), alginate, methyl cellulose, chitosan, chitin, synthetic peptides And it may be any one or more selected from the group consisting of a polyethylene glycol-based hydrogel.
  • fibrinogen e.g., methacrylate Hyaluronic acid, thiolated hyaluronic acid, etc.
  • gelatin modified to be chemically crosslinked e.g., gelatin methacrylate, thiolated gelatin, etc.
  • alginate methyl cellulose
  • chitosan chitin
  • the fibrinogen is not only suitable as a structural material in terms of the stability of the gel, but may be selected as a preferable structural material in that it creates a microenvironment suitable for attachment and differentiation of cells after the cells are printed.
  • Hyaluronic acid and glycerol may be suitably used in the composition of the present invention in terms of dispensing uniformity and preventing clogging of nozzles when applying three-dimensional bioprinting, respectively.
  • the methacrylated low-molecular collagen is 0.01 to 10 w/v%, 0.05 to 10 w/v%, 0.5 to 10 w/v%, 1 to 10 w/v%, 0.1 to 8 w/v%, 0.5 to 8 w/v%, 1 to 8 w/v%, 0.1 to 6 w/v%, 0.5 to 6 w/v%, 1 to 6 w/v%, 0.1 to 5 w/ v%, 0.5 to 5 w/v%, or 1 to 5 w/v% may be included, and most preferably 1 to 4 w/v% may be included, but the present invention is not limited thereto.
  • the cell carrier material is 0.01 to 10 w/v%, 0.05 to 10 w/v%, 0.5 to 10 w/v%, 1 to 10 w/v%, 1.5 to 10 w/v %, 2 to 10 w/v%, 0.1 to 8 w/v%, 0.5 to 8 w/v%, 1 to 8 w/v%, 2 to 8 w/v%, 0.1 to 6 w/v%, 0.5 to 6 w/v%, 1 to 6 w/v%, 2 to 6 w/v%, 0.1 to 5 w/v%, 0.5 to 5 w/v%, 1 to 5 w/v% or 2 to 5 w/v% may be included, and most preferably 1 to 4 w/v% may be included, but the present invention is not limited thereto.
  • the viscosity enhancing agent is 0.01 to 1 w/v%, 0.05 to 1 w/v%, 0.1 to 1 w/v%, 0.2 to 1 w/v%, 0.01 to 0.8 w/v% , 0.05 to 0.8 w/v%, 0.1 to 0.8 w/v%, 0.2 to 0.8 w/v%, 0.01 to 0.5 w/v%, 0.05 to 0.5 w/v%, or 0.1 to 0.5 w/v% can be included And, most preferably, 0.2 to 0.4 w/v% may be included, but is not limited thereto.
  • the lubricant is 0.1 to 30 w/v%, 1 to 30 w/v%, 5 to 30 w/v%, 10 to 30 w/v%, 0.1 to 20 w/v%, 1 to 20 w/v%, 5 to 20 w/v%, 10 to 20 w/v%, 0.1 to 15 w/v%, 1 to 15 w/v%, 5 to 15 w/v% or 10 to 15 w/v% may be included, and most preferably 10 to 13 w/v% may be included, but the present invention is not limited thereto.
  • the structural material is 0.1 to 10 w/v%, 0.5 to 10 w/v%, 1 to 10 w/v%, 0.1 to 8 w/v%, 0.5 to 8 w/v% , 1 to 8 w/v%, 0.1 to 10 w/v%, 0.5 to 10 w/v% or 3 to 10 w/v%, most preferably 3 to 7 w/v%, but , But is not limited thereto.
  • the inventors of the present invention tested physical and biological properties of compositions having various combinations of compositions in order to develop bio-ink compositions that exhibit physical and biological properties suitable for application to three-dimensional bioprinting, and as a result, the combination and the content It has been found that a bio-ink composition consisting of a combination of components of is particularly suitable for three-dimensional bio-printing for the production of tissue-like structures, as it exhibits high structural stability, excellent printing performance, and suitable mechanical properties after printing.
  • the bioink composition comprises the steps of: (a) mixing and stirring a viscosity increasing agent and a structural material; (b) adding and stirring methacrylated low-molecular collagen to the stirring solution; And (c) adding a lubricant to the stirring solution and stirring.
  • the bioink composition may have a complex viscosity before crosslinking of 8 to 1000 Pa ⁇ s, and a viscosity after crosslinking of 20 to 3000 Pa ⁇ s. More preferably, under the condition of a frequency of 1 Hz, the viscosity before crosslinking may be 60 to 140 Pa ⁇ s, and the viscosity after crosslinking may be 130 to 350 Pa ⁇ s.
  • the storage modulus before crosslinking of the bioink composition is 250 to 1000 Pa
  • the loss modulus is 80 to 160 Pa
  • the storage modulus after crosslinking is 700 to 2300 Pa
  • the loss modulus is 160 to 400 Pa.
  • the frequency (Frequency) is 1Hz condition
  • the storage modulus before crosslinking is 400 to 850 Pa
  • the loss modulus is 85 to 200 Pa
  • the storage modulus after crosslinking may be 800 to 2200 Pa
  • the loss modulus may be 180 to 250 Pa.
  • 1%, 2% 3%, 4% and 5% of methacrylated low molecular collagen are used to confirm whether the methacrylated low-molecular collagen is suitable as a bioink composition.
  • Each bioink composition (ColMA) was prepared as possible, and a bioink composition (Gel4cell) containing gelatin was used as a comparative example instead of methacrylated low-molecular collagen as a cell transport material.
  • the bio-ink composition containing methacrylated low-molecular collagen of the present invention can produce a structure having superior physical properties compared to the conventional bio-ink composition (Gel4cell) using only gelatin as a cell transport material.
  • the bio-ink composition of the present invention may contain 0.05 ⁇ 60 ⁇ 10 6 /mL cells.
  • the cells are preferably stem cells, osteoblasts, myoblasts, tenocytes, neuroblasts, fibroblasts, glioblasts, and embryos.
  • the cells used in the present invention and the cells contained in the bioprinted tissue-like structure may be cultured in any manner known in the art.
  • Cell and tissue culture methods are known in the art and are described, for example, in Cell & Tissue Culture: Laboratory Procedures; Freshney (1987), Culture of Animal Cells: A Manual of Basic Techniques, and The contents thereof are incorporated herein by reference.
  • General mammalian cell culture techniques, cell lines, and cell culture systems that can be used with the present invention are also described in Doyle, A., Griffiths, JB, Newell, DG, (eds.) Cell and Tissue Culture: Laboratory Procedures, Wiley. (1998)], the contents of which are incorporated herein by reference.
  • Cells may also be cultured with cell differentiation substances that induce differentiation of cells along the desired cell line.
  • stem cells are incubated in contact with a differentiation medium to produce a range of cell types.
  • differentiation media include, but are not limited to, osteogenic differentiation medium, chondrogenic differentiation medium, adipogenic differentiation medium, neural differentiation medium, cardiomyocyte differentiation medium, and intestinal cell differentiation medium (e.g. Epidermis).
  • the cells may be bioprinted by depositing or extruding bio-ink from a three-dimensional bioprinter.
  • the bio-ink of the present invention may be in the form of a liquid, semi-solid, or solid composition including a plurality of cells.
  • Bio-inks include liquid or semi-solid cell solutions, cell suspensions, or cell concentrates.
  • the bio-ink composition comprises 1) preparing a bio-ink by mixing a plurality of cells or cell aggregates and a biocompatible liquid or gel at a predetermined ratio, and 2) densifying the bio-ink to have a desired cell density and viscosity. It can be manufactured by the step of manufacturing.
  • the densification of the bio-ink is realized by centrifugation, tangential flow filtration ("TFF"), or a combination thereof, and the densification of the bio-ink produces an extrudable composition to form multicellular aggregates or multicellular bodies.
  • the term “extrudable” means that it can be molded by passing (eg, under pressure) a nozzle or orifice (eg, one or more holes or tubes).
  • the densification of the bio-ink is derived from growing cells at an appropriate density. The cell density required for bio-ink depends on the cells to be used and the tissues or organs to be manufactured.
  • the bio-ink composition of the present invention may further include a crosslinking agent or a photoinitiator for promoting crosslinking of constituents.
  • the crosslinking agent may be a compound containing a polyvalent metal ion used in a conventional hydrogel composition.
  • the polyvalent metal ion compound is preferably selected from the group consisting of an aluminum compound, a calcium compound, and a magnesium compound.
  • it may be one or more selected from the group consisting of aluminum hydroxide, hydrous aluminum silicate, calcium chloride, magnesium chloride, aluminum chloride, aluminum metasilicate magnesium, aluminum acetate, and magnesium aluminum silicate.
  • the optical initiator refers to a material that causes rapid crosslinking upon exposure to light.
  • the type of the optical initiator is not particularly limited, but an optical initiator in which a crosslinking reaction occurs by irradiation with ultraviolet (UV) rays or an optical initiator in which a crosslinking reaction occurs by irradiation with visible light may be used.
  • suitable optical initiators include acetophenone, benzoin methyl ether, diethoxyacetophenone, benzoyl phosphine oxide and 1-hydroxycyclohexyl phenyl ketone, eosin, and the like.
  • the amount of the optical initiator to be added may vary depending on the wavelength and time of the light to be exposed.
  • the present invention from another point of view,
  • (c) It relates to a method of manufacturing a three-dimensional structure for tissue regeneration comprising the step of crosslinking the three-dimensional printed bio-ink composition.
  • (c) It relates to a method of manufacturing a tissue-like structure comprising the step of crosslinking the three-dimensional printed bio-ink composition.
  • the method may further include the step of (d) culturing the tissue-like structure in a culture medium, and a tissue-like organoid may be prepared by culturing the tissue-like structure.
  • the tissue-like structure can be prepared by printing a bioink composition containing cells, and after printing a bioink composition containing no cells to prepare a structure, cells can be added to the structure to be cultured. have.
  • the bio-ink composition provided in the present invention is easy to manufacture various three-dimensional structures for tissue regeneration, tissue-like structures, or tissue-like organs.
  • Bioprinting technology is developing in the art as a useful tool for manufacturing three-dimensional structures or tissue-like structures.
  • conventional bio-ink compositions for use in bioprinting have a problem in that it is difficult to have sufficient physical stiffness because they are in liquid form, or because they have too much physical stiffness, survival of cells in the printing process is not sufficiently guaranteed.
  • the bio-ink composition of the present invention maintains sufficient physical stiffness in manufacturing a tissue-like structure by applying it to three-dimensional bioprinting, and has the advantage of sufficiently ensuring the survival of cells when sprayed by a bio-printer. It exhibits physical and biological properties that are very suitable for
