WO2021039916A1 - 価格予測装置 - Google Patents

価格予測装置 Download PDF

Info

Publication number
WO2021039916A1
WO2021039916A1 PCT/JP2020/032412 JP2020032412W WO2021039916A1 WO 2021039916 A1 WO2021039916 A1 WO 2021039916A1 JP 2020032412 W JP2020032412 W JP 2020032412W WO 2021039916 A1 WO2021039916 A1 WO 2021039916A1
Authority
WO
WIPO (PCT)
Prior art keywords
price
product
consumer
target product
optimum
Prior art date
Application number
PCT/JP2020/032412
Other languages
English (en)
French (fr)
Inventor
巧 大杉
宰 出水
佑介 深澤
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2021543009A priority Critical patent/JP7500583B2/ja
Priority to US17/638,068 priority patent/US20220284460A1/en
Publication of WO2021039916A1 publication Critical patent/WO2021039916A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data

Definitions

  • This disclosure relates to a price forecaster.
  • Patent Document 1 discloses a sales forecasting device. This sales forecasting device sets the characteristics of all consumers and extracts one of the consumers who have set the characteristics. The sales forecaster determines the extracted consumer preferences, executes a price-oriented model if the consumer preferences are price-oriented, and executes a model-oriented model if the consumer preferences are model-oriented. However, if this consumer's taste is spec-oriented, the spec-oriented model is executed.
  • the number of sales for each model is totaled after the simulation for all consumers whose characteristics are set is completed. In such technical fields, it is required to predict the number of sales more accurately. For that purpose, for example, if the optimum price of a product for a consumer can be predicted, the number of sales at an arbitrary price setting can be predicted more accurately.
  • the optimum price is a price at which a consumer can think of purchasing a product at that price.
  • One aspect of this disclosure is to provide a price forecasting device capable of predicting the number of products sold.
  • the price prediction device includes an attribute acquisition unit that acquires data indicating the attributes of the consumer, and a history acquisition unit that acquires data indicating the history of the product purchased by the consumer and the purchase price of the product.
  • the probability acquisition unit that derives the selection probability of selecting the target product from the product group for each consumer based on the attributes and history, and the price prediction model constructed by machine learning, the target product It is provided with a derivation unit that derives the optimum price for the target product for each consumer based on the selection probability and the selling price of the target product.
  • the optimum price of the target product is derived by the price forecasting model.
  • the optimum price for each consumer is derived based on the selling price of the target product and the selection probability of the target product derived for each consumer. Therefore, it is possible to predict the sales volume of the target product when an arbitrary price is set.
  • the number of products sold can be predicted.
  • FIG. 1 is a conceptual diagram of an example price forecasting system.
  • the price prediction system 1 includes a management server 10 and an analysis server (price prediction device) 20.
  • the management server 10 and the analysis server 20 are connected to each other so as to be able to communicate with each other.
  • the price prediction system 1 predicts the optimum price for each consumer for any product (target product) in the product group.
  • One example product is a so-called durable consumer goods. That is, the product can be replaced by the consumer in a replacement cycle assumed according to the durability of the product.
  • the products that make up the product group may be replaced in a certain life cycle.
  • the product group shown in FIG. 1 is composed of products that can be purchased by consumers as of now. As such durable consumer goods, for example, electric appliances, furniture, automobiles and the like are assumed.
  • FIG. 2 is a diagram for explaining an example of a product.
  • the product group of one example is composed of a plurality of products E1, E1, F1, F2, G1, G2, H1, H2 that compete with each other.
  • the product group can be classified by a plurality of categories having different viewpoints from each other.
  • each product is classified according to a major classification, a middle classification, and a minor classification.
  • the major classification, the middle classification, and the minor classification the number of categories constituting each classification is smaller than the number of product types.
  • the major classification, middle classification, and minor classification which are the classifications for classifying product groups, are based on, for example, product information that consumers refer to when selecting products.
  • the major classification, the middle classification, and the minor classification may be the structural characteristics of the product, the functional characteristics of the product, the manufacturer of the product, and the like.
  • the specifications (specifications / performance), the manufacturer, etc. can be classified.
  • the management server 10 has a database that stores data showing the attributes of the consumer (attribute data) and data showing the history of the product purchased by the consumer and the purchase price of the product (history data). ..
  • Consumer attribute data may include data showing features, properties, etc. that each consumer has regardless of the product.
  • the attribute data includes a user ID that identifies the consumer and information on personal attributes such as the consumer's gender, consumer's age, consumer's family structure, and consumer's place of employment associated with the user ID. Includes data indicating.
  • the attribute data may include consumer service usage tendency information.
  • the service usage tendency information is, for example, information indicating a usage tendency of a service related to a product.
  • the service usage tendency information may be data indicating the consumer usage tendency of various services provided by the manufacturer, seller, etc. of the product in relation to the product.
  • the usage tendency may be the type, number, frequency of use, etc. of the service being used.
  • the service usage tendency information is information indicating what kind of service each consumer prefers, and can reflect the preference of each consumer.
  • the history data may be purchase data including the purchase history of products by consumers.
  • the purchase data includes information that identifies the product, the date and time of purchase of the product, the selling price of the product at the time of purchase, the selling price of other products at the time of purchase, and the like.
  • the historical data includes not only the purchase data related to the current product group but also the purchase data related to the product group released in the past.
  • the management server 10 is realized by, for example, a server device. Further, the management server 10 may be realized by a plurality of server devices, that is, a computer system. The management server 10 has a communication function and can send and receive data to and from other devices.
  • the analysis server 20 derives the selection probability that the consumer selects a specific product from the product group when the consumer purchases the product based on the attribute data and the historical data. Then, the analysis server 20 derives the optimum price for the product for each consumer based on the selection probability of the product and the selling price of the product by using the price prediction model constructed by machine learning. ..
  • the analysis server 20 is realized by, for example, a server device. Further, the analysis server 20 may be realized by a plurality of server devices, that is, a computer system. The analysis server 20 has a communication function and can send and receive data to and from other devices.
  • the analysis server 20 of the example includes an attribute acquisition unit 21, a history acquisition unit 22, a probability acquisition unit 23, a derivation unit 25, and an output unit 27.
  • the attribute acquisition unit 21 acquires consumer attribute data from the management server 100.
  • the history acquisition unit 22 acquires history data from the management server 10.
  • the acquired attribute data and history data can be stored in association with each user ID.
  • the probability acquisition unit 23 derives the selection probability that the consumer selects an arbitrary product from the product group based on the attribute data and the history data.
  • the probability acquisition unit 23 of one example has a selection probability prediction model 24 constructed by machine learning.
  • the probability acquisition unit 23 uses the selection probability prediction model 24 to derive the product selection probability for each consumer.