  • the bio-ink composition of the present invention exhibits sophisticated printing performance compared to the conventional bio-ink composition using only gelatin as a cell transport material.
  • the bio-ink composition in the present invention enables lamination of a three-dimensional structure.
  • the bio-ink composition of the present invention containing a sufficient amount of cells can be used to form a tissue-like structure by laminating by a three-dimensional bio printer.
  • Bioprinting in the present invention refers to an automated, computer-assisted, three-dimensional prototyping device (eg, a bioprinter) and three-dimensional accurate cell deposition (eg, cell solution, cell-containing gel, cell suspension, It means using a cell concentrate, a multicellular aggregate, a multicellular body, etc.).
  • a bioprinter e.g., a bioprinter
  • three-dimensional accurate cell deposition e.g, cell solution, cell-containing gel, cell suspension, It means using a cell concentrate, a multicellular aggregate, a multicellular body, etc.
  • the bioprinting method in the present invention is continuous and/or substantially continuous.
  • a non-limiting example of a continuous bioprinting method is spraying bioink from a bioprinter through a dispense tip (eg, syringe, capillary, etc.) connected to a reservoir of bioink.
  • the continuous bioprinting method sprays bio-inks in a repeating pattern of functional units.
  • the repeating functional unit has any suitable geometry, including, for example, circular, square, rectangular, triangular, polygonal, and irregular geometries.
  • the bioprinted repeating pattern of functional units includes layers, and a plurality of layers may be bioprinted adjacent to each other to form an engineered tissue or organ (eg, stacked). Specifically, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more layers may be adjacently bioprinted to form engineered tissues or organs.
  • the bioprinted functional units may be repeated in a tessellated pattern.
  • a "lattice pattern" is a planar figure that does not overlap and fills a plane with no gaps.
  • Advantages of continuous and/or plaid bioprinting may include increased productivity of bioprinted tissue. Another non-limiting potential advantage is that it can eliminate the need to align the bioprinter with elements of previously deposited bioinks. Continuous bioprinting can also facilitate printing larger tissues from large reservoirs of bio-ink using a syringe mechanism, as the case may be.
  • Bio printer spray tip is about 1, 5, 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, It has an inner diameter of 950, 1000 ⁇ m or more and increments within this range.
  • the bio ink reservoir of the bio printer is about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, It has a volume of at least 60, 65, 70, 75, 80, 85, 90, 95, 100 cubic centimeters and increments within this range.
  • the pump speed may be moderate and/or optimal when the residual pressure rise in the system is low. A good pump speed can depend on the ratio between the cross-sectional area of the reservoir and the injection needle, with higher ratios requiring lower pump speeds.
  • tissue regeneration three-dimensional structures or tissue-like structures can be produced by the above-described method.
  • the pattern or stacking arrangement for stacking the bio-ink composition may be determined by the size and diameter of the tissue-like structure to be manufactured.
  • the number of cells included in the bio-ink used to manufacture the three-dimensional structure or tissue-like structure may be adjusted according to the type of cells, the content of cellular nutrients included in the bio ink composition, and the like.
  • the type of cells included in the bio-ink composition can be variously changed according to the type of the three-dimensional structure or tissue-like structure to be manufactured according to the above method.
  • Those of ordinary skill in the art to which the present invention pertains may select and apply appropriate cells according to the type of the three-dimensional structure or tissue-like structure to be manufactured through three-dimensional bioprinting.
  • the bio-ink composition After the bio-ink composition is sprayed and laminated by a three-dimensional bio-printer, it may be exposed to light (ultraviolet or visible light) or a cross-linking solution may be added to promote cross-linking of the bio-ink composition. This cross-linking allows the laminated bio-ink composition to be completed into a more rigid structure.
  • the light can be directly exposed to the surface of the stacked bio-ink composition, for example, using a wavelength of 300 nm to 800 nm generated from a light (ultraviolet or visible light) generator Exposure may be performed for 1 second to 1000 seconds at a distance of 1 to 20 cm from the stacked bio-ink composition, or may be exposed for 20 seconds to 500 seconds, or 40 seconds to 240 seconds.
  • Exposure may be performed for 1 second to 1000 seconds at a distance of 1 to 20 cm from the stacked bio-ink composition, or may be exposed for 20 seconds to 500 seconds, or 40 seconds to 240 seconds.
  • These light (ultraviolet and visible) exposure distances and times are those of ordinary skill in the art that the present invention can form sufficient crosslinking even with exposure for a short period of time if it is a short distance and a strong wavelength. You will be able to recognize it.
  • the wavelength of the preferred light (ultraviolet or visible light) for crosslinking may be 300 nm to 800 nm, preferably 350 nm to 380 nm for ultraviolet light, 400 nm to 600 nm for visible light, more preferably ultraviolet light. 355 nm to 375 nm, 400 nm to 500 nm for visible light, most preferably 360 nm to 370 nm for ultraviolet light, and 400 nm for visible light It may be ⁇ 480nm.
  • the present invention relates to a tissue-like organ or tissue structure capable of transplanting into a body prepared according to the above method.
  • the 3D bioprinting technology has the potential to manufacture tissues or organ structures that are clinically applicable in terms of shape and size.
  • tissue-specific cell types and bio-inks applied to the three-dimensional structure it is possible to utilize the reproductive capacity inherent in the cells, and through this, it may be possible to produce the necessary tissues or organs.
  • tissue structures bioprinted using the bio ink composition according to the present invention can provide structures having anatomical and functional similarities with mammalian tissues and organs.
  • composition of the present invention not only can it provide a single structure of tissue-like organs or tissues that can be transplanted into the body, but also a tissue structure with remarkably improved functionality that can reproduce the linkage between tissues and tissues by simultaneously printing several cells. It can also be manufactured.
  • Methacrylated low-molecular collagen was prepared according to a known method by reacting a low-molecular collagen having a molecular weight of about 3500 Da with methacrylic anhydride (R. Ravichandran et al. , Journal of Materials Chemistry B , 4(2). ):318-326, 2016).
  • the bioink composition was prepared at room temperature, and 4 mg/mL hyaluronic acid (Sigma-Aldrich) was first added to 0.7 mL/mL DMEM (biowest) and mixed for 1 hour. Then, 50 mg/mL methacrylated gelatin (GelMA, self-made) was added and stirred for 1 hour, and then methacrylated low molecular collagen was added to 1 w/w%, 2 w/w%, and 3 w, respectively. /w%, 4 w/w% and 5 w/w% were added and stirred for 1 hour. Then, 0.1 mL/mL glycerol (Sigma-Aldrich) was added and stirred for 30 minutes to prepare a bioink composition.
  • hyaluronic acid Sigma-Aldrich
  • a bioink composition (Gel4cell) containing gelatin instead of methacrylated low-molecular collagen was prepared as described above.
  • Viscosity measurement was performed under the conditions of a frequency range of 0.1 to 10 Hz (frequency range; logarithm uniformly 11 pts), a temperature of 25° C., and an amplitude of 0.1 to 1000 %.
  • Viscosity before and after crosslinking according to methacrylated low molecular collagen content Viscosity before crosslinking (Pa ⁇ s) Viscosity after crosslinking (Pa ⁇ s) Gel4cell 7 to 500 10 to 1000 ColMA 1% 16 to 1000 40 to 3000 ColMA 2% 10 to 600 20 to 1300 ColMA 3% 8 to 400 20 to 1000 ColMA 4% 8 to 400 30 to 1800 ColMA 5% 8 to 400 30 to 1800
  • Viscosity comparison before and after crosslinking at a frequency of 1 Hz Viscosity before crosslinking (Pa ⁇ s) Viscosity after crosslinking (Pa ⁇ s) Gel4cell 62 109 ColMA 1% 136 324 ColMA 2% 96 166 ColMA 3% 70 138 ColMA 4% 64 229 ColMA 5% 70 219
  • the ColMA bioink showed a similar viscosity or higher viscosity than the Gel4cell bioink, both before and after crosslinking, especially when the methacrylated low molecular collagen content was 1%. It was confirmed that the viscosity was the best.
  • the modulus of the bioink composition prepared in Example 1 was confirmed. It was measured by dividing into before curing and after curing.
  • Modulus before crosslinking (Pa) Modulus after crosslinking (Pa) stroage modulus loss modulus stroage modulus loss modulus Gel4cell 350 to 400 14 to 48 680-690 47 to 48 ColMA 1% 650 to 1000 150 to 160 1700-2300 380 to 400 ColMA 2% 400 to 700 100 to 120 800 to 1300 220 ⁇ 270 ColMA 3% 300 ⁇ 550 80 to 100 700 to 1100 160 to 250 ColMA 4% 250 to 500 70 to 90 1100 to 1700 220 ⁇ 330 ColMA 5% 300 ⁇ 550 80 to 95 1100 ⁇ 1600 260 ⁇ 320
  • the ColMA bioink showed similar or higher modulus compared to the Gel4cell bioink, both before and after crosslinking, as well as before and after crosslinking, as well as viscosity. It was confirmed that the modulus was the best when the collagen content was 1%.
  • the bio-ink composition containing methacrylated low-molecular collagen of the present invention can produce a structure having superior physical properties compared to the conventional bio-ink composition (Gel4cell) using only gelatin as a cell transport material.
  • bio-ink composition containing methacrylated low-molecular collagen of the present invention exhibits high viscoelasticity, strong structural stability, excellent printing properties, biocompatibility, and appropriate mechanical properties after printing, preparation of a tissue-like structure using three-dimensional bioprinting It can be used very usefully.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Urology & Nephrology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사기관의 제조방법에 관한 것으로, 보다 상세하게는 세포운반물질로 메타크릴화된 저분자 콜라겐을 특정 함량 이상으로 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법에 관한 것이다. 본 발명의 세포운반물질로 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물은 높은 점탄성, 강한 구조 안정성, 우수한 프린팅성, 생체적합성 및 프린팅 후 적절한 기계적 특성을 나타내기 때문에 삼차원적 바이오 프린팅을 이용한 조직 유사 구조체의 제조에 매우 유용하게 사용될 수 있다.