  • the selection probability prediction model 24 can be constructed in the probability acquisition unit 23.
  • the probability acquisition unit 23 predicts the selection probability by a machine learning method using training data (training data) using attribute data and history data as explanatory variables and data of products actually purchased by consumers as objective functions.
  • Training data training data
  • attribute data and history data as explanatory variables and data of products actually purchased by consumers as objective functions.
  • Build model 24 Algorithms used in machine learning models include logistic regression, k-nearest neighbors, support vector machines, random forests, gradient boosting, deep neural networks, and the like.
  • FIG. 3 is a conceptual diagram for explaining an example of a method of predicting the selection probability of a product.
  • FIG. 3 shows an example of predicting the selection probability of the products E2, F2, and G2.
  • the selection probability prediction model 24 of an example includes a major classification selection prediction model 24a, a middle classification selection prediction model 24b, and a minor classification selection prediction model 24c.
  • the major classification selection prediction model 24a is a learning model that predicts which of the A and B classes the consumer will select from the major classifications that classify the product group.
  • the major classification selection prediction model 24a can be constructed by using training data in which attribute data and history data are used as explanatory variables and the type of major classification to which the actually purchased product belongs is the objective function.
  • the middle classification selection prediction model 24b is a learning model that predicts whether the consumer selects class C or class D among the middle classifications that classify the product group.
  • the middle classification selection prediction model 24b can be constructed by using training data in which attribute data and history data are used as explanatory variables and the kind of middle classification to which the actually purchased product belongs is the objective function.
  • the sub-classification selection prediction model 24c is a model that predicts whether the consumer selects E, F, G, or H from the sub-classifications that classify the product group.
  • the sub-classification selection prediction model 24c can be constructed by using training data in which attribute data and history data are used as explanatory variables and the type of sub-classification to which the actually purchased product belongs is the objective function.
  • the selection probability of the product by the consumer is calculated stepwise for each classification based on the major classification selection prediction model 24a, the middle classification selection prediction model 24b, and the minor classification selection prediction model 24c. .. That is, as shown in FIG. 3, for example, when obtaining the selection probability of the product E2, the selection probability of the class A is derived by first inputting the input data into the large classification selection prediction model 24a. Subsequently, the input data is input to the middle classification selection prediction model 24b, so that the selection probability of the D class is derived. Then, by inputting the input data into the sub-classification selection prediction model 24c, the selection probability of the E class is derived. The selection probability of the product E2 can be derived by multiplying the selection probabilities derived by each learning model.
  • the attribute data and historical data used for each model construction do not overlap with each other so that the correlation between the major classification selection prediction model 24a, the middle classification selection prediction model 24b, and the minor classification selection prediction model 24c does not become large. It may be configured as follows.
  • the out-licensing unit 25 derives the optimum price for the target product for each consumer based on the product selection probability and the selling price of the product.
  • the derivation unit 25 of one example has a price prediction model 26 constructed by machine learning, and uses this price prediction model 26 to derive the optimum price of a product for each consumer.
  • the price prediction model 26 is constructed in the out-licensing unit 25. For example, the out-licensing unit 25 builds a price forecast model 26 for each product to be price forecasted.
  • the price prediction model 26 sets the optimum price for each consumer by inputting the product selection probability by each consumer, the product price of the product at the time of product purchase, and the presence or absence of product purchase by each consumer. It is constructed by machine learning so that it becomes output data.
  • the product price is the purchase price of the target product by the consumer if the consumer has purchased the target product, and the consumer if the consumer has not purchased the target product. Is the selling price of the target product at the time of purchasing another product that competes with the target product. If the consumer has not purchased either the target product or other competing products, the data about the consumer will not be used to build the price forecast model. That is, the price forecast model is constructed based on the data of consumers who have purchased the target product or other competing products. Algorithms used in machine learning models include linear regression, k-nearest neighbors, support vector machines, random forests, gradient boosting, deep neural networks, and the like.
  • the price prediction model 26 of the example predicts a price that is neither too high nor too cheap for each consumer as the optimum price. For example, if the product is purchased by the consumer, the consumer may have purchased the product, even if the price is higher than the purchase price. In addition, if the target product has not been purchased by the consumer, the consumer may have purchased the product if the price is lower than the selling price. On the other hand, even if the target product is purchased by the consumer, if the price is higher than the purchase price, the consumer may not have purchased the product. Also, if the target product has not been purchased by the consumer, the consumer may have purchased the product if the price is lower than the selling price, but if the selling price is too low, the seller's Interests can be harmed. Therefore, the optimum price in one example may be an appropriate price (price range) that does not harm the profits of the seller among the prices that the consumer can purchase.
  • the price prediction model 26 outputs the optimum price that minimizes the value of the loss function by using the loss function designed so that the loss becomes large when the predicted price that is not suitable as the optimum price is derived. It is built like this.
  • FIG. 4 is a conceptual diagram for explaining an example of the loss function in the price prediction model.
  • FIG. 4A shows an example of the loss function when the consumer purchases the target product
  • FIG. 4B shows the case where the consumer does not purchase the target product.
  • An example of the loss function in the case of purchasing another product competing with the target product is shown.
  • the loss function when a lower price than commodity prices P i is derived as an optimum price, befits the best price If not, the loss will be large. Further, the loss function, when the high price range considered appropriate than commodity prices P i is derived as a prediction value, the loss becomes zero.
  • the coefficient C 1 for defining the price C 1 P i is the upper limit that is considered appropriate is a value represented by 1 ⁇ C 1, can be set by the administrator, for example, the analysis server 20. Further, the loss function, when the higher price than C 1 P i max is derived as an optimum price, loss is large as the price is too high.
  • the loss function when a higher price is derived as an optimum price than commodity prices P i, befits the best price If not, the loss will be large. Further, the loss function, when the low price range considered appropriate than commodity prices P i is derived as a prediction value, the loss becomes zero.
  • the coefficient C 2 defining the price C 2 P i is the lower limit that is considered appropriate is a value represented by 0 ⁇ C 2 ⁇ 1, may be set for example by the administrator of the analysis server 20. Further, the loss function, when a price less than the price C 2 P i of the lower limit is derived as an optimum price, loss is large as the price is too low.
  • the output unit 27 outputs the relationship between the price and the sales quantity of the target product based on the optimum price for all consumers derived by the out-licensing unit 25.
  • FIG. 5 is a graph showing an example of the relationship between the predicted price and the sales quantity output by the output unit 27.