Description

메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법
본 발명은 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법에 관한 것으로, 보다 상세하게는 세포운반물질로 메타크릴화된 저분자 콜라겐을 특정 함량 이상으로 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법에 관한 것이다.
삼차원적인 세포 배양기술은 실험실 내(in vitro)에서 생체조직과 유사한 환경에서 세포 및 조직을 제조할 수 있는 기술로 발달하여 세포의 성장과 분화, 조직 및 기관의 형성과 관련된 여러 연구 분야에 적용되고 있다. 이러한 조직 유사기관은 실제 조직이나 장기를 대신하여 약물의 독성 및 약물 동력학 연구에서 유용하게 사용될 수 있으며, 이에 따라 인간 검체 및 기타 포유동물에의 직접적인 실험 적용을 줄일 수 있을 것으로 사료된다. 또한, 손상된 조직 및 장기를 대체 또는 치료하기 위한 목적인 조직공학(tissue engineering) 기법의 중요한 요소로 조직 및 장기의 공학적 설계에 기여하고 있다.
삼차원 바이오 프린팅 기술은 이러한 조직 유사기관 및 이식 가능한 구조체를 정밀하게 제조하기 위한 유용한 장치가 되었다. 이러한 기술은 실제 인간의 조직을 거의 그대로 모방한 미세 및 거대 조직 구조체를 생성하는 것을 가능하게 하고 있다. 하지만 바이오 프린팅시 살아있는 세포를 운반하는 생체재료, 즉, 바이오 잉크(bio-ink)는 그 활용도에 있어서 많은 한계점을 나타내고 있다. 바이오 프린팅에 적용되기 위해 요구되는 바이오 잉크의 특성으로는 우수한 생체적합성이 요구되고, 미세구경의 디스펜싱 노즐(dispensing nozzle)을 원활히 통과하여 원하는 패턴으로 프린팅이 될 수 있는 우수한 프린팅성을 가져야 하며, 프린팅 후 세포-특이적 신호를 제공하면서 기계적인 지지체 역할을 유지할 수 있는 구조 안정성을 가져야 한다는 것 등이다. 비록, 삼차원 바이오 프린팅 분야에서 천연 유래 또는 합성 하이드로겔 바이오 잉크가 개발되어 현재 사용되고 있지만, 이러한 기존 하이드로겔을 바탕으로 한 바이오 잉크는 생체적합성, 프린팅 적합성, 기하학적 정밀성, 정밀도와 같은 물리적 및 생물학적 측면에서 상당한 한계점을 보이고 있다.
본 발명의 발명자들은 선행연구를 통해 특정한 함량의 세포 운반물질, 점성 증강제, 윤활제 및 구조물질을 포함하는 바이오 잉크 조성물을 공개한바 있다(한국공개특허 제10-2017-0012099호). 이를 통해, 전술한 종래기술의 문제점 중 일부가 해결되는 성과를 얻을 수 있었지만 손상된 조직 및 장기를 대체 또는 치료하기 위한 목적인 조직공학에는 적합하지 않은 구조 안정성, 정교한 생체조직을 모사하기 위한 프린팅 정밀성 등에서 여전히 한계점이 있다는 것을 발견하고 이를 해결하기 위하여 예의 연구를 거듭하였다.
이에, 종래 바이오 잉크 조성물에서 세포 운반물질로 메타크릴화된 저분자 콜라겐(methacrylated low molecular weight collagen)을 특정 함량 이상으로 포함할 경우 놀라울 정도로 향상된 구조 안정성 및 프린팅 정밀성을 갖는 바이오 잉크를 제조할 수 있음을 발견하고, 본 발명을 완성하였다.
본 발명의 목적은 세포 운반물질로 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물을 제공하는 데 있다.
본 발명의 다른 목적은 상기 바이오 잉크 조성물을 이용한 조직 유사 구조체 제조방법 및 상기 방법으로 제조한 조직 유사 구조체를 제공하는 데 있다.
상기 목적을 달성하기 위해,
본 발명은 세포 운반물질, 점성 증강제, 윤활제 및 구조물질을 포함하며,
상기 세포 운반물질은 메타크릴화된 저분자 콜라겐(methacrylated low molecular weight collagen)을 포함하는 것인 바이오 잉크 조성물을 제공한다.
본 발명의 바람직한 일실시예에 있어서, 상기 메타크릴화된 저분자 콜라겐의 분자량은 500 ~ 4000Da일 수 있다.
본 발명의 바람직한 다른 일실시예에 있어서, 상기 바이오잉크 조성물에 포함된 메타크릴화된 저분자 콜라겐은 0.1 ~ 10 w/v%일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 바이오잉크 조성물의 가교 전 점도(complex viscosity)는 8 ~ 1000 Pa·s이며, 가교 후 점도는 20 ~ 3000 Pa·s일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 바이오잉크 조성물의 주파수(Frequency) 1Hz 조건일 때 가교 전 점도는 60 ~ 140 Pa·s, 가교 후 점도는 130 ~ 350 Pa·s일 수 있다.
본 발멸은 바람직한 또 다른 일실시예에 있어서, 상기 바이오잉크 조성물의 가교 전 저장모듈러스(stroage modulus)는 250 ~ 1000 Pa, 손실모듈러스(loss modulus)는 80 ~ 160 Pa 이며, 가교 후 저장모듈러스는 700 ~ 2300 Pa, 손실모듈러스는 160 ~ 400 Pa 일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 바이오잉크 조성물의 주파수(Frequency) 1Hz 조건일 때 가교 전 저장모듈러스는 400 ~ 850 Pa, 손실모듈러스는 85 ~ 200 Pa 이며, 가교 후 저장모듈러스는 800 ~ 2200 Pa, 손실모듈러스는 180 ~ 250 Pa일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 바이오잉크 조성물은 상기 점성 증강제가 0.01 ~ 1 w/v%, 윤활제가 1 ~ 30 w/v% 및 구조물질이 0.1 ~ 10 w/v% 포함될 수 있다.
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 점성 증가제는 히알루론산 또는 덱스트란이며, 상기 윤활제는 글리세롤 및 상기 구조물질은 피브리노겐 또는 메타크릴화 젤라틴일 수 있다.
본 발명에 바람직한 또 다른 일실시예에 있어서, 상기 세포 운반물질에 젤라틴 또는 콜라겐이 추가로 포함될 수 있다.
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 바이오잉크 조성물은 0.05 ~ 60×106/mL의 세포를 추가로 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 세포는 줄기세포, 조골세포(osteoblast), 근아세포(myoblast), 건세포(tenocyte), 신경아세포(neuroblast), 섬유아세포(fibroblast), 신경교아세포(glioblast), 배세포(germ cell), 간세포(hepatocyte), 신장세포(renal cell), 지대세포(Sertoli cell), 연골세포(chondrocyte), 상피세포(epithelial cell), 심혈관세포, 각질세포(keratinocyte), 평활근세포(smooth muscle cell), 심장근세포(cardiomyocyte), 신경교세포(glial cell), 내피세포(endothelial cell), 호르몬 분비세포, 면역세포, 췌장섬세포(pancreatic islet cell) 및 신경세포(neuron)로 이루어진 군에서 선택된 1종 이상일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 있어서, 상기 조성물은 광학개시제(photoinitiator)를 추가로 포함할 수 있다.
본 발명의 다른 목적을 달성하기 위하여,
본 발명은 (a) 상기 바이오 잉크 조성물을 삼차원 프린터에 충전하는 단계; (b) 목적하는 삼차원 구조체를 삼차원 프린팅하는 단계; 및 (c) 삼차원 프린팅된 바이오 잉크 조성물을 가교결합 시키는 단계를 포함하는 조직 재생용 삼차원 구조체의 제조 방법을 제공한다.
또한, 본 발명은 (a) 상기 바이오 잉크 조성물을 삼차원 프린터에 충전하는 단계; (b) 목적하는 조직 유사 구조체를 삼차원 프린팅하는 단계; (c) 삼차원 프린팅된 바이오 잉크 조성물을 가교결합 시키는 단계를 포함하는 조직 유사 구조체의 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 있어서, 상기 방법은 (d) 상기 조직 유사 구조체를 배양액에서 배양하는 단계를 추가로 포함할 수 있다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 방법에 따라 제조된 조직 유사 구조체 또는 조직 유사기관(organoid)을 제공한다.
본 발명의 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물은 높은 점탄성, 강한 구조 안정성, 우수한 프린팅성, 생체적합성 및 프린팅 후 적절한 기계적 특성을 나타내기 때문에 삼차원적 바이오 프린팅을 이용한 조직 유사 구조체의 제조에 매우 유용하게 사용될 수 있다.
도 1은 메타크릴화된 저분자 콜라겐을 포함하는 바이오잉크 조성물(ColMA 바이오잉크) 및 젤라틴을 포함하는 바이오잉크 조성물(Cel4cell)의 가교 전(A) 및 가교 후(B)의 점도를 비교한 데이터이다.
도 2는 주파수 1Hz일 때 기준으로 가교 전 및 가교 후 바이오잉크 조성물의 점도를 비교한 데이터이다. 각 샘플넘버는 다음과 같다: 1) Gel4cell, 2) ColMA 1%, 3) ColMA 2%, 4) ColMA 3%, 5) ColMA 4%, 6) ColMA 5%.
도 3은 ColMA 바이오잉크 및 Cel4cell 바이오잉크의 가교 전(A) 및 가교 후(B)의 모듈러스를 비교한 데이터이다.
도 4는 주파수 1Hz일 때 기준으로 가교 전 및 가교 후 바이오잉크 조성물의 모듈러스를 비교한 데이터이다. 각 샘플넘버는 다음과 같다: 1) Gel4cell, 2) ColMA 1%, 3) ColMA 2%, 4) ColMA 3%, 5) ColMA 4%, 6) ColMA 5%.
이하, 본 발명을 상세하게 설명한다.
본 발명은 일관점에서 세포 운반물질, 점성 증강제, 윤활제 및 구조물질을 포함하며, 상기 세포 운반물질은 메타크릴화된 저분자 콜라겐(methacrylated low molecular weight collagen)을 포함하는 것인 바이오 잉크 조성물에 관한 것이다.
본 발명에서 상기 메타크릴화된 저분자 콜라겐은 식용으로 사용되는 저분자 콜라겐의 구조 안전성을 높이기 위해 메타크릴레이트(methacrylate) 반응을 진행한 것으로, 고비용의 고분자 콜라겐을 대체하여 세포의 점착이나 성장, 이동, 분화 등의 세포의 기능적인 면에 도움을 줌으로써 조직 재생 이외에도 많은 분야에 응용이 가능하다.
본 발명에서 상기 메타크릴화된 저분자 콜라겐이란 화학적 변형을 통하여 가교할 수 있도록 변형된 형태의 저분자 콜라겐을 의미하는 것으로서, 바람직하게는 500 ~ 4000 Da의 분자량을 가진다.
상기 메타크릴화된 저분자 콜라겐은 세포 운반물질 또는 구조물질로 사용될 수 있다. 세포 운반물질은 바이오 프린팅된 구조체 내에서 세포가 생존하기에 적합한 환경을 제공할 수 있는 물질로서, 생체적합성을 나타내어야 함은 물론이며 바이오 프린팅된 이후에 구조체에 안정성을 부여할 수 있는 적절한 물리적 강성 또한 나타내어야 한다.
따라서, 세포 운반물질로서 메타크릴화된 저분자 콜라겐을 사용할 경우, 세포 운반물질로 젤라틴만을 사용한 종래 바이오 잉크 조성물에 비해 프린팅 후 구조 안정성이 현저히 우수하고, 보다 정밀한 프린팅성을 나타내는 바이오잉크 조성물을 제조할 수 있다.
또한, 상기 세포 운반물질에 젤라틴, 콜라겐, 알기네이트, 아가(agar), 아가로스, 플루로닉(pluronic) 및 폴리비닐알콜로 이루어진 군에서 선택되는 어느 하나 이상의 물질과 메타크릴화된 저분자 콜라겐을 혼합하여 사용할 수 있다.
상기 점성 증강제는 우수한 프린팅 경향성 및 바이오 잉크의 초기 강성(strength)을 유지하는데 적합한 것을 선택할 수 있으며, 이의 비제한적인 예시로는 히알루론산 또는 덱스트란일 수 있다.
상기 윤활제는 전단율(shear rate)을 최소화할 수 있고, 분배 속도(dispensing speed)를 개선할 수 있는 물질 중에서 선택되는 것이 바람직하며, 이의 비제한적인 예시로는 글리세롤을 들 수 있다.
상기 구조물질은 빠른 가교결합의 형성 및 기계적 강성을 유지할 수 있는 물질로부터 선택되는 것이 바람직하며, 이의 비제한적인 예시로는 피브리노겐, 화학적으로 가교할 수 있도록 변형된 히알루론산(예, 메타아크릴레이티드 히알루론산, 사이올레이티드 히알루론산, 등), 화학적으로 가교할 수 있도록 변형된 젤라틴 (예, 젤라틴 메타아크릴레이티드, 사이올레이티드 젤라틴, 등), 알기네이트, 메틸 셀룰로오스, 키토산, 키틴, 합성펩타이드 및 폴리에틸렌 글리콜 기초의 하이드로겔로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.
상기 피브리노겐은 겔의 안정성 측면에서 구조물질로서 적합할 뿐만 아니라, 세포가 프린팅된 이후에 세포의 부착 및 분화에 적합한 미세환경을 조성한다는 점에서 바람직한 구조물질로 선택될 수 있다. 히알루론산과 글리세롤은 각각 삼차원적 바이오 프린팅 적용시 분배 균일성(dispensing uniformity) 및 노즐의 막힘 방지효과 측면에서 본 발명의 조성물에 적합하게 사용될 수 있다.
본 발명의 바이오 잉크 조성물에서 상기 메타크릴화된 저분자 콜라겐은 0.01 ~ 10 w/v%, 0.05 ~ 10 w/v%, 0.5 ~ 10 w/v%, 1 ~ 10 w/v%, 0.1 ~ 8 w/v%, 0.5 ~ 8 w/v%, 1 ~ 8 w/v%, 0.1 ~ 6 w/v%, 0.5 ~ 6 w/v%, 1 ~ 6 w/v%, 0.1 ~ 5 w/v%, 0.5 ~ 5 w/v% 또는 1 ~ 5 w/v% 포함될 수 있으며, 가장 바람직하게는 1 ~ 4 w/v% 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 바이오 잉크 조성물에서 상기 세포 운반물질은 0.01 ~ 10 w/v%, 0.05 ~ 10 w/v%, 0.5 ~ 10 w/v%, 1 ~ 10 w/v%, 1.5 ~ 10 w/v%, 2 ~ 10 w/v%, 0.1 ~ 8 w/v%, 0.5 ~ 8 w/v%, 1 ~ 8 w/v%, 2 ~ 8 w/v%, 0.1 ~ 6 w/v%, 0.5 ~ 6 w/v%, 1 ~ 6 w/v%, 2 ~ 6 w/v%, 0.1 ~ 5 w/v%, 0.5 ~ 5 w/v%, 1 ~ 5 w/v% 또는 2 ~ 5 w/v% 포함될 수 있으며, 가장 바람직하게는 1 ~ 4 w/v% 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 바이오 잉크 조성물에서 상기 점성 증강제는 0.01 ~ 1 w/v%, 0.05 ~ 1 w/v%, 0.1 ~ 1 w/v%, 0.2 ~ 1 w/v%, 0.01 ~ 0.8 w/v%, 0.05 ~ 0.8 w/v%, 0.1 ~ 0.8 w/v%, 0.2 ~ 0.8 w/v%, 0.01 ~ 0.5 w/v%, 0.05 ~ 0.5 w/v% 또는 0.1 ~ 0.5 w/v% 포함될 수 있으며, 가장 바람직하게는 0.2 ~ 0.4 w/v% 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 바이오 잉크 조성물에서 상기 윤활제는 0.1 ~ 30 w/v%, 1 ~ 30 w/v%, 5 ~ 30 w/v%, 10 ~ 30 w/v%, 0.1 ~ 20 w/v%, 1 ~ 20 w/v%, 5 ~ 20 w/v%, 10 ~ 20 w/v%, 0.1 ~ 15 w/v%, 1 ~ 15 w/v%, 5 ~ 15 w/v% 또는 10 ~ 15 w/v% 포함될 수 있으며, 가장 바람직하게는 10 ~ 13 w/v% 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 바이오 잉크 조성물에서 상기 구조물질은 0.1 ~ 10 w/v%, 0.5 ~ 10 w/v%, 1 ~ 10 w/v%, 0.1 ~ 8 w/v%, 0.5 ~ 8 w/v%, 1 ~ 8 w/v%, 0.1 ~ 10 w/v%, 0.5 ~ 10 w/v% 또는 3 ~ 10 w/v% 포함될 수 있으며, 가장 바람직하게는 3 ~ 7 w/v% 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 발명자들은 삼차원적 바이오 프린팅에 적용되기에 적합한 물리적 및 생물학적 특성을 나타내는 바이오 잉크 조성물을 개발하기 위해 다양한 조합의 구성을 갖는 조성물의 물리적 및 생물학적 특성을 테스트하여 본 결과, 상기 조합 및 상기 함량의 구성성분의 조합으로 이루어진 바이오 잉크 조성물이 높은 구조 안정성, 우수한 프린팅 성능 및 프린팅 후 적절한 기계적 특성을 나타내어 조직 유사 구조체의 제조를 위한 삼차원적 바이오 프린팅에 특히 적합하다는 것을 발견하였다.
상기 바이오잉크 조성물은 (a) 점성증가제와 구조물질을 혼합하여 교반하는 단계; (b) 상기 교반 용액에 메타크릴화된 저분자 콜라겐을 첨가하여 교반하는 단계; 및 (c) 상기 교반 용액에 윤활제를 첨가하여 교반하는 단계를 포함하는 방법으로 제조될 수 있다.
상기 바이오잉크 조성물의 가교 전 점도(complex viscosity)는 8 ~ 1000 Pa·s이며, 가교 후 점도는 20 ~ 3000 Pa·s일 수 있다. 보다 바람직하게 주파수(Frequency) 1Hz 조건일 때 가교 전 점도는 60 ~ 140 Pa·s, 가교 후 점도는 130 ~ 350 Pa·s일 수 있다.
상기 바이오잉크 조성물의 가교 전 저장모듈러스(stroage modulus)는 250 ~ 1000 Pa, 손실모듈러스(loss modulus)는 80 ~ 160 Pa 이며, 가교 후 저장모듈러스는 700 ~ 2300 Pa, 손실모듈러스는 160 ~ 400 Pa 일 수 있다. 보다 바람직하게 주파수(Frequency) 1Hz 조건일 때 가교 전 저장모듈러스는 400 ~ 850 Pa, 손실모듈러스는 85 ~ 200 Pa 이며, 가교 후 저장모듈러스는 800 ~ 2200 Pa, 손실모듈러스는 180 ~ 250 Pa일 수 있다.
본 발명의 구체적인 구현예에서, 세포 운반물질로 메타크릴화된 저분자 콜라겐이 바이오잉크 조성물로 적합한지 확인하기 위해, 메타크릴화된 저분자 콜라겐이 1%, 2% 3%, 4% 및 5%가 되도록 바이오잉크 조성물(ColMA)을 각각 제조하였으며, 세포 운반물질로 메타크릴화된 저분자 콜라겐 대신 젤라틴을 포함하는 바이오잉크 조성물(Gel4cell)을 비교예로 사용하였다.
본 발명에서 제조된 ColMA 바이오잉크 조성물 및 Gel4cell 바이오잉크 조성물의 물성을 비교한 결과, 가교 전후 ColMA 바이오잉크는 Gel4cell 바이오잉크에 비해 유사한거나 높은 점도(도 1) 및 모듈러스(도 3)를 보이는 것을 확인하였으며, 특히 메타크릴화된 저분자 콜라겐 함량이 1%일 때 점도가 가장 우수한 것으로 확인되었다.
또한, 주파수 1Hz일 때 기준으로 점도 및 모듈러스를 비교한 결과, 가교 전후 모두 메타크릴화된 저분자 콜라겐이 1% 포함된 경우, 점성, 저장모듈러스 및 손실 모듈러스 모두 최대값을 보이는 것을 확인하였다.
즉, 메타크릴화된 저분자 콜라겐 함량이 1%로 포함된 바이오잉크 조성물(ColMA 1%)의 기계적 물성이 젤리틴이 포함된 바이오잉크 조성물(Gel4cell)에 비해 기계적 물성이 우수한 것을 확인하였다.
따라서, 본 발명의 메타크릴화된 저분자 콜라겐을 포함한 바이오잉크 조성물은 세포 운반물질로 젤라틴만을 사용한 종래 바이오 잉크 조성물(Gel4cell)에 비해 우수한 물성을 가진 구조체의 제작이 가능한 것을 확인하였다.
한편, 본 발명의 상기 바이오 잉크 조성물은 세포 0.05 ~ 60×106/mL을 포함할 수 있다.