  • a graph is shown in which the price is on the horizontal axis and the cumulative number of consumers from which the optimum price equal to or higher than the price on the horizontal axis is derived is on the vertical axis.
  • the number of consumer price P 1 or more of the value is derived as the optimal price is the one person N.
  • the number of consumer price P 2 or more values have been derived as the optimal price is a N 2 people. In this case, for example, if the price of the product is reduced from the current price P 1 to the price P 2 , the number of products corresponding to N 2- N 1 is expected to be sold.
  • FIG. 6 is a flow chart showing an example of processing by the price prediction system. As an example, a case of predicting the optimum price of the product E2 will be described.
  • the attribute acquisition unit 21 and the history acquisition unit 22 of the analysis server 20 acquire the attribute data and history data of all consumers from the management server 10 (step S1). .. Subsequently, the probability acquisition unit 23 builds the selection probability prediction model 24 (step S2). When predicting the optimum price for the product E2, at least the selection probability prediction model 24 for the product E2 is constructed. Then, the selection probability of the product E2 is derived for each consumer by the probability acquisition unit 23 to which the constructed selection probability prediction model 24 is applied (step S3).
  • the out-licensing unit 25 builds the price prediction model 26 for the product E2 (step S4). Then, the optimum price of the product E2 is derived for each consumer by the out-licensing unit 25 to which the constructed price prediction model 26 is applied (step S5). In step S3, the optimum price may be derived for all consumers, or the optimum price may be derived only for consumers who have not purchased the products constituting the product group.
  • a graph showing the relationship between the price and the number of people (number of sales) is output as a result based on the optimum price derived in step S5 (step S6).
  • the graph may be constructed based on the optimum price for all consumers.
  • the actual purchase price for the consumers who have purchased the product E2 is reflected.
  • the graph may be constructed. That is, the graph may be constructed with the number of consumers who have purchased the product E2 as the measured value and the number of consumers who have not purchased the product as the predicted value.
  • the optimum price of the target product is derived by the price prediction model 26.
  • the optimum price for each consumer is derived based on the selling price of the target product and the selection probability of the target product derived for each consumer. Therefore, by accumulating the predicted results for each consumer, it is possible to predict the sales volume of the target product when an arbitrary price is set. In this case, it is possible to predict how much demand there will be when the current selling price is reduced.
  • the price prediction model is a machine so that the optimum price is output data with the input data of the selection probability of the product by the consumer, the product price of the target product, and the presence or absence of purchase of the target product by the consumer. It is built by learning.
  • the product price is the purchase price of the target product by the consumer when the consumer has purchased the target product
  • the product price is the purchase price of the target product when the consumer has not purchased the target product. It is the selling price of the target product at the time when the consumer purchases another product that competes with the target product.
  • the optimum price is output so that the value of the loss function is minimized.
  • the loss function when the consumer purchases the target product, the loss becomes large when a price lower than the product price is derived as the optimum price, and the consumer does not purchase the target product. In some cases, the loss is large when a price higher than the commodity price is derived as the optimum price. According to this configuration, a loss function suitable for each of consumers who are likely to purchase the relevant product and consumers who are unlikely to purchase the relevant product can be applied. Therefore, it is possible to predict the optimum price that matches the attributes of each consumer.
  • the analysis server 20 includes an output unit 27 that outputs the relationship between the product price and the sales quantity, it is possible to visualize and output the sales quantity of the target product when an arbitrary price is set. it can.
  • the price prediction model 26 may include the selling price of another product competing with the target product as input data.
  • the price difference between the products that make up the product group may be one of the factors to consider.
  • information on the selling price of another product competing with the product for which the price is to be predicted is reflected in the price prediction model 26, so that the accuracy of the price prediction can be improved.
  • the price prediction model 26 may include the probability that the consumer selects another product as the input data.
  • the probability acquisition unit 23 derives the selection probabilities for all the products constituting the product group. Since not only the selection probability of the product to be price-predicted but also the selection probability of competing products is taken into consideration, the accuracy of price prediction can be improved.
  • the analysis server 20 builds the price prediction model 26.
  • the price of the successor product of the product used as the input data may be predicted.
  • the price forecast of the successor product is executed by inputting the assumed price of the successor product, the assumed price of the product assumed as a competing product of the successor product, and the like as input data. Can be done.
  • the successor product is a new product manufactured by the same manufacturer as the old product, and has the same target layer as the old product because it has the same specifications as the old product. Therefore, by regarding the old product and the new product as the same product, the learning model constructed based on the sales data of the old product can be used for the price prediction of the new product.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't.
  • a functional block that functions transmission is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the method of realizing each is not particularly limited.
  • the analysis server 20 in one embodiment of the present disclosure may function as a computer that performs information processing of the present disclosure.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the analysis server 20 according to the embodiment of the present disclosure.
  • the analysis server 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the analysis server 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • the attribute acquisition unit 21, the history acquisition unit 22, the probability acquisition unit 23, the derivation unit 25, and the output unit 27 in the analysis server 20 described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the analysis server 20 may be implemented by a control program stored in memory 1002 and operating in processor 1001.
  • processor 1001. the above-mentioned various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to perform information processing according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium included in the analysis server 20 may be, for example, a database containing at least one of the memory 1002 and the storage 1003, a server, or any other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the analysis server 20 includes hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured, and the hardware may realize a part or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • At least one of the server and the client may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the server and the client may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the server and the client includes a device that does not necessarily move during communication operation.
  • at least one of the server and the client may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the server in the present disclosure may be read as a client terminal.
  • a configuration in which communication between a server and a client terminal is replaced with communication between a plurality of user terminals for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the client terminal may have the function of the server described above.
  • the client terminal in the present disclosure may be read by the server.
  • the server may have the functions of the client terminal described above.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as “judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