본 발명에서 상기 세포는 바람직하게는, 줄기세포, 조골세포(osteoblast), 근아세포(myoblast), 건세포(tenocyte), 신경아세포(neuroblast), 섬유아세포(fibroblast), 신경교아세포(glioblast), 배세포(germ cell), 간세포(hepatocyte), 신장세포(renal cell), 지대세포(Sertoli cell), 연골세포(chondrocyte), 상피세포(epithelial cell), 심혈관세포, 각질세포(keratinocyte), 평활근세포(smooth muscle cell), 심장근세포(cardiomyocyte), 신경교세포(glial cell), 내피세포(endothelial cell), 호르몬 분비세포, 면역세포, 췌장섬세포(pancreatic islet cell) 및 신경세포(neuron)로 이루어진 군에서 선택된 어느 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 사용되는 상기 세포 및 바이오 프린팅된 조직 유사 구조체 내에 포함된 세포는 당업계에 공지된 임의의 방식으로 배양될 수 있다. 세포 및 조직 배양 방법은 당업계에 공지되어 있고, 예를 들어 문헌[Cell & Tissue Culture: Laboratory Procedures;Freshney (1987), Culture of Animal Cells: A Manual of Basic Techniques]에 기술되어 있고, 상기 정보에 대한 이의 내용은 본원에 참고 인용된다. 일반적인 포유동물 세포 배양 기술, 세포주, 및 본 발명과 함께 사용될 수 있는 세포 배양 시스템이 또한 문헌[Doyle, A., Griffiths, J. B., Newell, D. G., (eds.) Cell and Tissue Culture: Laboratory Procedures, Wiley (1998)]에 기술되어 있고, 상기 정보에 대한 이의 내용은 본원에 참고 인용된다.
세포는 또한 원하는 세포주를 따라 세포의 분화를 유도하는 세포 분화 물질과 배양될 수도 있다. 예를 들면, 줄기세포는 분화 배지와 접촉하여 인큐베이션 됨으로써 일정 범위의 세포 유형을 생성한다. 다수 유형의 분화 배지가 적당하다. 상기 줄기세포는 비제한적 예로서 골원성(osteogenic) 분화 배지, 연골원성(chondrogenic) 분화 배지, 지방생성(adipogenic) 분화 배지, 신경 분화 배지, 심근세포 분화 배지, 및 장세포 분화 배지(예, 장표피)를 포함하는 분화 배지와 접촉하여 인큐베이션 될 수 있다.
본 발명에서 상기 세포는 삼차원적 바이오프린터로부터 바이오 잉크를 침착 또는 압출시킴으로써 바이오 프린팅될 수 있다. 본 발명의 바이오 잉크는 복수의 세포를 포함하는 액체, 반고체, 또는 고체 조성물의 형태일 수 있다. 바이오 잉크는 액체 또는 반고체 세포 용액, 세포 현탁액, 또는 세포 농축물을 포함한다. 상기 바이오 잉크 조성물은 1) 복수의 세포 또는 세포 응집체와 생체적합성 액체 또는 겔을 소정의 비율에서 혼합하여 바이오잉크를 제조하는 단계, 및 2) 바이오 잉크를 치밀화하여 원하는 세포 밀도 및 점도를 갖는 바이오 잉크를 제조하는 단계 등에 의해 제조될 수 있다. 구체적으로, 바이오 잉크의 치밀화는 원심분리, 접선류 여과("TFF"), 또는 이의 조합에 의해 실현되며 바이오 잉크의 치밀화는 압출가능한 조성물을 제조하여 다세포 응집체 또는 다세포체를 형성한다. 상기 "압출가능한"이란 노즐(nozzle) 또는 오리피스(예, 하나 이상의 구멍 또는 튜브)를 (예를 들어, 압력 하에서) 통과시킴으로써 성형될 수 있는 것을 의미한다. 또한, 바이오 잉크의 치밀화는 적당한 밀도로 세포를 성장시키는 것으로부터 유도된다. 바이오 잉크에 필요한 세포 밀도는 사용할 세포 및 제조할 조직 또는 장기에 따라 달라진다.
본 발명의 상기 바이오 잉크 조성물은 구성성분의 가교결합을 촉진하기 위한 가교제 또는 광학개시제(photoinitiator)를 추가로 포함할 수 있다.
상기 가교제는 통상적인 하이드로겔 조성물에 사용되는 다가 금속이온을 포함하는 화합물일 수 있다. 다가 금속이온 화합물은 알루미늄 화합물, 칼슘 화합물 및 마그네슘 화합물로 이루어진 그룹으로부터 선택되는 것이 바람직하다. 예를 들어, 수산화알루미늄, 함수규산알루미늄, 염화칼슘, 염화마그네슘, 염화알루미늄, 메타규산알루미늄산마그네슘, 아세트산알루미늄 및 규산알루미늄산마그네슘으로 구성되는 그룹으로부터 하나 이상 선택되는 것일 수 있다.
상기 광학개시제는 빛에 노출됨에 따라 신속한 가교결합을 유발하는 물질을 의미한다. 본 발명에서 상기 광학개시제의 종류는 특별히 제한되는 것은 아니나, 자외선(UV)의 조사에 의해 가교반응이 일어나는 광학개시제 또는 가시광선의 조사에 의해 가교반응이 일어나는 광학개시제가 사용이 될 수 있다. 적절한 광학개시제의 비제한적인 예시로는, 아세토페논, 벤조인 메틸 에티르, 디에톡시아세토페논, 벤조일 포스핀 옥사이드 및 1-히드록시사이클로헥실 페닐 케톤, 에오신 등을 들 수 있다. 첨가되는 광학개시제의 양은 노출되는 빛의 파장 및 시간에 따라 달라질 수 있다.
본 발명은 다른 관점에서,
(a) 상기 바이오 잉크 조성물을 삼차원 프린터에 충전하는 단계;
(b) 목적하는 삼차원 구조체를 삼차원 프린팅하는 단계; 및
(c) 삼차원 프린팅된 바이오 잉크 조성물을 가교결합 시키는 단계를 포함하는 조직 재생용 삼차원 구조체의 제조방법에 관한 것이다.
본 발명은 또 다른 관점에서,
(a) 상기 바이오 잉크 조성물을 삼차원 프린터에 충전하는 단계;
(b) 목적하는 조직 유사 구조체를 삼차원 프린팅하는 단계; 및
(c) 삼차원 프린팅된 바이오 잉크 조성물을 가교결합 시키는 단계를 포함하는 조직 유사 구조체의 제조 방법에 관한 것이다.
상기 방법은 (d) 상기 조직 유사 구조체를 배양액에서 배양하는 단계를 추가로 포함할 수 있으며, 조직 유사 구조체의 배양을 통해 조직 유사 기관(organoid)을 제조할 수 있다.
또한, 필요에 따라 상기 조직 유사 구조체는 세포를 포함한 바이오잉크 조성물을 프린팅 하여 제조할 수 있으며, 세포를 포함하지 않은 바이오잉크 조성물을 프린팅 하여 구조체를 제조한 후, 구조체에 세포를 추가하여 배양할 수 있다.
본 발명에서 제공되는 바이오 잉크 조성물은 다양한 조직 재생용 삼차원 구조체, 조직 유사 구조체 또는 조직 유사기관의 제조에 용이하다. 바이오 프린팅 기술은 삼차원 구조체 또는 조직 유사 구조체를 제조하기 위한 유용한 도구로서 당업계에서 발전되고 있다. 한편, 바이오 프린팅에 사용되기 위한 종래의 바이오 잉크 조성물들은 액상 형태이기 때문에 충분한 물리적 강성을 갖기가 힘들거나, 또는 지나치게 물리적 강성이 강하여 프린팅 과정에서 세포의 생존이 충분히 보장되지 않는다는 문제점이 있었다. 본 발명의 바이오 잉크 조성물은 삼차원적 바이오 프린팅에 적용하여 조직 유사 구조체를 제조함에 있어서 충분한 물리적 강성은 유지하고, 바이오 프린터에 의해 분사됨에 있어서 세포의 생존이 충분히 보장된다는 장점이 있어 조직 유사 구조체의 제조에 굉장히 적합한 물리적 및 생물학적 특성을 나타낸다. 또한, 본 발명의 일실시예에 따르면 본 발명의 바이오 잉크 조성물은 종래 젤라틴만을 세포 운반물질로 사용한 바이오 잉크 조성물과 비교하여 정교한 프린팅 성능을 나타내는 것으로 확인되었다.
본 발명에서의 바이오 잉크 조성물은 삼차원적인 구조체의 적층을 가능하게 한다. 충분한 양의 세포가 포함된 본 발명의 바이오 잉크 조성물이 삼차원 바이오 프린터에 의해 적층됨으로써 조직 유사 구조체를 형성하는데 이용될 수 있다.
본 발명에서의 "바이오 프린팅"이란 자동화된, 컴퓨터 보조의, 삼차원 시제품화 장치(예, 바이오프린터)와 상용되는 방법론을 통해 삼차원의 정확한 세포 침착(예, 세포 용액, 세포 함유 겔, 세포 현탁액, 세포 농축물, 다세포 응집체, 다세포체 등)을 이용하는 것을 의미한다.
본 발명에서의 바이오 프린팅 방법은 연속 및/또는 실질적으로 연속이다. 연속 바이오 프린팅 방법의 비제한적 예는 바이오 잉크의 저장소에 연결되는 분사 팁(dispense tip) (예, 주사기, 모세관 등)을 통해 바이오 프린터로부터 바이오 잉크를 분사하는 것이다. 연속 바이오 프린팅 방법은 기능 단위의 반복 패턴에서 바이오 잉크를 분사하는 것이다. 상기 반복 기능 단위는 예를 들어 원형, 정사각형, 직사각형, 삼각형, 다각형, 및 불규칙 기하구조를 포함하는 임의의 적당한 기하구조를 갖는다. 또한, 바이오 프린팅된 기능 단위의 반복 패턴은 층을 포함하고 복수의 층이 조작된 조직 또는 장기를 형성하기 위해 인접하게 바이오 프린팅 될 수 있다.(예를 들면, 적층된다). 구체적으로, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 이상의 층이 조작된 조직 또는 장기를 형성하기 위해 인접하게 바이오 프린팅 될 수 있다.
바이오 프린팅된 기능 단위는 격자무늬(tessellated) 패턴으로 반복될 수 있다. "격자무늬 패턴"은 중첩되지 않고 갭이 없는 평면을 충전하는 평면 도형이다. 연속 및/또는 격자무늬 바이오프린팅의 이점은 바이오 프린팅된 조직의 증가된 생산성을 포함할 수 있다. 또 다른 비제한적 잠재적 이점은 이전에 침착된 바이오 잉크의 요소와 바이오 프린터를 정렬할 필요를 없앨 수 있다는 것이다. 연속 바이오프린팅은 또한 경우에 따라 시린지 메커니즘을 사용하여 바이오 잉크의 대형 저장소로부터 보다 큰 조직을 인쇄하는 것을 용이하게 할 수 있다.
바이오 프린터로부터 적당한 및/또는 최적의 분사 거리는 재료 편평화 또는 분사 바늘에의 부착화를 생성하지 않는다. 바이오 프린터 분사 팁은 약 1, 5, 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 ㎛ 이상 및 이 범위 내의 증분의 내경을 갖는다. 또한, 바이오 프린터의 바이오 잉크 저장소는 약 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 입방 센티미터 이상 및 이 범위 내의 증분의 용적을 갖는다. 펌프 속도는 시스템에서의 잔류 압력 상승이 낮을 경우 적당하고/하거나 최적일 수 있다. 양호한 펌프 속도는 저장소의 단면적과 분사 바늘 사이의 비율에 의존할 수 있고, 보다 높은 비율은 보다 낮은 펌프 속도를 필요로 한다.