価格予測装置は、消費者の属性を示すデータを取得する属性取得部と、消費者が購入した商品と該商品の購入価格との履歴を示すデータを取得する履歴取得部と、属性及び履歴に基づいて、商品群から対象の商品を選択する選択確率を消費者ごとに導出する確率取得部と、機械学習によって構築された価格予測モデルを用いて、対象の商品の選択確率と、対象の商品の販売価格とに基づいて、対象の商品についての最適価格を消費者ごとに導出する導出部と、を備える。

Description

価格予測装置
 本開示は、価格予測装置に関する。
 特許文献1には、販売予測装置が開示されている。この販売予測装置は、全消費者の特性を設定し、特性を設定した消費者のうちから1人を抽出する。販売予測装置は、抽出された消費者の嗜好を判断し、この消費者の嗜好が価格重視であれば価格重視モデルを実行し、この消費者の嗜好が機種重視であれば機種重視モデルを実行し、この消費者の嗜好がスペック重視であればスペック重視モデルを実行する。
特開2008-299786号公報
 特許文献1の販売予測装置では、特性を設定した全消費者に関するシミュレートが終了したあとに、機種毎の販売数を集計する。このような技術分野においては、より正確に販売数を予測することが求められる。そのためには、例えば、消費者にとっての商品の最適価格を予測できれば、任意の価格設定における販売数をより正確に予測することができる。最適価格とは、その価格であれば商品を購入しようと消費者が考え得る価格である。
 本開示の一側面は、商品の販売数を予測することができる価格予測装置を提供することを目的とする。
 本開示の一側面に係る価格予測装置は、消費者の属性を示すデータを取得する属性取得部と、消費者が購入した商品と該商品の購入価格との履歴を示すデータを取得する履歴取得部と、属性及び履歴に基づいて、商品群から対象の商品を選択する選択確率を消費者ごとに導出する確率取得部と、機械学習によって構築された価格予測モデルを用いて、対象の商品の選択確率と、対象の商品の販売価格とに基づいて、対象の商品についての最適価格を消費者ごとに導出する導出部と、を備える。
 この価格予測装置では、価格予測モデルによって、対象の商品の最適価格が導出される。このモデルでは、対象の商品の販売価格と、消費者ごとに導出された対象の商品の選択確率とに基づいて、消費者ごとの最適価格が導出される。したがって、任意の価格が設定された場合における対象の商品の販売数量を予測することができる。
 本開示の一形態に係る価格予測装置によれば、商品の販売数を予測することができる。
一例の価格予測装置を含む価格予測システムを示す概念図である。 商品の一例を説明するための図である。 商品の選択確率を予測する方法の一例を説明するための概念図である。 価格予測モデルにおける損失関数の一例を説明するための概念図である。 予測価格と販売数量との関係の一例を示すグラフである。 価格予測装置による処理の一例を示すフロー図である。 一例の価格予測装置におけるハードウェア構成を示す図である。
 以下、本開示に係る例示的実施形態について図面を参照しながら具体的に説明する。便宜上、実質的に同一の要素には同一の符号を付し、その説明を省略する場合がある。
 図1は、一例の価格予測システムの概念図である。価格予測システム1は、管理サーバ10と、分析サーバ(価格予測装置)20とを含んでいる。管理サーバ10と分析サーバ20とは、互いに通信可能に接続されている。価格予測システム1は、商品群のうちの任意の商品(対象の商品)について、消費者ごとの最適価格を予測する。一例の商品は、いわゆる耐久消費財である。すなわち、商品は、商品の耐久性に応じて想定される買い換えサイクルで、消費者によって買い換えられ得る。また、商品群を構成する商品は、一定のライフサイクルで入れ替わりが生じ得る。例えば、図1に示される商品群は、今現在において消費者が購入可能な商品によって構成されている。このような耐久消費財としては、例えば、電化製品、家具、自動車などが想定される。
 図2は、商品の一例を説明するための図である。図2に示すように、一例の商品群は、互いに競合する複数の商品E1,E1,F1,F2,G1,G2,H1,H2によって構成されている。商品群は、互いに異なる観点を有する複数の区分によって分類され得る。図示例では、大分類、中分類及び小分類によって各商品が分類されている。大分類、中分類及び小分類において、それぞれの分類を構成する類の数は、いずれも、商品の種類の数よりも小さい。
 商品群を分類するための区分である大分類、中分類及び小分類は、例えば、消費者が商品を選択する際に参考にする商品の情報に基づいている。例えば、大分類、中分類及び小分類は、商品の構造的特徴、商品の機能的特徴、商品の製造メーカー等であってよい。一例として、商品が電化製品の場合には、スペック(仕様・性能)、製造メーカー等が区分となり得る。
 管理サーバ10は、消費者の属性を示すデータ(属性データ)、及び、消費者が購入した商品と該商品の購入価格との履歴を示すデータ(履歴データ)を格納するデータベースを有している。消費者の属性データは、それぞれの消費者が商品と関係なく備える特徴、性質等を示すデータを含み得る。一例において、属性データは、消費者を識別するユーザIDと、ユーザIDに関連づけられた消費者の性別、消費者の年代、消費者の家族構成、消費者の勤務先等の個人属性に関する情報とを示すデータを含む。
 さらに、属性データには、消費者のサービス利用傾向情報が含まれてもよい。サービス利用傾向情報とは、例えば商品に関連したサービスの利用傾向を示す情報である。一例として、サービス利用傾向情報は、商品に関連して商品の製造メーカー、販売者等から提供される各種サービスについての消費者の利用傾向を示すデータであってよい。利用傾向とは、利用されているサービスの種類、数、利用頻度等であってもよい。サービス利用傾向情報は、各消費者がどのようなサービスを好むのかを示す情報であり、各消費者の嗜好が反映され得る。
 履歴データは、消費者による商品の購入履歴を含む購入データであってよい。購入データは、商品を特定する情報、商品の購入日時、購入時における商品の販売価格、購入時における他の商品の販売価格等を含む。また、履歴データには、今現在の商品群に係る購入データのみならず、過去に発売されていた商品群に係る購入データも含まれる。
 管理サーバ10は、例えば、サーバ装置によって実現される。また、管理サーバ10は、複数のサーバ装置、即ち、コンピュータシステムによって実現されてもよい。管理サーバ10は、通信機能を有しており、他の装置との間でデータの送受信を行うことができる。
 分析サーバ20は、属性データ及び履歴データに基づいて、消費者が商品を購入する際に、消費者が商品群から特定の商品を選択する選択確率を導出する。そして、分析サーバ20は、機械学習によって構築された価格予測モデルを用いて、当該商品の選択確率と、当該商品の販売価格とに基づいて、当該商品についての最適価格を消費者ごとに導出する。
 分析サーバ20は、例えば、サーバ装置によって実現される。また、分析サーバ20は、複数のサーバ装置、即ち、コンピュータシステムによって実現されてもよい。分析サーバ20は、通信機能を有しており、他の装置との間でデータの送受信を行うことができる。
 一例の分析サーバ20は、属性取得部21と、履歴取得部22と、確率取得部23と、導出部25と、出力部27と、を含む。属性取得部21は、管理サーバ100から消費者の属性データを取得する。また、履歴取得部22は、管理サーバ10から履歴データを取得する。分析サーバ20においては、取得された属性データと履歴データとが、ユーザIDごとに関連付けられて格納され得る。
 確率取得部23は、属性データ及び履歴データに基づいて、消費者が商品群から任意の商品を選択する選択確率を導出する。一例の確率取得部23は、機械学習によって構築された選択確率予測モデル24を有している。確率取得部23は、選択確率予測モデル24を用いて、商品の選択確率を消費者ごとに導出する。選択確率予測モデル24は、確率取得部23において構築され得る。
 確率取得部23は、属性データ及び履歴データを説明変数とし、実際に消費者に購入された商品のデータを目的関数とする学習データ(訓練データ)を用いて、機械学習の手法によって選択確率予測モデル24を構築する。機械学習のモデルに採用されるアルゴリズムとしては、ロジスティック回帰、k近傍法、サポートベクターマシーン、ランダムフォレスト、勾配ブースティング、ディープニューラルネットワーク等が挙げられる。
 一例の確率取得部23では、商品群の分類に応じた複数の予測モデルが構築され。図3は、商品の選択確率を予測する方法の一例を説明するための概念図である。図3では、商品E2,F2,G2の選択確率を予測する例が示されている。図3に示すように、一例の選択確率予測モデル24は、大分類選択予測モデル24aと中分類選択予測モデル24bと小分類選択予測モデル24cとを含んでいる。
 大分類選択予測モデル24aは、商品群を分類する大分類のうち、消費者がA類とB類とのいずれを選択するのかを予測する学習モデルである。大分類選択予測モデル24aは、属性データ及び履歴データを説明変数とし、実際に購入された商品が属する大分類の類を目的関数とする学習データを用いて、構築され得る。
 中分類選択予測モデル24bは、商品群を分類する中分類のうち、消費者がC類とD類とのいずれを選択するのかを予測する学習モデルである。中分類選択予測モデル24bは、属性データ及び履歴データを説明変数とし、実際に購入された商品が属する中分類の類を目的関数とする学習データを用いて、構築され得る。
 小分類選択予測モデル24cは、商品群を分類する小分類のうち、消費者がE類、F類、G類及びH類のいずれを選択するのかを予測するモデルである。小分類選択予測モデル24cは、属性データ及び履歴データを説明変数とし、実際に購入された商品が属する小分類の類を目的関数とする学習データを用いて、構築され得る。なお、図3の例のように、商品E2,F2,G2の選択確率を予測する場合には、H類に該当する商品が存在しないため、小分類選択予測モデル24cにおいてはH類が除外されてよい。
 一例の確率取得部23では、大分類選択予測モデル24aと中分類選択予測モデル24bと小分類選択予測モデル24cとに基づいて、消費者による商品の選択確率が分類ごとに段階的に算出される。すなわち、図3に示すように、例えば、商品E2の選択確率を求める場合には、まず、大分類選択予測モデル24aに入力データが入力されることによって、A類の選択確率が導出される。続いて、中分類選択予測モデル24bに入力データが入力されることによって、D類の選択確率が導出される。そして、小分類選択予測モデル24cに入力データが入力されることによって、E類の選択確率が導出される。それぞれの学習モデルによって導出された選択確率が掛け合わされることによって、商品E2の選択確率が導出され得る。
 なお、大分類選択予測モデル24aと中分類選択予測モデル24bと小分類選択予測モデル24cとの互いの相関が大きくならないように、それぞれのモデル構築に用いられる属性データ及び履歴データは、互いに重複しないように構成されてもよい。
 導出部25は、商品の選択確率と、商品の販売価格とに基づいて、対象となるの商品についての最適価格を消費者ごとに導出する。一例の導出部25は、機械学習によって構築された価格予測モデル26を有しており、この価格予測モデル26を用いて、商品の最適価格を消費者ごとに導出する。なお、価格予測モデル26は、導出部25において構築される。例えば、導出部25は、価格予測の対象となる商品ごとに価格予測モデル26を構築する。
 価格予測モデル26は、それぞれの消費者による商品の選択確率、商品購入時における商品の商品価格、及び、それぞれの消費者による商品購入の有無を入力データとして、それぞれの消費者にとっての最適価格を出力データとするように、機械学習によって構築されている。商品価格は、消費者が対象の商品を購入している場合には、当該消費者による対象の商品の購入価格であり、消費者が対象の商品を購入していない場合には、当該消費者が対象の商品と競合する他商品を購入した時点における対象の商品の販売価格である。なお、消費者が対象の商品及び競合する他商品のいずれをも購入していない場合には、当該消費者についてのデータは価格予測モデルの構築に利用されない。すなわち、価格予測モデルは、対象の商品又は競合する他商品を購入した消費者のデータに基づいて構築される。機械学習のモデルに採用されるアルゴリズムとしては、線形回帰、k近傍法、サポートベクターマシーン、ランダムフォレスト、勾配ブースティング、ディープニューラルネットワーク等が挙げられる。