다양한 종류의 조직 재생용 삼차원 구조체 또는 조직 유사 구조체가 상기한 방법에 의해 생성될 수 있다. 바이오 잉크 조성물을 적층하는 패턴이나 적층 배열은 제조하고자 하는 조직 유사 구조체의 크기 및 직경 등에 의해 결정될 수 있다. 또한, 삼차원 구조체 또는 조직 유사 구조체를 제조하기 위해 사용되는 바이오 잉크에 포함되는 세포의 개수는 세포의 종류, 바이오 잉크 조성물에 포함된 세포 영양성분의 함량 등에 따라 조절될 수 있다. 또한, 바이오 잉크 조성물에 포함되는 세포의 종류는 상기 방법에 따라 제조하고자 하는 삼차원 구조체 또는 조직 유사 구조체의 종류에 따라 다양하게 변경이 가능하다. 본 발명이 속하는 기술분야에서 통상의 기술을 가진 자라면, 삼차원 바이오 프린팅을 통해 제조하고자 하는 삼차원 구조체 또는 조직 유사 구조체의 종류에 따라 적절한 세포를 선택하여 이에 적용할 수 있을 것이다.
바이오 잉크 조성물이 삼차원 바이오 프린터에 의해 분사되어 적층된 이후에는 이를 광(자외선 또는 가시광선)에 노출시키거나 또는 가교 결합용액을 첨가함으로써 바이오 잉크 조성물의 가교결합을 촉진할 수 있다. 이러한 가교결합은 적층된 바이오 잉크 조성물이 보다 단단한 구조물로 완성될 수 있도록 해준다. 한편, 상기 광(자외선 또는 가시광선)은 적층된 바이오 잉크 조성물의 표면에 직접적으로 노출시킬 수 있으며, 예를 들어 광(자외선 또는 가시광선) 발생기로부터 발생된 300 nm 내지 800 nm 의 파장을 이용하여 적층된 바이오 잉크 조성물로부터 1~20 cm 거리에서 1초 내지는 1000초간 노출이 될 수 있고, 또는 20초 내지 500초, 또는 40초 내지 240초간 노출될 수 있다. 이러한 광(자외선 및 가시광선) 노출 거리 및 시간은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자라면, 짧은 거리 및 강한 파장이라면 짧은 시간 동안의 노출로도 충분한 가교결합을 형성할 수 있다는 것을 인지할 수 있을 것이다.
가교결합을 위한 바람직한 광(자외선 또는 가시광선)의 파장은 300 nm ~ 800 nm일 수 있으며, 바람직하게는 자외선의 경우 350 nm ~ 380 nm, 가시광선의 경우 400nm ~ 600nm, 보다 바람직하게는 자외선의 경우 355 nm ~ 375 nm, 가시광선의 경우 400 nm ~ 500 nm, 가장 바람직하게는 자외선의 경우 360 nm ~ 370 nm, 가시광선의 경우 400nm ~ 480nm일 수 있다.
본 발명은 또 다른 관점에서, 상기 방법에 따라 제조된 체내 이식 가능한 조직 유사기관 또는 조직 구조체에 관한 것이다.
삼차원 바이오 프린팅 기술은 모양 및 크기 면에서 임상적으로 적용이 가능한 조직 또는 기관 구조물을 제작할 수 있는 가능성을 가지고 있다. 조직-특이적인 세포 종류 및 삼차원적 구조물에 적용된 바이오 잉크의 조합을 통하여, 세포에 내재된 재생산 능력을 이용할 수 있고, 이를 통해 필요한 조직 또는 장기를 생산해 내는 것이 가능할 수 있다. 따라서, 본 발명에 따른 바이오 잉크 조성물을 이용하여 바이오 프린팅된 조직 구조체들은, 포유류 조직 및 기관과 해부학적으로 및 기능학적으로 유사성을 지닌 구조체를 제공할 수 있다.
본 발명의 조성물을 이용하면 조직 유사기관 또는 체내 이식 가능한 조직의 단일 구조체를 제공할 수 있을 뿐만 아니라 여러 가지 세포를 동시에 프린팅하여 조직과 조직간의 연계를 재연할 수 있는, 기능성이 현저히 향상된 조직 구조체를 제조할 수도 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.
이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1 : 바이오 잉크 조성물의 제조
메타크릴화된 저분자 콜라겐은 약 3500Da 분자량을 가지는 저분자콜라겐에 메타크릴산무수물(methacrylic anhydride)을 반응시켜 공지된 방법에 따라 제조하였다(R. Ravichandran et al., Journal of Materials Chemistry B, 4(2):318-326, 2016).
바이오잉크 조성물은 상온에서 제조하였으며, 먼저 0.7 mL/mL DMEM(biowest)에 4 mg/mL 히알루론산(Sigma-Aldrich)을 첨가하고 1시간 동안 혼합하였다. 그 다음, 50 mg/mL 메타크릴화된 젤라틴(GelMA, 자체제작)을 첨가하고 1시간 동안 교반시킨 후, 메타크릴화된 저분자 콜라겐을 각각 1 w/w%, 2 w/w%, 3 w/w%, 4 w/w% 및 5 w/w%로 첨가하고 1시간 동안 교반하였다. 그 후, 0.1 mL/mL 글리세롤(Sigma-Aldrich)을 첨가하고 30분 동안 교반하여 바이오잉크 조성물을 제조하였다.
비교예로 메타크릴화된 저분자 콜라겐 대신 젤라틴을 포함하는 바이오잉크 조성물(Gel4cell)을 상기와 같이 제조하였다.
실시예 2 : 바이오 잉크 조성물의 물리화학적 특성 확인 - 점도
상기 실시예 1에서 제조한 바이오잉크 조성물의 점도를 확인하였다.
가교 전(Before curing) 및 가교 후(After curing)로 나누어 측정하였으며, 복합 점도(complex viscosity)는 Rheometer(mcr 301, Anton paar)를 활용하여 측정하였다. 점도 측정은 0.1 ~ 10Hz 주파수 범위(Frequency range; logarithm uniformly 11 pts), 온도 25℃, 진폭(Amplitude) 0.1 ~1000 % 조건으로 수행하였다.
메타크릴화된 저분자 콜라겐 함량에 따른 가교 전후 점도 비교
가교전 점도 (Pa·s) 가교후 점도(Pa·s)
Gel4cell 7 ~ 500 10 ~ 1000
ColMA 1% 16 ~ 1000 40 ~ 3000
ColMA 2% 10 ~ 600 20 ~ 1300
ColMA 3% 8 ~ 400 20 ~ 1000
ColMA 4% 8 ~ 400 30 ~ 1800
ColMA 5% 8 ~ 400 30 ~ 1800
주파수 1Hz에서의 가교 전후 점도 비교
가교전 점도 (Pa·s) 가교후 점도(Pa·s)
Gel4cell 62 109
ColMA 1% 136 324
ColMA 2% 96 166
ColMA 3% 70 138
ColMA 4% 64 229
ColMA 5% 70 219
그 결과, 도 1 및 표 1에 나타난 바와 같이 가교 전후 모두 ColMA 바이오잉크는 Gel4cell 바이오잉크에 비해 유사한 점도를 보이거나 높은 점도를 보이는 것을 확인하였으며, 특히 메타크릴화된 저분자 콜라겐 함량이 1%일 때 점도가 가장 우수한 것으로 확인되었다.
또한, 주파수 1Hz일 때 기준으로 점도를 비교한 결과, 도 2 및 표 2에 나타난 바와 같이, 가교 전후 모두 젤라틴 대신 메타크릴화된 저분자 콜라겐을 포함한 바이오잉크 조성물의 점도가 우수한 것을 확인하였으며, 메타크릴화된 저분자 콜라겐 함량이 1%일 때 점도가 가장 높은 것을 확인하였다.
실시예 3 : 바이오 잉크 조성물의 물리화학적 특성 확인 - 모듈러스
상기 실시예 1에서 제조한 바이오잉크 조성물의 모듈러스(modulus)를 확인하였다. 가교 전(Before curing) 및 가교 후(After curing)로 나누어 측정하였다.
모듈러스 측정은 상기 실시예 2의 점도 측정과 동일한 조건으로 수행하였다.
메타크릴화된 저분자 콜라겐 함량에 따른 가교 전후 모듈러스 비교
가교전 모듈러스 (Pa) 가교후 모듈러스(Pa)
stroage modulus loss modulus stroage modulus loss modulus
Gel4cell 350 ~ 400 14 ~ 48 680 ~ 690 47 ~ 48
ColMA 1% 650 ~ 1000 150 ~ 160 1700 ~ 2300 380 ~ 400
ColMA 2% 400 ~ 700 100 ~ 120 800 ~ 1300 220 ~ 270
ColMA 3% 300 ~ 550 80 ~ 100 700 ~ 1100 160 ~ 250
ColMA 4% 250 ~ 500 70 ~ 90 1100 ~ 1700 220 ~ 330
ColMA 5% 300 ~ 550 80 ~ 95 1100 ~ 1600 260 ~ 320
주파수 1Hz에서의 가교 전후 모듈러스 비교
가교전 모듈러스 (Pa) 가교후 모듈러스(Pa)
stroage modulus loss modulus stroage modulus loss modulus
Gel4cell 390 25 680 30
ColMA 1% 830 170 2000 200
ColMA 2% 590 120 1000 150
ColMA 3% 430 95 850 140
ColMA 4% 400 85 1400 200
ColMA 5% 430 90 1360 190
그 결과, 도 3 및 표 3에 나타난 바와 같이, 점도와 마찬가지로 가교 전 및 가교 후 모두 가교 전후 모두 ColMA 바이오잉크는 Gel4cell 바이오잉크에 비해 유사하거나 높은 모듈러스를 보이는 것을 확인하였으며, 특히 메타크릴화된 저분자 콜라겐 함량이 1%일 때 모듈러스가 가장 우수한 것으로 확인되었다.
또한, 주파수 1Hz일 때 기준으로 점도 및 모듈러스를 비교한 결과, 가교 전후 모두 메타크릴화된 저분자 콜라겐이 1% 포함된 경우, 저장모듈러스 및 손실 모듈러스 모두 최대값을 보이는 것을 확인하였다.
즉, 메타크릴화된 저분자 콜라겐 함량이 1%로 포함된 바이오잉크 조성물(ColMA 1%)의 기계적 물성이 젤리틴이 포함된 바이오잉크 조성물(Gel4cell)에 비해 기계적 물성이 우수한 것을 확인하였다.
따라서, 본 발명의 메타크릴화된 저분자 콜라겐을 포함한 바이오잉크 조성물은 세포 운반물질로 젤라틴만을 사용한 종래 바이오 잉크 조성물(Gel4cell)에 비해 우수한 물성을 가진 구조체의 제작이 가능한 것을 확인하였다.
본 발명의 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물은 높은 점탄성, 강한 구조 안정성, 우수한 프린팅성, 생체적합성 및 프린팅 후 적절한 기계적 특성을 나타내기 때문에 삼차원적 바이오 프린팅을 이용한 조직 유사 구조체의 제조에 매우 유용하게 사용될 수 있다.