 一例の価格予測モデル26は、それぞれの消費者にとって、高すぎず安すぎない価格を最適価格として予測する。例えば、消費者によって対象の商品が購入されている場合、購入価格よりも高い価格であったとしても、消費者は当該商品を購入したかもしれない。また、消費者によって対象の商品が購入されていない場合、販売価格よりも低い価格であれば、消費者は当該商品を購入したかもしれない。一方で、消費者によって対象の商品が購入されている場合であっても、購入価格よりも高い価格であったならば、消費者は当該商品を購入しなかったかもしれない。また、消費者によって対象の商品が購入されていない場合、販売価格よりも低い価格であれば、消費者は当該商品を購入したかもしれないが、販売価格が低すぎる場合には、販売者の利益が害される可能性がある。そこで、一例の最適価格は、消費者が購入し得る価格のうちで販売者の利益が害されない適正な価格(価格帯)であってよい。
 しかしながら、それぞれの消費者にとっての最適価格を示す正解データは存在しなし。そこで、価格予測モデル26は、最適価格として相応しくない予測価格が導出された場合に損失が大きくなるように設計された損失関数を用いて、損失関数の値を最小にする最適価格が出力されるように構築されている。
 図4は、価格予測モデルにおける損失関数の一例を説明するための概念図である。図4の(a)は、消費者が対象の商品を購入している場合における損失関数の例を示し、図4の(b)は、消費者が対象の商品を購入していない場合であって、対象の商品に競合する他商品を購入している場合における損失関数の例を示す。
 図4の(a)に示すように、消費者が対象の商品を購入している場合、損失関数では、商品価格Pよりも低い価格が最適価格として導出されるときに、最適価格として相応しくないとして損失が大となる。また、損失関数では、商品価格Pよりも適正と考えられる範囲で高い価格が予測価格として導出されるときに、損失がゼロとなる。一例において、適正と考えられる上限の価格Cを規定する係数Cは、1<Cで示される値であり、例えば分析サーバ20の管理者によって設定され得る。また、損失関数では、上限の価格Cよりも高い価格が最適価格として導出されるときに、価格が高すぎるとして損失が大となる。
 図4の(b)に示すように、消費者が対象の商品を購入していない場合、損失関数では、商品価格Pよりも高い価格が最適価格として導出されるときに、最適価格として相応しくないとして損失が大となる。また、損失関数では、商品価格Pよりも適正と考えられる範囲で低い価格が予測価格として導出されるときに、損失がゼロとなる。一例において、適正と考えられる下限の価格Cを規定する係数Cは、0<C<1で示される値であり、例えば分析サーバ20の管理者によって設定され得る。また、損失関数では、下限の価格Cよりも低い価格が最適価格として導出されるときに、価格が安すぎるとして損失が大となる。
 出力部27は、導出部25によって導出された全消費者についての最適価格に基づいて、対象の商品における価格と販売数量との関係を出力する。図5は、出力部27によって出力される、予測価格と販売数量との関係の一例を示すグラフである。図5では、価格を横軸として、横軸の価格以上の最適価格が導出された消費者の数の累積を縦軸としたグラフが示されている。価格P以上の値が最適価格として導出された消費者の数は、N人である。価格P以上の値が最適価格として導出された消費者の数は、N人である。この場合、例えば現在の価格Pから価格Pに商品の価格を値下げした場合、N-Nに相当する数の商品の販売が見込まれることになる。
 続いて、価格予測システムの動作について説明する。図6は、価格予測システムによる処理の一例を示すフロー図である。一例として商品E2の最適価格を予測する場合について説明する。
 図6に示すように、価格予測システム1では、まず、分析サーバ20の属性取得部21及び履歴取得部22によって管理サーバ10から全消費者の属性データ及び履歴データが取得される(ステップS1)。続いて、確率取得部23において、選択確率予測モデル24が構築される(ステップS2)。商品E2についての最適価格を予測する場合、少なくとも商品E2についての選択確率予測モデル24が構築される。そして、構築された選択確率予測モデル24が適用された確率取得部23によって、商品E2の選択確率が消費者ごとに導出される(ステップS3)。
 続いて、導出部25において、商品E2についての価格予測モデル26が構築される(ステップS4)。そして、構築された価格予測モデル26が適用された導出部25によって、商品E2の最適価格が消費者ごとに導出される(ステップS5)。ステップS3においては、全消費者について最適価格が導出されてもよいし、商品群を構成する商品を購入していない消費者についてのみ最適価格が導出されてもよい。
 続いて、ステップS5において導出された最適価格に基づいて、価格と人数(販売数)との関係を示すグラフが結果として出力される(ステップS6)。ステップS5において、全消費者についての最適価格が導出されている場合には、全消費者の最適価格に基づいてグラフが構築されてもよい。また、ステップS5において、商品群を構成する商品を購入していない消費者についてのみ最適価格が導出されている場合には、商品E2を購入した消費者についての実際の購入価格を反映させて、グラフが構築されてもよい。すなわち、商品E2を購入している消費者の数を実測値として、商品を購入していない消費者の数を予測値として、グラフが構築されてもよい。
 以上説明した分析サーバ20では、価格予測モデル26によって、対象の商品の最適価格が導出される。このモデルでは、対象の商品の販売価格と、消費者ごとに導出された対象の商品の選択確率とに基づいて、消費者ごとの最適価格が導出される。そのため、消費者ごとに予測された結果を積み上げることにより、任意の価格が設定された場合における対象の商品の販売数量を予測することができる。この場合、現在の販売価格を値下げしたときに、どの程度の需要があるのかを予測することができる。
 また、価格予測モデルは、消費者による商品の選択確率、対象の商品の商品価格、及び、消費者による対象の商品の購入の有無を入力データとして、最適価格を出力データとするように、機械学習によって構築されている。この場合において、商品価格は、消費者が対象の商品を購入している場合には、消費者による対象の商品の購入価格であり、消費者が対象の商品を購入していない場合には、消費者が対象の商品と競合する他の商品を購入した時点における対象の商品の販売価格である。この構成によれば、価格を予測したい商品を購入していない消費者についての商品価格を補完することができる。このような補完がなされない場合、該当する商品を購入した消費者についての属性データ及び履歴データのみによって入力データが構築されるため、入力データに偏りが生じてしまう。商品価格の補完がなされることにより、入力データの偏りが抑制され得る。
 また、価格予測モデルでは、損失関数の値が最小になるような最適価格が出力される。損失関数では、消費者が対象の商品を購入している場合には、商品価格よりも低い価格が最適価格として導出されるときに損失が大となり、消費者が対象の商品を購入していない場合には、商品価格よりも高い価格が最適価格として導出されるときに損失が大となる。この構成によれば、該当する商品を購入しそうな消費者と、該当する商品を購入しそうにない消費者とに対して、それぞれに適した損失関数が適用され得る。よって、各消費者の属性に見合った最適価格を予測することができる。
 また、分析サーバ20は、商品価格と販売数量との関係を出力する出力部27を備えているため、任意の価格が設定された場合における対象の商品の販売数量を可視化して出力することができる。
 以上説明した価格予測システム1において、例えば、価格予測モデル26は、入力データとして、対象の商品に競合する他の商品の販売価格を含んでもよい。消費者が実際に商品の購入を検討する場合、商品群を構成する商品同士の価格差等を検討材料の一つにすることがある。上記構成によれば、価格を予測したい商品に競合する他の商品の販売価格の情報が、価格予測モデル26に反映されることになるため、価格予測の精度が向上し得る。
 また、例えば、価格予測モデル26は、入力データとして、消費者が他の商品を選択する確率を含んでもよい。この場合、確率取得部23では、商品群を構成する全商品についての選択確率が導出される。価格予測の対象となる商品についての選択確率だけでなく、競合する商品の選択確率も勘案されることになるので、価格予測の精度が向上し得る。
 また、一例の分析サーバ20では、価格予測モデル26を構築する際に入力データとして用いられた商品についての価格を予測する例を示したが、例えば、分析サーバ20は、価格予測モデル26を構築する際に入力データとして用いられた商品の後継商品についての価格を予測してもよい。例えば、構築された価格予測モデル26を用いて、後継商品の想定価格、後継商品の競合商品として想定される商品の想定価格等を入力データとすることによって、後継商品の価格予測を実行することができる。なお、後継商品とは、旧商品と同じ製造メーカーによって製造される新商品であり、旧商品と同等のスペックを有する等の理由により、旧商品と同様のターゲット層を有する新商品である。そのため、旧商品と新商品とを同じ商品であると見做すことによって、旧商品の販売データに基づいて構築された学習モデルを新商品の価格予測に用いることができる。
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における分析サーバ20は、本開示の情報処理を行うコンピュータとして機能してもよい。図7は、本開示の一実施の形態に係る分析サーバ20のハードウェア構成の一例を示す図である。上述の分析サーバ20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。分析サーバ20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 分析サーバ20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の分析サーバ20における属性取得部21、履歴取得部22、確率取得部23、導出部25及び出力部27は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、分析サーバ20は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る情報処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。分析サーバ20が備える記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、分析サーバ20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。
 サーバ及びクライアントの少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、サーバ及びクライアントの少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、サーバ及びクライアントの少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、サーバ及びクライアントの少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示におけるサーバは、クライアント端末で読み替えてもよい。例えば、サーバ及びクライアント端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述のサーバが有する機能をクライアント端末が有する構成としてもよい。
 同様に、本開示におけるクライアント端末は、サーバで読み替えてもよい。この場合、上述のクライアント端末が有する機能をサーバが有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 20…分析サーバ(価格予測装置)、21…属性取得部、22…履歴取得部、23…確率取得部、25…導出部、26…価格予測モデル、27…出力部。
 