Claims (12)

  1. 세포 운반물질, 점성 증강제, 윤활제 및 구조물질을 포함하며,
    상기 세포 운반물질은 메타크릴화된 저분자 콜라겐(methacrylated low molecular weight collagen)을 포함하는 것인 바이오 잉크 조성물.
  2. 제1항에 있어서, 상기 메타크릴화된 저분자 콜라겐의 분자량은 500 ~ 4000Da인 것을 특징으로 하는 바이오 잉크 조성물.
  3. 제1항에 있어서, 상기 바이오잉크 조성물에 포함된 메타크릴화된 저분자 콜라겐은 0.1 ~ 10 w/v%인 것을 특징으로 하는 바이오잉크 조성물.
  4. 제1항에 있어서, 상기 바이오잉크 조성물의 가교 전 점도는 8 ~ 1000 Pa·s이며, 가교 후 점도는 20 ~ 3000 Pa·s인 것을 특징으로 하는 바이오잉크 조성물.
  5. 제1항에 있어서, 상기 바이오잉크 조성물의 주파수(Frequency) 1Hz 조건일 때 가교 전 점도는 60 ~ 140 Pa·s이며, 가교 후 점도는 130 ~ 350 Pa·s인 것을 특징으로 하는 바이오잉크 조성물.
  6. 제1항에 있어서, 상기 바이오잉크 조성물의 가교 전 저장모듈러스(stroage modulus)는 250 ~ 1000 Pa, 손실모듈러스(loss modulus)는 80 ~ 160 Pa이며, 가교 후 저장모듈러스는 700 ~ 2300 Pa, 손실모듈러스는 160 ~ 400 Pa인 것을 특징으로 하는 바이오잉크 조성물.
  7. 제1항에 있어서, 상기 바이오잉크 조성물의 주파수(Frequency) 1Hz 조건일 때 가교 전 저장모듈러스는 400 ~ 850 Pa, 손실모듈러스는 85 ~ 200 Pa이며, 가교 후 저장모듈러스는 800 ~ 2200 Pa, 손실모듈러스는 180 ~ 250 Pa인 것을 특징으로 하는 바이오잉크 조성물.
  8. 제1항에 있어서, 상기 점성 증가제는 히알루론산 또는 덱스트란이며, 상기 윤활제는 글리세롤이고, 상기 구조물질은 피브리노겐 또는 메타크릴화된 젤라틴인 것을 특징으로 하는 바이오잉크 조성물.
  9. 제1항에 있어서, 상기 바이오잉크 조성물은 줄기세포, 조골세포(osteoblast), 근아세포(myoblast), 건세포(tenocyte), 신경아세포(neuroblast), 섬유아세포(fibroblast), 신경교아세포(glioblast), 배세포(germ cell), 간세포(hepatocyte), 신장세포(renal cell), 지대세포(Sertoli cell), 연골세포(chondrocyte), 상피세포(epithelial cell), 심혈관세포, 각질세포(keratinocyte), 평활근세포(smooth muscle cell), 심장근세포(cardiomyocyte), 신경교세포(glial cell), 내피세포(endothelial cell), 호르몬 분비세포, 면역세포, 췌장섬세포(pancreatic islet cell) 및 신경세포(neuron)로 이루어진 군에서 선택된 1종 이상의 세포를 추가로 포함하는 것을 특징으로 하는 바이오 잉크 조성물.
  10. 제1항에 있어서, 상기 바이오잉크 조성물은 광학개시제(photoinitiator)를 추가로 포함하는 것을 특징으로 하는 바이오잉크 조성물.
  11. (a) 제1항 내지 제10항 중 어느 한 항의 바이오 잉크 조성물을 삼차원 프린터에 충전하는 단계;
    (b) 목적하는 조직 유사 구조체를 삼차원 프린팅하는 단계; 및
    (c) 삼차원 프린팅된 바이오 잉크 조성물을 가교결합 시키는 단계를 포함하는 조직 유사 구조체의 제조방법.
  12. 제11항의 방법에 따라 제조된 조직 유사 구조체.
PCT/KR2020/003851 2019-08-30 2020-03-20 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법 WO2021040169A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190107154 2019-08-30
KR10-2019-0107154 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021040169A1 true WO2021040169A1 (ko) 2021-03-04