Claims (6)

  1.  消費者の属性を示すデータを取得する属性取得部と、
     消費者が購入した商品と該商品の購入価格との履歴を示すデータを取得する履歴取得部と、
     前記属性及び前記履歴に基づいて、商品群から対象の商品を選択する選択確率を消費者ごとに導出する確率取得部と、
     機械学習によって構築された価格予測モデルを用いて、前記対象の商品の前記選択確率と、前記対象の商品の販売価格とに基づいて、前記対象の商品についての最適価格を消費者ごとに導出する導出部と、を備える、価格予測装置。
  2.  前記価格予測モデルは、消費者による前記対象の商品の前記選択確率、前記対象の商品の商品価格、及び、消費者による前記対象の商品の購入の有無を入力データとして、前記最適価格を出力データとするように、機械学習によって構築されており、
     前記商品価格は、
      消費者が前記対象の商品を購入している場合には、消費者による前記対象の商品の購入価格であり、
      消費者が前記対象の商品を購入していない場合には、消費者が前記対象の商品と競合する他の商品を購入した時点における前記対象の商品の販売価格である、請求項1に記載の価格予測装置。
  3.  前記価格予測モデルでは、損失関数の値が最小になるような前記最適価格が出力され、
     前記損失関数では、
      消費者が前記対象の商品を購入している場合には、前記商品価格よりも低い価格が前記最適価格として導出されるときに損失が大となり、
      消費者が前記対象の商品を購入していない場合には、前記商品価格よりも高い価格が最適価格として導出されるときに損失が大となる、請求項2に記載の価格予測装置。
  4.  前記価格予測モデルは、前記入力データとして、前記対象の商品に競合する他の商品の販売価格を含む、請求項2又は3に記載の価格予測装置。
  5.  前記価格予測モデルは、前記入力データとして、前記対象の商品に競合する他の商品の消費者ごとの選択確率を含む、請求項2~4のいずれか一項に記載の価格予測装置。
  6.  前記導出部によって導出された複数の消費者ごとの前記最適価格に基づいて、前記対象の商品における価格と販売数量との関係を出力する出力部をさらに備える、請求項1~5のいずれか一項に記載の価格予測装置。
PCT/JP2020/032412 2019-08-28 2020-08-27 価格予測装置 WO2021039916A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021543009A JP7500583B2 (ja) 2019-08-28 2020-08-27 価格予測装置
US17/638,068 US20220284460A1 (en) 2019-08-28 2020-08-27 Price prediction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019155845 2019-08-28
JP2019-155845 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021039916A1 true WO2021039916A1 (ja) 2021-03-04

Family

ID=74685158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032412 WO2021039916A1 (ja) 2019-08-28 2020-08-27 価格予測装置

Country Status (3)

Country Link
US (1) US20220284460A1 (ja)
JP (1) JP7500583B2 (ja)
WO (1) WO2021039916A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11847664B2 (en) * 2021-11-15 2023-12-19 Genpact Luxembourg S.à r.l. II System and method for predictive product pricing based on product description

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187051A (ja) * 2001-12-19 2003-07-04 Toyota Motor Corp 経営計画支援装置
JP2004110278A (ja) * 2002-09-17 2004-04-08 Interscope Inc コンピュータネットワークを利用した価格分析方法および価格分析サーバ
JP2007526531A (ja) * 2003-06-03 2007-09-13 ザ・ボーイング・カンパニー 学習曲線値を決定し、商品の対応する収益性およびコストをモデル化するためのシステム、方法およびコンピュータプログラム
JP2015041121A (ja) * 2013-08-20 2015-03-02 株式会社日立製作所 販売予測システム及び販売予測方法
WO2016016934A1 (ja) * 2014-07-29 2016-02-04 株式会社日立製作所 嗜好分析システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7853473B2 (en) * 2004-08-31 2010-12-14 Revionics, Inc. Market-based price optimization system
GB2543013A (en) * 2014-07-30 2017-04-05 Wal Mart Stores Inc Systems and methods for price position sensitivity analysis
US20160148233A1 (en) * 2014-11-21 2016-05-26 Staples, Inc. Dynamic Discount Optimization Model

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187051A (ja) * 2001-12-19 2003-07-04 Toyota Motor Corp 経営計画支援装置
JP2004110278A (ja) * 2002-09-17 2004-04-08 Interscope Inc コンピュータネットワークを利用した価格分析方法および価格分析サーバ
JP2007526531A (ja) * 2003-06-03 2007-09-13 ザ・ボーイング・カンパニー 学習曲線値を決定し、商品の対応する収益性およびコストをモデル化するためのシステム、方法およびコンピュータプログラム
JP2015041121A (ja) * 2013-08-20 2015-03-02 株式会社日立製作所 販売予測システム及び販売予測方法
WO2016016934A1 (ja) * 2014-07-29 2016-02-04 株式会社日立製作所 嗜好分析システム

Also Published As

Publication number Publication date
JPWO2021039916A1 (ja) 2021-03-04
JP7500583B2 (ja) 2024-06-17
US20220284460A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
CN112182412B (zh) 用于推荐体检项目的方法、计算设备和计算机存储介质
KR102012676B1 (ko) 콘텐츠 추천 방법, 장치 및 시스템
US20200160229A1 (en) Creating User Experiences with Behavioral Information and Machine Learning
WO2021039840A1 (ja) 需要予測装置
US20230111745A1 (en) Systems and methods for generating models for recommending replacement items for unavailable in-store purchases
KR20210009906A (ko) 인공지능 기반의 쇼핑몰 상품구매 예측 플랫폼 제공 장치 및 방법
WO2019188102A1 (ja) 顧客の属性情報に基づきレコメンドを行う装置、方法、およびプログラム
CN113780479A (zh) 周期预测模型的训练方法及装置、周期预测方法、设备
WO2021039916A1 (ja) 価格予測装置
US20230222544A1 (en) Analysis device
WO2022009876A1 (ja) レコメンドシステム
US20230235495A1 (en) Usage dependent user prompting
JP7350953B1 (ja) 情報処理装置
KR20230072939A (ko) 빅데이터 기반 개인화된 레시피 및 식단 추천 서비스 제공 방법, 장치 및 시스템
WO2023188808A1 (ja) レコメンドシステム
WO2022044812A1 (ja) レコメンド装置
JP7454970B2 (ja) 株式銘柄推薦装置
JP7489255B2 (ja) 情報提供装置
KR102441293B1 (ko) 아이템 그룹의 정보를 제공하는 방법 및 이를 위한 장치
JP7481880B2 (ja) 価格設定システム
US20170220648A1 (en) Method for managing device replacements
KR102676528B1 (ko) 빅데이터 생성 전자 장치 및 그 방법
WO2022044811A1 (ja) レコメンド装置
US20220351050A1 (en) Type estimation model generation system and type estimation system
US20220215411A1 (en) Demand prediction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857102

Country of ref document: EP

Kind code of ref document: A1