Family

ID=74685995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003851 WO2021040169A1 (ko) 2019-08-30 2020-03-20 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법

Country Status (2)

Country Link
KR (3) KR102345698B1 (ko)
WO (1) WO2021040169A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282340A (zh) * 2022-08-15 2022-11-04 深圳大洲医学科技有限公司 一种GelMA基生物墨水及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230126267A (ko) 2022-02-21 2023-08-30 부경대학교 산학협력단 고령친화 식품용 3d 프린트 잉크 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012099A (ko) * 2015-07-21 2017-02-02 주식회사 바이오잉크솔루션스 물리적 및 생물학적 특성이 개선된 바이오 잉크 조성물
US20190106673A1 (en) * 2017-10-11 2019-04-11 Wake Forest University Health Sciences Bioink compositions and methods of preparing and using the same
KR20190070922A (ko) * 2016-10-12 2019-06-21 어드밴스드 바이오매트릭스, 인코포레이티드 천연 세포외기질 분자로 제조된 3차원(3-d) 프린팅 잉크

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012099A (ko) * 2015-07-21 2017-02-02 주식회사 바이오잉크솔루션스 물리적 및 생물학적 특성이 개선된 바이오 잉크 조성물
KR20190070922A (ko) * 2016-10-12 2019-06-21 어드밴스드 바이오매트릭스, 인코포레이티드 천연 세포외기질 분자로 제조된 3차원(3-d) 프린팅 잉크
US20190106673A1 (en) * 2017-10-11 2019-04-11 Wake Forest University Health Sciences Bioink compositions and methods of preparing and using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DRZEWIECKI, K. E.: "A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine", TECHNOLOGY, vol. 5, no. 4, 17 October 2017 (2017-10-17), pages 185 - 195, XP009522185 *
MARQUES, C. F.: "Collagen-based bioinks for hard tissue engineering applications: a comprehensive review", JOURNAL OF MATERIALS SCIENCE : MATERIALS IN MEDICINE, vol. 30, no. 32, 6 March 2019 (2019-03-06), pages 1 - 12, XP036740770, DOI: 10.1007/s10856-019-6234-x *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282340A (zh) * 2022-08-15 2022-11-04 深圳大洲医学科技有限公司 一种GelMA基生物墨水及其制备方法和应用

Also Published As

Publication number Publication date
KR20210027046A (ko) 2021-03-10
KR102345698B1 (ko) 2022-01-03
KR20210027036A (ko) 2021-03-10
KR102345701B1 (ko) 2022-01-03
KR20210027047A (ko) 2021-03-10
KR102345699B1 (ko) 2022-01-03

Similar Documents

Publication Publication Date Title
WO2020231191A1 (ko) 이중 가교 가능한 2액형 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법
EP2755599B1 (en) Platform for engineered implantable tissues and organs and methods of making the same
EP3326661B1 (en) Bio-ink composition having improved physical and biological properties
McDevitt et al. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair
CN111201047B (zh) 组织构建体、其生产和使用方法
WO2021040169A1 (ko) 메타크릴화된 저분자 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법
WO2020204230A1 (ko) 나노섬유 및 하이드로젤의 복합체 및 이를 포함하는 조직 재생용 스캐폴드
EP3313944A1 (en) Two-component bioink, 3d biomaterial comprising the same and method for preparing the same
WO2015069619A1 (en) Method of printing a tissue construct with embedded vasculature
WO2017209521A1 (ko) 세포배양용 또는 조직공학용 지지체
Chan et al. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites
US20160367601A1 (en) Preparation method for therapeutic agent of bead-type chondrocyte
WO2015008877A1 (ko) 단일공정에 의한 이중층 스캐폴드의 제조방법 및 상기 제조방법에 의해 얻어진 이중층 스캐폴드를 이용한 조직 재생방법
WO2020027575A1 (ko) 다층 세포 시트의 제조방법 및 이를 이용하여 제조된 다층 세포 시트
WO2021133143A1 (ko) 세포배양기재 및 이의 제조방법
KR102706453B1 (ko) 인체 유래 콜라겐을 포함하는 바이오 잉크 조성물 및 이를 이용한 조직 유사 구조체의 제조방법
CN116726247A (zh) 一种3d打印强韧丝素蛋白支架材料的制备方法和应用
Wang et al. Fabrication of spaced monolayers of electrospun nanofibers for three-dimensional cell infiltration and proliferation
KR102209623B1 (ko) 물리적 및 생물학적 특성이 개선된 소장점막하조직을 이용한 바이오 잉크 조성물
US20240301357A1 (en) Methods of producing cell spheroids and tool therefore
WO2021107303A1 (ko) 히알루론산 및 폴리에틸렌글리콜을 포함하여 제조된 세포 시트 및 이의 제조방법
WO2023096401A1 (ko) 아텔로콜라겐 기반 바이오 잉크 조성물 및 이를 이용하여 3차원 구조체를 제조하는 방법
He An alveolar model based on development of ultrathin artificial basement membrane and automatic system for tissue formation derived from human induced pluripotent stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856355

Country of ref document: EP

Kind code of ref document: A1